

conference

proceedings

Proceedings of the
25th USENIX
Security Symposium

Austin, TX, USA
August 10–12, 2016

Proceedings of the 25th U
SEN

IX Security Sym
posium

Austin, TX, USA

August 10–12, 2016

Sponsored by

ISBN 978-1-931971-32-4

© 2016 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the
author or the author’s employer. Permission is granted for the noncommercial reproduction of
the complete work for educational or research purposes. Permission is granted to print, primar-
ily for one person’s exclusive use, a single copy of these Proceedings. USENIX acknowledges all
trademarks herein.

ISBN 978-1-931971-32-4

Thanks to Our USENIX Security ’16 Sponsors

Media Sponsors and Industry Partners
ACM Queue

ADMIN
Blacks In Technology

CRC Press
Distributed Management

Task Force (DMTF)

Linux Pro Magazine
LXer

No Starch Press
O’Reilly Media

UserFriendly.Org
Virus Bulletin

Gold Sponsor

Silver Sponsors

Bronze Sponsors

Platinum Sponsor
Thanks to Our USENIX Supporters

USENIX Patrons
Facebook Google Microsoft NetApp VMware

USENIX Partners
Booking.com Can Stock Photo

Open Access Publishing Partner
PeerJ

USENIX Benefactors
ADMIN Linux Pro Magazine

USENIX Association

August 10–12, 2016
Austin, TX

Proceedings of the
25th USENIX Security Symposium

Conference Organizers

Program Co-Chairs
Thorsten Holz, Ruhr-Universtät Bochum
Stefan Savage, University of California, San Diego
Program Committee
Michael Backes, CISPA, Saarland University,

and MPI-SWS
Michael Bailey, University of Illinois at Urbana–

Champaign
Davide Balzarotti, Eurecom
Lujo Bauer, Carnegie Mellon University
Leyla Bilge, Symantec
Dan Boneh, Stanford University
Joseph Bonneau, Stanford University and

The Electronic Frontier Foundation
Nikita Borisov, University of Illinois at

Urbana–Champaign
Elie Bursztein, Google
Juan Caballero, IMDEA Software Institute
Srdjan Capkun, ETH Zurich
Stephen Checkoway, University of Illinois at Chicago
Nicolas Christin, Carnegie Mellon University
Manuel Costa, Microsoft Research
George Danezis, University College London
Tamara Denning, University of Utah
Adam Doupé, Arizona State University
Tudor Dumitraș, University of Maryland, College Park
Manuel Egele, Boston University
Serge Egelman, University of California, Berkeley, and

International Computer Science Institute
David Evans, University of Virginia
Cédric Fournet, Microsoft Research
Matthew Fredrikson, Carnegie Mellon University
Cristiano Giuffrida, Vrije Universiteit Amsterdam
Matthew Green, Johns Hopkins University
Chris Grier, Databricks
Guofei Gu, Texas A&M University
Saikat Guha, Microsoft Research India
Alex Halderman, University of Michigan
Nadia Heninger, University of Pennsylvania
Cynthia Irvine, Naval Postgraduate School
Martin Johns, SAP Research
Engin Kirda, Northeastern University
Tadayoshi Kohno, University of Washington
Farinaz Koushanfar, University of California, San Diego
Per Larsen, University of California, Irvine
Wenke Lee, Georgia Tech
Nektarios Leontiadis, Facebook

Janne Lindqvist, Rutgers University
Ben Livshits, Microsoft Research
Michelle Mazurek, University of Maryland, College

Park
Stephen McCamant, University of Minnesota
Damon McCoy, New York University/ICSI
Jonathan McCune, Google
Sarah Meiklejohn, University College London
Prateek Mittal, Princeton University
Tyler Moore, University of Tulsa
Arvind Narayanan, Princeton University
Nick Nikiforakis, Stony Brook University
Cristina Nita-Rotaru, Northeastern University
Mathias Payer, Purdue University
Zachary N. J. Peterson, California Polytechnic State

University
Frank Piessens, Katholieke Universiteit Leuven
Michalis Polychranakis, Stony Brook University
Raluca Popa, University of California, Berkeley
Christina Pöpper, New York University
Adrienne Porter Felt, Google
Georgios Portokalidis, Stevens Institute of Technology
Niels Provos, Google
Tom Ristenpart, Cornell Tech
Will Robertson, Northeastern University
Franziska Roesner, University of Washington
Andrei Sabelfeld, Chalmers University of Technology
Ahmad-Reza Sadeghi, Technische Universität

Darmstadt
Felix Schuster, Microsoft Research
Jörg Schwenk, Ruhr-Universität Bochum
Hovav Shacham, University of California, San Diego
Micah Sherr, Georgetown University
Elaine Shi, University of Maryland, College Park
Reza Shokri, The University of Texas at Austin
Deian Stefan, University of California, San Diego
Gianluca Stringhini, University College London
Cynthia Sturton, The University of North Carolina at

Chapel Hill
Kurt Thomas, Google
Patrick Traynor, University of Florida
Giovanni Vigna, University of California, Santa

Barbara
David Wagner, University of California, Berkeley
Nick Weaver, International Computer Science Institute

External Reviewers
David Adrian
Marc Andrysco
Musard Balliu
Nataliia Bielova
Shaanan Cohney
Antoine Delignat-Lavaud
Zakir Durumeric
Per Hallgren
Marcella Hastings
Daniel Hausknecht
Daniel Hedin
Brett Hemenway
Kevin Hong
Sanghyun Hong
Soumya Indela
Kai Jansen

David Kohlbrenner
Katharina Kohls
Srijan Kumar
BumJun Kwon
Philip Mackenzie
John Manferdelli
Abner Mendoza
Jan-Tobias Muehlberg
Job Noorman
Martin Ochoa
Moheeb Abu Rajab
David Rupprecht
Daniel Schoepe
Alexander Sjösten
Drew Springall
Rock Stevens

Raoul Strackx
Octavian Suciu
Hamid Ebadi Tavallaei
Luke Valenta
Steven Van Acker
Jo Van Bulck
Neline van Ginkel
Haopei Wang
Eric Wustrow
Lei Xu
Guangliang Yang
Jialong Zhang
Ziyun Zhu

Invited Talks Chair
Adrienne Porter Felt, Google
Invited Talks Committee
Tyrone Grandison, US Department of Commerce
Alex Halderman, University of Michigan
Franziska Roesner, University of Washington
Elaine Shi, Cornell University
Poster Session Chair
Raluca Popa, University of California, Berkeley
Poster Session Committee Members
Nikita Borisov, University of Illinois at Urbana–

Champaign
Mathias Payer, Purdue University

Steering Committee
Matt Blaze, University of Pennsylvania
Dan Boneh, Stanford University
Kevin Fu, University of Michigan
Casey Henderson, USENIX Association
Jaeyeon Jung, Microsoft Research
Tadayoshi Kohno, University of Washington
Niels Provos, Google
David Wagner, University of California, Berkeley
Dan Wallach, Rice University

25th USENIX Security Symposium
August 10–12, 2016

Austin, TX

Message from the Program Co-Chairs .x

Wednesday, August 10
Low-Level Attacks
Flip Feng Shui: Hammering a Needle in the Software Stack .1
Kaveh Razavi, Ben Gras, and Erik Bosman, Vrije Universiteit Amsterdam; Bart Preneel, Katholieke Universiteit
Leuven; Cristiano Giuffrida and Herbert Bos, Vrije Universiteit Amsterdam

One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation 19
Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu, The Ohio State University

PIkit: A New Kernel-Independent Processor-Interconnect Rootkit .37
Wonjun Song, Hyunwoo Choi, Junhong Kim, Eunsoo Kim, Yongdae Kim, and John Kim, Korea Advanced
Institute of Science and Technology (KAIST)

Verification and Timing
Verifying Constant-Time Implementations .53
José Bacelar Almeida, HASLab/INESC TEC and University of Minho; Manuel Barbosa, HASLab/INESC TEC
and DCC FCUP; Gilles Barthe and François Dupressoir, IMDEA Software Institute; Michael Emmi, Bell Labs
and Nokia

Secure, Precise, and Fast Floating-Point Operations on x86 Processors .71
Ashay Rane, Calvin Lin, and Mohit Tiwari, The University of Texas at Austin

überSpark: Enforcing Verifiable Object Abstractions for Automated Compositional Security Analysis
of a Hypervisor .87
Amit Vasudevan and Sagar Chaki, Carnegie Mellon University; Petros Maniatis, Google Inc.; Limin Jia and
Anupam Datta, Carnegie Mellon University

Software Attacks
Undermining Information Hiding (and What to Do about It) .105
Enes Göktaş, Vrije Universiteit Amsterdam; Robert Gawlik and Benjamin Kollenda, Ruhr Universität Bochum;
Elias Athanasopoulos, Vrije Universiteit Amsterdam; Georgios Portokalidis, Stevens Institute of Technology;
Cristiano Giuffrida and Herbert Bos, Vrije Universiteit Amsterdam

Poking Holes in Information Hiding .121
Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano Giuffrida,Vrije Universiteit
Amsterdam

What Cannot Be Read, Cannot Be Leveraged? Revisiting Assumptions of JIT-ROP Defenses 139
Giorgi Maisuradze, Michael Backes, and Christian Rossow, Saarland University

Password and Key-Fingerprints
zxcvbn: Low-Budget Password Strength Estimation .157
Daniel Lowe Wheeler, Dropbox Inc.

Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks 175
William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri, Lujo Bauer, Nicolas Christin, and Lorrie Faith
Cranor, Carnegie Mellon University

(Thursday, August 11, continues on next page)

An Empirical Study of Textual Key-Fingerprint Representations .193
Sergej Dechand, University of Bonn; Dominik Schürmann, Technische Universität Braunschweig; Karoline
Busse, University of Bonn; Yasemin Acar and Sascha Fahl, Saarland University; Matthew Smith, University of
Bonn

Network Security
Off-Path TCP Exploits: Global Rate Limit Considered Dangerous .209
Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, and Srikanth V. Krishnamurthy, University of California,
Riverside; Lisa M. Marvel, United States Army Research Laboratory

Website-Targeted False Content Injection by Network Operators .227
Gabi Nakibly, Rafael—Advanced Defense Systems and Technion—Israel Institute of Technology; Jaime
Schcolnik, Interdisciplinary Center Herzliya; Yossi Rubin, Rafael—Advanced Defense Systems

The Ever-Changing Labyrinth: A Large-Scale Analysis of Wildcard DNS Powered Blackhat SEO 245
Kun Du and Hao Yang, Tsinghua University; Zhou Li, IEEE Member; Haixin Duan, Tsinghua University;
Kehuan Zhang, The Chinese University of Hong Kong

A Comprehensive Measurement Study of Domain Generating Malware .263
Daniel Plohmann, Fraunhofer FKIE; Khaled Yakdan, University of Bonn; Michael Klatt, DomainTools;
Johannes Bader; Elmar Gerhards-Padilla, Fraunhofer FKIE

Applied Cryptography
Enhancing Bitcoin Security and Performance with Strong Consistency via Collective Signing 279
Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford,
École Polytechnique Fédérale de Lausanne (EPFL)

Faster Malicious 2-Party Secure Computation with Online/Offline Dual Execution .297
Peter Rindal and Mike Rosulek, Oregon State University

Egalitarian Computing .315
Alex Biryukov and Dmitry Khovratovich, University of Luxembourg

Post-quantum Key Exchange—A New Hope .327
Erdem Alkim, Ege University; Léo Ducas, Centrum voor Wiskunde en Informatica; Thomas Pöppelmann,
Infineon Technologies AG; Peter Schwabe, Radboud University

Thursday, August 11
Software Security
Automatically Detecting Error Handling Bugs Using Error Specifications .345
Suman Jana and Yuan Kang, Columbia University; Samuel Roth, Ohio Northern University; Baishakhi Ray,
University of Virginia

apISan: Sanitizing API Usages through Semantic Cross-Checking .363
Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik, Georgia Institute of
Technology

On Omitting Commits and Committing Omissions: Preventing Git Metadata Tampering That
(Re)introduces Software Vulnerabilities .379
Santiago Torres-Arias, New York University; Anil Kumar Ammula and Reza Curtmola, New Jersey Institute of
Technology; Justin Cappos, New York University

Hardware I
Defending against Malicious Peripherals with Cinch .397
Sebastian Angel, The University of Texas at Austin and New York University; Riad S. Wahby, Stanford
University; Max Howald, The Cooper Union and New York University; Joshua B. Leners, Two Sigma; Michael
Spilo and Zhen Sun, New York University; Andrew J. Blumberg, The University of Texas at Austin; Michael
Walfish, New York University

Making USB Great Again with uSbfIlter .415
Dave (Jing) Tian and Nolen Scaife, University of Florida; Adam Bates, University of Illinois at Urbana–
Champaign; Kevin R. B. Butler and Patrick Traynor, University of Florida

Micro-Virtualization Memory Tracing to Detect and Prevent Spraying Attacks .431
Stefano Cristalli and Mattia Pagnozzi, University of Milan; Mariano Graziano, Cisco Systems Inc.; Andrea
Lanzi, University of Milan; Davide Balzarotti, Eurecom

Web Security
Request and Conquer: Exposing Cross-Origin Resource Size .447
Tom Van Goethem, Mathy Vanhoef, Frank Piessens, and Wouter Joosen, Katholieke Universiteit Leuven

Trusted Browsers for Uncertain Times .463
David Kohlbrenner and Hovav Shacham, University of California, San Diego

Tracing Information Flows Between Ad Exchanges Using Retargeted Ads .481
Muhammad Ahmad Bashir, Sajjad Arshad, William Robertson, and Christo Wilson, Northeastern University

Cyber-Physical Systems
Virtual U: Defeating Face Liveness Detection by Building Virtual Models from Your Public Photos 497
Yi Xu, True Price, Jan-Michael Frahm, and Fabian Monrose, The University of North Carolina at Chapel Hill

Hidden Voice Commands .513
Nicholas Carlini and Pratyush Mishra, University of California, Berkeley; Tavish Vaidya, Yuankai Zhang, Micah
Sherr, and Clay Shields, Georgetown University; David Wagner, University of California, Berkeley; Wenchao
Zhou, Georgetown University

FlowFence: Practical Data Protection for Emerging IoT Application Frameworks .531
Earlence Fernandes, Justin Paupore, and Amir Rahmati, University of Michigan; Daniel Simionato and Mauro
Conti, University of Padova; Atul Prakash, University of Michigan

Low-Level Attacks and Defenses
ARMageddon: Cache Attacks on Mobile Devices .549
Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan Mangard, Graz University of
Technology

DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks .565
Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard, Graz University of
Technology

An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries .583
Dennis Andriesse, Xi Chen, and Victor van der Veen, Vrije Universiteit Amsterdam; Asia Slowinska, Lastline,
Inc.; Herbert Bos, Vrije Universiteit Amsterdam

Machine Learning and Data Retrieval Systems
Stealing Machine Learning Models via Prediction APIs .601
Florian Tramèr, École Polytechnique Fédérale de Lausanne (EPFL); Fan Zhang, Cornell University; Ari Juels,
Cornell Tech; Michael K. Reiter, The University of North Carolina at Chapel Hill; Thomas Ristenpart, Cornell Tech

Oblivious Multi-Party Machine Learning on Trusted Processors .619
Olga Ohrimenko, Felix Schuster, and Cédric Fournet, Microsoft Research; Aastha Mehta, Microsoft Research
and Max Planck Institute for Software Systems (MPI-SWS); Sebastian Nowozin, Kapil Vaswani, and Manuel
Costa, Microsoft Research

Thoth: Comprehensive Policy Compliance in Data Retrieval Systems .637
Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg, and Peter Druschel, Max Planck
Institute for Software Systems (MPI-SWS)

Crypto Attacks
Dancing on the Lip of the Volcano: Chosen Ciphertext Attacks on Apple iMessage .655
Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers, and Michael Rushanan, Johns Hopkins
University

Predicting, Decrypting, and Abusing WPA2/802 .11 Group Keys .673
Mathy Vanhoef and Frank Piessens, Katholieke Universiteit Leuven

DROWN: Breaking TLS using SSLv2 .689
Nimrod Aviram, Tel Aviv University; Sebastian Schinzel, Münster University of Applied Sciences; Juraj
Somorovsky, Ruhr University Bochum; Nadia Heninger, University of Pennsylvania; Maik Dankel, Münster
University of Applied Sciences; Jens Steube, Hashcat Project; Luke Valenta, University of Pennsylvania; David
Adrian and J. Alex Halderman, University of Michigan; Viktor Dukhovni, Two Sigma and OpenSSL; Emilia
Käsper, Google and OpenSSL; Shaanan Cohney, University of Pennsylvania; Susanne Engels and Christof Paar,
Ruhr University Bochum; Yuval Shavitt, Tel Aviv University

All Your Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable Encryption 707
Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou, University of Maryland

Malware
Investigating Commercial Pay-Per-Install and the Distribution of Unwanted Software 721
Kurt Thomas, Juan A. Elices Crespo, Ryan Rasti, Jean-Michel Picod, Cait Phillips, Marc-André Decoste, Chris
Sharp, Fabio Tirelo, Ali Tofigh, Marc-Antoine Courteau, Lucas Ballard, Robert Shield, Nav Jagpal, Moheeb Abu
Rajab, Panayiotis Mavrommatis, Niels Provos, and Elie Bursztein, Google; Damon McCoy, New York University
and International Computer Science Institute

Measuring PUP Prevalence and PUP Distribution through Pay-Per-Install Services 739
Platon Kotzias, IMDEA Software Institute and Universidad Politécnica de Madrid; Leyla Bilge, Symantec
Research Labs; Juan Caballero, IMDEA Software Institute

UNVEIL: A Large-Scale, Automated Approach to Detecting Ransomware .757
Amin Kharaz, Sajjad Arshad, Collin Mulliner, William Robertson, and Engin Kirda, Northeastern University

Towards Measuring and Mitigating Social Engineering Software Download Attacks 773
Terry Nelms, Georgia Institute of Technology and Damballa; Roberto Perdisci, University of Georgia and
Georgia Institute of Technology; Manos Antonakakis, Georgia Institute of Technology; Mustaque Ahamad,
Georgia Institute of Technology and New York University Abu Dhabi

Friday, August 12
Network Security II
Specification Mining for Intrusion Detection in Networked Control Systems .791
Marco Caselli, University of Twente; Emmanuele Zambon, University of Twente and SecurityMatters B.V.;
Johanna Amann, International Computer Science Institute; Robin Sommer, International Computer Science
Institute and Lawrence Berkeley National Laboratory; Frank Kargl, Ulm University

Optimized Invariant Representation of Network Traffic for Detecting Unseen Malware Variants 807
Karel Bartos and Michal Sofka, Cisco Systems, Inc.; Vojtech Franc, Czech Technical University in Prague

Authenticated Network Time Synchronization .823
Benjamin Dowling, Queensland University of Technology; Douglas Stebila, McMaster University; Greg
Zaverucha, Microsoft Research

Hardware II
fTPM: A Software-Only Implementation of a TPM Chip .841
Himanshu Raj, ContainerX; Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah Cox, Paul England, Chris
Fenner, Kinshuman Kinshumann, Jork Loeser, Dennis Mattoon, Magnus Nystrom, David Robinson, Rob Spiger,
Stefan Thom, and David Wooten, Microsoft

Sanctum: Minimal Hardware Extensions for Strong Software Isolation .857
Victor Costan, Ilia Lebedev, and Srinivas Devadas, MIT CSAIL

Ariadne: A Minimal Approach to State Continuity .875
Raoul Strackx and Frank Piessens, Katholieke Universiteit Leuven

Cyber-Physical Systems II
The Million-Key Question—Investigating the Origins of RSA Public Keys .893
Petr Švenda, Matúš Nemec, Peter Sekan, Rudolf Kvašňovský, David Formánek, David Komárek, and Vashek
Matyáš, Masaryk University

Fingerprinting Electronic Control Units for Vehicle Intrusion Detection .911
Kyong-Tak Cho and Kang G. Shin, University of Michigan

 .929

 .945

 .963

 .979

 .997

Lock It and Still Lose It—On the (In)Security of Automotive Remote Keyless Entry Systems
Flavio D. Garcia and David Oswald, University of Birmingham; Timo Kasper, Kasper & Oswald GmbH; Pierre
Pavlidès, University of Birmingham

Distributed Systems
OblIvP2P: An Oblivious Peer-to-Peer Content Sharing System .
Yaoqi Jia, National University of Singapore; Tarik Moataz, Colorado State University and Telecom Bretagne;
Shruti Tople and Prateek Saxena, National University of Singapore

AuthLoop: End-to-End Cryptographic Authentication for Telephony over Voice Channels
Bradley Reaves, Logan Blue, and Patrick Traynor, University of Florida

You Are Who You Know and How You Behave: Attribute Inference Attacks via Users’ Social Friends
and Behaviors .
Neil Zhenqiang Gong, Iowa State University; Bin Liu, Rutgers University

Web Measurements
Internet Jones and the Raiders of the Lost Trackers: An Archaeological Study of Web Tracking
from 1996 to 2016 .
Ada Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner, University of Washington

Hey, You Have a Problem: On the Feasibility of Large-Scale Web Vulnerability Notification 1015
Ben Stock, Giancarlo Pellegrino, and Christian Rossow, Saarland University; Martin Johns, SAP SE; Michael
Backes, Saarland University and Max Planck Institute for Software Systems (MPI-SWS)

You’ve Got Vulnerability: Exploring Effective Vulnerability Notifications .1033
Frank Li, University of California, Berkeley; Zakir Durumeric, University of Michigan, University of Illinois
at Urbana–Champaign, and International Computer Science Institute; Jakub Czyz, University of Michigan;
Mohammad Karami, George Mason University; Michael Bailey, University of Illinois at Urbana–Champaign;
Damon McCoy, New York University; Stefan Savage, University of California, San Diego; Vern Paxson,
University of California, Berkeley, and International Computer Science Institute

Proofs
Mirror: Enabling Proofs of Data Replication and Retrievability in the Cloud .1051
Frederik Armknecht, University of Mannheim; Ludovic Barman, Jens-Matthias Bohli, and Ghassan O. Karame,
NEC Laboratories Europe

ZKBoo: Faster Zero-Knowledge for Boolean Circuits .1069
Irene Giacomelli, Jesper Madsen, and Claudio Orlandi, Aarhus University

The Cut-and-Choose Game and Its Application to Cryptographic Protocols .1085
Ruiyu Zhu and Yan Huang, Indiana University; Jonathan Katz, University of Maryland; Abhi Shelat,
Northeastern University

Android
On Demystifying the Android Application Framework: Re-Visiting Android Permission
Specification Analysis . 1101
Michael Backes, Saarland University and Max Planck Institute for Software Systems (MPI-SWS); Sven Bugiel
and Erik Derr, Saarland University; Patrick McDaniel, The Pennsylvania State University; Damien Octeau,
The Pennsylvania State University and University of Wisconsin—Madison; Sebastian Weisgerber, Saarland
University

Practical DIFC Enforcement on Android .1119
Adwait Nadkarni, Benjamin Andow, and William Enck, North Carolina State University; Somesh Jha, University
of Wisconsin—Madison

Screen after Previous Screens: Spatial-Temporal Recreation of Android App Displays from
Memory Images .1137
Brendan Saltaformaggio, Rohit Bhatia, Xiangyu Zhang, and Dongyan Xu, Purdue University;
Golden G. Richard III, University of New Orleans

Harvesting Inconsistent Security Configurations in Custom Android ROMs via Differential Analysis 1153
Yousra Aafer, Xiao Zhang, and Wenliang Du, Syracuse University

Privacy
Identifying and Characterizing Sybils in the Tor Network .1169
Philipp Winter, Princeton University and Karlstad University; Roya Ensafi, Princeton University; Karsten
Loesing, The Tor Project; Nick Feamster, Princeton University

k-fingerprinting: A Robust Scalable Website Fingerprinting Technique .1187
Jamie Hayes and George Danezis, University College London

Protecting Privacy of BLE Device Users .1205
Kassem Fawaz, University of Michigan; Kyu-Han Kim, Hewlett Packard Labs; Kang G. Shin, University of
Michigan

Privacy in Epigenetics: Temporal Linkability of MicroRNA Expression Profiles .1223
Michael Backes, Saarland University and Max Planck Institute for Software Systems (MPI-SWS); Pascal
Berrang, Anna Hecksteden, Mathias Humbert, Andreas Keller, and Tim Meyer, Saarland University

Message from the
25th USENIX Security Symposium

Program Co-Chairs

It is our pleasure to welcome you to the 25th USENIX Security Symposium in Austin, TX!

We hope you enjoy the outstanding program, which includes a mix of papers, invited talks, fun evening events, and,
of course, the “hallway track.” Now in its 25th year, USENIX Security brings together researchers from both academia
and industry interested in the latest advances in the security of computer systems and networks. The symposium is
a premier venue for security and privacy research, and we look forward to seeing the lasting impact that this year’s
papers will have in years to come.

For the first time, USENIX Security is chaired by two people. Given the growth of the symposium in the past
few years and the huge number of submitted papers, this change was necessary. It was our great pleasure to chair
 USENIX Security this year, and now we want to take this opportunity to describe the process of creating the
 program you will enjoy over the next three days. This entire process was supported by 78 program committee
 members: 37 volunteers served as attending PC members, while 41 served as remote PC members. The PC spent
countless hours not only reviewing papers but also discussing papers with each other online and in person. In total,
more than 1,400 reviews and 2,300 comments were entered into the reviewing system, an average of five comments
per paper. More specifically, the review process consisted of several rounds as described below.

First round of reviews (Feb. 25–March 24, 2016): We received 468 submissions, a 10% increase over last year.
12 papers were desk rejected due to a violation of submission requirements, and five papers were withdrawn by the
authors after the deadline. The remaining 451 papers were assigned to at least two reviewers per submission. The
program committee spent two weeks on online discussion once reviews had been collected. As in past years, we
decided to finalize decisions in the first round for a subset of papers that had confident reviews and did not appear
to have a chance of acceptance. Based on the positive feedback on early reject notifications, a feature introduced last
year, we decided to also notify authors early about the status of their papers. All reviews from the first review round
were sent out on April 7. In total, 233 papers were rejected in the first round of decisions and the remaining 218
papers moved on to the second review round.

This year, we introduced a new feature: authors had the option to appeal these initial reviews if they contained criti-
cal errors. We decided to introduce these appeals to make sure that we did not prematurely reject papers. An appeal
was required to clearly and explicitly identify concrete disagreements with factual statements in the initial reviews.
We received 19 appeals for papers rejected in the first round, and carefully checked each of them to understand
the concerns raised by the authors. After several discussions, we decided to approve seven appeals and move these
 papers to the second review round. One of these papers was even finally accepted into the program, indicating that
the intended process actually works. To our surprise, we also received 70 appeals for papers that were not rejected
in the first round. It became clear that the intent of appeals was not clear to many authors, and we decided to make
these appeals available to the reviewers so that they could be taken into account during the next phase.

Second round of reviews (April 6–May 3, 2016): In total, 225 papers were reviewed in the second round. Most
papers received at least two more reviews, and controversial papers with diverging reviews were assigned at least
three more reviews. After the second reviewing deadline had passed, the program committee spent an additional
week discussing the papers using HotCRP. Each paper was discussed with the goal of reaching a consensus among
the reviewers if the paper had a chance of acceptance into the final program.

Un-blinding papers (May 11, 2015): Outcomes and discussion points were finalized for each paper, and we as
the PC co-chairs decided on the list of 88 papers to discuss at the PC meeting based on the recommendations. We
arranged these papers into groups with a similar research topic so we could discuss them in batches during the PC
meeting. Furthermore, we decided to pre-accept five papers, given that these papers had very strong positive re-
views. Before the PC meeting, the author names were made visible to reviewers. The un-blinding was helpful during
the meeting to clarify conflicts and to help prevent authors from being punished for failing to cite their own work or
from reviewers who might have a bias based on a false assumption regarding the authors’ identity.

x 25th USENIX Security Symposium USENIX Association

PC meeting (May 12–13, 2016, at Google in Mountain View, CA): 39 PC members attended the PC meeting. We
allocated six minutes for the discussion of each paper. After going through the list of 88 papers, the PC spent several
extra hours discussing tabled papers and papers that were voted to be resurrected. After the final decisions were
made, we had accepted 72 papers, 15.4% of the submissions. The quality of these papers is very high—a testimony
to the strength of our community!

The technical program would not have been possible without contributions from the program committee members
and roughly 50 external reviewers who provided thoughtful reviews and recommendations. Please join us in thank-
ing them for their countless hours of work! We would also like to thank Adrienne Porter-Felt for chairing the invited
talks committee; Raluca Popa for serving as the poster session chair; Patrick Traynor for serving as the WiPs chair;
student volunteer Paul Pearce for scribing at the PC meeting; Google for sponsoring the PC meeting; the USENIX
staff, especially Casey Henderson and Michele Nelson, for all the support throughout the process; and the authors of
all 468 papers for submitting their research for consideration. Finally, we would like to thank the USENIX steering
committee for allowing us to have this incredible opportunity to work with so many wonderful people.

Thorsten Holz, Ruhr-Universtät Bochum
Stefan Savage, University of California, San Diego
USENIX Security ’16 Program Co-Chairs

USENIX Association 25th USENIX Security Symposium xi

USENIX Association 25th USENIX Security Symposium 1

Flip Feng Shui: Hammering a Needle in the Software Stack

Kaveh Razavi∗

Vrije Universiteit
Amsterdam

Ben Gras∗

Vrije Universiteit
Amsterdam

Erik Bosman
Vrije Universiteit

Amsterdam

Bart Preneel
Katholieke Universiteit

Leuven

Cristiano Giuffrida
Vrije Universiteit

Amsterdam

Herbert Bos
Vrije Universiteit

Amsterdam

* Equal contribution joint first authors

Abstract

We introduce Flip Feng Shui (FFS), a new exploitation
vector which allows an attacker to induce bit flips over
arbitrary physical memory in a fully controlled way. FFS
relies on hardware bugs to induce bit flips over memory
and on the ability to surgically control the physical mem-
ory layout to corrupt attacker-targeted data anywhere in
the software stack. We show FFS is possible today with
very few constraints on the target data, by implement-
ing an instance using the Rowhammer bug and memory
deduplication (an OS feature widely deployed in pro-
duction). Memory deduplication allows an attacker to
reverse-map any physical page into a virtual page she
owns as long as the page’s contents are known. Rowham-
mer, in turn, allows an attacker to flip bits in controlled
(initially unknown) locations in the target page.

We show FFS is extremely powerful: a malicious
VM in a practical cloud setting can gain unauthorized
access to a co-hosted victim VM running OpenSSH.
Using FFS, we exemplify end-to-end attacks breaking
OpenSSH public-key authentication, and forging GPG
signatures from trusted keys, thereby compromising the
Ubuntu/Debian update mechanism. We conclude by dis-
cussing mitigations and future directions for FFS attacks.

1 Introduction

The demand for high-performance and low-cost comput-
ing translates to increasing complexity in hardware and
software. On the hardware side, the semiconductor in-
dustry packs more and more transistors into chips that
serve as a foundation for our modern computing infras-
tructure. On the software side, modern operating systems
are packed with complex features to support efficient
resource management in cloud and other performance-
sensitive settings.

Both trends come at the price of reliability and, in-
evitably, security. On the hardware side, components

are increasingly prone to failures. For example, a large
fraction of the DRAM chips produced in recent years
are prone to bit flips [34, 51], and hardware errors in
CPUs are expected to become mainstream in the near fu-
ture [10, 16, 37, 53]. On the software side, widespread
features such as memory or storage deduplication may
serve as side channels for attackers [8, 12, 31]. Re-
cent work analyzes some of the security implications
of both trends, but so far the attacks that abuse these
hardware/software features have been fairly limited—
probabilistic privilege escalation [51], in-browser ex-
ploitation [12, 30], and selective information disclo-
sure [8, 12, 31].

In this paper, we show that an attacker abusing mod-
ern hardware/software properties can mount much more
sophisticated and powerful attacks than previously be-
lieved possible. We describe Flip Feng Shui (FFS), a
new exploitation vector that allows an attacker to induce
bit flips over arbitrary physical memory in a fully con-
trolled way. FFS relies on two underlying primitives:
(i) the ability to induce bit flips in controlled (but not
predetermined) physical memory pages; (ii) the ability
to control the physical memory layout to reverse-map a
target physical page into a virtual memory address un-
der attacker control. While we believe the general vec-
tor will be increasingly common and relevant in the fu-
ture, we show that an instance of FFS, which we term
dFFS (i.e, deduplication-based FFS), can already be im-
plemented on today’s hardware/software platforms with
very few constraints. In particular, we show that by
abusing Linux’ memory deduplication system (KSM) [6]
which is very popular in production clouds [8], and the
widespread Rowhammer DRAM bug [34], an attacker
can reliably flip a single bit in any physical page in the
software stack with known contents.

Despite the complete absence of software vulnerabili-
ties, we show that a practical Flip Feng Shui attack can
have devastating consequences in a common cloud set-
ting. An attacker controlling a cloud VM can abuse

2 25th USENIX Security Symposium USENIX Association

memory deduplication to seize control of a target phys-
ical page in a co-hosted victim VM and then exploit
the Rowhammer bug to flip a particular bit in the target
page in a fully controlled and reliable way without writ-
ing to that bit. We use dFFS to mount end-to-end cor-
ruption attacks against OpenSSH public keys, and De-
bian/Ubuntu update URLs and trusted public keys, all re-
siding within the page cache of the victim VM. We find
that, while dFFS is surprisingly practical and effective,
existing cryptographic software is wholly unequipped to
counter it, given that “bit flipping is not part of their
threat model”. Our end-to-end attacks completely com-
promise widespread cryptographic primitives, allowing
an attacker to gain full control over the victim VM.

Summarizing, we make the following contributions:

• We present FFS, a new exploitation vector to induce
hardware bit flips over arbitrary physical memory in
a controlled fashion (Section 2).

• We present dFFS, an implementation instance of
FFS that exploits KSM and the Rowhammer bug
and we use it to bit-flip RSA public keys (Sec-
tion 3) and compromise authentication and update
systems of a co-hosted victim VM, granting the at-
tacker unauthorized access and privileged code ex-
ecution (Section 4).

• We use dFFS to evaluate the time requirements and
success rates of our proposed attacks (Section 5)
and discuss mitigations (Section 6).

The videos demonstrating dFFS attacks can be found
in the following URL:

https://vusec.net/projects/flip-feng-shui

2 Flip Feng Shui

To implement an FFS attack, an attacker requires a phys-
ical memory massaging primitive and a hardware vulner-
ability that allows her to flip bits on certain locations on
the medium that stores the users’ data. Physical mem-
ory massaging is analogous to virtual memory massag-
ing where attackers bring the virtual memory into an
exploitable state [23, 24, 55], but instead performed on
physical memory. Physical memory massaging (or sim-
ply memory massaging, hereafter) allows the attacker to
steer victim’s sensitive data towards those physical mem-
ory locations that are amenable to bit flips. Once the tar-
get data land on the intended vulnerable locations, the at-
tacker can trigger the hardware vulnerability and corrupt
the data via a controlled bit flip. The end-to-end attack
allows the attacker to flip a bit of choice in data of choice
anywhere in the software stack in a controlled fashion.

With some constraints, this is similar to a typical arbi-
trary memory write primitive used for software exploita-
tion [15], with two key differences: (i) the end-to-end
attack requires no software vulnerability; (ii) the attacker
can overwrite arbitrary physical (not just virtual) mem-
ory on the running system. In effect, FFS transforms an
underlying hardware vulnerability into a very powerful
software-like vulnerability via three fundamental steps:

1. Memory templating: identifying physical memory
locations in which an attacker can induce a bit flip
using a given hardware vulnerability.

2. Memory massaging: steering targeted sensitive data
towards the vulnerable physical memory locations.

3. Exploitation: triggering the hardware vulnerability
to corrupt the intended data for exploitation.

In the remainder of this section, we detail each of these
steps and outline FFS’s end-to-end attack strategy.

2.1 Memory Templating
The goal of the memory templating step is to finger-
print the hardware bit-flip patterns on the running sys-
tem. This is necessary, since the locations of hardware bit
flips are generally unknown in advance. This is specifi-
cally true in the case of Rowhammer; every (vulnerable)
DRAM module is unique in terms of physical memory
offsets with bit flips. In this step, the attacker triggers
the hardware-specific vulnerability to determine which
physical pages, and which offsets within those pages are
vulnerable to bit flips. We call the combination of a vul-
nerable page and the offset a template.

Probing for templates provides the attacker with
knowledge of usable bit flips. Thanks to Flip Feng Shui,
any template can potentially allow the attacker to exploit
the hardware vulnerability over physical memory in a
controlled way. The usefulness of such an exploit, how-
ever, depends on the direction of the bit flip (i.e., one-
to-zero or zero-to-one), the page offset, and the contents
of the target victim page. For each available template,
the attacker can only craft a Flip Feng Shui primitive
that corrupts the target data page with the given flip and
offset. Hence, to surgically target the victim’s sensitive
data of interest, the attacker needs to probe for match-
ing templates by repeatedly exploiting the hardware vul-
nerability over a controlled physical page (i.e., mapped
in her virtual address space). To perform this step effi-
ciently, our own dFFS implementation relies on a vari-
ant of double-sided Rowhammer [51]. Rowhammer al-
lows an attacker to induce bit flips in vulnerable memory
locations by repeatedly reading from memory pages lo-
cated in adjacent rows. We discuss the low-level details

2

USENIX Association 25th USENIX Security Symposium 3

Host Physical Memory
Victim VM Memory

Attacker VM Memory

Host Physical Memory
Victim VM Memory

Attacker VM Memory

Host Physical Memory
Victim VM Memory

Attacker VM Memory

(A) (B) (C)

Figure 1: Memory deduplication can provide an attacker control over the layout of physical memory.

of the Rowhammer vulnerability and our implementation
in Section 4.2.

2.2 Memory Massaging
To achieve bit flips over arbitrary contents of the victim’s
physical memory, FFS abuses modern memory manage-
ment patterns and features to craft a memory massaging
primitive. Memory massaging allows the attacker to map
a desired victim’s physical memory page into her own
virtual memory address space in a controllable way.

Given a set of templates and the memory massaging
primitive, an ideal version of FFS can corrupt any of the
victim’s memory pages at an offset determined by the
selected template.

While memory massaging may be nontrivial in the
general case, it is surprisingly easy to abuse widely de-
ployed memory deduplication features to craft practi-
cal FFS attacks that corrupt any of the victim’s mem-
ory pages with known contents (similar to our dFFS im-
plementation). Intuitively, since memory deduplication
merges system-wide physical memory pages with the
same contents, an attacker able to craft the contents of
any of the victim’s memory pages can obtain a memory
massaging primitive and map the target page into her ad-
dress space.

Figure 1 shows how an attacker can control the physi-
cal memory location of a victim VM’s memory page. At
first, the attacker needs to predict the contents of the vic-
tim VM’s page that she wants to control (Figure 1-A).
Once the target page is identified, the attacker VM cre-
ates a memory page with the same contents as the victim
VM’s memory page and waits for the memory dedupli-
cation system to scan both pages (Figure 1-B). Once the
two physical pages (i.e., the attacker’s and the victim’s
pages) are identified, the memory deduplication system
returns one of the two pages back to the system, and the
other physical page is used to back both the attacker and
the victim’s (virtual) pages. If the attacker’s page is used
to back the memory of the victim page, then, in effect,
the attacker controls the physical memory location of the
victim page (Figure 1-C).

There are additional details necessary to craft a mem-
ory massaging primitive using a real-world implementa-
tion of memory deduplication (e.g., KSM). Section 4.1
elaborates on such details and presents our implementa-
tion of memory massaging on Linux.

2.3 Exploitation
At this stage, FFS already provides the attacker with tem-
plated bit flips over the victim’s physical memory pages
with known (or predictable) contents. The exploitation
surface is only subject to the available templates and their
ability to reach interesting locations for the attacker. As
we will see, the options are abundant.

While corrupting the memory state of running soft-
ware of the victim is certainly possible, we have opted
for a more straightforward, yet extremely powerful ex-
ploitation strategy. We consider an attacker running in a
cloud VM and seeking to corrupt interesting contents in
the page cache of a co-hosted victim VM. In particular,
our dFFS implementation includes two exploits that cor-
rupt sensitive file contents in the page cache in complete
absence of software vulnerabilities:

1. Flipping SSH’s authorized_keys: assuming the
RSA public keys of the individuals accessing the
victim VM are known, an attacker can use dFFS to
induce an exploitable flip in their public keys, mak-
ing them prone to factorization and breaking the au-
thentication system.

2. Flipping apt’s sources.list and trusted.gpg:
Debian/Ubuntu’s apt package management system
relies on the sources.list file to operate daily up-
dates and on the trusted.gpg file to check the au-
thenticity of the updates via RSA public keys. Com-
promising these files allows an attacker to make a
victim VM download and install arbitrary attacker-
generated packages.

In preliminary experiments, we also attempted to craft
an exploit to bit-flip SSH’s moduli file containing Diffie-
Hellman group parameters and eavesdrop on the victim

3

4 25th USENIX Security Symposium USENIX Association

VM’s SSH traffic. The maximum group size on current
distributions of OpenSSH is 1536. When we realized that
an exploit targeting such 1536-bit parameters would re-
quire a nontrivial computational effort (see Appendix A
for a formal analysis), we turned our attention to the two
more practical and powerful exploits above.

In Section 3, we present a cryptanalysis of RSA mod-
uli with a bit flip as a result of our attacks. In Section 4,
we elaborate on the internals of the exploits, and finally,
in Section 5, we evaluate their success rate and time re-
quirements in a typical cloud setting.

3 Cryptanalysis of RSA with Bit Flips

RSA [49] is a public-key cryptosystem: the sender en-
crypts the message with the public key of the recipient
(consisting of an exponent e and a modulus n) and the re-
cipient decrypts the ciphertext with her private key (con-
sisting of an exponent d and a modulus n). This way
RSA can solve the key distribution problem that is inher-
ent to symmetric encryption. RSA can also be used to
digitally sign messages for data or user authentication:
the signing operation is performed using the private key,
while the verification operation employs the public key.

Public-key cryptography relies on the assumption that
it is computationally infeasible to derive the private key
from the public key. For RSA, computing the private ex-
ponent d from the public exponent e is believed to require
the factorization of the modulus n. If n is the product of
two large primes of approximately the same size, factor-
izing n is not feasible. Common sizes for n today are
1024 to 2048 bits.

In this paper we implement a fault attack on the modu-
lus n of the victim: we corrupt a single bit of n, resulting
in n′. We show that with high probability n′ will be easy
to factorize. We can then compute from e the correspond-
ing value of d′, the private key, that allows us to forge
signatures or to decrypt. We provide a detailed analysis
of the expected computational complexity of factorizing
n′ in the following1.

RSA perform computations modulo n, where t is the
bitlength of n (t = 1+ �log2 n�). Typical values of t lie
between 512 (export control) and 8192, with 1024 and
2048 the most common values. We denote the ith bit of
n with n[i] (0 ≤ i < t), with the least significant bit (LSB)
corresponding to n[0]. The unit vector is written as ei ,
that is ei[i] = 1 and ei[j] = 0, for j �= i. The operation of
flipping the ith bit of n results in n′, or n′ = n⊕ ei. Any
integer can be written as the product of primes, hence
n = ∏s

j=1 pγi
i , where pi are the prime factors of n, γi is

the multiplicity of pi and s is the number of distinct prime

1A similar analysis for Diffie-Hellman group parameters with bit
flips can be found in Appendix A.

factors. W.l.o.g. we assume that p1 > p2 > · · · ps.
In the RSA cryptosystem, the modulus n is the prod-

uct of two odd primes p1, p2 of approximate equal size,
hence s = 2, and γ1 = γ2 = 1. The encryption operation
is computed as c = me mod n, with e the public expo-
nent, and m,c ∈ [0,n− 1]) the plaintext respectively the
ciphertext. The private exponent d can be computed as
d = e−1 mod λ (n), with λ (n) the Carmichael function,
given by lcm(p1, p2). The best known algorithm to re-
cover the private key is to factorize n using the General
Number Field Sieve (GNFS) (see e.g. [42]), which has
complexity O(Ln[1/3,1.92]), with

Ln[a,b] = exp
(
(b+o(1))(lnn)a(ln lnn)1−a) .

For a 512-bit modulus n, Adrian et al. estimate that the
cost is about 1 core-year [3]. The current record is 768
bits [35], but it is clear that 1024 bits is within reach of
intelligence agencies [3].

If we flip the LSB of n, we obtain n′ = n−1, which is
even hence n′ = 2 · n′′ with n′′ a t − 1-bit integer. If we
flip the most significant bit of n, we obtain the odd t −1-
bit integer n′. In all the other cases we obtain an odd t-bit
integer n′. We conjecture that the integer n′′ (for the LSB
case) and the integers n′ (for the other cases) have the
same distribution of prime factors as a random odd inte-
ger. To simplify the notation, we omit in the following
the LSB case, but the equations apply with n′ replaced
by n′′.

Assume that an attacker can introduce a bit flip to
change n into n′ with as factorization n = ∏s′

j=1 p′ γ̃i
i .

Then c′ = m′e mod n′. The Carmichael function can be
computed as

λ (n′) = lcm
({

p′ γ̃i−1
i · (p′i −1)

})
.

If gcd(e,λ (n′)) = 1, the private exponent d′ can be found
as d′ = e−1 mod λ (n′). For prime exponents e, the prob-
ability that gcd(e,λ (n′)) > 1 equals 1/e. For e = 3, this
means that 1 in 3 attacks fails, but for the widely used
value e = 216 +1, this is not a concern. With the private
exponent d′ we can decrypt or sign any message. Hence
the question remains how to factorize n′. As it is very
likely that n′ is not the product of two primes of almost
equal size, we can expect that factorizing n′ is much eas-
ier than factorizing n.

Our conjecture implies that with probability 2/ lnn′, n′

is prime and in that case the factorization is trivial. If n′

is composite, the best approach is to find small factors
(say up to 16 bits) using a greatest common divisor oper-
ation with the product of the first primes. The next step
is to use Pollard’s ρ algorithm (or Brent’s variant) [42]:
this algorithm can easily find factors up to 40. . . 60 bits.
A third step consist of Lenstra’s Elliptic Curve factor-
ization Method (ECM) [38]: ECM can quickly find fac-
tors up to 60. . . 128 bits (the record is a factor of about

4

USENIX Association 25th USENIX Security Symposium 5

270 bits2). Its complexity to find the smallest prime fac-
tor p′s is equal to O(Lp′s [1/2,

√
2]). While ECM is asymp-

totically less efficient than GNFS (because of the param-
eter 1/2 rather than 1/3), the complexity of ECM depends
on the size of the smallest prime factor p′s rather than on
the size of the integer n′ to factorize. Once a prime fac-
tor p′i is found, n′ is divided by it, the result is tested for
primality and if the result is composite, ECM is restarted
with as argument n′/p′i.

The complexity analysis of ECM depends on the num-
ber of prime factors and the distribution of the size of
the second largest prime factor p′2: it is known that its
expected valued is 0.210 · t [36]. The Erdös–Kac theo-
rem [22] states that the number ω(n′) of distinct prime
factors of n′ is normally distributed with mean and vari-
ance ln lnn′: for t = 1024 the mean is about 6.56, with
standard deviation 2.56. Hence it is unlikely that we have
exactly two prime factors (probability 3.5%), and even
less likely that they are of approximate equal size. The
probability that n′ is prime is equal to 0.28%. The ex-
pected size of the second largest prime factor p′2 is 215
bits and the probability that it has less than 128 bits is
0.26 [36]. In this case ECM should be very efficient. For
t = 2048, the probability that n′ is prime equals 0.14%.
The expected size of the second largest prime factor p′2
is 430 bits; the probability that p′2 has less than 228 bits
is 0.22 and the probability that it has less than 128 bits
is about 0.12. Similarly, for t = 4096, the expected size
of the second largest prime factor p′2 is 860 bits. The
probability that p′2 has less than 455 bits is 0.22.

The main conclusion is that if n has 1024-2048 bits,
we can expect to factorize n′ efficiently with a probability
of 12− 22% for an arbitrary bit flip, but larger moduli
should also be feasible. As we show in Section 5, given a
few dozen templates, we can easily factorize any 1024 bit
to 4096 bit modulus with one (or more) of the available
templates.

4 Implementation

To implement dFFS reliably on Linux, we need to un-
derstand the internals of two kernel subsystems, ker-
nel same-page merging [6] (KSM) and transparent huge
pages [5], and the way they interact with each other.
After discussing them and our implementation of the
Rowhammer exploit (Sections 4.1, 4.2, and 4.3), we
show how we factorized corrupted RSA moduli in Sec-
tion 4.4 before summarizing our end-to-end attacks in
Section 4.5.

2https://en.wikipedia.org/wiki/Lenstra_elliptic_
curve_factorization

4.1 Kernel Same-page Merging

KSM, the Linux implementation of memory deduplica-
tion, uses a kernel thread that periodically scans memory
to find memory pages with the same contents that are
candidates for merging. It then keeps a single physical
copy of a set of candidate pages, marks it read-only, and
updates the page-table entries of all the other copies to
point to it before releasing their physical pages to the
system.

KSM keeps two red-black trees, termed “stable” and
“unstable”, to keep track of the merged and candidate
pages. The merged pages reside in the stable tree while
the candidate contents that are not yet merged are in the
unstable tree. KSM keeps a list of memory areas that are
registered for deduplication and goes through the pages
in these areas in the order in which they were registered.
For each page that it scans, it checks if the stable tree
already contains a page with the same contents. If so,
it updates the page-table entry for that page to have it
point to the physical page in the stable tree and releases
the backing physical page to the system. Otherwise, it
searches the unstable tree for a match and if it finds one,
promotes the page to the stable tree and updates the page-
table entry of the match to make it point to this page. If
no match is found in either one of the trees, the page is
added to the unstable tree. After going through all mem-
ory areas, KSM dumps the unstable tree before starting
again. Further details on the internals of KSM can be
found in [6].

In the current implementation of KSM, during a
merge, the physical page in either the stable tree or the
unstable tree is always preferred. This means that during
a merge with a page in the stable tree, the physical loca-
tion of the page in the stable tree is chosen. Similarly, the
physical memory of the page in the unstable tree is cho-
sen to back both pages. KSM scans the memory of the
VMs in order that they have been registered (i.e., their
starting time). This means that to control the location of
the target data on physical memory using the unstable
tree the attacker VM should have been started before the
victim VM. Hence, the longer the attacker VM waits, the
larger the chance of physical memory massaging through
the unstable tree.

The better physical memory massaging possibility is
through the stable tree. An attacker VM can upgrade a
desired physical memory location to the stable tree by
creating two copies of the target data and placing one
copy in the desired physical memory location and an-
other copy in a different memory location. By ensuring
that the other copy comes after the desired physical mem-
ory location in the physical address-space, KSM merges
the two pages and creates a stable tree node using the de-
sired physical memory location. At this point, any other

5

6 25th USENIX Security Symposium USENIX Association

Figure 2: A SO-DIMM with its memory chips.

page with the same contents will assume the same phys-
ical memory location desired by the attacker VM. For
this to work, however, the attacker needs to control when
the memory page with the target contents is created in
the victim VM. In the case of our OpenSSH attack, for
example, the attacker can control when the target page is
created in the victim VM by starting an SSH connection
using an invalid key with the target username.

For simplicity, the current version of dFFS implements
the memory massaging using the unstable tree by assum-
ing that the attacker VM has started first, but it is trivial
to add support for memory massaging with stable tree.
Using either the stable or unstable KSM trees for mem-
ory massaging, all dFFS needs to do is crafting a page
with the same contents as the victim page and place it at
the desired physical memory page; KSM will then per-
form the necessary page-table updates on dFFS’s behalf!
In other words, KSM inadvertently provides us with ex-
actly the kind of memory massaging we need for suc-
cessful Flip Feng Shui.

4.2 Rowhammer inside KVM
Internally, DRAM is organized in rows. Each row pro-
vides a number of physical cells that store memory bits.
For example, in an x86 machine with a single DIMM,
each row contains 1,048,576 cells that can store 128 kB
of data. Each row is internally mapped to a number of
chips on the DIMM as shown in Figure 2.

Figure 3 shows a simple organization of a DRAM
chip. When the processor reads a physical memory lo-
cation, the address is translated to an offset on row i of
the DRAM. Depending on the offset, the DRAM selects
the proper chip. The selected chip then copies the con-
tents of its row i to the row buffer. The contents at the
correct offset within the row buffer is then sent on the
bus to the processor. The row buffer acts as a cache: if
the selected row is already in the row buffer, there is no
need to read from the row again.

Each DRAM cell is built using a transistor and a ca-
pacitor. The transistor controls whether the contents of
the cell is accessible, while the capacitor can hold a
charge which signifies whether the stored content is a

Row i - 1

Row i

Row i + 1

Row Buffer

Figure 3: DRAM’s internal organization.

high or low bit. Since capacitors leak charge over time,
the processor sends refresh commands to DIMM rows
in order to recharge their contents. On top of the refresh
commands, every time a row is read by the processor, the
chip also recharges its cells.

As DRAM components have become smaller, they
keep a smaller charge to signify stored contents. With a
smaller charge, the error margin for identifying whether
the capacitor is charged (i.e., the stored value) is also
smaller. Kim et al. [34] showed that the smaller er-
ror margin, in combination with unexpected charge ex-
change between cells of different rows, can result in the
cell to “lose” its content. To trigger this DRAM relia-
bility issue, an attacker needs fast activations of DRAM
rows which causes a cell in adjacent rows to lose enough
charge so that its content is cleared. Note that due to the
row buffer, at least two rows need to activate one after
the other in a tight loop for Rowhammer to trigger. If
only one row is read from, the reads can be satisfied con-
tinually from the row buffer, without affecting the row
charges in the DRAM cells.

Double-sided Rowhammer. Previous work [51] re-
ported that if these two “aggressor” rows are selected in
a way that they are one row apart (e.g., row i− 1 and
i+ 1 in Figure 3), the chances of charge interaction be-
tween these rows and the row in the middle (i.e., row i)
increases, resulting in potential bit flips in that row. This
variant of Rowhammer is named double-sided Rowham-
mer. Apart from additional speed for achieving bit flips,
it provides additional reliability by isolating the location
of most bit flips to a certain (victim) row.

To perform double-sided Rowhammer inside KVM,
we need to know the host physical addresses inside the
VM. This information is, however, not available in the
guest: guest physical addresses are mapped to host vir-
tual addresses which can be mapped to any physical page
by the Linux kernel. Similar to [30], we rely on transpar-
ent huge pages [5] (THP). THP is a Linux kernel feature

6

USENIX Association 25th USENIX Security Symposium 7

that runs in the background and merges virtually contigu-
ous normal pages (i.e., 4 kB pages) into huge pages (i.e.,
2 MB pages) that rely on contiguous pieces of physical
memory. THP greatly reduces the number of page-table
entries in suitable processes, resulting in fewer TLB3 en-
tries. This improves performance for some workloads.

THP is another (weak) form of memory massaging:
it transparently allows the attacker control over how the
system maps guest physical memory to host physical
memory. Once the VM is started and a certain amount of
time has passed, THP will transform most of the VM’s
memory into huge pages. Our current implementation of
dFFS runs entirely in the userspace of the guest and re-
lies on the default-on THP feature of both the host and
the guest. As soon as the guest boots, dFFS allocates a
large buffer with (almost) the same size as the available
memory in the guest. The THP in the host then converts
guest physical addresses into huge pages and the THP
in the guest turns the guest virtual pages backing dFFS’s
buffer into huge pages as well. As a result, dFFS’s buffer
will largely be backed by huge pages all the way down
to host physical memory.

To make sure that the dFFS’s buffer is backed by huge
pages, we request the guest kernel to align the buffer at a
2 MB boundary. This ensures that if the buffer is backed
by huge pages, it starts with one: on the x86_64 architec-
ture, the virtual and physical huge pages share the lowest
20 bits, which are zero. The same applies when transi-
tioning from the guest physical addresses to host phys-
ical addresses. With this knowledge, dFFS can assume
that the start of the allocated buffer is the start of a mem-
ory row, and since multiple rows fit into a huge page, it
can successively perform double-sided Rowhammer on
these rows. To speed up our search for bit flips during
double-sided Rowhammer on each two rows, we rely on
the row-conflict side channel for picking the hammering
addresses within each row [44]. We further employed
multiple threads to amplify the Rowhammer effect.

While THP provides us with the ability to efficiently
and reliably induce Rowhammer bit flips, it has unex-
pected interactions with KSM that we will explore in the
next section.

4.3 Memory Massaging with KSM

In Section 2.2, we discussed the operational semantics
of KSM. Here we detail some of its implementation fea-
tures that are important for dFFS.

3TLB or translation lookaside buffer is a general term for processor
caches for page-table entries to speed up the virtual to physical memory
translation

4.3.1 Interaction with THP

As we discussed earlier, KSM deduplicates memory
pages with the same contents as soon as it finds them.
KSM currently does not support deduplication of huge
pages, but what happens when KSM finds matching con-
tents within huge pages?

A careful study of the KSM shows that KSM al-
ways prefers reducing memory footprint over reducing
TLB entries; that is, KSM breaks down huge pages into
smaller pages if there is a small page inside with similar
contents to another page.

This specific feature is important for an efficient and
reliable implementation of dFFS, but has to be treated
with care. More specifically, we can use huge pages as
we discussed in the previous section for efficient and re-
liable double-sided Rowhammer, while retaining control
over which victim page we should map in the middle of
our target (vulnerable) huge page.

KSM, however, can have undesired interactions with
THP from dFFS’s point of view. If KSM finds pages in
the attacker VM’s memory that have matching contents,
it merges them with each other or with a page from a
previously started VM. In these situations, KSM breaks
THP by releasing one of its smaller pages to the sys-
tem. To avoid this, dFFS uses a technique to avoid KSM
during its templating phase. KSM takes a few tens of
seconds to mark the pages of dFFS’s VM as candidates
for deduplication. This gives dFFS enough time to allo-
cate a large buffer with the same size as VM’s available
memory (as mentioned earlier) and write unique integers
at a pre-determined location within each (small) page of
this buffer as soon as its VM boots. The entropy present
within dFFS’s pages then prohibits KSM to merge these
pages which in turn avoids breaking THP.

4.3.2 On dFFS Chaining

Initially, we planned on chaining memory massaging
primitive and FFS to induce an arbitrary number of bit
flips at many desired locations of the victim’s memory
page. After using the first template for the first bit flip,
the attacker can write to the merged memory page to trig-
ger a copy-on-write event that ultimately unmerges the
two pages (i.e., the attacker page from the victim page).
At this stage, the attacker can use dFFS again with a new
template to induce another bit flip.

However, the implementation of KSM does not allow
this to happen. During the copy-on-write event, the vic-
tim’s page remains in the stable tree, even if it is the only
remaining page. This means that subsequent attempts for
memory massaging results in the victim page to control
the location of physical memory, disabling the attacker’s
ability for chaining FFS attacks.

7

8 25th USENIX Security Symposium USENIX Association

Even so, based on our single bit flip cryptanalysis on
public keys and our evaluation in Section 5, chaining is
not necessary for performing successful end-to-end at-
tacks with dFFS.

4.4 Attacking Weakened RSA

For the two attacks in this paper, we generate RSA pri-
vate keys, i.e., the private exponents d′ corresponding to
corrupted moduli n′ (as described in Section 3). We use
d′ to compromise two applications: OpenSSH and GPG.

Although the specifics of the applications are very dif-
ferent, the pattern to demonstrate each attack is the same
and as follows:

1. Obtain the file containing the RSA public key (n,e).
This is application-specific, but due to the nature
of public key cryptosystems, generally unprotected.
We call this the input file.

2. Using the memory templating step of Section 2.1
we obtain a list of templates that we are able to flip
within a physical page. We flip bits according to the
target templates to obtain corrupted keys. For ev-
ery single bitflip, we save a new file. We call these
files the corrupted files. According to the templat-
ing step, dFFS has the ability to create any of these
corrupted files in the victim by flipping a bit in the
page cache.

3. One by one, we now read the (corrupted) public
keys for each corrupted file. If the corrupted file
is parsed correctly and the public key has a changed
modulus n′ �= n and the same e, this n′ is a candidate
for factorization.

4. We start factorizations of all n′ candidates found in
the previous step. As we described in Section 3,
the best known algorithm for our scenario is ECM
that finds increasingly large factor in an iterative
fashion. We use the Sage [19] implementation of
ECM for factorizing n′. We invoke an instance of
ECM per available core for each corrupted key with
a 1 hour timeout (all available implementations of
ECM run with a single thread).

5. For all successful factorizations, we compute the
private exponent d′ corresponding to (n′,e) and
generate the corresponding private key to the cor-
rupted public key. How to compute d′ based on the
factorization of n′ is described in Section 3. We can
then use the private key with the unmodified appli-
cation. This step is application-specific and we will
discuss it for our case studies shortly.

We now describe our end-to-end attacks that put all
the pieces of dFFS together using two target applications:
OpenSSH and GPG.

4.5 End-to-end Attacks

Attacker model. The attacker owns a VM co-hosted
with a victim VM on a host with DIMMs susceptible
to Rowhammer. We further assume that memory dedu-
plication is turned on—as is common practice in public
cloud settings [8]. The attacker has the ability to use the
memory deduplication side-channel to fingerprint low-
entropy information, such as the IP address of the victim
VM, OS/library versions, and the usernames on the sys-
tem (e.g., through /etc/passwd file in the page cache)
as shown by previous work [32, 43, 56]. The attacker’s
goal is to compromise the victim VM without relying on
any software vulnerability. We now describe how this
model applies with dFFS in two important and widely
popular applications.

4.5.1 OpenSSH

One of the most commonly used authentication mecha-
nisms allowed by the OpenSSH daemon is an RSA pub-
lic key. By adding a user’s RSA public key to the SSH
authorized_keys file, the corresponding private key
will allow login of that user without any other authentica-
tion (such as a password) in a default setting. The public
key by default includes a 2048 bit modulus n. The com-
plete key is a 372-byte long base64 encoding of (n,e).

The attacker can initiate an SSH connection to the vic-
tim with a correct victim username and an arbitrary pri-
vate key. This interaction forces OpenSSH to read the
authorized_keys file, resulting in this file’s contents
getting copied into the page cache at the right time as we
discussed in Section 4.1. Public key cryptosystems by
definition do not require public keys to be secret, there-
fore we assume an attacker can obtain a victim public
key. For instance, GitHub makes the users’ submitted
SSH public keys publicly available [27].

With the victim’s public key known and in the page
cache, we can initiate dFFS for inducing a bit flip. We
cannot flip just any bit in the memory page caching
the authorized_keys; some templates will break the
base64 encoding, resulting in a corrupted file that
OpenSSH does not recognize. Some flips, however, de-
code to a valid (n′,e) key that we can factorize. We re-
port in Section 5 how many templates are available on
average for a target public key.

Next, we use a script with the PyCrypto RSA cryp-
tographic library [39] to operate on the corrupted public
keys. This library is able to read and parse OpenSSH
public key files, and extract the RSA parameters (n,e).

8

USENIX Association 25th USENIX Security Symposium 9

It can also generate RSA keys with specific parameters
and export them as OpenSSH public (n′,e) and private
(n′,d′) keys again. All the attacker needs to do is factor-
ize n′ as we discussed in Section 4.4.

Once we know the factors of n′, we generate the pri-
vate key (n′,d′) that can be used to login to the victim
VM using an unmodified OpenSSH client.

4.5.2 GPG

The GNU Privacy Guard, or GPG, is a sophisticated im-
plementation of, among others, the RSA cryptosystem.
It has many applications in security, one of which is the
verification of software distributions by verifying signa-
tures using trusted public keys. This is the larger appli-
cation we intend to subvert with this attack.

Specifically, we target the apt package distribution
system employed by Debian and Ubuntu distribution for
software installation and updates. apt verifies package
signatures after download using GPG and trusted pub-
lic keys stored in trusted.gpg. It fetches the package
index from sources in sources.list.

Our attack first steers the victim to our malicious
repository. The attacker can use dFFS to achieve
this goal by inducing a bit flip in the sources.list
file that is present in the page cache after an update.
sources.list holds the URL of the repositories that
are used for package installation and update. By using
a correct template, the attacker can flip a bit that results
in a URL that she controls. Now, the victim will seek
the package index and packages at an attacker-controlled
repository.

Next, we use our exploit to target the GPG trusted keys
database. As this file is part of the software distribu-
tion, the stock contents of this file is well-known and we
assume this file is unchanged or we can guess the new
changes. (Only the pages containing the keys we depend
on need be either unchanged or guessed.) This file re-
sides in the page cache every time the system tries to
update as a result of a daily cron job, so in this attack, no
direct interaction with the victim is necessary for bring-
ing the file in the page cache. Our implicit assumption is
that this file remains in the page cache for the next update
iteration.

Similar to OpenSSH, we apply bit flip mutations in lo-
cations where we can induce bit flips according to the
memory templating step. As a result, we obtain the cor-
rupted versions of this file, and each time check whether
GPG will still accept this file as a valid keyring and that
one of the RSA key moduli has changed as a result of
our bit flip. Extracting the key data is done with the GPG
--list-keys --with-key-data options.

For every bitflip location corresponding to a corrupted
modulus that we can factorize, we pick one of these

mutations and generate the corresponding (n′,d′) RSA
private key, again using PyCrypto. We export this pri-
vate key using PyCrypto as PEM formatted key and use
pem2openpgp [26] to convert this PEM private key to
the GPG format. Here we specify the usage flags to in-
clude signing and the same generation timestamp as the
original public key. We can then import this private key
for use for signing using an unmodified GPG.

It is important that the Key ID in the private keyring
match with the Key ID in the trusted.gpg file. This
Key ID is not static but is based on a hash computed from
the public key data, a key generation timestamp, and sev-
eral other fields. In order for the Key ID in the private
keyring to match with the Key ID in the public keyring,
these fields have to be identical and so the setting of the
creation timestamp is significant.

One significant remark about the Key ID changing (as
a result of a bit flip) is that this caused the self-signature
on the public keyring to be ignored by GPG! The signa-
ture contains the original Key ID, but it is now attached
to a key with a different ID due to the public key mu-
tation. As a result, GPG ignores the attached signature
as an integrity check of the bit-flipped public key and the
self-signing mechanism fails to catch our bit flip. The
only side-effect is harmless to our attack – GPG reports
that the trusted key is not signed. apt ignores this with-
out even showing a warning. After factorizing the cor-
rupted public key modulus, we successfully verified that
the corresponding private key can generate a signature
that verifies against the bit-flipped public key stored in
the original trusted.gpg.

We can now sign our malicious package with the new
private key and the victim will download and install the
new package without a warning.

5 Evaluation

We evaluated dFFS to answer the following three key
questions:

• What is the success probability of the dFFS attack?

• How long does the dFFS attack take?

• How much computation power is necessary for a
successful dFFS attack?

We used the following methodology for our evalua-
tion. We first used a Rowhammer testbed to measure
how many templates are available in a given segment of
memory and how long it takes us to find a certain tem-
plate. We then executed the end-to-end attacks discussed
in Section 4.5 and report on their success rate and their
start-to-finish execution time. We then performed an an-
alytical large-scale study of the factorization time, suc-
cess probability, and computation requirements of 200

9

10 25th USENIX Security Symposium USENIX Association

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5000 10000 15000 20000 25000 30000
 0

 10

 20

 30

 40

 50

 60
Ph

ys
ic

al
 m

em
or

y
us

ed
 (M

B)

Ti
m

e
sp

en
t (

h)

Unique templates discovered

Physical memory
Time spent

Figure 4: Required time and memory for templating.

RSA public keys for each of the 1024, 2048 and 4096-bit
moduli with 50 bit flips at random locations (i.e., 30,000
bit flipped public keys in total).

We used the following hardware for our Rowhammer
testbed and for the cluster that we used to conduct our
factorization study:

Rowhammer testbed. Intel Haswell i7-4790 4-core
processor on an Asus H97-Pro mainboard with 8 GB of
DDR3 memory.

Factorization cluster. Up to 60 nodes, each with two
Intel Xeon E5-2630 8-core processors with 64 GB of
memory.

5.1 dFFS on the Rowhammer Testbed

Memory templating. Our current implementation of
Rowhammer takes an average of 10.58 seconds to com-
plete double-sided Rowhammer for each target row. Fig-
ure 4 shows the amount of time and physical memory
that is necessary for discovering a certain number of tem-
plates. Note that, in our testbed, we could discover tem-
plates for almost any bit offset (i.e., 29,524 out of 32,768
possible templates). Later, we will show that we only
need a very small fraction of these templates to success-
fully exploit our two target programs.

Memory massaging. dFFS needs to wait for a certain
amount of time for KSM to merge memory pages. KSM
scans a certain number of pages in each waking period.
On the default version of Ubuntu, for example, KSM
scans 100 pages every 20 milliseconds (i.e., 20 MB). Re-
cent work [12] shows that it is possible to easily detect
when a deduplication pass happens, hence dFFS needs
to wait at most the sum of memory allocated to each co-
hosted VM. For example, in our experiments with one

 0

 5

 10

 15

 20

 25

 30

 200 400 600 800 1000 1200 1400 1600 1800 2000

Fr
eq

ue
nc

y

Number of usable 1->0 bit flips

1024-bit Moduli
2048-bit Moduli
4096-bit Moduli

Figure 5: Number of usable 1-to-0 bit flips usable in the
SSH authorized_keys file for various modulus sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

CD
F

Attack time (mins)

successful attacks

Figure 6: CDF of successful automatic SSH attacks.

attacker VM and one victim VM each with 2 GB of mem-
ory, KSM takes at most around 200 seconds for a com-
plete pass.

5.2 The SSH Public Key Attack
Figure 5 shows the number of possible templates to per-
form the dFFS attack on the SSH authorized_keys
file with a single randomly selected RSA public key, for
1024, 2048 and 4096-bit public keys. For this experi-
ment, we assumed 1-to-0 bit flips since they are more
common in our testbed. For DRAM chips that are sus-
ceptible to frequent 0-to-1 bit flips, these numbers dou-
ble. For our experiment we focused on 2048-bit public
keys as they are the default length as generated by the
ssh-keygen command.

To demonstrate the working end-to-end attack, mea-
sure its reliability, and measure the elapsed time distri-
bution, we automatically performed the SSH attack 300
times from an attacker VM on a victim VM, creating the
keys and VM’s from scratch each time. Figure 6 shows
the CDF of successful attacks with respect to the time
they took. In 29 cases (9.6%), the Rowhammer opera-
tion did not change the modulus at all (the attacker needs

10

USENIX Association 25th USENIX Security Symposium 11

Table 1: Examples of domains that are one bit flip away
from ubuntu.com that we purchased.

ubuftu.com ubunt5.com ubunte.com
ubunuu.com ubunvu.com ubunpu.com
ubun4u.com ubuntw.com ubuntt.com

to retry). In 19 cases (6.3%), the Rowhammer operation
changed the modulus other than planned. The remaining
252 (84.1%) were successful the first time. All the at-
tacks finished within 12.6 minutes with a median of 5.3
minutes.

5.3 The Ubuntu/Debian Update Attack

We tried factorizing the two bit-flipped 4096 bit Ubuntu
Archive Automatic Signing RSA keys found in the
trusted.gpg file. Out of the 8,192 trials (we tried
both 1-to-0 and 0-to-1 flips), we could factorize 344 tem-
plates. We also need to find a bit flip in the URL of the
Ubuntu or Debian update servers (depending on the tar-
get VM’s distribution) in the page cache entry for apt’s
sources.list file. For ubuntu.com, 29 templates re-
sult in a valid domain name, and for debian.org, 26
templates result in a valid domain name. Table 5.2 shows
examples of domains that are one bit flip away from
ubuntu.com.

Performing the update attack on our Rowhammer
testbed, we could trigger a bit flip in the page cache
entry of sources sources.list in 212 seconds, con-
verting ubuntu.com to ubunvu.com, a domain which
we control. Further, we could trigger a bit flip in the
page cache entry of trusted.gpg that changed one of
the RSA public keys to one that we had pre-computed
a factorization in 352 seconds. At this point, we man-
ually sign the malicious package with our GPG private
key that corresponds to the mutated public key. When
the victim then updates the package database and up-
grades the packages, the malicious package is down-
loaded and installed without warning. Since the cur-
rent version of dFFS runs these steps sequentially, the
entire end-to-end attack took 566 seconds. We have
prepared a video of this attack which is available at:
https://vusec.net/projects/flip-feng-shui

Growingly concerned about the impact of such practi-
cal attacks, we conservatively registered all the possible
domains from our Ubuntu/Debian list.

5.4 RSA Modulus Factorization

Figure 7 shows the average probability of successful fac-
torizations based on the amount of available compute

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

Su
cc

es
s

Pr
ob

ab
ili

ty

Compute hours available

timeout 1 sec
timeout 10 sec
timeout 1 min
timeout 5 min

timeout 60 min

Figure 7: Compute power and factorization timeout
tradeoff for 2048-bit RSA keys.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

Fa
ct

or
iza

tio
n

Su
cc

es
s P

ro
ba

bi
lit

y

Available Templates

1024-bit Moduli
2048-bit Moduli
4096-bit Moduli

Figure 8: CDF of success rate with increasing templates.

hours. We generated this graph using 200 randomly gen-
erated 2048-bit RSA keys, each with a bit flip in 50 dis-
tinct trials (i.e., 10,000 keys, each with a bit flip). For this
experiment, we relied on the ECM factorization tool, dis-
cussed in Section 3, and varied its user-controlled time-
out parameter between one second and one hour. For
example, with a timeout of one second for a key with a
bit flip, we either timeout or the factorization succeeds
immediately. In both cases, we move on to the next trial
of the same key with a different bit flip.

This graph shows that, with 50 bit flips, the average
factorization success probability is between 0.76 for a
timeout of one second and 0.93 for a timeout of one hour.
Note that, for example, with a timeout of one second,
we can try 50 templates in less than 50 seconds, while
achieving a successful factorization in as many as 76%
of the public keys. A timeout of one minute provides
a reasonable tradeoff and can achieve a success rate of
91% for 2048-bit RSA keys.

Figure 8 shows the cumulative success probability of
factorization as more templates become available for
1024-bit, 2048-bit and 4096-bit keys. For 4096-bit keys,
we need around 50 templates to be able to factorize a
key with high probability (0.85) with a 1-hour timeout.

11

12 25th USENIX Security Symposium USENIX Association

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Fr
eq

ue
nc

y
of

 S
uc

ce
ss

fu
l F

ac
to

riz
at

io
n

Single-flip Success Probability

1024-bit Moduli
2048-bit Moduli
4096-bit Moduli

Figure 9: Probability mass function of successful factor-
izations with one flip.

With bit-flipped 2048-bit RSA public keys, with only
48 templates, we achieved a success probability of 0.99
with a 1 hour timeout. This proves that for 2048-bit keys
(ssh-keygen’s default), only a very small fraction of the
templates from our testbed is necessary for a successful
factorization. For 1024-bit keys, we found a successful
factorization for all keys after just 32 templates.

Some DRAM modules may only have a small number
of bit flips [34], so an interesting question is: what is the
chance of achieving a factorization using only a single
template? Figure 9 answers this question for 1024-bit,
2048-bit and 4096-bit moduli separately. To interpret the
figure, fix a point on the horizontal axis: this is the prob-
ability of a successful factorization using a single bit flip
within 1 hour. Now read the corresponding value on the
vertical axis, which shows the probability that a public
key follows this success rate. For example, on average,
15% of 2048-bit RSA public keys can be factored using
only a single bit flip with probability 0.1. As is expected,
the probability to factor 4096-bit keys with the same 1-
hour timeout is lower, and for 1024-bit keys higher. The
fact that the distributions are centered around roughly
0.22, 0.11, and 0.055 are consistent with our analytical
results in 3, which predict the factorization cost is linear
in the bitlength of the modulus.

6 Mitigations

Mitigating Flip Feng Shui is not straightforward as hard-
ware reliability bugs become prevalent. While there
is obviously need for new testing methods and certi-
fication on the hardware manufacturer’s side [4], soft-
ware needs to adapt to fit Flip Feng Shui in its threat
model. In this section, we first discuss concrete miti-
gations against dFFS before suggesting how to improve
software to counter FFS attacks.

Table 2: Memory savings with different dedup strategies.
Strategy Required memory Savings

No dedup 506 GB 0%
Zero-page dedup 271 GB 46%

Full dedup 108 GB 79%

6.1 Defending against dFFS

We discuss both hardware and software solutions for de-
fending against dFFS.

6.1.1 In Hardware

We recommend DRAM consumers perform extensive
Rowhammer testing [2] to identify vulnerable DRAM
modules. These DRAM modules should be replaced,
but if this is not possible, reducing DRAM refresh in-
tervals (e.g., by half) may be sufficient to protect against
Rowhammer [51]. However, this also reduces DRAM
performance and consumes additional power.

Another option is to rely on memory with error-
correcting codes (ECC) to protect against single bit flips.
Unfortunately, we have observed that Rowhammer can
occasionally induce multiple flips in a single 64-bit word
confirming the findings of the original Rowhammer pa-
per [34]. These multi-flips can cause corruption even in
presence of ECC. More expensive multi-ECC DIMMs
can protect against multiple bit flips, but it is still unclear
whether they can completely mitigate Rowhammer.

A more promising technology is directed row re-
fresh, which is implemented in low-power DDR4 [7]
(LPDDR4) and some DDR4 implementations. LPDDR4
counts the number of activations of each row and,
when this number grows beyond a particular threshold,
it refreshes the adjunct rows, preventing cell charges
from falling below the error margin. Newer Intel pro-
cessors support a similar feature for DDR3, but re-
quire compliant DIMMs. While these fixes mitigate
Rowhammer, replacing most of current DDR3 deploy-
ments with LPDDR4 or secure DDR4 DIMMs (some
DDR4 DIMMs are reported to be vulnerable to Rowham-
mer [1]), is not economically feasible as it requires com-
patible mainboards and processors. As a result, a soft-
ware solution is necessary for mitigating Rowhammer in
current deployments.

6.1.2 In Software

The most obvious mitigation against dFFS is disabling
memory deduplication. In fact, this is what we rec-
ommend in security-sensitive environments. Disabling
memory deduplication completely, however, wastes a

12

USENIX Association 25th USENIX Security Symposium 13

substantial amount of physical memory that can be saved
otherwise [6, 46, 54].

Previous work [12] showed that deduplicating zero
pages alone can retain between 84% and 93% of the
benefits of full deduplication in a browser setting. Lim-
iting deduplication to zero pages and isolating their
Rowhammer-prone surrounding rows was our first mit-
igation attempt. To understand whether zero-page dedu-
plication retains sufficient memory saving benefits in a
cloud setting, we performed a large-scale memory dedu-
plication study using 1,011 memory snapshots of dif-
ferent VMs from community VM images of Windows
Azure [48]. Table 2 presents our results. Unfortunately,
zero-page deduplication only saves 46% of the poten-
tial 79%. This suggests that deduplicating zero pages
alone is insufficient to eradicate the wasteful redundancy
in current cloud deployments. Hence, we need a bet-
ter strategy that can retain the benefits of full memory
deduplication without resulting in a memory massaging
primitive for the attackers.

A strawman design A possible solution is to rely on
a deduplication design that, for every merge operation,
randomly allocates a new physical page to back the ex-
isting duplicate pages. When merge operations with ex-
isting shared pages occur, such design would need to
randomly select a new physical page and update all the
page-table mappings for all the sharing parties.

This strawman design eliminates the memory massag-
ing primitive that is necessary for dFFS under normal cir-
cumstances. However, this may be insufficient if an at-
tacker can find different primitives to control the physical
memory layout. For example, the attacker’s VM can cor-
ner the kernel’s page allocator into allocating pages with
predictable patterns if it can force the host kernel into an
out-of-memory (OOM) situation. This is not difficult if
the host relies on over-committed memory to pack more
VMs than available RAM, a practice which is common
in cloud settings and naturally enabled by memory dedu-
plication. For example, the attacker can trigger a massive
number of unmerge operations and cause the host kernel
to approach an OOM situation. At this point, the attacker
can release vulnerable memory pages to the allocator,
craft a page with the same contents as the victim page,
and wait for a merge operation. Due to the near-OOM
situation, the merge operation happens almost instantly,
forcing the host kernel to predictably pick one of the
previously released vulnerable memory pages (i.e., tem-
plates) to back the existing duplicate pages (the crafted
page and the victim page). At this stage, the attacker has
again, in effect, a memory massaging primitive.

A better design To improve on the strawman design,
the host needs to ensure enough memory is available not

to get cornered into predictable physical memory reuse
patterns. Given a desired level of entropy h, and the num-
ber of merged pages mi for for the ith VM, the host needs
to ensure A = 2h + Max(mi) memory pages are avail-
able or can easily become available (e.g., page cache)
to the kernel’s page allocator at all times. With an ad-
equate choice of h, it may become difficult for an at-
tacker to control the behavior of the memory dedupli-
cation system. We have left the study of the right pa-
rameters for h and the projected A for real systems to
future work. We also note that balancing entropy, mem-
ory, and performance when supporting a truly random
and deduplication-enabled physical memory allocator is
challenging, and a promising direction for future work.

6.2 Mitigating FFS at the Software Layer

The attacks presented in this paper provide worrisome
evidence that even the most security-sensitive software
packages used in production account for no attacker-
controlled bit flips as part of their threat model. While
there is certainly room for further research in this direc-
tion, based on our experience, we formulate a number of
suggestions to improve current practices:

• Security-sensitive information needs to be checked
for integrity in software right before use to ensure
the window of corruption is small. In all the cases
we analyzed, such integrity checks would be placed
on a slow path with essentially no application per-
formance impact.

Certificate chain formats such as X.509 are auto-
matically integrity checked as certificates are al-
ways signed [17]. This is a significant side benefit
of a certification chain with self-signatures.

• The file system, due to the presence of the page
cache, should not be trusted. Sensitive information
on stable storage should include integrity or authen-
ticity information (i.e., a security signature) for veri-
fication purposes. In fact, this simple defense mech-
anism would stop the two dFFS attacks that we pre-
sented in this paper.

• Low-level operating system optimizations should
be included with extra care. Much recent work [11,
12, 29, 40, 58] shows that benign kernel opti-
mizations such as transparent huge pages, vsyscall
pages, and memory deduplication can become dan-
gerous tools in the hands of a capable attacker. In
the case of FFS, any feature that allows an untrusted
entity to control the layout or reuse of data in physi-
cal memory may provide an attacker with a memory
massaging primitive to mount our attacks.

13

14 25th USENIX Security Symposium USENIX Association

7 Related Work

We categorize related work into three distinct groups dis-
cussed below.

7.1 Rowhammer Exploitation

Pioneering work on the Rowhammer bug already warned
about its potential security implications [34]. One year
later, Seaborn published the first two concrete Rowham-
mer exploits, in the form of escaping the Google Native
Client (NaCl) sandbox and escalating local privileges on
Linux [51]. Interestingly, Seaborn’s privilege escalation
exploit relies on a weak form of memory massaging by
probabilistically forcing a OOMing kernel to reuse phys-
ical pages released from user space. dFFS, in contrast,
relies on a deterministic memory massaging primitive to
map pages from co-hosted VMs and mount fully reliable
attacks. In addition, while mapping pages from kernel
space for local privilege escalation is possible, dFFS en-
ables a much broader range of attacks over nearly arbi-
trary physical memory.

Furthermore, Seaborn’s exploits relied on Intel x86’s
CLFLUSH instruction to evict a cache line from the CPU
caches in order to read directly from DRAM. For mit-
igation purposes, CLFLUSH was disabled in NaCl and
the same solution was suggested for native CPUs via
a microcode update. In response to the local priv-
ilege exploit, Linux disabled unprivileged access to
virtual-to-physical memory mapping information (i.e.,
/proc/self/pagemap) used in the exploit to perform
double-sided Rowhammer. Gruss et al. [30], how-
ever, showed that it is possible to perform double-sided
Rowhammer from the browser, without CLFLUSH, and
without pagemap, using cache eviction sets and transpar-
ent huge pages (THP). dFFS relies on nested THP (both
in the host and in the guest) for reliable double-sided
Rowhammer. In our previous work [12], we took the next
step and implemented the first reliable Rowhammer ex-
ploit in the Microsoft Edge browser. Our exploit induces
a bit flip in the control structure of a JavaScript object for
pivoting to an attacker-controlled counterfeit object. The
counterfeit object provides the attackers with arbitrary
memory read and write primitives inside the browser.

All the attacks mentioned above rely on one key as-
sumption: the attacker already owns the physical mem-
ory of the victim to make Rowhammer exploitation pos-
sible. In this paper, we demonstrated that, by abus-
ing modern memory management features, it is possi-
ble to completely lift this assumption with alarming con-
sequences. Using FFS, an attacker can seize control of
nearly arbitrary physical memory in the software stack,
for example compromising co-hosted VMs in complete
absence of software vulnerabilities.

7.2 Memory Massaging

Sotirov [55] demonstrates the power of controlling vir-
tual memory allocations in JavaScript, bypassing many
protections against memory errors with a technique
called Heap Feng Shui. Mandt [41] demonstrates that
it is possible to control reuse patterns in the Windows 7
kernel heap allocator in order to bypass the default mem-
ory protections against heap-based attacks in the kernel.
Inspired by these techniques, our Flip Feng Shui demon-
strates that an attacker abusing benign and widespread
memory management mechanisms allows a single bit flip
to become a surprisingly dangerous attack primitive over
physical memory.

Memory spraying techniques [25, 33, 47, 50] allocate
a large number of objects in order to make the layout of
memory predictable for exploitation purposes, similar, in
spirit, to FFS. Govindavajhala and Appel [28] sprayed
the entire memory of a machine with specially-crafted
Java objects and showed that 70% of the bit flips caused
by rare events cosmic rays and such will allow them to
escape the Java sandbox. This attack is by its nature
probabilistic and, unlike FFS, does not allow for fully
controllable exploitation.

Memory deduplication side channels have been pre-
viously abused to craft increasingly sophisticated infor-
mation disclosure attacks [8, 12, 29, 32, 43, 56]. In
this paper, we demonstrate that memory deduplication
has even stronger security implications than previously
shown. FFS can abuse memory deduplication to perform
attacker-controlled page-table updates and craft a mem-
ory massaging primitive for reliable hardware bit flip ex-
ploitation.

7.3 Breaking Weakened Cryptosystems

Fault attacks have been introduced in cryptography by
Boneh et al. [9]; their attack was highly effective against
implementations of RSA that use the Chinese Remain-
der Theorem. Since then, many variants of fault at-
tacks against cryptographic implementations have been
described as well as countermeasures against these at-
tacks. Seifert was the first to consider attacks in which
faults were introduced in the RSA modulus [52]; his goal
was limited to forging signatures. Brier et al. [14] have
extended his work to sophisticated methods to recover
the private key; they consider a setting of uncontrollable
faults and require many hundreds to even tens of thou-
sands of faults. In our attack setting, the attacker can
choose the location and observe the modulus, which re-
duces the overhead substantially.

In the case of Diffie-Hellman, the risk of using it with
moduli that are not strong primes or hard-to-factor inte-
gers was well understood and debated extensively dur-

14

USENIX Association 25th USENIX Security Symposium 15

ing the RSA versus DSA controversy in the early 1990s
(e.g., in a panel at Eurocrypt’92 [18]). Van Oorschot and
Wiener showed how a group order with small factors can
interact badly with the use of small Diffie-Hellman expo-
nents [57]. In 2015, the Logjam attack [3] raised new in-
terest in the potential weaknesses of Diffie-Hellman pa-
rameters.

In this paper, we performed a formal cryptanalysis of
RSA public keys in the presence of bit flips. Our evalua-
tion of dFFS with bit-flipped default 2048-bit RSA pub-
lic keys confirmed our theoretical results. dFFS can in-
duce bit flips in RSA public keys and factorize 99% of
the resulting 2048-bit keys given enough Rowhammer-
induced bit flips. We further showed that we could factor
4.2% of the two 4096 bit Ubuntu Archive Automatic
Signing Keys with a bit flip. This allowed us to gener-
ate enough templates to successfully trick a victim VM
into installing our packages. For completeness, we also
included a formal cryptanalysis of Diffie-Hellman expo-
nents in the presence of bit flips in Appendix A.

8 Conclusions

Hardware bit flips are commonly perceived as a vehicle
of production software failures with limited exploitation
power in practice. In this paper, we challenged com-
mon belief and demonstrated that an attacker armed with
Flip Feng Shui (FFS) primitives can mount devastat-
ingly powerful end-to-end attacks even in complete ab-
sence of software vulnerabilities. Our FFS implementa-
tion (dFFS) combines hardware bit flips with novel mem-
ory templating and massaging primitives, allowing an at-
tacker to controllably seize control of arbitrary physical
memory with very few practical constraints.

We used dFFS to mount practical attacks against
widely used cryptographic systems in production clouds.
Our attacks allow an attacker to completely compromise
co-hosted cloud VMs with relatively little effort. Even
more worryingly, we believe Flip Feng Shui can be used
in several more forms and applications pervasively in the
software stack, urging the systems security community
to devote immediate attention to this emerging threat.

Disclosure

We have cooperated with the National Cyber Security
Centre in the Netherlands to coordinate disclosure of the
vulnerabilities to the relevant parties.

Acknowledgements

We would like to thank our anonymous reviewers
for their valuable feedback. This work was sup-

ported by Netherlands Organisation for Scientific Re-
search through the NWO 639.023.309 VICI “Dowsing”
project, Research Council KU Leuven under project
C16/15/058, the FWO grant G.0130.13N, and by the
European Commission through projects H2020 ICT-32-
2014 “SHARCS” under Grant Agreement No. 644571
and H2020 ICT-2014-645622 “PQCRYPTO”.

References

[1] DDR4 Rowhammer mitigation. http:
//www.passmark.com/forum/showthread.
php?5301-Rowhammer-mitigation&p=19553.
Accessed on 17.2.2016.

[2] Troubleshooting Memory Errors –
MemTest86. http://www.memtest86.com/
troubleshooting.htm. Accessed on 17.2.2016.

[3] David Adrian, Karthikeyan Bhargavan, Zakir Du-
rumeric, Pierrick Gaudry, Matthew Green, J. Alex
Halderman, Nadia Heninger, Drew Springall, Em-
manuel Thomé, Luke Valenta, Benjamin Vander-
Sloot, Eric Wustrow, Santiago Zanella Béguelin,
and Paul Zimmermann. Imperfect Forward Se-
crecy: How Diffie-Hellman Fails in Practice.
CCS’15, 2015.

[4] Barbara P. Aichinger. DDR Compliance Testing -
Its time has come! In JEDEC’s Server Memory
Forum, 2014.

[5] Andrea Arcangeli. Transparent hugepage support.
KVM Forum, 2010.

[6] Andrea Arcangeli, Izik Eidus, and Chris Wright.
Increasing memory density by using KSM.
OLS’09, 2009.

[7] JEDEC Solid State Technology Association. Low
Power Double Data 4 (LPDDR4). JESD209-4A,
Nov 2015.

[8] Antonio Barresi, Kaveh Razavi, Mathias Payer, and
Thomas R. Gross. CAIN: Silently Breaking ASLR
in the Cloud. WOOT’15, 2015.

[9] Dan Boneh, Richard A. DeMillo, and Richard J.
Lipton. On the importance of eliminating errors in
cryptographic computations. J. Cryptology, 14(2),
2001.

[10] Shekhar Borkar. Designing Reliable Systems from
Unreliable Components: The Challenges of Tran-
sistor Variability and Degradation. IEEE Micro,
25(6), 2005.

15

16 25th USENIX Security Symposium USENIX Association

[11] Erik Bosman and Herbert Bos. Framing signals—a
return to portable shellcode. SP’14.

[12] Erik Bosman, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. Dedup Est Machina: Memory
Deduplication as an Advanced Exploitation Vector.
SP’16, 2016.

[13] Cyril Bouvier, Pierrick Gaudry, Laurent Im-
bert, Hamza Jeljeli, and Emmanuel Thomé.
Discrete logarithms in GF(p) – 180 digits.
https://listserv.nodak.edu/cgi-bin/wa.
exe?A2=ind1406&L=NMBRTHRY&F=&S=&P=3161.
June 2014.

[14] Eric Brier, Benoît Chevallier-Mames, Mathieu
Ciet, and Christophe Clavier. Why one should also
secure RSA public key elements. CHES’06, 2006.

[15] Nicolas Carlini, Antonio Barresi, Mathias Payer,
David Wagner, and Thomas R. Gross. Control-flow
Bending: On the Effectiveness of Control-flow In-
tegrity. SEC’15, 2015.

[16] Cristian Constantinescu. Trends and Challenges in
VLSI Circuit Reliability. IEEE Micro, 23(4), 2003.

[17] D. Cooper, S. Santesson, S. Farrell, S. Boeyen,
R. Housley, and W. Polk. RFC 5280 - Inter-
net X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. Techni-
cal report, May 2008.

[18] Yvo Desmedt, Peter Landrock, Arjen K. Lenstra,
Kevin S. McCurley, Andrew M. Odlyzko,
Rainer A. Rueppel, and Miles E. Smid. The Eu-
rocrypt ’92 Controversial Issue: Trapdoor Primes
and Moduli (Panel). Eurocrypt’92, 1992.

[19] The Sage Developers. Sage Mathematics Soft-
ware (Version). http://www.sagemath.org. Ac-
cessed on 17.2.2016.

[20] Karl Dickman. On the frequency of numbers con-
taining prime factors of a certain relative magni-
tude. Arkiv forr Matematik, Astronomi och Fysik,
1930.

[21] Whitfield Diffie and Martin E. Hellman. New di-
rections in cryptography. IEEE Transactions on In-
formation Theory, 22(6), 1976.

[22] Paul Erdös and Mark Kac. The Gaussian Law of
Errors in the Theory of Additive Number Theo-
retic Functions. American Journal of Mathematics,
62(1), 1940.

[23] Chris Evans. The poisoned NUL
byte, 2014 edition). http://
googleprojectzero.blogspot.nl/2014/
08/the-poisoned-nul-byte-2014-edition.
html. Accessed on 17.2.2016.

[24] Justin N. Ferguson. Understanding the heap by
breaking it. In Black Hat USA, 2007.

[25] Francesco Gadaleta, Yves Younan, and Wouter
Joosen. ESSoS’10, 2010.

[26] Daniel Kahn Gillmor. pem2openpgp - translate
PEM-encoded RSA keys to OpenPGP certificates.
Accessed on 17.2.2016.

[27] GitHub Developer – Public Keys. https://
developer.github.com/v3/users/keys/. Ac-
cessed on 17.2.2016.

[28] Sudhakar Govindavajhala and Andrew W. Appel.
Using Memory Errors to Attack a Virtual Machine.
SP ’03, 2003.

[29] Daniel Gruss, David Bidner, and Stefan Mangard.
Practical Memory Deduplication Attacks in Sand-
boxed Javascript. ESORICS’15. 2015.

[30] Daniel Gruss, Clementine Maurice, and Stefan
Mangard. Rowhammer.js: A Remote Software-
Induced Fault Attack in JavaScript. DIMVA’16,
2016.

[31] Danny Harnik, Benny Pinkas, and Alexandra
Shulman-Peleg. Side Channels in Cloud Services:
Deduplication in Cloud Storage. IEEE Security and
Privacy Magazine, special issue of Cloud Security,
8, 2010.

[32] Gorka Irazoqui, Mehmet Sinan IncI, Thomas
Eisenbarth, and Berk Sunar. Know Thy Neigh-
bor: Crypto Library Detection in Cloud. PETS’15,
2015.

[33] Vasileios P. Kemerlis, Michalis Polychronakis, and
Angelos D. Keromytis. Ret2Dir: Rethinking Ker-
nel Isolation. SEC’14, 2014.

[34] Yoongu Kim, Ross Daly, Jeremie Kim, Chris
Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilker-
son, Konrad Lai, and Onur Mutlu. Flipping Bits in
Memory Without Accessing Them: An Experimen-
tal Study of DRAM Disturbance Errors. ISCA’14,
2014.

[35] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke,
Arjen K. Lenstra, Emmanuel Thomé, Joppe W.
Bos, Pierrick Gaudry, Alexander Kruppa, Pe-
ter L. Montgomery, Dag Arne Osvik, Herman

16

USENIX Association 25th USENIX Security Symposium 17

J. J. te Riele, Andrey Timofeev, and Paul Zimmer-
mann. Factorization of a 768-bit RSA modulus.
CRYPTO’10, 2010.

[36] Donald E. Knuth and Luis Trabb-Pardo. Analysis
of a Simple Factorization Algorithm. Theoretical
Computer Science, 3(3), 1976.

[37] Dmitrii Kuvaiskii, Rasha Faqeh, Pramod Bhato-
tia, Pascal Felber, and Christof Fetzer. HAFT:
Hardware-assisted Fault Tolerance. EuroSys’16,
2016.

[38] Hendrik W. Lenstra. Factoring Integers with Ellip-
tic Curves. Annals of Mathematics, 126, 1987.

[39] Dwayne Litzenberger. PyCrypto - The
Python Cryptography Toolkit). https:
//www.dlitz.net/software/pycrypto/.
Accessed on 17.2.2016.

[40] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser,
and Ruby B. Lee. Last-level cache side-channel at-
tacks are practical. SP’15, 2015.

[41] Tarjei Mandt. Kernel Pool Exploitation on Win-
dows 7. In Black Hat Europe, 2011.

[42] Alfred Menezes, Paul C. van Oorschot, and
Scott A. Vanstone. Handbook of Applied Cryptog-
raphy. 1996.

[43] R. Owens and Weichao Wang. Non-interactive
OS fingerprinting through memory de-duplication
technique in virtual machines. IPCCC’11, 2011.

[44] Peter Pessl, Daniel Gruss, Clementine Maurice,
Michael Schwarz, and Stefan Mangard. DRAMA:
Exploiting DRAM Addressing for Cross-CPU At-
tacks. SEC’16, 2016.

[45] Stephen C. Pohlig and Martin E. Hellman. An
improved algorithm for computing logarithms over
GF(p) and its cryptographic significance (cor-
resp.). IEEE Transactions on Information Theory,
24(1), 1978.

[46] Shashank Rachamalla, Dabadatta Mishra, and Pu-
rushottam Kulkarni. Share-o-meter: An empirical
analysis of KSM based memory sharing in virtual-
ized systems. HiPC’13, 2013.

[47] Paruj Ratanaworabhan, Benjamin Livshits, and
Benjamin Zorn. NOZZLE: A Defense Against
Heap-spraying Code Injection Attacks. SEC’09,
2009.

[48] Kaveh Razavi, Gerrit van der Kolk, and Thilo Kiel-
mann. Prebaked uVMs: Scalable, Instant VM
Startup for IaaS Clouds. ICDCS ’15, 2015.

[49] Ronald L. Rivest, Adi Shamir, and Leonard M.
Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM,
21(2), 1978.

[50] Jurgen Schmidt. JIT Spraying: Exploits to beat
DEP and ASLR. In Black Hat Europe, 2010.

[51] Mark Seaborn. Exploiting the DRAM Rowhammer
Bug to Gain Kernel Privileges. In Black Hat USA,
2015.

[52] Jean-Pierre Seifert. On authenticated computing
and RSA-based authentication. CCS’05, 2005.

[53] Noam Shalev, Eran Harpaz, Hagar Porat, Idit Kei-
dar, and Yaron Weinsberg. CSR: Core Surprise
Removal in Commodity Operating Systems. AS-
PLOS’16, 2016.

[54] Prateek Sharma and Purushottam Kulkarni. Sin-
gleton: System-wide Page Deduplication in Virtual
Environments. HPDC’12, 2012.

[55] Alexander Sotirov. Heap Feng Shui in JavaScript.
In Black Hat Europe, 2007.

[56] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and
Cyrille Artho. Memory Deduplication As a Threat
to the Guest OS. EUROSEC’11, 2011.

[57] Paul C. van Oorschot and Michael J. Wiener. On
Diffie-Hellman key agreement with short expo-
nents. Eurocrypt’96, 1996.

[58] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-Channel Attacks: Deterministic Side-
Channels for Untrusted Operating Systems. SP’15,
2015.

Appendix A Cryptanalysis of Diffie-
Hellman with Bit Flips

This section describes how one can break Diffie-Hellman
by flipping a bit in the modulus. Similar to RSA, Diffie-
Hellman cryptosystem performs computations modulo
n. In the Diffie-Hellman key agreement scheme [21],
however, the modulus n is prime or s = γ1 = 1. It is
very common to choose strong primes, which means that
q = (n − 1)/2 is also prime; this is also the approach
taken by OpenSSH. Subsequently a generator g is cho-
sen of order q. In the Diffie-Hellman protocol the client

17

18 25th USENIX Security Symposium USENIX Association

chooses a random x ∈ [1,n− 1] and computes gx mod n
and the server chooses a random y ∈ [1,n−1] and com-
putes gy mod n. After exchanging these values, both par-
ties can compute the shared secret gxy mod n. The best
known algorithm to recover the shared secret is to solve
the discrete logarithm problem to find x or y using the
GNFS, which has complexity O(Ln[1/3,1.92]). For a
512-bit modulus n, the pre-computation cost is estimated
to be about 10 core-years; individual discrete logarithms
mod n can subsequently be found in 10 minutes [3]. The
current record is 596 bits [13]; again 1024 bits seems to
be within reach of intelligence agencies [3].

By flipping a single bit of n, the parties compute
gx mod n′ and gy mod n′. It is likely that recovering x or
y is now much easier. If we flip the LSB, n′ = n−1 = 2q
with q prime and g will be a generator. In the other cases
n′ is a t-bit or (t −1)-bit odd integer; we conjecture that
its factorization has the same form as that of a random
odd integer of the same size. It is not necessarily the case
the g is a generator mod n′, but with very high probabil-
ity g has large multiplicative order.

The algorithm to compute a discrete logarithm in Zn′

to recover x from y = gx mod n′ requires two steps.

1. Step 1 is to compute the factorization of n′. This
is the same problem as the one considered in Sec-
tion 3.

2. Step 2 consists in computing the discrete logarithm
of gx mod n′: this can be done efficiently by com-
puting the discrete logarithms modulo gx mod p′ γ̃i

i
and by combining the result using the Chinese re-
mainder theorem. Note that except for the small
primes, the γ̃i are expected to be equal to 1 with
high probability. Discrete logarithms mod p′ γ̃i

i can
in turn be computed starting from discrete loga-
rithms mod p′i (γ̃i steps are required). If p′i − 1 is

smooth (that is, it is of the form p′i = ∏r
j=1 q

δ j
j with

q j small), the Pohlig-Hellman algorithm [45] can

solve this problem in time O
(

∑r
j=1 δ j

√q j

)
. If n′

has prime factors p′i for which p′i −1 is not smooth,
we have to use for those primes GNFS with com-
plexity O(Lp′i

[1/3,1.92]).

The analysis is very similar to that of Section 3, with as
difference that for RSA we can use ECM to find all small
prime factors up to the second largest one p′2. With a
simple primality test we verify that the remaining integer
is prime and if so the factorization is complete. How-
ever, in the case of the discrete logarithm algorithm we
have to perform in Step 2 discrete logarithm computa-
tions modulo the largest prime p′1. This means that if
n′ would prime (or a small multiple of a prime), Step 1
would be easy but we have not gained anything with the

bit flip operation. It is known that the expected bitlength
of the largest prime factor p′1 of n′ is 0.624 · t [36] (0.624
is known as the Golomb–Dickman constant). A second
number theoretic result by Dickman shows that the prob-
ability that all the prime factors p′i of an integer n′ are
smaller than n′1/u has asymptotic probability u−u [20].

For t = 1024, the expected size of the largest prime
factor p′1 of n′ is 639 bits and in turn the largest prime
factor of p′1−1 is expected to be 399 bits (1024 ·0.6242).
Note that p′1 − 1 can be factored efficiently using ECM
as in the RSA case. If p′1 − 1 has 639 bits, the proba-
bility that it is smooth (say has factors less than 80 bits)
is 8−8 = 2−24, hence Pohlig-Hellman cannot be applied.
We have to revert to GNFS for a 399-bit integer. How-
ever, with probability 2−2 = 1/4 all the factors of n′ are
smaller than 512 bits: in that case the largest prime fac-
tor of p′1 − 1 is expected to be 319 bits, but again with
probability 1/4 all prime factors are smaller than 256 bits.
Hence with probability 1/16 GNFS could solve the dis-
crete logarithm in less than 1 core hour.

For t = 2048, the expected size of the largest prime
factor p′1 of n′ is 1278 bits and the largest prime factor
of p′1 −1 is expected to be 797 bits – this is well beyond
the current GNFS record. However, with probability 3 ·
10−3 = 0.037 all prime factors of n′ are smaller than 638
bits. Factoring p′1 − 1 is feasible using ECM, given that
the its second largest prime factor is expected to be 134
bits. The largest prime factor of p′1 − 1 is expected to
be 398 bits. The discrete logarithm problem modulo the
largest factor can be solved using GNFS in about 1 core-
month. With probability 4 · 10−4 = 3.9 · 10−3 all prime
factors of n′ are smaller than 512 bits, and in that case the
largest prime factor of p′1 −1 is expected to be 319 bits,
which means that GNFS would require a few core-hours.

Even if it would not be feasible to compute the com-
plete discrete logarithm there are special cases: if x or
y have substantially fewer than t bits, it is sufficient to
recover only some of the discrete logarithms mod p′i and
the hardest discrete logarithm p1 can perhaps be skipped;
for more details, see [3, 57].

The main conclusion is that breaking discrete loga-
rithms with the bit flip attack is more difficult than factor-
izing, but for 1024 bits an inexpensive attack is feasible,
while for 2048 bits the attack would require a moderate
computational effort, the results of which are widely ap-
plicable. It is worth noting that this analysis is applicable
to the DH key agreement algorithm in use by OpenSSH,
defaulting to 1536-bit DH group moduli in the current
OpenSSH (7.2), bitflipped variants of which can be pre-
computed by a moderately equipped attacker, and ap-
plied to all OpenSSH server installations. The conse-
quences of such an attack are decryption of a session,
including the password if used, adding another attractive
facet to attacks already demonstrated in this paper.

18

USENIX Association 25th USENIX Security Symposium 19

One Bit Flips, One Cloud Flops:
Cross-VM Row Hammer Attacks and Privilege Escalation

Yuan Xiao Xiaokuan Zhang Yinqian Zhang Radu Teodorescu
Department of Computer Science and Engineering

The Ohio State University
{xiao.465, zhang.5840}@buckeyemail.osu.edu, {yinqian, teodores}@cse.ohio-state.edu

Abstract

Row hammer attacks exploit electrical interactions be-
tween neighboring memory cells in high-density dy-
namic random-access memory (DRAM) to induce mem-
ory errors. By rapidly and repeatedly accessing DRAMs
with specific patterns, an adversary with limited privilege
on the target machine may trigger bit flips in memory re-
gions that he has no permission to access directly. In this
paper, we explore row hammer attacks in cross-VM set-
tings, in which a malicious VM exploits bit flips induced
by row hammer attacks to crack memory isolation en-
forced by virtualization. To do so with high fidelity, we
develop novel techniques to determine the physical ad-
dress mapping in DRAM modules at runtime (to improve
the effectiveness of double-sided row hammer attacks),
methods to exhaustively hammer a large fraction of phys-
ical memory from a guest VM (to collect exploitable
vulnerable bits), and innovative approaches to break
Xen paravirtualized memory isolation (to access arbi-
trary physical memory of the shared machine). Our study
also suggests that the demonstrated row hammer attacks
are applicable in modern public clouds where Xen par-
avirtualization technology is adopted. This shows that
the presented cross-VM row hammer attacks are of prac-
tical importance.

1 Introduction

Security of software systems is built upon correctly im-
plemented and executed hardware-software contracts.
Violation of these contracts may lead to severe security
breaches. For instance, operating system security re-
lies on the assumption that data and code stored in the
memory subsystems cannot be altered without media-
tion by the software running with system privileges (e.g.,
OS kernels, hypervisors, etc.). However, the recently
demonstrated row hammer attacks [23], which are capa-
ble of inducing hardware memory errors without access-

ing the target memory regions, invalidate this assump-
tion, raising broad security concerns.

Row hammer attacks exploit a vulnerability in the de-
sign of dynamic random-access memory (DRAM). Mod-
ern high-capacity DRAM has very high memory cell
density which leads to greater electrical interaction be-
tween neighboring cells. Electrical interference from
neighboring cells can cause accelerated leakage of ca-
pacitor charges and, potentially, data loss. Although
these so-called “disturbance errors” have been known
for years, it has only recently been shown that these er-
rors can be triggered by software. In particular, [23] has
demonstrated that malicious programs may issue spe-
cially crafted memory access patterns, e.g., repeated and
rapid activation of the same DRAM rows, to increase
the chances of causing a disturbance error in neighbor-
ing rows.

Row hammer vulnerabilities have been exploited in
security attacks shortly after its discovery [4, 10, 16, 20].
In particular, Seaborn [4] demonstrated two privilege es-
calation attacks that exploit row hammer vulnerabilities:
One escaped from Google’s NaCl sandbox and the other
gained kernel memory accesses from userspace pro-
grams running on Linux operating systems. Other stud-
ies [10, 16, 20] aim to conduct row hammer attacks from
high-level programming languages, e.g., JavaScript, so
that an adversary can induce memory errors and escalate
privileges remotely, by injecting malicious JavaScript
code into the target’s web traffic (e.g., by hosting ma-
licious websites, cross-site scripting, man-in-the-middle
attacks, etc.).

In contrast to the client-side bit flip exploitations,
server-side row hammer attacks are much less under-
stood. One particularly interesting scenario where
server-side row hammer attacks are of importance is
in multi-tenant infrastructure clouds, where mutually-
distrusting cloud tenants (i.e., users of clouds) may co-
locate their virtual machines (VM) on the same physical
server, therefore sharing hardware resources, including

20 25th USENIX Security Symposium USENIX Association

DRAMs. Although server-grade processors and more
expensive DRAMs are believed to be less vulnerable to
row hammer attacks [23], studies have suggested that
even servers equipped with error correcting (ECC) mem-
ory are not immune to such attacks [12, 23].

In this paper, we aim to explore row hammer attacks
in cross-VM settings, and shed some light on the secu-
rity, or lack thereof, in multi-tenant infrastructure clouds.
The goal of this research is not to extensively study how
vulnerable the cloud servers are. Rather, we explore
whether the isolation of cloud software systems—virtual
machines and hypervisors—can be circumvented by row
hammer attacks (and if so, how?), should the underlying
hardware become vulnerable.

Towards this end, we demonstrate cross-VM row ham-
mer attacks with high fidelity and determinism, which
can be achieved in the following pipelined steps.

First, determine physical address mapping in DRAM.
Double-sided row hammer attacks target a specific mem-
ory row by hammering its two neighboring rows to en-
hance the effectiveness of the attack [4, 23]. Conducting
such attacks, however, requires knowledge of the physi-
cal memory mapping in DRAMs (i.e., bits in physical ad-
dresses that determine memory channels, DIMMs, ranks,
banks, and rows). This enables the identification of ad-
dresses in neighboring rows of the same bank. How-
ever such information is not publicly available for In-
tel processors and memory controllers. Moreover, the
same memory controller may map physical addresses to
DRAMs in different ways, depending on how DRAM
modules are configured.

To address this issue, we developed a novel algo-
rithm to determine the memory mapping at runtime
(Section 3). Each bank in a DRAM chip has a row buffer
that caches the most recently used row in a bank. There-
fore, by alternately accessing two rows in the same bank,
we expect a higher memory access latency due to row
buffer conflicts. The increase in access latency serves as
the basis for a timing channel which can be used to de-
termine if two physical memory addresses are mapped to
the same DRAM bank. Building on the timing-channel
primitive, we developed a novel graph-based algorithm
which models each bit in a physical address as a node in
a graph and establishes relationships between nodes us-
ing memory access latency. We show that the algorithm
is capable of accurately detecting the row bits, column
bits and bank bits. We empirically show the algorithm
can accurately identify the DRAM mapping schemes au-
tomatically within one or two minutes on the machines
we tested.

Second, conduct effective double-sided row hammer
attacks. With knowledge of the DRAM address map-
ping, we conduct double-sided row hammer attacks from

Xen guest VMs. We first empirically study which row
hammer attack methods (i.e., accessing memory with or
without mfence instructions, see Section 4) are most ef-
fective and lead to most bit flips. Then, in order to guar-
antee that sufficient exploitable bit flips (i.e., located at
specific memory locations and can be repeatedly induced
in row hammer attacks) are found, we conduct exhaus-
tive row hammer attacks from a guest VM to test all
DRAM rows that are accessible to the VM. Because each
VM is limited to a small portion of the entire physical
memory, we also develop methods to explore more phys-
ical memory than assigned to our VM initially. In addi-
tion, we design a safe mode that makes bit flips induced
by row hammer attacks less likely to crash the system.

Third, crack memory isolation enforced by virtual-
ization. Unlike prior work, which sprays large num-
bers of page tables and conducts random row hammer
attacks hoping that bit flips will occur in a page table
entry (PTE) [4], in our approach (Section 5), we use hy-
percalls to map page directories in the OS kernel of our
own VM to physical pages containing memory cells that
are vulnerable to row hammer attacks. We then conduct
row hammer attacks to deterministically flip the vulner-
able bit at anticipated positions in a page directory en-
try (PDE), making it point to a different page table. In
the context of this paper, we call such attack techniques
page table replacement attacks to indicate that the orig-
inal page table has been replaced with a forged one. We
empirically demonstrate in Section 6 that such attacks al-
low a Xen guest VM to have both read and write access
to any memory pages on the machine. We demonstrate
two examples to illustrate the power of the cross-VM row
hammer attacks: private key exfiltration from an HTTPS
web server and code injection to bypass password au-
thentication of an OpenSSH server. We emphasize that
with the attack techniques we propose in this paper, the
attacker’s capability is only limited by imagination.

We note our attacks primarily target Xen paravirtual-
ized VMs, which, although are gradually superseded by
hardware-assisted virtualization, are still widely used as
cloud substrates in public cloud like Amazon EC2. This
offers the adversary easy-to-break targets on servers with
vulnerable hardware. Given the existing evidence of suc-
cessful co-location attacks in public clouds [30, 32], we
recommend discontinuing the use of such virtualization
technology in cloud hosting services.

Contributions. This paper makes the following contri-
butions to the field:
• A novel graph-based algorithm incorporating timing-

based analysis to automatically reverse engineer the
mapping of the physical addresses in DRAMs.

• A novel page table replacement technique that allows
a malicious guest VM to have read and write accesses

2

USENIX Association 25th USENIX Security Symposium 21

to arbitrary physical pages on the shared machine.
• Implementation of effective double-sided row ham-

mer attacks from guest VMs, and a systematic evalu-
ation of the proposed techniques.

• Demonstration of two concrete examples to illustrate
the power of the cross-VM attacks: private key ex-
traction from HTTPS servers and code injection into
OpenSSH servers to bypass authentication.

Roadmap. We will first summarize related work in
the field and introduce background knowledge to set the
stage for our discussion (Section 2). We will then de-
scribe a novel graph-based algorithm for detecting phys-
ical address mapping in DRAMs (Section 3). We then
present a few technical details in our row hammer attack
implementation (Section 4) and a page table replacement
attack that enables arbitrary cross-VM memory accesses
(Section 5). Next, we evaluate the proposed techniques
(Section 6). Finally, we discuss existing countermea-
sures (Section 7) and conclude (Section 8).

2 Background and Related Work

2.1 DRAM Architecture
Modern memory systems are generally organized in mul-
tiple memory channels, each handled by its own dedi-
cated memory controller. A channel is partitioned into
multiple ranks. A rank consists of several DRAM chips
that work together to handle misses or refill requests
from the processor’s last-level cache. Each rank is also
partitioned into multiple banks. Each bank has a row
buffer to store the last accessed row in that bank. All
banks and ranks can generally support independent trans-
actions, allowing parallel accesses to the DRAM chips.
A typical memory system is illustrated in Figure 1.

Figure 1: DRAM architecture.

DRAM chips are large arrays of memory cells with
additional support logic for data access (read/write) and
refresh circuitry used to maintain data integrity. Mem-
ory arrays are organized in rows (wordlines) and columns
(bitlines) of memory cells.

Each memory cell consists of a capacitor that can be
charged and discharged to store a 0 or a 1. An access
transistor in each cell allows reads and writes to its con-
tent. The transistor is controlled through the wordline.
When the wordline is activated, the content of all the ca-
pacitors on that row are discharged to the bitlines. Sense
amplifier circuitry on each bitline amplifies the signal
and stores the result in the row buffer.

Additional circuitry in the memory arrays includes ad-
dress decoding logic to select rows and columns and in-
ternal counters to keep track of refresh cycles. In addition
to the cells dedicated for data storage, DRAM chips of-
ten include additional storage for ECC (error-correction
codes) or parity bits, to enable detection and/or correc-
tion of errors in the data array.

DRAM Refresh. The charge in the DRAM cell capaci-
tor drains over time due to leakage current. To prevent
data loss the content of the cell requires periodic “re-
fresh.” The refresh interval ranges between 32 and 64
milliseconds and is specified as part of the DDR memory
standard. Refresh operations are issued at rank granular-
ity in recent designs. Before issuing a refresh operation,
the memory controller precharges all banks in the rank. It
then issues a single refresh command to the rank. DRAM
chips maintain a row counter to keep track of the last row
that was refreshed – this row counter is used to determine
the rows that must be refreshed next.

DRAM address mapping. Given a physical memory
address, the location of the data in the DRAM chips
is determined by the DRAM address mapping schemes
used by the memory controllers. This information, while
available for some processors [3], is not revealed by
major chip companies like Intel or ARM. Some pre-
liminary exploration to determine DRAM address map-
ping on older Intel processors has been conducted by
Seaborn [5]. Concurrently to our work, Pessl et al. [29]
proposed methods to reverse-engineer physical address
mapping in DRAM on both Intel and ARM platforms.
Similar to our work, a timing-based approach was used
to determine whether two addresses were mapped to
two different rows of the same DRAM bank. Unlike
our work, brute-force approaches were taken to (1) col-
lect sets of memory addresses that are mapped to the
same banks by randomly selecting addresses from a large
memory pool and conducting the timing-based tests to
cluster them, and (2) to determine the XOR-schemes (see
Section 3) that are used by memory controllers, by test-
ing all possible combinations of XOR-schemes against
all sets of addresses.

The advantage of their approach over ours is that it
exhaustively searches XOR-schemes without the need to
reason about the complex logic behind them, as is done
in our paper. However, our method targets specific bit

3

22 25th USENIX Security Symposium USENIX Association

combinations and therefore is more efficient. Specially,
it has been reported in [29] that it took about 20 minutes
to reverse engineer the DRAM mapping on a normally-
loaded system. Our approach, on the other hand, takes
less than two minutes (see Section 6). In addition, Pessl
et al. [29] also indicated that completeness is not guaran-
teed as it depends on random addresses. Hence, a com-
plete test using their approach may take even longer.

2.2 Row Hammer and DRAM Bit Flips

Modern DRAM chips tend to have larger capacity, and
hence higher density of memory cells. As a result, a
memory cell may suffer from disturbance errors due to
electrical interference from its neighboring cells. More-
over, certain memory access patterns, such as repeated
and frequent row activation (“row hammering”), may
easily trigger disturbance errors. The “row hammer”
problem caught Intel’s attention as early as 2012 and was
publicly disclosed around 2014 [13–15,19]. Independent
of Intel’s effort, Kim et al. [23] also reported that random
bit flips can be observed by specially crafted memory ac-
cess patterns induced by software programs.

The first practical row hammer exploit was published
by Seaborn from Google [4], who demonstrated privilege
escalation attacks exploiting row hammer vulnerabilities
to break the sandbox of Google’s NaCl, and to obtain
kernel memory accesses from userspace programs run-
ning on Linux operating systems. The study was quickly
followed up by others [10,16,20], who demonstrated row
hammer attacks using Javascript code, which meant that
the attacks could be conducted without special privileges
to execute binary code on target machines. This paper
follows the same line of research, but our focus is server-
side row hammer attacks, although some of the proposed
techniques will also be useful in other contexts.

It has been claimed that server-grade processors and
DRAM modules are less vulnerable to row hammer at-
tacks [23], especially when the server is equipped with
ECC-enabled DRAM modules. However, ECC is not the
ultimate solution to such attacks. The most commonly
used ECC memory modules implement single error-
correction, double error-detection mechanisms, which
can correct only one single-bit of errors within a 64-bit
memory block, and detect (but not correct) 2-bit errors
in the same 64-bit block. More bit errors cannot be de-
tected and data and code in memory will be corrupted
silently [23].

Dedicated defenses against row hammer vulnerabili-
ties by new hardware designs have been studied in [22].
Particularly, Kim et al. [22] proposes Counter-Based
Row Activation (CRA) and Probabilistic Row Activa-
tion (PRA) to address row hammer vulnerabilities. CRA
counts the frequency of row activations and proactively

activates neighboring rows to refresh data; PRA enables
memory controllers to activate neighboring rows with a
small probability for every memory access.

3 DRAM Addressing

Prior work [4] has indicated that double-sided row ham-
mer attacks are much more effective than single-sided
ones. We therefore focus on developing a software tool
to conduct double-sided row hammer attacks from within
virtual machines. To make the attack possible, we first
must find the physical memory address mapping in the
target DRAMs, and do so without physical accesses to
the machines. More precisely, we hope to determine
which bits in a physical address specify its mapping to
DRAM banks, rows and columns.

This information, however, is not available in the sys-
tem configuration or in the memory controller or DRAM
datasheets. Intel never discloses the mapping algorithm
in their memory controllers; moreover, the same mem-
ory controller will likely map the same physical address
to a different DRAM location if the number or size of
DRAM chips is changed. Therefore, in this section, we
present a method to reverse engineer the physical address
mapping in DRAM at runtime. We call this procedure bit
detection. It is important to note that we do not need to
differentiate address bits for banks, ranks, or channels as
long as their combination uniquely addresses the same
DRAM bank.

3.1 A Timing-Channel Primitive
We resort to a known timing channel [27] to develop our
bit detection primitive. The timing channel is established
due to the row buffer in each DRAM bank. When two
memory addresses mapped to the same DRAM bank in
different rows are alternatively accessed in rapid succes-
sion, the accesses will be delayed due to conflicts in the
row buffer (and subsequent eviction and reload of the
row buffer). Therefore, by conducting fast and repeated
accesses to two memory addresses, one can learn that
the two address are located in different rows of the same
bank if one observes longer access latency.

The algorithm is described in Algorithm 1. The input
to the algorithm, LATENCY(), is a set of bit positions in
the physical address space. We use I to denote the in-
put. For example, I = {b3,b17} represents the 3rd and
17th right-most bits of the physical address. LATENCY()
randomly selects 100 pairs1 of memory addresses from a
large memory buffer, so that each pair of addresses dif-
fers only in the bit positions that are specified by the in-
put, I: in each pair, one address has ‘1’s at all these bit

1A sample size that is large enough to achieve statistical significance.

4

USENIX Association 25th USENIX Security Symposium 23

Algorithm 1: LATENCY()
Input:

{bi}: a set of physical address bits
Output:

Access latency: 1 (high) or 0 (low)
begin

Randomly select 100 pairs of memory addresses that differ only in
{bi}: One address in each pair with all bi = 1 and the other with all
bi = 0. Place all 100 pairs in address pairs{}
for each pair k in address pairs{} do

Start time measurement
for j in 103 do

Access both addresses in k
clflush both addresses
insert memory barrier

end
Stop time measurement

end
Return the average access latency compared to baselines

end

positions and the other address has ‘0’s at all these posi-
tions.

The algorithm enumerates each pair of addresses by
measuring the average access latency to read each ad-
dress once from memory. Specifically, it accesses both
addresses and then issues clflush instructions to flush
the cached copies out of the entire cache hierarchy.
Hence the next memory access will reach the DRAM. A
memory barrier is inserted right after the memory flush
so that the next iteration will not start until the flush has
been committed. The total access time is measured by is-
suing rdtsc instructions before and after the execution.
The algorithm returns 1 (high) or 0 (low) to indicate the
latency of memory accesses. LATENCY()=1 suggests the
two physical addresses that differ only at the bit positions
specified in the input are located on different rows of the
same DRAM bank.

3.2 Graph-based Bit Detection Algorithms
Using the LATENCY() timing-channel primitive we de-
velop a set of graph-based bit detection algorithms.
Specifically, we consider each bit in a physical address
as a node in a graph; the edges in the graph are closely
related to the results of LATENCY(): The set of bits are
connected by edges, if, when used as the input to LA-
TENCY(), yields high access latency. But the exact con-
struction of these edges may differ in each of the graphs
we build, as will be detailed shortly. We define all such
nodes as set V = {bi}i∈[1,n], where n is the total number
of bits in a physical address on the target machine. In the
following discussion, we use bi to refer to an address bit
position and a node interchangeably.

Our bit detection algorithms works under the assump-
tion that Intel’s DRAM address mapping algorithms may
use XOR-schemes to combine multiple bits in physical
addresses to determine one of the bank bits. An XOR-
scheme is a function which takes a set of bits as input

and outputs the XORed value of all the input bits. This
assumption is true for Intel’s DRAM address mapping,
which is evident according to prior studies [5, 25, 33].
Our empirical evaluation also confirms this assumption.

Detecting row bits and column bits. We first define a
set of nodes R = {bi|LATENCY({bi}) = 1,bi ∈ V}. Be-
cause LATENCY({bi}) = 1, any two memory addresses
that differ only in bi are located in different rows of the
same bank. Therefore, bit bi determines in which rows
the addresses are located, i.e., bi is a row bit. But as the
two addresses are mapped to the same bank, bi is not
used to address DRAM banks.

Next, we define set C = {b j|LATENCY({bi,b j}) =
1,∀bi ∈ R,b j /∈ R}. It means that when accessing two ad-
dresses that differ only in a bit in C and a bit in R, we ex-
perience high latency in the LATENCY() test—indicating
that the two addresses are in the same bank but different
rows. Therefore, the bits in C are not at all involved in
DRAM bank indexing (otherwise changing bits in C will
yield a memory address in a different bank). The bits in
C are in fact column bits that determine which column in
a row the address is mapped to.

Detecting bank bits in a single XOR-scheme. We con-
sider an undirected graph G1 constructed on the subset
of nodes V−R−C. If LATENCY({bi,b j}) = 1, node bi
is connected with node b j by edge e(bi,b j). There could
be three types of connected components in such a graph:
In the type I connected components, only two nodes are
connected (Figure 2a). Because LATENCY({bi,b j})= 1,
changing bits bi and b j together will yield an address in
a different row of the same bank. Hence, at least one of
bi and b j (usually only the more significant bit—the one
on the left2) will be the row bit; the XOR of the two is a
bank bit. More formally, if e(bi,b j) is an edge in com-
ponent type I (shown in Figure 2a), and i > j, bi is a row
bit, bi ⊕b j determines one bank bit.

In the type II connected components, a set of nodes
are connected through a hub node (Figure 2b). For in-
stance, nodes b j, bk, and bl are connected via node bi.
Particularly in Figure 2b, i = 20, j = 15, k = 16, l = 17.
Due to the property of the LATENCY() test, bi ⊕b j must
be a bank bit and at least one of the pair is a row bit.
The same arguments apply to bi ⊕ bk and bi ⊕ bl . We
can safely deduce that bi ⊕ b j ⊕ bk ⊕ bl is a common
XOR-scheme in which the four bits are involved: Other-
wise, without loss of generality, we assume bi ⊕ b j ⊕ bk
and bi ⊕ bl are two separate XOR-schemes. When two
addresses differ only in bi and b j, although the value
of bi ⊕ b j ⊕ bk does not change for the two addresses,

2The timing-channel approach cannot determine which bit is actually
the row bit in this case. However, because memory controllers need
to minimize row conflicts in the same bank, row bits are usually more
significant bits in a physical address [5,33]. Our hypothesis turned out
to be valid in all the case studies we have conducted (see Table 1).

5

24 25th USENIX Security Symposium USENIX Association

(a) Connected component type I (b) Connected component type II (c) Connected component type III

Figure 2: Detecting bits in a single XOR-scheme.

bi ⊕ bl will be different, thus making the two addresses
in different banks. However, this conclusion contradicts
the fact that LATENCY({bi,b j}) = 1. Moreover, we can
conclude that only bi is the row bit, because otherwise
if another bit is also a row bit, e.g., b j, we should ob-
serve LATENCY({b j,bk}) = 1 (because b j and bk are in-
volved in the XOR-scheme bi ⊕ b j ⊕ bk ⊕ bl and b j is a
row bit). However that is not the case here. To summa-
rize, if e(bi,b j), e(bi,bk) and e(bi,bl) constitute a type
II connected component in Figure 2b, bi is a row bit and
bi ⊕b j ⊕bk ⊕bl determines a bank bit.

In the type III connected components, a clique
of nodes replaces the single hub node in type II
components—each node in the clique is connected to all
other nodes in type III components (Figure 2c). As a sim-
ple example, we assume nodes bi and b j are connected by
edge e(bi,b j), and both of them are connected to nodes
bk and bl , which are not connected directly. Particularly
in Figure 2c, i = 18, j = 20, k = 15, l = 16. From the
analysis of type II components, nodes bi, bk and bl must
follow that bi is a row bit and bi ⊕ bk ⊕ bl determines
one bank bit. Similarly, we can conclude that b j is a
row bit and b j ⊕bk ⊕bl determines one bank bit. More-
over, we can deduce that bi ⊕ bk ⊕ bl and b j ⊕ bk ⊕ bl
determine the same bank bit, otherwise two addresses
that differ in bi and b j will be in two different banks,
which conflicts with LATENCY({bi,b j}) = 1. Therefore,
bi ⊕b j ⊕bk ⊕bl is a bank bit. As such, in a type III com-
ponent in Figure 2c, all nodes in the clique represent row
bits, and the XOR-scheme that involves all bits in the
components produces one bank bit.

Detecting bank bits in two XOR-schemes. On some
processors, certain bits can be involved in more than
one XOR-schemes. For instance, a bit bi can be used
in both bi ⊕ b j ⊕ bk and bi ⊕ bm ⊕ bn. To detect such
bit configuration, we consider another undirected graph
G2 constructed on the subset of nodes V − R − C. If

LATENCY({bi,b j,bm}) = 1, the three nodes are con-
nected with each other by edges e(bi,b j), e(bi,bm),
e(b j,bm). If none of the three edges exist in graph G1—
the graph we constructed in the single-XOR-scheme-bit
detection—it means these three nodes are involved in
two XOR-schemes bi ⊕b j and bi ⊕bm: if two addresses
differ in only two bits (out of the three), at least one of
these two XOR-schemes will specify a different bank in-
dex; however, if two addresses differ in all three bits, the
outcome of both XOR-schemes are the same for the two
addresses, so they are in the same bank. One of these
three bits (the most significant among the three) will be
used in both XOR-schemes and serve as a row bit.

Figure 3: Detecting bits in two XOR-schemes.

Let’s look at a more general example where five
nodes are involved (Figure 3). In this example, the
five nodes in the connected components of G2 are b15,
b16, b17, b18 and b20. They are connected by four
triangles: (b15,b18,b20), (b16,b17,b20), (b16,b18,b20),
(b15,b17,b20). Following the discussion in the pre-
vious paragraph, four XOR-schemes should be used

6

USENIX Association 25th USENIX Security Symposium 25

to index banks: b20 ⊕ b15, b20 ⊕ b16, b20 ⊕ b17 and
b20 ⊕ b18. However, because b20 ⊕ b15 and b20 ⊕ b16
implies LATENCY({b15,b16,b20}) = 1, but a triangle
(b15,b16,b20) doesn’t exist in our analysis, some of these
XOR-schemes need to be merged together. To complete
the analysis in the graph, we categorize nodes accord-
ing to the set of nodes they are connected with. For
instance, b20 is connected with {b15,b16,b17,b18} (i.e.,
C(b20) = b15,b16,b17,b18). The node with the most
connected neighbors is the one involved in both XOR-
schemes (in this case, b20) and therefore is a row bit. The
nodes with the same set of neighboring nodes are used in
the same XOR-scheme: b15 and b16 are both connected
with {b17,b18,b20}, and therefore one XOR-scheme will
be b15 ⊕b16 ⊕b20; similarly, the other XOR-scheme will
be b17 ⊕b18 ⊕b20.

Detecting bank bits in more XOR-schemes. If a bit
is involved in more than two XOR-schemes, we can ex-
tend the method for detecting two XOR-schemes to de-
tect it. Particularly, on the subset of nodes V − R − C,
we enumerate all combination of four bits and look for
LATENCY({bi,b j,bk,bl}) = 1, which, following the rea-
soning steps in the prior paragraph, suggests that one of
the bits is involved in three XOR-schemes. Again, we
need to study the connected components to determine
the configuration of actual XOR-schemes, which can be
done by following a similar process as for two-XOR-
scheme-bit detection. For concision we don’t repeat the
discussion here. However, it is worth noting we have not
observed any bits that are used in more than two XOR-
schemes on the machines we have tested.

4 Effective Row Hammer Attacks

In this section, we discuss several facets of constructing
effective row hammer attacks in practice.

Row hammer code with or without mfence. prior
work has proposed two ways of conducting row ham-
mer attacks, pseudo code shown in Figure 4. Particularly,
in each loop of the attacks, after accessing two memory
blocks in two rows and flushing them out of the cache us-
ing clflush instructions, the attack code can choose to
proceed with or without an mfence instruction before en-
tering the next loop. The benefit of having an additional
mfence instruction is to force the clflush instructions
to take effect before the beginning of the next loop, while
the downside is that it will slow down the execution of
the program and thus reduce the frequency of memory
accesses. We will empirically evaluate the two methods
in Section 6.2.

Deterministic row hammer attacks. Prior studies [5]
on row hammer exploitation randomly selected DRAM
rows to attack and counted on luck to flip memory bits

loop:

mov (X), %r10

mov (Y), %r10

clflush (X)

clflush (Y)

jmp loop

(a) clflush w/o mfence

loop:

mov (X), %r10

mov (Y), %r10

clflush (X)

clflush (Y)

mfence

jmp loop

(b) clflush w/ mfence

Figure 4: Pseudo code for row hammer attacks.

that happen to alter page tables. These approaches are
non-deterministic and thus hard to guarantee success. In
our paper, we propose to search exploitable bit flips that
can be repeated in multiple runs. As will be discussed in
Section 5, only bit flips at certain positions within a 64-
bit memory block can be exploited; also, only a fraction
of them are repeatable in row hammer attacks (we will
empirically evaluate the fraction of vulnerable bits that
are both exploitable and repeatable in Section 6.2.3). As
such, on those less vulnerable machines, especially cloud
servers, it is important to design methods to exhaustively
search for vulnerabilities so that at least one of the vul-
nerable bit satisfies all the requirements.

Exhaustive row hammering. To enumerate as many
DRAM rows as possible to look for vulnerable bits, we
developed the following data structure and algorithm to
conduct double-sided row hammer attacks on every row
in every bank: Especially, as will be shown later in
Table 1, some of the 12 least significant address bits are
bank bits, which means the same 4KB memory page are
not always mapped to the same row. As such, we de-
signed a new data structure to represent memory blocks
in the same row. Our key observation is that cache-line-
aligned memory blocks are always kept in the same row
for performance reasons. We call a cache-line-aligned,
64B in size, memory block a memory unit, which is the
smallest unit of memory blocks for the purpose of book-
keeping. We design a three dimension array: The first di-
mension represents the bank index, the second dimension
is the row index and the third dimension stores an array
of memory units mapped to the same row. For example,
on a Sandy Bridge processor with 2 memory channels, 1
DIMM per channel, 1 rank per DIMM, and 8 banks per
rank (totally 4GB memory), there are 24 = 16 elements
(i.e., 2 × 8 banks) in the first dimension, 216 = 65536
elements (i.e., number of rows per bank) in the second
dimension, 27 = 128 elements (i.e., number of memory
units per row) in the third dimension.

Another observation we had for conducting efficient
row hammer attacks is to avoid hammering on rows in se-
quential order. According to our experiments, a recently-
hammered row is harder to induce bit flips when its
neighboring rows are hammered. This is probably be-

7

26 25th USENIX Security Symposium USENIX Association

cause the cells in this row has been recently charged
many times. Therefore, we targeted each row in a pseu-
dorandom order. Specially, we first generate a pseudo-
random permutation of all rows in a bank, and then se-
quentially test one row from each bank from the first to
the last one and start over, where rows in the same bank
are tested according to the pseudorandom order.

If no vulnerable bits were found in the first round
of the attack, one can reboot the VM to obtain access
to other DRAM rows and conduct row hammer attacks
again. Even in public clouds, we found that rebooting
the guest VMs will relaunch the VM on the same host,
and possibly assigned to different (but largely overlap-
ping) physical memory. As such, although each VM only
has access to a small fraction of DRAM banks and rows,
using such an approach will greatly increase the tested
portion of the DRAM. We will empirically evaluate this
technique in Section 6.2.

Safe mode. To safely conduct row hammer attacks with-
out crashing the co-located VMs and the host machine,
we optionally conduct the row hammer attacks in a safe
mode: In Figure 5, only when we control all memory
units in row n, n+2 and n−2 do we conduct the double-
sided row hammer attacks on row n+ 1 and n− 1. As
rarely would the row hammer attacks affect rows beyond
row n±2, this method provides a safe mode to conduct-
ing row hammer attacks, which is particularly useful in
attacks conducted in public clouds.

Figure 5: A safe mode of row hammer attacks.

5 Cracking Memory Isolation

In this section, we present methods to conduct cross-
VM attacks enabled by DRAM row hammer vulnerabili-
ties, which will allow a malicious paravirutalized VM to
break VM isolation and compromise integrity and confi-
dentiality of co-located VMs or even the VMM.

5.1 Xen Memory Management
Xen paravirtualization keeps three types of memory ad-
dress spaces: a virtual address space for each process, a
pseudo-physical address space for each VM, and a ma-
chine address space for the entire physical machine [17].
To be compatible with native OS kernels, a paravirtual-
ized OS kernel (e.g., already a part of mainstream Linux
kernel) maintains a contiguous pseudo-physical mem-
ory address space; the mapping between pseudo-physical
memory addresses and virtual addresses are maintained
at page-granularity, following the same semantic as its
non-virtualized counterparts. The major difference in
a Xen paravirtualized VM is the page frame number
(PFN) embedded in a page table entry (PTE): it is filled
with machine addresses rather than pseudo-physical ad-
dresses. This is because Xen paravirtualization does not
maintain a shadow page table in the hypervisor [17]. Ad-
dress translation conducted by the CPU only traverses
one layer of page tables. Such a memory management
mechanism is called direct paging [11]. The mapping
between each VM’s pseudo-physical memory pages to
machine memory pages is also kept in the hypervisor, but
guest VMs are allowed to query the mapping information
by issuing hypercalls (e.g., HYPERVISOR memory op()).
The mapping between virtual memory pages, pseudo-
physical memory pages and machine memory pages are
illustrated in Figure 6.

To enable security isolation, the Xen hypervisor keeps
track of the type of each memory page: page tables, seg-
ment descriptor page and writable pages. The hypervi-
sor enforces an invariant that only writable pages can be
modified by the guest VM. Whenever a page table hierar-
chy is loaded into the CR3 register upon context switch,
the hypervisor validates the memory types of the page ta-
bles to ensure the guest VM does not subvert the system
by modifying the content of the page tables. On Intel’s
x86-64 platforms, the page tables are organized in four-
levels: PGD, PUD, PMD, PT3. Particularly of interest to
us are the entries of PMD and PT, which are dubbed page
directory entries (PDE) and page table entries (PTE), re-
spectively. The structures of PDEs and PTEs are illus-
trated in Figure 7.

It is worthwhile noting that besides Xen paravirtual-
ization technology, recent Xen hypervisors also support
hardware-assisted virtualization, dubbed HVM in Xen’s
term [18]. The memory management in Xen HVM is dif-
ferent from that in PVM in many aspects. Most notably,
in HVM, guest VMs can no longer learn the physical ad-
dress of the pseudo-physical memory pages, due to the
intervention of a second-layer page table that is only ac-
3We use Linux terminology in this paper. Intel manuals call them page
map level 4 (PML4, or PGD), page directory pointer tables (PDPT, or
PUD), page directory tables (PDT, or PMD), page tables [6]. In Xen’s
terminology, they are called L4, L3, L2 and L1 page tables [11].

8

USENIX Association 25th USENIX Security Symposium 27

Figure 6: Memory management of Xen paravirtualized
VMs.

(a) PDE

(b) PTE

Figure 7: Structures of PDE, PTE.

cessible by the hypervisor. As such, much of the attack
techniques discussed in this section only works in Xen
paravirtualized machines.

5.2 Page Table Replacement Attacks
In this section, we present a method for a malicious guest
VM to exploit the bit flips induced by row hammer at-
tacks to gain arbitrary accesses to memory on the host
machine. Instead of relying on an unreliable trial-and-
error approach used in prior studies [4, 20], in which a
large number of page tables are sprayed to increase the
chances of bit flips taking place in PTEs, we propose a
novel approach that, given a set of DRAM bit flips that
an attacker could repeatedly induce, deterministically ex-
ploits the repeatable bit flips and gains access to physical
memory pages of other VMs or even the hypervisor.

To access the entire machine address space with both
read and write permissions, the attacker VM could do
so by modifying a page table entry within its own VM
so that the corresponding virtual address could be trans-
lated to a machine address belonging to other VMs or
the hypervisor. However, direct modification of PTEs in
this manner is prohibited. Every PTE update must go
through the hypervisor via hypercalls, and thus will be
declined. We propose a novel attack that achieves this
goal by replacing the entire page tables in a guest VM
without issuing hypercalls, which we call the page table
replacement attacks.

For the convenience of discussion, we first define the

following primitives:

• Addr(v) returns the machine address of a vulnerable
bit.

• Offset(v) returns the bitwise offset within a byte of
a vulnerable bit (the right-most bit has an offset of 0).

• Direction(v) could be one of 0 → 1, 1 → 0, or 0 ↔
1, indicating the most likely bit flip directions.

• Position(v) = 64 − ((Addr(v) % 8) × 8 + 8 −
Offset(v)), indicating the index of the bit in a 64-
bit aligned memory block (e.g., a page table entry).
The right-most bit has a position of 0.

• Virt(p) returns the virtual address of the beginning
of a page p.

• Differ(P1,P2) returns a set of indices of bits in
which the machine addresses of two memory pages
P1 and P2 differ.

Specially, when the vulnerable bit v satisfies
Position(v) ∈ [12,M], where M is the highest bit of
the physical addresses on the target machine, the attacker
could exploit the flippable bit to replace an existing page
table with a carefully-crafted page table containing en-
tries pointing to physical pages external to the guest VM
via the following steps (Figure 8):

Figure 8: Page table replacement attacks.

• Step 1: In the attacker’s VM, allocate and map one
virtual memory page (denoted p), so that the vul-
nerable bit v has the same page offset as one of the
PFN bits in p’s corresponding PDE. More accurately,
Virt(p)/2(9+12) ≡ Addr(v)/8 mod 29. This can be
achieved by allocating 1GB (i.e., 512× 512× 4KB)
virtual pages in user space and map one of the pages
that satisfies the requirement.

• Step 2: In guest kernel space, select two phys-
ical pages, P1 and P2, where Differ(P1,P2) =
{Position(v)} and Position(v) of P1 is the
original state of the vulnerable bit (e.g., 0 if

9

28 25th USENIX Security Symposium USENIX Association

Direction(v) = 0 → 1). Copy p’s PT to P1. Then
deallocate all mappings to P1 and make it read-only.

• Step 3: Copy p’s PMD to the physical page (denoted
Pv) that contains the vulnerable bit v. Then change
the PDE (on Pv) that contains v to point to P1. Then
deallocate all mappings to Pv and make it read-only.

• Step 4: Issue hypercalls to update p’s corresponding
PUD entry with Pv’s machine address, so that Pv will
become the new PMD. The Hypervisor will check the
validity of the new PMD and all page tables it points
to. Although p’s PDE has been changed to point to
P1, because P1 is exact the same as p’s original PT,
this step will also pass the security check by the hy-
pervisor.

• Step 5: Construct fake PTEs on P2 so that they point
to physical pages outside the attacker VM. These are
the target memory pages that the attacker would like
to access.

• Step 6: Conduct row hammer attacks on the two
neighboring rows of the vulnerable bit v, until bit flip
is observed. p’s PDE will be flipped so that it will
point to P2 instead of P1.

• Step 7: Now the attacker can access p and the other
511 virtual pages controlled by the same page table
P2 to access physical memory outside his own VM.
The attacker can also modify the PTEs in P2 without
issuing hypercalls as he has the write privilege on this
forged page table.

Theoretically, (52− 12)/64 = 62.5% vulnerable bits
can be exploited in page table replacement attacks, re-
gardless of flippable directions. In practice, because
physical addresses on a machine is limited by the avail-
able physical memory, which is much less than the al-
lowed (252 − 1)B. For example, with 128GB memory,
the most significant bit in a physical address is bit 38.
Therefore the fraction of vulnerable bits that are ex-
ploitable is about 41%. We will empirically show the
fraction of vulnerable bits that are exploitable in our at-
tacks in Section 6.

6 Evaluation

In this section, we will first evaluate the effectiveness
and efficiency of the bit detection algorithms (described
in Section 3) in Section 6.1, our row hammer attacks
(described in Section 4) in Section 6.2, and the cross-
VM memory access attacks (described in Section 5) in
Section 6.3.

6.1 Bit Detection Efficiency and Accuracy
We ran the bit detection algorithm detailed in Section 3
on a set of local machines. The processor and DRAM

configurations, together with the detected physical ad-
dress mapping in the DRAMs, are shown in Table 1. For
instance, on a machine equipped with an Intel Westmere
processor, Xeon E5620, and one DRAM chip (with 2
memory channels, 1 DIMM, 2 ranks, 8 banks, and 215

rows per bank), we ran our algorithm and found the bits
that determine bank indices are b6 ⊕ b16, b13, b14, b20,
b21, and the bits that determine row indices are bits b16 to
b19, and bits b22 to b32 (totally 15 bits). We can see from
these results that older processors, such as Westmere and
Sandy Bridge, tend to have simpler XOR-schemes. More
recent processors may have complex schemes (probably
due to channel hashing [21]). For example, on an In-
tel Haswell Xeon E5-1607 v3 processor, we observed
that complicated XOR-schemes, such as b7⊕b12⊕b14⊕
b16 ⊕b18 ⊕b26 and b8 ⊕b13 ⊕b15 ⊕b17 ⊕b27 are used to
determine DRAM banks. Moreover, only on recent pro-
cessors (e.g., Intel Broadwell Core i5-5300U) did we ob-
serve the same address bit involved in two XOR-schemes
(e.g., b18 and b19); other bits are at most used in one
XOR-scheme. In addition, row bits are mostly contigu-
ous bits, and on some processors can be split into two
segments. For example, on an Intel Xeon E5-2640 v3
processor we tested on, the row bits are b15 ∼ b17 and
b21 ∼ b35.

Efficiency evaluation. Figure 9 shows the execution
time of the bit detection algorithms. Results for five
local machines (Intel Sandy Bridge Core i3-2120 with
4GB memory, Intel Broadwell Core i5-5300U with 8GB
memory, Intel Westmere Xeon E5620 with 4GB mem-
ory, Intel Haswell Xeon E5-2640 v3 with 32GB memory,
and Intel Haswell Xeon E5-1607 v3 with 16GB mem-
ory) and three cloud machines (one machine in Cloud-
lab, Emulab d820, with 128GB memory, and two ma-
chines on Amazon EC2, one c1.medium instance and
one c3.large instance, total memory size unknown) are
shown in Figure 9. Most of these experiments can finish
within one minute, with one exception of Xeon E5-2640
v3 which takes almost two minutes. The longer latency
for testing E5-2640 v3 may be caused by its use of DDR4
memory, while the others are equipped with DDR3 mem-
ory chips.

Validation. Because Intel does not publish the memory
mapping algorithms of their memory controllers, we do
not have ground truth to validate our algorithm. How-
ever, we show that our algorithm is very likely to produce
valid results for two reasons: First, in Table 1, the total
number of bank bits and row bits detected are consis-
tent with the DRAM configuration that we learned using
several third-party software tools, including dmidecode,
decode-dimmms and HWiNFO64. Second, we conducted
double-sided row hammer attacks on some of the local
machines we have in our lab: Machine A, Sandy Bridge

10

USENIX Association 25th USENIX Security Symposium 29

Processor
Family

Processor
Name

Channels DIMMs Ranks Banks Rows Bank bits Row bits

Westmere Intel Xeon 2 1 2 8 215 b6 ⊕b16, b13, b14, b20, b21
b16 ∼ b19

E5620 b22 ∼ b32

Sandy
Intel Core
i3-2120

2 1 1 8 215 b6, b14 ⊕b17, b15 ⊕b18, b16 ⊕b19 b17 ∼ b31

Bridge Intel Core
i5-2500

2 1 1 8 215 b6, b14 ⊕b17, b15 ⊕b18, b16 ⊕b19 b17 ∼ b31

Haswell

Intel Xeon
4 1 1 8 215

b7 ⊕b12 ⊕b14 ⊕b16 ⊕b18 ⊕b26,
b23 ∼ b34E5-1607 b8 ⊕b13 ⊕b15 ⊕b17 ⊕b27,

v3 b19 ⊕b23, b20 ⊕b24, b21 ⊕b25

Intel Xeon 2 1 2 16 218 b6 ⊕b21, b13, b34, b15 ∼ b17
E5-2640 v3 b18 ⊕b22, b19 ⊕b23, b20 ⊕b24 b21 ∼ b35

Broadwell Intel Core 2 1 1 8 216 b7 ⊕b8 ⊕b9 ⊕b12 ⊕b13 ⊕b18 ⊕b19, b17 ∼ b32i5-5300U b14 ⊕b17, b15 ⊕b18, b16 ⊕b19

Table 1: Identifying physical address mapping in DRAMs.

Figure 9: Efficiency of bit detection.

i3-2120, Machine B, Sandy Bridge i3-2120, Machine C,
Sandy Bridge i5-2500, and Machine D, Broadwell i5-
5300U4. Particularly on each of these machines, we in-
dexed each row of the same bank from 1 to 2k, where k
is the number of detected row bits; the index of a row is
given by the value presented by all row bits in the same
order as they are in the physical address. Then we con-
ducted row hammer attacks on row n+1 and n−1 of the
same bank, where n ranged from 3 to 215 − 2. If the bit
detection algorithm are correct, we should find more bit
flips in row n than row n+2 and n−2, because double-
sided row hammer attacks have been reported to be more
effective [4]. It is apparent in Figure 10 that on all these
machines, much more bit flips were found in row n than
the other rows. For example, on machine A, 52.4% bit
flips were found in row n, while only 28.6% and 19.0%
flippable bits were found in row n−2 and n+2, respec-
tively. These results suggest that our algorithm to detect
the row bits and bank bits (including XOR-schemes) are
consistent with the true configuration with the DRAM.
We believe these evidence are strong enough to show the

4These set of machines, and the same naming convension, are also used
in the following experiments.

validity of our bit detection method.

Figure 10: Location of bit flips in double-sided row ham-
mer attacks. Row n+1 and n−1 are frequently accessed
to induce disturbance errors.

6.2 Effectiveness of Row Hammer Attacks
We evaluated the effectiveness of our row hammer at-
tacks in two aspects: (1) whether the attacker controlled
physical memory can cover a significant portion of the
overall physical memory on the machine, and (2) the
number of bit flips induced by our double-sided row
hammer attacks compared with single-sided attacks.

6.2.1 Physical Memory Coverage

We experimented on four servers to evaluate the phys-
ical memory coverage. The first machine is a desktop
in our lab. It is equipped with a 3.3GHz Intel Core i3-
2120 processor and 8GB of memory, of which 1GB is
assigned to the virtual machine. The second machine is
another desktop with a 3.7GHz Intel Core i5-2500 pro-
cessor and 4GB of memory. The VM owns 1GB of the

11

30 25th USENIX Security Symposium USENIX Association

memory. The third machine is a server in Cloudlab,
which is equipped with a 2.2GHz Intel Xeon E5-4620
processor with 128GHz of memory. The VM runs on
this machine is allowed to control 4GB of memory. The
fourth machine is a dedicated cloud server in Amazon
EC2. It has 128GB of memory and operates on a 2.8GHz
Intel E5-2680 v2 processor. Our VM was allocated 8GB
of memory.

We conducted the experiments as follows. On each
of these VMs, we ran a program to measure the physi-
cal pages that are accessible to the guest VM. Then we
rebooted our VM and measured the accessible physi-
cal memory again. After each reboot, some new phys-
ical pages will be observed (but some old pages will be
deallocated from this VM). We rebooted the VM several
times until no more new memory pages are observed af-
ter reboot. In Figure 11, the x-axis shows the number of
VM reboots (the first launch counted as one reboot) and
the y-axis shows the fraction of physical memory that
can be accessed by the VM. In the two local machines,
because no other VMs are competing for the physical
memory, the sets of accessible pages are relatively stable.
But still after reboots, more memory pages are accessi-
ble to the guest VMs. In the two cloud tests (one in EC2
and one in Cloudlab), the total physical memory sizes
are very large (i.e., 128GB). Although our VM were
only allocated 6.25% (in the EC2 test) and 3.125% (in
the Cloudlab test) physical memory initially, after sev-
eral reboots, our VM could access as much as 17.8% (in
the EC2 test) and 22.3% (in the Cloudlab test) of the to-
tal memory. The results suggest that row hammer at-
tacks are possible to enumerate a large fraction of the
physical memory even though the VM can only control a
small portion of it at a time. Therefore, by doing so, the
chances for a guest VM to induce exploitable and repeat-
able bit flips are not bound by the fixed size of physical
memory allocated to the VM.

6.2.2 Row Hammer Induced Bit Flips

To show that our double-sided row hammer attacks are
more effective than single-sided versions, we empirically
test how fast each method can induce memory bit flips.
In addition, we also tested with row hammer code both
with and without mfence to empirically evaluate the ef-
fectiveness of the two types of attack techniques

Particularly, we implemented four types of row ham-
mer attack tools: double-sided row hammer without
mfence instruction, double-sided row hammer with
mfence, single-sided row hammer without mfence, and
single-sided row hammer with mfence. In Figure 12,
we show the number of bit flips induced per hour by
one of these approaches on four machines: Machine
A, Sandy Bridge i3-2120, Machine B, Sandy Bridge

Figure 11: Physical memory coverage after VM reboot-
ing.

Figure 12: Efficiency of double-sided row hammer at-
tacks.

i3-2120, Machine C, Sandy Bridge i5-2500, and Ma-
chine D, Broadwell i5-5300U (memory configurations
are listed in Table 2).

We can see from the figure that our double-sided row
hammer is much more effective than the single-sided row
hammer attacks used in prior studies: Using single-sided
attacks, on machine A and machine B, no bit flips could
be observed, whether or not mfence was used. In con-
trast, using our double-sided row hammer attacks with-
out mfence, 4 or 5 bits can be flipped per hour. On the
most vulnerable machine C5, our double-sided row ham-
mer attacks can find as many as over 600k bit flips per
hour, while the best single-sided attacks can only find 23
bit flips per hour. We also find that row hammer without
mfence is more effective than with it. The trend is appar-
ent on all the four machines we tested on. As such, we
conclude that although mfence ensures that all memory
accesses reach the memory, the slowdown to the program
execution it brings about reduces the effectiveness of row

5Some machines are expected to be more vulnerable than others (see
Table 3, [23]), possibly due to higher memory density or lower DRAM
refreshing frequency.

12

USENIX Association 25th USENIX Security Symposium 31

hammer attacks. Our double-sided row hammer attacks
without mfence represent the most effective attack tech-
nique among the four.

While Figure 12 illustrates the rate of inducing bit
flips, Table 2 demonstrates the overall effectiveness of
our double-sided row hammer attacks (without mfence).
Particularly, the total execution time of the experiments
above and the total number of induced bit flips are shown
in Table 2. In each of the tests we stopped the row ham-
mer attacks once we have examined 50% of all DRAM
rows (all rows that are accessible by the VM without
reboot). We can see in the table the experiments took
about 10 to 20 hours on machine A, B, and C. The total
numbers of vulnerable bits found on machine A and B
were 63 and 91, respectively. In contrast to zero bit flips
induced by single-sided attacks that ran for 30 hours,
our double-sided attacks make these machines vulner-
able. On machine C, 5,622,445 vulnerable bits were
found within 10 hours. Machine D is the least vulner-
able among the four: only 25 vulnerable bits were found
in about 43 hours. The results show that different ma-
chines are vulnerable to row hammer attacks to different
extent.

Machine Execution Vulnerable
configuration time (hours) bits found

(Machine A)
Sandy Bridge i3-2120 (4GB) 18.37 63

(Machine B)
Sandy Bridge i3-2120 (4GB) 15.85 91

(Machine C)
Sandy Bridge i5-2500 (4GB) 9.08 5622445

(Machine D)
Broadwell i5-5300U (8GB) 42.88 25

Table 2: Execution time and detected vulnerable bits in
exhaustive row hammer attacks.

6.2.3 Vulnerable Bits Usability and Repeatability

We first report the fraction of vulnerable bits we found
on the four machines, machine A, B, C and D (configu-
rations listed in Table 2), that are usable in the page table
replacement attacks we discussed in Section 5. The total
number of bits that are used for analysis on these four
machines are listed in Table 26. The results are shown in
Figure 13a: 36.5%, 31.9%, 32.8%, 40.0% of these bits
are in the PFN range of a page table entry, thus are us-
able in page table replacement attacks.

Prior studies [23] have shown that many of the bit flips
are repeatable. We try to confirm this claim in our own

6We selected a subset of vulnerable bits, 100031 vulnerable bits, on
machine C for analysis because the entire set was too large to handle.

experiments. Specially, on these four machines, we re-
peated the row hammer attacks (10 times) against the
rows in which vulnerable bits were found during the first
sweep. We show, in Figure 13b, that 36.5%, 16.5%,
48.3%, and 12.0% of the vulnerable bits induced in the
first run could be flipped again (at least once) on these
four machines, respectively. These repeatable bit flips
can be exploited in our cross-VM exploits.

In addition, on machine C, we have found more than
one bit flippable within the same 64-bit memory block,
which are beyond correction even with ECC memory.
The distribution of vulnerable bits found in a 64-bit block
is shown in Figure 13c. Particularly, we found 95904
single-bit errors, 4013 two-bit errors, 112 three-bit errors
and 2 four-bit errors in the same 64-bit block.

6.3 Cross-VM Row Hammer Exploitation
We implemented our attack in a kernel module of Linux
operating system (kernel version 3.13.0) that ran on Xen
guest VMs. The hypervisor was Xen 4.5.1 (latest as of
January 2016). We conducted the attacks on machine
D, which is quipped with a Broadwell i5-5300U proces-
sor and 8GB of DRAM. However, we note that the at-
tacks should also work on other machines and software
versions as long as exploitable bits can be induced by
row hammer attacks. Particularly, we demonstrated the
power of the cross-VM row hammer attacks in two ex-
amples: In the first example, we demonstrated a confi-
dentiality attack where the adversary exploited the tech-
niques to steal TLS private keys from an Apache web
server; in the second example, we showed an integrity
attack, in which the attacker altered the program code of
an OpenSSH server to bypass the user authentication and
logged in the server without knowledge of credentials.

Arbitrary memory accesses. The first step of both at-
tacks is to obtain arbitrary accesses to the target memory
page. To do so, the adversary controlling a guest VM first
runs the bit detection algorithm described in Section 3 to
determine the row bits and bank bits of the machine, and
then performs row hammer attacks until he finds a ex-
ploitable and repeatable bit flip at desired bit position—
the PFN range of a PDE. We repeated the row hammer
attacks 10 times and on average it took 2.13 hours to find
the first useable bit flip. We emphasize machine D, the
one we experimented with, is the least vulnerable ma-
chine among all (see Figure 12). Then the adversary re-
places one of his own page tables with a forged one, us-
ing page table replacement attack techniques, and maps
512 of his virtual pages to 512 different physical pages.
The adversary scans all these pages directly because they
are mapped to his own address space. For each page, he
compares the content of the page with a specific pattern.
If the pattern is not found in these 512 pages, the ad-

13

32 25th USENIX Security Symposium USENIX Association

(a) Vulnerable bits that are usable in page
table replacement attacks.

(b) Vulnerable bits that are repeatable af-
ter the first occurrence.

(c) Distribution of vulnerable bits within
the same 64-bit memory block.

Figure 13: Statistics of the induced flippable bits.

versary modifies the PTEs directly as he already has the
write privilege on the forged page table, and searches in
another 512 physical pages. The translation lookaside
buffer (TLB) is flushed as needed to accommodate the
page table changes.

To speed up the searching, the adversary obtained a
list of machine page number (MFN) controlled by his
own VM from struct start info.mfn list and ex-
cluded them from the list of physical pages to scan. As
an extension of this implemented approach, the adver-
sary may also reboot the VM several times to increase the
physical memory space that is accessible to his own VM
(as done in Section 4), thus reducing the search space
of the victim. Alternatively, we also believe it is feasi-
ble to exploit cache-based side-channel analysis to learn
the cache sets (physical address modulus the number of
cache sets) of the targets [26] to narrow down the search
space. We leave this optimization as future work.

6.3.1 Confidentiality Attacks

We show in this example that using the cross-VM row
hammer attacks, the adversary may learn the private key
of the Apache web servers of the neighboring VMs. Par-
ticularly, we set up two VMs on the same machine. The
victim ran an Apache web server in which an HTTPS
server was configured to support SSL/TLS using one
pair of public/private keys. The attacker VM conducted
the cross-VM row hammer attacks described above to
obtain read access to the physical memory owned by
the victim VM. When scanning each of the physical
pages belonging to another VM, the adversary checked
at each byte of the memory if it was the beginning of
a struct RSA, by first checking if some of its member
variables, such as version and padding, are integers, and
others, such as p, q, n are pointers, and, if so, calling
the RSA check key() function provided by OpenSSL.
The function takes as argument a pointer to struct

RSA and validates (1) whether p and q are both prime
numbers, and (2) whether n = p × q and (3) whether
(xe)d ≡ x mod n. If the location passes the checks, it

is the beginning of an RSA structure, the private key
can be extracted. In fact, because at most memory lo-
cations, the basic checks will not pass, the expensive
RSA check key() will not be called. If the adversary is
lucky enough to successfully guess the machine address
of the target memory page in the first trial, the average
time to complete the attack was 0.32s (including the time
to manipulate page tables, conduct row hammer attacks
to induce the desired bit flip, read the memory page and
check the validity of the private key, and write the ex-
tracted key to files). The overall execution time of the
attack depends on the number of physical pages scanned
before finding the target one, but on average scanning
one additional memory pages took roughly 5ms.

6.3.2 Integrity Attacks

In this example, we show how to exploit row hammer
vulnerabilities to log in an OpenSSH server without pass-
words. Particularly, the victim was the management do-
main in Xen, the Dom0. In our testbed, Dom0 is con-
figured to use Pluggable Authentication Modules (PAM)
for password authentication. PAM offers Linux operat-
ing systems a common authentication scheme that can
be shared by different applications. Configuring sshd to
use PAM is a common practice in Red Hat Linux [8].
We pre-configured one legitimate user on the OpenSSH
server, and enabled both public key authentication and
password authentication. The adversary controls a regu-
lar guest VM, a DomU, that ran on the machine. We as-
sume the adversary has knowledge of the username and
public key of the legitimate user, as such information is
easy to obtain in practice.

To initiate the attack, the adversary first attempted to
log in as a legitimate user of the OpenSSH server from a
remote client using public/private keys. This step, how-
ever, is merely to create a window to conduct row ham-
mer attacks against the sshd process, which is created by
the sshd service daemon upon receiving login requests.
By receiving the correct public key for the legitimate
user, the server tries to locate the public key in the lo-

14

USENIX Association 25th USENIX Security Symposium 33

callq pam authenticate

test %eax, %eax

jne <error handling>

(a) Code before attacks.

mov $0, %eax

test %eax, %eax

jne <error handling>

(b) Code after attacks.

Figure 14: Pseudo code to illustrate attacks against the
OpenSSH server.

cal file (∼/.ssh/authorized keys) and, if a match is
found, a challenge encrypted by the public key is sent to
the client. Then the OpenSSH server awaits the client
to decrypt his encrypted private key file and then use the
private key to decrypt the challenge and send a response
back to the server. In our attack, the adversary paused
on this step while he instructed the DomU attacker VM
to conduct the cross-VM row hammer attacks to obtain
access to the physical memory of Dom0. The steps to
conduct the row hammer attacks were the same as de-
scribed in the previous paragraphs. Particularly, here the
adversary searched for a piece of binary code of sshd—
a code snippet in the sshpam auth passwd() function.
The signature can be extracted from offline binary disas-
sembling as we assume the binary code of the OpenSSH
server is also available to the adversary.

Once the signature was found, the adversary
immediately replaced a five-byte instruction “0xe8
0x1b 0x74 0xfd 0xff” (binary code for “callq
pam authenticate”) with another five-byte instruction
“0xb8 0x00 0x00 0x00 0x00” (binary code for “mov
$0 %eax”). Note here even though the memory page is
read-only in the victim VM, Dom0, the adversary may
have arbitrary read/write access to it without any re-
striction. Then the code snippet will be changed from
Figure 14a to Figure 14b. Upon successful authenti-
cation, pam authenticate() will return 0 in register
%eax. The modified code assigned %eax value 0 directly,
without calling pam authenticate(), so the authenti-
cation will be bypassed.

Then the adversary resumed the login process by en-
tering password to decrypt the private key. The private
key was incorrect so this step would fail anyway. Then
password authentication would be used as a fallback au-
thentication method, in which the adversary can log in
the server with any password, because it was not really
checked by the server.

Again, the time to complete the OpenSSH attack de-
pends on the number of physical pages scanned before
meeting the targeted one. If the target physical page is
the first to be examined by the adversary, the average
time to complete the attack was 0.322s, which included
the time to manipulate page tables, conduct row hammer
attacks to induce the desired bit flip, search the target
page for specific patterns, and inject code in the target

memory. If additional memory pages need to be scanned,
the average time to complete the pattern recognition in a
4KB memory page was 58µs.

We note the two examples only illustrate some basic
uses of our presented cross-VM row hammer attacks as
attack vectors. Other innovative attacks can be enabled
by the same techniques. We leave the exploration of
other interesting attacks as future work.

6.4 Prevalence of Xen PVM in Public
Clouds

As shown in prior sections, Xen PVMs (paravirtualized
VMs) are very vulnerable to privilege escalation attacks
due to row hammer vulnerabilities. However, they are
still widely used in public clouds. Amazon EC27 as a
leading cloud provider still offer PV guests in many of
its instance types (see Table 3). Other popular cloud
providers such as Rackspace8 and IBM Softlayer9 are
also heavily relying on PV guests in their public cloud
services. In addition, PVMs are also the primary virtual-
ization substrate in free academic clouds like Cloudlab10.

The prevalence of PV guests provides adversaries op-
portunities to perform bit detection, and hence double-
sided row hammer attacks in public clouds. With de-
tected bit flips, it also allows malicious page table manip-
ulation to enable arbitrary cross-VM memory accesses.
This kind of hardware attack is beyond control of the hy-
pervisor. Victims will suffer from direct impairment of
the system integrity or more sophisticated exploits of the
vulnerability from attackers.

cloud instance types

Amazon EC2 [7] t1, m1, m2, m3, c1, c3, hi1, hs1

Rackspace [28] General purpose, Standard

Softlayer Single/Multi-tenant Virtual Server

Cloudlab d430, d810, d820, C220M4,
C220M4, c8220(x), r320, dl360

Table 3: Prevalence of Xen paravirtualized VMs in pub-
lic clouds.

7 Discussion on Existing Countermeasures

In this section, we discuss the existing software and hard-
ware countermeasures against the demonstrated cross-
VM row hammer attacks.
7https://aws.amazon.com/ec2/
8https://www.rackspace.com/
9https://www.softlayer.com/
10https://www.cloudlab.us/

15

34 25th USENIX Security Symposium USENIX Association

Row hammer resistance with hardware-assisted vir-
tualization. Many of the attacks presented in this pa-
per (e.g., bit detection, double-sided row hammering,
and also cross-VM memory accesses enabled by page
table manipulation) require the adversary to know the
machine address of his virtual memory. One way to
prevent physical address disclosure to guest VMs is to
adopt hardware-assisted virtualization, such as Intel’s
VT-x [31] and AMD’s AMD-V [2]. Particularly, VT-x
employs Extended Page Tables and AMD-V introduces
Nested Page Tables [1] to accelerate the processor’s ac-
cesses to two layers of page tables, one controlled by the
guest VM and the other controlled by the hypervisor. In
this way, the guest VMs may no longer observe the real
physical addresses, as they are not embedded in the PTEs
any more. Hardware-assisted virtualization also prevents
direct manipulation of page tables, and thus the privilege
escalation attacks presented in this paper are not feasible.

The transition from Xen paravirtualization to
hardware-assisted virtualization in public clouds started
a few years ago, but the progress has been very slow.
One reason is that paravirtualization used to have better
performance than hardware-assisted virtualization in
terms of networking and storage [9]. However, with the
recent advances in hardware-assisted virtualization tech-
nology, some HVM-based cloud instances (especially
PV on HVM) are considered having comparable, if not
better, performance [7]. Even so, given the prevalence
of paravirtualization in public clouds as of today, we
anticipate it will take many years before such technology
can gradually phase out. We hope our study offers to the
community motivation to accelerate such trends.

Row hammer resistance with ECC-enabled DRAMs.
As discussed in Section 2, the most commonly imple-
mented ECC mechanism is single error-correction, dou-
ble error-detection. Therefore, it can correct only one
single-bit of errors within a 64-bit memory block, and
detect (but not correct) 2-bit errors, causing the machines
to crash. ECC memory will make the row hammer at-
tacks much harder. Because 1-bit error and 2-bit er-
rors are more common than multi-bit errors (e.g., see
Figure 13c), and it is very likely the privilege escalation
attack will be thwarted either by bit correction or ma-
chine crashes before it succeeds. However, ECC mem-
ory does not offer strong security guarantees against row
hammer attacks11. It is still possible for an adversary to
trigger multiple (> 3) bit flips in the same 64-bit word
so that errors can be silently induced and later exploited.
Particularly, if the true physical address of an extremely
vulnerable rows is known to the adversary, hammering
around this specific row will greatly increase the adver-

11A recent study by Mark Lanteigne has reported that ECC-equipped
machines are also susceptible to row hammer attacks [24].

sary’s chances of success.

We believe a combination of hardware and software
based defense will offer better security against row ham-
mer attacks. On the one hand, hardware protection raises
the bar of conducting row hammer attacks, and on the
other hand, software isolation prevents successful ex-
ploitation once such vulnerability is found by the adver-
sary.

8 Conclusion

In conclusion, we explored in this paper row hammer at-
tacks in the cross-VM settings, and successfully demon-
strated software attacks that exploit row hammer vul-
nerabilities to break memory isolation in virtualization.
Many techniques presented in this paper are novel: Our
graph-based bit detection algorithm can reliably deter-
mine row bits and XOR-schemes that are used to deter-
mine bank bits within one or two minutes. This novel
method enables the construction of double-sided attacks,
which significantly improves the fidelity of the attacks.
The page table replacement attacks present a determinis-
tic exploitation of row hammer vulnerabilities. The two
examples we demonstrated in the paper, private key exfil-
tration from an HTTPS web server and code injection to
bypass password authentication on an OpenSSH server,
illustrate the power of the presented cross-VM row ham-
mer attacks. The high-level takeaway message from this
paper can be summarized as: (1) Row hammer attacks
can be constructed to effectively induce bit flips in vul-
nerable memory chips, and (2) cross-VM exploitation of
row hammer vulnerabilities enables a wide range of se-
curity attacks. We also believe that although server-grade
processors and memory chips are more expensive and in
contrast are less vulnerable to row hammer attacks, se-
curity guarantees needs to be achieved by both hardware
and software solutions.

Acknowledgments

This work was supported in part by grant CRII-1566444
and CCF-1253933 from the National Science Founda-
tion. The authors would like to thank the shepherd of
our paper, Felix Schuster, and the anonymous review-
ers for the constructive suggestions that greatly helped
us improve the paper. We are grateful to CloudLab for
providing us access to their servers.

References
[1] AMD-V nested paging. http://developer.amd.com/

wordpress/media/2012/10/NPT-WP-1%201-final-

TM.pdf. Accessed: 2016-06.

16

USENIX Association 25th USENIX Security Symposium 35

[2] AMD64 architecture programmers manual, volume 2: System
programming. http://developer.amd.com/wordpress/

media/2012/10/24593_APM_v21.pdf. Accessed: 2016-06.

[3] BIOS and Kernel Developer’s Guide for AMD Athlon 64
and AMD Opteron Processors. http://support.amd.com/

TechDocs/26094.pdf. revision:3.30, issue date: 2016-02.

[4] Exploiting the DRAM rowhammer bug to gain kernel privi-
leges. http://googleprojectzero.blogspot.com/2015/

03/exploiting-dram-rowhammer-bug-to-gain.html.
Accessed: 2016-01-23.

[5] How physical addresses map to rows and banks in DRAM. http:
//lackingrhoticity.blogspot.com/2015/05/how-

physical-addresses-map-to-rows-and-banks.html.
Accessed: 2016-01-30.

[6] Intel 64 and IA-32 architectures software developers man-
ual, combined volumes:1,2A,2B,2C,3A,3B and 3C. http:

//www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html.
version 052, retrieved on Dec 25, 2015.

[7] Linux AMI virtualization types. http://docs.aws.amazon.

com/AWSEC2/latest/UserGuide/virtualization_

types.html. Accessed: 2016-06.

[8] Product Documentation for Red Hat Enterprise Linux.
https://access.redhat.com/documentation/en/red-

hat-enterprise-linux/. Accessed: 2016-06.

[9] PV on HVM. http://wiki.xen.org/wiki/PV_on_HVM. Ac-
cessed: 2016-06.

[10] Research report on using JIT to trigger rowhammer.
http://xlab.tencent.com/en/2015/06/09/Research-

report-on-using-JIT-to-trigger-RowHammer. Ac-
cessed: 2016-01-30.

[11] X86 paravirtualised memory management. http:

//wiki.xenproject.org/wiki/X86_Paravirtualised_

Memory_Management. Accessed: 2016-01-23.

[12] AICHINGER, B. P. DDR memory errors caused by row ham-
mer. http://www.memcon.com/pdfs/proceedings2015/

SAT104_FuturePlus.pdf.

[13] BAINS, K., HALBERT, J. B., MOZAK, C. P., SCHOENBORN,
T. Z., AND GREENFIELD, Z. Row hammer refresh command.
US9236110, Jan 03 2014.

[14] BAINS, K. S., AND HALBERT, J. B. Distributed row hammer
tracking. US20140095780, Apr 03 2014.

[15] BAINS, K. S., HALBERT, J. B., SAH, S., AND GREENFIELD, Z.
Method, apparatus and system for providing a memory refresh.
US9030903, May 27 2014.

[16] BOSMAN, E., RAZAVI, K., BOS, H., AND GIUFFRIDA, C.
Dedup est machina: Memory deduplication as an advanced ex-
ploitation vector. In 37nd IEEE Symposium on Security and Pri-
vacy (2016), IEEE Press.

[17] CHISNALL, D. The Definitive Guide to the Xen Hypervisor
(Prentice Hall Open Source Software Development Series). Pren-
tice Hall PTR, 2007.

[18] DONG, Y., LI, S., MALLICK, A., NAKAJIMA, J., TIAN, K.,
XU, X., YANG, F., AND YU, W. Extending Xen with intel vir-
tualization technology. Intel Technology Journal 10, 3 (2006),
193–203.

[19] GREENFIELD, Z., BAINS, K. S., SCHOENBORN, T. Z.,
MOZAK, C. P., AND HALBERT, J. B. Row hammer condition
monitoring. US patent US8938573, Jan 30 2014.

[20] GRUSS, D., MAURICE, C., AND MANGARD, S. Rowhammer.js:
A remote software-induced fault attack in JavaScript. In 13th
Conference on Detection of Intrusions and Malware and Vulner-
ability Assessment (2016).

[21] JAHAGIRDAR, S., GEORGE, V., SODHI, I., AND WELLS,
R. Power management of the third generation Intel
Core micro architecture formerly codenamed Ivy Bridge.
http://www.hotchips.org/wp-content/uploads/hc_

archives/hc24/HC24-1-Microprocessor/HC24.28.117-

HotChips_IvyBridge_Power_04.pdf, 2012.

[22] KIM, D.-H., NAIR, P., AND QURESHI, M. Architectural support
for mitigating row hammering in DRAM memories. Computer
Architecture Letters 14, 1 (Jan 2015), 9–12.

[23] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H., LEE,
D., WILKERSON, C., LAI, K., AND MUTLU, O. Flipping bits
in memory without accessing them: An experimental study of
DRAM disturbance errors. In 41st Annual International Sympo-
sium on Computer Architecture (2014), IEEE Press.

[24] LANTEIGNE, M. How rowhammer could be used to exploit
weaknesses in computer hardware. http://www.thirdio.

com/rowhammer.pdf, 2016. Accessed: Jun. 2016.

[25] LIN, W.-F., REINHARDT, S., AND BURGER, D. Reducing
DRAM latencies with an integrated memory hierarchy design.
In 7th International Symposium on High-Performance Computer
Architecture (2001).

[26] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.
Last-level cache side-channel attacks are practical. In 36th IEEE
Symposium on Security and Privacy (2015), IEEE Press.

[27] MOSCIBRODA, T., AND MUTLU, O. Memory performance at-
tacks: Denial of memory service in multi-core systems. In 16th
USENIX Security Symposium (2007), USENIX Association.

[28] NOLLER, J. Welcome to performance cloud servers; have some
benchmarks. https://developer.rackspace.com/blog/

welcome-to-performance-cloud-servers-have-some-

benchmarks, 2013. Accessed: Jun. 2016.

[29] PESSL, P., GRUSS, D., MAURICE, C., SCHWARZ, M., AND
MANGARD, S. DRAMA: Exploiting DRAM addressing for
cross-cpu attacks. In 25th USENIX Security Symposium (2016),
USENIX Association.

[30] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, you, get off of my cloud: Exploring information leak-
age in third-party compute clouds. In 16th ACM conference on
Computer and communications security (2009), ACM.

[31] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L.,
MARTINS, F. C. M., ANDERSON, A. V., BENNETT, S. M.,
KAGI, A., LEUNG, F. H., AND SMITH, L. Intel virtualization
technology. Computer 38, 5 (May 2005), 48–56.

[32] VARADARAJAN, V., ZHANG, Y., RISTENPART, T., AND SWIFT,
M. A placement vulnerability study in multi-tenant public clouds.
In 24th USENIX Security Symposium (2015), USENIX Associa-
tion.

[33] WANG, D. T. Modern Dram Memory Systems: Performance
Analysis and Scheduling Algorithm. PhD thesis, College Park,
MD, USA, 2005.

17

USENIX Association 25th USENIX Security Symposium 37

PIkit : A New Kernel-Independent Processor-Interconnect Rootkit

Wonjun Song, Hyunwoo Choi, Junhong Kim, Eunsoo Kim, Yongdae Kim, John Kim
KAIST

Daejeon, Korea
{iamwonjunsong, zemisolsol, jh15, hahah, yongdaek, jjk12}@kaist.ac.kr

Abstract
The goal of rootkit is often to hide malicious soft-

ware running on a compromised machine. While there
has been significant amount of research done on differ-
ent rootkits, we describe a new type of rootkit that is
kernel-independent – i.e., no aspect of the kernel is mod-
ified and no code is added to the kernel address space
to install the rootkit. In this work, we present PIkit –
Processor-Interconnect rootkit that exploits the vulner-
able hardware features within multi-socket servers that
are commonly used in datacenters and high-performance
computing. In particular, PIkit exploits the DRAM ad-
dress mapping table structure that determines the desti-
nation node of a memory request packet in the processor-
interconnect. By modifying this mapping table appro-
priately, PIkit enables access to victim’s memory ad-
dress region without proper permission. Once PIkit is in-
stalled, only user-level code or payload is needed to carry
out malicious activities. The malicious payload mostly
consists of memory read and/or write instructions that
appear like “normal” user-space memory accesses and it
becomes very difficult to detect such malicious payload.
We describe the design and implementation of PIkit on
both an AMD and an Intel x86 multi-socket servers that
are commonly used. We discuss different malicious ac-
tivities possible with PIkit and limitations of PIkit, as
well as possible software and hardware solutions to PIkit.

1 Introduction
Rootkits are used by attackers for malicious activities
on compromised machines by running software with-
out being detected [47]. Different types of rootkits can
be installed at the application-level, kernel-level, boot
loader level, or hypervisor level. There has been sig-
nificant amount of research done on different types of
rootkits [57, 28, 25, 24] as well as different rootkit detec-
tions [21, 31, 11]. Recently, there have been other types
of rootkits [20, 50] that exploit vulnerable hardware fea-
tures such as de-synchronized TLB structures and un-

Malicious Payload
User-Level Kernel-Level

V
ul

ne
ra

bi
lit

ie
s

Software
t0rn [35], ROR [25],
lrk5 [48], DKOM [15],

dica [23], etc. knark [17], etc.

Hardware
This work Cloaker [20]

(PIkit) Shadow Walker [50]

Table 1: Classification of different rootkit attacks.

used interrupt vector. Prior work on rootkit can be classi-
fied based on whether the payload consists of user-level
or kernel-level code and whether rootkit is installed in the
software or with the support of the hardware (Table 1).
In this work, we propose a new type of rootkit that mod-
ifies hardware state but enables malicious activities with
simple user-level code that consists of read/write mem-
ory accesses to user-level memory space. While prior
work on user-level software rootkit often modified ex-
isting files [35, 48, 23], this work does not modify the
kernel or any existing files. Since this work does not
require any code modification or code injection to the
kernel, traditional approaches to detect software rootkit,
such as kernel integrity monitoring [42, 31, 53] or code
signature-based detection [1, 2] can not be used for de-
tection.

In this work, we present PIkit, processor-interconnect
rootkit, that exploits hardware vulnerability in x86 multi-
socket servers. x86 is the most dominant server proces-
sor in datacenters and high-performance computing [36]
and a recent survey found over 80% of the x86 servers
are multi-socket servers. The multi-socket servers con-
tain a processor-interconnect that connects the sockets
together (e.g., Intel QPI [37], AMD Hypertransport [10])
and we exploit the processor-interconnect to implement
PIkit. Once PIkit is installed, the payload or the mali-
cious code to carry out an attack exists in user space and
appears like a “normal” user program – i.e., all of the
memory accesses from the payload are legal memory ac-
cesses and it becomes very difficult to identify such user
code as “malicious” code. As a result, PIkit is a seri-

38 25th USENIX Security Symposium USENIX Association

ous threat to multi-socket servers that is difficult to detect
with currently available rootkit detection mechanisms.

PIkit that we propose is implemented on x86 servers
from both AMD and Intel to demonstrate how PIkit
enables an attacker to continuously access the victim’s
memory region without proper permission. 1 In particu-
lar, we exploit the configurability in the DRAM mapping
table that enables a memory request packet to be routed
to a different node by modifying a packet’s destination
node. We also exploit the extra entries available in the
DRAM mapping table to define an attack memory region
when installing PIkit. As a result, user-level memory
read or write requests to the attack memory region get
re-routed to another memory region or the victim’s mem-
ory region. To the best of our knowledge, this represents
the first rootkit where with the support of hardware state
modification, user-level code or payload is sufficient to
carry out malicious activities.

Most rootkits often modify some components of the
OS while other rootkits add malicious payload to the
kernel without modifying the OS to carry out malicious
activities. However, such approaches can be exposed
by signature-based detection and integrity checking. In
comparison, PIkit only requires user-level payloads with
the support of hardware state modifications as no mali-
cious payloads to the kernel space are added or modified
(Figure 1). In addition, any signature scan of the memory
that contains the user-level payload can not identify the
user code as “malicious” since the memory accesses ap-
pear to be legal accesses as the malicious access is only
achieved through the support of the hardware modifica-
tions. As a result, PIkit demonstrates how a very stealthy
rootkit can be achieved compared to previously proposed
rootkits.

The proposed PIkit is a non-persistent rootkit [20, 45,
41] and does not remain after the server is restarted.
However, servers are rarely rebooted to minimize the im-
pact on availability – for example, one study measured
the average time between reboot in the server room to
be 481 days [22]. Thus, PIkit poses a serious threat to
servers while powered on. Prior work on non-persistent
rootkit [20] has argued that non-persistence can also sig-
nificantly reduce the detectability of rootkits.

In particular, the contributions of this work include the
followings.

• We show that the DRAM address mapping table
structure in the processor-interconnect of multi-
socket servers has security vulnerability that can be
exploited maliciously in both an AMD and an Intel-
based x86 server.

1This work can also be viewed as a “backdoor” since once PIkit
is installed, it provides a covert mechanism for the attacker to gain
privileged access to the system.

DRAM
Mapping

Table

Figure 1: High-level overview of PIkit showing DRAM address
mapping table modification and user-level malicious payload
added for malicious activities.

• We describe a new type of rootkit that is kernel-
independent that requires only hardware state mod-
ification with user-level payload, no modification or
addition to the kernel is necessary. In particular, we
present PIkit, Processor-Interconnect rootkit, that
exploits the mapping table vulnerability to enable
the malicious attacker privileged access (both read
and write) to a victim memory address region with
only user-level access.

• Once PIkit is installed, we demonstrate how differ-
ent malicious activities can be carried out including
bash shell credential object attack, shared library
attack, and keyboard buffer attack with only user-
level memory accesses.

• We describe alternative solutions, including a
software-based, short-term solution to detect PIkit
as well as hardware-based, long-term solutions to
prevent PIkit.

We responsibly disclosed this vulnerability to CERT be-
fore publishing this paper. The rest of the paper is or-
ganized as follows. We first describe our threat model
in Section 2 and background into processor-interconnect
as well as related work. The DRAM address mapping
table structure is described and analyzed in Section 3.
The design and implementation of PIkit that modifies the
mapping table structure is described in Section 4 and we
illustrate different malicious activities in Section 5. We
provide some discussion on different solutions as well
as limitations of PIkit in Section 6 and we conclude in
Section 7.

2 Background
2.1 Threat Model
In this work, we assume an attacker and a victim share
the same multi-socket server that is commonly used in
cloud servers and high-performance computing. We as-
sume an attacker has no physical access to the hardware
and also assume the same threat model as prior work on
rootkit attack – the attacker, through some vulnerabili-
ties (e.g., vulnerabilities in commodity OSes [39, 16, 6]
or perhaps through an administrator (or an insider) who

2

USENIX Association 25th USENIX Security Symposium 39

Figure 2: Block diagram of a processor-interconnect in a 4-
socket server. (MC: memory controller)

maliciously provides one-time root access [54]) or so-
cial engineering, is assumed to have privileged access
for rootkit installation. Once this is achieved, the next
goal is to avoid detection of intrusion while carrying out
malicious activity, similar to other rootkits. After PIkit is
installed, it becomes very difficult to detect or determine
the source of the attack as there are no changes to the
kernel in the target system.

2.2 Processor-Interconnect Overview
A high-level block diagram of a processor-interconnect
is shown in Figure 2. The processor-interconnect pro-
vides connectivity between multiple nodes (or sockets)
in a NUMA (non-uniform memory access) server with
each node containing multiple cores. The router within
the Northbridge is used to connect to other nodes and it
is also used to access local memory. For simplicity, the
example in Figure 2 shows a ring topology to intercon-
nect the 4 nodes together but for a small-scale system,
all of the nodes can be fully connected as well. Given
the processor-interconnect and its topology, the routing
algorithm determines the path taken by a packet to its
destination [19]. To provide flexibility, a routing table
is commonly used in the processor-interconnect to im-
plement the routing algorithm. Based on the destination
of the packet, a routing table look-up is done to deter-
mine the appropriate router output port that the packet
needs to be routed through. However, the routing table is
only used to determine which router output port should
be used (and the routing path); the routing table is not
responsible for determining the packet destination.

The packet destination information is determined by
the packet header. The format of messages (or packets2)
in the processor-interconnect is similar to other intercon-
nection networks [19] as shown in Figure 3. A packet
is the high-level message that is sent between the nodes,
which can include memory requests, cache line replies,
coherence message, etc. A packet is often partitioned
into one or more flits or flow control units within the
interconnection networks – thus, a packet can be par-
titioned into a head flit, one or more body flits, and a

2A message can consist of multiple packets but within the
processor-interconnect, messages are often single packet.

tail flit. The head flit contains additional “header” infor-
mation, which can include the packet type and both the
source and destination node information of the packet.
The body/tail flits do not contain destination informa-
tion but only the payload and simply follows the head
flit from the source to its destination.

2.3 Related Work
To the best of our knowledge, very few prior re-
search have investigated security vulnerabilities within
the hardware of the processor-interconnect in multi-
socket servers. Song et al. [49] demonstrated the security
vulnerability of the routing table in a multi-socket server
This vulnerability enabled performance attacks by send-
ing packets through longer routes and degrading both in-
terconnect latency and bandwidth. In addition, it also
enabled system attacks by creating a livelock in the net-
work to crash the system. However, the routing table did
not modify the destination of a packet and thus, the scope
of the attack was limited. In this work, we show how the
destination of a packet can be changed by modifying the
DRAM mapping table to enable a rootkit attack.

Rootkit Attacks: User-level, software rootkits (upper
left box in Table 1) often modify existing system utili-
ties to enable malicious codes. Lrk5 [48], T0rn [35] and
Dica [23] replace the system binaries (e.g., ls, ps and
netstat) with modified versions to hide files, processes
or network connections. SAdoor [40] is a non-listening
daemon that grabs packets directly from the NIC and
watches for special key and command packets before ex-
ecuting a pre-defined command (e.g., /bin/sh). However,
it has been shown that these rootkit are often easily de-
tected by integrity checking for the system binaries.

Traditional kernel-level, software rootkits (upper right
box in Table 1) exploit the control hijacking and inter-
ception, modifying static kernel data structures (e.g., sys-
tem call table) to jump to malicious codes indirectly.
DKOM [15] introduced a more advanced kernel-level
rootkit approach which exploits dynamic (non-control)
kernel data structures (e.g., processor descriptors) to
install the rootkit. Hofmann et al. [24] introduced a
rootkit which allows for malicious control flows by re-
placing pointer variables. Hund et al. [25] introduced
a return-oriented rootkit based on Return-Oriented Pro-
gramming [14] to bypass integrity checking for the ker-
nel code. However, these kernel-level, software rootkits
require modifications to the kernel and can be detected
with protecting return addresses on the stack and critical
data structures from the modification.

In addition to software rootkits, hardware-supported
rootkits have been proposed (lower right box in Table 1).
ShadowWalker [50] hid the trace of the rootkit by hook-
ing the page tables while Cloaker [20] exploited ARM-
specific architectural feature to conceal the rootkit with-

3

40 25th USENIX Security Symposium USENIX Association

Figure 3: Packet format in interconnection networks with
packet consisting of multiple flits.

out altering existing kernel code. However, these work
require adding malicious payload to the kernel which can
be prevented by guaranteeing the execution of only veri-
fied kernel code or detected by checking the flow of the
hijacked code. In comparison, while PIkit also leverages
a hardware-vulnerability, PIkit enable malicious activity
with only user-level code.

The rootkits that we categorized in Table 1 and de-
scribed earlier focus mostly on the software or hard-
ware (CPU)-related rootkits. There have also been
other device-specific rootkits such as network interface
card [51], hard-drives [57], USB mouse [33], and print-
ers [18]. In addition, rootkits involving BIOS [56] have
also been proposed. However, these rootkits also in-
volve modifying existing firmware to carry out the at-
tack. Subvirt [28] presented a more stealthy rootkit by
using virtual machine monitor (VMM) but Subvirt can
also be detected with physical memory signature scans.
Run-DMA [44] is a DMA (direct memory access) rootkit
attack that enables a “malicious computation” where at-
tacker modifies data inputs to induce arbitrary compu-
tation, in comparison to a more traditional “malicious
code” model attack. The PIkit that we present in this
work is not necessarily limited to either malicious com-
putation or malicious code model since any region in the
memory can be modified as long as the memory mapping
can be determined by the attacker.

Rootkit Detection: The rootkit detection can be
largely divided into two types, checking the integrity of
kernel codes and data structures and detecting malicious
control flows (e.g., hooking system call table and inter-
rupt vector table). Copilot [42] detects the modification
of kernel and jump tables with the separated PCI card
monitor. However, such approaches do not guarantee
hardware register integrity, such as the register modi-
fied in Cloaker [20] or the DRAM address mapping ta-
ble modified in this work. KI-mon [31] introduced a
hardware-assisted monitor, which snoops all bus traffic
to verify updates of the kernel objects with the address
filter while Shark [53] proposed an architectural sup-
ported rootkit monitor. However, since PIkit does not
access the kernel objects directly, such approaches can-
not detect PIkit.

3 Analysis of Processor-Interconnect in
Multi-Socket Servers

In this section, we describe the DRAM address map-
ping table structure within the Northbridge (or the un-

Base Address Limit Address Destination ID
0 0x0000000000 0x041F000000 0
1 0x0420000000 0x081F000000 1
2 0x0820000000 0x0C1F000000 2
3 0x0C20000000 0x101F000000 3
4 RESERVED RESERVED RESERVED
5 RESERVED RESERVED RESERVED
6 RESERVED RESERVED RESERVED
7 RESERVED RESERVED RESERVED

Figure 4: An example of DRAM address mapping table for a
4-node system.

core) that we analyze in detail and then describe how
it can be exploited to enable a hardware vulnerability-
based rootkit attack through the processor-interconnect.

3.1 DRAM Address Mapping Table
One of the critical information in packet’s header is the
destination information; this information is often based
on the destination memory address in modern multi-
socket servers. The destination node is determined by
a memory address mapping table structure between the
core and the processor-interconnect router – we refer to
this as the DRAM Address Mapping Table. 3 Based on
the destination address of the packet, the DRAM address
mapping table determines the destination. As a result,
regardless of the address, the packet is simply forwarded
to the destination based on the packet header information
within the processor-interconnect.

A separate copy of DRAM address mapping table
structure exists within each node of a multi-socket sys-
tem, between the core (or the last level cache) and the
router. Each entry in the mapping table contains a
DRAM physical memory address range, often including
the start (or the base) address and the limit address. Each
entry also contains the destination node information –
thus, if an address falls within the address range, the des-
tination node information is appended to the packet. An
example of a DRAM address mapping table is shown in
Figure 4.

The number of entries in the DRAM address mapping
table should be equal to or greater than the maximum
number of nodes in the system. In the AMD system that
we evaluate (AMD Opteron 6128), the system contains 4
nodes but the system is scalable up to 8 nodes. Thus, the
DRAM mapping table contains 8 entries with only 4 of
the entries used and the remaining 4 entries not used (or
shown as RESERVED in Figure 4).

The DRAM address mapping table is initialized by the
BIOS at boot time. Since the table entries are memory-
mapped registers, the BIOS uses memory operations to
initialize the memory mapping table. The contents of

3In Intel-based NUMA systems, this structure is referred to as the
DRAM address decoder [5] while in AMD- multi-socket systems, sim-
ilar structures are referred to as DRAM address map register [13].

4

USENIX Association 25th USENIX Security Symposium 41

the address mapping table entries are dependent on the
DRAM capacity installed on each node. To determine
the address range for each entry (and each node), the
BIOS calculates the current memory capacity by obtain-
ing DRAM information such as the number of rows,
banks and ranks from the SPD (Serial Presence De-
tect) [4] on the DRAM.

3.2 Vulnerable Hardware Features

To implement PIkit, we exploit the following three as-
pects of the DRAM address mapping table in multi-
socket servers.

Configurability: The memory mapping table needs to
be configurable since the memory capacity per system
(and per node) is flexible and determined by the system
user.

Extra entries: Since the system needs to be designed for
scalability, the number of entries in the DRAM address
mapping table needs to equal to or greater than the largest
system configuration. For most multi-socket servers to-
day, the maximum number of nodes in the system is of-
ten 8; however, the most dominant NUMA servers on
the market are often 2 or 4 nodes [26] and thus, there are
memory mapping table entries that are unused.

Discrepancy: The DRAM mapping table content val-
ues can be modified after the initialization such that the
values are not consistent with the original values. This
discrepancy may or may not cause a problem, depending
on how the table is modified. 4

Thus, given these three hardware vulnerabilities,
the destination node information of packets in the
processor-interconnect can be modified such that the
packets are sent to a different node (and its correspond-
ing victim’s memory address) to allow an attacker to
access unauthorized memory space without proper per-
mission. In the following section, we describe the chal-
lenges in the design and implementation of PIkit.

4 PIkit Design & Implementation

PIkit installation procedure that includes modifying the
DRAM address mapping table is described in this sec-
tion. We first provide an overview and describe how
the attack address region needs to be prepared by the at-
tacker, and then modify the DRAM mapping table based
on the attack address region. Our initial design and im-
plementation are shown for an AMD-based server but
we also discuss how PIkit can be implemented on Intel-
based servers as well.

4Steps to ensure that the discrepancy does not cause a problem is
discussed in Section 4.3 (for AMD) and Section 4.5 (for Intel).

Figure 5: High-level description of the proposed PIkit on a 4-
node multi-socket server.

4.1 Overview

In this work, we define the attack node as the node in
the multi-socket system where the DRAM address map-
ping table is modified to implement PIkit, and the victim
node is the node where its memory is maliciously ac-
cessed, through user-level read or write operations with-
out proper permission. The address region that is mod-
ified in the memory mapping table in the attack node
is defined as the attack address region while the corre-
sponding address in the victim node is the victim address
region, as shown in Figure 5. The PIkit and the mod-
ification in the DRAM address mapping table result in
read/write memory requests to the attack address region
being routed to the victim address region. The high-level
diagram in Figure 5 also shows how the PIkit relates to
the entire system. Most rootkit monitoring mechanisms
(or solutions) exist at the software-level but the PIkit that
we propose in this work is at the hardware-level (within
the processor-interconnect) and exploiting vulnerability
in the mapping table structure.

After the core injects a memory request into the North-
bridge and before the packet is actually routed through
the processor-interconnect by the router, a packet header
is created based on the physical address of the memory
request as shown in Figure 6. The processor-interconnect
does not observe the memory address as that is included
in the packet payload 5 and is only observed at the
destination (i.e., memory controller). The processor-
interconnect only observes the destination node informa-
tion that is appended at the interface between the core
and the router. The PIkit that we propose in this work
exploits this vulnerability of modifying the destination
of a packet – in particular, the DRAM address mapping
table structure to modify the packet’s destination.

5Packet payload refers to the non-header or the data portion of the
packet while the payload terminology used in the rest of this paper
refers to the malicious code used after rootkit is installed.

5

42 25th USENIX Security Symposium USENIX Association

Figure 6: Hardware overview of memory request and packet
header.

4.2 Defining Attack Address Region
Before the PIkit installation, the attacker first needs to
prepare the attack address region such that only the at-
tacker has access to that particular memory region. This
step is critical to ensure that PIkit and the DRAM address
mapping table modification do not cause any unknown
system behavior including crashing the system. For ex-
ample, if another program (or user) attempts to access
the attack memory region after the PIkit is installed, the
memory access will be routed to the victim node and un-
expected system behavior will occur if a memory write
is being done on an unintended memory address – i.e., it
can cause critical data in kernel space to be overwritten.

The memory address range of the attack address re-
gion needs to be equal to granularity or the resolution
of the memory mapping table. Although each entry in
the DRAM address mapping table specifies both the base
and the limit addresses, the full width of the address (i.e.,
48 bits) is not stored as some of the lower bits are not
specified in the DRAM address mapping table. For ex-
ample, in the AMD Opteron 6128 system that we eval-
uate, the granularity of the memory mapping table is 16
MBs as only 24 most-significant bits are stored – thus,
the attacker needs to obtain at least 16 MBs of physi-
cally contiguous memory region. To achieve this, we
take advantage of huge pages that are commonly avail-
able. In the system that we evaluate, we used 1 GB huge
page. After successful malloc for a huge page, an ad-
dress range within the contiguous memory region allo-
cated can be used as the attack address region, as long as
the process that received the memory allocation is con-
tinuously running.

4.3 Modifying the DRAM Address Map-
ping Table

The DRAM address mapping table consists of physical
addresses while the attack address region obtained in the
previous section are virtual addresses. Thus, an attacker
needs to obtain the translated physical address of the at-
tack region before modifying the DRAM address map-
ping table. The translation of the virtual to physical ad-
dress can be determined by using /proc/(pid)/pagemap
interface from the Linux kernel. Based on this transla-
tion information, the DRAM address mapping table can
be modified using the corresponding physical address of

Base Address Limit Address Destination ID
0 0x0000000000 0x041F000000 0
1 RESERVED RESERVED RESERVED
2 0x0820000000 0x0C1F000000 2
3 0x0C20000000 0x101F000000 3
4 0x0420000000 0x07BF000000 1
5 0x07C0000000 0x07C1000000 2
6 0x07C2000000 0x081F000000 1
7 RESERVED RESERVED RESERVED

5 0x07C0000000 0x07C1000000 2

Figure 7: A modified DRAM address mapping table where en-
try 5 (highlighted) is used as the attack address region.

the attack region.
An example of a modified mapping table is shown

in Figure 7, based on the original DRAM address map-
ping table shown earlier in Figure 4. We assume the at-
tack node is node 1 and the victim node is node 2, with
the attack address region defined as the address between
0x07C0000000 and 0x07C1000000 in node 1. In Fig-
ure 7, the entry 1 of the table which originally identi-
fied node 1 memory region has been removed. Instead,
the same address range has been partitioned across en-
tries 4, 5, and 6 of the modified DRAM mapping ta-
ble (Figure 7). The key difference compared with the
original mapping table is that for entry 5, the destina-
tion node ID has been modified such that it is no longer
node 1 but modified to node 2 – thus, entry 5 represents
the attack address region. Any address requests between
0x07C0000000 and 0x07C1000000 from node 1 have a
destination of node 2 added to the packet header, instead
of the original destination of node 1. When this particular
packet arrives at node 2, the DRAM memory controller
within the node 2 will receive this packet and convert the
address within the payload of the packet into the actual
victim address region. For example, in the AMD sys-
tem that we evaluate, address 0x07C0000000 from node
1 ends up being mapped to address 0x0840000000 in
node 2. As a result of the mapping table modification, the
physical memory connected to node 1 that originally cor-
responded to the address range between 0x07C0000000

and 0x07C1000000 can no longer be physically accessed
from node 1.

Since the table entries are memory-mapped registers,
the entries can be modified through system read/write
commands (e.g., setpci utility). However, to properly
modify the DRAM address mapping table entries, the
following caution must be taken.

1. The new entries must be written before the old entry
is removed (e.g., in Figure 7, entries 4, 5, 6 must be
written before entry 1 is cleared).

2. For the new entries added, the base address register
must be written before the limit address register.

3. For the existing old entry that needs to be removed,
the limit address register must be cleared first, be-
fore the base address register.

6

USENIX Association 25th USENIX Security Symposium 43

(a)

(b)

Figure 8: Example of PIkit (a) before and (b) after PIkit is installed on an AMD Opteron 6128 server.

Since memory accesses continuously occur in the sys-
tem, randomly changing the mapping table in any order
can result in a memory request that is not able to match
an entry in the mapping table and result in a system crash.

4.4 Example
A complete example of PIkit is shown in Figure 8 for
a 4-node system with only 2 nodes shown in the figure
for simplicity. The same DRAM address mapping tables
shown earlier in Figure 4 and Figure 7 are used in the ex-
ample.6 Assume a read access to address 0x07C0000000
is made by a core in node 1. With an unmodified DRAM
address mapping table, the address 0x07C0000000 finds
a match in entry 1 and determines that the destination
should be node 1. Based on this information, a routing
table look-up is done for the node 1 to determine the out-
put port. Since the current node is the local node, the
output port determined by the routing table is the “Lo-
cal” port and the memory request is routed appropriately
to the local node’s memory.

However, with the modified DRAM address map-
ping table (Figure 8(b)), the same request to address
0x07C0000000 finds a match to entry 5 where the desti-
nation is now node 2. Based on this new destination node
ID information, the routing table look-up is done within
the router and the output port returned is the “East” port
– thus, the packet is routed to node 2. Within the node
2, the packet is simply treated as a packet that was des-
tined for node 2 (or the “Local” output port) and will be
routed to the memory controller. Since the processor-
interconnect only looks at the destination node informa-
tion to determine where to send the packet, the PIkit
shown in Figure 8(b) results in packets accessing a mem-
ory region where it does not have proper permission. If
this packet was a read request, the packet would read data
from the corresponding victim memory address while if
this packet was a write request, the packet would modify
or overwrite existing data in the victim memory address.

6For simplicity, the lower 3 bytes of the address are not shown in
Figure 8.

Figure 9: Example of how the Source Address Decoder (SAD)
can be modified on the attack node to implement PIkit on an
Intel Sandybridge architecture.

4.5 Extending PIkit to Intel Architecture
In the previous sections, we described how PIkit is im-
plemented on an AMD multi-socket server and in this
section, we discuss how PIkit can be extended to an Intel-
based server. A structure similar to the memory mapping
table exists within Intel x86 server architecture and is re-
ferred to as the Source Address Decoder (SAD) [5]. A
key difference with the AMD architecture in the mem-
ory mapping table is that instead of specifying both the
base and the limit memory address for each entry, only
the limit address is specified. In addition, a valid bit per
entry exists in the SAD which specifies if the entry is en-
abled or not. As a result, the “base” address is implied
from the previous entry limit address and PIkit design
needs to properly add/modify entries of SAD to ensure
proper behavior for memory accesses. An example of
how the SAD table can be modified is shown in Figure 9.
The initial entries are first duplicated in the table (step
(2)) and then, the initial entries are invalidated (step (3))
before the addresses are modified (step (4)) and then, the
modified addresses are made valid (step (5)) to create an
attack address region with entry 1 of the SAD table.

Another key difference in the Intel architecture com-
pared with the AMD system is the Target Address De-
coder (TAD) which is accessed before the address is sent
to the memory controller at the destination node. 7 TAD
is an additional table that is responsible for mapping dis-
continuous address regions [5] and includes both a limit
address and an offset. While the purpose of the “off-
set” within the TAD is to relocate the memory location as
necessary, it enables PIkit to be implemented by defining

7While a similar structure existed in the AMD system that we eval-
uated, it only had a single entry and could not be exploited for PIkit.

7

44 25th USENIX Security Symposium USENIX Association

… … … … …

(a)

… … … … …

(b)

Figure 10: PIkit example on an Intel Sandybridge-based server (a) before and (b) after PIkit is implemented. For simplicity, the
TAD on Node 0 and SAD 0 on Node 1 are not shown.

Figure 11: Impact of the Target Address Decoder (TAD) on the
mapping of the attack memory region to the victim memory
region.

the victim memory address region based on the attack
address region. The impact of TAD offset is shown in
Figure 11. Since the offset is subtracted from the ad-
dress, by varying offset entry, the attack memory address
region can be mapped to different victim memory region
based on the offset value and enables a more “controlled”
attack by providing control over the memory mapping
(i.e., victim’s address range). One constraint is that since
the offset is being subtracted, the victim memory address
region can only be equal or smaller than the attack mem-
ory address region.

A PIkit example for an Intel-based architecture is
shown in Figure 10 based on the SAD modification
shown in Figure 9. The PIkit consists of both the SAD
modification in the attack node and the TAD modifica-
tion in the victim node. Thus, the same vulnerability
that was exploited for PIkit on the AMD-based system
is available in the Intel-based servers – the table struc-
tures are memory-mapped registers that are configurable
and extra number of entries are available. Based on doc-
umentations [5], the number of entries for SAD is 20 and
thus, it is more than sufficient for a 2-node multi-socket
system.

5 Malicious User-level Payloads
After PIkit is installed, PIkit enables access to the victim
address region regardless of the privilege level. In this
section, we describe different malicious activities with
user-level payloads that can exploit PIkit. While many
different attacks (and payloads) have been proposed as
part of rootkit attacks, previous attacks often require

Description Value
System AMD Opteron 6128
of Sockets (Nodes) 2 (2 per socket)
of Cores 4 per node
Interconnect 6.4 GT/s HT 3.0
of HT Links 4 per node
OS version Linux Kernel 3.6.0

Table 2: Dell PE R815 server used in our evaluation.

leveraging (or modifying) some OS capability or creat-
ing additional payload to mimic the OS. In comparison,
the malicious payload for PIkit is fundamentally differ-
ent as the payload is relatively simple with the source
code mostly consisting of memory read and write com-
mands. 8 The main challenge with PIkit payload is deter-
mining the attack (or the corresponding victim) address
region to carry out the malicious activity.

5.1 Bash Shell Credential Object Attack
In the operating system, a process is represented by a
process control block (PCB) data structure in the privi-
leged memory space. The process control block has crit-
ical information such as memory information, open-file
lists, process contexts and priorities, etc. In particular,
we exploit the credential kernel data structure which is
contained within the PCB and is responsible for access
controls of a process in the Linux kernel. If the attacker
locates the credential data structure in the victim address
region, the attacker can modify any value within the cre-
dential data structure with PIkit. In this work, we modify
the UID or the EUID of a bash shell process to achieve
root privilege escalation. An overview of the malicious
activity is shown in Figure 12. We demonstrate this at-
tack on a 4-node AMD server described in Table 2.

5.1.1 Scanning the Fingerprint

In this attack, we assume the attacker uses a common
user-level application, Bash Shell, to obtain root privi-
lege. After the PIkit is installed on the attack node, the
attacker starts the bash shell on the victim node and at-
tempt to modify the credential data structure for privi-

8Pseudo-code for the malicious payload is shown in Appendix for
the three different malicious activities described in this section.

8

USENIX Association 25th USENIX Security Symposium 45

VA

PAPAPA

VA PA
pagemap

VVAVAVV
malloc e

Bash $h $

PPP

Figure 12: High-level overview of the attack with PIkit for priv-
ilege escalation.

lege escalation. One challenge before obtaining privi-
lege escalation is determining the actual address of the
PCB (or in particular, the credential data structure) of the
bash shell on the victim node. In order to determine the
memory location, we use the fingerprint of the credential
data structure to identify the proper starting address. As
shown in Figure 13, the credential data structure consists
of multiple integer variables and pointers which contain
64 bits addresses. Since the bash shell user-level process
is owned by the attacker, the attacker knows the user/-
group ID of the process and can use the consecutive user
and group IDs (e.g., UID, GUID, ..., FSGID), as shown
in Figure 13 1© as these variables often have the same
values.

To increase the accuracy of the fingerprint, additional
pointer information within the credential data structures
can also be used. Since most of the x86-64 Linux sys-
tems use the specific virtual address ranges for the ker-
nel objects based on the kernel virtual address map [29]
(e.g., 0xffff880000000000 – 0xffffc7ffffffffff for the di-
rect mapping), the pointers shown in Figure 13 2© should
have virtual addresses that are within this range. This
approach is similar to what was used in prior work [46]
that used virtual address characteristic to find the pro-
cess control block used by Window operating system in
dumped memory. In addition, some addresses of dif-
ferent variables used in kernel space are publicly avail-
able even in the user-level space, including the Symbol
Lookup Table (’/boot/System.map’) [32]. In particular,
the virtual address of ’user ns’, shown in Figure 13 3©,
can be found in the Symbol Lookup Table which is deter-
mined at kernel compile time and can be used as part of
the fingerprint.

Based on the three types of information described
above, a fingerprint for the credential kernel data struc-

Figure 13: The credential kernel data structure in the Linux
kernel 3.6.0 and the fingerprint that we exploit in this work,
with the fingerprint highlighted with a rectangle.

ture can be used to determine the location of the creden-
tial data structure. The attacker from the attack node can
issue read operations for the attack address region – de-
termined by the allocated memory region and the modi-
fied DRAM address mapping table on the attack node as
described in Section 4 – and begin the fingerprint scan-
ning. The read requests will be routed to the victim node
and the data in memory will be returned to the attack
node where it will be compared against the fingerprint.
If there is a match, the starting address of the credential
data structure is found and the attacker can modify the
data. If no match is found, the credential data structure of
the bash shell is not found on the victim address region
– thus, the attacker needs to stop the current bash shell
process and restart the bash shell on the victim node, and
repeat the fingerprint scanning.

Note that the attacker does not need to know the start-
ing virtual address of the kernel data structure on the vic-
tim node. In fact, the appropriate physical address within
the victim address region does not need to be known as
well. Only the corresponding address on the attack node
needs to be determined from the fingerprint scanning and
the attack (or the modification of the data) is done based
on the physical address of the attack node and the corre-
sponding virtual address within the attack node is used
in the actual data modification.

5.1.2 Modifying the Data

Once the corresponding address of the credential data
structure is determined from the scanning, the offset
within the data structure can be easily determined based
on the credential data structure definition (e.g., Fig-
ure 13) and the different variables within the data struc-
tures can be easily modified with PIkit. Thus, the root
privilege can be obtained by modifying either the euid
(Effective User ID) or the uid (User ID) field within the
credential data structure to a value of 0 (instead of the
original value) as the uid of 0 specifies the root user. In
order to overwrite this variable, a memory write instruc-
tion in assembly language can be used by the attacker to
obtain the root privilege – e.g.,
movnti $0, (Virtual Address)

where the virtual address is the address determined from

9

46 25th USENIX Security Symposium USENIX Association

Figure 14: Screen capture from id command of privilege esca-
lation, before the attack and after the attack.

Mhead (8 Bytes) Keyboard Input Buffer (256 Bytes)

Figure 15: Keyboard buffer data structure in the bash 4.3 and
the fingerprint that we exploit in this work, with the fingerprint
highlighted with a rectangle.

scanning and PIkit routes this write instruction to the vic-
tim node. However, we used a non-temporal SSE instruc-
tion in our evaluation in order to bypass the cache within
the processor. If the write occurs to the cache within the
attack node, the effect of the root privilege escalation can
be delayed until write-back to the memory occurs.

The result from the attack is shown in Figure 14, con-
sisting of the ID information before and after that attack
using the id command from of the bash shell on the vic-
tim node. The EUID of Bash Shell in the victim node is
modified to root user and thus, root privilege escalation
is achieved.

5.1.3 Spraying the Process Control Block

As described earlier, the attack address region is mapped
to some victim address region on the victim node through
PIkit. As a result, all memory accesses to the attack ad-
dress region on the attack node are constrained to some
victim address region based on the DRAM physical map-
ping which is not known. As a result, if a user-level ap-
plication (i.e., bash shell) executing on the victim node is
not placed in the victim address region, an attacker can
not access the kernel objects of the process. To increase
the probability that the credential data structure can be
found, the PCB can be sprayed across the victim node by
executing multiple bash shells on the victim node. This
increases the probability that one of the processes (and
the corresponding PCB) is placed within the victim ad-
dress region and reduces the amount of time it takes to
achieve privilege escalation.

5.2 Bash Keyboard Buffer Attack
In this section, we describe how PIkit can be exploited to
carry out an information leakage attack on another user’s
bash shell and perform a bash keyboard buffer monitor-
ing attack. Since no data modification is required, this
attack can be classified as a read-only attack. When a

Figure 16: Snapshot of bash keyboard buffer monitoring.

Description Value
System Intel Xeon E5-2650
of Sockets (Nodes) 2 (1 per socket)
of Cores 8 per node
Memory Capacity 8 GB per node
Interconnect 6.4 GT/s QPI
OS version Linux Kernel 3.6.0

Table 3: Dell PE R620 server using in our evaluation.

user types any word on their own shell prompt, all char-
acters are stored in a bash keyboard buffer in the memory
unencrypted.

In the Bash shell (v4.3), the bash keyboard buffer is
represented by a data structure referred to as mhead, as
shown in Figure 15. Similar to the bash shell credential
object attack described earlier, a fingerprint is necessary
to detect this data structure in memory. For the finger-
print of the bash keyboard buffer, we use three unique
values as the fingerprint based on the mhead data struc-
ture. The character variable (Figure 15 1©) has a unique 8
bits value (e.g., either 0x7F when allocated or 0x54 when
freed). In addition, the 16-bit variable (Figure 15 2©) is
always a predefined magic number (0x5555) and the 32-
bit variable (Figure 15 3©) is always 0x100 that refers to
the size of the buffer.

Based on the fingerprint, after PIkit is installed, an at-
tacker can search for the fingerprint to gather information
from victim users’ shell prompt, including potentially
password information since data in the keyboard buffer
is unencrypted. To evaluate this attack, we use the sys-
tem described in Table 3 and assume a SSH server where
multiple users use bash shell prompts from remote con-
nections. Multiple remote SSH connections are made on
the victim node and for each shell, different prompt in-
puts are used to evaluate the bash keyboard buffer attack.

By scanning for the fingerprint on the victim address
region, we were able to monitor the bash keyboard buffer
of other users. Different examples are shown in Fig-
ure 16 – Figure 16 1© shows a user typing in their pass-
word while Figure 16 3© show other commands being
typed by another user. In comparison, Figure 16 2© shows
a keyboard buffer for another user that does not contain
any content. Thus, with the buffer monitoring with PIkit
installed, the dynamic information from other users’ key-
board input can be leaked.

5.3 Shared Library Attack
The attack described earlier in this section required both
heap spraying and fingerprint scanning to obtain privi-

10

USENIX Association 25th USENIX Security Symposium 47

Determine VA
for a libc function

: Attack Node : Victim Node : Any Node : Pikit Attack Node Victim Node

Translation of VA to PA
(pagemap interface)

PIkit installation
(TAD & SAD

modification)

Re-write
malicious binary code
for the libc function

Restore
original binary code
for the libc function

SUID program execution
linked with

the libc function

// dummy.c
void main(void) {

struct passwd *ret;
int pid = getpid();
int uid = getuid();
ret = getpwuid(uid);
printf("pid : %d\n", pid);
sleep(600);

}

$./dummy &
pid : 7145

$gdb dummy 7145
(gdb) p getpwuid
$1 = {<text variable>}
0x3ade699570

0xc03100000001be55
0x8318ec8348fb8953
0x107400002bd9aa3d
0x002bb36835b10ff0
0x0deb00000103850f
0x0f002bb35935b10f

getpwuid()
{

size_t buffersize;
malloc(buffersize);
……

}
Original Binaries Modified

getpwuid()
{

setuid(0);
system("/bin/sh");
……

}

0x48050f69b0ff3148
0x69622fffbb48d231
0x08ebc14868732f6e
0x50c03148e7894853
0x050f3bb0e6894857
0x050f583c6a5f016a

Malicious Binaries

Privilege
Escalation

VA

PA

Figure 17: Shared library (libc) Attack with PIkit.

lege escalation. While this approach was successful, the
attack can be time consuming because of the amount of
time to scan the memory and attack reliability can be-
come an issue since if the heap spraying does not fall
within the victim memory region as the attack process
needs to be repeated. To increase the attack reliability
with PIkit, we take advantage of the target address de-
coder (TAD) structure available in the Intel Sandybridge
architecture that provides the ability to “fix” the victim
memory address region based on the attack memory ad-
dress region. This approach is useful if the victim ad-
dress region contains information that can be maliciously
modified at a fixed physical memory location and does
not change over time.

In this section, we take advantage of shared libraries
that are often loaded into user memory space at single
physical location and shared by different users. Once
the shared library is initially loaded, the physical address
of the library will likely not change. A commonly used
shared library is libc and in this section, we exploit PIkit
to overwrite existing functions in the libc with a mali-
cious code to obtain privilege escalation. No fingerprint
scanning or heap spraying is required and results in a
highly reliable attack.

An overview of the libc attack is shown in Figure 17.
To first obtain the virtual address of the libc shared li-
brary, an attacker can write a simple attack program (Fig-
ure 17 1�) which links libc dynamically. By executing a
function within libc (e.g., getpwuid()) in the attack
program, the libc library is dynamically linked. Af-
ter obtaining the process ID for the attack program that
loaded the shared library (Figure 17 2�), we use a de-
bugger (e.g., gdb) on the running process to determine
the virtual address of the getpwuid()) function in the
shared library (Figure 17 3�). The physical address corre-
sponding to the virtual address of the libc library can be
determined through the /proc/pid/pagemap interface and
PIkit can be installed as described earlier in Section 4.5.
Since the target victim address (i.e., libc function code
location) is known, we modify the TAD structure offset
accordingly, based on the attack address region obtained
with PIkit.

After PIkit is installed, the attacker can re-write the
runtime code loaded in the memory with user-level mem-
ory operation (Figure 17 4�). In our example attack,
the first 48 bytes of getpwuid() function is re-written
with malicious binary code that executes shell with root
privilege. Even if the shared library is located in non-
writable memory regions, PIkit bypasses any OS permis-
sion check (W⊕X9 based implementations [3, 52, 34])
and write the malicious code to the physical DRAM di-
rectly. The modified code executes setuid(0) to ob-
tain root access but this does not work with user-level
privilege and requires root access. However, the passwd
Linux program has SUID (Set owner User ID) permis-
sion and is linked with getpwuid() function at runtime,
the execution enables the malicious binary code to esca-
late the user privilege to the root (Figure 17 5�). Once
privilege escalation is obtained, the attacker can restore
the original binary of getpwuid() function to prevent the
execution of the malicious code for other users that exe-
cutes getpwuid(). While getpwuid() function for the
libc was used to demonstrate this attack, other seldomly
used library functions can be used or the malicious code
can be modified to enable root shell only for specific user
ID.

6 Discussion
In this section, we provide discussion on how PIkit can
be potentially exploited for other types of attack, possible
solutions both in software and hardware, as well as some
limitations of PIkit.

6.1 VM Escape Attack
VM (virtual machine) escape is defined as enabling a
VM to interact with the hypervisor directly and/or ac-
cess other VMs running on the same host [30, 55]. If
PIkit is installed on a multi-socket server that supports
VMs, we expect that VM escape attack can be carried
out. However, there are two challenges to implement VM
escape with PIkit – huge pages and virtual address trans-
lation. PIkit exploited the availability of huge pages in
modern OS to define the attack address region. Modern
virtualization hardware technologies such as Intel VT-d
support 1 GB huge pages [43] and hypervisors such as
KVM, Xen and VMware also support 1GB huge page
for guest VMs. We evaluated the VM escape attack pos-
sibility with Xen 4.4 but the hypervisor underneath the
guest OS implemented the huge pages as a collection of
smaller pages (e.g., 2 MB pages), likely because of im-
plementation complexity. However, there is no funda-
mental reason why the hypervisor cannot support 1 GB

9A memory page must never be writable and executable at the same
time.

11

48 25th USENIX Security Symposium USENIX Association

Algorithm 1: PIkit monitor to detect modification to the
DRAM address mapping table.

Input : monitoring
begin

while monitoring do
– Get DRAM in f ormation from SPD
– Calculate Valid address ranges of installed

DRAM from in f ormation
A ← Valid address ranges
– Get Current address ranges from DRAM

address mapping table
B ← Current address ranges
if A != B then

PIkit detected
return

huge pages. 10 Another challenge is that address trans-
lation needs to be done twice to properly install PIkit –
from the guest virtual address (gVA) to the guest physical
address (gPA) within the VM and then, another transla-
tion to the machine physical address. While /proc/pid/-
pagemap interface can be used for the translation from a
gVA to a gPA for the VM local OS system, similar to the
PIkit implementation described earlier, the hypervisor is
responsible for another translation from gPA to machine
PA. The hypervisor likely maintains a separate table/data
structure for this translation and this needs to be reverse
engineered to implement VM escape.

6.2 Possible Solutions
Possible solutions to PIkit can be classified as either a
software-based or a hardware-based solution. The actual
solution to PIkit is highly dependent upon the manufac-
turer of the hardware (e.g., Intel, AMD) as well as the
system software used.

6.2.1 Exploit Existing Features
While evaluating PIkit on different systems, some of the
recent AMD systems were not vulnerable to PIkit. To
the best of our knowledge, the vulnerability was not re-
moved for security reasons but removed for power sav-
ing implementation. C6 state is an ACPI defined CPU
power saving state where the CPU is put in sleep mode
and all CPU contexts are saved. In some AMD imple-
mentations, when the CPU enters the C6 state, the pro-
cessor context is saved into a pre-defined region of the
main memory. To avoid any possible corruption of the
processor contexts that are saved, the AMD systems im-
plement LockDramCfg option where some memory sys-
tem related configurations cannot be modified, includ-
ing the DRAM address mapping table [7]. However, the

10A very recent version of Xen (v 4.6) actually has support for 1 GB
huge pages.

Description Ratio (%)
SPD access period (I/O bound) 99.975 %
DRAM size calc period (CPU bound) 0.003 %
DRAM table access period (I/O bound) 0.019 %
Table Comparison period (CPU bound) 0.003 %

Table 4: Breakdown of CPU cycles ratio for the PIkit monitor.
BIOS can disable the C6 state for some of these systems
– which would enable PIkit to be installed. A simple
solution for PIkit on such AMD systems is to always en-
able LockDramCfg to prevent PIkit from being installed.
For the Intel systems, C6 power state is supported but
the processor contexts are saved to the last level cache
(and not the memory) to provide faster context switch –
thus, to the best of our knowledge, similar LockDramCfg
feature is not readily available in Intel x86 CPUs.

6.2.2 Software-based Solutions

Prior rootkit monitors can be extended to detect the pres-
ence of PIkit. The monitor continuously compares the
value of the current DRAM address mapping table with
the “correct” DRAM mapping table value – where the
correct value is determined similar to how the DRAM
mapping table is initialized by the firmware at boot time.
Thus, if we assume the software monitor is protected
with a secure platform [8, 9], the solution to detect PIkit
can also be protected.

We implemented the PIkit monitor as a Linux ker-
nel thread and we evaluate its performance overhead.
High-level description of PIkit monitor is shown in Al-
gorithm 1. We used the PARSEC 3.0 [12] and eval-
uated workloads with varying MPKI (misses per kilo-
instructions), using the system described earlier in Ta-
ble 2. To measure overall system performance, we run
each workload with the number of threads equal to the
number of physical cores in the system. Based on Linux
kernel 3.6.0, we implemented the rootkit monitor as a
loadable kernel module to avoid kernel code modifica-
tion and re-compilation. The execution time with PIkit
monitor is normalized to the baseline without the mon-
itor and the performance overhead from the software is
negligible as there is less than 2% impact on overall per-
formance (Figure 18).

The analysis of the PIkit monitor overhead is shown in
Table 4. The two CPU computation periods (e.g., DRAM
size calculation and comparison) take only 0.006% of the
total PIkit monitor execution time. In comparison, the
other two I/O bound periods (e.g., SPD and PCI address
access) occupy 99% of the monitor execution time since
these accesses have long latency – resulting in the kernel
thread waiting on the I/O and mostly experience uninter-
ruptible Sleep state. Thus, the PIkit monitor and software
solution has minimal impact on performance.

12

USENIX Association 25th USENIX Security Symposium 49

Figure 18: Performance overhead for PIkit monitor

6.2.3 Hardware-based Solutions

PIkit can be prevented with minimal hardware modifica-
tions. One hardware solution is to restrict the usage of
the DRAM address mapping table entries used in multi-
socket servers, based on the number of nodes in the sys-
tem. If the hardware restricts the number of entries used
to equal the number of nodes in the system, PIkit can be
minimized. This approach does not completely remove
the possibility of the PIkit since the attacker could use
the entire local node’s memory as attack address region.
However, unless the attacker is the only user on the lo-
cal node, this can cause non-deterministic behavior. If
the number of entries is restricted, the attacker can also
modify the DRAM address mapping where only small
region is specified as the attack address region but the
remaining address range of the local node would not be
mapped in the table. As a result, if any memory access
occurs to an unmapped address region, the system will
likely crash.

Another possible hardware solution is to design the
DRAM address mapping table entries as write-once
memory-mapped registers such that the DRAM mapping
table can not be modified after it is initially written. A
block diagram of such write-once register is shown in
Figure 19 – after a write is done, the write enable (WE)
to the register will be disabled and no further writes can
be done to the registers unless system reset is asserted.
This approach avoids any possibility of the PIkit attack
since the DRAM address mapping table cannot be modi-
fied after it is initialized; however, this removes any flex-
ibility in the system if CPU hotplug [38] or memory hot-
plug [27] is supported. If the system supports hotplug
where the DRAM (or CPU) can be added or removed
while the system is running, the DRAM address mapping
table needs to be modified after it is initialized to reflect
the change in the memory capacity. This would require
a minor change to the hardware (i.e., OR’ing the RESET
signal with another signal that detects a hotplug event).
However, this can also open up other attack opportuni-
ties if the attacker has physical access to the memory
modules – for example, doing a hotplug creates an op-
portunity to modify the DRAM address mapping table
and install the PIkit.

Figure 19: A PIkit hardware solution by creating a write-once
register for the DRAM address mapping table.

6.3 Limitations
Memory mapping granularity: As described earlier
in Section 4.2, there is a granularity (or the resolution)
of the attack memory address region that can be speci-
fied with the DRAM address mapping table entries. In
the AMD Opteron 6128 system, the smallest amount of
memory address range that can be used as the attack
address region is 16 MB. For the Intel Xeon E5-2650
(Sandybridge), the lower 26 bits are not specified and
the granularity is 64 MBs. Thus, the granularity specifies
the lower limit on the smallest attack address region that
can be specified. This can be problematic if only normal
page size is supported – i.e., with memory page size of
2 MBs, the attacker would require obtaining 8 physical
pages to cover the 16 MBs attack region. If the entire
attack region is not obtained by the attacker, other users
(and programs) will access the victim address region and
can cause unknown behaviors. However, huge pages that
are available in modern OS can overcome this limitation.

DRAM coverage: One challenge of PIkit is the un-
known DRAM physical mapping when an attack address
is sent to the victim node. The details of how the DRAM
physical address is mapped to the DRAM (i.e., row, col-
umn, channel, etc.) is vendor-specific. Although these
details are often described in the specifications, the PIkit
results in an unintended address arriving at the victim
node memory system and it is not clear how the phys-
ical address bits are interpreted by the DRAM. For ex-
ample, in the AMD Opteron 6128 system, the memory
controller (or MCT) consists of two DRAM controllers
(DCT0 and DCT1) where each DCT is responsible for
half of the DRAM main memory connected to that par-
ticular node. When the attack node ID was smaller than
the ID of the victim node (i.e., node 1 attacking node
2), only DCT0 address range could be accessed. How-
ever, by attacking node 2 from node 3, we discovered
that DCT1 range can be accessed. Another limitation
was that for some memory accesses, multiple attack ad-
dresses can map to the same victim address but this is
a fundamental limitation of our proposed PIkit on the
AMD system. In comparison, for the Intel Xeon E5-
2650 (Sandybridge) server, the DRAM coverage issue
was significantly minimized as there was an 1:1 memory
mapping between the attack and the victim memory ad-
dress region through the TAD structure. However, it is

13

50 25th USENIX Security Symposium USENIX Association

not clear if this can be generalized to other Intel-based
servers.

7 Conclusion
In this work, we described a new type of rootkit where
the vulnerable hardware feature enables malicious activ-
ities to be carried out with only user-level code or pay-
load. In particular, we presented PIkit – a processor-
interconnect rootkit that enables an attacker to modify
a packet’s destination and access victim’s memory re-
gion without proper permission. We described the de-
sign and challenges in implementing PIkit across both
AMD and Intel x86 multi-socket servers. Once PIkit
is installed, user-level codes used for malicious activ-
ities become very difficult to detect since memory ac-
cesses within the attack code appears as “normal” mem-
ory accesses to user-allocated memory. We demonstrated
different malicious activities with PIkit, including bash
shell credential object attack, keyboard buffer attack, and
shared library attack.

Acknowledgements
We would like to thank the anonymous reviewers for
their insightful comments. This research was supported
in part by the Mid-career Researcher Program (NRF-
2013R1A2A2A01069132), in part by IITP grant funded
by MSIP (No.10041313, UX-oriented Mobile SW Plat-
form), in part by the MSIP under the ITRC support pro-
gram (IITP-2015-H8501-15-1005), and in part by Next-
Generation Information Computing Development Pro-
gram through NRF funded by the Ministry of Science,
ICT & Future Planning (2015M3C4A7065647) and (No.
NRF-2014M3C4A7030648).

References
[1] chkrootkit. http://www.chkrootkit.org/.

[2] Rootkit Hunter. https://rootkit.nl/projects/rootkit_

hunter.html.

[3] OpenBSD 3.3 release notes. http://www.openbsd.org/33.

html, May 2003.

[4] JEDEC Standard, SPD General Standard, 2008.

[5] Intel R© Xeon R© Processor 7500 Series.

[6] Linux Kernel Vulnerabilities Over Time. http://www.

cvedetails.com/product/47/Linux-Linux-Kernel.

html?vendor_id=33, 2015. [Online; accessed 19-Aug-2015].

[7] ADVANCED MICRO DEVICES. BIOS and Kernel Developer
Guide (BKDG) for AMD Family 15h Models 00h-0Fh Proces-
sors, 2012.

[8] ALVES, T., AND FELTON, D. TrustZone: Integrated Hardware
and Software Security. ARM white paper 3, 4 (2004), 18–24.

[9] ANATI, I., GUERON, S., JOHNSON, S., AND SCARLATA, V.
Innovative Technology for CPU Based Attestation and Sealing. In
Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy (2013), vol. 13.

[10] ANDERSON, D., AND TRODDEN, J. Hypertransport System Ar-
chitecture. Addison-Wesley Professional, 2003.

[11] AZAB, A. M., NING, P., AND ZHANG, X. SICE: A Hardware-
Level Strongly Isolated Computing Environment for x86 Multi-
core Platforms. In Proceedings of the 18th ACM conference on
Computer and communications security (2011), ACM, pp. 375–
388.

[12] BIENIA, C. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[13] BIOS, A. kernel developers guide for amd family 10h proces-
sors, 2008.

[14] BUCHANAN, E., ROEMER, R., SHACHAM, H., AND SAVAGE,
S. When Good Instructions Go Bad: Generalizing Return-
Oriented Programming to RISC. In Proceedings of the 15th ACM
conference on Computer and communications security (2008),
ACM, pp. 27–38.

[15] BUTLER, J. Direct Kernel Object Manipulation (DKOM). Black
Hat USA (2004).

[16] CHEN, H., MAO, Y., WANG, X., ZHOU, D., ZELDOVICH, N.,
AND KAASHOEK, M. F. Linux kernel vulnerabilities: State-of-
the-art defenses and open problems. In Proceedings of the Second
Asia-Pacific Workshop on Systems (2011), ACM, p. 5.

[17] CREED. Information about the Knark Rootkit.
http://ossec-docs.readthedocs.org/en/latest/

rootcheck/rootcheck-knark.html, 1999.

[18] CUI, A., COSTELLO, M., AND STOLFO, S. J. When Firmware
Modifications Attack: A Case Study of Embedded Exploitation.
In NDSS (2013).

[19] DALLY, W. J., AND TOWLES, B. P. Principles and Practices of
Interconnection Networks. Elsevier, 2004.

[20] DAVID, F. M., CHAN, E. M., CARLYLE, J. C., AND CAMP-
BELL, R. H. Cloaker: Hardware Supported Rootkit Con-
cealment. In 2008 IEEE Symposium on Security and Privacy
(S&P’08) (2008), IEEE, pp. 296–310.

[21] HEASMAN, J. Implementing and Detecting an ACPI BIOS
Rootkit. Black Hat Federal 368 (2006).

[22] HEATH, T., MARTIN, R. P., AND NGUYEN, T. D. Improv-
ing Cluster Availability Using Workstation Validation. In ACM
SIGMETRICS Performance Evaluation Review (2002), vol. 30,
ACM, pp. 217–227.

[23] HOCK, R. Dica rootkit. https://packetstormsecurity.

com/files/26243/dica.tgz.html, 2002.

[24] HOFMANN, O. S., DUNN, A. M., KIM, S., ROY, I., AND
WITCHEL, E. Ensuring Operating System Kernel Integrity with
OSck. In ACM SIGARCH Computer Architecture News (2011),
vol. 39, ACM, pp. 279–290.

[25] HUND, R., HOLZ, T., AND FREILING, F. C. Return-Oriented
Rootkits: Bypassing Kernel Code Integrity Protection Mecha-
nisms. In USENIX Security Symposium (2009), pp. 383–398.

[26] INTEL. Intel R© Xeon R© Processor E7-8800/4800/2800 v2 Prod-
uct Family.

[27] ISHIMATSU, Y. Memory Hotplug. LinuxCon Japan (2013).

[28] KING, S. T., AND CHEN, P. M. SubVirt: Implementing malware
with virtual machines. In 2006 IEEE Symposium on Security and
Privacy (S&P’06) (2006), IEEE, pp. 14–pp.

[29] KLEEN, A. Virtual Memory Map with 4 level page
tables. https://www.kernel.org/doc/Documentation/

x86/x86_64/mm.txt, 2004.

[30] KORTCHINSKY, K. CLOUDBURST: A VMware Guest to Host
Escape Story. Black Hat USA (2009).

14

USENIX Association 25th USENIX Security Symposium 51

[31] LEE, H., MOON, H., JANG, D., KIM, K., LEE, J., PAEK,
Y., AND KANG, B. B. KI-Mon: A Hardware-assisted Event-
triggered Monitoring Platform for Mutable Kernel Object. In
USENIX Security (2013), pp. 511–526.

[32] LOVE, R. Linux Kernel Development. Pearson Education, 2010.

[33] MASKIEWICZ, J., ELLIS, B., MOURADIAN, J., AND
SHACHAM, H. Mouse Trap: Exploiting Firmware Updates in
USB Peripherals. In 8th USENIX Workshop on Offensive Tech-
nologies (WOOT 14) (2014).

[34] MICROSOFT. A detailed description of the Data Execution Pre-
vention (DEP) feature in Windows XP Service Pack 2. http:

//support.microsoft.com/kb/875352, 2008.

[35] MILLER, T. Analysis of the T0rn rootkit. SANS Institute (2000).

[36] MORGAN, T. P. X86 Servers Dominate The Datacenter-For
Now. http://www.nextplatform.com/2015/06/04/

x86-servers-dominate-the-datacenter-for-now/,
2015.

[37] MUTNURY, B., PAGLIA, F., MOBLEY, J., SINGH, G. K., AND
BELLOMIO, R. QuickPath Interconnect (QPI) Design and Anal-
ysis in High Speed Servers. In 19th Topical Meeting on Electrical
Performance of Electronic Packaging and Systems (2010), IEEE,
pp. 265–268.

[38] MWAIKAMBO, Z., RAJ, A., RUSSELL, R., SCHOPP, J., AND
VADDAGIRI, S. Linux Kernel Hotplug CPU Support. In Linux
Symposium (2004), vol. 2.

[39] NIU, S., MO, J., ZHANG, Z., AND LV, Z. Overview of Linux
Vulnerabilities. In 2nd International Conference on Soft Comput-
ing in Information Communication Technology (2014), Atlantis
Press.

[40] NYBERG, C. M. SAdoor - A non listening remote shell and exe-
cution server. http://krutibrko.sk/school/dp/samples/
SAdoor/sadoor.pdf, 2002.

[41] OP, F. The FU rootkit. https://www.soldierx.com/tools/
FU-Rootkit, 2008.

[42] PETRONI JR, N. L., FRASER, T., MOLINA, J., AND ARBAUGH,
W. A. Copilot - a Coprocessor-based Kernel Runtime Integrity
Monitor. In USENIX Security Symposium (2004), San Diego,
USA, pp. 179–194.

[43] RIGHINI, M. Enabling Intel R© Virtualization Technology Fea-
tures and Benefits. Intel White Paper. Retrieved January 15
(2010), 2012.

[44] RUSHANAN, M., AND CHECKOWAY, S. Run-DMA. In
9th USENIX Workshop on Offensive Technologies (WOOT 15)
(2015).

[45] RUTKOWSKA, J. Subverting the Vista Kernel For Fun And Profit.
SyScan (2006).

[46] SCHUSTER, A. Searching for Processes and Threads in Mi-
crosoft Windows Memory Dumps. digital investigation 3 (2006),
10–16.

[47] SHIELDS, T. Survey of Rootkit Technologies and Their Impact
on Digital Forensics. http://www.donkeyonawaffle.org/

misc/txs-rootkits_and_digital_forensics.pdf, 2008.

[48] SOMER, L. Linux Roootkit 5. https://

packetstormsecurity.com/files/10533/lrk5.src.

tar.gz.html, 2000.

[49] SONG, W., KIM, J., LEE, J.-W., AND ABTS, D. Security
Vulnerability in Processor-Interconnect Router Design. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (2014), ACM, pp. 358–368.

[50] SPARKS, S., AND BUTLER, J. Shadow Walker: Raising The Bar
For Windows Rootkit Detection. Black Hat Japan 11, 63 (2005),
504–533.

[51] SPARKS, S., EMBLETON, S., AND ZOU, C. C. A Chipset Level
Network Backdoor: Bypassing Host-Based Firewall & IDS. In
Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security (2009), ACM, pp. 125–
134.

[52] TEAM, P. Documentation for the PaX project - overall descrip-
tion. http://pax.grsecurity.net/docs/pax.txt, 2008.

[53] VASISHT, V. R., AND LEE, H.-H. S. SHARK: Architectural
Support for Autonomic Protection Against Stealth by Rootkit Ex-
ploits. In 2008 41st IEEE/ACM International Symposium on Mi-
croarchitecture (2008), IEEE, pp. 106–116.

[54] WANG, G., ESTRADA, Z. J., PHAM, C., KALBARCZYK, Z.,
AND IYER, R. K. Hypervisor Introspection: A Technique for
Evading Passive Virtual Machine Monitoring. In 9th USENIX
workshop on offensive technologies (WOOT 15) (2015).

[55] WOJTCZUK, R., RUTKOWSKA, J., AND TERESHKIN, A. Xen
0wning Trilogy. Invisible Things Lab (2008).

[56] WOJTCZUK, R., AND TERESHKIN, A. Attacking Intel BIOS.
BlackHat, Las Vegas, USA (2009).

[57] ZADDACH, J., KURMUS, A., BALZAROTTI, D., BLASS, E.-O.,
FRANCILLON, A., GOODSPEED, T., GUPTA, M., AND KOLTSI-
DAS, I. Implementation and Implications of a Stealth Hard-Drive
Backdoor. In Proceedings of the 29th annual computer security
applications conference (2013), ACM, pp. 279–288.

15

USENIX Association 25th USENIX Security Symposium 53

Verifying Constant-Time Implementations

José Bacelar Almeida
HASLab - INESC TEC & Univ. Minho

Manuel Barbosa
HASLab - INESC TEC & DCC FCUP

Gilles Barthe
IMDEA Software Institute

François Dupressoir
IMDEA Software Institute

Michael Emmi
Bell Labs, Nokia

Abstract
The constant-time programming discipline is an effective
countermeasure against timing attacks, which can lead to
complete breaks of otherwise secure systems. However,
adhering to constant-time programming is hard on its
own, and extremely hard under additional efficiency and
legacy constraints. This makes automated verification of
constant-time code an essential component for building
secure software.

We propose a novel approach for verifying constant-
time security of real-world code. Our approach is able
to validate implementations that locally and intentionally
violate the constant-time policy, when such violations
are benign and leak no more information than the pub-
lic outputs of the computation. Such implementations,
which are used in cryptographic libraries to obtain impor-
tant speedups or to comply with legacy APIs, would be
declared insecure by all prior solutions.

We implement our approach in a publicly available,
cross-platform, and fully automated prototype, ct-verif,
that leverages the SMACK and Boogie tools and verifies
optimized LLVM implementations. We present verifica-
tion results obtained over a wide range of constant-time
components from the NaCl, OpenSSL, FourQ and other
off-the-shelf libraries. The diversity and scale of our ex-
amples, as well as the fact that we deal with top-level
APIs rather than being limited to low-level leaf functions,
distinguishes ct-verif from prior tools.

Our approach is based on a simple reduction of
constant-time security of a program P to safety of a prod-
uct program Q that simulates two executions of P. We
formalize and verify the reduction for a core high-level
language using the Coq proof assistant.

1 Introduction

Timing attacks pose a serious threat to otherwise secure
software systems. Such attacks can be mounted by mea-
suring the execution time of an implementation directly

in the execution platform [23] or by interacting remotely
with the implementation through a network. Notable ex-
amples of the latter include Brumley and Boneh’s key
recovery attacks against OpenSSL’s implementation of
the RSA decryption operation [15]; and the Canvel et
al. [16] and Lucky 13 [4] timing-based padding-oracle
attacks, that recover application data from SSL/TLS con-
nections [38]. A different class of timing attacks exploit
side-effects of cache-collisions; here the attacker infers
memory-access patterns of the target program — which
may depend on secret data — from the memory latency
correlation created by cache sharing between processes
hosted on the same machine [11, 31]. It has been demon-
strated in practice that these attacks allow the recovery of
secret key material, such as complete AES keys [21].

As a countermeasure, many security practitioners mit-
igate vulnerability by adopting so-called constant-time
programming disciplines. A common principle of such
disciplines governs programs’ control-flow paths in order
to protect against attacks based on measuring execution
time and branch-prediction attacks, requiring that paths
do not depend on program secrets. On its own, this charac-
terization is roughly equivalent to security in the program
counter model [29] in which program counter values do
not depend on program secrets. Stronger constant-time
policies also govern programs’ memory-access patterns
in order to protect against cache-timing attacks, requiring
that accessed memory addresses do not depend on pro-
gram secrets. Further refinements govern the operands of
program operations, e.g., requiring that inputs to certain
operations do not depend on program secrets, as the exe-
cution time of some machine instructions, notably integer
division and floating point operations, may depend on the
values of their operands.

Although constant-time security policies are the most
effective and widely-used software-based countermea-
sures against timing attacks [11, 25, 20], writing constant-
time implementations can be difficult. Indeed, doing so
requires the use of low-level programming languages or

1

54 25th USENIX Security Symposium USENIX Association

compiler knowledge, and forces developers to deviate
from conventional programming practices. For instance,
the program if b then x := v1 else x := v2 may be re-
placed with the less conventional x := b∗v1+(1−b)∗v2.
Furthermore, the observable properties of a program ex-
ecution are generally not evident from its source code,
e.g., due to optimizations made by compilers or due to
platform-specific behaviours.

This raises the question of how to validate constant-
time implementations. A recently disclosed timing leak
in OpenSSL’s DSA signing [19] procedure demonstrates
that writing constant-time code is complex and requires
some form of validation. The recent case of Amazon’s
s2n library also demonstrates that the deployment of less
rigid timing countermeasures is extremely hard to val-
idate: soon after its release, two patches1 were issued
for protection against timing attacks [3, 5], the second of
which exploits a timing-related vulnerability introduced
when fixing the first. These vulnerabilities eluded both ex-
tensive code review and testing, suggesting that standard
software validation processes are an inadequate defense
against timing vulnerabilities, and that more rigorous anal-
ysis techniques are necessary.

In this work, we develop a unifying formal foundation
for constant-time programming policies, along with a for-
mal and fully automated verification technique. Our for-
malism is parameterized by a flexible leakage model that
captures the various constant-time policies used in prac-
tice, including path-based, address-based, and operand-
based characterizations, wherein program paths, accessed
memory addresses, and operand sizes, respectively, are
independent of program secrets. Importantly, our for-
malism is precise with respect to the characterization of
program secrets, distinguishing not only between public
and private input values, but also between private and
publicly observable output values. While this distinction
poses technical and theoretical challenges, constant-time
implementations in cryptographic libraries like OpenSSL
include optimizations for which paths, addresses, and
operands are contingent not only on public input values,
but also on publicly observable output values. Consid-
ering only input values as non-secret information would
thus incorrectly characterize those implementations as
non-constant-time.

We demonstrate the practicality of our verification tech-
nique by developing a prototype, ct-verif, and evaluat-
ing it on a comprehensive set of case studies collected
from various off-the-shelf libraries such as OpenSSL [25],
NaCl [13], FourQlib [17] and curve25519-donna.2 These
examples include a diverse set of constant-time algorithms
for fixed-point arithmetic, elliptic curve operations, and
symmetric and public-key cryptography. Apart from in-

1See pull requests #147 and #179 at github.com/awslabs/s2n.
2https://code.google.com/p/curve25519-donna/

dicating which inputs and outputs should be considered
public, the verification of our examples does not require
user intervention, can handle existing (complete and non-
modified) implementations, and is fully automated.

One strength of our verification technique is that it is
agnostic as to the representation of programs and could be
performed on source code, intermediate representations,
or machine code. From a theoretical point of view, our
approach to verifying constant-time policies is a sound
and complete reduction of the security of a program P
to the assertion-safety of a program Q, meaning that P
is constant-time (w.r.t. the chosen policy) if and only if
Q is assertion-safe. We formalize and verify the method
for a core high-level language using the Coq proof as-
sistant. Our reduction is inspired from prior work on
self-composition [10, 37] and product programs [40, 9],
and constructs Q as a product of P with itself—each exe-
cution of Q encodes two executions of P. However, our
approach is unique in that it exploits the key feature of
constant-time policies: program paths must be indepen-
dent of program secrets. This allows a succinct construc-
tion for Q since each path of Q need only correspond to
a single control path3 of P — path divergence of the two
executions of P would violate constant-time. Our method
is practical precisely because of this optimization: the
product program Q has only as many paths as P itself,
and its verification can be fully automated.

Making use of this reduction in practice raises the is-
sue of choosing the programming language over which
verification is carried out. On the one hand, to obtain
a faithful correspondence with the executable program
under attacker scrutiny, one wants to be as close as pos-
sible to the machine-executed assembly code. On the
other hand, building robust and sustainable tools is made
easier by existing robust and sustainable frameworks and
infrastructure. Our ct-verif prototype performs verifica-
tion of constant-time properties at the level of optimized
LLVM assembly code, which represents a sweet spot in
the design space outlined by the above requirements.

Indeed, performing verification after most optimization
passes ensures that the program, which may have been
written in a higher-level such as C, preserves the constant-
time policy even after compiler optimizations. Further,
stepping back from machine-specific assembly code to
LLVM assembly essentially supports generic reasoning
over all machine architectures—with the obvious caveat
that the leakage model adopted at the LLVM level captures
the leakage considered in all the practical lower-level
languages and adversary models under study. This is a
reasonable assumption, given the small abstraction gap
between the two languages. (We further discuss the issues
that may arise between LLVM and lower-level assembly

3This is more subtle for programs with publicly observable outputs;
see Section 4.

2

USENIX Association 25th USENIX Security Symposium 55

code when describing our prototype implementation.)
Finally, our prototype and case studies justify that existing
tools for LLVM are in fact sufficient for our purposes. They
may also help inform the development of architecture-
specific verification tools.

In summary, this work makes the following fundamen-
tal contributions, each described above:

i. a unifying formal foundation for constant-time pro-
gramming policies used in practice,

ii. a sound and complete reduction-based approach to
verifying constant-time programming policies, veri-
fied in Coq, and

iii. a publicly available, cross-platform, and fully au-
tomated prototype implementing this technique on
LLVM code, ct-verif, based on SMACK,

iv. extensive case studies demonstrating the practical
effectiveness of our approach on LLVM code, and
supporting discussions on the wider applicability of
the technique.

We begin in Section 2 by surveying constant-time pro-
gramming policies. Then in Section 3 we develop a no-
tion of constant-time security parameterized over leak-
age models, and in Section 4 we describe our reduction
from constant-time security to assertion safety on product
programs. Section 5 describes our implementation of a
verifier for constant-time leveraging this reduction, and in
Section 6 we study the verification of actual cryptographic
implementations using our method. We discuss related
work in Section 7, and conclude in Section 8.

2 Constant-Time Implementations

We now explain the different flavors of constant-time se-
curity policies and programming disciplines that enforce
them, using small examples of problematic code that arise
repeatedly in cryptographic implementations. Consider
first the C function of Figure 1, that copies a sub-array of
length sub_len, starting at index l_idx, from array in
to array out. Here, len represents the length of array in.

1 void copy_subarray(uint8 *out , const uint8 *in,
uint32 len , uint32 l_idx , uint32 sub_len) {

2 uint32 i, j;
3 for(i=0;j=0;i<len;i++) {
4 if (i >= l_idx) && (i < l_idx + sub_len) {
5 out[j] = in[i]; j++;
6 }
7 }
8 }

Figure 1: Sub-array copy: l_idx is leaked by PC.

Suppose now that the starting addresses and lengths of
both arrays are public. What we mean by this is that, the
user/caller of this function is willing to accept a contract
expressed over the calling interface, whereby the starting
addresses and lengths of both arrays may be leaked to an

attacker, whereas the value of the l_idx variable and the
array contents must not. Then, although the overall exe-
cution time of this function may seem roughly constant
because the loop is executed a number of times that can
be inferred from a public input, it might still leak sensi-
tive information via the control flow. Indeed, due to the
if condition in line 4, an attacker that is able to obtain a
program-counter trace would be able to infer the value of
l_idx. This could open the way to timing attacks based
on execution time measurements, such as the Canvel et
al. [16] and Lucky 13 [4] attacks, or to branch-prediction
attacks in which a co-located spy process measures the
latency introduced by the branch-prediction unit in order
to infer the control flow of the target program [1]. An al-
ternative implementation that fixes this problem is shown
in Figure 2.

1 uint32 ct_lt(uint32 a, uint32 b) {
2 uint32 c = a ^ ((a ^ b) | ((a - b) ^ b));
3 return (0 - (c >> (sizeof(c) * 8 - 1)));
4 }
5

6 void cp_copy_subarray(uint8 *out , const uint8 *in,
uint32 len , uint32 l_idx , uint32 sub_len) {

7 uint32 i, j, in_range;
8 for(i=0;i<sub_len;i++) out[i]=0;
9 for(i=0,j=0;i<len;i++) {

10 in_range = 0;
11 in_range |= ~ct_lt(i,l_idx);
12 in_range &= ct_lt(i,l_idx+sub_len);
13 out[j] |= in[i] & in_range;
14 j = j + (in_range % 2);
15 }
16 }

Figure 2: Sub-array copy: constant control flow but
l_idx is leaked by memory access address trace.

Observe that the control flow of this function is now
totally independent of l_idx, which means that it is con-
stant for fixed values of all public parameters. However,
this implementation allows a different type of leakage
that could reveal l_idx to a stronger class of timing ad-
versaries. Indeed, the memory accesses in line 13 would
allow an attacker with access to the full trace of memory
addresses accessed by the program to infer the value of
l_idx—note that the sequence of j values will repeat at
0 until l_idx is reached, and then increase. This leakage
could be exploited via cache-timing attacks [11, 31], in
which an attacker controlling a spy process co-located
with this program (and hence sharing the same cache)
would measure its own memory access times and try to
infer sensitive data leaked to accessed addresses from
cache hit/miss patterns.

Finally, the program above also includes an additional
potential leakage source in line 14. Here, the value of j is
updated as a result of a DIV operation whose execution
time, in some processors,4 may vary depending on the

4This is a quotation from the Intel 64 and IA-32 architectures ref-

3

56 25th USENIX Security Symposium USENIX Association

values of its operands. This line of code might therefore
allow an attacker that can take fine-grained measurements
of the execution time to infer the value of l_idx [25].
There are two possible solutions for this problem: ei-
ther ensure that the ranges of operands passed to such
instructions are consistently within the same range, or
use different algorithms or instructions (potentially less
efficient) whose execution time does not depend on their
operands. We note that, for this class of timing attackers,
identifying leakage sources and defining programming
disciplines that guarantee adequate mitigation becomes
highly platform-specific.

An implementation of the same function that elimi-
nates all the leakage sources we have identified above—
assuming that the used native operations have operand-
independent execution times—is given in Figure 3.

1 uint32 ct_eq(uint32 a, uint32 b) {
2 uint32 c = a ^ b;
3 uint32 d = ~c & (c - 1);
4 return (0 - (d >> (sizeof(d) * 8 - 1)));
5 }
6

7 void ct_copy_subarray(uint8 *out , const uint8 *in,
uint32 len , uint32 l_idx , uint32 sub_len) {

8 uint32 i, j;
9 for(i=0;i<sub_len;i++) out[i]=0;

10 for(i=0;i<len;i++) {
11 for(j=0;j<sub_len;j++) {
12 out[j] |= in[i] & ct_eq(l_idx+j,i);
13 }
14 }
15 }

Figure 3: Constant-time sub-array copy.

It is clear that the trade-off here is one between ef-
ficiency and security and, indeed, constant-time imple-
mentations often bring with them a performance penalty.
It is therefore important to allow for relaxations of the
constant-time programming disciplines when these are
guaranteed not to compromise security. The example of
Figure 4, taken from the NaCl cryptographic library [13]
illustrates an important class of optimizations that arises
from allowing leakage which is known to be benign.

This code corresponds to a common sequence of op-
erations in secure communications: first verify that an
incoming ciphertext is authentic (line 11) and, if so, re-
cover the enclosed message (line 12) cleaning up some
spurious data afterwards (line 13). The typical contract
drawn at the function’s interface states that the secret in-
puts to the function include only the contents of the secret

erence manual: The throughput of “DIV/IDIV r32” varies with the
number of significant digits in the input EDX:EAX and/or of the quotient
of the division for a given size of significant bits in the divisor r32. The
throughput decreases (increasing numerical value in cycles) with in-
creasing number of significant bits in the input EDX:EAX or the output
quotient. The latency of “DIV/IDIV r32” also varies with the significant
bits of the input values. For a given set of input values, the latency is
about the same as the throughput in cycles.

1 int crypto_secretbox_open(unsigned char *m,
2 const unsigned char *c,unsigned long long clen ,
3 const unsigned char *n,
4 const unsigned char *k)
5 {
6 int i;
7 unsigned char subkey [32];
8 if (clen < 32) return -1;
9 crypto_stream_salsa20(subkey ,32,n,k);

10 if (crypto_auth_hmacsha512_verify(c,c+32,clen
-32, subkey)!=0) return -1;

11 crypto_stream_salsa20_xor(m,c,clen ,n,k);
12 for (i = 0;i < 32;++i) m[i] = 0;
13 return 0;
14 }

Figure 4: Verify-then-decrypt: verification result is
publicly observable and can be leaked by control-flow.

key array. Now suppose we ensure that the functions
called by this code are constant-time. Even so, this func-
tion is not constant-time: the result of the verification in
line 11 obviously depends on the secret key value, and it
is used for a conditional return statement.

The goal of this return statement is to reduce the exe-
cution time by preventing a useless decryption operation
when the ciphertext is found to be invalid. Indeed, an
authenticated decryption failure is typically publicly sig-
naled by cryptographic protocols, in which case this bla-
tant violation of the constant-time security policy would
actually not constitute an additional security risk. Put
differently, the potentially sensitive bit of information
revealed by the conditional return is actually benign leak-
age: it is safe to leak it because it will be revealed anyway
when the return value of the function is later made public.
Such optimization opportunities arise whenever the target
application accepts a contract at the function interface that
is enriched with information about publicly observable
outputs, and this information is sufficient to classify the
extra leakage as benign.

The above examples motivate the remainder of the
work in this paper. It is clear that checking the correct
enforcement of constant-time policies is difficult. Indeed,
the programming styles that need to be adopted are very
particular to this domain, and degrade the readability of
the code. Furthermore, these are non-functional proper-
ties that standard software development processes are not
prepared to address. These facts are usually a source of
criticism towards constant-time implementations. How-
ever, our results show that such criticism is largely un-
justified. Indeed, our verification framework stands as
proof that the strictness of constant-time policies makes
them suitable for automatic verification. This is not the
case for more lenient policies that are less intrusive but
offer less protection (e.g., guaranteeing that the total exe-
cution time varies within a very small interval, or that the
same number of calls is guaranteed to be made to a hash
compression function).

4

USENIX Association 25th USENIX Security Symposium 57

In the next section we formalize constant-time security
following the intuition above, as well as the foundations
for a new formal verification tool that is able to automat-
ically verify their correct enforcement over real-world
cryptographic code.

3 A Formalization of Constant-Time

In order to reason about the security of the code actually
executed after compilation, we develop our constant-time
theory and verification approach on a generic unstructured
assembly language, in Appendix A. In the present section
we mirror that development on a simple high-level struc-
tured programming language for presentational clarity.
We consider the language of while programs, enriched
with arrays and assert/assume statements. Its syntax is
listed in Figure 5. The metavariables x and e range over
program variables and expressions, respectively. We leave
the syntax of expressions unspecified, though assume they
are deterministic, side-effect free, and that array expres-
sions are non-nested.

p ::= skip | x[e1] := e2 | assert e | assume e | p1; p2

| if e then p1 else p2 | while e do p

Figure 5: The syntax of while programs.

Although this language is quite simple, it is sufficient
to fully illustrate our theory and verification technique.
We include arrays rather than scalar program variables
to model constant-time policies which govern indexed
memory accesses. We include the assert and assume
statements to simplify our reduction from the security of a
given program to the assertion-safety of another. Figure 6
lists the semantics of while programs, which is standard.

s′ = s[〈x,s(e1)〉 �→ s(e2)]

〈s, x[e1] := e2〉 → 〈s′,skip〉
s′ = s if s(e) else ⊥

〈s, assert e〉 → 〈s′,skip〉

s(e) = true
〈s, assume e〉 → 〈s,skip〉

〈s, p1〉 → 〈s′, p′1〉
〈s, p1; p2〉 → 〈s′, p′1; p2〉

〈s, skip; p〉 → 〈s, p〉
i = 1 if s(e) else 2

〈s, if e then p1 else p2〉 → 〈s, pi〉

p′ = (p; while e do p) if s(e) else skip
〈s, while e do p〉 → 〈s, p′〉

Figure 6: The operational semantics of while programs.
All rules are guarded implicitly by the predicate s �= ⊥,
and we abbreviate the predicate s(e) = true by s(e).

A state s maps variables x and indices i ∈ N to values
s(x, i), and we write s(e) to denote the value of expression
e in state s. The distinguished error state ⊥ represents

a state from which no transition is enabled. A configu-
ration c = 〈s, p〉 is a state s along with a program p to
be executed, and an execution is a sequence c1c2 . . .cn
of configurations such that ci → ci+1 for 0 < i < n. The
execution is safe unless cn = 〈⊥,_〉; it is complete if
cn = 〈_,skip〉; and it is an execution of program p if
c1 = 〈_, p〉. A program p is safe if all of its executions
are safe.

A leakage model L maps program configurations c
to observations L(c), and extends to executions, map-
ping c1c2 . . .cn to the observation L(c1c2 . . .cn) = L(c1) ·
L(c2) · · ·L(cn), where ε is the identity observation, and
L(c) · ε = ε ·L(c) = L(c). Two executions α and β are
indistinguishable when L(α) = L(β).

Example 1. The baseline path-based characterization of
constant-time is captured by leakage models which expose
the valuations of branch conditions:

〈s, if e then p1 else p2〉 �→ s(e)

〈s, while e do p〉 �→ s(e)

In this work we assume that all leakage models include
the mappings above.

Example 2. Notions of constant-time which further in-
clude memory access patterns are captured by leakage
models which expose addresses accessed in load and store
instructions. In our simple language of while programs,
this amounts to exposing the indexes to program variables
read and written at each statement. For instance, the as-
signment statement exposes indexes read and written (the
base variables need not be leaked as they can be inferred
from the control flow):

〈s, x0[e0] := e〉 �→ s(e0)s(e1) · · · s(en)

where x1[e1], . . . , xn[en] are the indexed variable reads
in expression e (if any exist).

Example 3. Notions of constant-time which are sensitive
to the size of instruction operands, e.g., the operands
of division instructions, are captured by leakage models
which expose the relevant leakage:

〈s, x[e1] := e2 / e3〉 �→ S(e2,e3)

where S is some function over the operands of the division
operation, e.g., the maximum size of the two operands.

In Section 2 we have intuitively described the notion
of a contract drawn at a function’s interface; the constant-
time security policies are defined relatively to this con-
tract, which somehow defines the acceptable level of (be-
nign) leakage that can be tolerated. Formally, we capture
these contracts using a notion of equivalence between ini-
tial states (for a set Xi of inputs declared to be public) and

5

58 25th USENIX Security Symposium USENIX Association

final states (for a set Xo of outputs declared to be publicly
observable), as follows.

Given a set X of program variables, two configurations
〈s1,_〉 and 〈s2,_〉 are X-equivalent when s1(x, i) = s2(x, i)
for all x ∈ X and i ∈ N. Executions c1 . . .cn and c′1 . . .c

′
n′

are initially X-equivalent when c1 and c′1 are X-equivalent,
and finally X-equivalent when cn and c′n′ are X-equivalent.

Definition 1 (Constant-Time Security). A program is se-
cure when all of its initially Xi-equivalent and finally
Xo-equivalent executions are indistinguishable.

Intuitively, constant-time security means that any two
executions whose input and output values differ only with
respect to secret information must leak exactly the same
observations. Contrasting our definition with other in-
formation flow policies, we observe that constant-time
security asks that every two complete executions starting
with Xi-equivalent states and ending with Xo-equivalent
final states must be indistinguishable, while termination-
insensitive non-interference asks that every two complete
executions starting with Xi-equivalent states must end
with Xo-equivalent final states. This makes the constant-
time policies we consider distinct from the baseline no-
tions of non-interference studied in language-based se-
curity. However, our policies can be understood as a
specialized form of delimited release [34], whereby es-
cape hatches are used to specify an upper bound on the
information that is allowed to be declassified. Our no-
tion of security is indeed a restriction of delimited release
where escape hatches–our public output annotations–may
occur only in the final state.

4 Reducing Security to Safety

The construction of the output-insensitive product of a
program (with itself) is shown in Figure 7. It begins by
assuming the equality of each public input x ∈ Xi with
its renamed copy x̂, then recursively applies a guard and
instrumentation to each subprogram. Guards assert the
equality of leakage functions for each subprogram p and
its variable-renaming p̂.

product(p) assume x=x̂ for x ∈ Xi;
together(p)

together(p) guard(p);
instrument[λ p.(p;p̂),together](p)

guard(p) assert L(p)=L(p̂)

Figure 7: Output-insensitive product construction.

Instrumentation preserves the control structure of the
original program. Our construction uses the program
instrumentation given in Figure 8, which is parameter-
ized by functions α and β transforming assignments and

subprograms, respectively. In our constructions, α is ei-
ther the identity function or else duplicates assignments
over renamed variables, and β applies instrumentation
recursively with various additional logics.

_ instrument[α,β](_)
skip skip
x[e1] := e2 α(x[e1] := e2)
assert e assert e
assume e assume e
p1; p2 β (p1); β (p2)
if e then p1 else p2 if e then β (p1) else β (p2)
while e do p while e do β (p)

Figure 8: Instrumentation for product construction.

Our first result states that this construction provides
a reduction from constant-time security to safety that is
sound for all safe input programs (i.e., a security ver-
dict is always correct) and complete for programs where
information about public outputs is not taken into consid-
eration in the security analysis (i.e., an insecurity verdict
is always correct).

Theorem 1. A safe program with (respectively, without)
public outputs is secure if (respectively, iff) its output-
insensitive product is safe.

Proof. First, note that program semantics is determinis-
tic, i.e., for any two complete executions of a program
p from the same state s0 to states s1 and s2 emitting ob-
servations L(�c1) and L(�c2), respectively, we have s1 = s2
and L(�c1) = L(�c2). The product construction dictates that
an execution of product(p) from state s� ŝ reaches state
s′ � ŝ′ if and only if the two corresponding executions of
p leak the same observation sequence, from s to s′ and
from ŝ to ŝ′, where ŝ is the variable-renaming of s.

In order to deal with program paths which depend
on public outputs, we modify the product construction,
as shown in Figure 9, to record the observations along
output-dependent paths in history variables and assert
their equality when paths merge. The output-sensitive
product begins and ends by assuming the equality of pub-
lic inputs and outputs, respectively, with their renamed
copies, and finally asserts that the observations made
across both simulated executions are identical. Besides
delaying the assertion of observational indistinguishabil-
ity until the end of execution, when outputs are known
to be publicly observable, this construction allows paths
to diverge at branches which depend on these outputs,
checking whether both executions alone leak the same
recorded observations.

Technically, this construction therefore relies on iden-
tifying the branches, i.e., the if and while statements,
whose conditions can only be declared benign when pub-
lic outputs are considered. This has two key implications.

6

USENIX Association 25th USENIX Security Symposium 59

product(p) same_observations := true;
assume x=x̂ for x ∈ Xi;
together(p);
assume x=x̂ for x ∈ Xo;
assert same_observations

together(p) if benign(p) then
h := ε; ĥ := ε;
aloneh(p);
aloneĥ(p̂);
same_observations &&:= h=ĥ

otherwise
guard(p);
instrument[λ p.(p;p̂),together](p)

guard(p) same_observations &&:= L(p)=L(p̂)

aloneh(p) recordh(p);
instrument[λ p.p,aloneh](p)

recordh(p) h +:= L(p)

Figure 9: Output-sensitive product construction

First, it either requires a programmer to annotate which
branches are benign in a public-sensitive sense, or ad-
ditional automation in the verifier, e.g., to search over
the space of possible annotations; in practice the burden
appears quite low since very few branches will need to
be annotated as being benign. Second, it requires the
verifier to consider separate paths for the two simulated
executions, rather than a single synchronized path. While
this deteriorates to an expensive full product construc-
tion in the worst case, in practice these output-dependent
branches are localized to small non-nested regions, and
thus asymptotically insignificant.

Theorem 2. A safe program is secure iff its output-
sensitive product is safe with some benign-leakage an-
notation.

Proof. Completeness follows from completeness of self-
composition, so only soundness is interesting. Soundness
follows from the fact that we record history in the vari-
ables h and ĥ whenever we do not assert the equality of
observations on both sides.

Coq formalization The formal framework presented
in this and the previous section has been formalized in
Coq. Our formalization currently includes the output-
insensitive reduction from constant-time security to safety
of the product program as described in Figures 7 and 8, for
the while language in Figure 5. We prove the soundness
and completeness of this reduction (Theorem 1) follow-
ing the intuition described in the sketch presented above.
Formalization of the output-sensitive construction and the
proof of Theorem 2 should not present any additional
difficulty, other than a more intricate case analysis when
control flow may diverge. Our Coq formalization serves
two purposes: i. it rigorously captures the theoretical
foundations of our approach and complements the intu-

itive description we gave above; and ii. it could serve
as a template for a future formalization of the machine-
level version of these same results, which underlies the
implementation of our prototype and is presented in Ap-
pendices A and B. A Coq formalization of this low-level
transformation could be integrated with CompCert, pro-
viding more formal guarantees on the final compiled code.

5 Implementation of a Security Verifier

Using the reduction of Section 4 we have implemented
a prototype, ct-verif, which is capable of automatically
verifying the compiled and optimized LLVM code result-
ing from compiling actual C-code implementations of
several constant-time algorithms. Before discussing the
verification of these codes in Section 6, here we describe
our implementation and outline key issues. Our imple-
mentation and case studies are publicly available5 and
cross-platform. ct-verif leverages the SMACK verification
tool [32] to compile the annotated C source via Clang6

and to optimize the generated assembly code via LLVM7

before translating to Boogie8 code. We perform our re-
duction on the Boogie code, and apply the Boogie verifier
(which performs verification using an underlying SMT9

logic solver) to the resulting program.

5.1 Security Annotations
We provide a simple annotation interface via the following
C function declarations:

void public_in(smack_value_t);
void public_out(smack_value_t);
void benign_branching ();

where smack_value_t values are handles to program
values obtained according to the following interface

smack_value_t __SMACK_value ();
smack_value_t __SMACK_values(void* ary ,

unsigned count);
smack_value_t __SMACK_return_value(void);

and __SMACK_value(x) returns a handle to the value
stored in program variable x, __SMACK_values(ary,n)
returns a handle to an n-length array ary, and
__SMACK_return_value() provides a handle to the pro-
cedure’s return value. While our current interface does
not provide handles to entire structures, non-recursive
structures can still be annotated by annotating the handles
to each of their (nested) fields. Figure 10 demonstrates the
annotation of a decryption function for the Tiny Encryp-
tion Algorithm (TEA). The first argument v is a pointer to

5https://github.com/imdea-software/
verifying-constant-time

6C language family frontend for LLVM: http://clang.llvm.org
7The LLVM Compiler Infrastructure: http://llvm.org
8Boogie: http://github.com/boogie-org/boogie
9Satisfiability Modulo Theories: http://smtlib.cs.uiowa.edu

7

60 25th USENIX Security Symposium USENIX Association

a public ciphertext block of two 32-bit words, while the
second argument k is a pointer to a secret key.

1 void decrypt_cpa_wrapper(uint32 _t* v,uint32 _t* k){
2 public_in(__SMACK_value(v));
3 public_in(__SMACK_value(k));
4 public_in(__SMACK_values(v, 2));
5 decrypt(v, k);
6 }

Figure 10: Annotations for the TEA decryption function.

5.2 Reasoning about Memory Separation
In some cases, verification relies on establishing separa-
tion of memory objects. For instance, if the first of two
adjacent objects in memory is annotated as public input,
while the second is not, then a program whose branch
conditions rely on memory accesses from the first object
is only secure if we know that those accesses stay within
the bounds of the first object. Otherwise, if those accesses
might occur within the second object, then the program is
insecure since the branch conditions may rely on private
information.

Luckily SMACK has builtin support for reasoning about
the separation of memory objects, internally leveraging an
LLVM-level data-structure analysis [26] (DSA) to partition
memory objects into disjoint regions. Accordingly, the
generated Boogie code encodes memory as several dis-
joint map-type global variables rather than a single mono-
lithic map-type global variable, which facilitates scalable
verification. This usually provides sufficient separation
for verifying security as well. In a few cases, DSA may
lack sufficient precision. In those settings, it would be pos-
sible to annotate the source code with additional assump-
tions using SMACK ’s __VERIFIER_assume() function.
This limitation is not fundamental to our approach, but
instead an artifact of design choices10 and code rot11 in
DSA itself.

5.3 Product Construction for Boogie Code
The Boogie intermediate verification language (IVL) is a
simple imperative language with well-defined, clean, and
mathematically-focused semantics which is a convenient
representation for performing our reduction. Concep-
tually there is little difference between performing our
shadow product reduction at the Boogie level as opposed
to the LLVM or machine-code level since the Boogie code
produced by SMACK corresponds closely to the LLVM
code, which is itself similar to machine code. Indeed our
machine model of Appendix A is representative. Practi-
cally however, Boogie’s minimal syntax greatly facilitates

10DSA is designed to be extremely scalable at the expense of precision,
yet such extreme scalability is not necessary for our use.

11See the discussion thread at https://groups.google.com/
forum/#!topic/llvm-dev/pnU5ecuvr6c.

our code-to-code translation. In particular, shadowing the
machine state amounts to making duplicate copies of pro-
gram variables. Since memory accesses are represented
by accesses to map-type global variables, accessing a
shadowed address space amounts to accessing the dupli-
cate of a given map-type variable.

Our prototype models observations as in Examples 1
and 2 of Section 3, exposing the addresses used in mem-
ory accesses and the values used as branch conditions as
observations. According to our construction of Section 4,
we thus prefix each memory access by an assertion that
the address and its shadow are equal, and prefix each
branch by an assertion that the condition and its shadow
are equal. Finally, for procedures with annotations, our
prototype inserts assume statements on the equality of
public inputs with their shadows at entry blocks.

When dealing with public outputs, we perform the
output-sensitive product construction described in Sec-
tion 4 adapted to an unstructured assembly language. Intu-
itively, our prototype delays assertions (simply by keeping
track of their conjunction in a special variable) but oth-
erwise produces the standard output-insensitive product
program. It then replaces the blocks corresponding to the
potentially desynchronized conditional with blocks cor-
responding to the output-sensitive product construction
that mixes control and data product. Finally, it inserts
code that saves the current assertions before the region
where the control flow may diverge, and restores them
afterwards, making sure to also take into account the as-
sertions collected in between.

5.4 Scalability of the Boogie Verifier
Since secure implementations, and cryptographic primi-
tives in particular, do not typically call recursive proce-
dures, we instruct Boogie to inline all procedures during
verification. This avoids the need for manually written
procedure contracts, or for sophisticated procedure speci-
fication inference tools.

Program loops are handled by automatically computing
loop invariants. This is fairly direct in our setting, since
invariants are simply conjunctions of equalities between
some program variables and their shadowed copies. We
compute the relevant set of variables by taking the inter-
section of variables live at loop heads with those on which
assertions inserted by our reduction depend.

5.5 Discussion
ct-verif is based on a theoretically sound and complete
methodology; however, practical interpretations of its
results must be analyzed with care. First, leakage models
are constructed, and in our case are based on LLVM
rather than machine code. Second, verification tools can

8

USENIX Association 25th USENIX Security Symposium 61

be incomplete, notably because of approximations made
by sub-tasks performed during verification (for instance,
data-structure analysis or invariant inference).

Therefore, it is important to evaluate ct-verif empiri-
cally, both on positive and negative examples. Our posi-
tive experimental results in the next section demonstrate
that the class of constant-time programs that is validated
automatically by ct-verif is significantly larger than those
tackled by existing techniques and tools. Our negative
examples, available from the public repository,12 are
taken from known buggy libraries (capturing the recent
CacheBleed attack,13 in particular), and others taken to il-
lustrate particularly tricky patterns. Again, some of these
examples illustrate the value of a low-level verification
tool by exhibiting compilation-related behaviours. Unsur-
prisingly, we found that there is little value in running our
tool on code that was not written to be constant-time. Con-
versely, we found that our tool can be helpful in detecting
subtle breaches in code that was written with constant-
time in mind, but was still insecure, either due to subtle
programming errors, or to compilation-related issues.

It remains to discuss possible sources of unsoundness
that may arise from our choice of LLVM as the target
for verification (rather than actual machine code). As
highlighted in Section 1, this choice brings us many ad-
vantages, but it implies that our prototype does not strictly
know what machine instructions will be activated and on
which arguments, when the final code is actually executed.
For example, our assumptions on the timing of a particu-
lar LLVM operation may not hold for the actual processor
instruction that is selected to implement this operation in
executable code. Nevertheless we argue that the LLVM
assembly code produced just before code generation suf-
ficiently similar to any target-machine’s assembly code to
provide a high level of confidence. Indeed, the majority
of compiler optimizations are made prior to code genera-
tion. At the point of code generation, the key difference
between representations is that in LLVM assembly:

i. some instruction/operand types may not be available
on a given target machine,

ii. there are arbitrarily-many registers, whereas any
given machine would have a limited number, and

iii. the order of instructions within basic blocks is only
partially determined.

First we note that neither of these differences affects pro-
grams’ control-flow paths, and the basic-block structure
of programs during code generation is generally preserved.
Second, while register allocation does generally change
memory-access patterns, spilled memory accesses are gen-
erally limited to the addresses of scalar stack variables,
which are fully determined by control-flow paths. Thus

12https://github.com/imdea-software/
verifying-constant-time

13https://ssrg.nicta.com.au/projects/TS/cachebleed

both path-based and address-based constant-time prop-
erties are generally preserved. Operand-based constant-
time properties, however, are generally not preserved: it is
quite possible that instruction selection changes the types
of some instruction’s operands, implying a gap between
LLVM and machine assembly regarding whether operand
sizes may depend on secrets. Dealing with such sources
of leakage requires architecture-specific modeling and
tools, which are out of the scope of a research prototype.

6 Experimental Results

We evaluate ct-verif on a large set of examples, mostly
taken from off-the-shelf cryptographic libraries, in-
cluding the pervasively used OpenSSL [25] library,
the NaCl [13] library, the FourQlib library [17], and
curve25519-donna.14 The variety and number of cryp-
tographic examples we have considered is unprecedented
in the literature. Furthermore, our examples serve to
demonstrate that ct-verif outperforms previous solutions
in terms of scale (the sizes of some of our examples are
orders of magnitude larger than what could be handled
before), coverage (we can handle top-level public APIs,
rather than low-level or leaf functions) and robustness
(ct-verif is based on a technique which is not only sound,
but also complete).

All execution times reported in this section were ob-
tained on a 2.7GHz Intel i7 with 16GB of RAM. Size
statistics measure the size in lines of code (loc) of the
analyzed Boogie code (similar in size to the analyzed
LLVM bitcode) before inlining. When presenting time
measurements, all in seconds, we separate the time taken
to produce the product program (annotating it with the ×
symbol) from that taken to verify it: in particular, given a
library, the product program can be constructed once and
for all before verifying each of its entry points. ct-verif as-
sumes that the leakage trace produced by standard library
functions memcpy and memset depends only on their ar-
guments (that is, the address and length of the objects
they work on, rather than their contents). This is a mild
assumption that can be easily checked for each platform.
For examples that use dynamic memory allocation, such
as the OpenSSL implementation of PKCS#1 padding,
ct-verif enforces that malloc and free are called with
secret-independent parameters and assumes that the re-
sult of malloc is always secret-independent in this case.
In other words, we assume that the address returned by
malloc depends only on the trace of calls to malloc and
free, or that the memory allocator observes only the
memory layout to make allocation decisions.15

14https://code.google.com/p/curve25519-donna/
15It may be possible to extend this to an allocator that also has access

to the trace of memory accesses, since they are made public.

9

62 25th USENIX Security Symposium USENIX Association

Example Size Time (×) Time
tea 200 2.33 0.47
rlwe_sample 400 5.78 0.65
nacl_salsa20 700 5.60 1.11
nacl_chacha20 10000 8.30 1.92
nacl_sha256_block 20000 27.7 4.17
nacl_sha512_block 20000 39.49 4.29

Table 1: Verification of crypto primitives.

6.1 Cryptographic Primitives

For our first set of examples, we consider a representative
set of cryptographic primitives: a standard implemen-
tation of TEA [39] (tea), an implementation of sam-
pling in a discrete Gaussian distribution by Bos et al. [14]
(rlwe_sample) and several parts of the NaCl library [13]
library.

Table 1 gives the details (we include only a subset of the
NaCl verification results listed as nacl_xxxx). The ver-
ification result for rlwe_sample only excludes its core
random byte generator, essentially proving that this core
primitive is the only possible source of leakage. In partic-
ular, if its leakage and output bytes are independent, then
the implementation of the sampling operation is constant-
time. Verification of the SHA-256 implementation in
NaCl above refers to the compression funcion; the full
implementation of the hash function, which simply iter-
ates this compression function, poses a challenge to our
prototype due to the action of DSA: the internal state of
the function is initialized as a single memory block, that
later stores both secret and public values that are accessed
separately. This issue was discussed in Section 5.2, where
we outlined a solution using assume statements.

6.2 TLS Record Layer

To further illustrate scalability to large code bases, we now
consider problems related to the MAC-then-Encode-then-
CBC-Encrypt (MEE-CBC) construction used in the TLS
record layer to obtain an authenticated encryption scheme.
This construction is well-understood from the perspective
of provable security [24, 30], but implementations have
been the source of several practical attacks on TLS via
timing side-channels [16, 4].

We apply our prototype to two C implementations of
the MEE-CBC decryption procedure, treating only the
input ciphertext as public information. Table 2 shows
the corresponding verification results. We extract the
first implementation from the OpenSSL sources (ver-
sion 0.9.8zg). It includes all the countermeasures against
timing attacks currently implemented in the MEE-CBC
component in OpenSSL as documented in [25]. We ver-
ify the parts of the code that handle MEE-CBC decryp-
tion (1K loc of C, or 10K loc in Boogie): i. decryp-
tion of the encrypted message using AES128 in CBC

Example Time (×) Time
mee-cbc-openssl 10.6 18.73
mee-cbc-nacl 24.64 92.56

Table 2: Verification of MEE-CBC TLS record layer.

mode; ii. removing the padding and checking its well-
formedness; iii. computing the HMAC of the unpadded
message, even for bad padding, and using the same num-
ber of calls to the underlying hash compression function
(in this case SHA-1); and iv. comparing the transmit-
ted MAC to the computed MAC in constant-time. Our
verification does not include the SHA1 compression func-
tion and AES-128 encryption—these are implemened
in assembly—and hence our result proves that the only
possible leakage comes from these leaf functions. (In
OpenSSL the SHA1 implementation is constant-time but
AES-128 makes secret-dependent memory accesses.)

As our second example, we consider a full 800 loc (in
C, 20K loc in Boogie) implementation of MEE-CBC [5],
which includes the implementation of the low level primi-
tives (taken from the NaCl library).

Our prototype is able to verify the constant-time prop-
erty of both implementations–with only the initial cipher-
text and memory layout marked as public. Perhaps surpris-
ingly, our simple heuristic for loop invariants is sufficient
to handle complex control-flow structures such as the one
shown in Figure 11, taken from OpenSSL.

1 k = 0;
2 if (/* low cond */) { k = /* low exp */ }
3 if (k > 0)
4 { for (i = 1; i < k / /* low var */; i++)
5 { /* i-dependent memory access */ }
6 }
7 for (i = /* low var */; i <= /* low var */; i++)
8 { /* i-dependent memory access */
9 for (j = 0; j < /* low var */; j++)

10 { if (k < /* low var */)
11 /* k-dependent memory access */
12 else if (k < /* low exp */)
13 /* k-dependent memory access */
14 k++;
15 }
16 for (j = 0; j < /* low var */; j++)
17 { /* j-dependent memory access */ }
18 }

Figure 11: Complex control-flow from OpenSSL.

6.3 Fixed-Point Arithmetic
Our third set of examples is taken from the
libfixedtimefixedpoint library, developed by
Andrysco et al. [7] to mitigate several attacks due to
operand-dependent leakage in the timing of floating point
operations. In the conclusion of the paper we discuss
how our prototype can be extended to deal with the
vulnerable code that was attacked in [7]. Here we present

10

USENIX Association 25th USENIX Security Symposium 63

Function Size Time
fix_eq 100 1.45
fix_cmp 500 1.44
fix_mul 2300 1.50
fix_div 1000 1.53
fix_ln 11500 2.66
fix_convert_from_int64 100 1.43
fix_sin 800 1.64
fix_exp 2200 1.62
fix_sqrt 1400 1.55
fix_pow 18000 1.4216

Table 3: Verification of libfixedtimefixedpoint.

our verification results over the library that provides an
alternative secure constant-time solution

The libfixedtimefixedpoint library (ca. 4K loc
of C or 40K loc in Boogie) implements a large number
of fixed-point arithmetic operations, from comparisons
and equality tests to exponentials and trigonometric func-
tions. Core primitives are automatically generated para-
metrically in the size of the integer part: we verify code
generated with the default parameters. As far as we know,
this is the first application of verification to this floating
point library.

Table 3 shows verification statistics for part of the li-
brary. We verify all arithmetic functions without any
inputs marked as public, but display only some interest-
ing data points here. We discuss the fix_pow function,
during whose execution the code shown in Figure 12 is
executed on a frac array that is initialized as a “0” string
literal. The function in which this snippet appears is not
generally constant-time, but it is always used in contexts
where all indices of frac that are visited up to and includ-
ing the particular index that might trigger a sudden loop
exit at line 6 contains public (or constant) data. Thanks
to our semantic characterization of constant-time policies,
ct-verif successfully identifies that the leakage produced
by this code is indeed benign, whereas existing type-based
or taint-propagation based would mark this program as
insecure.

1 uint64_t result = 0;
2 uint64_t extra = 0;
3

4 for(int i = 0; i < 20; i++) {
5 uint8 _t digit = (frac[i] - (uint8_t) ’0’);
6 if (frac[i] == ’\0’) { break; }
7 result += ((uint64_t)digit) * pow10[i];
8 extra += ((uint64_t)digit) * pow10_extra[i];
9 }

Figure 12: fix_pow code.

16We manually provide an invariant of the form ∃imax. 0 ≤ i < imax ≤
20∧ frac[imax] == 0∧∀ j. 0 ≤ j ≤ imax ⇒ public(frac[j]) for the
loop shown in Figure 12. Loop unrolling could also be used, since the
loop is statically bounded.

Example Size Time (×) Time
curve25519-donna 10000 10.18 456.97
FourQLib - 7.87 -
eccmadd 2500 - 133.72
eccdouble 3000 - 70.67
eccnorm 3500 - 156.48
point_setup 600 - 0.99
R1_to_R2 2500 - 7.92
R5_to_R1 2000 - 1.26
R1_to_R3 2500 - 2.42
R2_to_R4 1000 - 0.93

Table 4: Verification of elliptic curve arithmetic.

6.4 Elliptic Curve Arithmetic
As a final illustrative example of the capabilities of ct-verif
in handling existing source code from different sources,
we consider two constant-time implementations of elliptic
curve arithmetic: the curve25519-donna implementa-
tion by Langley,17 and the FourQlib library [17]. The
former library provides functions for computing essen-
tial elliptic curve operations over the increasingly pop-
ular Curve25519 initially proposed by Bernstein [12],
whereas the latter uses a recently proposed alternative
high-performance curve. Table 4 shows the results.

For curve25519-donna, we verify the functional en-
try point, used to generate public points and shared secrets,
assuming only that the initial memory layout is public.

For FourQLib, we verify all the core functions for point
addition, doubling and normalization, as well as coordi-
nate conversions, all under the only assumption that the
addresses of the function parameters are public. ct-verif
successfully detects expected dependencies of the execu-
tion time on public inputs in the point validation function
ecc_point_validate.

6.5 Publicly Observable Outputs
We wrap up this experimental section by illustrating the
flexibility of the output-sensitive product construction,
and how it permits expanding the coverage of real-world
crypto implementations in comparison with previous ap-
proaches. As a first example we consider an optimized
version of the mee-cbc-nacl example. Instead of using
a constant-time select and zeroing loop to return its re-
sult (as shown in Figure 13, where the return code res
is secret-dependent and marked as public and in_len is
a public input), the code branches on the return code as
shown in Figure 14. (The rest of the code is unmodified,
and therefore constant-time.)

This is similar to the motivating example that we pre-
sented in Section 2, but here the goal is to avoid the
unnecessary cleanup loop at the end of the function in
executions where it is not needed. Again, because the re-
turn code is made public when it is returned to the caller,

17https://code.google.com/p/curve25519-donna/

11

64 25th USENIX Security Symposium USENIX Association

1 good = ~((res == RC_SUCCESS) - 1);
2 for(i = 0;i < in_len;i++) { out[i] &= good; }
3 *out_len &= good;

Figure 13: MEE-CBC decryption: constant-time.
1 if (res != RC_SUCCESS) {
2 for(i = 0;i < in_len;i++) { out[i] = 0; }
3 *out_len = 0;
4 }

Figure 14: MEE-CBC decryption: constant-time.

this control-flow dependency on secret information can
be classified as benign leakage. The output-sensitive prod-
uct constructed by our prototype for this example, when
the displayed conditional is annotated as benign leakage,
verifies in slightly less than 2 minutes. The additional
computation cost of verifying this version of the program
may be acceptable when compared to the performance
gains in the program itself—however minor: verification
costs are one off, whereas performance issues in the cryp-
tographic library are paid per execution.

1 int RSA_padding_check_PKCS1_type_2(uchar *to , int
tlen , const uchar *from , int flen , int num)

2 {
3 int i, zero_index = 0, msg_index , mlen = -1;
4 uchar *em = NULL;
5 uint good , found_zero_byte;
6

7 if (tlen < 0 || flen < 0) return -1;
8 if (flen > num) goto err;
9 if (num < 11) goto err;

10

11 em = OPENSSL_zalloc(num);
12 if (em == NULL) return -1;
13 memcpy(em + num - flen , from , flen);
14

15 good = ct_is_zero(em[0]);
16 good &= ct_eq(em[1], 2);
17

18 found_zero_byte = 0;
19 for (i = 2; i < num; i++) {
20 uint equals0 = ct_is_zero(em[i]);
21 zero_index = ct_select_int (~ found_zero_byte &

equals0 , i, zero_index);
22 found_zero_byte |= equals0;
23 }
24

25 good &= ct_ge((uint)(zero_index), 2 + 8);
26 msg_index = zero_index + 1;
27 mlen = num - msg_index;
28 good &= ct_ge((uint)(tlen), (uint)(mlen));
29

30 /* We can’t continue in constant -time because we
need to copy the result and we cannot fake

its length. This unavoidably leaks timing
information at the API boundary. */

31 if (!good) { mlen = -1; goto err; }
32 memcpy(to, em + msg_index , mlen);
33

34 err:
35 OPENSSL_free(em);
36 return mlen;
37 }

Figure 15: RSA PKCS1 padding check from OpenSSL

Finally, we present in Figure 15 an RSA PKCS1.5

padding check routine extracted from OpenSSL (simi-
lar code exists in other cryptographic libraries, such as
boringssl18). The developers note the most interesting fea-
ture of this code in the comment on line 30: although this
function is written in the constant-time style, the higher-
level application (here referred to as an API boundary)
does not give this implementation enough information
to continue without branching on data dependent from
secret inputs (here, the contents of from). One way in
which this could be achieved would be for the function
to accept an additional argument indicating some public
bound on the expected message length. The constant-time
techniques described previously in this paper could then
be used to ensure that the leakage depends only on this ad-
ditional public parameter. However, given the constraint
forced upon the implementer by the existing API, the final
statements in the function must be as they are, leading
to (unavoidable and hence) benign leakage. Using our
techniques, this choice can be justified by declaring the
message length returned by the function as being (the
only) public output that is safe to leak. Note that flen,
tlen and num are public, and hence declaring mlen as
a public output provides sufficient information to verify
the control-flow leakage in line 31, and also the accessed
addresses in line 32 as being benign. Verifying the output-
sensitive product program when mlen is marked as a
public output takes under a second.19

This example shows that dealing with relaxations of
the constant-time policies enabled by output-sensitive
API contracts is important when considering functions
that are directly accessible by the adversary, rather than
internal functions meant to be wrapped. Dealing with
these use cases is an important asset of our approach, and
is a problem not considered by previous solutions.

7 Related Work

Product programs Product constructions are a stan-
dard tool in the algorithmic analysis of systems. Prod-
uct programs can be viewed as their syntactic counter-
part. Systematic approaches for defining and building
product programs are considered in [9]. Three instances
of product programs are most relevant to our approach:
self-composition [10] and selective self-composition [37],
which have been used for proving information flow se-
curity of programs, and cross-products [40], which have
been used for validating the correctness of compiler op-
timizations. We review the three constructions below,
obliviating their original purpose, and presenting them
from the perspective of our work.

18https://boringssl.googlesource.com/
19With simple implementations of OPENSSL_zalloc and

OPENSSL_free that wrap standard memory functions.

12

USENIX Association 25th USENIX Security Symposium 65

The self-composition of a program P is a program Q
which executes P twice, sequentially, over disjoint copies
of the state of P. Self-composition is sound and complete,
in the sense that the set of executions of program Q is in
1-1 bijection with the set of pairs of executions of program
P. However, reasoning about self-composed programs
may be very difficult, as one must be able to correlate the
actions of two parts of program Q which correspond to
the same point of execution of the original program P.

The cross-product Q of a program P coerces the two
copies of P to execute in lockstep, by inserting assert
statements at each branching instruction. Cross-product
is not complete for all programs, because pairs of exe-
cutions of program P whose control-flow diverge result
in an unsafe execution of program Q. As a consequence,
one must prove that Q is safe in order to transfer ver-
ification results from Q to P. However, cross-product
has a major advantage over self-composition: reasoning
about cross-products is generally easier, because the two
parts of program Q which correspond to the same point
of execution of the original program P are adjacent.

Selective self-composition is an approach which alter-
nates between cross-product and self-composition, ac-
cording to user-provided (or inferred for some applica-
tions) annotations. Selective self-composition retains the
soundness and completeness of self-composition whilst
achieving the practicality of cross-product.

Our output-insensitive product construction (Figure 7)
is closely related to cross-product. In particular, Theo-
rem 1 implies that cross-products characterize constant-
path programs. We emphasize that, for this purpose, the
incompleteness of cross-products is not a limitation but a
desirable property. On the other hand, our output-sensitive
product construction (Figure 9) is closely related to selec-
tive self-composition.

Language-based analysis/mitigation of side-channels
Figure 16 summarizes the main characteristics of several
tools for verifying constant-time security, according to the
level at which they carry out the analysis, the technique
they use, their support for public inputs and outputs, their
soundness and completeness, and their usability. ct-verif
is the only one to support publicly observable outputs,
and the only one to be sound, theoretically complete and
practical. Moreover, we argue that extending any of these
tools to publicly observable outputs is hard; in particular,
several of these tools exploit the fact that cryptographic
programs exhibit “abnormally straight line code behav-
ior”, and publicly observable outputs are precisely used to
relax this behavior. We elaborate on these points below.

FlowTracker [33] implements a precise, flow sensitive,
constant-time (static) analysis for LLVM programs. This
tool takes as input C or C++ programs with security anno-
tations and returns a positive answer or a counterexample.

Tool Target Analysis Inputs/ Sound/ Usability
method Outputs Complete

tis-ct C static / / (a)
ABPV [6] C logical / / (b)
VirtualCert x86 static / / (c)

FlowTracker LLVM static / /
ctgrind binary dynamic / /

CacheAudit binary static / / (d)
This work LLVM logical / /

Figure 16: Comparison of different tools. Target indicates
the level at which the analysis is performed. Input/Out-
puts classifies whether the tool supports public inputs and
publicly observable outputs. Usability includes coverage
and automation. (a): requires manual interpretation of
dependency analysis. (b): requires interactive proofs. (c):
requires code rewriting. (d): supports restricted instruc-
tion set.

FlowTracker is incomplete (i.e. rejects secure programs),
and it does not consider publicly observable outputs.

VirtualCert [8] instruments the CompCert certified
compiler [27] with a formally verified, flow insensitive
type system for constant-time security. It takes as input a
C program with security annotations and compiles it to
(an abstraction of) x86 assembly, on which the analysis is
performed. VirtualCert imposes a number of restrictions
on input programs (so off-the-shelf programs must often
be adapted before analysis), is incomplete, and does not
support publicly observable outputs.

ctgrind20 is an extension of Valgrind that verifies
constant-address security. It takes an input a program
with taint annotations and returns a yes or no answer. ct-
grind is neither sound nor complete and does not support
publicly obervable outputs.

tis-ct is an extension of the FramaC platform for ana-
lyzing dependencies in C programs and helping towards
proving constant-time security.21 tis-ct has been used to
analyze OpenSSL. Rather than a verification result, tis-ct
outputs a list of all input regions that may flow into the
leakage trace, as well as the code locations where that
flow may occur. Although this does not directly allow the
verification of adherence to a particular security policy,
we note that checking that the result list is a subset of
public inputs could provide, given an appropriate anno-
tation language, a verification method for public input
policies. Since it relies on a dependency analysis rather
than semantic criteria, tis-ct is incomplete.

Almeida, Barbosa, Pinto and Vieira [6] propose a
methodology based on deductive verification and self-
composition for verifying constant-address security of C

20https://github.com/agl/ctgrind/.
21http://trust-in-soft.com/tis-ct/

13

66 25th USENIX Security Symposium USENIX Association

implementations. Their approach extends to constant-
address security earlier work by Svenningsson and
Sands [36] for constant-path security. This approach does
not consider publicly observable outputs and it does not
offer a comparable degree of automation to the one we
demonstrate in this paper.

CacheAudit [18] is a static analyzer for quantify-
ing cache leakage in a single run of a binary program.
CacheAudit takes as input a binary program (in a lim-
ited subset of 32-bit x86, e.g. no dynamic jump) and a
leakage model, but no security annotation (there is no
notion of public or private, neither for input, nor output).
CacheAudit is sound with respect to a simplified machine
code semantics, rather than to a security policy. However,
it is incomplete.

There are many other works that develop language-
based methods for side-channel security (not necessarily
in the computational model of this paper). Agat [2] pro-
poses a type-based analysis for detecting timing leaks
and a type-directed transformation for closing leaks in an
important class of programs. Molnar, Piotrowski, Schultz
and Wagner [29] define the program counter security
model and a program transformation for making programs
secure in this model. Other works include [28, 35, 41].

8 Conclusion

This paper leaves interesting directions for future work.
We intend to improve ct-verif in two directions. First, we
shall enhance enforcement of more expressive policies,
such as those taking into consideration input-dependent
instruction execution times. The work of Andrysco et
al. [7] shows that variations in the timing of floating point
processor operations may lead to serious vulnerabilities
in non-cryptographic systems. Dealing with such timing
leaks requires reasoning in depth about the semantics of a
program, and is beyond the reach of techniques typically
used for non-interference analysis. Our theoretical frame-
work inherits this ability from self-composition, and this
extension of ct-verif hinges solely on the effort required
to embed platform-specific policy specifications into the
program instrumentation logics of the prototype. As a
second improvement to ct-verif, we will add support for
SSE instructions, which are key to reconciling high-speed
and security, for example in implementing AES [22].

Acknowledgements The first two authors were funded
by Project “TEC4Growth - Pervasive Intelligence,
Enhancers and Proofs of Concept with Industrial
Impact/NORTE-01-0145-FEDER-000020”, which is fi-
nanced by the North Portugal Regional Operational
Programme (NORTE 2020), under the PORTUGAL
2020 Partnership Agreement, and through the European

Regional Development Fund (ERDF). The third and
fourth authors were supported by projects S2013/ICE-
2731 N-GREENS Software-CM and ONR Grants
N000141210914 (AutoCrypt) and N000141512750 (Syn-
Crypt). The fourth author was also supported by FP7
Marie Cure Actions-COFUND 291803 (Amarout II).

We thank Peter Schwabe for providing us with a col-
lection of negative examples. We thank Hovav Shacham,
Craig Costello and Patrick Longa for helpful observations
on our verification results.

References

[1] Onur Aciicmez, Cetin Kaya Koc, and Jean-Pierre
Seifert. On the power of simple branch prediction
analysis. In 2007 ACM Symposium on Informa-
tion, Computer and Communications security (ASI-
ACCS’07), pages 312–320. ACM Press, 2007.

[2] Johan Agat. Transforming out Timing Leaks. In
Proceedings POPL’00, pages 40–53. ACM, 2000.

[3] Martin R. Albrecht and Kenneth G. Paterson. Lucky
microseconds: A timing attack on Amazon’s s2n
implementation of TLS. Cryptology ePrint Archive,
Report 2015/1129, 2015. Available at http://
eprint.iacr.org/. To appear in proceedings of
EuroCrypt, 2016.

[4] Nadhem J. AlFardan and Kenneth G. Paterson.
Lucky thirteen: Breaking the TLS and DTLS record
protocols. In IEEE Symposium on Security and
Privacy, SP 2013, pages 526–540. IEEE Computer
Society, 2013.

[5] José Bacelar Almeida, Manuel Barbosa, Gilles
Barthe, and Francois Dupressoir. Verifiable side-
channel security of cryptographic implementations:
constant-time mee-cbc. Cryptology ePrint Archive,
Report 2015/1241, 2015. Available at http://
eprint.iacr.org/. To appear in proceedings of
Fast Software Encryption, 2016.

[6] José Bacelar Almeida, Manuel Barbosa, Jorge Sousa
Pinto, and Bárbara Vieira. Formal verifica-
tion of side-channel countermeasures using self-
composition. Sci. Comput. Program., 78(7):796–
812, 2013.

[7] Marc Andrysco, David Kohlbrenner, Keaton Mow-
ery, Ranjit Jhala, Sorin Lerner, and Hovav Shacham.
On subnormal floating point and abnormal timing.
In 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015,
pages 623–639. IEEE Computer Society, 2015.

14

USENIX Association 25th USENIX Security Symposium 67

[8] Gilles Barthe, Gustavo Betarte, Juan Diego Campo,
Carlos Daniel Luna, and David Pichardie. System-
level non-interference for constant-time cryptogra-
phy. In Gail-Joon Ahn, Moti Yung, and Ninghui
Li, editors, ACM CCS 14, pages 1267–1279. ACM
Press, November 2014.

[9] Gilles Barthe, Juan Manuel Crespo, and Cesar Kunz.
Relational verification using product programs. In
Michael Butler and Wolfram Schulte, editors, For-
mal Methods, volume 6664 of LNCS. Springer-
Verlag, 2011.

[10] Gilles Barthe, Pedro R. D’Argenio, and Tamara
Rezk. Secure Information Flow by Self-
Composition. In R. Foccardi, editor, Computer
Security Foundations, pages 100–114. IEEE Press,
2004.

[11] Daniel J. Bernstein. Cache-timing attacks on
aes, 2005. http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf.

[12] Daniel J. Bernstein. Curve25519: New Diffie-
Hellman speed records. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors,
PKC 2006, volume 3958 of LNCS, pages 207–228.
Springer, Heidelberg, April 2006.

[13] Daniel J. Bernstein. Cryptography in NaCl, 2011.
http://nacl.cr.yp.to.

[14] Joppe W. Bos, Craig Costello, Michael Naehrig, and
Douglas Stebila. Post-quantum key exchange for
the TLS protocol from the ring learning with errors
problem. In 2015 IEEE Symposium on Security
and Privacy, SP 2015, San Jose, CA, USA, May 17-
21, 2015, pages 553–570. IEEE Computer Society,
2015.

[15] David Brumley and Dan Boneh. Remote timing at-
tacks are practical. Computer Networks, 48(5):701–
716, 2005.

[16] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay,
and Martin Vuagnoux. Password interception
in a SSL/TLS channel. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 583–
599. Springer, Heidelberg, August 2003.

[17] Craig Costello and Patrick Longa. FourQ: Four-
dimensional decompositions on a Q-curve over the
mersenne prime. In Tetsu Iwata and Jung Hee
Cheon, editors, Advances in Cryptology - ASI-
ACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Infor-
mation Security, Auckland, New Zealand, November

29 - December 3, 2015, Proceedings, Part I, volume
9452 of Lecture Notes in Computer Science, pages
214–235. Springer, 2015.

[18] Goran Doychev, Dominik Feld, Boris Köpf, Laurent
Mauborgne, and Jan Reineke. Cacheaudit: A tool
for the static analysis of cache side channels. In
Usenix Security 2013, 2013.

[19] Cesar Pereida García, Billy Bob Brumley, and Yuval
Yarom. “Make sure DSA signing exponentiations re-
ally are constant-time”. Cryptology ePrint Archive,
Report 2016/594, 2016.

[20] Cesar Pereida García, Billy Bob Brumley, and Yuval
Yarom. "make sure dsa signing exponentiations re-
ally are constant-time”. Cryptology ePrint Archive,
Report 2016/594, 2016. http://eprint.iacr.
org/2016/594.

[21] David Gullasch, Endre Bangerter, and Stephan
Krenn. Cache games - bringing access-based cache
attacks on AES to practice. In 32nd IEEE Sympo-
sium on Security and Privacy, S&P 2011, 22-25
May 2011, Berkeley, California, USA, pages 490–
505. IEEE Computer Society, 2011.

[22] Mike Hamburg. Accelerating AES with vector per-
mute instructions. In Cryptographic Hardware and
Embedded Systems - CHES 2009, 11th International
Workshop, Lausanne, Switzerland, September 6-9,
2009, Proceedings, pages 18–32, 2009.

[23] Paul C. Kocher. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems.
In Neal Koblitz, editor, CRYPTO’96, volume 1109
of LNCS, pages 104–113. Springer, Heidelberg, Au-
gust 1996.

[24] Hugo Krawczyk. The order of encryption and
authentication for protecting communications (or:
How secure is SSL?). In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 310–
331. Springer, Heidelberg, August 2001.

[25] Adam Langley. Lucky thirteen attack on
TLS CBC. Imperial Violet, February 2013.
https://www.imperialviolet.org/2013/02/
04/luckythirteen.html, Accessed October
25th, 2015.

[26] Chris Lattner, Andrew Lenharth, and Vikram S.
Adve. Making context-sensitive points-to analy-
sis with heap cloning practical for the real world. In
Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementa-
tion, San Diego, California, USA, June 10-13, 2007,
pages 278–289. ACM, 2007.

15

68 25th USENIX Security Symposium USENIX Association

[27] Xavier Leroy. Formal certification of a compiler
back-end, or: programming a compiler with a proof
assistant. In 33rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
POPL 2006, pages 42–54. ACM, 2006.

[28] Chang Liu, Michael Hicks, and Elaine Shi. Memory
trace oblivious program execution. In CSF 2013,
pages 51–65, 2013.

[29] David Molnar, Matt Piotrowski, David Schultz, and
David Wagner. The program counter security model:
Automatic detection and removal of control-flow
side channel attacks. In Dongho Won and Seungjoo
Kim, editors, ICISC 05, volume 3935 of LNCS,
pages 156–168. Springer, Heidelberg, December
2006.

[30] Kenneth G. Paterson, Thomas Ristenpart, and
Thomas Shrimpton. Tag size does matter: At-
tacks and proofs for the TLS record protocol. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 372–
389. Springer, Heidelberg, December 2011.

[31] Colin Percival. Cache missing for fun and profit. In
Proc. of BSDCan 2005, 2005.

[32] Zvonimir Rakamaric and Michael Emmi. SMACK:
decoupling source language details from verifier
implementations. In Computer Aided Verification
- 26th International Conference, CAV 2014, Held
as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 18-22, 2014. Proceedings, vol-
ume 8559 of Lecture Notes in Computer Science,
pages 106–113. Springer, 2014.

[33] Bruno Rodrigues, Fernando Pereira, and Diego
Aranha. Sparse representation of implicit flows with
applications to side-channel detection. In Proceed-
ings of Compiler Construction, 2016. To appear.

[34] Andrei Sabelfeld and Andrew C. Myers. A model
for delimited information release. In Software Secu-
rity - Theories and Systems, Second Mext-NSF-JSPS
International Symposium, ISSS 2003, Tokyo, Japan,
November 4-6, 2003, Revised Papers, pages 174–
191, 2003.

[35] Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit
Levy, David Terei, Alejandro Russo, and David Maz-
ières. Eliminating cache-based timing attacks with
instruction-based scheduling. In Jason Crampton,
Sushil Jajodia, and Keith Mayes, editors, Computer
Security - ESORICS 2013 - 18th European Sympo-
sium on Research in Computer Security, Egham, UK,
September 9-13, 2013. Proceedings, volume 8134 of

Lecture Notes in Computer Science, pages 718–735.
Springer, 2013.

[36] Josef Svenningsson and David Sands. Specification
and verification of side channel declassification. In
FAST’09, volume 5983 of LNCS, pages 111–125.
Springer, 2009.

[37] Tachio Terauchi and Alexander Aiken. Secure in-
formation flow as a safety problem. In SAS’2005,
volume 3672 of LNCS, pages 352–367. Springer,
2005.

[38] Serge Vaudenay. Security flaws induced by CBC
padding - applications to SSL, IPSEC, WTLS ...
In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 534–546. Springer,
Heidelberg, April / May 2002.

[39] David J. Wheeler and Roger M. Needham. TEA,
a tiny encryption algorithm. In Bart Preneel, edi-
tor, FSE’94, volume 1008 of LNCS, pages 363–366.
Springer, Heidelberg, December 1995.

[40] Anna Zaks and Amir Pnueli. CoVaC: Compiler val-
idation by program analysis of the cross-product. In
J. Cuéllar, T. S. E. Maibaum, and K. Sere, editors,
FM 2008: Formal Methods, 15th International Sym-
posium on Formal Methods, volume 5014 of Lecture
Notes in Computer Science, pages 35–51. Springer,
2008.

[41] Danfeng Zhang, Yao Wang, G. Edward Suh, and
Andrew C. Myers. A hardware design language
for timing-sensitive information-flow security. In
Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15,
Istanbul, Turkey, March 14-18, 2015, pages 503–
516, 2015.

A Machine-Level Constant-Time Security

In this section we formalize constant-time security poli-
cies at the instruction set architecture (ISA) level. Model-
ing and verification at this low-level captures security of
the actual executable code targeted by attacker scrutiny,
which can differ significantly from the original source
code prior to compilation and optimization. In order to
describe our verification approach in a generic setting,
independently of the computing platform and the nature
of the exploits, we introduce abstract notions of machines
and observations.

16

USENIX Association 25th USENIX Security Symposium 69

A.1 An Abstract Computing Platform
Formally, a machine M = 〈A,B,V, I,O,F,T 〉 consists of

• a set A of address-space names,

• a set B of control-block names, determining the set
K = {fail,halt,spin,next,jump(b) : b ∈ B} of
control codes,

• a set V of values — each address space a ∈ A cor-
responds to a subset Va ⊂ V of values; together,
the address spaces and values determine the set
S = A → (Va→V) of states, each s ∈ S mapping
a ∈ A to value store sa : Va → V ; we write a:v to
denote a reference to sa(v),

• a set I of instructions — operands are references a:v,
block names b ∈ B, and literal values,

• a set O of observations, including the null observa-
tion ε ,

• a leakage function F : S× I → O determining the
observation at each state-instruction pair, and

• a transition function T : S× I → S×K from states
and instructions to states and control codes.

We assume that the value set V includes the integer value
0 ∈ N, that the control-block names include entry, and
that the instruction set I includes the following:

T (s,assume a:v) =
{

〈s,spin〉 if sa(v) = 0
〈s,next〉 otherwise

T (s,assert a:v) =
{

〈s,fail〉 if sa(v) = 0
〈s,next〉 otherwise

T (s,goto b) = 〈s,jump(b)〉
T (s,halt) = 〈s,halt〉

We write s[a:v1 �→ v2] to denote the state s′ identical to s
except that s′a(v1) = v2.

Programs are essentially blocks containing instructions.
Formally, a location � = 〈b,n〉 is a block name b ∈ B
and index n ∈ N; the location 〈entry,0〉 is called the
entry location, and L denotes the set of all locations. The
location 〈b,n〉 is the next successor of 〈b,n−1〉 when
n > 0, and is the start of block b when n = 0. A program
for machine M is a function P : L → I labeling locations
with instructions.

A.2 Semantics of Abstract Machines
A configuration c = 〈s, �〉 of machine M consists of a state
s ∈ S along with a location � ∈ L, and is called

• initial when � is the entry location,

• failing when T (s,P(�)) = 〈_,fail〉,

• halting when T (s,P(�)) = 〈_,halt〉, and

• spinning when T (s,P(�)) = 〈_,spin〉.

The observation at c is F(s,P(�)), and configuration
〈s2, �2〉 is the successor of 〈s1, �1〉 when T (s1,P(�1)) =
〈s2,k〉 and

• k = next and �2 is the next successor of �1,
• k = jump(b2) and �2 is the start of block b2, or
• k = spin and �2 = �1.

We write c1 → c2 when c2 is the successor of c1, and C
denotes the set of configurations.

An execution of program P for machine M is a con-
figuration sequence e = c0c1 . . . ∈ (C∗ ∪Cω) such that
ci−1 → ci for each 0 < i < |e|, and c|e|−1 is failing or halt-
ing if |e| is finite, in which case we say that e is failing
or halting, respectively. The trace of e is the sequence
o0o1 . . . of observations of at c0c1 . . . concatenated, where
o · ε = ε ·o = o. Executions with the same trace are indis-
tinguishable.

Definition 2 (Safety). A program P on machine M is safe
when no executions fail. Otherwise, P is unsafe.

A.3 Constant-Time Security
To define our security property we must relate program
traces to input and output values, since, generally speak-
ing, the observations made along executions should very
well depend on, e.g., publicly-known input values. Se-
curity thus relies on distinguishing program inputs and
outputs as public or private. We make this distinction
formally using address spaces, supposing that machines
include
• a public input address space i ∈ A, and
• a publicly observable output address space o ∈ A,

in addition to, e.g., register and memory address spaces.
Intuitively, the observations made on a machine run-

ning a secure program should depend on the initial ma-
chine state only in the public input address space; when
observations depend on non-public inputs, leakage oc-
curs. More subtly, observations which are independent of
public inputs can still be made, so long as each differing
observation is eventually justified by differing publicly ob-
servable output values. Otherwise we consider that leak-
age occurs. Formally, we say that that two states s1,s2 ∈ S
are a-equivalent for a ∈ A when s1(a)(v) = s2(a)(v) for
all v ∈Va. Executions e1 from state s1 and e2 from state s2
are initially a-equivalent when s1 and s2 are a-equivalent,
and finite executions to s′1 and s′2 are finally a-equivalent
when s′1 and s′2 are a-equivalent.

Definition 3 (Constant-Time Security). A program is se-
cure when:

17

70 25th USENIX Security Symposium USENIX Association

1. Initially i-equivalent and finally o-equivalent execu-
tions are indistinguishable.

2. Initially i-equivalent infinite executions are indistin-
guishable.

Otherwise, P is insecure.

The absence of publicly observable outputs simplifies
this definition, since the executions of public-output-free
programs are finally o-equivalent, trivially.

B Reducing Security to Safety

According to standard notions, security is a property over
pairs of executions: a program is secure so long as exe-
cutions with the same public inputs and public outputs
are indistinguishable. In this section we demonstrate a
reduction from security to safety, which is a property over
single executions. The reduction works by instrumenting
the original program with additional instructions which
simulate two executions of the same program side-by-
side, along the same control locations, over two separate
address spaces: the original, along with a shadow of the
machine state. In order for our reduction to be sound,
i.e., to witness all security violations as safety violations,
the control paths of the simulated executions must not di-
verge unless they yield distinct observations — in which
case our reduction yields a safety violation. This sound-
ness requirement can be stated via the following machine
property, which amounts to saying that control paths can
be leaked to an attacker.

Definition 4 (Control Leaking). A machine M is control
leaking if for all states s ∈ S and instructions i1, i2 ∈ I the
transitions T (s, i1) = 〈_,k1〉 and T (s, i2) = 〈_,k2〉 yield
the same control codes k1 = k2 whenever the observations
F(s, i1) = F(s, i2) are identical.

For the remainder of this presentation, we suppose that
machines are control leaking. This assumption coincides
with that of Section 4: all considered leakage models
expose the valuations of branch conditions. Besides con-
trol leaking, our construction also makes the following
modest assumptions:
• address spaces can be separated and renamed, and
• observations are accessible via instructions.

We capture the first requirement by assuming that pro-
grams use a limited set A1 ⊂ A of the possible address-
space names, and fixing a function α : A1 → A2 whose
range A2 ⊂A is disjoint from A1. We then lift this function
from address-space names to instructions, i.e., α : I → I,
by replacing each reference a:v with α(a):v. We capture
the second requirement by assuming the existence of a
function β : I ×A×V → I such that

T (s,β (i,a,v)) = 〈s[a:v �→ F(s, i)],next〉.

For a given instruction i ∈ I, address space a ∈ A, and
value v ∈ V , the instruction β (i,a,v) stores the observa-
tion F(s, i) in state s ∈ S at a:v.

Following the development of Section 4, we develop an
output-insensitive reduction which is always sound, but
complete only for programs without publicly-annotated
outputs. The extension to an output-sensitive reduction
which is both sound and complete for all programs mir-
rors that developed in Section 4. This extension is a
straightforward adaptation of Section 4’s from high-level
structured programs to low-level unstructured programs,
thus we omit it here.

Assume machines include a vector-equality instruction

T (s,eq ax:�x ay:�y a:z) = 〈s[a:z �→ v],next〉

where �x and �y are equal-length vectors of values, and
v = 0 iff s(ax)(xn) �= s(ay)(yn) for some 0 ≤ n < |�x|. This
requirement is for convenience only; technically only a
simple scalar-equality instruction is necessary.

To facilitate the checking of initial/final range equiv-
alences for security annotations we assume that a given
program P has only a single halt instruction, and

P(entry,0) = goto b0

P(exit,0) = halt.

This is without loss of generality since any program can
easily be rewritten in this form. Given the above functions
α and β , and a fresh address space a, the shadow product
of a program P is the program P× defined by an entry
block which spins unless the public input values in both i
and α(i) address spaces are equal,

P×(entry,n) =

eq i:Vi α(i):Vi a:x n = 0
assume a:x n = 1
goto b0 n > 1

an exit block identical to the original program,

P×(exit,n) = P(exit,n)

and finally a rewriting of every other block b �∈
{entry,exit} of P to run each instruction on two sepa-
rate address spaces,

P×(b,n) =

β (i,a,x) n = 0 (mod 6)
β (α(i),a,y) n = 1 (mod 6)
eq a:x a:y a:z n = 2 (mod 6)
assert a:z n = 3 (mod 6)
i n = 4 (mod 6)
α(i) n = 5 (mod 6)

where i = P(b,n/6)

while asserting that the observations of each instruction
are the same along both simulations.

Theorem 3. A safe program P with (respectively, without)
public outputs is secure if (respectively, iff) P× is safe.

18

USENIX Association 25th USENIX Security Symposium 71

Secure, Precise, and Fast
Floating-Point Operations on x86 Processors

Ashay Rane, Calvin Lin
Department of Computer Science
The University of Texas at Austin
{ashay, lin} @cs.utexas.edu

Mohit Tiwari
Dept. of Electrical and Computer Engineering

The University of Texas at Austin
tiwari@austin.utexas.edu

Abstract

Floating-point computations introduce several side chan-
nels. This paper describes the first solution that closes
these side channels while preserving the precision of
non-secure executions. Our solution exploits micro-
architectural features of the x86 architecture along with
novel compilation techniques to provide low overhead.

Because of the details of x86 execution, the evaluation
of floating-point side channel defenses is quite involved,
but we show that our solution is secure, precise, and fast.
Our solution closes more side channels than any prior so-
lution. Despite the added security, our solution does not
compromise on the precision of the floating-point oper-
ations. Finally, for a set of microkernels, our solution is
an order of magnitude more efficient than the previous
solution.

1 Introduction

To secure our computer systems, considerable effort has
been devoted to techniques such as encryption, access
control, and information flow analysis. Unfortunately,
these mechanisms can often be subverted through the use
of side channels, in which an adversary, with the knowl-
edge of the program, monitors the program’s execution
to infer secret values. These side channels are signifi-
cant because they have been used to discover encryption
keys in AES [26], RSA [27], and the Diffie-Hellman key
exchange protocol [14], thereby rendering these sophis-
ticated schemes useless.

Numerous side channels exist, including instruction
and data caches [27, 26], branch predictors [2], mem-
ory usage [12, 35], execution time [31, 4], heat [22],
power [15], and electromagnetic radiation [9], but one
particularly insidious side channel arises from the exe-
cution of variable-latency floating-point instructions [3,
10], in which an instruction’s latency varies widely de-
pending on its operands, as shown in Table 1.

Zero Normal Subnormal Infinity NaN
7 11 153 7 7

Table 1: Latency (in cycles) of the SQRTSS instruction for
various operands.

Both x861 and ARM2 provide variable-latency
floating-point instructions. This variable latency stems
from the desire to have graceful floating-point arithmetic
behavior, which, as we explain in Section 3, requires the
use of so-called subnormal values [8], which are pro-
cessed using special algorithms. Since subnormal values
are rare, hardware vendors typically support such values
in microcode, so as not to slow down the common case.
The resulting difference in instruction latency creates a
timing side channel, which has been used to infer cross-
origin data in browsers and to break differential privacy
guarantees of a remote database [3].

However, variable latency floating-point instructions
represent only a part of the problem, since higher level
floating-point operations, such as sine and cosine, are
typically implemented in software. Thus, the implemen-
tation of these floating-point operations can leak secret
information through other side channels as well. De-
pending on the secret values, programs can throw excep-
tions, thereby leaking the presence of abnormal inputs
through termination. Programs can also contain condi-
tional branches, which can leak secrets through the in-
struction pointer, branch predictor, or memory access
count. Finally, programs that index into lookup tables
can leak secrets through the memory address trace.

To prevent information leaks in both floating-point in-
structions and floating-point software, a strong solution
should ensure at least four key properties, which cor-
respond to the side channels that we discussed above:

1http://www.agner.org/optimize/instruction tables.pdf
2http://infocenter.arm.com/help/index.jsp?topic=/com.

arm.doc.ddi0344k/ch16s07s01.html

72 25th USENIX Security Symposium USENIX Association

(1) fixed-time operations that are independent of secret
values, (2) disabled exceptions, (3) sequential control
flow, and (4) uniform data accesses that are independent
of the value of secret variables. Previous solutions [3, 5]
are inadequate because they do not ensure all four prop-
erties, are slow, are orders of magnitude less precise, or
are difficult to implement.

This paper presents a novel solution that closes side
channels arising from both hardware and software im-
plementations of floating point operations, providing all
four properties mentioned above. Our compiler-based
solution has two components.

The first component creates building blocks of ele-
mentary floating-point operations for instructions that are
natively supported by the hardware (addition, subtrac-
tion, multiplication, division, square root, and type con-
version). Our solution leverages unused SIMD lanes so
that fast operations on normal operands are accompanied
by slower dummy computations on subnormal operands,
yielding a consistent yet low instruction latency for all
types of operands.

The second component is a software library of higher-
level floating-point operations like sine and cosine.
The key to creating this second component is a new
code transformation that produces fixed-latency func-
tions through normalized control flows and data access
patterns. Code generated by our compiler closes digital
side-channels, which have been defined to be those side
channels that carry information over discrete bits [28].
Whereas previous work in closing digital side channels
employs a runtime system [28], our solution shifts much
of the work to compile time, yielding a significantly
smaller runtime overhead.

This paper makes the following contributions:

1. We present a novel compiler-based system, called
Escort, for closing digital side channels that arise
from the processing of floating-point instructions.

2. Secure: We demonstrate that our solution is secure
not just against timing but also against digital side
channels. We demonstrate Escort’s capabilities by
defeating a machine-learning side-channel attack,
by defending against a timing attack on the Firefox
web browser, by conducting extensive performance
measurements on an x86 processor, and by verify-
ing our solution’s code using typing rules.

3. Precise: We show that Escort provides precision
that is identical to that of the standard C math li-
brary. By contrast, the previous solution’s precision
is off by several million floating-point values.

4. Fast: We show that our solution is fast. On a
set of micro-benchmarks that exercise elementary

floating-point operations, Escort is 16× faster than
the previous solution [3].

5. As an ancillary contribution, we introduce a
methodology for evaluating the precision and se-
curity of floating-point operations, which is fraught
with subtleties.

The rest of this paper is organized as follows. Sec-
tion 2 describes our threat model, related work, and sys-
tem guarantees. We provide background in Section 3 be-
fore presenting our solution in Section 4. We evaluate
our solution in Sections 5–7 . Finally, we conclude in
Section 8.

2 Threat Model and Related Work

This section begins by describing our threat model,
which shapes our subsequent discussion of related work
and of Escort’s security guarantees.

Threat Model. Our goal is to prevent secret floating-
point operands from leaking to untrusted principals that
either read digital signals from the processor’s pins or
that are co-resident processes.

We assume that the adversary is either an external en-
tity that monitors observation-based side channels (e.g.
time [14], memory address trace [11], or the /proc
pseudo-filesystem [12]) or a co-resident process/VM that
monitors contention-based side channels (e.g. cache [27]
or branch predictor state [2]).

For off-chip observation-based channels, we assume
that the processor resides in a sealed and tamper-proof
chip that prevents the adversary from measuring physi-
cal side channels like heat, power, electromagnetic radi-
ation, etc. We assume that the CPU encrypts data trans-
ferred to and from DRAM. All components other than
the processor are untrusted, and we assume that the ad-
versary can observe and tamper with any digital signal.
For on-chip contention-based channels, we assume that
the OS is trusted and does not leak the victim process’s
secret information. We also assume that the adversary
cannot observe or change the victim process’s register
contents. Our trusted computing base includes the com-
pilation toolchain.

Side-Channel Defenses. Decades of prior research
have produced numerous defenses against side channels,
the vast majority of which close only a limited number
of side channels with a single solution. For instance,
numerous solutions exist that close only the cache side
channel [6, 36, 39, 37, 16] or only the address-trace
side channel [33, 20, 32, 29]. Raccoon [28] is the first
solution that closes a broad class of side channels—in

USENIX Association 25th USENIX Security Symposium 73

particular, the set of digital side channels—with a sin-
gle solution. Similar to Raccoon, Escort also closes
digital side channels with a single solution, but unlike
Raccoon, Escort focuses on closing floating-point digi-
tal side channels, which can arise from variable latency
floating-point instructions and from software implemen-
tations of floating-point libraries, in which points-to set
sizes are typically small. Given Escort’s narrower focus
on floating-point computations, Escort is faster than Rac-
coon by an order of magnitude.

Timing Side-Channel Defenses. Prior defenses
against timing side-channel attacks utilize new algo-
rithms [30], compilers [23], runtime systems [21], or
secure processors [18]. However, these solutions only
address one source of timing variations—either those
stem from the choice of the algorithm [31] or those
that stem from the microarchitectural design [10]. By
contrast, Escort closes timing variations from both
sources.

Floating-Point Side-Channel Defenses. Andrysco et
al. [3] present libfixedtimefixedpoint (FTFP), the
first software solution for closing the floating-point tim-
ing channel. FTFP has some weaknesses, as we now
discuss, but the main contribution of their paper is the
demonstration of the significance of this side channel,
as they use variable-latency floating-point operations to
break a browser’s same-origin policy and to break dif-
ferential privacy guarantees of remote databases. FTFP
is a fixed-point library that consists of 19 hand-written
functions that each operates in fixed time, independent
of its inputs. FTFP is slow, it is imprecise, and it ex-
poses secrets through other side channels, such as the
cache side channel or the address trace side channel.
Cleemput et al. [5] introduce compiler transformations
that convert variable-timing code into fixed-timing code.
Their technique requires extensive manual intervention,
applies only to the division operation, and provides weak
security guarantees. Both solutions require manual con-
struction of fixed-time code—a cumbersome process that
makes it difficult to support a large number of operations.
By contrast, Escort implements a fixed-time floating-
point library, while preventing information leaks through
timing as well as digital side channels. Escort includes a
compiler that we have used to automate the transforma-
tion of 112 floating-point functions in the Musl standard
C library, a POSIX-compliant C library. Escort also pro-
vides precision identical to the standard C library.

Escort’s Guarantees. Escort rejects programs that
contain unsupported features—I/O operations and recur-
sive function calls. Unlike prior work [18, 28], Escort

does transform loops that leak information through trip
counts. Escort is unable to handle programs contain-
ing irreducible control flow graphs (CFGs), but standard
compiler transformations [24] can transform irreducible
CFGs into reducible CFGs. Escort assumes that the in-
put program does not use vector instructions, does not
exhibit undefined behavior, does not terminate abnor-
mally through exceptions, and is free of race conditions.
Given a program that abides by these limitations, Es-
cort guarantees that the transformed code produces iden-
tical results as the original program, does not leak se-
crets through timing or digital side channels, and that the
transformed code does not terminate abnormally.

3 Background

The variable latency of floating-point instructions creates
security vulnerabilities. In this section, we explain sub-
normal numbers, which are the cause of the variable la-
tency, and we explain the difficulty of fixing the resulting
vulnerability. We also explain how the Unit of Least Pre-
cision (ULP) can be used to quantify the precision of our
and competing solutions.

Small gap
10-45

0

Smallest
positive
number

Next smallest
positive number

. . .

Large gap
10-38

(a) Without subnormal values.

0
Smallest
positive
number

Next smallest
positive number

. . .

Equal gaps
 10-45

(b) With subnormal values.

Figure 1: Impact of allowing subnormal numbers. With-
out subnormal values, there exists a much larger gap be-
tween zero and the smallest positive number than be-
tween the first two smallest positive numbers. With sub-
normal numbers, the values are more equally spaced.
(The figure is not drawn to scale.)

3.1 Subnormal Numbers
Subnormal numbers have tiny exponents, which result
in floating-point values that are extremely close to zero:
10−45 < |x| < 10−38 for single-precision numbers and
10−324 < |x| < 10−308 for double-precision numbers.
Subnormal values extend the range of floating-point
numbers that can be represented, but more importantly,
they enable gradual underflow—the property that as
floating-point numbers approach zero along the number
scale, the difference between successive floating-point
numbers does not increase3. Figures 1a and 1b show the

3https://www.cs.berkeley.edu/∼wkahan/ARITH 17U.pdf

74 25th USENIX Security Symposium USENIX Association

differences between zero and the two smallest positive
floating-point numbers. With subnormal numbers, the
gap between any two consecutive floating-point values is
never larger than the values themselves, thus exhibiting
Gradual Underflow. Subnormal numbers are indispens-
able because gradual underflow is required for reliable
equation solving and convergence acceleration [8, 13].

To avoid the added hardware complexity of supporting
subnormal numbers, which occur infrequently, vendors
typically process subnormal values in microcode, which
is orders of magnitude slower than hardwired logic.

The resulting difference in latencies creates a security
vulnerability. An adversary that can measure the latency
of a floating-point instruction can make reasonable esti-
mates about the operand type, potentially inferring secret
values using the timing channel. While subnormal values
occur infrequently in typical program execution, an ad-
versary can deliberately induce subnormal values in the
application’s inputs to enable subnormal operand timing
attacks.

3.2 Floating-Point Error Measurement
Unlike real (infinite precision) numbers, floating-point
numbers use a limited number of bits to store values,
thus making them prone to rounding errors. Rounding
errors in floating-point numbers are typically measured
in terms of the Unit of Least Precision (ULP) [25]. The
ULP distance between two floating-point numbers is the
number of distinct representable floating-point numbers
between them, which is simply the result of subtracting
their integer representations. If the result of the subtrac-
tion is zero, the floating-point numbers must be exactly
the same.

4 Our Solution: Escort

Escort offers secure counterparts of ordinary non-secure
floating-point operations, including both elementary op-
erations and higher-level math operations. The elemen-
tary operations include the six basic floating-point op-
erations that are natively supported by the ISA—type
conversion, addition, subtraction, multiplication, divi-
sion, and square root—and a conditional data copy op-
eration. The 112 higher-level math operations are those
that are implemented using a combination of native in-
structions. Examples of higher-level functions include
sine, cosine, tangent, power, logarithm, exponentiation,
absolute value, floor, and ceiling.

The next subsections describe Escort’s design in three
parts. First, we describe the design of Escort’s secure el-
ementary operations. These operations collectively form
the foundation of Escort’s security guarantees. Second,
we describe Escort’s compiler, which accepts non-secure

code for higher-level operations and converts it into se-
cure code. This compiler combines a code transforma-
tion technique with Escort’s secure elementary opera-
tions. Third, we present an example that shows the syn-
ergy among Escort’s components.

4.1 Elementary Operations
The key insight behind Escort’s secure elementary opera-
tions is that the latencies of SIMD instructions are deter-
mined by the slowest operation among the SIMD lanes
(see Figure 2), so the Escort compiler ensures that each
elementary instruction runs along side a dummy instruc-
tion whose operand will produce the longest possible la-
tency. Our analysis of 94 x86 SSE and SSE2 instruc-
tions (which includes single- and double-precision arith-
metic, comparison, logical, and conversion instructions)
reveals: (1) that only the multiplication, division, square
root, and single-precision to double-precision conver-
sion (upcast) instructions exhibit latencies that depend
on their operands and (2) that subnormal operands in-
duce the longest latency.

In particular, Escort’s fixed-time floating-point opera-
tions utilize SIMD lanes in x86 SSE and SSE2 instruc-
tions. Our solution (1) loads genuine and dummy (sub-
normal) inputs in spare SIMD lanes of the same input
register, (2) invokes the desired SIMD instruction, and
(3) retains only the result of the operation on the genuine
inputs. Our tests confirm that the resulting SIMD instruc-
tion exhibits the worst-case latency, with negligible vari-
ation in running time (standard deviation is at most 1.5%
of the mean). Figure 3 shows Escort’s implementation of
one such operation.

Escort includes Raccoon’s conditional data copy op-
eration (see Figure 4) which does not leak information
through digital side channels. This operation copies the
contents of one register to another register if the given
condition is true. However, regardless of the condition,
this operation consumes a fixed amount of time, executes
the same set of instructions, and does not access applica-
tion memory.

4.2 Compiling Higher-Level Operations
Escort’s compiler converts existing non-secure code into
secure code that prevents information leakage through
digital side channels. First, our compiler replaces all ele-
mentary floating-point operations with their secure coun-
terparts. Next, our compiler produces straight-line code
that preserves control dependences among basic blocks
while preventing instruction side effects from leaking se-
crets. Our compiler then transforms array access state-
ments so that they do not leak information through mem-
ory address traces. Finally, our compiler transforms

USENIX Association 25th USENIX Security Symposium 75

C * D

(intended
operation)

A * B

(intended
operation)

C * D

(intended
operation)

A * B

(intended
operation)

ti
m

e

[next instr.]

[next instr.]

ti
m

e

P * Q

(dummy
operation)

P * Q

(dummy
operation)ti

m
e

[next instr.] [next instr.]

ti
m

e

After
transformation

 (a) Original
(non-secure) code

(b) Transformed
(secure) code

Figure 2: The key idea behind Escort’s secure elementary operations. The operation is forced to exhibit a fixed latency
by executing a fixed-latency long-running operation in a spare SIMD lane.

double escort_mul_dp(double x, double y) {
const double k_normal_dp = 1.4;
const double k_subnormal_dp = 2.225e-322;

double result;
__asm__ volatile(

"movdqa %1, %%xmm14;"
"movdqa %2, %%xmm15;"
"pslldq $8, %1;"
"pslldq $8, %2;"
"por %3, %1;"
"por %4, %2;"
"movdqa %2, %0;"
"mulpd %1, %0;"
"psrldq $8, %0;"
"movdqa %%xmm14, %1;"
"movdqa %%xmm15, %2;"
: "=x" (result), "+x" (x), "+x" (y)
: "x" (k_subnormal_dp), "x" (k_normal_dp)
: "xmm15", "xmm14");

return result;
}

Figure 3: Escort’s implementation of double-precision
multiplication, using the AT&T syntax.

loops whose trip count reveals secrets over digital side
channels. We now describe each step in turn.

4.2.1 Step 1: Using Secure Elementary Operations

The Escort compiler replaces x86 floating-point type-
conversion, multiplication, division, and square root as-
sembly instructions with their Escort counterparts. How-
ever, Escort’s secure elementary operations can be up
to two orders of magnitude slower than their non-secure
counterparts. Hence, our compiler minimizes their usage
by using taint tracking and by employing the quantifier-
free bit-vector logic in the Z3 SMT solver [7], which is
equipped with floating-point number theory. If the solver
can prove that the operands can never be subnormal val-
ues, then Escort refrains from replacing that instruction.

In effect, the Escort compiler constructs path-sensitive
Z3 expressions for each arithmetic statement in the

01: copy(uint8_t pred, uint32_t t_val, uint32_t f_val) {
02: uint32_t result;
03: __asm__ volatile (
04: "mov %2, %0;"
05: "test %1, %1;"
06: "cmovz %3, %0;"
07: "test %2, %2;"
08: : "=r" (result)
09: : "r" (pred), "r" (t_val), "r" (f_val)
10: : "cc"
11:);
12: return result;
13: }

Figure 4: Code for conditional data copy operation that
does not leak information over digital side channels. This
function returns t val if pred is true; otherwise it re-
turns f val. The assembly code uses AT&T syntax.

LLVM IR. For every Φ-node that produces an operand
for an arithmetic expression, Escort creates one copy of
the expression for each input to the Φ-node. If the solver
reports that no operand can have a subnormal value, then
Escort skips instrumentation of that floating-point opera-
tion.

We set a timeout of 40 seconds for each invocation of
the SMT solver. If the solver can prove that the instruc-
tion never uses subnormal operands, then Escort skips
replacing that floating-point instruction with its secure
counterpart. Figure 5 shows the percentage of floating-
point instructions in commonly used math functions that
are left untransformed by Escort.

This optimization is conservative because it assumes
that all floating-point instructions in the program have
subnormal operands unless proven otherwise. The cor-
rectness of the optimization is independent of the code’s
use of pointers, library calls, system calls, or dynamic
values. The static analysis used in this optimization is
flow-sensitive, path-sensitive, and intra-procedural.

76 25th USENIX Security Symposium USENIX Association

 0 %

 20 %

 40 %

 60 %

 80 %

100 %

fa
bs

f
fa

bs
ex

p1
0f

ex
p1

0
ex

pf
lo

g1
0

po
w

lo
g2

po
w

f
ex

p2
f

lo
g

lo
g1

0f
ex

p2
ce

il
flo

or
lo

g2
f

lo
gf si
n

co
s

si
nf

co
sf

ta
n

ce
ilf

flo
or

f
ta

nf

Op
tim

iz
ed

 fl
oa

tin
g-

po
in

t i
ns

tr
uc

tio
ns

Figure 5: Percentage of instructions that are left uninstru-
mented (without sacrificing security) after consulting the
SMT solver.

4.2.2 Step 2: Predicating Basic Blocks

Basic block predicates represent the conditions that dic-
tate whether an instruction should execute. These pred-
icates are derived by analyzing conditional branch in-
structions. For each conditional branch instruction that
evaluates a predicate p, the Escort compiler associates
the predicate p with all basic blocks that execute if the
predicate is true, and it associates the predicate ¬p with
all basic blocks that execute if the predicate is false. For
unconditional branches, the compiler copies the predi-
cate of the previous block into the next block. Finally,
if the Escort compiler comes across a block that already
has a predicate, then the compiler sets the block’s new
predicate to the logical OR of the input predicates. At
each step, the Escort compiler uses Z3 as a SAT solver to
simplify predicates by eliminating unnecessary variables
in predicate formulas. Figure 6 shows the algorithm for
basic block predication.

4.2.3 Step 3: Linearizing Basic Blocks

The Escort compiler converts the given code into
straight-line code so that every invocation of the code
executes the same instructions. To preserve control de-
pendences, the basic blocks are topologically sorted, and
then the code is assembled into a single basic block with
branch instructions removed.

4.2.4 Step 4: Controlling Side Effects

We now explain how Escort prevents side effects from
leaking secrets. Here, side effects are modifications to
the program state or any observable interaction, includ-
ing memory accesses, exceptions, function calls, or I/O.
Escort controls all side effects except for I/O statements.

1: for each basic block bb in function do
2: if entry block(bb) then
3: pred[bb]← true
4: else
5: pred[bb]← false
6: end if
7: end for
8:
9: for each basic block bb in function do

10: br ← branch(bb)
11: if unconditional branch(br) then
12: {s}← successors(bb)
13: pred[s]← pred[s]∨ pred[bb]
14: pred[s]← simpli f y(pred[s])
15: else � Conditional Branch.
16: {s1,s2}← successors(bb)
17: if loop condition branch(br) then
18: � Skip branches that represent loops.
19: pred[s1]← pred[s1]∨ pred[bb]
20: pred[s2]← pred[s2]∨ pred[bb]
21: else
22: p ← condition(br)
23: pred[s1]← pred[s1]∨ (pred[bb]∧ p)
24: pred[s2]← pred[s2]∨ (pred[bb]∧¬p)
25: end if
26: pred[s1]← simpli f y(pred[s1])
27: pred[s2]← simpli f y(pred[s2])
28: end if
29: end for

Figure 6: Algorithm for predicating basic blocks.

Memory Access Side Effects. To ensure proper mem-
ory access side effects, the Escort compiler replaces store
instructions with conditional data-copy operations that
are guarded by the basic block’s predicate, so memory
is only updated by instructions whose predicate is true.

Unfortunately, this naı̈ve approach can leak secret in-
formation when the program uses pointers. Figure 7
illustrates the problem: If store instructions are not al-
lowed to update a pointer variable when the basic block
predicate is false, then the address trace from subsequent
load instructions on the pointer variable will expose the
fact that the pointer variable was not updated.

The Escort compiler prevents such information leaks
by statically replacing pointer dereferences with loads or
stores to each element of the points-to set4. Thus Escort
replaces the statement in line 8 (Figure 7) with a store
operation on b. When the points-to set is larger than a

4Escort uses a flow-sensitive, context-insensitive pointer analysis:
https://github.com/grievejia/tpa. Replacing a pointer derefer-
ence with a store operation on all elements of the points-to set is feasi-
ble for Escort because points-to set sizes in the Musl C library are very
small.

USENIX Association 25th USENIX Security Symposium 77

1: p ← &a
2: secret ← input() � Assume input() returns true.
3: if secret = true then
4: ...
5: else
6: ...
7: p ← &b � Instruction does not update pointer p,

since basic block’s execution-time predicate is false.
8: ∗p ← 10 � Accesses a instead of b!
9: end if

Figure 7: The use of pointers can leak information. If
store instructions are not allowed to access memory
when the basic block’s predicate is false, then pointer
p will dereference the address for a instead of b, thus
revealing that secret is true.

singleton set, Escort uses the conditional data copy op-
eration on all potential pointees i.e. the elements of the
points-to set. The predicate of the conditional copy oper-
ation checks whether the pointer points to the candidate
pointee. If the predicate is false, the pointee’s existing
value is overwritten, whereas if the predicate is true, the
new value is written to the pointee.

Function Call Side Effects. Adversaries can observe
the invocation of functions (or lack thereof) using side
channels like the Instruction Pointer. Thus, a solution in-
capable of handling function calls will leak information
to the adversary. While inlining functions is a potential
solution, inlining is impractical for large applications.

Escort handles side effects from function calls by
propagating the predicate from the calling function to the
callee. Thus, each user-defined function is given an ad-
ditional argument that represents the predicate of the call
site’s basic block. The callee ensures correct handling of
side effects by ANDing its own predicates with the caller’s
predicate.

Side Effects from Exceptions. Program termination
caused by exceptions will leak the presence or absence
of abnormal operands. To prevent such information leak-
age, Escort requires that exceptions not occur during pro-
gram execution5.

Escort manages floating-point and integer exceptions
differently. Escort requires that the programmer disable
floating-point exceptions (e.g. using feclearexcept()).
For integer exceptions, Escort borrows ideas from
Raccoon by replacing abnormal operands with benign
operands (e.g. Escort prevents integer division-by-zero
by replacing a zero divisor with a non-zero divisor).

5Escort assumes that the input program does not throw exceptions,
so masking exceptions does not change the semantics of the program.

4.2.5 Step 5: Transforming Array Accesses

Array index values reveal secrets as well. For instance,
if the adversary observes that accesses to array[0] and
array[secret index] result in accesses to locations 10
and 50, then the adversary knows that secret index =
40. To eliminate such information leaks, the Escort com-
piler transforms each array access into a linear sweep
over the entire array, which hides from the adversary the
address of the program’s actual array index.

Of course, the transformed code is expensive, but this
approach is feasible because (1) math library functions
typically use only a few small lookup tables, thus requir-
ing relatively few memory accesses and (2) the proces-
sor’s caches and prefetchers dramatically reduce the cost
of sweeping over the arrays.

4.2.6 Step 6: Transforming Loops

Some loops introduce timing channels because their trip
counts depend on secret values. The Escort compiler
transforms such loops using predictive mitigation [38].
The loop body executes as many times as the smallest
power of 2 that is greater than or equal to the loop trip
count. For instance, if the actual loop trip count is 10,
then the loop body is executed 16 times. The basic block
predicate ensures that dummy iterations do not cause side
effects. With this transformed code, an adversary that ob-
serves a loop trip count of l can infer that the actual loop
trip count l′ is between l and 0.5× l. However, the exact
value of l′ is not revealed to the adversary.

Unfortunately, this naive approach can still leak infor-
mation. For instance, if two distinct inputs cause the loop
to iterate 10 and 1000 times respectively, the transformed
codes will iterate 16 and 1024 times respectively—a
large difference that may create timing variations. To
mitigate this problem, Escort allows the programmer to
manually specify the minimum and maximum loop trip
counts using programmer annotations. These annota-
tions override the default settings used by the Escort
compiler.

4.3 Example Transformation: exp10f
We now explain how Escort transforms an exam-

ple non-secure function (Figure 8a) into a secure func-
tion (Figure 8c). To simplify subsequent analyses and
transformations, the Escort compiler applies LLVM’s
mergereturn transformation pass, which unifies all exit
nodes in the input function (see Figure 8b).

First, the Escort compiler replaces elementary
floating-point operations in lines 8 and 10 with their se-
cure counterpart function shown in lines 21 and 22 of the
transformed code. Second, using the algorithm shown in
Figure 6, the Escort compiler associates predicates with

78 25th USENIX Security Symposium USENIX Association

float e10(float x) {
float n, y = mf(x, &n);
if (int(n) >> 23 & 0xff < 0x82) {

float p = p10[(int) n + 7];
if (y == 0.0f) {

return p;
}
return exp2f(3.322f * y) * p;

}
return exp2(3.322 * x);

}

(a) Original code for exp10f().

01: float e10(float x) {
02: float n, y = mf(x, &n);
03: if (int(n) >> 23 & 0xff < 0x82) {
04: float p = p10[(int) n + 7];
05: if (y == 0.0f)
06: result = p;
07: else
08: result =

exp2f(3.322f * y) * p;
09: } else
10: result = exp2(3.322 * x);
11: return result;
12: }

(b) Result after applying LLVM’s mergereturn pass. This
code becomes the input for the Escort compiler.

12: float e10(float x) {
13: return e10_cloned(x, true);
14: }
15:
16: float e10_cloned(float x, uint pred) {
17: float n, y = mf_cloned(x, &n, pred);
18: float p = write(int(n) >> 23 & 0xff

< 0x82, stream_load(p10, (int) n + 7]));
19: bool p2 = y == 0.0f;
20: write(pred & p1 & p2, p, &result);
21: write(pred & p1 & !p2,

escort_mul(
escort_mul(

exp2f_cloned(3.322f,
pred & p1 & !p2),

y),
p),

&result);

22: write(!p1,
escort_mul(

exp2_cloned(3.322, pred & !p1),
escort_upcast(x))),

result);

23: return result;
24: }

(c) Result of the Escort compiler’s transformation.

Figure 8: Escort’s transformation of exp10f().

A: y = mf(x, &n)

(n >> 23
& 0xff)
< 0x82?

B: p = p10[n + 7]

y = 0?C: result = exp2
(3.332 * x)

D: result = p

E: result = exp2f
(3.332f * y) * p

F: return result

Yes

Yes

No

No

Figure 9: Control flow graph with labeled statements for
the code in Figure 8b. A, B, D, E, C, F is one possible
sequence of basic blocks when linearized by the Escort
compiler.

Line # Predicate
2, 3, 11 TRUE

4, 5 (n >> 23 & 0xff) < 0x82
6 (n >> 23 & 0xff) < 0x82 ∧ y = 0
8 (n >> 23 & 0xff) < 0x82 ∧ y �= 0

10 ¬((n >> 23 & 0xff) < 0x82)

Table 2: Predicates per line for function in Figure 8b.

each basic block, which we list in Table 2. Third, the Es-
cort compiler linearizes basic blocks by applying a topo-
logical sort on the control flow graph (see Figure 9) and
fuses the basic blocks together. Finally, the Escort com-
piler replaces the array access statement in line 4 with a
function that sweeps over the entire array. The resulting
code, shown in Figure 8c, eliminates control flows and
data flows that depend on secret values. In addition to
closing digital side channels, the code also uses secure
floating-point operations.

USENIX Association 25th USENIX Security Symposium 79

5 Security Evaluation

This section demonstrates that Escort’s floating-point op-
erations run in fixed time and do not leak information
through digital side channels. Since precise timing mea-
surement on x86 processors is tricky due to complex
processor and OS design, we take special measures to
ensure that our measurements are accurate. In addi-
tion to Escort’s timing and digital side channel defense,
we also demonstrate Escort’s defense against a floating-
point timing channel attack on the Firefox web browser.

5.1 Experimental Setup

We run all experiments on a 4-core Intel Core i7-2600
(Sandy Bridge) processor. The processor is clocked at
3.4 GHz. Each core on this processor has a 32 KB pri-
vate L1 instruction cache, a 32 KB private L1 data cache,
and a 256 KB private L2 cache. A single 8 MB L3 cache
is shared among all four cores. The host operating sys-
tem is Ubuntu 14.04 running kernel version 3.13. We im-
plement compiler transformations using the LLVM com-
piler framework [17] version 3.8.

We measure instruction latencies using the RDTSC in-
struction that returns the number of elapsed cycles since
resetting the processor. Since the latency of executing
the RDTSC instruction is usually higher than the latency
of executing operations, our setup measures the latency
of executing 1024 consecutive operations and divides the
measured latency by 1024. Our setup uses the CPUID in-
struction and volatile variables for preventing the pro-
cessor and the compiler from reordering critical instruc-
tions. Finally, our setup measures overhead by execut-
ing an empty loop body—a loop body that contains no
instructions other than those in the test harness. By plac-
ing an empty volatile asm block in the empty loop
body, our setup prevents the compiler from deleting the
empty loop body.

5.1.1 Outlier Elimination

Many factors outside of the experiment’s control, like in-
terrupts, scheduling policies, etc., may result in outliers
in performance measurements. We now explain our pro-
cedure for eliminating outliers, before demonstrating that
the elimination of these outliers does not bias the conclu-
sions.

We use Tukey’s method [34] for identifying outliers,
but we adapt it to conservatively classify fewer values as
outliers (thus including more values as valid data points).
The original Tukey’s method first finds the minimum
(Mn), median (Md), and maximum (Mx) of a set of values.
The first quartile, Q1, is the median of values between Mn
and Md . The third quartile, Q3, is the median of values

between Mx and Md . The difference between the first and
the third quartiles (Q3 −Q1) is called the Inter-Quartile
Range, RIQ. Tukey’s method states that any value v, such
that v > Q3 + 3×RIQ or v < Q1 − 3×RIQ is a probable
outlier. In our evaluation, we weaken our outlier elim-
ination process (i.e. we count fewer values as outliers),
by (1) setting the RIQ to be at least equal to 1.0, and
(2) classifying v as an outlier when v > Q3 + 20×RIQ
or v < Q1 −20×RIQ. Results presented in the following
sections use the relaxed Tukey method described above.

Mean Median Std. Dev.
Different
Operands

847,323
(0.81%)

1,066,270
(1.02%) 381,467

Same
Operands

929,703
(0.89%)

1,139,961
(1.09%) 364,192

Table 3: Number of discarded outliers from 100 million
double-precision square-root operations. The results in-
dicate that our outlier elimination process is statistically
independent of the input operand values.

To demonstrate that our outlier elimination process
does not bias conclusions, we compare the distribution
of outliers between (a) 100 million operations using
randomly-generated operands, and (b) 100 million op-
erations using one fixed operand. The two experiments
do not differ in any way other than the difference in their
input operands. Table 3 shows the mean, median, and
standard deviation of outliers for the double-precision
square-root operation. Results for other floating-point
operations are similar and are elided for space reasons.
Since the difference in mean values as well as the dif-
ference in median values is within a quarter of the stan-
dard deviation from the mean, we conclude that the dis-
carded outlier count is statistically independent of the in-
put operand values.

5.2 Timing Assurance of Elementary Op-
erations

Since exhaustively testing all possible inputs for each op-
eration is infeasible, we instead take the following three-
step approach for demonstrating the timing channel de-
fense for Escort’s elementary operations: (1) We char-
acterize the performance of Escort’s elementary opera-
tions using a specific, fixed floating-point value (e.g. 1.0),
(2) using one value from each of the six different types
of values (zero, normal, subnormal, +∞, -∞, and not-
a-number), we show that our solution exhibits negligi-
ble variance in running time, and (3) to demonstrate that
each of the six values in the previous experiment is rep-
resentative of the class to which it belongs, we generate
10 million normal, subnormal, and not-a-number (NaN)

80 25th USENIX Security Symposium USENIX Association

values, and show that the variance in running time among
each set of 10 million values is negligible. Our key find-
ings are that Escort’s operations run in fixed time, are
fast, and that their performance is closely tied to the per-
formance of the hardware’s subnormal operations.

Figure 10: Comparison of running times of elementary
operations. sp identifies Escort’s single-precision opera-
tions, dp identifies Escort’s double-precision operations,
and fix identifies FTFP’s fixed-point operations. Num-
bers at the top of the bars show the total cycle count. We
see that Escort’s execution times are dominated by the
cost of subnormal operations, and we see that FTFP’s
overheads are significantly greater than Escort’s.

Figure 10 compares the running times of elementary
operations of Escort and of previous solutions (FTFP).
First, we observe that the running times of Escort’s
single- and double-precision operations are an order-of-
magnitude lower than those of FTFP’s fixed-precision
operations. Second, Escort’s running time is almost en-
tirely dominated by the processor’s operation on subnor-
mal numbers. Third, conversion between fixed-point and
floating-point takes a non-trivial amount of time, further
increasing the overhead of FTFP’s operations. Overall,
Escort elementary operations are about 16× faster than
FTFP’s.

Table 4 shows the variation in running time of ele-
mentary operations across six different types of inputs
(zero, normal value, subnormal value, +∞, −∞, and not-
a-number value) and compares it with the variation of
SSE (native) operations. While SSE operations exhibit
high variation (the maximum observed standard devia-
tion is 176% of the mean), Escort’s operations show neg-
ligible variation across different input types.

Finally, we measure Escort’s running time for 10 mil-
lion random normal, subnormal, and not-a-number val-
ues. We observe that the standard deviation of these mea-
surements, shown in Table 5, is extremely low (at most

Function Escort Native
(SSE)

add-sp 0 0
add-dp 0 0
sub-sp 0 0
sub-dp 0 0
mul-sp 0 49.2 (175%)
mul-dp 0 49.2 (175%)
div-sp 0.66 (0.4%) 65.67 (163%)
div-dp 1.66 (0.8%) 69.08 (164%)
sqrt-sp 1.49 (0.8%) 62.7 (170%)
sqrt-dp 2.98 (1.5%) 66.87 (169%)
upcast 0 40.99 (178%)

Table 4: Comparison of standard deviation of running
times of elementary operations across six types of values
(zero, normal, subnormal, +∞, −∞, and not-a-number).
Numbers in parenthesis show the standard deviation as
a percentage of the mean. The -sp suffix identifies
single-precision operations while the -dp suffix identi-
fies double-precision operations. Compared to SSE op-
erations, Escort exhibits negligible variation in running
times.

3.1% of the mean). We thus conclude that our chosen
values for each of the six classes faithfully represent their
class.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

flo
or

ce
il

fa
bs

log
10 log log
2

sin co
s

ta
n

ex
p

po
w

Pr
oc

es
so

r C
yc

le
s

FTFP
Escort-SP
Escort-DP

Figure 11: Comparison of running times of commonly
used higher-level functions. Error bars (visible for only
a few functions) show the maximum variation in running
time for different kinds of input values.

5.3 Timing Assurance of Higher-Level Op-
erations

Using different types of floating-point values (zero, nor-
mal, subnormal, +∞, −∞, and not-a-number), Figure 11
compares the performance of most of the commonly used

USENIX Association 25th USENIX Security Symposium 81

Fn. NaN Normal Subnormal
add-sp 0.21 (3.1%) 0.21 (2.9%) 0.19 (2.7%)
add-dp 0.21 (3.0%) 0.20 (2.9%) 0.21 (3.0%)
sub-sp 0.18 (2.6%) 0.19 (2.7%) 0.20 (2.9%)
sub-dp 0.19 (2.7%) 0.19 (2.7%) 0.19 (2.7%)
mul-sp 0.98 (0.7%) 0.94 (0.7%) 1.05 (0.7%)
mul-dp 0.90 (0.6%) 1.04 (0.7%) 1.02 (0.7%)
div-sp 1.22 (0.6%) 1.27 (0.7%) 1.23 (0.6%)
div-dp 1.39 (0.7%) 1.37 (0.6%) 1.17 (0.6%)
sqrt-sp 1.15 (0.6%) 1.13 (0.6%) 1.14 (0.6%)
sqrt-dp 1.29 (0.7%) 1.41 (0.7%) 1.33 (0.7%)
upcast 1.03 (0.9%) 0.89 (0.8%) 0.95 (0.8%)

Table 5: Standard deviation of 10 million measurements
for each type of value (normal, subnormal, and not-a-
number). All standard deviation values are within 3.1%
of the mean. Furthermore, the mean of these 10,000,000
measurements is always within 2.7% of the representa-
tive measurement.

single- and double-precision higher-level operations6.
Overall Escort’s higher-level operations are about 2×
slower than their corresponding FTFP operation, which
is the price for closing side channels that FTFP does not
close.

0

5,000

10,000

15,000

fa
bs

f
fa

bs ce
il

flo
or

flo
or

f
ce

ilf
lo

gf
lo

g2
f

lo
g1

0f
ex

p2
f

lo
g

ex
pf

lo
g2

lo
g1

0
ex

p
ex

p2
po

w
f

po
w

ta
n

ex
p1

0f
co

s
si

n
ta

nf
co

sf
si

nf
ex

p1
0

M
EA

N

Pr
oc

es
so

r C
yc

le
s

baseline (non-secure) execution
control flow obfuscation
data access obfuscation

subnormal operands

Figure 12: Performance breakdown of Escort’s com-
monly used higher-level functions. The baseline (non-
secure) execution and exception handling together cost
less than 250 cycles for each function, making them too
small to be clearly visible in the above plot.

Figure 12 shows the breakdown of the performance
of commonly used higher-level functions. We observe
that the performance of most higher-level functions is
dominated by the latency of operations on subnormal
operands, which is closely tied to the performance of the
underlying hardware. A handful of routines (exp10(),

6We exclude the exp2() (6,617 cycles), exp10() (14,910 cycles),
exp2f() (1,693 cycles), and exp10f() (9,134 cycles) from Figure 11
because FTFP does not implement these operations.

exp10f(), exp2(), and exp2f()) use lookup tables
that are susceptible to address-trace-based side-channel
information leaks, so the code transformed by Escort
sweeps over these lookup tables for each access to the
table. Finally, we see that the cost of control flow ob-
fuscation (i.e. the cost of executing all instructions in the
program) contributes the least to the total overhead.

5.4 Side-Channel Defense in Firefox
We now evaluate Escort’s defense against the timing
channel attack by Andrysco et al. [3] on the Firefox web
browser. The attack reconstructs a two-color image in-
side a victim web page using only the timing side chan-
nel in floating-point operations. The attack convolves the
given secret image with a matrix of subnormal values.
The convolution step for each pixel is timed using high
resolution Javascript timers. By comparing the measured
time to a threshold, each pixel is classified as either black
or white, effectively reconstructing the secret image.

We integrate Escort into Firefox’s convolution code7

and re-run the timing attack. The results (see Figure 13c)
show that Escort successfully disables the timing attack.

5.5 Control- and Data-Flow Assurance
We now show that Escort’s operations do not leak infor-
mation through control flow or data flow. We first use
inference rules over the LLVM IR to demonstrate non-
interference between secret inputs and digital side chan-
nels. We run a machine-learning attack on Escort and
demonstrate that Escort successfully disables the attack.

5.5.1 Non-Interference Using Inference Rules

Since Escort’s elementary operations are small and
simple—they are implemented using fewer than 15 lines
of assembly code, they do not access memory, and they
do not contain branch instructions—they are easily veri-
fied for non-interference between secret inputs and digi-
tal side channels. Using an LLVM pass that applies the
inference rules from Table 6, tracking labels that can be
either L (for low-context i.e. public information) or H (for
high-context i.e. private information), we verify that Es-
cort’s higher-level operations close digital side channels.
This compiler pass initializes all function arguments with
the label H, since arguments represent secret inputs.

Inference rules for various instructions dictate updates
to the labels. The environment Γ tracks the label of each
pointer and each address. The Escort compiler tags load

7Specifically, we replace three single-precision multiplication oper-
ations with invocations to the equivalent Escort function. All source
code changes are limited to the code in the ConvolvePixel() function
in SVGFEConvolveMatrixElement.cpp.

82 25th USENIX Security Symposium USENIX Association

(a) Original image. (b) Reconstructed image
using timing attack.

(c) Reconstructed images in 3 independent, consec-
utive experiments after patching Firefox with Escort.

Figure 13: Results of attack and defense on a vulnerable Firefox browser using timing-channel information leaks
arising from the use of subnormal floating-point numbers.

and store instructions as secret if the pointer is tainted,
or public otherwise. Unlike a public load or store in-
struction, a secret load or store instruction is allowed to
use a tainted pointer since Escort generates correspond-
ing loads and stores to all statically-determined candi-
date values in the points-to set. The sanitization rule re-
sets the value’s label to L and is required to suppress false
alarms from Escort’s loop condition transformation. Es-
cort’s transformed code includes instructions with spe-
cial LLVM metadata that trigger the sanitization rule.

During verification, the compiler pass iterates over
each instruction and checks whether a rule is applica-
ble using the rule’s antecedents (the statement above the
horizontal line); if so, it updates its local state as per
the rule’s consequent (the statement below the horizon-
tal line). If no applicable rule is found, then the com-
piler pass throws an error. The compiler pass processes
the code for Escort’s 112 higher-level operations without
throwing errors.

5.5.2 Defense Against Machine-Learning Attack

We use the TensorFlow [1] library to design a machine-
learning classifier, which we use to launch a side-channel
attack on the execution of the expf() function, where
the input to the expf() function is assumed to be secret.
Using three distinct inputs, we run this attack on the im-
plementations in the (non-secure) Musl C library and in
the (secure) Escort library. We first use the Pin dynamic
binary instrumentation tool [19] to gather the full instruc-
tion address traces of both expf() implementations8. We
train the TensorFlow machine-learning classifier by feed-
ing the instruction address traces to the classifier, asso-
ciating each trace with the secret input to expf(). We
use cross entropy as the cost function for TensorFlow’s
training phase. In the subsequent testing phase, we ran-
domly select one of the collected address traces and ask
the classifier to predict the secret input value.

We find that for the Musl implementation, the classi-
fier is accurately able to predict the correct secret value
from the address trace. On the other hand, for the Escort

8Using the md5sum program, we observe that Escort’s address traces
for all three inputs are identical.

implementation, the classifier’s accuracy drops to 33%,
which is no better than randomly guessing one of the
three secret input values.

6 Precision Evaluation

We examine the precision of Escort and FTFP by com-
paring Escort’s and FTFP’s results with those produced
by a standard C library.

6.1 Comparison Using Unit of Least Preci-
sion

Methodology. We adopt an empirical approach to esti-
mate precision in terms of Unit of Least Precision (ULP),
since formal derivation of maximum ULP difference re-
quires an intricate understanding of theorem provers and
floating-point algorithms. We run various floating-point
operations on 10,000 randomly generated pairs (using
drand48()) of floating-point numbers between zero and
one. For elementary operations, we compare the outputs
of Escort and FTFP with the outputs of native x86 in-
structions. For all other operations, we compare the out-
puts of Escort and FTFP with the outputs produced by
corresponding function from the Musl C library.

Results. We observe that Escort’s results are identi-
cal to the results produced by the reference implemen-
tations, i.e. the native (x86) instructions and the Musl
C library. More precisely, the ULP difference between
Escort’s results and reference implementation’s results
is zero. On the other hand, FTFP, which computes
arithmetic in fixed-point precision, produces output that
differs substantially from the output of Musl’s double-
precision functions (see Table 7). The IEEE 754 standard
requires that addition, subtraction, multiplication, divi-
sion, and square root operations are computed with ULP
difference of at most 0.5. Well-known libraries compute
results for most higher-level operations within 1 ULP.

USENIX Association 25th USENIX Security Symposium 83

T-PUBLIC-LOAD
Γ(ptr) = L

P = ptset(ptr)
m= max

addr∈P
Γ(addr)

Γ′ = Γ[val �→ m]

Γ � val := public-load ptr : Γ′

T-PUBLIC-STORE
Γ(ptr) = L

∀ addr ∈ ptset(p)
m = max(Γ(val),Γ(addr))
Γ′ = Γ[addr �→ m]

Γ � public-store ptr, val : Γ′

T-SECRET-LOAD
Γ′ = Γ[val �→ H]

Γ � val := secret-load ptr : Γ′

T-SECRET-STORE
∀ addr ∈ ptset(p)
Γ′ = Γ[addr �→ H]

Γ � secret-store ptr, val : Γ′

T-BRANCH
Γ(cond) = L

Γ � br cond,block1,block2 : Γ

T-OTHER
Γ′ = Γ[x �→ Γ(y)]

Γ � x:=y : Γ′

T-COMPOSITION
Γ � S1 : Γ′, Γ′ � S2 : Γ′′

Γ � S1;S2 : Γ′′

T-SANITIZER
Γ′ = Γ[x �→ L]

Γ � S(x) : Γ′

Table 6: Inference rules for verifying the security of Es-
cort’s higher-level operations.

6.2 Comparison of Program Output
Methodology. Since differences in program outputs
provide an intuitive understanding of the error intro-
duced by approximate arithmetic operations, we com-
pare the output of the test suite of Minpack9, a li-
brary for solving non-linear equations and non-linear
least squares problems. We generate three variants of
Minpack: MINPACK-C uses the standard GNU C li-
brary, MINPACK-ESCORT uses the Escort library, and
MINPACK-FTFP uses the FTFP library. We run the 29
programs in Minpack’s test suite and compare the out-
puts produced by the three program variants.

Results. We observe that MINPACK-ESCORT produces
output that is identical to MINPACK-C’s output. We also
observe that all outputs of MINPACK-FTFP differ from
MINPACK-C. Specifically, 321 values differ between the
outputs of MINPACK-FTFP and MINPACK-C. We ana-

9https://github.com/devernay/cminpack

Function Min. Median Max.
add 16 1,743,272 210,125,824
sub 1,312 6,026,976 84,089,503,744
mul 317 8,587,410 112,134,679,849
div 829 5,834,095 30,899,033,427
sqrt 562 2,815,331 21,257,836,468
floor 0 0 0
ceil 0 0 0
log 1,698 5,908,547 2,705,277,8104
log2 262 5,812,840 13,890,632,367

log10 981 10,105,199 40,631,590,323
exp 132 1,409,624 6,066,894
sin 1,316 4,173,786 40,138,955,131
cos 2,166 2,241,360 10,127,702
tan 717 5,576,540 40,126,401,802
pow 522 3,425,870 26,876,068,127
fabs 352 3,129,984 40,134,770,688

Table 7: Floating-point difference for 10,000 operations
on random inputs in terms of Unit of Least Precision
(ULP) in FTFP versus Musl C library. Since we ob-
serve zero ULP distance between Escort’s results and
Musl’s results, this table omits Escort’s results.

<
10−5

10−5 to
10−3

10−3 to
100

100 to
103

>
103

49% 9% 21% 10% 11%

Table 8: Distribution of differences in answers produced
by MINPACK-FTFP and MINPACK-C. In all, 321 values
differ between the outputs of the two programs.

lyze all 321 differences between MINPACK-FTFP and
MINPACK-C by classifying them into the following five
categories: (1) smaller than 10−5, (2) between 10−5 and
10−3, (3) between 10−3 and 100, (4) between 100 and
103, and (5) larger than 103. As seen in Table 8, almost
half of the differences (49%) are extremely small (less
than 10−5), possibly arising from relatively small dif-
ferences between fixed-point and floating-point calcula-
tions. However, we hypothesize that differences amplify
from propagation, since nearly 42% of the differences
are larger than 10−3.

7 Performance Evaluation

We now evaluate the end-to-end application performance
impact of Escort’s floating-point library and Escort’s
control flow obfuscation.

84 25th USENIX Security Symposium USENIX Association

Application Escort
Overhead

Static (LLVM)
Floating-Point

Instruction
Count

433.milc 29.33× 2,791
444.namd 57.32× 9,647
447.dealII 20.31× 21,963
450.soplex 4.74× 4,177
453.povray 82.53× 25,671

470.lbm 56.19× 711
480.sphinx3 52.46× 629

MEAN 32.63×
(geo. mean)

9,370
(arith. mean)

Table 9: Overhead of SPEC-ESCORT (SPECfp2006
using Escort operations) relative to SPEC-LIBC
(SPECfp2006 using libc).

7.1 Impact of Floating-Point Library
This section evaluates the performance impact of Escort
on the SPEC floating point benchmarks, as well as on a
security-sensitive program SVMlight , a machine-learning
classifier.

Evaluation Using SPEC Benchmarks. We use the C
and C++ floating-point applications in the SPEC CPU
2006 benchmark suite with reference inputs. We gen-
erate two versions of each program—the first version
(SPEC-LIBC) uses the standard C library functions, and
the second version (SPEC-ESCORT) uses functions from
the Escort library10. We compile the SPEC-LIBC pro-
gram using the Clang/LLVM 3.8 compiler with the -O3
flag, and we disable auto-vectorization while compil-
ing the SPEC-ESCORT program. The following results
demonstrate the worst case performance overhead of Es-
cort for these programs, since we transform all floating-
point operations in SPEC-ESCORT to use the Escort li-
brary. More precisely, we do not reduce the number of
transformations either using taint tracking or using SMT
solvers.

Table 9 shows that Escort’s overhead is substantial,
with a geometric mean of 32.6×. We expect a lower av-
erage overhead for applications that use secret data, since
taint tracking would reduce the number of floating-point
operations that would need to be transformed.

Evaluation Using SVMlight . To evaluate Escort’s
overhead on a security-sensitive benchmark, we mea-
sure Escort’s performance on SVMlight , an implemen-

10We also ran the same programs using the FTFP library, but the
programs either crashed due to errors or ran for longer than two hours,
after which they were manually terminated.

Test Case Overhead for
Training

Overhead for
Classification

#1 8.66× 1.34×
#2 30.24× 0.96×
#3 1.41× 1.11×
#4 12.75× 0.92×

GEO
MEAN 8.28× 1.07×

Table 10: Overhead of Escort on SVMlight program.

tation of Support Vector Machines in C, using the four
example test cases documented on the SVMlight web-
site11. We mark the training data and the classification
data as secret. Before replacing floating-point computa-
tions, Escort’s taint analysis discovers all floating-point
computations that depend on the secret data, thus re-
ducing the list of replacements. We also instruct Es-
cort to query the Z3 SMT solver to determine whether
candidate floating-point computations could use subnor-
mal operands. Escort then replaces these computations
with secure operations from its library. We compile the
baseline (non-secure) program using the Clang/LLVM
3.8 compiler with the -O3 flag, and we disable auto-
vectorization while compiling SVMlight with Escort. We
measure the total execution time using the RDTSC instruc-
tion. Table 10 shows that Escort’s overhead on SVMlight .
We observe that Escort’s overhead on SVMlight is sub-
stantially lower than that on SPEC benchmarks. Using
the md5sum program, we verify that the output files be-
fore and after transformation of SVMlight are identical.

7.2 Impact of Control Flow Obfuscation
To compare the performance impact of Escort’s con-
trol flow obfuscation technique with that of Raccoon,
we use the same benchmarks that were used to eval-
uate Raccoon [28], while compiling the baseline (non-
transformed) application with the -O3 optimization flag.
Although both Escort and Raccoon obfuscate control
flow and data accesses, we compare the cost of control
flow obfuscation only, since both Escort and Raccoon ob-
fuscate data accesses using the identical technique. Ta-
ble 11 shows the results.

We find that programs compiled with Escort have a
significantly lower overhead than those compiled with
Raccoon. Escort’s geometric mean overhead is 32%,
while that of Raccoon is 5.32×. The worst-case over-
head for Escort is 2.4× (for ip-tree).

The main reason for the vast difference in overhead
is that Raccoon obfuscates branch instructions at execu-
tion time, which requires the copying and restoring of

11http://svmlight.joachims.org/

USENIX Association 25th USENIX Security Symposium 85

Benchmark Raccoon
Overhead

Escort
Overhead

ip-tree 1.01× 2.40×
matrix-mul 1.01× 1.01×
radix-sort 1.01× 1.06×
findmax 1.01× 1.27×

crc32 1.02× 1.00×
genetic-algo 1.03× 1.03×

heap-add 1.03× 1.27×
med-risks 1.76× 1.99×
histogram 1.76× 2.26×

map 2.04× 1.01×
bin-search 11.85× 1.01×
heap-pop 45.40× 1.44×
classifier 53.29× 1.24×

tax 444.36× 1.67×
dijkstra 859.65× 1.10×

GEO MEAN 5.32× 1.32×

Table 11: Performance comparison of benchmarks com-
piled using Raccoon and Escort. We only compare the
control flow obfuscation overhead, since both Raccoon
and Escort use the same technique for data access obfus-
cation.

the stack for each branch instruction. Since the stack
can be arbitrarily large, such copying and restoring adds
substantial overhead to the running time of the program.
On the other hand, Escort’s code rewriting technique ob-
fuscates code at compile time using basic block predi-
cates, which enables significant performance boosts on
the above benchmarks.

8 Conclusions

In this paper, we have presented Escort, a compiler-based
tool that closes side channels that stem from floating-
point operations. Escort prevents an attacker from in-
ferring secret floating-point operands through the tim-
ing channel, though micro-architectural state, and also
through off-chip digital side channels, such as memory
address trace.

Escort uses native SSE instructions to provide speed
and precision. Escort’s compiler-based approach enables
it to support a significantly larger number of floating-
point operations (112) than FTFP (19).

Escort’s design motivates further research into hard-
ware support for side-channel resistant systems. For ex-
ample, by allowing software to control the timing of in-
teger instruction latencies and their pipelined execution,
Escort’s guarantees could be extended to instructions be-
yond floating-point instructions.

Acknowledgments. We thank our shepherd Stephen
McCamant and the anonymous reviewers for their help-
ful feedback. We also thank David Kohlbrenner for giv-
ing us the Firefox timing attack code. We are grateful
to Jia Chen for providing us the pointer analysis library,
and to Joshua Eversmann for help with code and discus-
sions. This research was funded in part by NSF Grants
DRL-1441009, CNS-1314709, and CCF-1453806, C-
FAR (one of the six SRC STARnet Centers sponsored
by MARCO and DARPA), and a gift from Qualcomm.

References
[1] ABADI, M., ET AL. Tensorflow: Large-scale machine learn-

ing on heterogeneous distributed systems. Computing Research
Repository abs/1603.04467 (2016).

[2] ACIIÇMEZ, O., KOÇ, Ç. K., AND SEIFERT, J.-P. On the Power
of Simple Branch Prediction Analysis. In Symposium on Informa-
tion, Computer and Communications Security (2007), pp. 312–
320.

[3] ANDRYSCO, M., KOHLBRENNER, D., MOWERY, K., JHALA,
R., LERNER, S., AND SHACHAM, H. On Subnormal Floating
Point and Abnormal Timing. In Symposium on Security and Pri-
vacy (S&P) (2015), pp. 623–639.

[4] BRUMLEY, D., AND BONEH, D. Remote Timing Attacks are
Practical. Computer Networks 48, 5 (2005), 701–716.

[5] CLEEMPUT, J. V., COPPENS, B., AND DE SUTTER, B. Com-
piler Mitigations for Time Attacks on Modern x86 Processors.
Transactions on Architecture and Code Optimization 8, 4 (Jan.
2012), 23:1–23:20.

[6] CRANE, S., HOMESCU, A., BRUNTHALER, S., LARSEN, P.,
AND FRANZ, M. Thwarting Cache Side-Channel Attacks
Through Dynamic Software Diversity. In Network and Dis-
tributed System Security Symposium (2015).

[7] DE MOURA, L., AND BJØRNER, N. Z3: An Efficient SMT
Solver. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (2008), pp. 337–340.

[8] DEMMEL, J. W. Effects of Underflow on Solving Linear Sys-
tems. Tech. Rep. UCB/CSD-83-128, EECS Department, Univer-
sity of California, Berkeley, Aug 1983.

[9] GANDOLFI, K., MOURTEL, C., AND OLIVIER, F. Electromag-
netic Analysis: Concrete Results. In Third International Work-
shop on Cryptographic Hardware and Embedded Systems (2001),
pp. 251–261.

[10] GROSSSCHÄDL, J., OSWALD, E., PAGE, D., AND TUNSTALL,
M. Side-Channel Analysis of Cryptographic Software via Early-
terminating Multiplications. In International Conference on In-
formation Security and Cryptology (2010), pp. 176–192.

[11] ISLAM, M. S., KUZU, M., AND KANTARCIOGLU, M. Access
Pattern Disclosure on Searchable Encryption: Ramification, At-
tack and Mitigation. In Network and Distributed System Security
Symposium, NDSS (2012).

[12] JANA, S., AND SHMATIKOV, V. Memento: Learning Secrets
from Process Footprints. In Symposium on Security and Privacy
(S&P) (2012), pp. 143–157.

[13] KAHAN, W. Interval Arithmetic Options in the Proposed
IEEE Floating-Point Arithmetic Standard. Interval Mathematics
(1980), 99–128.

[14] KOCHER, P. C. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In Advances in Cryp-
tology (1996), pp. 104–113.

86 25th USENIX Security Symposium USENIX Association

[15] KOCHER, P. C., JAFFE, J., AND JUN, B. Differential Power
Analysis. In 19th Annual International Cryptology Conference
on Advances in Cryptology (1999), pp. 388–397.

[16] KONG, J., ACIIÇMEZ, O., SEIFERT, J., AND ZHOU, H.
Hardware-Software Integrated Approaches to Defend Against
Software Cache-Based Side Channel Attacks. In International
Conference on High-Performance Computer Architecture (2009),
pp. 393–404.

[17] LATTNER, C., AND ADVE, V. S. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In In-
ternational Symposium on Code Generation and Optimization
(2004), pp. 75–88.

[18] LIU, C., HARRIS, A., MAAS, M., HICKS, M., TIWARI, M.,
AND SHI, E. GhostRider: A Hardware-Software System for
Memory Trace Oblivious Computation. In International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (2015), pp. 87–101.

[19] LUK, C., ET AL. Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation. In Conference on Program-
ming Language Design and Implementation (2005), pp. 190–200.

[20] MAAS, M., LOVE, E., STEFANOV, E., TIWARI, M., SHI, E.,
ASANOVIC, K., KUBIATOWICZ, J., AND SONG, D. PHAN-
TOM: Practical Oblivious Computation in a Secure Processor. In
Conference on Computer and Communications Security (2013),
pp. 311–324.

[21] MARTIN, R., DEMME, J., AND SETHUMADHAVAN, S. Time-
Warp: Rethinking Timekeeping and Performance Monitoring
Mechanisms to Mitigate Side-Channel Attacks. In International
Symposium on Computer Architecture (2012), pp. 118–129.

[22] MASTI, R. J., ET AL. Thermal Covert Channels on Multi-core
Platforms. In USENIX Security Symposium (2015), pp. 865–880.

[23] MOLNAR, D., PIOTROWSKI, M., SCHULTZ, D., AND WAG-
NER, D. The Program Counter Security Model: Automatic De-
tection and Removal of Control-Flow Side Channel Attacks. In
International Conference on Information Security and Cryptol-
ogy (2005), pp. 156–168.

[24] MUCHNICK, S. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers Inc., 1997.

[25] MULLER, J.-M. On the definition of ulp(x). Tech. Rep. 2005-
009, ENS Lyon, February 2005.

[26] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache Attacks
and Countermeasures: the Case of AES. In RSA Conference on
Topics in Cryptology (2006), pp. 1–20.

[27] PERCIVAL, C. Cache Missing for Fun and Profit. In Proceedings
of the Technical BSD Conference (2005).

[28] RANE, A., LIN, C., AND TIWARI, M. Raccoon: Closing Dig-
ital Side-channels Through Obfuscated Execution. In USENIX
Conference on Security Symposium (2015), pp. 431–446.

[29] REN, L., YU, X., FLETCHER, C., VAN DIJK, M., AND DE-
VADAS, S. Design Space Exploration and Optimization of Path
Oblivious RAM in Secure Processors. In International Sympo-
sium on Computer Architecture (2013), pp. 571–582.

[30] SAKURAI, K., AND TAKAGI, T. A Reject Timing Attack on an
IND-CCA2 Public-key Cryptosystem. In International Confer-
ence on Information Security and Cryptology (2003), pp. 359–
374.

[31] SCHINDLER, W. A Timing Attack Against RSA with the Chi-
nese Remainder Theorem. In International Workshop on Crypto-
graphic Hardware and Embedded Systems (2000), pp. 109–124.

[32] SHI, E., CHAN, T. H., STEFANOV, E., AND LI, M. Oblivious
RAM with O((logN)3) Worst-Case Cost. In Advances in Cryp-
tology (2011), pp. 197–214.

[33] STEFANOV, E., VAN DIJK, M., SHI, E., FLETCHER, C. W.,
REN, L., YU, X., AND DEVADAS, S. Path ORAM: An Ex-
tremely Simple Oblivious RAM Protocol. In Conference on Com-
puter and Communications Security (2013), pp. 299–310.

[34] TUKEY, J. Exploratory Data Analysis. Pearson, 1977.

[35] WANG, Y., FERRAIUOLO, A., AND SUH, G. E. Timing Chan-
nel Protection for a Shared Memory Controller. In International
Symposium on High Performance Computer Architecture (2014),
pp. 225–236.

[36] WANG, Z., AND LEE, R. B. New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks. In International
Symposium on Computer Architecture (2007), pp. 494–505.

[37] WANG, Z., AND LEE, R. B. A Novel Cache Architecture with
Enhanced Performance and Security. In International Symposium
on Microarchitecture (2008), pp. 83–93.

[38] ZHANG, D., ASKAROV, A., AND MYERS, A. C. Predictive
Mitigation of Timing Channels in Interactive Systems. In Confer-
ence on Conference on Computer and Communications Security
(2011), pp. 563–574.

[39] ZHANG, Y., AND REITER, M. K. Duppel: Retrofitting Com-
modity Operating Systems to Mitigate Cache Side Channels in
the Cloud. In Conference on Computer and Communications Se-
curity (2013), pp. 827–838.

USENIX Association 25th USENIX Security Symposium 87

ÜBERSPARK†: Enforcing Verifiable Object Abstractions for
Automated Compositional Security Analysis of a Hypervisor

Amit Vasudevan*, Sagar Chaki**, Petros Maniatis***, Limin Jia**** and Anupam Datta****

*amitvasudevan@acm.org – CyLab/Carnegie Mellon University
**chaki@sei.cmu.edu – SEI/Carnegie Mellon University

***maniatis@google.com – Google Inc.
****{liminjia,danupam}@cmu.edu – CS/ECE Carnegie Mellon University

Abstract—We present überSpark (üSpark), an innovative
architecture for compositional verification of security prop-
erties of extensible hypervisors written in C and Assembly.
üSpark comprises two key ideas: (i) endowing low-level
system software with abstractions found in higher-level
languages (e.g., objects, interfaces, function-call semantics
for implementations of interfaces, access control on inter-
faces, concurrency and serialization), enforced using a com-
bination of commodity hardware mechanisms and light-
weight static analysis; and (ii) interfacing with platform
hardware by programming in Assembly using an idiomatic
style (called CASM) that is verifiable via tools aimed at
C, while retaining its performance and low-level access to
hardware. After verification, the C code is compiled using
a certified compiler while the CASM code is translated into
its corresponding Assembly instructions. Collectively, these
innovations enable compositional verification of security
invariants without sacrificing performance. We validate
üSpark by building and verifying security invariants of
an existing open-source commodity x86 micro-hypervisor
and several of its extensions, and demonstrating only minor
performance overhead with low verification costs.

1. INTRODUCTION

The modern hypervisor stack is, by necessity, extensible.
Hypervisors not only enable the old-hat style of cus-
tomization, such as modularity for device drivers, but
are further extended with convenient functionality for
security services such as attestation, debugging, trac-
ing, application-level integrity and confidentiality, trust-
worthy resource accounting, on-demand I/O isolation,
trusted path, and authorization [14], [18], [22], [49],
[53], [57], [62], [64], [65], [71], [74], [75], [77], [80],
[83]–[86]. Further, the overwhelming majority of the
deployed hypervisor codebase is written in low-level
C and Assembly, due to hardware accesses, developer
familiarity, and performance requirements.
1.1. Problem – The unbridled growth of these exten-
sible hypervisors, while enabling useful functionality,

†In the fictional Transformers universe, the AllSpark is a powerful
object capable of creating a new Transformer by bestowing ordinary
machinery with sparks – the building blocks of a Transformer. In a
similar vein, ÜBERSPARK bestows ordinary hypervisors with verifiable
objects (ÜOBJECT) for automated compositional security analysis.

raises significant security concerns. As the size and com-
plexity of these systems increase – not to mention the
number of extensions, which may be active in arbitrary
combinations – so has the incidence of security-related
bugs. Indeed exploitable bugs in extension interfaces
have led to compromises in various hypervisors ranging
from complex VMMs to micro-hypervisors [2], [3],
[26], [27], [44]. Thus, higher assurance in the security
properties offered by hypervisors is critically important.
1.2. Solution – We address this challenge by developing
überSpark (üSpark), an architecture for building exten-
sible hypervisors that: (a) is compatible with commodity
systems; (b) enables automated compositional verifica-
tion of security properties; and (c) produces performant
systems. Compatibility with commodity systems is cru-
cial to impacting developers and deployment ecosystems.
üSpark supports development and verification directly at
the C and Assembly source and enables access to more
commodity hardware features. It is thus distinct from
prior approaches that sacrifice commodity compatibility
by employing new programming languages or hardware
models [33], [36], [81]. Compositionality means that
extensible systems can be verified modularly, rapidly,
and independently as they are implemented. Specifically,
when an extension is added, üSpark does not require
complete system re-verification to re-establish proper-
ties. While this goal guides much work in high-level
languages, achieving it for low-level languages is a sig-
nificant challenge. Furthermore, it distinguishes us from
verification of full functional correctness [31], [33], [43].
We focus only on security invariants – memory separa-
tion, control-flow integrity, information flow – and other
extension properties that can be formulated as invariants.
We verify such properties directly, compositionally, and
automatically on the C and Assembly implementation.
This helps bring to commodity-compatible hypervisors
those on-going approaches, which offer full functional
correctness, but we also enable precise reasoning on
untrusted and unverified system code. Finally, the üSpark
hypervisor’s performance is close to that of a commodity
unverified system.

88 25th USENIX Security Symposium USENIX Association

Key to the power of üSpark is the enforcement of
verifiable-object abstractions to hypervisors. The basic
building block is a üobject, which encapsulates spe-
cific system resources and provides an interface for
accessing them – with a well-defined behavioral contract
comprising a use manifest along with formal behavior
specifications. A üobject may represent core components
of a hypervisor or an extension and may be concurrent
or sequential. Public methods of concurrent üobjects
are invoked in parallel by multiple cores whereas se-
quential üobjects are implemented as monitors, guarding
all method invocations via a per-üobject lock. üObjects
communicate with each other via function calls.

There are two special üobjects: prime sets up a sane
initial state, while sentinel ensures control-flow seman-
tics even when üobjects with different levels of privi-
lege and trust invoke each other. Together, they enable
compositional inductive proofs of security properties ex-
pressed as invariants over sequential üobjects via source
code analysis and hardware assumptions [8]. A third
group of special üAPI üobjects allow access to shared
resources enabling state-of-the-art tools for automatic
verification of sequential C code to be soundly applied to
verifying security properties, while still allowing multi-
threaded high-performance applications.

In keeping with our first and second design goals,
üSpark enforces verifiable-object abstractions using a
combination of commodity hardware mechanisms (page-
tables and de-privileging) and light-weight static anal-
ysis, leveraging off-the-shelf C99 source-code analy-
sis and certified-compilation tools. üObjects, including
prime and sentinel, are automatically and modularly
verified using Frama-C [41], an industrial-strength soft-
ware analysis and verification framework. We use stan-
dard and custom Frama-C plug-ins to perform static
verification checks that include: per-üobject behavioral
contracts (via a standard weakest-precondition plug-in);
abstract variable assertions that enable behavioral asserts
as well as üobject control-flow integrity (via a standard
abstract-interpretation plug-in on stack frames and other
variables); syntactic checks that ensure conformance
with a restricted C99 syntax and logical de-privileging
of üobjects (via a standard abstract syntax tree analysis
plug-in); and, composition checks that enable client
üobjects that share a common server üobject to compose
soundly (via a custom composition-check plug-in).

üSpark also provides an idiomatic use of Assembly,
called CASM, to separate it from C code during system
construction. During analysis with Frama-C, the CASM
code is replaced by a C99 hardware model which models
key commodity hardware features. Our custom Frama-
C plug-in checks that the syntactic restrictions imposed
by CASM are respected by every üobject. The verified
üobjects are then compiled into executable binaries. Dur-

ing üobject compilation, all C99 code is processed using
the certified CompCert compiler [12] while each CASM
instruction is replaced by the corresponding Assembly
instruction by our custom Frama-C plugin. The CASM
language is designed to ensure that the C and Assembly
code operate on disjoint state. Our longer-term goal is
to guarantee that the verified source code properties
carry over to the binary by leveraging the C-Assembly
separation and cleanly extending the bisimulation proof
of the CompCert compiler to encompass hardware state
and Assembly code. In addition, we aim to ensure the
semantic equivalence between the hardware model and
the corresponding Assembly instructions. Proving these
guarantees formally appears straightforward, and need
only be done once for the üSpark framework, but we
leave it to future work.

The üSpark object abstraction is distinguished from
other systems in that it allows many fine-grained objects
in privileged mode. Static analysis enforces logical de-
privileging of those objects – e.g., a hypervisor module
running in host-mode ring 0 is precluded from accessing
page-table structures, thereby being “logically” depriv-
ileged – while control transfer between them does not
involve a context switch, thereby significantly helping
with system performance, our third design goal.
1.3. Contributions – (a) We present üSpark, an innova-
tive architecture providing verifiable object abstractions
for automated compositional verification of hypervisor
security properties while targeting commodity compati-
bility and performance (§4,§5). (b) We use üSpark to in-
crementally develop and verify security properties of an
existing open-source commodity x86 micro-hypervisor
with multiple independent security extensions (hypervi-
sor and extensions realized as 11 üobjects with 7001
SLoC; 5544 and 2079 lines of annotations and hard-
ware model; §6,§7). (c) We carry out a comprehensive
evaluation showcasing verification metrics, development
effort and performance, and report on our experience (1
person yr; üobject verification times from 1–23 minutes
with a cumulative time ≈ 1hr; 2% average runtime
overhead over native micro-hypervisor applications with
guest performance unaffected; §8,§9).

2. A MOTIVATING EXAMPLE

To motivate and explain üSpark, we use as a running
example, a hypervisor that closely corresponds to our
case study. Imagine the hypervisor managing a multi-
CPU guest, and supporting optional security extensions
that implement various guest-specific and system-wide
security properties. The hypervisor manages system de-
vices used by itself, by extensions, and by the guest.
System devices execute device firmware in parallel with
the CPUs and perform DMA. The hypervisor and exten-
sions are written in C and Assembly.

USENIX Association 25th USENIX Security Symposium 89

The hypervisor leverages CPU capabilities, such as
memory-mapped I/O (MMIO) and legacy I/O, for
system-to-device interaction; it initializes boot CPU
(BSP) state; it sets up memory page tables, as well as
device allocations and DMA protections (e.g., via an
IOMMU); it initializes multi-CPU support via the Local
Advanced Programmable Interrupt Controller (LAPIC)
and activates other CPUs and sets up their memory
page tables and appropriate protections. Constructing a
verified hypervisor of this sort, the developers must not
only build it and test it well, but also verify its code
against a set of general safety properties (e.g., memory
integrity) as well as functional invariants on hardware
and software state (e.g., IOMMU, LAPIC, CPU states).

Consider now adding two new verified extensions to
the hypervisor: hyperdep, which ensures that guest-
VM data pages are non-executable; and (b) sysclog,
which ensures that every system call issued by the guest
is logged via a dedicated network card to an external
trusted entity on the network. In order to preserve the
verified status of the system, the developers must prove
that: (a) memory integrity is not violated by the exten-
sions; (b) each extension provides its claimed property
to guests configured to use it; and (c) the extensions are
used in tandem by a guest if and only if they provide a
well-defined compositional property (e.g., separability).
This is non-trivial, since it requires the construction
and verification of inductive invariants that imply the
core security properties of the hypervisor, and those of
enabled extensions. Also, since extensions are optional,
verification must account for all possible configurations
– e.g., enabling either hyperdep, or sysclog, or both
– while avoiding the combinatorial blowup.

Of course, history tells us that two extensions are
never enough for any extensible system. What is more,
not all extensions come from the same developers or with
the same pedigree. Consider, for instance, an unverified,
strictly optional extension to the hypervisor; this might
be an extension that provides essential functionality, but
has not been verified, and is taken as an acceptable risk.
For our example, let us use aprvexec, an extension that
ensures that guest code pages contain only read-only,
whitelisted content. As with hyperdep and sysclog,
core hypervisor properties, and the properties of other
extensions should not be violated by running aprvexec,
and the risk of running aprvexec should only be
suffered by a guest that explicitly enables it and relies on
its presumed properties. Note that the guest itself, unless
it is verified as rigorously as the rest of the hypervisor,
is such an unverified component in the system.

3. GOALS AND ASSUMPTIONS

3.1. Goals – Our overarching goal is to enable develop-
ment of performant extensible hypervisors offering pro-

ofs of wide-ranging properties on their code, including
low-level memory safety, control-flow guarantees, and
information flow, as well as higher-level properties such
as trusted network logging (sysclog) and data execu-
tion prevention (hyperdep), going all the way up to
security properties spanning both hardware and software
states (IOMMU, LAPIC, network-card and CPU). Also,
verification must support properties over shared system
states: e.g., both hyperdep and sysclog manipulate
guest memory protections via the same guest page-
tables. Our design goals fall broadly in three categories.
3.1.1. Compositionality: When new components are
added, or existing components changed, human re-
verification effort should be limited to the changed
codebase, yet it should provide guarantees about the
entire system under all possible configurations.
3.1.2. Legacy Compatibility & Usability: Our develop-
ment and verification approach must integrate into the
existing hypervisor C and Assembly language program-
ming ecosystem, and cover the entire source code base
including commodity hardware and guest OS. We must
support extensions that are unverified in order to preserve
the legacy ecosystem. However, unverified code (e.g.,
the guest) must not violate system properties estab-
lished by verified code. Our development and verification
techniques must foster wider adoption by hypervisor
developers. We envision that entry-level developers will
rely on basic building blocks to provide simple prop-
erties while seasoned developers will harness the full
verification power to provide stronger guarantees.
3.1.3. Performance: Verification must not preclude ag-
gressive code optimizations for individual components,
including extensions, and must not adversely affect
runtime performance. Further, commodity guest OS on
multi-core hardware must be supported.
3.2. Non-goals – We do not aim for full functional
correctness (i.e., verifying that the implementation be-
haves exactly as specified in a high-level abstraction).
This separates the concerns of showing how a complex
low-level system achieves low-level formal properties
from how those low-level properties refine a high-level
abstract model; we focus on the former, since it is a hard
and as yet open problem, whereas much on-going work
tackles the latter [31], [42].
3.3. Attacker Model and Assumptions – We assume
that the attacker does not have physical access to
the CPU, memory, chipset or other verified extension-
specific system devices (our hardware TCB). Other sys-
tem devices, the guest OS, and unverified extensions are
under the attacker’s control. This is reasonable since a
majority of today’s attacks are mounted by malicious
software or untrusted system devices. We assume that
our hardware TCB is functionally correct, and we have
load-time integrity, i.e., the verified hypervisor is the one

90 25th USENIX Security Symposium USENIX Association

securely loaded onto the hardware at boot time. Finally,
we assume that the verification tools we use are sound.

4. ÜSPARK ARCHITECTURE

We next describe our architecture, and how it addresses
our goals (§3.1) via verifiable object abstractions (Fig 1)
4.1. üObjects – The basic building block in üSpark– the
“üobject” – is used to contain any system component
including verified and unverified hypervisor and guest
blobs and system devices. Logically, a üobject is a
singleton object guarding some otherwise indivisible
resources (e.g., registers, memory, devices) and imple-
menting public methods to access them. Public methods
are essentially regular function signatures but can be
restricted to specific callers (§4.2.1). Every üobject also
has a special public method, init, to set up the üobject
in a known-good initial state. A üobject may be concur-
rent or sequential. The public methods of a concurrent
üobject can be invoked in parallel on multiple cores. In
contrast, at most one core can invoke the methods of a
sequential üobject at a time, as with a traditional monitor.
When multiple cores are active, sequential execution is
enforced via per-üobject locks.

Each üobject defines its functionality using C and
Assembly. Assembly language for a verified üob-
ject is written using CASM, a dialect of C in
which Assembly instructions are encoded within regu-
lar C functions (CASM functions) via C-like pseudo-
function calls (CASM instructions1). For example, for
the x86 instruction movcr3 involving register eax

there is a corresponding CASM pseudo-function called
ci_movl_eax_cr3. Each CASM instruction pseudo-
function is defined in the üSpark hardware model
(§7.1.2) and bridges the shift between the reference
C semantics and the hardware instructions (e.g. access
to memory and to registers). During verification, each
CASM instruction is replaced by the C source code
from the hardware model. The resulting C-only program
is verified for required properties. CASM functions are
verified to respect the C application binary interface
(ABI), which is crucial for the soundness of verification.
During compilation, all C functions are processed via
a certified compiler while each CASM instruction is
replaced by the corresponding Assembly instruction. In
contrast to prior code-level verification approaches (§10),
CASM supports two-way nested C to Assembly calling
with full device modeling. This allows using various
verification techniques to prove (higher-level) properties
on device states other than just memory and numeric

1CASM syntax is similar to existing “asm” keywords supported by
traditional C compilers for integrating Assembly language instructions.
However, CASM provides a more principled way to integrate Assem-
bly instructions tailored for verification while retaining performance.

safety (§7.2). CASM also allows aggressive compiler op-
timizations of the callee C functions including inlining as
per compiler specifications, resulting in optimal runtime
performance (§8.3). We envision further optimizations
including inlining of hand-written CASM code as part
of our future work (§11.2).

Beyond defining its own functionality, a üobject is also
accompanied by a behavior contract. This consists of a
use manifest (§4.3) and a formal behavior specification
of its own public interface, which guarantee that if a
certain assumption is satisfied in how a public method
is invoked, then a property on the return values is
guaranteed to hold upon return of that method, without
mention of internal üobject state.

Every üobject is held to a number of invariants,
which together guarantee its adherence to the verifiable-
object abstraction. These invariants include memory and
(internal) control-flow integrity, so that the code can be
reasoned about; and satisfaction of the formal contract,
so that the contract alone may overapproximate the üob-
ject, thereby enabling compositional verification; as well
as correct initialization. The invariants are discharged via
assumptions on the hardware and proofs on the source
code of the üobject, and on the contract of üobjects it
interacts with (§5, §7.2).

While our use of object encapsulation is similar to ex-
isting micro-kernel architectures [42] and prior capability
systems [32], [63], üSpark is distinguished by privileged
disaggregation, i.e., multiple verified privileged üobjects
can be logically deprivileged. This enables us to achieve
the sweet spot with both high performance (there is no
hardware de-privileging overhead; §8.3.1) and compo-
sitional verification (privileged üobjects can be verified
seperately; §7.2).
4.1.1. Prime: is the first üobject to execute in a üS-
park enabled hypervisor. Prime is verified to satisfy
its contract which is: to set up the required system
interfaces and associated policies, establish operating
stacks, prepare the platform CPU cores, invoke the init
methods of other üobjects to initialize their state, and
kick-start üobject interactions.
4.2. üObject Interaction – A üobject interacts with an-
other by invoking a public method in its interface with
appropriate parameters. All verified üobjects operate on a
single stack (one per CPU core) that is set up initially by
the prime. Each unverified üobject uses its own, separate
stack. The verifiable-object abstraction requires üobject-
to-üobject control-flow integrity (otherwise returns could
land at arbitrary üobject program sites, access controls
would be violated, etc.). Therefore, üobjects must also be
verified to use their stack correctly (another invariant).
For unverified üobjects, that also means that stacks must
be switched to/from the unverified üobject stack and a
separate shadow stack must be maintained for storing

USENIX Association 25th USENIX Security Symposium 91

H/W & S/W verification enforced

call,call-async

ret,ret-async

call

ret

[CPU (privileged) instructions, memory and device interfaces]
System Resources

H/W enforced S/W verification enforced

(a)

(b)

Fig. 1: überSpark: enforces verifiable object abstractions using a com-
bination of commodity hardware and software verification mechanisms
to: (a) translate synchronous (call) and asynchronous (e.g., exceptions,
intercepts) inter-üobject control transfers, to establish pure function
call-return semantics; and (b) establish üobject resource confinement.

return addresses during control transfers. The special
sentinel üobject performs (verifiably) this functionality.
4.2.1. Sentinel: is a special üobject that mediates inter-
actions among other üobjects. Thus, an invocation of a
public method of a callee üobject by a caller üobject is
intercepted by the sentinel and dispatched only after a
number of optional runtime checks have succeeded.

These runtime checks logically ensure that the caller
may invoke a given public method on the callee ac-
cording to the üobject manifest (§4.3). For example, an
extension can be split between a top half and a bottom
half as with traditional device drivers (in our case study,
sysclog could shed its networking code into a sepa-
rate üobject, sysclognw, that only takes transmission
requests from sysclog, and is the only authorized user
of a separate NIC dedicated to logging), ensuring that
only the top half may invoke the bottom half at runtime,
while still keeping the two isolated from each other
and independently verifiable. If caller and callee are
both verified, then no runtime check is required, since
static analysis enforces the call policy (§4.3). If one is
unverified, the sentinel consults the policy dynamically
and allows or rejects the call accordingly.

Besides the runtime checks, the sentinel is respon-
sible for transfering control among üobjects. If both
are verified, the control transfer is just a function call.
But if either is unverified, the sentinel must employ
the appropriate control-transfer method for the isolation
mechanism imposed on the unverified üobject (e.g., if
using ring-based isolation, switch privilege levels and
stacks, marshal arguments, etc.). The sentinel may imple-
ment control transfers according to a number of concrete

ways (hardware virtual machines, software fault isola-
tion, etc.), while still adhering to the high-level invari-
ant for isolation. For example, in our micro-hypervisor
implementation, the sentinel traverses both ring-based
isolated üobjects, and hardware virtual machines (§6).

The sentinel is an üobject, so it adheres to the same
invariants as regular üobjects, but it is also verified to
implement its function correctly (perform the checks,
properly transfer control, etc.).
4.3. üObject Resource Confinement – üSpark imple-
ments üobject resource confinement in which distinct
system resources are: (a) managed by designated üob-
jects, (b) protected from access by unauthorized üob-
jects, and (c) regulated in their use by authorized client
üobjects. Such resources include üobject local memory
(code, data, stack), system memory (e.g., BIOS data, free
memory), CPU state and privileged instructions, system
devices and I/O regions. Every üobject includes a use
manifest in its contract that describes which resources it
may access. It is held to the property that it can only use
the resources declared in its manifest.

For verified üobjects, üSpark employs a hardware
model identifying CPU interfaces to system resources
(e.g., I/O and designated memory instructions interface
to system devices, instructions that can modify CPU
model specific register states, etc.) and static analysis to
ensure that access to those interfaces respects the üob-
ject’s manifest (§7). For example, sysclog’s manifest
shows that it may access the dedicated NIC for its remote
logging, and static analysis ensures that the code for
sysclog may access only that NIC, nor can any other
üobject access sysclog’s NIC.

In contrast, unverified üobjects are held to their use
manifests via more direct enforcement mechanisms, such
as hardware MMU and privilege protections (virtualiza-
tion, de-privileging) and software manipulations (e.g.,
SFI). Unverified üobjects can also be granted direct
access to exclusively held system devices so they can
perform I/O without any performance overhead (e.g., a
guest OS üobject is allocated all the devices except the
LAPIC and sysclog’s network card). Device üobjects
use DMA as their interface to other üobjects. üSpark uses
hardware IOMMU capabilities to ensure that device üob-
jects are restricted to perform DMA only to designated
üobject DMA memory regions.
4.3.1. üAPI üobjects: are a special set of üobjects that
encapsulate shared resources over which system proper-
ties are established (§6.4). For example, guest OS üob-
ject memory and CPU state are manipulated by multiple
extensions (hyperdep and sysclog). üSpark enforces
a composition check (§7.2.1), which for a given set of
üAPI üobjects checks if a set of “client” üobjects are
composable. Note that every üAPI üobject also performs
composability checks at runtime for invocations from

92 25th USENIX Security Symposium USENIX Association

unverified üobjects. Such composability checks reason
about the use-manifest portion of a client üobject’s
contract, which constrains how that üobject invokes the
üAPI’s public methods, ensuring some system-specific
and üAPI-specific composability guarantee, such as sep-
arability. Client üobjects must satisfy the property that
whenever they invoke a üAPI call, they obey their own
use manifest, and üSpark discharges this property via
static analysis on verified üobjects or runtime sentinel
checks for unverified üobjects.
4.4. üSpark Blueprint – üSpark also defines a hypervi-
sor blueprint (üBP), which a hypervisor implementation
is held to. The üBP is a high-level control-flow graph that
divides hypervisor execution into three phases: startup,
intercept, and exception handling which can in turn be
customized based on the actual number of system üob-
jects and their interactions (Figure 2; §6). The üBP along
with our high-level proofs (§5) enables us to abstract
the hypervisor, running on multi-core platform hardware
with system devices and DMA, as a non-deterministic
sequential program. This, in turn, allows us to prove
invariant properties of üobjects, and the hypervisor as a
whole, via sequential source-code verification. Further,
the üBP also enforces that fragile bits of the hardware
state (e.g., CPU and IOMMU) are only touched within
a monitor. This, allows us to prove invariant properties
encompassing hardware states and keeps our hardware
model simple by precluding modeling of concurrent
hardware accesses (§7.1.2).

5. ÜSPARK FORMALISM

We present a formalization of üSpark that justifies the
soundness of our analysis. For brevity, we first give an
overview of the formal reasoning followed by our high-
level verification approach and related theorems. Full
proof details can be found in our technical report [73].
5.1. üSpark Formalism Overview – üSpark reasoning
relies foundationally on a set of invariants – properties
that must hold throughout the execution of a üSpark
hypervisor (Appendix A). The invariants are divided into
üSpark system invariants and üSpark general program-
ming invariants (those that pertain specifically to üobject
C and CASM functions). Each invariant is proved by
reducing it further to a set of proof-assumptions on
hardware (PAHs) and proof-obligations on code (POCs)
using the üSpark blueprint (üBP; Fig. 2). POCs are then
discharged on all üSpark verified üobjects including the
prime and sentinel using specific verification tools and
techniques (§7). A hypervisor implementation is com-
pliant with üSpark– and therefore amenable to composi-
tional reasoning – if it satisfies all the üSpark invariants.
Full details of invariant-to-PAH/POC mappings, a one-
time effort, is described in [73]. At a high level, üSpark
invariants ensure the hypervisor implementation follows

the üBP and that prime is correct, and the first to start
in the system, and that it sets up memory protections,
stacks, and CPUs, before starting other execution con-
texts in a well-defined state. The remaining invariants
guarantee that üobjects have memory and control-flow
integrity, and the sentinel properly transfers control
among them, respecting the concurrent or sequential
designation.
5.2. Verification Approach and Theorems – There
are two tasks in verifying properties of a üSpark
hypervisor: (a) showing that it obeys the üSpark
invariants; and (b) showing that it obeys any
hypervisor/extension-specific invariant properties.
The benefit of (a) is that developers can express
system-specific properties in terms of üobjects and their
interactions with each other, yet verify those properties
separately on each individual üobject in isolation,
and on the ensemble of the behavior contracts of all
üobjects, without having to perform slow verification of
the combined source code for the whole code base.

Crucial to the model of üobject are CASM programs,
defined below. First, we define a CASM function as a
CompCert-C99 (CC99) function whose body consists
only of a block of Assembly instructions that respect
the CC99 ABI. A üobject CASM program is a CC99
program such that: (i) all Assembly code appears only
in CASM functions; and (ii) these CASM functions
preserve the caller C functions’ CPU register state.

Given a üobject CASM program, we are interested
in verifying two kinds of properties: (1) invariant prop-
erties: whether ϕ holds at every state (after every in-
struction), and (2) individual state assertions: whether ϕ
holds at specific program points. We can also specify
assumptions (i.e., preconditions), stating that we assume
ϕ holds when a function is called. Verification tools such
as Frama-C (§7) take programs annotated with properties
to be checked and decide whether the properties hold on
all execution traces of the program.

We begin by stating two üSpark theorems essential for
the correctness of our approach, which follow directly
from the üSpark programming invariants (Appendix A).

Theorem 1 (DISJOINTCASM). The union of üobject
CASM and C functions preserve the existing semantic
preservation property of the certified compiler.

Theorem 2 (EXITSENTINEL). üobject execution can
only exit via the sentinel.

The next theorem states that each üSpark execution is
an interleaving of properly nested executions of üobjects,
one on each core (a more formal definition can be
found in [73]). Intuitively, it means that üobject calls and
returns are properly nested except that the return of an
unverified üobject can be an exception, as an unverified

USENIX Association 25th USENIX Security Symposium 93

5

2a

4

4a

= =

4b

5a

7b5c

7a

5b 7c

8

8a

7

6

2

1

3

Fig. 2: üSpark Hypervisor Blueprint: startup, intercept and exception handling execution phases. Rounded boxes = üobjects; Square boxes =
nested üobject calls; Arrows = intra- and inter-üobject transitions; Single-lines = serialized execution; Double-lines = concurrent execution.

üobject can lie about its return address, but will be caught
by the hardware if it steps out of the üobject memory.
This theorem enables us to view üSpark semantically
as a concurrent object-oriented program, which is then
abstracted as a non-deterministic sequential program for
verification.

Theorem 3 (NESTEDCALL). Consider a legal execution
π of üSpark and a sequential üobject s. The projection of
π on executions of s consists of a sequence of properly
nested executions of s, each on a specific core.

5.2.1. Hardware Model and Converting Assembly to C:
We use C verification tools to verify CASM functions
in üobjects by converting Assembly to C. In addition
to general-purpose registers (which are preserved to
respect the CC99 ABI) these Assembly instructions
access special hardware registers (e.g., LAPIC). Let us
denote the set of registers accessed by CASM functions
in üSpark by Rhw . We introduce a set of fresh C
variables (denoted Vhw), one for each register; replace
each Assembly instruction accessing Rhw by one or
more CC99 statements that operate in a semantically
equivalent way over Vhw ; replace each r ∈ Vhw with vr
in assertions used for specifying hardware state during
verification. We refer to the mapping between Rhw

and Vhw , and the induced mapping from Assembly
instructions to CC99 statements, as our hardware model.
We assume that this mapping is correct. We refer to
the CC99 function obtained by transforming a CASM
function f in this manner as f̃ .
5.2.2. Abstract üSpark: We abstract üobjects as a non-
deterministic CC99 (NDCC99) program, i.e., a CC99
program with non-deterministic selection of values from
finite sets. In particular, the abstract üSpark üBP con-
sists of a set of abstract üobjects, where each abstract
üobject s̃ is obtained from the corresponding concrete
üobject s by converting each function g ∈ p(s) to an

abstract function g̃; more concretely: by replacing all
CASM functions as described above, replacing accesses
to data that other cores and devices can modify by non-
deterministic values, replacing a call to an unverified
üobject by a call to the intercept handler üobject with
non-deterministic arguments. The next theorem states
that each function g in a sequential üobject refines
its abstract version g̃ in that for each properly nested
execution of g, there is a corresponding execution of g̃.
This is crucial to the soundness of our verification.

Theorem 4 (EXECREFINE). If g is a function belonging
to a sequential üobject such that all Assembly code in g
is in a CASM function satisfying all üSpark programming
invariants, and c is any core, then for each properly
nested execution τ of g on c there is a corresponding
execution τ̃ ∈ [[g̃]] such that: τ ≡ τ̃ , where τ ≡ τ̃ lifts
the per-state equivalence to the trace.

We use C verification tools to verify POCs directly on
üBP (NDCC99 programs) of üSpark. Theorem 4 allows
us to lift the verification results to üobject source-code,
formally stated in the following theorem (we only show
the statement for invariant properties; the statement for
individual state assertions is similar).

Theorem 5 (INVCOMPOSE). Given any sequential üob-
ject s, let s̃ be the üBP abstraction of s. If an invariant
property ϕ holds on every execution of g̃(s), then ϕ is
an invariant property of every execution of s.

6. ÜSPARK HYPERVISOR IMPLEMENTATION

We applied üSpark to XMHF, an open-source micro-
hypervisor for the x86 32-bit hardware-virtualized plat-
form [72]. Originally, XMHF consists of a core hy-
pervisor and a single extension (called hypapp), that
together implement security-specific functionality. The
latest version (0.2.2) runs a Ubuntu 12.04 32-bit multi-
core guest OS with the core and hypapp at the highest

94 25th USENIX Security Symposium USENIX Association

privilege level and has been used to develop a wide
variety of security applications [53], [74], [83], [85],
[86]. Our goal is üXMHF– an incrementally developed
and verified version with deprivileged components, and
multiple hypapps. As a first step, we refactor XMHF
into: (a) verified hypervisor (vh) üobjects for prime, sen-
tinel, core, üAPIs, and verified hypapps; (b) unverified
hypervisor (uh) üobjects for unverified hypapps; and (c)
unverified guest (ug) üobjects for the OS (Figure 2); §8
quantifies this refactoring effort.
6.1. Core, Hypapp and Guest üObjects – We instan-
tiate üXMHF core using three vh üobjects: xcstrt

(startup), xcihub (handling ug üobject intercepts), and
xcehub (runtime harware exception and watchdog han-
dling). We instantiate extensions described in §2 as
separate vh and uh üobjects and add support for multiple
hypapps within xcihub. Finally, we instantiate a ug
üobject, guest for the guest OS. The xcstrt üobject
gets control from the prime üobject (§6.2), invokes all
registered hypapp üobjects for initialization, and then
transfers control to guest. The xcihub üobject gets
control from the sentinel upon any intercept (§6.3) and
in turn invokes the hypapp üobjects for guest event
processing. Upon intercept handling, xcihub resumes
execution of guest ug üobject (Figure 2).
6.2. Prime üObject – The üXMHF boot-loader uses
the GETSEC[SENTER] instruction to setup a dynamic-
root-of-trust and invokes the prime üobject in a hardware
protected execution environment with the CPUs in a
known good state and interrupts and DMA disabled.

Prime first enumerates devices and uses VT-d IOMMU
to restrict their DMA to designated memory regions. It
then initializes the vh and uh PAE page tables and the
ug 2D EPT page tables for memory protections such
that: (i) vh page tables map vh üobject memory regions,
including MMIO, with supervisor privileges, and all uh
and ug üobject memory regions as user with read-write
permissions; (ii) each uh and ug page tables marks only
its own region, including MMIO, as user and present;
(iii) for uh üobjects, all vh üobject memory regions are
marked supervisor; and (iv) for ug üobjects all vh and
uh memory regions including MMIO are marked not-
present. Prime uses disjoint CPU I/O bitmaps (which
are marked supervisor within uh and ug üobject page
tables) for uh and ug üobjects’ legacy I/O isolation.

Finally, for each CPU in the system, prime: (a) acti-
vates protected-mode with paging and hypervisor-mode
via control registers CR0 and CR4 and the VMXON instruc-
tion; (b) sets up SYSENTER MSRs, interrupt descriptor
table and VM control structure (VMCS) to transfer
control to the sentinel; and (c) loads vh page tables in
CR3 and transfers control to xcstrt core startup üobject.
6.3. Sentinel üObject – For vh to vh üobject control
transfers, the sentinel uses an indirect JMP instruction.

The SYSEXIT and SYSENTER fast system call instruc-
tions are used vh to uh control transfers and vice-versa.
In such cases, the sentinel loads the uh page tables
into the CR3 register and transfers control to the uh
üobject entry point (or return address via the SYEXIT

instruction) at the de-privileged level. The sentinel uses
the VMLAUNCH instruction for a call from a vh to ug
üobject. It handles intercepts by transferring control to
the vh xcihub üobject and upon return from xcihub

resumes the ug üobject via the VMRESUME instruction.
In both cases, it loads the ug üobject EPTs prior to the
launch. The sentinel handles exceptions by transferring
control to the vh xcehub üobject. Upon return from
xcehub execution is resumed via the IRET instruction.
6.4. üAPI üObjects – Both the core and hypapp üob-
jects use üAPI üobjects to influence the ug üobject state.
This state includes the ug üobject EPTs and VMCS.
We implement üAPI üobjects ugmpgtbl and ugcpust

which present interfaces to the ug üobject EPTs and
VMCS respectively. We also implement an additional
üAPI üobject uhcpust as an interface to shared CPU
state between vh and uh üobjects (e.g., MSRs).
6.5. üObject Runtime Library – üObjects rely on a
set of common functionality implemented in the fol-
lowing libraries: (a) libuc with memory and string
functions; (b) libucrypt with SHA-1 functionality; (c)
libustub with üobject entry and sentinel CASM stubs;
and (d) libuhw for platform hardware access.

7. ÜSPARK HYPERVISOR VERIFICATION

7.1. Verification and Development Tools – We first
describe the verification and development tools we use.
7.1.1. Static Analysis with Frama-C: Frama-C [41] is
an industrial-strength C99 static analysis and verifi-
cation toolkit, written in type-safe OCaml. It has a
modular architecture and offers different plugins for
distinct styles of analysis. We use the following Frama-C
plugins: Deductive verification via Frama-C’s Weakest-
Precondition (WP) plugin enables the verification of
assume-guarantee behavior specifications on C functions.
Those specifications are expressed in the Annotated
ANSI C Specification Language (ACSL) [25] in terms
of the C source variables and operations. The WP plugin
verifies such ACSL specifications statically on the body
of the function by discharging verification conditions via
an ensemble of external SMT solvers. Abstract interpre-
tation via Frama-C’s Value plugin analyzes a program
using a sound abstraction of its concrete semantics. It is
used to prove ACSL assertions placed in the body of the
program that express partial specifications about program
variables, and can be combined with deductive verifica-
tion. Abstract syntax tree (AST) analysis via Frama-C’s
AST plugin performs syntactic analysis on control-flow

USENIX Association 25th USENIX Security Symposium 95

graphs and ASTs to enforce syntactic restrictions, e.g.,
the absence of primitives like function pointers.
7.1.2. Hardware Model: We have implemented a C99
hardware model for the commodity x86 hardware-
virtualized platform, by representing platform features
such as CPU registers and system-device states as C
variables and describing formally how the hardware
(should) behave. The hardware model is a re-usable
but trusted component. Our hardware model allows for
iterative development, modeling only portions of the
device used in proving security invariants. This design
principle, coupled with serialization enforced by the
üSpark architecture blueprint (§4.4), enables us to keep
the hardware model simple and amenable to formal
validations. Various techniques exist to validate such a
hardware model [50], [58] which we plan on exploring
as future work (§11).
7.1.3. üSpark Frama-C Plugins: We built üSpark-
specific plugins on top of Frama-C as follows: (a)
übp – enforces üSpark blueprint; (b) ühwm – embeds
hardware model during verification; (c) ücasm –
substitutes Assembly mnemonics corresponding to
CASM instructions after verification; (d) ücc – enforces
general üSpark coding rules; (e) ümf – parses üobject
manifest; and (f) ücvf – performs composition check
(§7.2.1). These üSpark-specific plugins do not impact
the robustness of the Frama-C toolset as we do not
modify the kernel or standard plugins. Further, Frama-
C’s modular architecture helps us keep üSpark-specific
Frama-C plugins small, simple, and amenable to manual
audits to ensure correctness (§8.1).
7.1.4. Frama-C and CompCert: In keeping with our
longer term goal of guaranteeing that the verified source
code properties carry over to the binary, we employ
the CompCert [11], [12], [46] certified C99 com-
piler to compile üobjects. CompCert over-specifies C99
implementation-defined and unspecified behaviors and
is formally verified to produce semantically equivalent
Assembly from a C99 program. Our choice of Frama-
C and CompCert is further justified by their semantic
compatibility. We empirically tested Frama-C against
CompCert’s C99 specifications and found that both tools
had the same treatment of C99 implementation-defined
and unspecified behaviors. Further, both tools employ
an identical byte-addressable memory model with base
addresses and offsets. Therefore, they combine naturally
into a powerful analysis and development workflow
towards producing verified system binaries.
7.1.5. Soundness Via Weakening: We weaken our execu-
tion model in two cases to enable sound reasoning. First,
since current state-of-the-art static analyzers including
Frama-C largely assume sequential execution, we treat
all reads to DMA memory and all memory reads by a
concurrent üobject as non-deterministic, for verification

1 void ugmpgtbl_setentry(u32 gsid, u32 addr, u64 v){
2 /*sysclog*/ {v=v&7; v&=~_X; v|=_R; v|=_W;}
3 /*hyperdep*/ {v=v&7; v&=~_X; v|=_R; v|=_W;}
4 /*@assert sysclog: (!(v&_X) && (v&_R) && (v&_W));*/
5 /*@assert hyperdep: (!(v&_X) && (v&_R) && (v&_W));*/
6 }

(a)
7 void ugmpgtbl_setentry(u32 gsid, u32 addr, u64 v){
8 /* sysclog */ {v=v&7; v&=~_X; v|=_R; v|=_W;}
9 /* aprvexec */ {v=v&7; v&=~_W; v|=_R; v|=_X;}

10 /*@assert sysclog: (!(v&_X) && (v&_R) && (v&_W));*/
11 /*@assert aprvexec: (!(v&_W) && (v&_R) && (v&_X));*/
12 }

(b)

Fig. 3: Composition check: (a) hyperdep and sysclog üobjects
both use ugmgtbl üAPI setentry interface to set guest mem-
ory page protections in a composable manner. (b) sysclog and
apprvexec both use setentry in a non-composable manner.

to soundly model interference from devices and other
cores. Second, we preclude use of C function pointers
and CASM indirect jump instructions, which remain
challenging for current state-of-the-art static analyz-
ers [21]. In practice (§7.2), this weakining does not stop
us from verifying important security properties, since
such properties are implemented via sequential üobjects
using non-DMA memory.
7.2. üXMHF Verification – Verification of üXMHF
consists of: (a) üobject composition check, and (b)
verifying üSpark invariants (§5) and üobject local prop-
erties. Throughout this section we use vh, uh and ug
as acronyms for verified and unverified hypervisor and
unverified guest üobjects respectively.
7.2.1. üObject Composition Check: Resources accessed
by multiple üobjects are guarded by üAPI üobjects
(§4.3.1). Here we check that all üobjects are composable
over the set of üAPIs they use. At a high level, this
is checked by constructing an assertion that captures
the conjunction of the possible values that the two
üobjects write to a shared resource, and then verifying
that this assertion is not violated. More specifically, for
every üAPI üobject, an interface stub function is first
created using its manifest. Next, the stub is populated
with invariant definitions and assertions (if any) listed
in the manifest of every vh and uh non-üAPI üob-
ject that invokes it. Figure 3a shows an example stub
for ugmpgtbl üAPI üobject setentry interface with
hyperdep and sysclog hypapps enabled. Lines 2–6
are populated using the corresponding hypapp üobject
manifests. Figure 3b shows the same stub with sysclog
and aprvexec hypapps enabled. Finally, the assertions
in the stub are verified under non-deterministic inputs.
For example, hyperdep and syclog both set the read,
write and clear the execute bits for the memory protec-
tions of the provided guest memory-page (lines 2–3) and
are therefore composable; the assertions (lines 4–6) in
Figure 3a are valid. However, sysclog and aprvexec
are not composable (Figure 3b) since aprvexec sets
the execute bit while sysclog clears the execute bit in
the protections for the provided memory-page (lines 9–

96 25th USENIX Security Symposium USENIX Association

10). Note, such composition check assertions are also
performed at runtime for üAPI invocations from uh
üobjects (§4.3.1). This composition check procedure
is üXMHF-specific, and a more general check is an
interesting direction for future work.
7.2.2. üObject Compositional Verification: As we dis-
cussed in §5, we first verify üSpark invariants via a
set of PAHs and specific POCs on all vh üobjects
including the prime and sentinel. §7.2.3 describes POC
verification in further detail. We then verify each of the
üXMHF core, hypapp and üAPI üobjects for their local
invariants. For brevity we summarize the hyperdep
üobject verification approach here. Appendix B lists the
invariants and verification approach for other üXMHF
üobjects. hyperdep preserves the following invariant
over the ugmpgtbl setentry üAPI: guest OS provided
memory pages are marked read-write and not executable.
We use deductive verification to verify the hyperdep

üobject activate method to ensure that the guest page
address that is passed is used as the parameter to the
ugmpgtbl üobject setentry method with read, write
and no-execute protections. Finally, we verify the üobject
runtime library (§6.5) for memory safety including be-
havior specifications for the memory and string functions
within libuc. Note, uh üobjects are not verified since
their properties follow from üAPI invariants. ensured by
our composition check (§7.2.1).
7.2.3. POC Verification: For brevity, we choose a sam-
pling of POCs from a few üSpark invariants (Inv4ü , Inv6ü ,
Inv6üprog, Inv7üprog, and Inv10ü ; see Appendix A and [73])
that showcase the importance of all the verification
techniques described in §7.1.1. All the üSpark invariant
POCs are verified using a combination of these tech-
niques. Note that examples described below are neces-
sary (but not sufficient since they are a sample) for the
high-level proofs; for example the NESTEDCALL theo-
rem (§5) cannot be proved if there is no non-overlapping,
unity-mapped memory (Inv4ü) or DMA protection (Inv6ü).

Figure 4 shows a POC code snippet – from the vh
üobject page-table setup function within prime – for Inv4ü
verified using deductive verification. ACSL requires-
assign-ensure clause triples (lines 4–11) are used to
specify function behavior. In this case they specify that
every memory address in the page tables is disjoint with
virtual-to-physical unity mapping. ACSL loop invariant
clause allows specification of loops with data structure
invariants (lines 17–25). Finally, ACSL ghost variables
– C statements and variables only visible in specifica-
tions – are most notably used for modular reasoning
of nested function calls. For example, line 28 invokes
a support function for obtaining the memory protec-
tion of the specified memory address. This is aliased
into a ghost variable which can then be used within
the specification (line 29). In summary, the requires-

1 //@ ghost u64 gflags[SZ_PDPT*SZ_PDT*SZ_PT];
2 /*@
3 ...
4 requires \valid(vhpgtbl1t[0..(SZ_PDPT*SZ_PDT*SZ_PT)-1]);
5 ...
6 assigns vhpgtbl1t[0..(SZ_PDPT*SZ_PDT*SZ_PT)-1];
7 assigns gflags[0..(SZ_PDPT*SZ_PDT*SZ_PT)-1];
8 ...
9 ensures (\forall u32 x; 0<=x< SZ_PDPT*SZ_PDT*SZ_PT ==>

10 ((u64)vhpgtbl1t[x] == (((u64)(x*SZB_4K)
11 & 0x7FFFFFFFFFFFF000ULL) | (u64)(gflags[x]))));
12 @*/
13 void gp_setup_vhmempgtbl(void){
14 u32 i, spatype, slabid=XMHF_SLAB_PRIME;
15 u64 flags;
16 ...
17 /*@
18 loop invariant 0 <= i <= (SZ_PDPT*SZ_PDT*SZ_PT);
19 loop assigns gflags[0..(SZ_PDPT*SZ_PDT*SZ_PT)],spatype,
20 flags,i,vhpgtbl1t[0..(SZ_PDPT*SZ_PDT*SZ_PT)];
21 loop invariant \forall integer x; 0 <= x < i ==>
22 ((u64)vhpgtbl1t[x]) == (((u64)(x*SZB_4K)
23 & 0x7FFFFFFFFFFFF000ULL) | (u64)(gflags[x]));
24 loop variant (SZ_PDPT*SZ_PDT*SZ_PT) - i;
25 @*/
26 for(i=0; i < (SZ_PDPT*SZ_PDT*SZ_PT); ++i){
27 spatype=_gp_getspatype(slabid, (u32)(i*SZB_4K));
28 flags=_gp_getptflags(slabid, (u32)(i*SZB_4K),spatype);
29 //@ ghost gflags[i] = flags;
30 vhpgtbl1t[i] = pae_make_pte((i*SZB_4K),flags);
31 }
32 }

Fig. 4: Frama-C ACSL behavior specification and deductive verifica-
tion: vh üobject memory page-table setup top-level function in prime.

prime.cS:
1 ...
2 ci_movl_eax_medi();
3 ...
hwm-cpu.c:

4 void ci_movl_eax_medi(){
5 ...
6 if(uhm_cpu_r_edi >= IMMULO && uhm_cpu_r_edi >= IMMUHI)
7 uhm_immuwr(uhm_cpu_r_edi,uhm_cpu_r_eax);
8 ...
9 }
hwm-iommu.c:

10 void _gxmhfhwm_iommu_wr(u32 addr, u32 val){
11 ...
12 if (addr==IMMUCTRL){ cbuhm_immuctrlwr(val); ... }
13 ...
14 }

prime-vdrv.c:
15 void cbuhwm_immuctrlwr(u32 val){
16 //@assert !(val & IMMUTE) || (val & IMMUTE) &&
17 // gxmhfhwm_iommu_retaddr == (u32)&gp_ret);
18 }
19 ...

Fig. 5: üSpark hardware model and proving IOMMU DMA protection.

assigns-ensures clause triplet is sufficient to represent
the function behavior, and the loop invariants and ghost
variables within the function are used to prove the clause
triplet. ACSL is highly expressive with global and type
invariants, including first-order, polymorphic, recursive
and higher-order specifications [25].

Fig 5 shows a POC code snippet for Inv6ü verified
using abstract interpretation and the hardware model.
The snippet is part of the DMA protection setup function
within prime. Line 2 in Fig 5 shows üobject using a
designated CASM instruction to perform device I/O to
the IOMMU. The hardware model hooks this CASM
instruction to the IOMMU device model if the specified
I/O range falls within the IOMMU device space (lines 6–
7). The IOMMU modeling then simulates the required
logic based on the register accessed and value written
(line 12). The hardware model also invokes the appro-

USENIX Association 25th USENIX Security Symposium 97

Impl Annot Verification
Component (SLoC) Time[s] Mem[GB]

üObject libraries:
libuc 151 223 101 0.80
libucrypt 88 58 35 0.05
libustub 120 97 5 0.03
libuhw 1706 749 465 0.90
prime 2043 3176 1386 1.10
sentinel 672 501 423 0.75
üXMHF üAPI üObjects:
ugmpgtbl 128 91 174 0.65
ugcpust 73 46 118 0.70
uhcpust 26 23 99 0.50
üXMHF Core üObjects:
xcstrt 97 0 53 0.12
xcihub 247 202 147 0.60
xcehub 41 0 48 0.08
üXMHF Hypapp üObjects:
sysclog 255 213 174 0.75
sysclognw 1193 273 413 0.85
hyperdep 161 31 98 0.70
aprvexec 199 – – –

Total/Avg. 7200 5544 3739 0.57
üSpark üAPI composition check 18 0.23

üSpark Hardware model SLoC = 2079

Fig. 6: üXMHF üobject SLoC and verification time/memory.

priate verification driver callbacks whenever such device
registers are written to (line 12). This ensures required
device state invariants. For example, assertions in lines
16–17 of the IOMMU control register callback ensure
that DMA page-table protections when enabled always
point to the populated DMA page tables (which are
populated by the prime in a separate function not shown).
This ensures that devices can only perform DMA to
üobject DMA memory region. Similar techniques are
used to: (a) hook designated CASM instructions for
üobject access to system memory including ug üobject
memory regions; and (b) proving intra-üobject CFI in the
presence of both C and CASM functions by ensuring that
CASM functions respect the C ABI and preserve callee
registers and stack frames (via corresponding hardware
model callbacks, assertions, and ACSL annotations).

POCs for Inv6üprog and Inv7üprog are verified by analysing
the abstract syntax trees (AST) to preclude statements
involving function pointers in C functions and to en-
sure CASM functions always end with a CASM ret

instruction respectively. The POC for Inv10ü is verified via
CFG analysis to enforce üSpark blueprint conformance.
Similar AST-based techniques are employed to: (a) em-
bed hardware model statements, (b) substitute Assembly
mnemonics, and (c) ensure soundness of the hardware
model by precluding C functions from touching hard-
ware model functions and variables and vice-versa.

8. EVALUATION

8.1. System size and Verification TCB – üXMHF is
implemented in 7001 SLoC verified privileged code split

übp ücasm ücc ümf ühwm ücvf Total

108 296 138 132 199 148 1021

Fig. 7: Frama-C üSpark specific plugins are written in OCaml and
build atop existing Frama-C kernel and standard plugins.

into 11 üobjects with 5544 lines of ACSL annotations
and 2079 lines of hardware model (Figure 6). We
also implemented an unverified hypervisor extension
(aprvexec; 199 SLoC) to illustrate how unverified and
verified hypervisor üobjects interact. Depending on the
properties, üobject verification takes 48 seconds to 23
minutes, and up to 1.1 GB of memory. Cumulative
verification time is just over an hour, comparing favor-
ably to related verification efforts [34]. Compositional
verification enables each üobject to be (re-)verified sep-
arately. The prime üobject takes the longest to verify,
but typically does not change as often as other üobjects.
Decomposing prime into multiple üobjects can further
reduce its (re-)verification time significantly.

Our verification TCB comprises the ACSL annota-
tions, the hardware model (§7.1.2), and Frama-C with
associated plugins. Modularity of üobject programs helps
keep annotations small and feasible for manual review.
Various orthogonal techniques exist to validate our hard-
ware model [50], [58] that we plan to explore as future
work. Frama-C is an industrial-strength tool used in
many critical systems today [41]; we did not encounter
any soundness bugs in these tools (§9). Frama-C üSpark
specific plugins (totaling 1021 SLoC of OCaml; Fig-
ure 7) are modular, simple, and built upon the existing
Frama-C kernel and plugins making them amenable to
manual audits. Overall, our TCB compares favorably
with other prior approaches (Figure 8).
8.2. Developer Effort – üXMHF was developed and
verified in a year by a single system developer who
was new to Frama-C/ACSL. A fraction of the time was
spent adding implementation support for multiple hy-
papps with a greater part spent on porting to the üSpark
hypervisor architecture by creating required üobjects and
adding verification related harnesses and annotations.
Annotation-to-code ratio (ACR) ranges from 0.2:1 to
1.6:1 (Figure 6). For üobjects whose properties rely
solely on üAPI’s the ACR is small (e.g., hyperdep).
üObjects with properties requiring functional correctness
(e.g., sysclog and xcihub) have relatively larger ACR.
The prime and sentinel üobjects have the highest ACR
since they discharge most of the üSpark invariants.
8.3. Performance Measurements – All performance
benchmarks were carried out on a Dell Optiplex 9020
with an Intel Core-i5 4590 quad-core processor with
4GB of memory. All üobjects were compiled with full
compiler optimizations turned on.
8.3.1. üSpark Microbenchmarks: The cost of a CASM
NULL function call is only 12 clock cycles. Sentinel

98 25th USENIX Security Symposium USENIX Association

System/TCB Compiler HW Model Annot./Specs. Verification Tools Other

Verve In TCB NS NS Boogie, BoogieASM, TAL checker, Z3 Iso-gen, boot-loader
seL4 In TCB NS In TCB Isabelle/HOL, HOL4, Myreen, Sonolar, Z3 boot-loader
Hyper-V/Vcc In TCB In TCB In TCB Vcc, Boogie, Z3 boot-loader
Ironclad Out-of TCB In TCB In TCB Boogie, BoogieASM, Dafnyspec, Symdiff, Z3 None
mCertiKOS Out-of TCB NS In TCB Coq None
üSpark Out-of TCB In TCB In TCB Frama-C, üSpark plugins, Z3, CVC3, Alt-Ergo None

Fig. 8: Development and Verification Tools Trusted Computing Base (TCB) Comparison: All systems in addition employ a preprocessor (either
built-in or stand-alone) for macro substitution and file inclusion and an assembler and linker to produce machine code; NS = Not supported

Verified– Verified–Unverified / Unverified–Verified
Verified SEG CR3 TSK HVM

2x 37x 48x 70x 278x

Fig. 9: üSpark Microbenchmarks: Sentinel üobject call overheads w.r.t
regular NULL function call in privileged mode.

CPUID RDMSR WRMSR XSETBV CRx VMCALL SIPI

100 98 98 100 100 99 99

Fig. 10: üXMHF Microbenchmarks: core intercept handling clock-
cycle latency as % of native XMHF performance without üSpark.

sysclog hyperdep aprvexec ropdet iousb ionet iodisk ioser

97 99 91 89 95 96 99 99

Fig. 11: üXMHF Hypapp and I/O Benchmarks as % of native XMHF
performance without üSpark.

SPEC ioz-read ioz-write compbench apache

100 100 100 100 100

Fig. 12: üXMHF Guest CPU and I/O Benchmarks as % of native
XMHF Guest performance without üSpark.

call overhead for verified-to-verified üobject transitions
is 2x w.r.t NULL function call (Figure 9). This is due to
control transfers to the sentinel and üobject entry points
and return addresses via JMP instructions. For transitions
involving unverified üobjects the sentinel overhead is
broken up into: (a) software overhead such as register
saving, parameter marshalling, and call-policy enforce-
ment; and (b) hardware deprivileging overhead. As seen,
segmentation and CR3-based page tables provide the
lowest overheads (37x and 48x), but are still an order
of magnitude larger than the verified-to-verified sentinel
call overhead. Hardware deprivileging adds a significant
portion (upward of 60%) to the sentinel call in this case.
These overheads are comparable to existing unverified
disaggregated systems and micro kernels (§10).
8.3.2. üXMHF Microbenchmarks: For purposes of mi-
cro benchmarking we measure the üXMHF xcihub

üobject, which handles several intercepts required for
guest execution. üXMHF delivers near native XMHF
performance in all cases (Figure 10). We attribute the
small overhead for certain intercepts to the code refac-
toring using üobjects.
8.3.3. üXMHF Guest Benchmarks: We execute both
compute-bound and I/O-bound applications for
guest benchmarking purposes. For compute-bound
applications, we use the SPEC-INT 2006 suite. For

I/O-bound applications, we use the iozone (disk reads
and writes with 4K block size and 2GB file size),
compilebench (project compilation benchmark), and
Apache web server performance (ab tool with 200,000
transactions with 20 concurrent connections). üXMHF
does not affect native XMHF’s guest performance in all
cases (Figure 12).
8.3.4. üXMHF Application Benchmarks: We use the hy-
papps described in §6.1 along with another unverified
hypapp ropdet (which captures guest branch infor-
mation for ROP detection) for hypapp performance
benchmarking. We wrote a guest üobject that interacts
with the hypapps to leverage their services as follows.
For sysclog, activate syscall logging by setting the
syscall code page to no-execute and perform sample
syscalls. For hyperdep, set a data page to no-execute
and perform data read and write operations on that
page. For aprvexec, setup a code page for approved
execution, and invoke the hypapp to approve and lock
the page against writes, before executing a sort function
on that code page. Finally, for ropdet, register a test
function over which ROP detection is to be performed,
and a invoke the test function to collect branch in-
formation. Figure 11 shows the performance overhead
for these hypapps compared to native XMHF without
üSpark. Verified sysclog and hyperdep run close to
native XMHF speeds (2% avg. overhead). Unverified
aprvexec and ropdet incur higher overheads (9% and
11% respectively). The overhead is due to üAPI invariant
checks (<10%) and the sentinel cost of deprivileging,
shadow stack and parameter marshalling (§8.3.1).

For I/O performance benchmarks, we wrote a mix of
DMA I/O (usb and net) and programmed I/O operations
(disk and serial) within a hypervisor üobject. The I/O
performance overhead (Figure 11) is anywhere from 1-
5% with the DMA-based I/O incurring more overhead.
We attribute the higher DMA-based I/O overhead to
the IOMMU page tables for DMA access. Note that
üSpark does not actively interpose on any I/O operations,
which results in a much lower overhead. These I/O
overheads also match up to existing micro hypervisor
I/O architecture overheads [67], [72], [86].

9. EXPERIENCE AND LESSONS LEARNED

9.1. Frama-C – The WP plugin’s limited casting sup-
port helped detect erroneous esoteric casts, e.g., pointer

USENIX Association 25th USENIX Security Symposium 99

to int/u8. While the Value plugin cannot propagate states
to arbitrarily large loops, the semantic unrolling option
helped propagate states only for desired functions so
memory/time resources can be well spent. WP loop
invariants are versatile in supporting unbounded loops
with nesting. WP discharges proofs more effectively
when operating over single-dimensional array accesses
for mutating assignments and invariants and simple state-
ments using shift and bit-wise operators. WP also caused
proof failures in certain cases with local variable alias-
ing of function parameters; using parameter variables
directly ameliorated the issue. We did not encounter any
soundness bugs in Frama-C and its plugins.
9.2. Verification Theories – Automated verification re-
sults vary by theory, e.g., Alt-Ergo and Z3 failed to
discharge a few verification conditions (VC) that CVC3
handled. Frama-C’s ability to combine provers was very
useful; CVC3, Z3 and Alt-Ergo together solved all the
VCs generated during verification.
9.3. Annotations – ACSL is versatile in its support for
writing partial specifications (e.g., memory safety of
SHA-1) and assertions as well as complete specifications
(e.g., page-table setup). Futher, ACSL annotations use
actual C variables and operations. This expressivity spec-
trum thus allows system programmers to easily transition
into the verification domain by initially using simple
assertions and function contracts (partial specifications)
and iteratively mastering complete specifications.
9.4. CompCert – The C99 subset handled by CompCert
suffices to implement most systems-level software con-
structs. However, struct bit fields with packing and align-
ment within struct fields are currently unsupported. We
added methods with bitwise operators to pack, unpack,
deconstruct, and align such variables in the sources.

10. RELATED WORK

10.1. Unverified monolithic – SELinux [66], AppAr-
mor [1] and FBAC [59] are some examples of OS kernel
modifications that add features to an existing (privileged)
kernel to enforce various access control policies. Such
approaches suffer from the lack of assurance and sepa-
ration: a bug in an extension or the core can exist, and
then affect other parts of the system arbitrarily.
10.2. Unverified disaggregation – Xen/Xoar [17] con-
verts Xen into deprivileged partitions. NOVA [67] de-
privileges everything (including VMM modules), except
for a small privileged micro kernel. Safe composition of
OS kernel extensions include extensible operating sys-
tems [10], [15], [20], [23], [39], [61], kernel driver isola-
tion [13], [28], [47], [48], [69], [70], [78], interposition
mechanisms [29], [35], [37], [40] and API compatability
libraries [5], [7], [9], [30], [56], [79]. Xax [19] confines
untrusted application code to an ABI for accessing OS
services. SGX [4] protects application code from (buggy)

privileged code. Disaggregation brings mere isolation but
no formal guarantees on its own.
10.3. Verified sandboxing – SFI [52], [54], [60], [76],
[82] is a software-based approach for application-level
memory isolation but lacks support for low-level privi-
leged instructions and hardware device access, which are
necessary for hypervisor and its extensions. Also, SFI
employs unverified binary rewriting which can change
the semantics of the program and break invariants nec-
essary for compositional verification. Singularity [36]
sacrifices legacy compatibility with a complete redesign
of a OS written in type-safe languages (MSIL/TAL) and
uses software mechanisms to isolate processes (SIP) and
supports only memory and type-safety properties.
10.4. Verified kernels – seL4 [43] verifies full func-
tional correctness of the C implementation (7500 LOC)
of the micro kernel by showing that it refines an abstract
specification. Their specifications don’t support abstrac-
tions among the kernel or the different kernel modules.
These interdependencies often lead to more complex
invariants which are difficult to prove (20 person years).
Further, seL4 does not allow adding properties using un-
trusted services; such additions require direct integration
into the kernel and lengthy re-verification. Furthermore,
there is no support for Assembly (ASM) or device states,
which precludes verification of low-level code interact-
ing with devices; (1200 C and 500 ASM SLoC remain
unverified). mCertiKOS [31] follows a similar approach
to seL4 but makes the abstract specification layered to
reduce the interdependencies among the kernel and var-
ious extensions and makes the verification process more
tractable for an admittedly stripped down version of the
original CertiKOS kernel (single-core, non-preemptible
custom guest OS, basic process and syscall handling).
There is no hardware model and support for ASM is
limited to only general-purpose registers. Adding extra
system instruction support and device models does not
seem trivial; even the stripped down version of the kernel
has 300 C and 170 ASM SLoC unverified. This is
attributed to memory model limitations of their method-
ology [31]. Lastly, both mCertiKOS and seL4 require the
developer to write line-for-line specifications for C/ASM
code in a different abstract language (Isabelle/HOL or
Coq/Ocaml/Lasm) with a very steep learning curve.

The VCC project [16], [45] verifies the functional
correctness of a fixed Hyper-V hypervisor codebase run-
ning a multi-CPU guest, via automated theorem proving.
However, the code annotations do not support abstrac-
tions among the core hypervisor or drivers. This leads
to complex invariants due to interdependencies; only
20% of the hypervisor code-base has been verified [16].
Further, their ASM verification methodology and lack
of a full hardware model only allows proving memory
safety and arithmetic properties for ASM functions while

100 25th USENIX Security Symposium USENIX Association

precluding compiler optimizations for the corresponding
C callee functions [51]. XMHF [72] employs the CBMC
model checker with assertions on the C code of a
micro-hypervisor to verify memory integrity. However,
multiple extensions or composing other properties on top
of memory integrity are unsupported. Further, that effort
assumes interface confinement and leaves out 422 C and
388 ASM SLoC due to limitations of CBMC with large-
loops and lack of a hardware model.
10.5. Verified System Stack – In Verve [81], a sim-
plified OS and applications are verified for type and
memory safety using a Hoare-style verification condition
(VC) generator and automated theorem proving. Iron-
clad [33] extends Verve with support for higher-level
application properties. High-level specifications (written
in Dafny) are translated to corresponding code with
VCs discharged via an automated theorem prover; the
verification took 3 person-years. Verisoft [6] integrates
hardware and software, with high-level specifications
written in C0 (a tiny subset of C semantics) and refined
down to a custom CPU semantics. The verification took
20 person-years on a simple OS with only a disk driver.
System stack verification approaches, while powerful,
sacrifice compositionality, legacy compatibility and per-
formance. Any changes to kernel code and/or extension
configuration requires lengthy re-verification (in person
years). Further, the entire system software stack has to be
re-implemented in type-safe languages such as C# and
TAL (in Verve) or in high-level Dafny specifications (in
Ironclad) or on a non-commodity CPU abstraction (in
Verisoft). Furthermore, these approaches lack support for
co-existence with unverified programs or a guest OS.

11. LIMITATIONS AND FUTURE WORK

We now discuss current limitations of our approach with
pointers to future work towards bridging these gaps.
11.1. Hardware Model – Our hardware model is cur-
rently a trusted component. However, orthogonal tech-
niques such as path-exploration lifting [50] and mecha-
nized x86-multiprocessor semantics [58] provide a solid
foundation on which we plan to build upon and validate
our hardware model in the future.
11.2. CASM and Certified Compilation – Our high-
level proofs depend on Compcert’s specification of the C
memory and register semantics and CASM’s adherence
to those semantics (discharged as invariants on the
source-code and our hardware model) to ensure that
the C and Assembly code operate on disjoint state. In
the future, we plan on leveraging recent developments
with Compcert such as the ability to compile and link
multi-module source programs [68] to cleanly extend
the bi-simulation proof of the CompCert compiler to
encompass hardware state and Assembly code. Future
work also involves proving (e.g., via bi-simulation) the

semantic equivalence between the hardware model and
the corresponding Assembly instructions and demon-
strating the semantic synergy between CompCert, CASM
and the Frama-C kernel more rigorously for proved
properties to translate to the binary.
11.3. Functional Verification – Our focus in this pa-
per is on security invariants and trace properties and
functional correctness to support such properties. We
are optimistic that liveness properties and full-functional
correctness are achievable future goals and not any more
harder than existing approaches [31], [33], [43].
11.4. Concurrency – We have shown that a practical
multi-threaded system with interesting security proper-
ties can be built by dealing with a serialized execution
model and sequential verification in lieu of complex
concurrent verification. However, we do realize the
importance of relaxing our serialized execution model
especially in high-performance computing environments
and plan on leveraging source-level multi-threaded ver-
ification (e.g., Frama-C mthread plugin [24]) to address
concurrency in the future.
11.5. Soundness of Tools – Similar to existing ap-
proaches, we assume that the verification tools such as
Frama-C with associated plugins and back-end theorem
provers such as Z3, CVC3 and Alt-Ergo are sound
(§8.1,§3.3). Discharging this assumption, while a de-
sirable goal, is currently an open and hard problem in
the face of formal methods. However, seminal break-
throughs such as certified software model-checking [55]
and formal verification of C static analyzers [38] give
us hope that proving soundness of our verification tools
will indeed be possible in the future.
11.6. Applicability – Our future work involves gener-
alizing üSpark to a more broadly applicable frame-
work for building compositionally verifiable systems.
We are exploring the applicability of üSpark to general-
purpose hypervisors (e.g., Xen and KVM), BIOS, de-
vice firmware, operating-system kernel and drivers, user-
space applications and browser extensions including
vertical integration among these stacked subsystems.
The immediate challenges we envision there include
unraveling complex data structures, supporting dynamic
memory allocations and use of indirect function calls in
addition to supporting some form of concurrency.

12. CONCLUSION

We presented überSpark, an innovative architecture en-
forcing verifiable object abstractions in low-level C and
Assembly languages and leveraging them in combination
with off-the-shelf C software verifiers and certifying
compilers to produce high assurance hypervisors for
commodity platforms. We incrementally developed and
verified a commodity x86 micro-hypervisor using üS-
park, and performed a comprehensive evaluation which

USENIX Association 25th USENIX Security Symposium 101

shows automated compositional verification with modest
development effort and minimal runtime overhead.

Availability: ÜBERSPARK and ÜXMHF sources are
available at: http://uberspark.org

Acknowledgements: We thank the anonymous review-
ers for their detailed comments. We also thank Úlfar
Erlingsson, Martín Abadi and Matt Loring for their
feedback and insights. This work was partially supported
by the Intel Science and Technology Center for Secure
Computing, AFOSR MURI on Science of Cybersecurity,
the NSA/CMU Science of Security Lablet, and the NSF
CNS-1018061 grant. Copyright 2016 CyLab and CMU 2.

REFERENCES

[1] Novell, AppArmor, and SELinux Comparison.
http://www.novell.com/linux/security/apparmor/
selinux_comparison.html.

[2] CVE-2008-3687: Heap-based buffer overflow in
Xen 3.3, when compiled with the XSM:FLASK
module, allows unprivileged domain users (domU)
to execute arbitrary code via the flaskop hypercall.
https://cve.mitre.org/, 2008.

[3] VMSA-2009-0006: VMware patches for ESX and
ESXi resolve a critical security vulnerability. http:
//www.vmware.com/security/advisories/, 2009.

[4] Software Guard Extensions Programming Refer-
ence 329298-001. http://software.intel.com, 2013.

[5] http://cygwin.com, 2014.
[6] E. Alkassar, M. A. Hillebrand, D. C. Leinenbach,

N. W. Schirmer, A. Starostin, and A. Tsyban.
Balancing the load: Leveraging semantics stack for
systems verification. J. Autom. Reasoning, 42(2-
4):389–454, 2009.

[7] J. Appavoo, M. Auslander, D. Edelsohn, D. D.
Silva, O. Krieger, M. Ostrowski, B. Rosenburg,
R. W. Wisniewski, and J. Xenidis. Providing a linux
api on the scalable k42 kernel. In ATC, 2003.

[8] M. Barnett, R. DeLine, M. Fähndrich, K. R. M.
Leino, and W. Schulte. Verification of object-
oriented programs with invariants. Journal of
Object Technology, 3(6):27–56, June 2004. Work-
shop on Formal Techniques for Java-like Programs
(FTfJP), ECOOP 2003.

2This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded re-
search and development center. NO WARRANTY. THIS CARNEGIE MELLON
UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVER-
SITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY
OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADE-
MARK, OR COPYRIGHT INFRINGEMENT. [Distribution Statement A] This
material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution. DM-0003658

[9] A. Baumann, D. Lee, P. Fonseca, L. Glendenning,
J. R. Lorch, B. Bond, R. Olinsky, and G. C. Hunt.
Composing os extensions safely and efficiently
with bascule. In Proc. of EuroSys, 2013.

[10] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and
S. Eggers. Extensibility safety and performance in
the SPIN operating system. In Proc. of SOSP, 1995.

[11] S. Blazy, Z. Dargaye, and X. Leroy. Formal
verification of a C compiler front-end. In FM, 2006.

[12] S. Boldo, J.-H. Jourdan, X. Leroy, and
G. Melquiond. A formally-verified C compiler
supporting floating-point arithmetic. In In Proc. of
IEEE ARITH, 2013.

[13] S. Boyd-Wickizer and N. Zeldovich. Tolerating
malicious device drivers in linux. In TEC, 2010.

[14] C. Chen, P. Maniatis, A. Perrig, A. Vasudevan, and
V. Sekar. Towards verifiable resource accounting
for outsourced computation. In ACM VEE, 2013.

[15] D. R. Cheriton and K. J. Duda. A caching model
of os kernel functionality. In OSDI, 1994.

[16] E. Cohen, M. Dahlweid, M. A. Hillebrand,
D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
and S. Tobies. VCC: A Practical System for
Verifying Concurrent C. In TPHOLS, 2009.

[17] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker,
T. Deegan, P. Loscocco, and A. Warfield. Breaking
up is hard to do: Security and functionality in a
commodity hypervisor. In Proc. of SOSP, 2011.

[18] A. Dinaburg, P. Royal, M. Sharif, and W. Lee.
Ether: malware analysis via hardware virtualization
extensions. In Proc. of CCS, 2008.

[19] J. R. Douceur, J. Elson, J. Howell, and J. R.
Lorch. Leveraging legacy code to deploy desktop
applications on the web. In Proc. of OSDI, 2008.

[20] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An operating system architecture for
application-level resource management. In Proc.
of SOSP, 1995.

[21] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe,
M. Rinard, H. Okhravi, and S. Sidiroglou-Douskos.
Control Jujutsu: On the weaknesses of fine-grained
control flow integrity. In Proc. of CCS, 2015.

[22] A. Fattori, R. Paleari, L. Martignoni, and
M. Monga. Dynamic and transparent analysis
of commodity production systems. In Proc. of
IEEE/ACM ASE 2010, 2010.

[23] B. Ford, M. Hibler, J. Lepreau, P. Tullmann,
G. Back, and S. Clawson. Microkernels meet
recursive virtual machines. In Proc. of OSDI, 1996.

[24] Frama-C. Mthread plug-in. http://frama-c.com/
mthread.html, 2012.

[25] Frama-C Team. ACSL: ANSI/ISO C Specification
Language v1.9. http://www.frama-c.com, 2015.

[26] J. Franklin, S. Chaki, A. Datta, and A. Seshadri.
Scalable Parametric Verification of Secure Systems:
How to Verify Reference Monitors without Worry-

102 25th USENIX Security Symposium USENIX Association

ing about Data Structure Size. In IEEE S&P, 2010.
[27] J. Franklin, A. Seshadri, N. Qu, S. Chaki, and

A. Datta. Attacking, Repairing, and Verifying
SecVisor: A Retrospective on the Security of a
Hypervisor. Technical Report CMU-CyLab-08-
008, CMU CyLab, 2008.

[28] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan,
M. M. Swift, and S. Jha. The design and imple-
mentation of microdrivers. In ASPLOS, 2008.

[29] D. P. Ghormley, D. Petrou, S. H. Rodrigues, and
T. E. Anderson. Slic: An extensibility system for
commodity operating systems. In ATC, 1998.

[30] D. Given. http://lbw.sf.net/, 2010.
[31] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N.

Wu, S.-C. Weng, H. Zhang, and Y. Guo. Deep
specifications and certified abstraction layers. In
Proc. of POPL, 2015.

[32] N. Hardy. Keykos architecture. SIGOPS Oper. Syst.
Rev., 19(4):8–25, Oct. 1985.

[33] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill. Ironclad apps:
End-to-end security via automated full-system ver-
ification. In Proc. of OSDI, 2014.

[34] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill. Ironclad apps:
End-to-end security via automated full-system ver-
ification. In Proc. of OSDI, 2014.

[35] G. Hunt and D. Brubacher. Detours: Binary inter-
ception of win32 functions. In WINSYM, 1999.

[36] G. C. Hunt and J. R. Larus. Singularity: Rethinking
the software stack. SIGOPS Oper. Syst. Rev.,
41(2):37–49, Apr. 2007.

[37] M. B. Jones. Interposition agents: Transparently
interposing user code at the system interface.
SIGOPS Oper. Syst. Rev., 27(5):80–93, Dec. 1993.

[38] J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy,
and D. Pichardie. A formally-verified c static
analyzer. In Proceedings of the 42Nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’15, pages 247–
259, New York, NY, USA, 2015. ACM.

[39] M. F. Kaashoek, D. R. Engler, G. R. Ganger,
H. M. Briceño, R. Hunt, D. Mazières, T. Pinckney,
R. Grimm, J. Jannotti, and K. Mackenzie. Ap-
plication performance and flexibility on exokernel
systems. In Proc. of SOSP, 1997.

[40] Y. A. Khalidi and M. N. Nelson. Extensible
file systems in spring. SIGOPS Oper. Syst. Rev.,
27(5):1–14, Dec. 1993.

[41] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles,
and B. Yakobowski. Frama-c: A software analysis
perspective. FAC, 27(3):573–609, 2015.

[42] G. Klein, J. Andronick, K. Elphinstone, T. Murray,
T. Sewell, R. Kolanski, and G. Heiser. Com-
prehensive formal verification of an OS micro-
kernel. ACM Transactions on Computer Systems,
32(1):2:1–2:70, Feb. 2014.

[43] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: formal verification of an OS
kernel. In Proc. of SOSP, 2009.

[44] K. Kortchinsky. Cloudburst: A VMware guest to
host escape story. Black Hat, 2009.

[45] D. Leinenbach and T. Santen. Verifying the Mi-
crosoft Hyper-V Hypervisor with VCC. In FM,
2009.

[46] X. Leroy. Formal certification of a compiler back-
end, or: programming a compiler with a proof
assistant. In Proc. of POPL, 2006.

[47] B. Leslie, P. Chubb, N. Fitzroy-dale, S. Gotz,
C. Gray, L. Macpherson, D. Potts, Y. Shen, K. El-
phinstone, and G. Heiser. User-level device drivers:
Achieved performance. In Journal of Computer
Science and Technology, 2005.

[48] J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz. Un-
modified device driver reuse and improved system
dependability via virtual machines. In OSDI, 2004.

[49] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hy-
pervisor support for identifying covertly executing
binaries. In Proc. of USENIX Security, 2008.

[50] L. Martignoni, S. McCamant, P. Poosankam,
D. Song, and P. Maniatis. Path-exploration lifting:
Hi-fi tests for Lo-fi emulators. SIGPLAN Not.,
47(4):337–348, Mar. 2012.

[51] S. Maus, M. Moskal, and W. Schulte. Vx86: x86
assembler simulated in C powered by automated
theorem proving. In Proc. of AMAST, 2008.

[52] S. McCamant and G. Morrisett. Evaluating SFI for
a CISC architecture. In USENIX Security, 2006.

[53] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: Efficient TCB
reduction and attestation. In IEEE S&P, May 2010.

[54] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and
E. Gan. Rocksalt: Better, faster, stronger SFI for
the x86. SIGPLAN Not., 47(6):395–404, 2012.

[55] K. S. Namjoshi. Certifying model checkers. In
Computer Aided Verification, 13th International
Conference, CAV 2001, Paris, France, July 18-22,
2001, Proceedings, pages 2–13, 2001.

[56] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olin-
sky, and G. C. Hunt. Rethinking the library os from
the top down. SIGARCH Comput. Archit. News,
39(1):291–304, Mar. 2011.

[57] D. Quist, L. Liebrock, and J. Neil. Improving an-
tivirus accuracy with hypervisor assisted analysis.
J. Comput. Virol., 7(2), May 2011.

[58] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens,
T. Ridge, T. Braibant, M. O. Myreen, and J. Al-
glave. The semantics of x86-cc multiprocessor
machine code. SIGPLAN, 44(1):379–391, 2009.

[59] Z. C. Schreuders, C. Payne, and T. McGill.
Techniques for automating policy specification for
application-oriented access controls. In Proc. of

USENIX Association 25th USENIX Security Symposium 103

ARES, 2011.
[60] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,

K. Schimpf, B. Yee, and B. Chen. Adapting
software fault isolation to contemporary cpu archi-
tectures. In Proc. of USENIX Security, 2010.

[61] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith.
Dealing with disaster: Surviving misbehaved kernel
extensions. In Proc. of OSDI, 1996.

[62] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVi-
sor: A tiny hypervisor to provide lifetime kernel
code integrity for commodity OSes. In Proc. of
SOSP, 2007.

[63] J. S. Shapiro, J. M. Smith, and D. J. Farber. Eros: A
fast capability system. In SOSP, SOSP ’99, pages
170–185, 1999.

[64] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure
in-vm monitoring using hardware virtualization. In
Proc. of CCS, 2009.

[65] L. Singaravelu, C. Pu, H. Haertig, and C. Helmuth.
Reducing TCB complexity for security-sensitive
applications: Three case studies. In EuroSys, 2006.

[66] S. Smalley, C. Vance, and W. Salamon. Implement-
ing SELinux as a Linux LSM. NSA, 2001.

[67] U. Steinberg and B. Kauer. Nova: a
microhypervisor-based secure virtualization
architecture. In Proc. of Eurosys, 2010.

[68] G. Stewart, L. Beringer, S. Cuellar, and A. W.
Appel. Compositional compcert. In POPL, pages
275–287, 2015.

[69] M. M. Swift, B. N. Bershad, and H. M. Levy.
Improving the reliability of commodity operating
systems. In Proc. of SOSP, 2003.

[70] M. M. Swift, B. N. Bershad, and H. M. Levy.
Improving the reliability of commodity operating
systems. ACM TOCS, 23(1):77–110, Feb. 2005.

[71] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces:
Making trust between applications and operating
systems configurable. In OSDI, 2006.

[72] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. New-
some, and A. Datta. Design, implementation and
verification of an extensible and modular hypervi-
sor framework. In Proc. of IEEE S&P, 2013.

[73] A. Vasudevan, S. Chaki, P. Maniatis, L. Jia, and
A. Datta. überSpark: Enforcing Verifiable Object
Abstractions for Compositional Security Analysis
of a Hypervisor. Technical Report CMU-CyLab-
16-003, CMU CyLab, 2016.

[74] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and
A. Perrig. Lockdown: Towards a safe and practical
architecture for security applications on commodity
platforms. In Proc. of TRUST, 2012.

[75] A. Vasudevan, N. Qu, and A. Perrig. Xtrec: Secure
real-time execution trace recording on commodity
platforms. In Proc. of IEEE HICSS, 2011.

[76] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient software-based fault isolation.
SIGOPS OSR, 27(5):203–216, Dec. 1993.

[77] Z. Wang, C. Wu, M. Grace, and X. Jiang. Isolating
commodity hosted hypervisors with hyperlock. In
Proc. of EuroSys 2012, 2012.

[78] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer,
and F. B. Schneider. Device driver safety through
a reference validation mechanism. In OSDI, 2008.

[79] Wine. http://www.winehq.org/, 2014.
[80] X. Xiong, D. Tian, and P. Liu. Practical protection

of kernel integrity for commodity os from untrusted
extensions. In Proc. of NDSS, 2011.

[81] J. Yang and C. Hawblitzel. Safe to the last
instruction: Automated verification of a type-safe
operating system. In Proc. of PLDI, 2010.

[82] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fulla-
gar. Native client: A sandbox for portable, untrusted
x86 native code. In Proc. of IEEE S&P, 2009.

[83] M. Yu, V. D. Gligor, and Z. Zhou. Trusted display
on untrusted commodity platforms. In ACM CCS,
pages 989–1003, 2015.

[84] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloud-
visor: retrofitting protection of virtual machines in
multi-tenant cloud with nested virtualization. In
Proc. of SOSP, 2011.

[85] Z. Zhou, V. D. Gligor, J. Newsome, and J. M.
McCune. Building verifiable trusted path on com-
modity x86 computers. In IEEE S&P, 2012.

[86] Z. Zhou, M. Yu, and V. D. Gligor. Dancing with
Giants: Wimpy Kernels for On-demand Isolated
I/O. In Proc. of IEEE S&P, 2014.

APPENDIX A
ÜSPARK INVARIANTS

üSpark reasoning relies foundationally on a set of
invariants – properties that must hold throughout the
execution of a üSpark hypervisor. The invariants are
divided into üSpark system invariants (Figure 13) and
üSpark general programming invariants (those that per-
tain specifically to üSpark üobject C and CASM func-
tions; Figure 14). Each invariant is proved by reducing
it further to a set of proof-assumptions on hardware
(PAHs) and proof-obligations on code (POCs) using the
üSpark blueprint (üBP; §4–Figure 2). POCs are then
discharged on all üSpark verified üobjects including the
prime and sentinel using specific verification tools and
techniques (§7). A hypervisor implementation is com-
pliant with üSpark– and therefore amenable to composi-
tional reasoning – if it satisfies all the üSpark invariants.
Full details including a formal model of the üSpark
architecture, semantics, verification approach, associated
theorem proofs and invariant-to-PAH/POC mappings can
be found in our technical report [73].

104 25th USENIX Security Symposium USENIX Association

Inv1ü üSpark begins execution with the entry point of a
distinguished initial “prime” üobject sI in single-
core mode with just core 1 activated

Inv2ü A special “asynchronous” function startcores(s)
activates all cores i > 1 and begins executing a des-
ignated üobject s immediately thereafter; all cores
remain active thereafter for the system lifetime.

Inv3ü Asynchronous control transfers (hardware in-
terrupts, exceptions and intercepts) respect the
blueprint state execution threading and transitions

Inv4ü üObject memory regions are unity-mapped and non-
overlapping

Inv5ü üObject s accesses only its own memory
Inv6ü üObject code, data and stack regions are DMA

protected
Inv7ü üObject code is write-protected
Inv8ü Inter-üobject synchronous control-flow respect

blueprint transitions
Inv9ü Each core has its own stack at all times and stays

within the stack limits.
Inv10ü Blueprint state has state appropriate execution

threading (multi-core or single-core)
Inv11ü Locks behave like “memory fences”; any write

preceding a call to unlock is observed by any read
following the next call to lock

Fig. 13: üSpark System Invariants

Inv1üprog CASM functions preserve caller registers
Inv2üprog CASM functions establish local stack frame non-

overlapping with incoming caller stack frame
Inv3üprog CASM functions have conditional and uncondi-

tional branches local to the function
Inv4üprog CASM functions establish callee incoming stack

frame for calls to other C or CASM functions
Inv5üprog CASM functions tear down local stack frame before

returning
Inv6üprog CASM functions end with return instruction
Inv7üprog No function pointers in C functions
Inv8üprog C and CASM functions do not write to caller stack

frame params and return-address
Inv9üprog CASM functions can only encode instructions

within the domain of CASM instruction set
Inv10üprog CASM non-local control transfer instructions can

only be to fixed function entry points
Fig. 14: üSpark Programming Invariants

APPENDIX B
VERIFICATION OF ÜXMHF ÜOBJECTS LOCAL

INVARIANT PROPERTIES

We now describe our verification approach in detail
for verifying the invariant properties of the üXMHF
üobjects shown in Figure 15. For all the üobjects we
verify via deductive verification that the üobject entry
point function transfers control to the appropriate method
handler for a given public method.

We verify the üAPI üobjects via abstract interpreta-
tion. For the uhcpust üobject we verify that the write

method, in case of a write to MSR EFER, always pre-
serves the EFER bits required for üSpark functionality.

üObject Type Invariant Property

xcihub vh On intercept invoke corresponding hypapp
handler

ugcpust vh Writes to host state only by prime or sentinel
uhcpust vh No writes to host MSR EFER
ugmpgtbl vh No mapping of hypervisor memory regions
hyperdep vh Guest OS provided memory-pages are

marked read-write and not executable
sysclog vh On system call trap intercept, log syscall

information to network log buffer
sysclognw vh Log info in network log buffer and transmit

buffer when full
aprvexec uh Guest OS approved code pages are always

marked read-only and executable

Fig. 15: üXMHF Core, üAPI and Hypapp üobject invariants; vh =
verified hypervisor üobject, uh = unverified hypervisor üobject

For the ugmpgtbl üobject we verify that the setentry

method’s entry parameter does not fall within hypervisor
memory regions. Finally, for the ugcpust üobject we
verify that the write method disallows writes to any
host-specific state in the guest VMCS.

For the xcihub üobject we employ deductive verifica-
tion to verify the main method such that, for any given
intercept a special function hcbinvoke is called with
the intercept type and associated parameters. hcbinvoke
is then verified to ensure that it calls all the registered
hypapp üobjects for that intercept.

For the sysclog üobject we employ deductive veri-
fication to first verify that the init method invokes the
ugmpgtbl üobject setentry method with the syscall
page address with read and no-execute protections. We
then verify that the syscall trap handler obtains syscall
information via a call to the ugcpust üobject read

method and stores this information to the network log
buffer via a call to the sysclognw üobject log method.

We verify the sysclognw üobject via deductive ver-
ification and abstract interpretation. We use deductive
verification to verify the log method to ensure that:
(a) the buffer passed in as parameters is stored in the
network buffer data structure, and (b) when the buffer
is full, its contents are copied into the üobject dmadata
region, buffer is reset, and the network send function is
invoked. We then verify the send function via abstract
interpretation to ensure that it programs the network card
hardware to read from the dmadata region, transmit the
buffer, and wait for end of transmission signal.

We use deductive verification to verify the hyperdep

üobject activate method to ensure that the guest page
address that is passed is used as the parameter to the
ugmpgtbl üobject setentry method with read, write
and no-execute protections.

Note, aprvexec (unverified) üobject is not verified
since its properties follow from the ugmpgtbl üAPI
invariants ensured by our composition check as described
in §7.2.1.

USENIX Association 25th USENIX Security Symposium 105

Undermining Information Hiding
(And What to do About it)

Enes Göktaş1 Robert Gawlik2 Benjamin Kollenda2 Elias Athanasopoulos1

Georgios Portokalidis3 Cristiano Giuffrida1 Herbert Bos1
1 Computer Science Institute, Vrije Universiteit Amsterdam, The Netherlands

2 Horst Görtz Institut for IT-Security (HGI), Ruhr-Universität Bochum, Germany
3 Department of Computer Science, Stevens Institute of Technology

Abstract
In the absence of hardware-supported segmentation,

many state-of-the-art defenses resort to “hiding” sensi-
tive information at a random location in a very large ad-
dress space. This paper argues that information hiding
is a weak isolation model and shows that attackers can
find hidden information, such as CPI’s SafeStacks, in
seconds—by means of thread spraying. Thread spraying
is a novel attack technique which forces the victim pro-
gram to allocate many hidden areas. As a result, the at-
tacker has a much better chance to locate these areas and
compromise the defense. We demonstrate the technique
by means of attacks on Firefox, Chrome, and MySQL. In
addition, we found that it is hard to remove all sensitive
information (such as pointers to the hidden region) from
a program and show how residual sensitive information
allows attackers to bypass defenses completely.

We also show how we can harden information hiding
techniques by means of an Authenticating Page Mapper
(APM) which builds on a user-level page-fault handler
to authenticate arbitrary memory reads/writes in the vir-
tual address space. APM bootstraps protected applica-
tions with a minimum-sized safe area. Every time the
program accesses this area, APM authenticates the ac-
cess operation, and, if legitimate, expands the area on
demand. We demonstrate that APM hardens informa-
tion hiding significantly while increasing the overhead,
on average, 0.3% on baseline SPEC CPU 2006, 0.0% on
SPEC with SafeStack and 1.4% on SPEC with CPI.

1 Introduction

Despite years of study, memory corruption vulnera-
bilities still lead to control-flow hijacking attacks to-
day. Modern attacks employ code-reuse techniques [9,
34] to overcome broadly deployed defenses, like data-
execution prevention (DEP) [5] and address-space layout
randomization (ASLR) [30]. Such attacks are still pos-
sible primarily because of address leaks, which are used

to discover the location of useful instruction sequences,
called gadgets, that can be chained together to perform
arbitrary computations [34].

In response, researchers have been exploring various
directions to put an end to such attacks. A promising
solution is code-pointer integrity (CPI) [24] that aims to
prevent the hijacking of code pointers, and therefore tak-
ing control of the program. The separation of code point-
ers from everything else can be done by employing hard-
ware or software-enforced isolation [39,42], or by hiding
the region where pointers are stored, which is a faster al-
ternative, than software-based isolation, when hardware-
based isolation is not available. This information hiding
(IH) is achieved by placing the area where code point-
ers are stored at a random offset in memory and ensuring
that the pointer to that area cannot be leaked (e.g., by
storing it in a register). For example, safe versions of the
stack, referred to as safe stacks, that only include return
addresses are protected this way both by CPI and ASLR-
guard [26]. This type of IH is also adopted by other de-
fenses [7, 15] that aim to prevent attacks by eliminating
data leaks, which would enable the location of gadgets,
while it has also been adopted in shadow stack [13, 41]
and CFI [27, 43] research.

Reliance on information hiding is, however, problem-
atic. Recently published work [18] developed a memory
scanning technique for client applications that can sur-
vive crashes. It exploits the fact that browsers, includ-
ing Internet Explorer 11 and Mozilla Firefox, tolerate
faults that are otherwise critical, hence, enabling mem-
ory scanning to locate “hidden” memory areas. Before
that researchers demonstrated that it was possible to lo-
cate CPI’s safe region, where pointers are stored [17], if
IH is used instead of isolation.

In this paper, we reveal two new ways for defeating in-
formation hiding, which can be used to expose the “hid-
den” critical areas used by various defenses and subvert
them. The first is technique caters to multithreaded appli-
cations, which an attacker can cause a process to spawn

106 25th USENIX Security Symposium USENIX Association

multiple threads. Such applications include browsers that
now support threads in Javascript and server applications
that use them to handle client connections. By causing
an application to spawn multiple threads, the attacker
“sprays” memory with an equal number of stacks and
safe stacks. As the address space fills with these stacks,
the probability of “striking gold” when scanning memory
increases dramatically. We incorporate this technique,
which we coin thread spraying, in the memory scanning
attack described above [18] and show that we can locate
safe regions, such as the safe stacks used by CPI and
ASLR-guard and parallel shadow stacks [14], in seconds
instead of tens of minutes. The second approach utilizes
bookkeeping data of various standard libraries in Linux
such as the POSIX threads library and glibc. Our inves-
tigation reveals several pointers that can lead to safe re-
gions in information kept to manage thread local storage
(TLS) and thread-control blocks (TCB). Isolating these
leftover pointers with a better implementation might be
possible. However, at the time of writing, there is no al-
gorithm for assessing if all sensitive pointers are properly
removed. We therefore argue that a sound implementa-
tion which excludes all pointers that can lead to a safe
region from the rest of the process is challenging.

These two new attack vectors demonstrate that it is
surprisingly hard to use information hiding to replace
strong isolation. Nevertheless, it is possible to further
harden IH and mitigate these attacks. We propose and
develop a technique that aims to shift the odds back in
favor of the defender. Our solution is based on two obser-
vations: first, only a small part of the memory allocated
to safe areas is actually used, and, second, safe areas
are usually accessed using well-defined instrumentation-
induced instruction patterns that are distinguishable from
application code. For example, under CPI only a small
part of the safe region and stacks allocated by CPU is
actually used, and, on x86-64 architectures, the gs seg-
ment register and the RSP register are used to access the
safe region and safe stacks, respectively.

Building on these observations, we introduce APM
(Authenticating Page Mapper), an IH hardening strategy
that verifies that all the first accesses to inactive pages
in safe areas follow legitimate and unforgeable execu-
tion patterns, increasing in this fashion the entropy of
IH. APM is implemented as a user-level page-fault han-
dler, exploiting the same page “trapping” technique used
by mechanisms like checkpoint/restart [31], hot patch-
ing [4], and ATL+DEP [1]. To further improve security,
APM artificially inflates the virtual memory region re-
served for safe areas. In particular, it decreases the num-
ber of accessible pages on a shadow stack to the min-
imum, but reserves many (initially inaccessible) addi-
tional pages that serve as tripwire. All illegitimate ac-
cesses to non-accessible pages trigger an alarm. Like-

wise, we offset the stack pointer by a random number of
bytes.

In summary, we make the following contributions:

1. We introduce a new attack vector, called thread spray-
ing, that reduces the entropy of information hiding
techniques by creating many threads and filling up
the memory space with safe areas such as safe stacks.
We demonstrate the practicality of thread spraying
for browsers (Firefox and Chrome) and the MySQL
server, all protected with CPI’s SafeStack, and show
that we can find the hidden stacks in seconds.

2. We analyze in detail the strength of information hid-
ing techniques used in state-of-the-art defenses and
show that existing solutions are not free of pointers to
safe areas. Our results enable an adversary to utilize
these pointers to compromise the safe area.

3. We propose a new IH hardening strategy to improve
information hiding by means of a user-level page fault
handler that increases the entropy significantly, makes
pages accessible on demand, and vets all first-time ac-
cesses to pages—greatly increasing the probability of
detecting an attack. We evaluate the solution using
a variety of applications as well as the SPEC bench-
marks and show that the performance impact is very
low (on average 0.3% on baseline SPEC, 0.0% on
SPEC with SafeStack, 1.4% on SPEC with full CPI
and barely measurable in browser benchmarks).

2 Threat Model

In this paper, we assume a determined attacker that aims
at exploiting a software vulnerability in a program that
is protected with state-of-the-art defenses (e.g., CPI [24]
or ASLR-Guard [26]), and that has the capabilities for
launching state-of-the-art code-reuse attacks [11,16,20].
We also assume that the attacker has a strong primitive,
such as an arbitrary read and write, but the arbitrary read
should not be able to reveal the location of a code pointer
that could be overwritten and give control to the attacker,
unless the safe area is somehow discovered. Under this
threat model, we discuss in Sections 3 and 4 a number
of possible strategies that can leak the safe area to the
attacker. Later in this paper, we propose to harden IH
using a technique that can effectively protect the safe area
with a small and practical overhead.

3 Background and Related Work

In the following, we review relevant work on information
hiding. We discuss both attacks and defenses to provide
an overview of related work and hint at potential weak-
nesses. We show that prior work has already bypassed

2

USENIX Association 25th USENIX Security Symposium 107

several IH approaches, but these attacks all targeted de-
fenses that hide very large areas (such as the 242 byte safe
area in CPI [17], or all kernel memory [22]). It is a com-
mon belief that smaller regions such as shadow stacks are
not vulnerable to such attacks [26]. Later, we show that
this belief is not always true.

3.1 Information Hiding
Many new defenses thwart advanced attacks by separat-
ing code pointers from everything else in memory. Al-
though the specifics of the defenses vary, they all share
a common principle: they must prevent malicious in-
puts from influencing the code pointers (e.g., return ad-
dresses, function pointers, and VTable pointers). For this
reason, they isolate these pointers from the protected pro-
gram in a safe area that only legitimate code can access
in a strictly controlled fashion. In principle, software-
based fault isolation (SFI [39]) is ideal for applying this
separation. However, without hardware support, SFI still
incurs nontrivial performance overhead and many de-
fenses therefore opted for (IH) as an alternative to SFI.
The assumption is that the virtual address space is large
enough to hide the safe area by placing it in a random
memory location. Since there is no pointer from the pro-
tected program referencing explicitly the safe area, even
powerful information disclosure bugs [35] are useless. In
other words, an attacker could potentially leak the entire
layout of the protected process but not the safe area.

In recent years, this topic received a lot of attention
and many systems emerged that rely (at least optionally)
on IH. For example, Opaque CFI [27] uses IH for pro-
tecting the so called Bounds Lookup Table (BLT) and
Oxymoron [7] uses IH for protecting the Randomization-
agnostic Translation Table (RaTTle). Isomeron [15]
needs to keep the execution diversifier data secret while
StackArmor [41] isolates particular (potentially vulnera-
ble) stack frames. Finally, CFCI [44] needs to hide, when
segmentation is not available, a few MBs of protected
memory. Although all these systems rely on IH for a dif-
ferent purpose, they are vulnerable to memory scanning
attacks which try to locate these regions in a brute-force
manner (as shown in Section 4). Since the Authenticat-
ing Page Mapper that we propose in this paper hardens
IH in general, it directly improves the security of all these
systems—irrespective of their actual goal.

3.2 ASLR and Information Leaks
Arguably the best known IH technique is regular Address
Space Layout Randomization (ASLR). Coarse-grained
ASLR is on by default on all major operating systems.
It randomizes memory on a per-module basis. Fine-
grained ASLR techniques that additionally randomize

memory on the function and/or instruction level were
proposed in the literature [19, 29, 40], but have not re-
ceived widespread adoption yet.

In practice, bypassing standard (i.e., coarse-grained,
user-level) ASLR implementations is now common.
From an attacker’s point of view, disclosing a single
pointer that points into a program’s shared library is
enough to de-randomize the address space [36]. Even
fine-grained ASLR implementations cannot withstand
sophisticated attacks where the attacker can read code
with memory disclosures and assemble a payload on the
fly in a JIT-ROP fashion [35].

For kernel-level ASLR, we view kernel memory as an-
other instance of information to hide. From user space,
the memory layout of the kernel is not readable and
kernel-level ASLR prevents an attacker from knowing
the kernel’s memory locations. However, previous work
showed that it is possible to leak this information via a
timing side channel [22].

In general, leaking information by abusing side chan-
nels is a viable attack strategy. Typically, an attacker uses
a memory corruption to put a program in such a state that
she can infer memory contents via timings [10,17,33] or
other side channels [8]. This way, she can even locate
safe areas to which no references exist in unsafe mem-
ory.

In the absence of memory disclosures, attackers may
still bypass ASLR using Blind ROP (BROP) [8], which
can be applied remotely to servers that fork processes
several times. In BROP, an attacker sends data that
causes a control transfer to another address and then ob-
serves how the service reacts. Depending on the data sent
the server may crash, hang, or continue to run as normal.
By distinguishing all different outcomes, the attacker can
infer what code executed and identify ROP gadgets.

In this paper, we specifically focus on safe stacks
(which are now integrated in production compilers) and
review recent related solutions below.

3.3 Code-Pointer Integrity (CPI)

CPI is a safety property that protects all direct and indi-
rect pointers to code [24]. CPI splits the address space
in two. The normal part and a significantly large safe
area that stores all code pointers of the program. Ac-
cess to the safe area from the normal one is only possi-
ble through CPI instructions. Additionally, CPI provides
every thread with a shadow stack, namely SafeStack, be-
yond the regular stack. The SafeStack is used for stor-
ing return addresses and proven-safe objects, while the
regular stack contains all other data. SafeStacks are rel-
atively small but they are all contained in a large safe
area, which is hidden at a random location in the virtual
address space.

3

108 25th USENIX Security Symposium USENIX Association

Evans et al. showed how to circumvent CPI and find
the safe area by probing using a side channel [17]. De-
pending on how the safe area is constructed, this attack
may require the respawn-after-a-crash property to pull
off the attack. This property is only available in (some)
servers. Moreover, it is fragile, as it is very easy for an
administrator to raise an alarm if the server crashes often.
In Section 4, we will introduce an attack that demon-
strates how we can efficiently locate CPI’s SafeStack in
the context of web browsers.

3.4 ASLR-Guard
ASLR-Guard [26] is a recent defense that aims at pre-
venting code-reuse attacks by protecting code addresses
from disclosure attacks. It does so by introducing a se-
cure storage scheme for code pointers and by decoupling
the code and data regions of executable modules. A core
feature is its shadow stack that it uses to separate com-
pletely the code pointers from the rest of the data. To effi-
ciently implement this idea, again two separate stacks are
used. First, the so called AG-stack which holds only code
addresses is used by function calls and returns, exception
handlers, etc. The second stack is used for any data op-
eration and ensures that all code pointers and pointers to
the AG-stack are encrypted. As a result, an adversary
has no way of leaking the location of code images. We
discuss the security of this design in Section 4.4.

3.5 Discussion
Information hiding has grown into an important building
block for a myriad of defenses. While several attacks
on the randomization at the heart of IH are described in
the literature, it is still believed to be a formidable ob-
stacle, witness the growing list of defenses that rely on
it. Also, since the attacks to date only managed to find
secret information occupying a large number of pages, it
seems reasonable to conclude, as the authors of ASLR-
Guard [26] do, that smaller safe areas are not so vulnera-
ble to probing attacks. In this paper, we show that this is
not always true.

4 Breaking Modern Information Hiding

In this section, we introduce two approaches towards un-
covering the hidden information. First, we show how-
ever careful developers of IH approaches are, pointers
to the safe area may still be unexpectedly present in the
unsafe area. While this may not represent fundamental
problems, there are other issues. Specifically, we show
that an attacker may significantly reduce the large ran-
domization entropy for secret data like shadow stacks by
making the program spawn many threads in a controlled
way, or corrupting the size of the stacks that the program
spawns.

4.1 Neglected Pointers to Safe Areas

Safe stack implementations are an interesting target for
an attacker and the ability to locate them in a large vir-
tual address space would yield a powerful attack prim-
itive. As an example, consider CPI’s SafeStack imple-
mentation that is now available in the LLVM compiler
toolchain. Recall that the safe stack implementation of
CPI moves any potential unsafe variables away from the
native stack to make it difficult to corrupt or to gather
the exact address of that stack. Any references to the
safe stack in global memory that the attacker could leak
would therefore break the isolation of SafeStack. Ide-
ally for an attacker, such pointers would be available
in program-specific data structures, but we exclude this
possibility here and assume that no obvious information
disclosure attacks are viable. However, even though the
authors diligently try to remove all such pointers, the
question is whether there are any references left (e.g., in
unexpected places).

For this reason, we analyzed the implementation and
searched for data structures that seemed plausible can-
didates for holding information about the location of
stacks. In addition, we constructed a way for an attacker
to locate said stacks without relying on guessing. In par-
ticular, we examined in detail the Thread Control Block
(TCB) and Thread Local Storage (TLS).

Whenever the system spawns a new thread for a pro-
gram, it also initializes a corresponding Thread Control
Block (TCB), which holds information about the thread
(e.g., the address of its stack). However, once an attacker
knows the location of the TCB, she also (already) has
the stack location as the TCB is placed on the newly
allocated stack of the thread. An exception is the cre-
ation of the main thread where the TCB is allocated in
a memory region that has been mapped, with mmap(),
during program initialization. Since the initialization of
the program startup is deterministic, the TCB of the main
stack is located at a fixed offset from the base address of
mmap() (which can be easily inferred by leaked point-
ers into libraries).

Moreover, obtaining the address of the TCB is often
easy, as a reference to it is stored in memory and passed
to functions of the pthread library. While not visi-
ble to the programmer, the metadata required to manage
threads in multi-threaded applications can also leak the
address of the thread stacks. If an attacker is able to ob-
tain this management data, she is also able to infer the lo-
cation of stacks. Note that the management data is stored
in the TCB because threads allocate their own stacks, so
they need to free them as well. Furthermore, we found
that the TCB also contains a pointer to a linked list with
all TCBs for a process, so all stacks can be leaked this
way.

4

USENIX Association 25th USENIX Security Symposium 109

Additionally, TLS consists of a static portion and a
dynamic portion and the system happens to allocate the
static portion of the TLS directly next to the TCB. The
TLS portions are managed through the Dynamic Thread
Vector (DTV) structure which is allocated on the heap at
thread initialization and pointed to by the TCB. Leaking
the location of DTV will also reveal the stack location.

Another way to obtain the location of the stacks is us-
ing global variables in libpthread.so. The loca-
tions of active stacks are saved in a double linked list
called stacks_used which can be accessed if the location
of the data section of libpthread is known to an at-
tacker.

In summary, our analysis of the implementation re-
veals that references to sensitive information (in our case
safe stacks) do occur in unexpected places in practice.
While these issues may not be fundamental, given the
complexity of the environment and the operating system,
delivering a sound implementation of IH-based defenses
is challenging. All references should be accounted for in
a production defense that regards stack locations as sen-
sitive information. We even argue that any IH-hardening
solution (like the one presented in this paper) should take
implementation flaws of defense solutions such as CPI
into account, since they are common and often not under
direct control of the solution (e.g., because of external
code and libraries).

4.2 Attacks with Thread Spraying

While prior research has already demonstrated that in-
formation hiding mechanisms which utilize a large safe
area are vulnerable to brute-force attacks [17], our re-
search question is: are small safe areas without refer-
ences to them really more secure than large safe areas?
More generally speaking, we explore the limitations of
hiding information in an address space and discuss po-
tential attacks and challenges.

In the following, we investigate in detail CPI’s SafeS-
tack as an illustrative example. While the safe area itself
is very large (dependent on the implementation it may
have sizes of 242 or 230.4 [17, 25]), a safe stack is only a
few MB in size and hence it is challenging to locate it in
the huge address space. We analyze the SafeStack imple-
mentation available in the LLVM compiler toolchain. As
discussed above, the safe stack keeps only safe variables
and return addresses, while unsafe variables are moved
to an unsafe stack. Hence, an attacker—who has the pos-
sibility to read and write arbitrary memory—still cannot
leak contents of the safe stack and cannot overwrite re-
turn addresses: she needs to locate the safe stack first.

We study if such an attack is feasible against web
browsers, given the fact that they represent one of the
most prominent attack targets. We thus compiled and

linked Mozilla Firefox (version 38.0.5) for Linux us-
ing the -fsanitize=safe-stack flag of the clang
compiler and verified that SafeStack is enabled during
runtime. We observed that safe stacks are normally rela-
tively small: each thread gets its own safe stack, which is
between 2MB (221 bytes; 29 pages) and 8MB (223 bytes;
211 pages) in size. With 28 bits of entropy in the 64-
bit Linux ASLR implementation, there are 228 possible
page-aligned start addresses for a stack. Hence, an ad-
versary needs at least 219 probes to locate a 2MB stack
when sweeping through memory in a brute-force man-
ner. In practice, such an attack seems to be infeasible.
For server applications, a brute-force attack would be de-
tectable by external means as it leads to many observable
crashes [25].

However, an attacker might succeed with the follow-
ing strategy to reduce the randomization entropy: while
it is hard to find a single instance of a safe stack inside
a large address space, the task is much easier if she can
force the program to generate a lot of safe stacks with a
certain structure and then locate just one of them. Thus,
from a high-level perspective our attack forces the pro-
gram to generate a large number of safe stacks, a tech-
nique we call thread spraying. Once the address space
is populated with many stacks, we make sure that each
stack has a certain structure that helps us to locate an
individual stack within the address space. For this, we
make use of a technique that we term stack spraying, to
spray each stack in such a way that we can later easily
recognize it. Finally, via a brute-force search, we can
then scan the address space and locate a safe stack in a
few seconds. In the following, we describe each step in
more detail.

4.2.1 Thread Spraying

Our basic insight is that an adversary can abuse legit-
imate functions to create new stacks, and thereby de-
crease the entropy. Below, we explain how we performed
the thread spraying step in our attack on Firefox. Fur-
thermore, we show that the thread spraying technique is
also possible in other applications, namely Chrome and
MySQL.
Thread Spraying in Firefox: Our thread spraying in
Firefox is based on the observation that an attacker
within JavaScript can start web workers and each web
worker is represented as a stand-alone thread. Thus, the
more web workers we start, the more safe stacks are
created and the more the randomization entropy drops.
Thread spraying may spawn a huge number of threads.
In empirical tests on Firefox we were able to spawn up to
30,000 web workers, which leads to 30,000 stacks with
a size of 2MB each that populate the address space. In
our attack, we implemented this with a malicious web-
site that consists of 1,500 iframes. Each iframe, loading

5

110 25th USENIX Security Symposium USENIX Association

a webpage from distinct domain name, allows the cre-
ation of 20 web workers. As we will show later, forcing
the creation of 2,000 or even only 200 stacks is enough in
practical settings to locate one of the safe stacks reliably.
Fortunately, launching this lower number of concurrent
threads is much less resource intensive and the perfor-
mance impact is small.
Thread Spraying in Chrome: We also tested if Google
Chrome (version 45.0.2454.93) is prone to thread spray-
ing and found that Chrome only allows around 60 worker
threads in the standard configuration. An investiga-
tion revealed that this number is constrained by the to-
tal amount of memory that can be allocated for worker
threads. When we request more worker threads, the
Chrome process aborts as it is unable to allocate mem-
ory for the newly requested thread. However, if the
attacker has a write primitive, she can perform a data
corruption attack [12] and modify a variable that has
an effect on the size of the memory space being allo-
cated for worker threads. In Chrome, we found that
when we decrease the value of the global data vari-
able g_lazy_virtual_memory, Chrome will allo-
cate less memory space for a worker thread. The less
space allocated, the more worker threads it can spawn.
As a result, we were able to spawn up to 250 worker
threads, with a default stack size of 8MB, after locating
and modifying this data variable, during runtime, in the
bss section of the Chrome binary.
Thread Spraying in MySQL: We also evaluated the
thread spraying attack on the popular MySQL database
server (version 5.1.65). Interestingly, MySQL creates
a new thread for each new client connection. By de-
fault, the maximum number of simultaneous connections
is 151 and each thread is created with a stacksize of
256KB. With 151 threads, this amounts to 37.8MB of
safe stack area in the memory space which corresponds
to spawning just ~19 Firefox or ~5 Chrome worker
threads. This would make it hard to perform a success-
ful thread spraying attack. However, as in the Chrome
use case above, an attacker with a write primitive can
corrupt exactly those variables that constrain the num-
ber of threads—using a data-oriented attack [12]. We
found that the number of threads in MySQL is con-
strained by the global variables max_connections
and alarm_queue. Increasing them, allows an at-
tacker to create more connections and thus more threads.
Since MySQL has a default timeout of 10 seconds for
connections, it may be hard to keep a high number of
threads alive simultaneously, but it is just as easy to
overwrite the global variables connect_timeout and
connection_attrib, which contains the stack size
used when creating a thread for a new client connection.
In a simple test we were able to create more than 1000
threads with a stacksize of 8MB.

Protecting the Thread Limits: In some applications,
such as Chrome and MySQL, there are global vari-
ables that are associated explicitly or implicitly with
thread creation. For example, in Chrome there is
g_lazy_virtual_memory which, if reduced, al-
lows for the creation of more worker threads. Placing
these variables in read-only memory can potentially mit-
igate the thread-spraying attacks, however, it is unclear if
the application’s behavior is also affected. In Section 5
we present a defense system that protects applications
from all attacks discussed in this section without relying
on protecting limits associated with thread creation.

4.2.2 Stack Spraying

At this point, we forced the creation of many stacks
and thus the address space contains many copies of safe
stacks. Next, we prepare each stack such that it contains
a signature that helps us to recognize a stack later. This
is necessary since we scan in the next step the memory
space and look for these signatures in order to confirm
that we have indeed found a safe stack (with high prob-
ability). In analogy with our first phase, we term this
technique stack spraying.

From a technical point of view, we realize stack spray-
ing in our attack as follows. Recall that a safe stack as-
sumes that certain variables are safe and this is the case
for basic data types such as integers or double-precision
floating point values. Moreover, Firefox stores double-
precision values in their hexadecimal form in memory.
For instance, the number 2.261634509803921 ∗ 106 is
stored as 0x4141414141414140 in memory. Ad-
ditionally, calling a JavaScript function with a double-
precision float value as parameter leads to the placement
of this value on the safe stack since the system consid-
ers it safe. We exploit this feature to (i) fill the stack
with values we can recognize and (ii) occupy as much
stack space as possible. We therefore use a recursive
JavaScript function in every worker which takes a large
number of parameters. We call this function recursively
until the JavaScript interpreter throws a JavaScript Error
(too much recursion). As we can catch the error within
JavaScript, we create as many stack frames as possible
and keep the occupied stack space alive. Of course, other
implementations of stack spraying are also possible.

A thread’s initial stack space contains various safe
variables and return addresses before we call the recur-
sive function the first time. Thus, this space is not con-
trollable, but its size does not vary significantly across
different program runs. For example, in our tests the ini-
tially occupied stack space had a size of approximately
three memory pages (0x3000 bytes) in each worker. A
sprayed stack frame consists of the values that the recur-
sive function retrieves as parameters and is additionally

6

USENIX Association 25th USENIX Security Symposium 111

Figure 1: Memory layout of Firefox with CPI’s SafeStack filled with
sprayed stack frames

interspersed with data intended to reside in a stack frame.
As the size of this data is predictable, we can control the
size of the stack frame with the number of parameters
passed to the recursive function. While the number of
sprayed stack frames is controllable via the number of
recursive calls, we perform as many recursive calls as
the JavaScript interpreter allows.

Figure 1 illustrates the memory layout of a sprayed
safe stack after the first two phases of our attack. Since
the system keeps safe variables such as double-precision
floating point values on the safe stack, the memory can
be filled with controlled stack frames which contain user-
controlled signatures in a controllable number. Thus, we
generate a repetitive pattern on the safe stacks of web
workers, which leads to the following observations:

• The probability of hitting a stack during memory
probing attempts increases, as the allocated space of
a safe stack is filled with a recognizable signature.

• Where safe stacks are not consecutive to each other,
they are separated only by small memory regions.
Thus, probing with stack-sized steps is possible
which reduces the number of probes even further.

• On a signature hit, we can safely read in sprayed
frame sized steps towards higher addresses until we
do not hit a signature anymore. This tells us that
we have reached the beginning of the thread’s stack,
which we can disclose further to manipulate a return
address.

4.3 Scanning methodologies
During our experiments we developed multiple scanning
methods fitted to different defense scenarios. In the fol-
lowing we shortly describe the observations leading to
the development of each and evaluate them against the
targeted defense measures. The first two techniques are
targeted at the standard ASLR while the last technique

is also successful against an improved version. For our
evaluation we assumed that an attacker can not always
rely on the stacks being located close to each other. As
such we implemented a simple module that can be loaded
via LD_PRELOAD and forces each call to mmap, associ-
ated with a stack creation (i.e. MAP_STACK provided in
the flags argument), to allocate memory at a random ad-
dress. This means every page is a potential stack base
and our first two methods are no longer effective.

4.3.1 Naïve attack on adjacent stacks

The simplest attack is based on the observation that all
stacks are allocated close to each other, starting from a
randomly chosen base address. To investigate this obser-
vation, we spawned 200 worker threads and performed
stack spray in each one. We chose a number of param-
eters for the recursive function such that each sprayed
stack frame had a size of one page (4096 bytes). As
each thread gets a stack of 2MB in size and individ-
ual stacks are grouped closely in memory, we can treat
the compound of stacks as a coherent region of approx-
imately 228B in size. To locate a safe stack we scan
towards lower addresses with 228B sized steps starting
at 0x7ffffffff000, the highest possible stack base.
As soon as we hit mapped memory we start searching in
page sized steps for our sprayed signature. We performed
this scan on three Firefox runs and needed only 16755.0
probing attempts on average (consisting of 1241.3 228B
sized probes and 15513.7 page sized probes) to locate
a signature and thus a safe stack. While this method is
simple to implement and locates stacks with a high prob-
ability it has a chance to miss a stack region, if our single
probe of a potential stack region hits the gap between two
stacks by chance. While retrying with a different start-
ing offset is possible, the next method is more fit for this
purpose.

4.3.2 Optimized attack on adjacent stacks

As a variation of our previous method we modified the
scanning strategy based on our observations. During
three runs with Firefox, we first launched 2,000 worker
threads and again performed stack spraying in each of
them. Afterwards we conducted our memory scanning.
The results are shown in Table 1. As our memory range,
we chose 0x7FxxxxYYYYY0, whereby the least three
significant bytes are fixed (YYYYY0) while the fourth
and fifth byte remain variable (xxxx). This yields a
memory range of 216 = 65,536 addresses: due to 28-
bit entropy for top down stack allocations, each of the
chosen ranges constitutes a potential range for stack al-
locations. The probability that one of the chosen ranges
is not a potential stack range is negligibly small.

7

112 25th USENIX Security Symposium USENIX Association

Table 1: Memory scans in Firefox on eight different ranges after thread and stack spraying was applied- In each range, byte four and five
are variable (denoted by ****). Thus, each range consists of 216 = 65536 addresses. Mapped denotes the number of readable addresses, S-hits
the number of addresses belonging to the safe stack that contain our signature, and Non S-Hits represent safe stack addresses not containing our
signature. False S-hits means that our signature was found at an address not being part of a safe stack.

Run 1 Run 2 Run 3
Memory Range Mapped S-Hits Non S-Hits False S-Hits Mapped S-Hits Non S-Hits False S-Hits Mapped S-Hits Non S-Hits False S-Hits

0x7f****000000 878 184 95 0 886 122 138 0 480 73 134 0
0x7f****202020 886 198 74 0 889 154 125 0 482 104 127 0
0x7f****404040 884 182 98 0 890 122 139 1 482 71 129 0
0x7f****606060 890 197 66 0 887 152 123 0 485 107 136 0
0x7f****808080 889 182 92 0 891 123 136 0 482 70 135 0
0x7f****a0a0a0 889 193 60 0 891 152 126 2 482 105 140 0
0x7f****c0c0c0 888 190 86 2 893 122 139 0 485 73 138 0
0x7f****e0e0e0 892 195 64 2 889 151 123 1 485 101 142 1

On average, 753.1 addresses out of 65,536 were
mapped for each scan range. The ranges we tested were
all potential ranges for safe stacks. 138.5 times a signa-
ture was hit, meaning we hit an address being part of a
safe stack (S-hits). 0.4 times a signature was hit which
did not belong to a safe stack. That means we hit a false
positive (false S-hits). These false hits occur due to the
signature being written by the program to non-stack re-
gions which reside in potential stack ranges.

Choosing the three least significant bytes as a fixed
value has the advantage of greatly reducing the search
space: instead of probing in 2MB steps—which would
be necessary to sweep the potential stack locations with-
out a chance of missing a stack—we exploit the obser-
vation that the distance between allocated pages varies.
Taking this into account leads to the conclusion that
stacks are distributed in a way that gives any value of
these ranges a roughly equal chance of being part of
one stack. While it is not guaranteed to get a hit with
this scanning approach, we cover a bigger area in less
time. Additionally, in case the first run did not turn up
any stack, we are free to retry the scan using a different
range. With an increasing number of retries we get close
to a full coverage of the scan region, but at the same time
we spend less time probing a region without any stacks.

4.3.3 Locating non-adjacent stacks

With our modifications to stack ASLR the methods pre-
sented so far have a high chance of missing a stack, be-
cause they probe a memory region several times larger
than a single stack. Therefore we need to assume no re-
lation between stack locations and are forced to scan for
memory of the size of a single stack. With the random-
ization applied we split the memory into C = 247/221 =
226 chunks, each representing a possible 2MB stack lo-
cation. We ignore the fact that some locations are already
occupied by modules and heaps, as we are able to distin-
guish this data from stack data. Also building a complete
memory map and then skipping these regions, if possi-
ble at all, would take more time than checking for a false
stack hit. Without thread spraying we would be forced to

locate a single stack, which would mean we would on av-
erage need 225 probes. Even with a high scanning speed
this would not be feasible. However by spawning more
threads we can reduce the number of probes in practice
significantly.

We tested two strategies for locating these stacks. In
theory every location in the address space has an equal
chance of containing a stack, so scanning with a linear
sweep with a step size of one stack seems like a valid
approach that allows for locating all stacks eventually.
However we noticed that the amount of probes required
to locate any stack significantly differed from the ex-
pected amount. This can be explained by big modules
being loaded at addresses our sweep reaches before any
stacks. Due to this mechanic we risk sampling the same
module multiple times instead of moving on to a possible
stack location. As such we employed a different strategy
based on a purely random selection of addresses to probe.
In total we performed nine measurements and were able
to locate a stack with 33,462 probes on average.

4.3.4 Crash-Resistant Memory Scanning

To verify that an attacker can indeed locate CPI’s SafeS-
tack when conducting a memory corruption exploit
against Firefox, we combined thread and stack spraying
with a crash-resistant primitive introduced by recent re-
search [18]. Crash-resistant primitives rely on probing
memory while surviving or not causing at all application
crashes. Using a crash-resistant primitive, it is possible
to probe entire memory regions for mapped pages from
within JavaScript and either receive the bytes located at
the specified address or a value indicating that the ac-
cess failed. In case an access violation happens, then
the event is handled by an exception handler provided
by the application, which eventually survives the crash.
An equivalent approach is probing memory using system
calls that return an error without crashing when touching
unmapped memory. Equipped with crash-resistant prim-
itives, we are free to use any strategy to locate the safe
stack without the risk of causing an application crash.

8

USENIX Association 25th USENIX Security Symposium 113

We choose to scan potential ranges which may include
safe stacks and hence we choose one of the ranges shown
in Table 1. To counteract false positives, we employ a
heuristic based on the observation that thread and stack
spraying yield stacks of a predetermined size, each of
which contains a large number of addresses with our sig-
nature. Determining the stack size is easily done after
any address inside a stack candidate is found, because
we are free to probe higher and lower addresses to locate
the border between the stack’s memory and neighboring
unmapped memory. Once these boundaries are known,
it is possible to use memory disclosures to apply the sec-
ond part of our heuristic. This heuristic is implemented
in asm.js as an optimization. As our code is nearly di-
rectly compiled to native code it is very fast to execute.
Additionally, we mainly need to index an array, with its
start address set to the lower boundary, which is a heavily
optimized operation in asm.js. If the number of entries in
this array matching our sprayed values is above a certain
threshold, we conclude that the memory region is indeed
a stack. A further optimization we chose was to scan
from higher addresses to lower addresses: we observed
that stacks are usually the memory regions with the high-
est address in a process, which means we most likely hit
a stack first when scanning from the top.

With the overhead caused by the thread and stack
spraying, we are not able to use the full speed offered
by the probing primitive [18]. This results in an aver-
age probing time of 46s to locate a safe stack (includ-
ing the time for thread and stack spraying). The speed
decrease is mainly due to the fact that we need to keep
the threads and stack frames alive. Our attack achieved
this by simply entering an endless loop at the end, which
leads to degraded performance. However as web work-
ers are designed to handle computational intensive tasks
in the background, the browser stays responsive, but the
scanning speed is affected.

Tagging safe stacks with user controlled data is not
the only option for locating a safe stack. As most free
stack space is zeroed out, a simple heuristic can be used
to scan for zeros instead of scanning for placed markers.
The advantage is that shadow stacks which separate re-
turn addresses and data are still locatable. Another pos-
sibility is to scan for known return addresses near the
base of the stack: as coarse-grained ASLR randomizes
shared libraries on a per-module basis and libraries are
page aligned, the last twelve bits of return addresses stay
the same across program runs and remain recognizable.

Without the overhead caused by the thread and stack
spraying, our scanning speed is increased to 16,500
probes per second. As our approximated scanning
method requires 65,536 scans per run, we are able to
finish one sweep in less than 4 seconds. However, this
is only the worst case estimation when not hitting any

stack. As mentioned before, we are then free to retry us-
ing a different value. On average, we are able to locate a
safe stack in 2.3 seconds during our empirical evaluation.

4.4 Discussion: Implications for ASLR-
Guard

In the following, we discuss the potential of a similar at-
tack against ASLR-Guard [26]. While this defense pro-
vides strong security guarantees, it might be vulnerable
to a similar attack as the one demonstrated above: as the
native stack is used for the AG-stack, we can locate it
using our scanning method. If the randomization of AG-
stack locations is left to the default ASLR implementa-
tion (i.e., the stacks receive the same amount of entropy
and potential base addresses), we can use our existing ap-
proach and only need to adjust for the size of the stacks
(if different) in addition to a different scanning heuris-
tic. This results in a longer scanning time, but if recur-
sion can again be forced by attacker-supplied code, the
resulting AG-stack will also increase in size. Combined
with the thread spraying attack, we are able to generate
a large number of sizable stacks. The major difference
is that we are not able to spray a chosen value on the
AG-stack. Further research into dynamic code genera-
tion might allow for spraying specific byte sequences as
return addresses, if code of the appropriate size can be
generated. While we can not evaluate the security of
ASLR-Guard since we do not have access to an imple-
mentation, it seems possible to locate the AG-stack and
thus disclose unencrypted code addresses.

Besides the AG-stack, there are two additional mem-
ory regions that must be hidden from an attacker. First,
the code regions of executable modules are moved to a
random location, but they are still potentially readable.
As the mmap-wrapper is used, they receive an entropy
of 28 bits. Since the stacks also receive the same amount
of entropy, a similar attack is possible. Scanning can
be done in bigger steps if a large executable module is
targeted. Second, a safe area called safe vault is used
for the translation of encoded pointers and it needs to be
protected. If either of those structures is located, an ad-
versary is able to launch a code-reuse attack. However,
she would be limited to attack types that do not require
access to the stack (e.g., COOP [32]). As stated in the
paper, an attacker has a chance of 1 in 214 to hit any
of these regions with a random memory probe. This re-
sults in the possibility of exhausting the search space in
roughly one second with the memory probing primitive
discussed earlier. Additional steps need to be taken in
order to determine the specific region hit, though. This
can include signatures for code sections or heuristics to
identify the safe vault.

9

114 25th USENIX Security Symposium USENIX Association

5 Reducing the Odds for Attackers

We developed a mechanism called Authenticating Page
Mapper (APM), which hinders attacks probing for the
safe areas. Our mechanism is based on a user-level page
fault handler authenticating accesses to inactive pages in
the safe area and, when possible, also artificially inflating
the virtual memory region backing the safe area.

The first strategy seeks to limit the attack surface to
active safe area pages in the working set of the appli-
cation. Since the working set is normally much smaller
than the virtual memory size (especially for modern de-
fenses relying on safe areas with sparse virtual memory
layouts [13,24]), this approach significantly increases the
entropy for the attacker. Also, since a working set is nor-
mally stable for real applications [38], the steady-state
performance of APM is negligible.

The second strategy ensures an increase in the number
of inactive pages not in use by the application, serving
as a large trip hazard surface to detect safe area prob-
ing attacks with very high probability. In addition, since
we randomize the concrete placement of the safe area
within the larger inflated virtual memory space, this miti-
gates the impact of implementation bugs that allow an at-
tacker to disclose the virtual (but not the physical) mem-
ory space assigned to the inflated area. Finally, this en-
sures that, even an attacker attempting to stress-test an
application and saturate the working set of a safe area is
still exposed to a very large detection surface.

Notice that deterministic isolation, and not hiding, can
secure any safe area if properly applied. However, isola-
tion in 64-bit systems has not, yet, been broadly adopted,
while CPI’s SafeStack is already available in the official
LLVM tool-chain [2] and there are discussions for port-
ing it to GCC [3], as well. We therefore seek for a system
that rather hardens IH, than fully protects it. To that end,
APM stands as a solution until a proper replacement of
IH is adopted by current defenses.

5.1 Authenticating Accesses
To authenticate accesses, APM needs to interpose on all
the page faults in the safe area. Page faults are nor-
mally handled by the OS, but due to the proliferation
of virtualization and the need for live migration of vir-
tual machines, new features that enable reliable page
fault handling in user space have been incorporated in
the Linux kernel [6]. We rely on such features to gain
control when an instruction accesses one of the safe ar-
eas to authenticate it. To authenticate the access, we
rely on unforgeable execution capabilities, such as the
faulting instruction pointer and stack pointer, exported
by the kernel to our page fault handler and thus trusted
in our threat model (arbitrary memory read/write primi-
tives in userland). Our design draws inspiration from re-

cent hardware solutions based on instruction pointer ca-
pabilities [37], but generalizes such solutions to generic
execution capabilities and enforces them in software (in
a probabilistic but efficient fashion) to harden IH-based
solutions. An alternative option is to use SIGSEGV han-
dlers, but this introduces compatibility problems, since
applications may have their own SIGSEGV handler,
faults can happen inside the kernel, etc. On the other
hand, userfaultfd [6] is a fully integrated technique
for reliable page fault handling in user space for Linux.

APM is implemented as a shared library on Linux
and can be incorporated in programs protected by CPI,
ASLR-Guard, or any other IH-based solution by preload-
ing it at startup (e.g., through the LD_PRELOAD environ-
ment variable). Upon load, we notify the kernel that we
wish to register a user-level page-fault handler for each of
the process’s safe areas (i.e., using the userfaultfd
and ioctl system calls).

When any of the safe area pages are first accessed
through a read or write operation, the kernel invokes
the corresponding handler we previously registered. The
handler obtains the current instruction pointer (RIP on
x86-64), the stack pointer, the stack base, and the fault-
ing memory address from the kernel, and uses this in-
formation to authenticate the access. Authentication is
performed according to defense-specific authentication
rules. If the memory access fails authentication, the pro-
cess is terminated. In the other cases, the handler signals
the kernel to successfully map a new zero page into the
virtual memory address which caused the page fault.

To support CPI and SafeStack in our current im-
plementation, we interpose on calls to mmap() and
pthread_create(). In particular, we intercept calls
to mmap() to learn CPI’s safe area. This is easily ac-
complished because the safe area is 4TB and it is the
only such mapping that will be made. Furthermore, we
intercept pthread_create(), which is used to ini-
tialize thread-related structures and start a thread, to ob-
tain the address and size of the safe stack allocated for the
new thread. In the following subsections, we detail how
we implement authentication rules for CPI and SafeStack
using our execution capabilities.

5.2 CPI’s Authentication Rules
To access a safe area without storing its addresses in
data memory, CPI (and other IH-based solutions) store
its base address in a CPU register not in use by the appli-
cation. However, as the number of CPU registers is lim-
ited, CPI relies on the segmentation register gs available
on x86-64 architectures to store the base address. The
CPI instrumentation simply accesses the safe area via an
offset from that register. Listing 1 shows an example of
a safe area-accessing instruction generated by CPI.

10

USENIX Association 25th USENIX Security Symposium 115

mov %gs:0x10(%rax),%rcx

Listing 1: x86-64 code generated by CPI to read a value
from the safe area.

Since gs is not used for any other purpose (it was se-
lected for this reason) and the instrumentation is assumed
to be trusted, APM authenticates accesses to the CPI safe
area by verifying that the instruction pointer points to an
instruction using the gs register. Therefore, since the at-
tacker needs to access the safe area before actually gain-
ing control of the vulnerable program, only legitimate in-
structions part of the instrumentation can be successfully
authenticated by APM.

5.3 SafeStack’s Authentication Rules
Similar to CPI’s safe area, SafeStack’s primary stack
(safe stack) is also accessed through a dedicated register
(RSP on x86-64 architectures) which originally points
to the top of the stack. When new values need to be
pushed to it, e.g., due to a function call, the program al-
locates space by subtracting the number of bytes needed
from RSP. This occurs explicitly or implicitly through
the call instruction. Hence, to authenticate safe stack
accesses, APM relies on the stack pointer (RSP) to verify
the faulting instruction accesses only the allocated part
of the stack. The latter extends from the current value of
RSP to the base of the safe stack of each thread. We also
need to allow accesses the red zone on x86-64.

5.4 Inflating the Safe Area
We inflate safe areas by allocating more virtual address
space than it is needed for the area. For example, when
a new safe stack is allocated, we can request 10 times
the size the application needs. The effect of this infla-
tion is that a larger part of the address space becomes
“eligible” for memory-access authentication, amplifying
our detection surface. Inflation is lightweight, since the
kernel only allocates pages and page-table entries after a
page is first accessed.

We implement our inflation strategy for SafeS-
tack (CPI’s safe region is naturally “inflated” given
the full memory shadowing approach used). To in-
flate thread stacks, our pthread_create() wrap-
per sets the stack size to a higher value (using
pthread_attr_setstacksize()). For the main
stack, initialized by the kernel, we implement inflation
by increasing the stack size (using setrlimit()) be-
fore the application begins executing. Similar to CPI, we
rely on the mmap()’s MAP_NORESERVE flag to avoid
overcommitting a large amount of virtual memory in typ-
ical production settings.

To randomize the placement of each safe stack within
the inflated virtual memory area, we randomize the initial
value of RSP (moving it upward into the inflated area)
while preserving the base address of the stack and the
TCB in place. Since the base address of each stack is
saved in memory (as we describe in Section 4), a memory
leak can exfiltrate its base address. Our randomization
strategy can mitigate such leaks by moving the safe stack
working set to a random offset from the base address and
exposing guided probing attacks to a large trip hazard
surface in between.

6 Evaluation

In this section, we report on experimental results of our
APM prototype. We evaluate the our solution in terms of
performance, entropy gains (reducing the likelihood at-
tackers will hit the target region), and detection guaran-
tees provided by APM coped with our inflation strategy
(authenticating memory accesses to the target region and
raising alerts).

We performed our experiments on an HP Z230 ma-
chine with an intel i7-4770 CPU 3.40GHz and running
Ubuntu 14.04.3 LTS and Linux kernel v4.3. Unless oth-
erwise noted, we configured APM with the default in-
flation factor of 10x. We repeated all our experiments 5
times and report the median (with little variations across
runs).

Performance To evaluate the APM’s performance we
run the SPEC2006 suite, which includes benchmarks
with very different memory access patterns. For each
benchmark, we prepared three versions: (1) the origi-
nal benchmark, denoted as BL (Baseline), (2) the bench-
mark compiled with CPI’s SafeStack only, denoted as
SS, and (3) the benchmark compiled with full CPI sup-
port, denoted as CPI. Table 2 presents our results. Note
that perlbench and povray fail to run when com-
piled with CPI, as also reported by other researchers [17].
Therefore, results for these particular cases are excluded
from the table.

Not surprisingly, the overhead imposed by APM in all
benchmarks and for all configurations (i.e., either com-
piled using SafeStack or full CPI) is very low. The geo-
metric mean performance overhead increase is only 0.3%
for BL+APM, 0.0% for SS+APM and 1.4% CPI+APM.

To confirm our performance results, we evalu-
ated the APM-induced overhead on Chrome (version
45.0.2454.93) and Firefox (version 38.0.5) by running
popular browser benchmarks—also used in prior work in
the area [21, 23]—i.e., sunspider, octane, kraken, html5,
balls and linelayout. Across all the benchmarks, we ob-
served essentially no overhead (0.01% and 0.56% ge-

11

116 25th USENIX Security Symposium USENIX Association

Apps BL BL + APM SS SS + APM CPI CPI + APM

astar 133.8 sec 1.004x 1.003x 1.002x 0.971x 0.985x
bzip2 82.6 sec 1.003x 1.002x 1.008x 1.039x 1.055x
dealII 229.4 sec 1.008x 1.009x 1.013x 0.887x 0.897x
gcc 19.2 sec 0.978x 0.982x 0.988x 1.368x 1.440x
gobmk 53.6 sec 1.001x 1.020x 1.018x 1.046x 1.046x
h264ref 51.6 sec 1.000x 1.009x 1.013x 1.028x 1.031x
hmmer 113.7 sec 0.996x 1.001x 0.996x 1.063x 1.066x
lbm 248.5 sec 1.002x 1.001x 1.002x 1.154x 1.159x
libquantum 274.1 sec 1.004x 1.015x 1.013x 1.231x 1.227x
mcf 237.4 sec 1.031x 0.998x 0.989x 1.046x 1.045x
milc 349.0 sec 1.009x 0.991x 0.997x 1.012x 1.023x
namd 306.8 sec 1.000x 1.001x 0.997x 1.031x 1.030x
omnetpp 358.8 sec 0.994x 1.017x 1.044x 1.377x 1.472x
perlbench 263.9 sec 1.004x 1.084x 1.091x —— ——
povray 121.3 sec 1.005x 1.092x 1.093x —— ——
sjeng 397.8 sec 1.004x 1.047x 1.051x 1.033x 1.031x
soplex 136.0 sec 1.001x 1.000x 0.951x 1.000x 0.997x
sphinx3 410.6 sec 0.987x 0.997x 0.995x 1.149x 1.138x
xalancbmk 189.0 sec 1.020x 1.042x 1.055x 1.679x 1.782x

geo-mean 1.003x 1.016x 1.016x 1.111x 1.125x

Table 2: SPEC CPU 2006 benchmark results. We present the overhead of hardening state-of-the art defenses with APM. BL and SS refer to
baseline and safe stack (respectively), and CPI refers to CPI’s safe area.

ometric mean increas on Chrome and Firefox, respec-
tively). These results confirm that, while APM may in-
troduce a few expensive page faults early in the execu-
tion, once the working set of the running programs is
fully loaded in memory, the steady-state performance
overhead is close to zero. We believe this property makes
APM an excellent candidate to immediately replace tra-
ditional information hiding on today’s production plat-
forms.

Entropy Gains With APM in place, it becomes signif-
icantly harder for an adversary to locate a safe area hid-
den in the virtual address space. To quantify the entropy
gains with APM in place, we ran again the SPEC2006
benchmarks in three different configurations, including
a parallel shadow stack [14] other than SafeStack and
full CPI. We present results for a parallel shadow stack
to generalize our results to arbitrary shadow stack im-
plementations in terms of entropy gains. A parallel
shadow stack is an ideal candidate for generalization,
since its shadow memory-based implementation con-
sumes as much physical memory as a regular stack,
thereby providing a worst-case scenario for our entropy
gain guarantees.

For each configuration, we evaluated the entropy with
and without APM in place and report the resulting gains.
The entropy gain is computed as log2(V MM/PMM),
where VMM is the Virtual Mapped Memory size (in
pages) and PMM is the Physical Mapped Memory size
(in pages). To mimic a worst-case scenario for our en-

tropy gains, we measured PMM at the very end of our
benchmarks, when the program has accessed as much
memory as possible resulting in the largest resident set
(and lowest entropy gains). Table 3 presents our results.
Once again, as also reported by other researchers [17],
perlbench and povray are excluded from the CPI
configuration.

As expected, our results in Table 3 show that lower
stack usage (i.e., lower PMM) results in higher entropy
gains. Even more importantly, the entropy gains for
CPI-enabled applications are substantial. In detail, we
gain 11 bits of entropy even in the worst case (i.e.,
xalancbmk). In other cases, (e.g., bzip2) the entropy
gains go up to 28 bits of entropy.

We find our experimental results extremely encourag-
ing, given that, without essentially adding overhead to
CPI’s fastest (but low-entropy) implementation, our tech-
niques can provide better entropy than the slowest (prob-
abilistic) CPI implementation [25]. SafeStack’s entropy
gains are, as expected, significantly lower than CPI’s, but
generally (only) slightly higher than a parallel shadow
stack. In both cases, the entropy gains greatly vary across
programs, ranging between 2 and 11 bits of entropy. This
is due to the very different memory access patterns ex-
hibited by different programs. Nevertheless, our strategy
is always effective in nontrivially increasing the entropy
for a marginal impact, providing a practical and immedi-
ate improvement for information hiding-protected appli-
cations in production.

12

USENIX Association 25th USENIX Security Symposium 117

Parallel Shadow Stack SafeStack CPI’s (safe region)
Apps VMM PMM EG DG VMM PMM EG DG VMM PMM EG DG

astar 2048 3 > 9 bits 99.99 % 2048 2 10 bits 99.99 % 1 GP 201668 > 12 bits 99.98 %
bzip2 2048 4 9 bits 99.98 % 2048 1 11 bits 100.00 % 1 GP 4 28 bits 100.00 %
gcc 2048 112 > 4 bits 99.45 % 2048 8 8 bits 99.96 % 1 GP 121314 > 13 bits 99.99 %
gobmk 2048 27 > 6 bits 99.87 % 2048 7 > 8 bits 99.97 % 1 GP 5813 > 17 bits 100.00 %
h264ref 2048 5 > 8 bits 99.98 % 2048 2 10 bits 99.99 % 1 GP 6994 > 17 bits 100.00 %
hmmer 2048 3 > 9 bits 99.99 % 2048 2 10 bits 99.99 % 1 GP 36616 > 14 bits 100.00 %
lbm 2048 2 10 bits 99.99 % 2048 1 11 bits 100.00 % 1 GP 2 > 29 bits 100.00 %
libquantum 2048 1 11 bits 100.00 % 2048 2 10 bits 99.99 % 1 GP 66911 > 13 bits 99.99 %
mcf 2048 2 10 bits 99.99 % 2048 2 10 bits 99.99 % 1 GP 5107 > 17 bits 100.00 %
milc 2048 2 10 bits 99.99 % 2048 1 11 bits 100.00 % 1 GP 20017 > 15 bits 100.00 %
namd 2048 10 > 7 bits 99.95 % 2048 2 10 bits 99.99 % 1 GP 109 > 23 bits 100.00 %
omnetpp 2048 34 > 5 bits 99.83 % 2048 10 > 7 bits 99.95 % 1 GP 171316 > 12 bits 99.98 %
perlbench 2048 491 > 2 bits 97.60 % 2048 446 > 2 bits 97.82 % —– —– —– —–
povray 2048 7 > 8 bits 99.97 % 2048 4 9 bits 99.98 % —– —– —– —–
sjeng 2048 132 > 3 bits 99.36 % 2048 26 > 6 bits 99.87 % 1 GP 2 > 29 bits 100.00 %
soplex 2048 3 > 9 bits 99.99 % 2048 2 10 bits 99.99 % 1 GP 31673 > 15 bits 100.00 %
sphinx3 2048 12 > 7 bits 99.94 % 2048 2 10 bits 99.99 % 1 GP 11334 > 16 bits 100.00 %
xalancbmk 2048 496 > 2 bits 97.58 % 2048 494 > 2 bits 97.59 % 1 GP 316838 > 11 bits 99.97 %

Table 3: Entropy gains with our defense. VMM, PMM, EG, and DG refer to Virtual Mapped Memory, Physical Mapped Memory, Entropy Gains
and Detection Guarantees (respectively). VMM and PMM are measured in number of pages. EG is given by log2(V MM/PMM). DG is given
by (1−PMM/(V MM ∗ in f lation_ f actor))∗100, where the inflation_factor is set to default 10x for stacks and 1x for the already huge CPI’s safe
region. GP stands for giga pages, i.e., 1024∗1024∗1024 regular pages. A regular page has a size of 4096 bytes.

Detection Guarantees Table 3 also illustrates the de-
tection guarantees provided by APM when coped with
the default 10x inflation strategy. The detection guaran-
tees reflect the odds of an attacker being flagged probing
into the inflated trip hazard area rather than in any of
the safe pages mapped in physical memory. As shown
in the table, APM offers very strong detection guaran-
tees across all our configurations. Naturally, the detec-
tion guarantees are stronger as the size of the inflated trip
hazard area (i.e., V MM ∗ in f lation_ f actor−PMM) in-
creases compared to the resident size (i.e., PMM). The
benefits are, again, even more evident for CPI’s sparse
and huge safe area, which registered 100% detection
guarantees in almost all cases. Even in the worst case
(i.e., xalancbmk), CPI retains 316,838 trip hazard pages
at the end of the benchmark, resulting in 99.97% detec-
tion guarantees.

To lower the odds of being detected, an attacker may
attempt to force the program to allocate as many safe area
physical pages as possible, naturally reducing the num-
ber of trip hazard pages. We consider the impact of this
scenario in Firefox, with a JS-enabled attacker spraying
the stack to bypass APM. Figure 2 presents our results
for different inflation factors assuming an attacker able to
spray only the JS-visible part of the stack (1MB) or the
entire stack to its limit (2MB). As shown in the figure, in
both cases, APM provides good detection guarantees for
reasonable values of the inflation factor and up to 95%
with a 20x inflation (full spraying setting). Even in our
default configuration, with a 10x inflation, APM offers
adequate detection guarantees in practice (90% for the
full spraying setting).

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x 11x 12x 13x 14x 15x 16x 17x 18x 19x 20x

D
e
te

c
ti
o
n
 g

u
a
ra

n
te

e
s

Inflation factor

Firefox JS stack
Default stack

Figure 2: Effect of stack spraying (JS-visible or default stack) on our
detection guarantees (DGs) across different inflation factors.

Limitations APM aims at hardening IH, but does not
guarantee that a defense based on IH is fully protected
against arbitrary attacks. Defenses that rely on IH should
properly isolate the safe area to preserve the integrity
and/or confidentiality of sensitive data. In the absence of
strong (e.g., hardware-based) isolation, however, APM
can transparently raise the bar for attackers, since it
can offer protection without programs being aware of it
(no re-compilation or binary instrumentation is needed).
Nevertheless, certain attacks can still reduce the entropy
and the detection guarantees provided by APM. For ex-
ample, an attacker may be able to locate the base address
of an inflated safe area by exploiting an implementation
flaw or the recent allocation oracle side channel [28].

13

118 25th USENIX Security Symposium USENIX Association

While the entropy is reduced, the trip hazard pages still
deter guided probing attacks in the inflated area. How-
ever, if an implementation flaw or other side channels
were to allow an attacker to leak a pointer to an active
safe area page in use by the application (e.g., RSP), APM
would no longer be able to detect the corresponding ma-
licious access, since such page has already been authen-
ticated by prior legitimate application accesses.

7 Conclusion

Information hiding is at the heart of some of the most
sophisticated defenses against control-flow hijacking at-
tacks. The assumption is that an attacker will not be
able to locate a small number of pages tucked away at
a random location in a huge address space if there are
no references to this pages in memory. In this paper,
we challenge this assumption and demonstrate that it is
not always true for complex software systems such as
Mozilla Firefox. More specifically, we examined CPI’s
SafeStack since it is considered to be the state-of-the-art
defense. In a first step, we analyzed the implementa-
tion and found that there were still several pointers to the
hidden memory area in memory. An attacker can poten-
tially abuse a single such pointer to bypass the defense.
More seriously still, the protection offered by high en-
tropy is undermined by thread spraying—a novel tech-
nique whereby the attacker causes the target program to
spawn many threads in order to fill the address space with
as many safe stacks as possible. Doing so reduces the
entropy to the point that brute-force attacks become vi-
able again. We demonstrated the practicality of thread
spraying by way of an attack against Firefox, Chrome
and MySQL, protected with CPI’s SafeStack.

To mitigate such entropy-reducing attacks, we pro-
pose an IH hardening strategy, namely APM. Based on a
user-space page fault handler, APM allows accessing of
pages on demand only and vets each first access to a cur-
rently guarded page. The additional protection provided
by the page fault handler greatly improves the pseudo-
isolation offered by information hiding, making it a con-
crete candidate to replace traditional information hiding
in production until stronger (e.g., hardware-based) iso-
lation techniques find practical applicability. Most no-
tably, our approach can be used to harden existing de-
fenses against control-flow hijacking attacks with barely
measurable overhead.

Acknowledgements

We thank the reviewers for their valuable feedback.
This work was supported by Netherlands Organisation
for Scientific Research through the NWO 639.023.309

VICI “Dowsing” project, by the European Commission
through project H2020 ICT-32-2014 “SHARCS” under
Grant Agreement No. 64457, and by ONR through grant
N00014-16-1-2261. Any opinions, findings, conclusions
and recommendations expressed herein are those of the
authors and do not necessarily reflect the views of the US
Government, or the ONR.

Disclosure

We have cooperated with the National Cyber Security
Centre in the Netherlands to coordinate disclosure of the
vulnerabilities to the relevant parties.

References
[1] Applications using older atl components may experience conflicts

with dep. https://support.microsoft.com/en-us/
kb/948468.

[2] Clang’s SafeStack. http://clang.llvm.org/docs/
SafeStack.html.

[3] Discussion for porting SafeStack to GCC. https://gcc.
gnu.org/ml/gcc/2016-04/msg00083.html.

[4] ALTEKAR, G., BAGRAK, I., BURSTEIN, P., AND SCHULTZ, A.
Opus: online patches and updates for security. In USENIX Secu-
rity ’05.

[5] ANDERSEN, S., AND ABELLA, V. Changes to Func-
tionality in Microsoft Windows XP Service Pack 2, Part
3: Memory Protection Technologies, Data Execution Preven-
tion, 2004. http://technet.microsoft.com/en-us/
library/bb457155.aspx.

[6] ARCANGELII, A. Userfaultfd: handling userfaults from user-
land.

[7] BACKES, M., AND NÜRNBERGER, S. Oxymoron: Making fine-
grained memory randomization practical by allowing code shar-
ing. In USENIX Security ’14.

[8] BITTAU, A., BELAY, A., MASHTIZADEH, A., MAZIÈRES, D.,
AND BONEH, D. Hacking blind. In IEEE S&P ’14.

[9] BLETSCH, T., JIANG, X., FREEH, V. W., AND LIANG, Z.
Jump-oriented programming: A new class of code-reuse attack.
In ASIA CCS ’11.

[10] BOSMAN, E., RAZAVI, K., BOS, H., AND GIUFFRIDA, C.
Dedup est machina: Memory deduplication as an advanced ex-
ploitation vector. In IEEE S&P ’16.

[11] CARLINI, N., AND WAGNER, D. ROP is Still Dangerous:
Breaking Modern Defenses. In USENIX Security ’14.

[12] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND IYER,
R. K. Non-control-data attacks are realistic threats. In USENIX
Security ’05.

[13] DANG, T. H., MANIATIS, P., AND WAGNER, D. The perfor-
mance cost of shadow stacks and stack canaries. In ASIA CCS
’15.

[14] DANG, T. H., MANIATIS, P., AND WAGNER, D. The perfor-
mance cost of shadow stacks and stack canaries. In ASIA CCS
’15.

[15] DAVI, L., LIEBCHEN, C., SADEGHI, A. R., SNOW, K. Z., AND
MONROSE, F. Isomeron: Code randomization resilient to (just-
in-time) return-oriented programming. In NDSS ’15.

14

USENIX Association 25th USENIX Security Symposium 119

[16] DAVI, L., SADEGHI, A.-R., LEHMANN, D., AND MONROSE,
F. Stitching the Gadgets: On the Ineffectiveness of Coarse-
Grained Control-Flow Integrity Protection. In USENIX Security
’14.

[17] EVANS, I., FINGERET, S., GONZALEZ, J., OTGONBAATAR, U.,
TANG, T., SHROBE, H., SIDIROGLOU-DOUSKOS, S., RINARD,
M., AND OKHRAVI, H. Missing the point(er): On the effective-
ness of code pointer integrity. In IEEE S&P ’15.

[18] GAWLIK, R., KOLLENDA, B., KOPPE, P., GARMANY, B., AND
HOLZ, T. Enabling client-side crash-resistance to overcome di-
versification and information hiding. In NDSS ’16.

[19] GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM, A. S.
Enhanced operating system security through efficient and fine-
grained address space randomization. In USENIX Security ’12.

[20] GÖKTAŞ, E., ATHANASOPOULOS, E., POLYCHRONAKIS, M.,
BOS, H., AND PORTOKALIDIS, G. Size Does Matter: Why Us-
ing Gadget-Chain Length to Prevent Code-Reuse Attacks is Hard.
In USENIX Security’14.

[21] HALLER, I., GÖKTAŞ, E., ATHANASOPOULOS, E., PORTOKA-
LIDIS, G., AND BOS, H. Shrinkwrap: Vtable protection without
loose ends. In ACSAC ’15.

[22] HUND, R., WILLEMS, C., AND HOLZ, T. Practical timing side
channel attacks against kernel space aslr. In IEEE S&P ’13.

[23] JANG, D., TATLOCK, Z., AND LERNER, S. SAFEDISPATCH:
Securing C++ virtual calls from memory corruption attacks. In
NDSS ’14.

[24] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-pointer Integrity. In OSDI
’14.

[25] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
AND SONG, D. Poster: Getting the point(er): On the feasibility
of attacks on code-pointer integrity. In IEEE S&P ’15.

[26] LU, K., SONG, C., LEE, B., CHUNG, S. P., KIM, T., AND LEE,
W. Aslr-guard: Stopping address space leakage for code reuse
attacks. In CCS ’15.

[27] MOHAN, V., LARSEN, P., BRUNTHALER, S., HAMLEN, K. W.,
AND FRANZ, M. Opaque Control-Flow Integrity. In NDSS ’15.

[28] OIKONOMOPOULOS, A., ATHANASOPOULOS, E., BOS, H.,
AND GIUFFRIDA, C. Poking holes in information hiding. In
USENIX Sec ’16.

[29] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. D.
Smashing the gadgets: Hindering return-oriented programming
using in-place code randomization. In S&P ’12.

[30] PAX TEAM. Address Space Layout Randomization (ASLR),
2003. pax.grsecurity.net/docs/aslr.txt.

[31] PLANK, J. S., BECK, M., KINGSLEY, G., AND LI, K. Libckpt:
Transparent checkpointing under unix. In USENIX ATC ’95.

[32] SCHUSTER, F., TENDYCK, T., LIEBCHEN, C., DAVI, L.,
SADEGHI, A.-R., AND HOLZ, T. Counterfeit Object-oriented
Programming: On the Difficulty of Preventing Code Reuse At-
tacks in C++ Applications. In IEEE S&P ’15.

[33] SEIBERT, J., OKHRAVI, H., AND SÖDERSTRÖM, E. Informa-
tion leaks without memory disclosures: Remote side channel at-
tacks on diversified code. In CCS ’14.

[34] SHACHAM, H. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In CCS ’07.

[35] SNOW, K. Z., DAVI, L., DMITRIENKO, A., LIEBCHEN, C.,
MONROSE, F., AND SADEGHI, A.-R. Just-In-Time Code Reuse:
On the Effectiveness of Fine-Grained Address Space Layout Ran-
domization. In IEEE S&P ’13.

[36] STRACKX, R., YOUNAN, Y., PHILIPPAERTS, P., PIESSENS, F.,
LACHMUND, S., AND WALTER, T. Breaking the memory se-
crecy assumption. In EuroSec EWSS ’09.

[37] VILANOVA, L., BEN-YEHUDA, M., NAVARRO, N., ETSION,
Y., AND VALERO, M. Codoms: Protecting software with code-
centric memory domains. In ISCA ’14.

[38] VOGT, D., MIRAGLIA, A., PORTOKALIDIS, G., BOS, H.,
TANENBAUM, A. S., AND GIUFFRIDA, C. Speculative mem-
ory checkpointing. In Middleware ’15.

[39] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,
S. L. Efficient software-based fault isolation. In SOSP ’93.

[40] WARTELL, R., MOHAN, V., HAMLEN, K. W., AND LIN, Z.
Binary stirring: Self-randomizing instruction addresses of legacy
x86 binary code. In CCS ’12.

[41] XI CHEN, A. S., DENNIS ANDRIESSE, H. B., AND GIUF-
FRIDA, C. StackArmor: Comprehensive protection from stack-
based memory error vulnerabilities for binaries. In NDSS ’15.

[42] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,
ORM, T., OKASAKA, S., NARULA, N., FULLAGAR, N., AND
INC, G. Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In IEEE S&P ’09.

[43] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES, L.,
MCCAMANT, S., SONG, D., AND ZOU, W. Practical Control
Flow Integrity and Randomization for Binary Executables. In
IEEE S&P ’13.

[44] ZHANG, M., AND SEKAR, R. Control Flow and Code Integrity
for COTS binaries: An Effective Defense Against Real-World

ROP Attacks. In ACSAC ’15.

15

USENIX Association 25th USENIX Security Symposium 121

Poking Holes in Information Hiding

Angelos Oikonomopoulos
Vrije Universiteit Amsterdam

a.oikonomopoulos@vu.nl

Elias Athanasopoulos
Vrije Universiteit Amsterdam

i.a.athanasopoulos@vu.nl

Herbert Bos
Vrije Universiteit Amsterdam

herbertb@cs.vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam

giuffrida@cs.vu.nl

Abstract
ASLR is no longer a strong defense in itself, but it still

serves as a foundation for sophisticated defenses that use
randomization for pseudo-isolation. Crucially, these de-
fenses hide sensitive information (such as shadow stacks
and safe regions) at a random position in a very large
address space. Previous attacks on randomization-based
information hiding rely on complicated side channels
and/or probing of the mapped memory regions. Assum-
ing no weaknesses exist in the implementation of hid-
den regions, the attacks typically lead to many crashes
or other visible side-effects. For this reason, many re-
searchers still consider the pseudo-isolation offered by
ASLR sufficiently strong in practice.

We introduce powerful new primitives to show that
this faith in ASLR-based information hiding is mis-
placed, and that attackers can break ASLR and find hid-
den regions on 32 bit and 64 bit Linux systems quickly
with very few malicious inputs. Rather than building on
memory accesses that probe the allocated memory areas,
we determine the sizes of the unallocated holes in the
address space by repeatedly allocating large chunks of
memory. Given the sizes, an attacker can infer the loca-
tion of the hidden region with few or no side-effects. We
show that allocation oracles are pervasive and evaluate
our primitives on real-world server applications.

1 Introduction

While Address Space Layout Randomization (ASLR) by
itself no longer ranks as a strong defense against ad-
vanced attacks due to the abundance of memory disclo-
sure bugs [1], it is still an essential foundation for more
sophisticated defenses that use randomization to pro-
vide fast pseudo-isolation. Specifically, these defenses
hide important sensitive information (such as shadow
stacks [2], safe regions [3], or redirection tables [4]) at
a random position in a very large address space. The un-

derlying and crucial assumption is that an attacker is not
able to detect the location of the hidden regions.

Thus, the strength of all these defenses hinges entirely
on the ASLR-provided obscurity of the hidden region.
Our research question is whether such trust in the ran-
domization schemes of modern systems like Linux is jus-
tified. In particular, we show that it is not, and introduce
powerful new primitives, allocation oracles, that allow
attackers to stealthily break ASLR on Linux and quickly
find hidden regions on both 32-bit and 64-bit systems.

Randomization for information hiding Most oper-
ating systems today employ coarse-grained ASLR [5]
which maps the different parts of the process (the stack,
heap, and mmap region) in random locations in mem-
ory. The amount of randomness determines the strength
of the defense. As an extreme example, the entropy
for the mmap base on 32-bit Linux is as low as 8 bits,
which means that the region can start at 256 possible lo-
cations in memory. This is well within range of a rel-
atively stealthy brute-force attack. On 64-bit machines,
however, the entropy of the mmap region on Linux is 28
bits and brute forcing is no longer considered practical.
Unfortunately, whatever the granularity and entropy, ad-
dress space randomization is vulnerable to information
disclosure attacks. For example, in the absence of addi-
tional defenses and given a single code pointer, attackers
can easily find other code pointers and eventually enough
code to stitch together a code reuse attack [1].

However, powerful new defenses have evolved that
still rely on randomization, but this time for the purpose
of hiding a secret region of memory in a large address
space [2, 3, 4]. Typically, they ensure the confidentiality
and integrity of code pointers (such as return addresses,
function pointers, and VTable pointers) [3, 6]. As ma-
nipulating a code pointer is vital for an attacker to take
control of the program, preventing unauthorized access
to code pointers also prevents such attacks. Thus, instead
of storing code pointers in the program code, the heap, or

1

122 25th USENIX Security Symposium USENIX Association

the stack, they place them in an isolated memory region.
For instance, some defenses store the return addresses on
an isolated “shadow” stack. Such defenses work as long
as attackers cannot access the isolated region.

While it is possible to isolate these regions using tech-
niques such as Software Fault Isolation (SFI) [7, 8], most
existing solutions adopt cheaper ASLR-based pseudo-
isolation—presumably for performance reasons or since
commodity hardware-supported fault isolation can dra-
matically limit the size of the address space [9]. In other
words, they resort to information hiding by placing the
region at a random location in a very large virtual (and
mostly inaccessible) address space and making sure that
no pointers to it exist in regular memory.

The role of ASLR in information hiding is quite dif-
ferent to its use in countering code-reuse attacks directly,
since even a strong read or write primitive ceases to be
trivially sufficient for breaking the defense. Specifically,
hiding all sensitive pointers forces attackers to probe the
address space repeatedly (with the number of probes pro-
portional to the size of the address space) and risk detec-
tion from crashes [10], or other observable events [11].
While Evans et al. [12] show that problematic implemen-
tations relying on huge hidden regions are still vulnerable
to crashless probing attacks, more advanced defenses are
not [6]. Indeed, the many new defenses that rely on in-
formation hiding show that ASLR is widely considered
to offer strong isolation.

Allocation oracles Unlike previous approaches, our
attack does not revolve around probing valid areas of al-
located memory. Instead, we introduce new primitives to
gauge the size of the holes in the address space. The key
idea is that once an attacker knows the sizes of the holes,
she can infer the start of the hidden regions. In other
words, even if all the pointers into the hidden regions
have been removed, the sizes of the unallocated parts of
the address space “point” into the hidden regions.

To gauge the sizes of the holes, we introduce alloca-
tion oracles: information disclosure primitives that allow
an attacker to allocate large chunks of memory repeat-
edly and thus probe for the possible sizes of the largest
hole in the address space. In most cases, she can use bi-
nary search to find the exact size after a handful of prob-
ing attempts. The pre-conditions for allocation primi-
tives are the ability to make repeated, arbitrarily large
memory allocations, and to detect the success or failure
of such allocation attempts. For instance, the simplest
oracle might be the length field in a protocol header that
controls the amount of memory a server allocates for a
request [13]. More reliably, the attacker may corrupt a
value in memory that is later used as an allocation size.
Assuming the attacker can distinguish between success
and failure of the allocations, this primitive operates as

an allocation oracle. We will show that such cases are
common in real-world server programs.

Allocation oracles come in two main forms.
Ephemeral allocation oracles perform allocations
that have a short lifetime. For instance, a server which
allocates memory for a client request and frees it after
sending the reply. Ephemeral allocation oracles are the
most effective in detecting the hidden regions. In the
absence of ephemeral allocation oracles, we may find
persistent allocation oracles. In this case, the allocation
is permanent. This property alone makes attacks harder,
but not impossible. In this paper, we present exploitation
techniques and examples using either kind of oracle, as
well as a powerful combination of the two. This combi-
nation allows an attacker to disclose the location of small
hidden regions arbitrarily located in an arbitrarily large
address space with no crashes or other detection-prone
side effects.

Contributions We make the following contributions:

• We introduce new types of disclosure primitives,
termed allocation oracles. Unlike existing primi-
tives, allocation oracles do not work by accessing
memory addresses, but instead probe the address
space for “holes”. We describe primitives for both
ephemeral and persistent allocations, and show how
to combine them to break information hiding.

• We describe a methodology to assist an attacker in
easily discovering both ephemeral and persistent al-
location primitives in real programs. We show that
such primitives are very common in practice. When
real-world instances of our primitives are imperfect,
we show how an attacker can exploit timing side
channels to mount effective attacks.

• We show that our primitives can be exploited to
mount end-to-end disclosure attacks on several real-
world server programs. Our attacks render ASLR
ineffective even on 64-bit (or larger) systems and
show that an attacker can quickly locate hidden re-
gions of existing defenses with little or no trace.

Organization We introduce the threat model in Sec-
tion 2. Section 3 provides the necessary background for
our attacks, presented in Section 4. We then describe our
methodology for discovering memory allocation primi-
tives (Section 5) and evaluate their availability and the
effectiveness of the proposed attacks in Section 7. Fi-
nally, we discuss the implications for the defense mecha-
nisms that rely on ASLR for information hiding (Section
7.6), consider mitigations (Section 8), place our attacks
in the context of related work (Section 9), and draw con-
clusions in Section 10.

2

USENIX Association 25th USENIX Security Symposium 123

2 Threat model and assumptions

The attacks presented in this paper apply to programs
that contain vulnerabilities, but are, nevertheless, pro-
tected using state-of-the-art defenses. The sensitive data,
vital for the correct operation of the defense, is iso-
lated in a hidden region by means of information hid-
ing. Hardware-based isolation, realized with segmenta-
tion on 32 bit x86 architectures, is not available. These
assumptions correspond to some of the most advanced
anti-exploitation defenses for x86-64 today [3]. Note
that we assume an ideal information hiding implemen-
tation, i.e., all sensitive information is in a hidden region
at a truly random location in a large virtual address space
and the code that performs this pseudo-isolation, as well
as the defense itself, contain no faults. In addition, we
assume that the separation of sensitive and non-sensitive
data is perfect; the process memory holds no references
to the hidden region, and following pointers from non-
sensitive regions can never lead to pointers into the hid-
den region.

We further assume an attacker with arbitrary memory
read and write primitives. In other words, the attacker
can read or write any byte in the virtual address space.
However, we consider that all sensitive data, which could
allow an attacker change the control flow of the program
in order to execute arbitrary code, is hidden in the hidden
region. Therefore, although the attacker can read any
byte in memory, she cannot probe the address space by
brute force without incurring program crashes or other
noticeable events with high probability.

We assume that the target application runs on a mod-
ern Linux system with memory overcommit. This is a
common configuration in many production systems, ei-
ther because of the pervasive use of virtualization tech-
nologies [14], or because this is required or explicitly
recommended for popular and complex services, Re-
dis [15] and Hadoop [16] among others. We also gener-
ally consider (real-world) applications that either handle
allocation failures appropriately or do not crash in a way
that triggers a re-randomization (e.g., by forking and us-
ing execve to replace the worker process image) when
the allocation request cannot be serviced. The goal of
the attacker is to carefully utilize memory oracles to poke
holes into the information hiding and reveal the location
of the hidden region.

3 Background

In this section, we illustrate the organization of a typi-
cal process’ virtual memory address space. While most
of the discussion is based on Linux-based operating sys-
tems, we present fairly generic address space organiza-
tion principles which apply to other systems as well. Un-

Hole Min Max Entropy1

A 130,044GiB 131,068GiB 28 bits
B 1GiB 1,028GiB 28 bits
C 4KiB 4GiB 20 bits

Table 1: Virtual memory hole ranges for a 64-bit
position-independent executable (PIE) on Linux.

derstanding the memory layout of processes is vital for
comprehending the mechanics of memory allocation or-
acles, detailed in the following sections.

The default address space of a typical x86_64
position-independent executable (PIE) on Linux (kernel
version 3.14.7 used as a reference) is depicted in Fig-
ure 1. The system randomly selects an address which
serves as the starting offset of the process’ mmap space. In
kernel concepts, this is a per-address-space mmap_base
variable. Shared objects, including the PIE executable
itself, are allocated in this virtual memory-mapped area,
which extends towards lower addresses. Figure 1 also il-
lustrates several holes (unmapped regions) fragmenting
the address space. Such holes have different purposes
and semantics.

To support typical dynamic memory allocations, the
process relies on a separate [heap] space, at the lowest
level managed by brk/sbrk calls. As the stack grows
down on x86, the heap is naturally designed to grow up
towards the stack. The size of the hole between these
two regions is randomized. The stack, in turn, is lo-
cated at a random offset from the end of the user address
space (i.e., at 0x7fffffffffff), giving rise to another
variable-sized hole at the top.

To protect against trivial exploitation of NULL pointer
dereferences by the kernel [17], processes are not
allowed to map or access addresses ranging from
zero up to an administrator-configurable limit (i.e.,
vm.mmap_min_addr, which defaults to 64KiB). Addi-
tionally, the small hole between the stack and VDSO is
typically less than 2MiB. In less than 1% of the invo-
cations, the VDSO object will end up either adjacent to
the stack or adjacent to the linker object. In both cases,
the layout is effectively the same, except that the small
random hole may not be present.

In practice, the uncertainty in the layout of the address
space is dominated by the sizes of the large hole from
vm.mmap_min_addr to the end of the mmap space (here-
after referred to as hole A), the hole between the stack
and heap (named B) and the hole covering the top of the
user address space (named C). While there may be holes
between the loaded shared objects, those are normally
of a known (fixed) size. The sizes of these holes are all
uniformly distributed in the ranges shown in Table 1.

1Calculated under the assumption that the distributions are indepen-

3

124 25th USENIX Security Symposium USENIX Association

hole

hole

hidden

shared libraries
executable

[heap]

hole

0x0000000

A

[stack]

[vdso]
hole

small hole

B

C
0x7fffffffffff

Figure 1: Virtual memory address space layout for a 64-
bit position-independent executable (PIE) on Linux.

4 Memory Allocation Oracles

In this section, we thoroughly discuss the mechanics of
two memory-allocation oracles, which can dramatically
reduce the entropy of ASLR for accurately locating a hid-
den region in the virtual address space. The oracles can
be realized through an ephemeral allocation primitive
(EAP) and a persistent allocation primitive (PAP), re-
spectively. Both primitives can be triggered by attacker-
controlled input, say an HTTP request in a typical web
server, and force a legitimate program path to allocate
virtual memory with attacker-controlled size. By repeat-
edly using such primitives and monitoring the behavior
of the target program (e.g., the error code in a HTTP re-
sponse message), the attacker can infer the size of holes
(unallocated space) in the virtual memory address space
and learn key properties on its layout.

Whenever an EAP is used, the reserved virtual mem-
ory is released shortly after allocation (e.g., a short-lived
per-request buffer), giving the attacker the opportunity
to probe the target program multiple times. As detailed
later, this allows an attacker to leak the size of the largest
hole in the virtual memory address space and reduce the
entropy of ASLR up to a single bit. The PAP, in turn, is
based on reserving long-lived memory (e.g., a key-value
store entry) and can be used in combination with the EAP
to counteract the last bit of entropy or, by itself, to sig-
nificantly reduce the entropy of ASLR.

dent. Any dependence naturally reduces the entropy.

4.1 Crafting primitives

The ephemeral allocation primitive (EAP) is available
when a program allows attacker-controlled input to force
the allocation of a short-lived memory object with an
attacker-controlled size. In other words, the lifetime of
the object must be such that the object is deallocated in a
short amount of time (or by an attacker-controlled action,
e.g. closing the connection that the object is associated
with).

Even if an attacker induces the program to allocate a
huge memory object of arbitrary size, such an allocation
will succeed as large allocation operations typically re-
sult in an mmap system call. Thanks to demand paging,
the system call returns right after reserving the required
amount of virtual memory address space. The assign-
ment of physical memory pages (page frames) to a vir-
tual memory area, and even the population of the page
tables, is only performed when a page is accessed for the
first time. Hence, as long as the program does not imme-
diately try to access all of the allocated virtual memory
range, little physical memory is used and execution con-
tinues normally. This allows an attacker monitoring the
program output to detect a positive side effect and verify
that the corresponding address space was successfully re-
served.

When the allocation size is larger than the amount of
available virtual memory address space, however, such
allocations will fail, typically causing the program to en-
ter error-handling logic to return a particular error code
(e.g., HTTP’s 500) to the client. This allows an attacker
monitoring the program output to detect a negative side
effect and verify that the allocation failed.

Other than monitoring program behavior for side ef-
fects, the attacker needs to fulfill two requirements to
craft an EAP. First, the attacker needs to find an in-
put which induces the program to allocate a short-lived
memory object. This is, in practice, straightforward,
since most programs allocate objects as part of their
input-handling logic and release them afterwards. Sec-
ond, the attacker needs to coerce the program to use an
attacker-controlled size for the target object. While ex-
ploiting a naive program neglecting to set limits on the
resources it will reserve (for instance, on the buffer size
per client) is an option, in many cases the size of an allo-
cation is calculated based on long-lived values which are
stored in memory. As a result, an attacker in our threat
model can rely on an arbitrary memory write vulnera-
bility to corrupt one of those values and effect a memory
allocation of a chosen size to craft an EAP. An example is
an attacker able to corrupt a buff_size or similar global
variable to control the size of a target allocation instance,
a very common scenario in practice. In later sections, we
substantiate this claim with empirical evidence on real-

4

USENIX Association 25th USENIX Security Symposium 125

world applications and present a methodology that can
assist an attacker in the fast discovery of our primitives
(Section 5).

To craft a persistent allocation primitive (PAP), an at-
tacker can similarly abuse allocation instances and cor-
rupt allocation sizes. The only difference is that a PAP
relies on long-lived memory objects whose lifetime is
not under attacker control. For example, a server pro-
gram maintaining long-lived memory objects in a cache
(spanning across several input requests) is amenable to
a PAP, provided the attacker can control the allocation
size. Oftentimes, however, the attacker can leverage the
same primitive to obtain both an ephemeral and a per-
sistent allocation primitive. For example, the common
case of attacker-controlled allocations associated with in-
dividual client connections allow an attacker to craft ei-
ther an EAP (when using nonpersistent connections) and
a PAP (when using persistent connections) in a fully con-
trolled way.

4.2 Breaking IH using the EAP
Many modern defenses depend on information hiding
(IH) in order to protect a sensitive area which con-
tains, for example, code pointers. We now discuss how
a crafted EAP can reveal the hidden area (or hidden
object), with few or even zero program crashes [10]
and other detection-prone events [11] (hereafter, simply
“crashes”). We discuss how an attacker can hide her
traces even further (certainty of no crashes) in the next
subsection. Here, we describe a simplified attack assum-
ing that the defense randomizes the location of the hid-
den object within the largest available memory region.
This assumption is fairly often verified in practice, given
that if all holes in the address space are uniformly consid-
ered for hosting the hidden object, the largest hole (A) is,
on average, 261 times more likely to be selected than the
second largest hole. We later lift this and other assump-
tions on the address space organization in Section 4.3.

Once the hidden object is created, the hole size (A) is
split into two new hole sizes, a large (L) and a small (S)
one. 2 Assuming a random placement of a hidden object
of size H in A, the bounds of L and S are Lmin = (Amin −
H)/2, Lmax = Amax, Smin = 0, Smax = (Amax −H)/2.
Hence, the distributions for the sizes L and S overlap.
However, since in any given instance L > S and, assum-
ing the hidden object H is reasonably smaller than A, L
is now the largest hole in the address space. Hence, an
attacker can quickly identify L using EAP-based binary
search (formalized in Algorithm 1, Appendix A). In de-
tail, at each binary search iteration, the attacker performs
a single EAP invocation for a given allocation size and

2For brevity, we omit explicit discussion of the case where L = S,
which does not deviate from the common case where L > S.

observes its positive or negative side effects to select the
allocation size for the next iteration. When the search
completes, the attacker learns the largest allocation size
and thus L. There can never be any confusion while we
are performing the binary search for L as, if an allocation
cannot be satisfied from the larger hole, it can certainly
not be satisfied by the smaller one.

Since the hidden object is equally likely to have been
placed below or above the midpoint of A, there’s is a
50% chance that L is the lower hole size. In this case,
the location of the hidden object is precisely known: the
base address of the hidden object is exactly located at
vm.mmap_min_addr+L.

If L refers to the hole located higher than the hid-
den object, the uncertainty in the placement of the hid-
den object is the same as the uncertainty in the size
of A. However, we can calculate the location of the
hidden object based on the location of the mmap re-
gion. Given the interlinking of heap, stack, and code
objects [18, 6, 1, 19], an attacker armed with an arbi-
trary memory read primitive can transitively explore al-
located objects and discover the lowest memory mapped
address. For example, in a typical quiescent application
with a predictable memory layout, an attacker may sim-
ply leak __libc_start_main’s return address off the
stack and immediately locate all the other virtual mem-
ory areas (VMAs) in the mmap region. Once the lowest
memory mapped address mmap_bottom is known, the at-
tacker can again deduce the location of the hidden object:
its base address is exactly located at mmap_bottom-L.

Hence, the only uncertainty remaining is in the order-
ing of the two L- and S-sized holes, i.e., a single bit of
entropy. In other words, an attacker probing the address
space with an arbitrary memory read primitive has a 50%
chance of discovering the hidden object on the first try
and a 100% chance if she can tolerate a single invalid
memory access. Even for nonforking server programs,
if a process eventually gets restarted (either manually or
automatically) with different randomization, the attacker
has a 75% chance of guessing the hidden object’s loca-
tion correctly after one crash, 87.5% with two crashes,
93.75% with three crashes and so on. While this attack
is already fast and stealthy with great chances of going
unnoticed in most practical settings, we show how to im-
prove it even further without a single crash in the next
subsection.

4.3 Using both the EAP and the PAP

When, in addition to the EAP, the attacker is in a posi-
tion to employ a PAP as well (as it is often the case in
practice), she can reliably break information hiding with
no application crashes. In addition, she can locate the
hidden object regardless of the original hole it was ran-

5

126 25th USENIX Security Symposium USENIX Association

domly placed in (lifting our original assumptions). For
simplicity, let us first consider the case of a hidden object
placed somewhere in the middle of A, such that L and S
are the first and second largest hole sizes in the address
space. To recover L, the attacker begins by executing the
EAP-only attack in Section 4.2. Subsequently, she can
simply use the PAP to perform a L-sized allocation and
eliminate the largest (L-sized) hole from the process’ ad-
dress space. Finally, she can repeat the same EAP+PAP
strategy on the now largest allocation size in the address
space to recover S and fill the remaining (S-sized) hole.

Since A is now completely hole-free, an attacker
armed with an arbitrary memory primitive can reliably
probe for the hidden object in the two possible loca-
tions in A and eliminate the remaining uncertainty. In
detail, if the L-sized hole was at the beginning of the
address space (and has now been filled by the PAP al-
location), a read from vm.mmap_min_addr+S will be
accessing zero-filled pages. If the S-sized hole was at
the beginning of the address space, in turn, a read from
vm.mmap_min_addr+S will be accessing pages contain-
ing data from the hidden object. In either case, by com-
bining the EAP and the PAP, the attacker can easily dis-
close the location of the hidden object with no risk of
crashes, quickly and stealthily exhausting information
hiding’s entropy.

Let us now reconsider our original assumption. In the
general (if unlikely, for practical reasons 3) case, the hid-
den object might be placed in a hole other than A. How-
ever, this is hardly a problem for an attacker armed with
both the EAP and PAP. Such a zero-knowledge attacker
can simply start with a single iteration of the EAP+PAP
attack to fill the largest hole in the address space, then
move to the second largest, and so on, until she can in-
fer enough knowledge to first locate the hidden object’s
owning hole and then its location. For example, if the
first largest possible hole identified is sizeof(A), the at-
tacker can learn the object is placed in either B or C. If the
second largest possible hole identified is sizeof(B), the
attacker can learn the object is placed in C. At that point,
she can perform the A-style EAP+PAP attack introduced
earlier and locate the object with no crashes.

We note that exhausting the virtual address space with
our iterative EAP+PAP attack strategy is not a concern
in real-world scenarios. First, legitimate program allo-
cations are normally satisfied by allocator arenas which
rarely need to be extended during steady-state opera-
tions. In addition, the location of a target hidden object
can in practice be determined without exhausting all the
available holes. For example, an attacker could infer the
location of a hidden object in A by only filling the L-sized
hole and reliably reading from vm.mmap_min_addr+L.

3Placing the hidden object between stack and heap may impose un-
expected limits on the growth of an application’s data.

4.4 Using only the PAP

When allocations have to be persistent (e.g., only the
PAP is available or the EAP has less desirable side ef-
fects), there are two main difficulties. First, given what
we know about the hole size distributions, there might be
multiple holes which can satisfy a request, but, without
knowing their actual sizes, we cannot always tell which
hole an allocation came from. Second, when an alloca-
tion succeeds, even if we know which hole it came from,
we learn that that hole is at least as large. Contrary to
the EAP though, we cannot retry a larger allocation size
since we cannot “undo” the allocation.

An example serves to demonstrate. Suppose we start
with the typical layout of a PIE executable (Table 1). Let
us say we attempt an allocation of 130,500GiB and the
allocation succeeds. The allocation was necessarily sat-
isfied from hole A. We now have a lower bound on the
size of A, yet we would like to find out its exact size.
However, if we try to allocate a value in the range of
0-568GiB and the allocation succeeds, we cannot know
whether the space was reserved in hole A or hole B as
their size distributions now overlap.

We have designed and implemented a novel attack
strategy which significantly reduces the uncertainty in
the sizes of the holes. Our algorithm tracks the maxi-
mum allocatable size, as well as the allocated size, for
each hole in what constitutes a state. Our approach then
relies on two insights. First, it is highly preferential to
probe using allocation sizes that can only be satisfied by
a single hole. Second, when forced to perform an alloca-
tion which could have been satisfied from more than one
hole, we need to fork and keep track of multiple states
to model each feasible configuration of the holes in the
targeted address space.

Building on these insights, our algorithm follows a
cost-driven strategy to allow an attacker to select an op-
timal tradeoff between the number of allocation attempts
and the entropy reduction obtained. We quantify this
tradeoff in Section 7.5 and refer the interested reader to
Appendix B for a detailed walkthrough of the formalized
algorithm.

4.5 A more powerful EAP-only attack

Section 4.2 detailed how to locate the hidden object when
it was placed in the largest address space hole (A). We
then lifted this restriction by making use of the PAP in
Section 4.3. An alternative way of stealthily probing
for holes other than the largest one using the EAP only
(when no PAP is available), is to try and trigger more
than one EAP simultaneously. After having recovered L
(Section 4.2), the attacker can simultaneously issue an
allocation of L bytes while using a different allocation

6

USENIX Association 25th USENIX Security Symposium 127

request to probe for S. Even if the window is small, re-
peated simultaneous requests can make the chance of a
false allocation arbitrarily small. When the program can
afford more EAPs to be issued in parallel, the attack fur-
ther improves, as the L-sized hole can be kept filled more
reliably while a binary search is running to determine S.
This approach generalizes to any number of holes.

4.6 Handling internal allocations
The attacks detailed in this section consider alloca-
tion primitives directly or indirectly based on mmap.
However, when the primitive interacts with standard
glibc allocation functions (e.g., malloc, calloc,
posix_memalign, etc.), the result is one internal allo-
cation for exceedingly large requests. Even though the
requested size clearly does not fit in the largest available
hole, glibc (version 2.19) allocates a new heap arena. The
heap arena is allocated in the memory-mapped space and
it is 64MiB-aligned. Therefore, the actual size of A that
is recovered by a binary search differs from the previous
end of the memory-mapped area by a random number
which is 14 bits wide (226/212 = 214).

Nevertheless, this is not a problem in practice, as the
heap arenas form a circular, singly-linked, list. There-
fore, an attacker armed with an arbitrary memory read
primitive can navigate the links from the main alloca-
tion arena and discover all arenas in use (typically there
would only be one link to follow). The main arena is a
static variable in glibc, so it is located at a known (binary-
dependent) offset from the highest address of the mmap
space. Hence, as soon as the attacker leaks a pointer into
the mmap space, she can easily account for the newly al-
located heap arena as well.

5 Discovering Primitives

So far, in Section 4, we have discussed the mechanics of
ephemeral and persistent memory-allocation primitives,
which can assist an attacker in revealing the allocated
ranges of a process in the virtual address space. In this
section, we show that dynamic data-flow tracking (DFT)
techniques applied to popular server programs can effec-
tively assist attackers in discovering allocation instances
that can potentially be abused to craft our primitives.

Discovering primitives that can result in powerful
memory-allocation oracles involves identifying memory
locations that, once controlled, can influence the input
parameters of memory-allocation functions. Recall that,
from Section 2, we assume attackers that are already in
possession of (at least) one arbitrary read and write prim-
itive. What the attacker lacks is a methodology to guide
her to apply the read/write primitives and successfully
craft EAPs and PAPs.

To model an attacker with arbitrary read/write con-
trol over memory, we start our analysis from a quies-
cent state of the program under attacker control. This
state can be also manipulated and exercised over time by
the attacker. As a simple example, consider a vulner-
able web server. Assume the attacker can send a first
a special-crafted HTTP request to trigger an arbitrary
memory write vulnerability and gain control over mem-
ory. Next, the attacker issues a second request to invoke
a memory allocation oracle. Therefore, in this particu-
lar example, our attacker-controlled quiescent state cor-
responds to that of an idle web server waiting for new
requests. Once the second request is served, many parts
of memory can be influenced either explicitly or implic-
itly. At one point, processing of the request triggers some
memory-allocation function which serves as an oracle.
It is important to stress that, depending on the server’s
logic, parts of memory are overwritten (through succes-
sive allocations), while the request is processed. These
parts cannot be generally controlled by the attacker us-
ing her arbitrary read/write primitives. However, the at-
tacker still controls all the memory which was available
in the original quiescent state (before the second request
takes place). As long as memory of that state reaches a
memory-allocation function, then the attacker can suc-
cessfully use the oracle. Therefore, what we need to de-
termine is the memory locations that influence memory-
allocation sites and are still attacker-controlled, once the
second HTTP request triggers memory-allocation func-
tions.

Practically, this model can be easily realized using
DFT. For our purposes, we use Memory-allocation Prim-
itive Scanner (MAPScanner), a custom scanner based
on libdft [20]. We start an application instrumented by
MAPScanner, with all memory untainted, with no taint
sources, and with all memory-allocation functions de-
fined as sinks. Once the application is idle, we signal
MAPScanner to taint all memory. At this point, the target
quiescent state is defined and we assume that all mem-
ory is attacker-controlled. We then proceed and send a
request to the server application. Any subsequent mem-
ory allocations that are triggered by the second request,
since we have defined zero taint sources, wash out the
taint of previous attacker-controlled memory. While the
request is processed, MAPScanner reports all memory-
allocation functions which are initiated with input from
still-tainted, and therefore, still-controlled memory.

Notice, that, depending on the selected quiescent state
and the input request, the attacker can discover more or
fewer primitives. Using several complicated quiescent
states, for example, those between handling two succes-
sive requests or between accepting the socket and receiv-
ing data, may uncover additional primitive candidates.

Once primitive instances are found, the attacker sim-

7

128 25th USENIX Security Symposium USENIX Association

ply needs to locate the controlling data in memory (often
a buff_size global variable originating from the con-
figuration file), corrupt the data (and thus the allocation
size) with an arbitrary memory write primitive, and mon-
itor the execution for side effects. To classify a potential
primitive as an EAP or PAP, the attacker will need to use
the source or runtime experimentation to determine the
lifetime of the corresponding allocated object along dif-
ferent program paths. Further, manual investigation is
required to eliminate primitives that might not be usable
because the value in memory is subject to additional va-
lidity checks in the attacker controlled paths.

In practice, we found that even when selecting the
simplest quiescent state (i.e., idle server) and input (i.e.,
simple client request), an attacker can locate sufficient
usable primitives to mount our end-to-end attacks (see
Section 7).

6 Exploiting Timing Side Channels

Not all discovered primitives may automatically guar-
antee a realistic and crash-free attack. Certain types of
primitives may not have any directly observable side ef-
fects (e.g., the server transparently recovering from allo-
cation failures), making exploitation more complicated.
Other types of primitives may result in program crashes
(e.g., the server failing internal consistency checks), typ-
ically in both successful and unsuccessful cases, again
making it difficult for an attacker to distinguish the two
cases via direct observation. In both scenarios, however,
an attacker can still infer the allocation behavior (success
or failure) by measuring the time it takes to handle every
particular request. We exemplify timing attack strategies
for both the imperfect primitives presented above.

Even when a primitive has no directly observable side
effects, allocation of memory and failure to allocate
memory normally take a different amount of time. On
Linux, for instance, a successful allocation is typically
satisfied by a small VMA cache, avoiding lengthy walks
of the red-black tree of virtual memory area (VMA)
structures. However, on a VMA cache miss, before
declaring an allocation failure, the kernel needs to walk
all the nodes in the red-black tree in a compute-intensive
loop, which takes measurably longer time to complete
generating a timing side channel [21]. In fact, many ker-
nel optimizations, such as VMA merging [22], explicitly
seek to reduce the run-time impact of such expensive red-
black tree walks. The timing signal becomes stronger for
programs maintaining many VMAs and much stronger
if the attacker can lure the program into allocating even
more VMAs (however, VMA merging normally makes
this difficult even for a PAP-enabled attacker). Even
stronger timing side channels may be generated by the
program itself. For example, to transparently recover

from allocation failures, the program may employ com-
plex and time-consuming error-handling logic or log the
event to persistent storage.

When a primitive results in program crashes in suc-
cessful and unsuccessful cases, in turn, the presence
and the strength of timing side channels is entirely sub-
ject to the internal cause of the crash. Interestingly,
we found that the leading cause of crashes results in a
very strong side channel. In fact, successful allocation-
induced crashes are most commonly induced by a server
attempting to fully initialize (or access) the huge allo-
cated block, resulting in several time-consuming page
faults before leading to the final out-of-memory error. As
shown in Section 7, timing attacks which rely on crashes
are remarkably effective in practice.

7 Evaluation

7.1 Primitive Discovery Results

We apply MAPScanner to a variety of well-known and
popular server software. In particular, we consider BIND
9.9.3 (a DNS server), lighttpd 1.4.37 and nginx 1.6.2
(two popular web servers), as well as mysql 5.1.65 (a
widely deployed database server). We built all programs
using their default options (i.e. optimizations were en-
abled).

Since the presented applications have the form of a
server accepting and servicing requests, we select, as the
(simplest possible) attacker-controlled quiescent state,
the point when the server is idle waiting for incom-
ing connections, and, as the (simplest possible) attacker-
controlled input, a default request to the server (Section
5). Of course, motivated attackers can carry out similar
analyses starting from several additional quiescent states
and inputs, so our results here are actually an (already
sufficient) underapproximation of the real-world attack
surface. Notice, finally, that we assume each server is
being protected by an information-hiding-based defense
mechanism which thwarts direct exploitation attempts
(e.g., control-flow diversion).

Table 2 presents all the primitives discovered by our
analysis. We name each instance of a primitive after the
variable that an attacker needs to corrupt in memory to
craft the corresponding allocation oracle. For each of
the primitives, we report the type width of the memory-
resident value that influences the allocation site. While
32-bit fields are only sufficient to bypass 32-bit (and
not 64-bit) information hiding, we believe their avail-
ability can be indicative of the risks for 64-bit defense
mechanisms—e.g., code refactoring changing an alloca-
tion size type to the common 64-bit size_t type may
inadvertently introduce allocation oracles.

8

USENIX Association 25th USENIX Security Symposium 129

Table 2: For each particular application, we report the number of primitives found, the width of the allocation value,
whether the primitive forces a crash, whether timing is necessary to determine success and if the primitive can be
persistent as well. The “RE” (Residual Entropy) column assumes an attacker can reliably exploit the associated timing
side channels. Values marked with (*) refer to lighttpd configured in forking mode.

Primitive Size Crash-free Timing-dependent EAP PAP RE (bits)
bind mgr->bpool 64-bit � � � � 1

heap->size 32-bit � � � Primarily 0
lighttpd buffer->size#1 64-bit � � � � 0∗

buffer->size#2 64-bit � � � � 0∗

config_context->used 64-bit � � � � 0∗

nginx ls->pool_size 64-bit � � � � 0
client_header_buffer_size 64-bit � � � � 1

request_pool_size 64-bit � � � � 1
mysql net->max_packet 32-bit � � � � 0

net_buffer_length 32-bit � � � � 0
connection_attrib 64-bit � � � � 0

query_prealloc_size 64-bit � � � � 1
records_in_block 32-bit � � � � 1

Additionally, we checked whether utilizing a primi-
tive carried a risk of crashes (“crash-free” column). For
primitives that did not provide directly observable side
effects, the “timing-dependent” column indicates that the
attacker needs to conduct a timing side channel attack
to craft her primitives (we provide an example in Sec-
tion 7.3). The EAP and PAP columns specify that the
primitive can be used to perform an ephemeral and per-
sistent allocation (respectively). Finally, we quantify the
residual entropy after we perform the best attack at the
attacker’s disposal for each primitive.

For each of these applications, our simple methodol-
ogy was sufficient to discover 64-bit primitives able to
quickly locate hidden objects with no residual entropy.
In most cases, the discovered primitives were crash-free
and could function as both EAPs and PAPs.

nginx and mysql are the best examples. They both
provide ideal EAP+PAP attack primitives to stealthily
bypass 64-bit information hiding with little effort. It is
also worth noting that the connection_attrib prim-
itive in mysql involves overwriting the requested stack
size in a pthread_attr_t struct. As such, we ex-
pect a similar primitive to be available in all servers
that create threads to service clients (either overwriting
an application-specific attribute structure or the one in
glibc).

For lighttpd, the server’s default configuration only al-
lows the EAP-only attack, but, when the server is config-
ured with forked worker processes, an attacker can suc-
cessfully conduct the side-channel attack exemplified in
Section 7.3 to eliminate all entropy and bypass informa-
tion hiding.

Bind stands out as, depending on the server config-

uration, the heap->size primitive might be usable as
an EAP or may effectively only function as a PAP. The
reason for this behavior is that the effected allocation be-
comes part of a relatively long-lived cache. Hence, its
lifetime is determined by administrator choices and per-
formance considerations. When cached objects are not
eagerly expired, the primitive may only be usable as a
PAP for the duration of a practical attack.

Overall, our simple analysis shows that real-world
information-hiding-protected applications stand very lit-
tle chance against attackers armed with allocation ora-
cles.

7.2 EAP+PAP attack on nginx

To illustrate how the combined EAP+PAP attack works
in practice, we consider the ls->pool_size primitive
discovered during our investigation of the nginx web
server (Table 2).

When servicing a new connection, nginx’s
ngx_event_accept() function allocates a per-
connection memory pool (c->pool) using the size
stored in the listening socket data structure associ-
ated to the socket the accept() originated from.
ngx_event_accept() instantiates the pool by calling
out to ngx_create_pool(), which eventually allocates
the required memory by means of posix_memalign().

Using our primitive discovery methodology, we were
easily able to determine that the size argument to
posix_memalign() originated from a value resident in
live memory for our idle attacker-controlled quiescent
state. This means that an arbitrary memory write vul-
nerability in any of the code that processes untrusted in-

9

130 25th USENIX Security Symposium USENIX Association

put can be used to overwrite this value with an attacker-
selected size, once the memory location is known.

We then verified that ls->pool_size is triv-
ially accessible by following the ls field of the
ngx_connection_t structure, a pointer to which is
always available on various stack locations while the
server is executing request-processing code.

Using this information, the attacker is able to craft an
ephemeral allocation primitive by using an arbitrary read
to navigate the pointer chain until she determines the ad-
dress of ls->pool_size. At this point, she can effect
a call to posix_memalign() with a size of her choos-
ing by overwriting ls->pool_size and then opening a
connection to the server. If the allocation request was
successful, the attacker can issue an HTTP request over
that new connection (positive side effect). If the alloca-
tion cannot be accommodated, the connection is forcibly
closed by the server (negative side effect).

Using the same procedure, the attacker can craft a PAP
by simply keeping the connection open in the last step.
To conduct the complete attack, the attacker first employs
the EAP to determine the size of the larger of the two
holes around the hidden object (for simplicity, we only
discuss the case when the hidden object is placed in the
largest contiguous pre-existing hole; other scenarios are
investigated in Section 4.3). Having determined the max-
imum allocation (i.e., hole) size, she relies on the PAP to
allocate the exact size of the larger hole, taking it out
of the picture. She then proceeds to conduct the EAP-
based attack against the smaller hole around S. Finally,
she simply probes at address vm.mmap_min_addr+S to
complete the attack, as described in Section 4.3.

7.3 Timing-based attack on lighttpd

Next, we focus on the execution of an EAP-only attack
which relies on a timing side channel. To demonstrate
such an attack, we rely on the config_context->used
primitive in lighttpd. In order craft this primitive, we
configured lighttpd to use worker processes by setting the
server.max-worker configuration variable to a non-
zero value. With no loss of generality, we limit our anal-
ysis to one worker process, as an arbitrary memory ac-
cess primitive makes it a matter of book-keeping to tag
the workers (e.g. by writing a different value for each
worker to an unused memory location), so that the attack
code can target a single process.

Again using our primitive discovery methodology, we
easily determined that srv->config_context->used
is used as an argument to calloc() in the body
of connection_init(). Similarly, we showed
that pointers to srv are available in the stack
frames above the event loop, which renders
srv->config_context->used trivially accessi-

ble to an attacker equipped with arbitrary memory
read/write primitives.

The second argument to calloc() at this call site is
sizeof(cond_cache_t), which amounts to 144 bytes.
Since that is less than the default page size on x86, we
can always find a value that will result in the allocation
of any given number of pages.

Crucially, the return value from calloc() is never
checked for failure. Therefore, the only way to
determine whether the allocation succeeded or not
is to send a simple request so as to drive the
server to a path which will dereference the pointer.
That path is simply http_response_prepare() ->
config_cond_cache_reset(), which will iterate over
all elements of the array. As a result, if the allocation
fails, the worker process immediately crashes on trying to
access the first element, resulting in a closed connection
for the client. If the allocation succeeds but the allocated
size is much larger than the amount of physical mem-
ory on the system, this allocation incurs several lengthy
page faults before causing an out-of-memory (OOM)
condition—on which Linux’ “OOM killer” terminates,
with high reliability, the worker process. If the sys-
tem can survive faulting in all the allocated pages (pre-
sumably because the allocation was “small”), the server
eventually sends back a response. Using either the tim-
ing or the reception of an HTTP response, we can infer
whether the attempted allocation succeeded or failed.

When the worker process crashes or is terminated by
the OOM killer, the parent is notified and forks a new
child in replacement (indeed one of the motivations for
using worker processes in server software is for crash re-
covery purposes). Each new worker process inherits the
address space of the parent; hence, all memory regions
(including the hidden object) remain at stable virtual ad-
dresses across worker restart events.

Given the several page faults incurred before a crash,
the timing side channel we rely on yields a very strong
signal. In our testing, we performed the attack 40 times
and were able to reliably differentiate between a success-
ful and a failed allocation in all of them. By using the
same primitive as a PAP (as is possible in this configura-
tion), we were able to persistently allocate the recovered
size for the largest hole and then repeat the EAP attack
on the smaller hole as done earlier. In summary, by re-
lying on EAP+PAP primitives and a strong timing side
channel we could successful recover the address of the
hidden object and bypass information hiding in all cases
in our experiments.

7.4 EAP-only attack

We evaluated the accuracy and performance of the EAP
in defeating the information-hiding properties of ASLR

10

USENIX Association 25th USENIX Security Symposium 131

F
r
e
q
u
e
n
c
y

0

50

100

150

200

250

300

350

Number of allocation attempts
68 69 70 71 72 73

Figure 2: Histogram of the number of operations for re-
covering the exact hole sizes around a hidden object in
an nginx executable [n=1000]

by preallocating a hidden object of a size of 2MiB in
the address space of nginx (compiled as a position-
independent executable) and then trying to determine the
sizes of the larger and smaller holes on either side of it,
as described in Section 7.2. Taking into account the com-
plications and workarounds described in Section 4.6, we
were able to exactly determine the size of both the larger
and smaller hole and subsequently uncover the exact lo-
cation of the hidden object, without incurring any invalid
memory accesses.

Figure 2 depicts the number of required allocation at-
tempts over 1000 runs (using different random configura-
tions). On localhost and using gdb to effect the arbitrary
memory access, the attack completed after an average of
28.20s with a median of 28.21s.

7.5 PAP-only attack

When the only primitive available to the attacker is
the PAP, she needs to consider a number of tradeoffs.
Clearly, the attacker is interested in reducing her entropy
with respect to the position of the hidden region in the
targeted address space. At the same time, different con-
siderations might cause her to strive for minimal or rapid
interaction with the target process. For example, a very
large number of requests to a remote server might very
well increase the chance that the attack will be noticed
by network intrusion detection systems. Similarly, as the
duration of the attack increases, so does the chance that
unrelated process activities, such as servicing requests
for other clients or periodically scheduled work, may in-
terfere with the workings of the algorithm.

There exist two tunable parameters that affect the be-
havior of our PAP-only attack. One selects between the
number of allocation attempts and the entropy reduction
obtained, the other between entropy reduction and risk of
failure.

Number of operations

0 200 400 600 800 1000 1200 1400 1600 1800

M
e
d
i
a
n

E
n
t
r
o
p
y

(
b
i
t
s
)

14

16

18

20

22

24

Figure 3: Parameter space exploration for the PAP-only
attack

Figure 3 presents the number of allocation attempts
versus the median of the residual entropy in the size of
the largest hole after the completion of the attack, for ev-
ery pair of parameter values that we explored. We can
observe that extreme choices of the parameter values re-
sult in pathological behavior, either in the number of op-
erations or in the residual entropy or both.

Conversely, there exist better parameter choices which
do reasonably well for both metrics. Appendix C goes
into more depth on the parameter values and their effect
on the behavior of the attack.

Observe that, in attack scenarios where a number of
requests on the order of a thousand is acceptable, there
exist several parameters for which the median residual
entropy is reduced to 15 bits. Notice also that when the
size of the hidden region can be expected to be compa-
rable to the residual entropy, the chances of successfully
probing for the region are significantly increased.

For a round-trip time of 1s, even the PAP-only attack
would take at most half an hour (12 minutes on average),
which is still an eminently practical amount of time in
many real-world settings.

7.6 Effectiveness against modern defenses

The presented attacks change the picture for the protec-
tion offered by state-of-the-art defense mechanisms that
rely on information hiding. CPI’s safe area [3] and many
other prior solutions [4, 23, 19, 24] rely on information
hiding to protect a single hidden region. For all such so-
lutions, our attacks in Section 4 apply directly and can

11

132 25th USENIX Security Symposium USENIX Association

locate the hidden region with little or no crashes. Prior
work has demonstrated a memory probing-based crash-
free CPI bypass with roughly 110,000,000 operations on
nginx [12]. Using our combined EAP and PAP crash-free
attack, we can replicate their attack needing only 74 op-
erations in the worst case (Fig. 2). This is a 1,400,000x
improvement in attack efficiency, which, projected on the
request time reported in [12], translates to 0.23s (rather
than 97 hours) to locate the hidden region. In addition,
our crash-free attack is even faster than the fast crash-
prone attack presented in [12] (6s with 13 crashes).

More recent client-side probing attacks [11] offer
similar guarantees (i.e., locating CPI’s safe area in 32
probes), but their probing strategy relies on exception
handling rather than crash recovery, ultimately improv-
ing the attack efficiency. We note that both existing prob-
ing attacks [12, 11] exploit assumptions on CPI’s huge
hidden region size (on the order of 242 bytes when using
a sparse table and 230.4 when utilizing a hash table [11])
to reduce the entropy and make the attack practical. In
stark contrast, our attacks make no assumptions on the
region size, and doing so would allow even a PAP-only
attack to succeed without crashes.

Other solutions, such as ASLR-Guard [6], SafeS-
tack [3], and other shadow stack implementations [25],
rely on information hiding to protect multiple hidden re-
gions. For example, all the shadow stack solutions need
to maintain a per-thread hidden region. We note that
our attacks generalize to multi-region information hid-
ing with essentially the same impact. In particular, while
multi-threaded programs disqualify the simple EAP-only
attack, our best (EAP+PAP) attack naturally extends to
multi-region solutions and can quickly bypass them (al-
though more allocations may be required).

Finally, many leakage-resilient defenses [26, 27,
28, 29] enforce execute-only memory to protect the
hidden (code) region from read-based disclosure at-
tacks [1]. However, such defenses are susceptible to
execution-based disclosure attacks in crash-tolerant ap-
plications [10]. To counter such attacks, some solutions
deploy booby traps in out-of-band trampolines [26, 27].
With allocation oracles, an attacker can sidestep the
booby-trapped trampolines and quickly find the hidden
region, enabling more practical and guided execution-
based disclosure attacks against such defenses.

8 Mitigations

One strategy to defend against allocation oracles is to en-
force an upper limit on the maximum amount of virtual
memory that a process can allocate. This mechanism is
already available on Linux (and other POSIX-compatible
operating systems) via the RLIMIT_AS resource limit
(adjustable via setrlimit). Setting this limit to a small,

though still sufficient for most current applications, value
would thwart any attempts to probe the sizes of the larger
holes in the address space. The resource limit can be set
by the application itself (in which case, a defense mech-
anism could intercept it and adjust it to accommodate its
own needs for virtual addresses) or it can be hard-capped
by the administrators without any need for program ad-
justments. The main difficulty lies in predicting the max-
imum virtual address space usage under all conceivable
conditions so as to never deny legitimate allocation re-
quests for production applications. Nonetheless, its wide
availability, straightforward deployment, and robustness
(see below) make RLIMIT_AS our primary recommenda-
tion for compatible workloads and configurations.

For some classes of applications (especially those re-
lying on memory overcommit), limiting the amount of
virtual address space available may be problematic, e.g.,
when memory-mapping huge files. In such cases, one
could switch to a strict overcommit policy and have
the applications always use mmap’s MAP_NORESERVE
flag for huge—but known to be benign—allocations.
MAP_NORESERVE instructs the kernel not to count the
corresponding allocations towards the overcommit limit.
However, this mitigation strategy would still allow an at-
tacker to inject the MAP_NORESERVE flag in mmap calls
using memory-resident arguments and craft our primi-
tives. Another issue with such a strict overcommit strat-
egy is that it is incompatible with memory-hungry ap-
plications that rely on fork and cannot simply switch to
vfork (the redis server being a prime example). This
problem can only be directly mitigated with the addition
of a new flag to the clone system call to mimic the se-
mantics of MAP_NORESERVE.

In some setups, one may deploy an IDS looking for
anomalous events (i.e., allocations) in a given applica-
tion [30]. However, this approach generally requires per-
application policies (e.g., only allow huge allocations of
a specific size). A policy looking for frequent huge al-
locations in arbitrary applications is more generic but
problematic, as an attacker can easily dilute the very few
probing attempts required by our attacks over time [30].

Finally, defense mechanisms could bracket their hid-
den regions with randomly-sized trip hazard areas [31] to
deter in-region memory probing. This is the immediate
systemwide mitigation we recommend for information-
hiding-based solutions already deployed in produc-
tion [32]. Albeit still probabilistic (and thus prone to at-
tacks), such solution can also provide efficient protection
against other (known) side-channel attacks [31].

9 Related work

We distinguish between approaches that that aim at
breaking ASLR in general and approaches that try to

12

USENIX Association 25th USENIX Security Symposium 133

break more advanced defense techniques that rely on
ASLR-based information hiding.

Breaking ASLR has been fertile research ground for
years and became especially popular in recent years.
From the outset [30], pioneering work showed that the
randomization in 32-bit address spaces provide insuffi-
cient entropy against practical brute-force attacks, so we
focus on 64-bit architectures (x86-64) in this section.

In practice, bypassing standard (i.e., coarse-grained,
user-level) ASLR implementations is now common. For
an attacker, it is, for instance, sufficient to disclose a sin-
gle code pointer to de-randomize the address space [33].
Even fine-grained ASLR implementations [34] are vul-
nerable to attacks that start with a memory disclosure and
then assemble payloads in a just-in-time fashion [1].

More advanced attack vectors rely on side channels
via shared caches. Specifically, recently accessed mem-
ory locations remain in the last-level cache (LLC) which
is shared by different cores on modern x86-64 proces-
sors. As it is much faster to access memory locations
from the cache rather than from memory, it is possi-
ble to use this timing difference to create a side chan-
nel and disclose sensitive information. By perform-
ing three types of PRIME+PROBE attacks on the CPU
caches and the TLB, Hund et al. [35] could completely
break kernel-level ASLR by mapping the entire virtual
address-space of a running Windows kernel. To perform
a PRIME+PROBE attack, the attacker needs the mapping
of memory locations to cache sets. In modern Intel pro-
cessors, this mapping is complex and reverse engineering
requires substantial effort [35]. However, performance
counter-based and other techniques have been proposed
to lower the reverse engineering effort [36].

Even without a priori disclosures, attackers may still
break ASLR using Blind ROP (BROP) [10]. A BROP
attack sends data that causes a control transfer to an-
other address and observes the behavior of the program.
By carefully monitoring server program crashes, hangs,
or regular output, the attacker can infer what code exe-
cuted and, eventually, identify ROP gadgets. After many
probes (and crashes), she gets enough gadgets for a ROP
chain. BROP is a remote attack method applicable (only)
to servers that automatically respawn upon a crash.

In general, leaking information by means of side chan-
nels is often possible. To launch such an attack, an at-
tacker typically uses memory corruption to put a program
in a state that allows her to infer memory contents via
timings [21, 37, 12] or other side channels [10].

As ASLR by itself does not provide sufficient protec-
tion against the attacks described above, the community
is shifting to more advanced defenses that build on ALSR
to hide sensitive data (such as code pointers) in a hidden
region in a large address space, typically not referenced
by any pointers within the attacker’s reach.

Hiding secret information in a large address space
is now common practice in a score of new defenses.
For example, Oxymoron [4] protects the Randomization-
agnostic Translation Table (RaTTle) by means of infor-
mation hiding, and Opaque CFI [23] protects the so-
called Bounds Lookup Table (BLT) in a similar way.
Likewise, Isomeron [19] keeps the execution diversifier
data secret and StackArmor [25] isolates potentially vul-
nerable stack frames by means of hiding in a large ad-
dress space. Finally, on x86-64 architectures, CFCI [24]
also needs to hide a few MBs of protected memory.

One of the best-known examples of a defense that
builds on ASLR-backed information hiding is Code
Pointer Integrity [3]. CPI splits the address space in a
standard and a safe region and stores all code pointers in
the latter, while restricting accesses to the (huge) safe re-
gion to CPI-intrinsic instructions. Moreover, it also pro-
vides every thread with a shadow stack (called SafeStack
in CPI) in addition to the regular stack and uses the for-
mer to store return addresses and other proven-safe ob-
jects. Both the shadow stacks (which are relatively small)
and the safe region (which is huge) are hidden at a ran-
dom location in the virtual address space.

By means of probing on a timing side channel, Evans
et al. showed that it is possible to circumvent CPI
and find the safe region [12]. However, depending on
the construction of the safe region, the attack may re-
quire a few crashes or complete in several hours in or-
der to be stealthy (i.e., crash-free). Moreover, simi-
lar to the recent CROP [11] (which instead relies on
specially crafted crash-resistant primitives), this attack
needs to resort to full memory probing to locate small
hidden regions (unlike CPI’s) in absence of implementa-
tion flaws. Full memory probing forces the attacker to
trigger many crashes and other detection-prone events,
and its efficiency quickly degrades when increasing the
address space entropy.

Concurrent work [31] relies on thread spraying to
reduce the entropy in finding a per-thread hidden ob-
ject. Allocation oracles can make thread spraying attacks
faster by providing a more efficient disclosure primitive
compared to the memory probing primitives used in [31].

Unlike all the existing attacks, allocation oracles
demonstrate that an attacker can craft pervasively avail-
able primitives and locate the smallest hidden regions in
the largest address spaces, while leaving little or no de-
tectable traces behind.

10 Conclusions

We have shown that information hiding techniques that
rely on randomization to bury a small region of sensitive
information in a huge address space are not safe on mod-
ern Linux systems. Specifically, we introduced new in-

13

134 25th USENIX Security Symposium USENIX Association

formation disclosure primitives, allocation oracles, that
allow attackers to probe the holes in the address space:
by repeated allocations of large chunks of memory, the
attacker discovers the sizes of the largest areas of unal-
located memory. Knowing the sizes of the largest holes
greatly reduces the entropy of randomization-based in-
formation hiding and allows an attacker to infer the lo-
cation of the hidden region with few to no crashes or no-
ticeable side-effects. We have also shown that allocation
oracles are pervasive in real-world software.

Unfortunately, information hiding underpins many of
the most advanced defense mechanisms today. Without
proper mitigation, they are all vulnerable to our attacks.
While one may deploy more conservative memory man-
agement polices to limit the damage, we emphasize that
the problem is fundamental in the sense that allocation
oracles always reduce the randomization entropy, regard-
less of the mitigation and the address space size. In gen-
eral, information hiding is vulnerable to entropy reduc-
tion by whatever means and it is not unlikely that attack-
ers can combine allocation oracles with other techniques.
In our view, it is time to reconsider our dependency on
the pseudo-isolation offered by randomization and opt
instead for stronger isolation solutions like software fault
isolation or hardware protection.

11 Disclosure

We have cooperated with the National Cyber Security
Centre in the Netherlands to coordinate disclosure of the
vulnerabilities to the relevant parties.

12 Acknowledgements

We thank the anonymous reviewers for their valuable
comments. This work was supported by the Euro-
pean Commission through project H2020 ICT-32-2014
“SHARCS” under Grant Agreement No. 644571 and
by Netherlands Organisation for Scientific Research
through project NWO 639.023.309 VICI “Dowsing”.

References
[1] K. Z. Snow, L. Davi, A. Dmitrienko, C. Liebchen, F. Monrose,

and A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness
of fine-grained address space layout randomization,” in IEEE
S&P ’13.

[2] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost
of shadow stacks and stack canaries,” in ASIACCS ’15.

[3] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-pointer integrity,” in OSDI’ 14.

[4] M. Backes and S. Nürnberger, “Oxymoron: Making fine-grained
memory randomization practical by allowing code sharing,” in
USENIX Security ’14.

[5] PaX Team, “Address space layout randomization (ASLR),” 2003,
http://pax.grsecurity.net/docs/aslr.txt.

[6] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “ASLR-
Guard: Stopping address space leakage for code reuse attacks,”
in CCS ’15.

[7] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in SOSP ’93.

[8] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Orm,
S. Okasaka, N. Narula, N. Fullagar, and G. Inc, “Native client:
A sandbox for portable, untrusted x86 native code,” in IEEE S&P
’07.

[9] L. Deng, Q. Zeng, and Y. Liu, “ISboxing: An instruction substi-
tution based data sandboxing for x86 untrusted libraries,” in IFIP
SEC ’15, 2015.

[10] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in IEEE S&P ’14.

[11] R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz,
“Enabling client-side crash-resistance to overcome diversification
and information hiding,” in NDSS ’16.

[12] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang,
H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi,
“Missing the point(er): On the effectiveness of code pointer in-
tegrity.”

[13] “CVE-2015-3864,” https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-3864.

[14] D. Magenheimer, “Memory overcommit... without the commit-
ment,” in Xen Summit, 2008.

[15] “Redis administration,” https://web.archive.org/web/
20150905213905/http://redis.io/topics/admin.

[16] E. Sammer, Hadoop Operations, 2012, ch. 4.

[17] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kGuard:
Lightweight kernel protection against return-to-user attacks,” in
USENIX Security ’12.

[18] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro,
C. Liebchen, M. Qunaibit, and A.-R. Sadeghi, “Losing control:
On the effectiveness of control-flow integrity under stack at-
tacks,” in CCS ’15.

[19] L. Davi, C. Liebchen, A. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code randomization resilient to (just-in-time) return-
oriented programming,” in NDSS ’15.

[20] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis,
“Libdft: Practical dynamic data flow tracking for commodity sys-
tems,” in VEE ’12.

[21] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks
without memory disclosures: Remote side channel attacks on di-
versified code,” in CCS ’14.

[22] “Mmap speedup,” http://www.verycomputer.com/180_
d89089d5a857ed08_1.htm.

[23] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity,” in NDSS ’15.

[24] M. Zhang and R. Sekar, “Control-flow and code integrity for
COTS binaries: An effective defense against real-world ROP at-
tacks,” in ACSAC ’15.

[25] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida,
“StackArmor: Comprehensive protection from stack-based mem-
ory error vulnerabilities for binaries,” in NDSS ’15.

[26] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A. R.
Sadeghi, S. Brunthaler, and M. Franz, “Readactor: Practical code
randomization resilient to memory disclosure,” in IEEE S&P ’15.

14

USENIX Association 25th USENIX Security Symposium 135

[27] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen,
L. Davi, A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz, “It’s
a TRaP: Table randomization and protection against function-
reuse attacks,” in CCS ’15.

[28] J. Gionta, W. Enck, and P. Ning, “HideM: Protecting the contents
of userspace memory in the face of disclosure vulnerabilities,” in
CODASPY ’15.

[29] C. L. Kjell Braden, Lucas Davi and M. F. P. L. Ahmad-
Reza Sadeghi, Stephen Crane, “Leakage-resilient layout random-
ization for mobile devices,” in NDSS ’16.

[30] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomiza-
tion,” in CCS ’04.

[31] E. Göktaş, R. Gawlik, B. Kollenda, E. Athanasopoulos, G. Por-
tokalidis, C. Giuffrida, and H. Bos, “Undermining information
hiding (and what to do about it),” in USENIX Security ’16.

[32] “SafeStack,” http://clang.llvm.org/docs/SafeStack.html.

[33] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund,
and T. Walter, “Breaking the memory secrecy assumption,” in
EuroSec ’09.

[34] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced op-
erating system security through efficient and fine-grained address
space randomization,” in USENIX Sec ’12.

[35] R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space ASLR,” in IEEE S&P ’13.

[36] C. Maurice, N. L. Scouarnec, C. Neumann, O. Heen, and A. Fran-
cillon, “Reverse engineering Intel last-level cache complex ad-
dressing using performance counters,” in RAID ’15.

[37] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est
machina: Memory deduplication as an advanced exploitation
vector,” in IEEE S&P ’16.

A Base EAP-only algorithm

Algorithm 1 Binary search using the Ephemeral Alloca-
tion Primitive; sizes are in pages.

function DEDUCE(low, high)
if low = high then

return low
if high - low = 1 then

res ← TEMP-ALLOC(high)
if SUCCESS(res) then

return high
else

return low
mid point ← �(high+ low)/2�
res ← TEMP-ALLOC(mid point)
if SUCCESS(res) then

return DEDUCE(mid point, high)
else

return DEDUCE(low, mid point −1)

Hole Total Max
A 0B 131068GiB
B 0B 1028GiB
C 0B 4GiB

Table 3: Initial state for a PIE executable

B PAP-only algorithm

For each hole G, we maintain two variables, Gtotal and
Gmax. The first variable tracks the number of bytes allo-
cated from G. The second holds the maximum number
of bytes that may still be allocatable from G at any point
in time. So when an allocation of size S is known to
originate from G, we increase Gtotal by S and decrease
Gmax by S. Crucially, when an allocation of size S fails,
we know that no hole has S bytes available. Therefore,
the max variable for every tracked hole needs to be ad-
justed to S minus the pagesize (see the functions HOLE-
SATISFIED, HOLE-FAILED-TO-SATISFY, called for holes
that satisfied or failed to satisfy an allocation request, re-
spectively).

function HOLE-SATISFIED(size, G)
Gmax ← Gmax − size
Gtotal ← Gtotal + size

function HOLE-FAILED-TO-SATISFY(size, G)
if Gmax > size− pagesize then

Gmax ← size− pagesize

A state consists of the set of max and total variables
for each tracked hole. In the initial state we may have
some information for the maximum size of each hole, but
no bytes have been allocated during the run of our algo-
rithm, so that Gtotal = 0,∀G. Given the size distributions
in Table 1, the initial state for a simple PIE executable is
as given on Table 3.

Descent mode The algorithm operates in two modes.
Suppose that the highest maximum value (hmv) is unique
across all the tracked holes and G is the hole it is asso-
ciated with (i.e. �H : Gmax = Hmax). In this case, we try
decreasing allocation sizes which can only be satisfied
by G, in the hope that an allocation will succeed, caus-
ing Gmax to be decremented below the next-highest max-
imum (nhmv) value so that we will remain in this mode
for the next step of the algorithm.

There is an inherent tradeoff between the accuracy and
the number of allocations we try. In the extreme, we
could explore the interval [nhmv,hmv] by starting with
hmv and decreasing the allocation size by one page af-
ter each failed attempt. Of course, this would result in
a huge number of allocation attempts, rendering the ap-
proach impractical.

15

136 25th USENIX Security Symposium USENIX Association

function CALCULATE-STEPS(high, low)
size ← high− low
if size = pagesize then

return [high]
step ← size/split
sizes ← []
idx ← 0
for n in 0..(split −1) do

sz ← high−n∗ step
rem ← sz % pagesize
if rem > 0 then

sz ← sz− rem+ pagesize
if idx = 0∨ sizes[idx−1] �= sz then

sizes[idx]← sz
idx ← idx+1

While larger successful allocations are desirable, we
elect to trade some resolution for a reduction in the num-
ber of attempts necessary. The way we do this is by se-
lecting a split factor for the interval [nhmv,hmv], and try-
ing decreasing allocations with an (approximate) step of
hmv−nhmv

split bytes (special considerations need to be made
for respecting page boundaries; see the CALCULATE-
STEPS function). A larger split factor results in more
allocation attempts but higher chanches of quickly mini-
mizing the max variable of G.

At every given step, the allocation might succeed (in
which case we update Gtotal and Gmax) or it might fail
and we appropriately reduce every max variable to just
below the failed allocation size. This means that the
difference between the current hmv and the nhmv keeps
shrinking as allocations fail.

For reasons that will become apparent soon, we are
willing to expend more allocation attempts to avoid the
situation when hmv becomes equal to the nhmv. There-
fore, when the last step above the nhmv results in a failed
allocation, we reiterate the algorithm, again splitting the
interval between the current hmv and the nhmv accord-
ing to the split factor and trying descending allocation
size using a new, smaller, step size. The algorithm con-
tinues trying ever smaller allocations using an ever finer
step size, until the allocation of nhmv+ pagesize bytes.
If that allocation fails, then we have to switch into the
mode where there are multiple highest maximum values
(Algorithm 2, line 34).

Forking mode We are now in a state where there exist
n holes, G1, ...,Gn : G1

max = ... = Gn
max = hmv, i.e. the

hmv has multiplicity n. The only way to make progress is
to try an allocation smaller than hmv; yet if the allocation
succeeds, we are not in a position to tell which hole the
bytes where allocated from. What’s worse, more than
one hole might be able to accommodate the allocation
we attempt.

Algorithm 2 Decision
1: function STATE-MAXES(s)
2: res ← /0
3: for all max ∈ MAXES(s) do
4: res ← res∪max
5: sorted_maxes ← SORT-DESCENDING(maxes)
6: groups ← GROUP-BY-MAX(sorted_maxes)
7: result ← /0
8: for all g ∈ groups do
9: result ← result∪(ANY-MAX(g),COUNT(g))

return result
10: function DETERMINE-GROUPS(states)
11: maxes ← /0
12: for all s ∈ states do
13: maxes ← maxes∪ STATE-MAXES(s)
14: maxes ← SORT-DESCENDING(maxes)
15: groups ← GROUP-BY-MAX(maxes)
16: result ← /0
17: for all g ∈ groups do
18: g← SORT-DESCENDING-BY-MULTIPLICITY(g)
19: maxval ← FIRST(g)
20: result ← result ∪maxval
21: return result
22: function DECIDE(states)
23: maxvals ← DETERMINE-GROUPS(states)
24: (hmv,m)← FIRST(maxvals)
25: if hmv <= mshs then
26: return states
27: if COUNT(maxvals) = 1 then
28: nhmv ← mshs+ pagesize
29: if hmv = nhmv then
30: return states
31: sizes ← CALCULATE-STEPS(hmv,nhmv)
32: states ← DESCEND(states,m,sizes)
33: return states
34: (nhmv,)← SECOND(states)
35: if nhmv <= mshs then
36: nhmv ← mshs+ pagesize
37: if hmv = nhmv then
38: return states
39: sizes ← CALCULATE-STEPS(hmv,nhmv)
40: return DESCEND(states, m, sizes)

16

USENIX Association 25th USENIX Security Symposium 137

This constitutes a second mode of operation for our
algorithm. After we select an allocation size T , we at-
tempt the to allocate T bytes n times. If all n allocations
succeed, the max values for the n holes all get reduced
by the same amount; if the new maximum values are still
higher than any other maximum value, we remain in the
same mode. If there is now a unique (necessarily differ-
ent) hmv, we switch modes.

We then consider the case when k out of n alloca-
tion attempts succeed. The allocations could have come
out of any set of k holes and there are

(n
k

)
possible

ways to pick the successful holes out of the n we started
with. At this point, we fork the current state into

(n
k

)
new ones, one for each possible combination. In each
newly-created state, k holes get their total variables in-
cremented and their max variables decremented by the
allocated size, whereas the maximum values of the re-
maining n− k states are lowered to below the allocated
size (as we consider the allocation from those holes to
have been a failure). After a fork, we are left with a
number of active states, one of which matches the ac-
tual system state as regards the total allocated bytes for
each hole.

Finally, when all n allocations fail, we need to pick
a new, smaller allocation size. The obvious approach
would be to halve the size for the next allocation at-
tempt. However, this choice leads to a pathological situ-
ation. Recall that every failed allocation attempt causes
all maximum variables to be set to one page below the
attempted value so that, as long as the allocations all fail,
the maximum values are reduced in lockstep. Consider
the case when an allocation succeeds; the new maximum
value for a hole G which is considered successful is set
to G′

max = Gmax − allocation_size = Gmax − Gmax/2 =
Gmax/2. Regarding a hole H for which the allocation
was considered a failure, the max variable is updated to
H ′

max = allocation_size− pagesize=Hmax/2− pagesize.
Since Gmax was equal to Hmax, the new maximum values
for all the n holes will all be within a page of each other,
which makes it all but certain that after one descent step
we will re-enter the forking mode, which increases the
chances of a combinatorial explosion in the number of
active states.

To increase our chances switching back to descent
mode, we elect to pick the next allocation size exactly
as we do when the hmv is unique.

Generalized Algorithm We extend the algorithm de-
scribed above to operate when there is more than one
active state. Our driving concern is to be able to dif-
ferentiate between active states. To that end, we collect
the highest maximum value of each state. We then at-
tempt a descent from the highest maximum value to the
next-highest maximum value using the split factor, as de-
scribed for the single-state case.

Algorithm 3 Descent
function ALLOCATE(m)

count ← 0
for i in 0..m do

if ALLOC()then
count ← count +1

return count
function NSTATE(size, rest, satis f ied, not_satis f ied)

holes ← rest
for all G in satis f ied do

holes ← holes∪HOLE-SATISFIED(size,G)

for all G in not_satis f ied do
holes ← holes ∪

HOLE-NOT-SATISFIED(size,G)
return CREATE-STATE(holes)

function DO-COMBINE(rest, selected, previous,
count, candidates, accum)

if count = 0 then
nstate← NSTATE(size,rest,selected, previous)
accum ← accum∪nstate return accum

else if EMPTY(candidates) then return accum
else

x ← FIRST(candidates)
candidates ← TAIL(candidates)
accum ← DO-COMBINE(rest,selected ∪

x, previous,count − 1,candidates,accum)) re-
turn DO-COMBINE(rest,selected, previous ∪
x,count,candidates,accum)

function COMBINE(rest, count, candidates)
DO-COMBINE(rest, /0, /0,count,candidates, /0)

function UPDATE-STATES(states, size, count, m)
nstates ← /0
for all s ∈ states do

candidates ← /0
rest ← /0
for all G ∈ HOLES(state) do

if Gmax ≥ size then
candidates ← candidates∪G

else
rest ← rest ∪G

if COUNT(candidates)≥ count then
res ← COMBINE(rest,count,candidates)
nstates ← nstates∪ res

return nstates
function DESCEND(states, m, sizes)

for size in sizes do
count ← ALLOCATE()
states← UPDATE-STATES(states,size,count,m)
if count > 0 then return DECIDE(states)

17

138 25th USENIX Security Symposium USENIX Association

Split

0 10 20 30 40 50 60 70 80

M
S
H
S

(
M
B
)

0

10

20

30

40

50

22 +

21

20

19

18

17

16

Bits

Figure 4: Residual entropy for different value combinations of the split and MSHS parameters (lighter is better)

A crucial insight is that when an allocation succeeds,
all states that have a highest maximum value which can-
not accommodate the successful allocation size are nec-
essarily impossible and are pruned from the set of active
states. This serves to contain the number of active states
and somewhat ameliorate the combinatorial behavior of
the forking mode.

The generalized algorithm (Algorithm 2) treats all
cases (single or multiple states, the hmv is unique or has
multiplicity n) uniformly. First, it considers the maxi-
mum values of the holes within a single state. Multiplic-
ity is established within each state. Following that, the
holes are sorted in descending order based on their max-
imum values and then again in descending order with re-
gard to the multiplicity of each maximum value in the
state it originated from. The number of times an alloca-
tion is repeated is determined by the multiplicity of the
topmost hole; the descent takes place between that hole
and the next hole of a different maximum value.

Intuitively, if we have exactly two states, S1,S2 with
unique hmv values hmv1, hmv2 and that hmv1 = hmv2.
Then we need try an allocation which can only be sat-
isfied by the maximally-sized hole of either state only
once; if the allocation succeeds, both states are updated
and remain valid. Conversely, if hmv1 has multiplicity
two and hmv2 only one, we need to try the allocation two
times. If both allocations succeed, S1 gets updated ac-
cordingly and S2 gets dropped as invalid; if only one allo-
cation succeeds, S1 is replaced by two new states whereas
S2 is adjusted and remains live.

C Further evaluation of the PAP-only at-
tack

When considering Figure 4 visualizes the residual accu-
racy (in bits) in the size of the largest hole next to the
hidden object. The corresponding figure for the smaller
hole appears almost identical and is omitted for brevity.

For the split factor, we investigated values ranging
from 4 to 64, specifically 4, 6, 8, 10, 12, 14, 16, 20, 24,
28, 32, 48 and 64. Guided by a sampling of typical ap-
plications on workstations and servers, we considered the
following upper bounds for the sizes of untracked holes:
2MiB, 4MiB, 6MiB, 8MiB, 20MiB and 40MiB.

Our evaluation of the PAP in weakening ASLR’s pro-
tection of a hidden object involved seeding the algorithm
with an initial state consisting of 4 hole descriptions.
Specifically, we included the maximum possible values
for the holes resulting from the placement of the hidden
object at a random address within hole A. Hence, our
tracked holes were Large, Small, B and C.

Analyzing Figure 4, we notice the tendency for larger
split values to result in lower uncertainty. This tendency
is not consistent and may vary with the MSHS; for exam-
ple, split=48 outperforms split=64 for larger MSHS and
is overall the best choice at larger MSHS values.

The split factor of 4 is by far the worst choice. It
should be mentioned that the runtime performance de-
teriorates to the point of being impractical when using 2
as the split factor (for reasons expounded on in B, which
led us to exclude it from the parameter exploration.

18

USENIX Association 25th USENIX Security Symposium 139

What Cannot be Read, Cannot be Leveraged?
Revisiting Assumptions of JIT-ROP Defenses

Giorgi Maisuradze
CISPA, Saarland University

Saarland Informatics Campus

gmaisura@mmci.uni-saarland.de

Michael Backes
CISPA, Saarland University

Saarland Informatics Campus

backes@mpi-sws.org

Christian Rossow
CISPA, Saarland University

Saarland Informatics Campus

crossow@mmci.uni-saarland.de

Abstract

Despite numerous attempts to mitigate code-reuse at-
tacks, Return-Oriented Programming (ROP) is still at
the core of exploiting memory corruption vulnerabili-
ties. Most notably, in JIT-ROP, an attacker dynamically
searches for suitable gadgets in executable code pages,
even if they have been randomized. JIT-ROP seemingly
requires that (i) code is readable (to find gadgets at run
time) and (ii) executable (to mount the overall attack). As
a response, Execute-no-Read (XnR) schemes have been
proposed to revoke the read privilege of code, such that
an adversary can no longer inspect the code after fine-
grained code randomizations have been applied.

We revisit these “inherent” requirements for mounting
JIT-ROP attacks. We show that JIT-ROP attacks can be
mounted without ever reading any code fragments, but
instead by injecting predictable gadgets via a JIT com-
piler by carefully triggering useful displacement values
in control flow instructions. We show that defenses de-
ployed in all major browsers (Chrome, MS IE, Firefox)
do not protect against such gadgets, nor do the current
XnR implementations protect against code injection at-
tacks. To extend XnR’s guarantees against JIT-compiled
gadgets, we propose a defense that replaces potentially
dangerous direct control flow instructions with indirect
ones at an overall performance overhead of less than 2%
and a code-size overhead of 26% on average.

1 Introduction

Code-reuse attacks, such as Return-Oriented Program-
ming (ROP), enable an attacker to bypass Execute-XOR-
Write (XˆW) policies by suitably chaining existing small
code fragments (so-called gadgets). One of the most
prominently explored concepts to defend against such at-
tacks involves randomizing programs so that an attacker
can no longer reliably identify and chain such gadgets,
whether by code transformations [19, 6, 14], data region

hardening [5, 23], or whole address space randomiza-
tion [4]. However, a novel class of attacks, dubbed JIT-
ROP, allows for code reuse even for such diversified pro-
grams [31]. JIT-ROP leverages a memory disclosure vul-
nerability in combination with a scripting environment—
which is part of all modern browsers—to read existing
code parts, notably after they were randomized. Once
the code has been read (e.g., using a memory disclosure
vulnerability), an attacker can dynamically discover and
chain gadgets for conventional code-reuse attacks.

Mounting a successful JIT-ROP attack seemingly re-
quires the ability to (i) read code fragments and iden-
tify suitable gadgets (otherwise the adversary would not
know what to combine) and to (ii) execute them (so that
the overall attack can be mounted). The recently pro-
posed Execute-no-Read (XnR) schemes [2, 11, 12] con-
sequently strive to eliminate JIT-ROP attacks by ensur-
ing that executable code is non-readable, i.e., marking
code sections as executable-only while explicitly remov-
ing the read privilege. Hence an adversary can no longer
inspect the code after fine-grained code randomization
techniques have been applied and should thus fail to
identify suitable gadgets. As a more pointed statement:
what cannot be read, cannot be leveraged.

Our contributions: In this paper, we carefully re-
visit these seemingly inherent requirements for mounting
a successful JIT-ROP attack. As our overall result, we
show that JIT-ROP attacks can often be mounted without
ever reading any code fragments, but by instead inject-
ing arbitrary, predictable gadgets via a JIT compiler and
by subsequently assembling them to suitable ROP chains
without reading any code pages.

As a starting point, we show how to obtain expressive
unaligned gadgets by encoding specially-crafted con-
stants in instructions. Prior research has already shown
that explicit constants in JavaScript statements, e.g., in
assignment statements like x = 0x12345678, can be used
to generate unaligned gadgets [1]. Browsers started to
fix such vulnerabilities, e.g., by blinding explicit con-

140 25th USENIX Security Symposium USENIX Association

stants (i.e., XOR-ing them with a secret key), and/or
by applying fine-grained code randomization techniques
(cf. Athanasakis et al. [1]). We show that implicit con-
stants in JIT-compiled code can be exploited in a sim-
ilar manner, and are hence far more dangerous in the
JIT-ROP setting than commonly believed. To this end,
we generate JavaScript code that emits specific offsets in
relative jumps/calls in the JIT-compiled code. We show
that both relative jumps and relative calls can be used
to encode attacker-controllable values in an instruction’s
displacement field. These values can later be used as un-
aligned gadgets, i.e., an attacker that controls the jump
or call destination (or source) can predict the displace-
ment and thereby generate deterministic gadgets on-the-
fly, without the need to ever read them before use. We
demonstrate the impact of our attack by injecting almost
arbitrary two- or three-byte-wide gadgets, which enable
an attacker to perform arbitrary system calls, or, more
generally, obtain a Turing-complete instruction set. We
show that all major browsers (Chrome, Internet Explorer,
Firefox) are susceptible to this attack, even if code ran-
domization schemes such as NOP insertion (like in Inter-
net Explorer) are in place.

The ability to create controllable JIT-compiled code
enables an adversary to conveniently assemble ROP
chains without the requirement to ever read code. This
challenges current XnR instantiations in that code does
not have to be readable to be useful for ROP chains,
highlighting the need to complement XnR with effective
code pointer hiding and/or code randomization schemes
also in JIT-compiled code. Unless XnR implementa-
tions additionally protect JIT-compiled code, they do
not prevent attackers from reusing predictable attacker-
generated gadgets, and hence from mounting JIT-ROP
attacks. We stress that a complete XnR implementa-
tion that offered holistic code coverage (i.e., hiding code-
pointers also in JIT-compiled code) may also be effective
against our attack. However, maintaining XnR’s guaran-
tees also for JIT-compiled and attacker-controlled code
imposes additional challenges in practical settings: First,
fine-grained code randomization schemes that are imple-
mented in XnR do not add security against implicit con-
stants, and they hence make gadget emissions, proposed
in this paper, possible. In particular, the widely deployed
concepts of register renaming and instruction reordering
do not affect our proposed unaligned gadgets. More-
over, fine-grained code randomization techniques com-
monly deployed in browsers (as NOP insertion in IE) are
not sufficient either, as the attacker can test the validity
of its gadgets before using them. Second, the lack of
code pointer hiding in JIT-compiled code in current XnR
instantiations constitutes an additional vector of attack,
since adversaries can then still leverage our attack to en-
code constants in relative calls.

We finally explored how to extend XnR’s guarantees
against implicit constants in JIT-compiled code. One op-
tion would be to extend the use of call trampolines in
XnR schemes also to JIT compilers, as suggested by
Crane el al. [11, 12]. However, this will replace exist-
ing direct calls with direct jumps to trampolines, which
also encode implicit constants. Furthermore, trampolines
will introduce new relative offsets in their direct call in-
structions. As the locations of trampolines are not hid-
den (e.g., they can be revealed by reading the return ad-
dress on stack), in the presence of an unprotected code
pointer, the attacker will be able to predict encoded con-
stants by leaking either the caller or the callee address.
As an orthogonal alternative, in this paper we propose
to (i) replace relative addressing with indirect calls and
(ii) blind (i.e., reliably obfuscate) all explicit constants
used to prepare the indirect calls. We implement our de-
fense in V8, the JavaScript engine of Chrome, and show
that our proposal imposes less than 2% performance and
26% code size overhead, while effectively preventing the
attacks described in this paper.

The summarized contributions of our paper are:

• We present a novel class of attacks that encode ROP
gadgets in implicit constants of JIT-compiled code.
We thereby show that reading code fragments is
not necessarily a prerequisite for assembling useful
gadgets in order to mount a JIT-ROP attack.

• We demonstrate that all three major browsers
(Chrome, Internet Explorer, Firefox) are suscepti-
ble to our proposed attack.

• We discuss potential shortcomings when using XnR
to protect JIT-compiled code. We show that the un-
derlying assumptions that XnR schemes build upon
(such as code randomization) have to be carefully
evaluated in the presence of JIT-compiled code.

• We implement a defense in V8 that replaces rela-
tive calls/jumps with indirect control flow instruc-
tions. This effectively prevents the attack proposed
in this paper by removing dangerous implicit con-
stants, exhibiting a performance overhead of 2%
and a code size overhead of 26%.

The remainder of this paper is structured as follows.
Section 2 provides background information on code-
reuse attacks. Section 3 describes our threat model. Sec-
tion 4 introduces the fundamentals of our attack and
demonstrates its efficacy against three major browsers.
Section 5 introduces an efficient defense against our at-
tack. Section 6 discusses the implications of our work.
Section 7 describes related work and Section 8 concludes
the paper with a summary of our findings.

2

USENIX Association 25th USENIX Security Symposium 141

2 Background

We will use this section to provide background informa-
tion on code-reuse attacks. We start by explaining ROP,
and then provide insights on JIT-ROP, which collects
code on-the-fly and thus evades existing randomization
schemes like ASLR. Finally, we describe Execute-no-
Read (XnR), a new defensive scheme that aims to protect
against code-reuse attacks (including JIT-ROP).

2.1 Return Oriented Programming (ROP)

ROP has emerged since the wide deployment of Data Ex-
ecution Prevention (DEP), which is a defense technique
against regular stack overflow vulnerabilities. DEP, mak-
ing the writable regions of the memory non-executable,
forbids the attacker to execute the shellcode directly on
the stack. As a response, attackers switched to code-
reuse attacks, in which they execute existing code instead
of injecting new code. ROP, proposed by Shacham [29],
is a generalized version of the ret-to-libc attack [22],
which redirects the control flow of the program to exist-
ing code, such as the program’s code or imported func-
tions (e.g., in libc). In ROP, an attacker uses short in-
struction sequences (called gadgets) ending with a con-
trol flow instruction (e.g., ret). Return instructions are
used to chain multiple gadgets together by providing
their addresses as the return values on the stack. Check-
oway et al. [8] showed that it is possible to launch ROP
attacks without using return instructions, i.e., via lever-
aging other control flow changing instructions such as
indirect jumps or calls.

Code-reuse remains a popular attack technique and
has triggered a variety of defensive schemes. Most
prominent, and deployed in most operating systems, is
Address Space Layout Randomization (ASLR). ASLR
randomizes the base addresses of memory segments and
prevents an attacker from predicting the addresses of
gadgets. Although ASLR is effective for pre-computed
gadget chains, ASLR has known shortcomings in that
it only randomizes base addresses and is too coarse-
grained. An attacker can thus reveal the memory lay-
out of an entire ASLR-protected segment with a single
leaked pointer. To address this problem, fine-grained
ASLR randomization schemes have been proposed that
add randomness inside the segment [16, 20, 25] (we re-
fer the reader to Larsen’s survey [21]).

2.2 JIT-ROP

To counter ASLR, Snow et al. proposed a new attack
technique, called just-in-time code reuse (JIT-ROP) [31].
By leveraging the fact that an adversary is able to read
randomized code sections, JIT-ROP undermines fine-

grained ASLR schemes. JIT-ROP is based on the follow-
ing assumptions: (i) a memory disclosure vulnerability,
allowing the attacker to read data at arbitrary locations,
(ii) at least one control flow vulnerability, (iii) a scripting
environment running code provided by the attacker. The
basic idea of the JIT-ROP is the following:

(J1) Repeatedly using the memory disclosure vulnera-
bility, the attacker follows the code pointers in the
memory to read as many code pages as possible.

(J2) From the read code pages, JIT-ROP extracts gad-
gets (e.g, Load, Store, Jump, Move) and col-
lects useful API function calls (e.g., LoadLibrary,
GetProcAddress).

(J3) Given the gadgets and API functions, the JIT-ROP
framework takes an exploit, written in a high-level
language, as an input and compiles it to a chain of
gadgets and function calls that perform a code-reuse
attack.

(J4) Finally, the control flow vulnerability is used to
jump to the beginning of the compiled gadget chain.

JIT-ROP demonstrates that an adversary may be able
to run code-reuse attacks even in the case of fine-grained
ASLR or code randomization, as she can read the code
and function pointers after they have been randomized.

2.3 Execute-no-Read (XnR)
In an attempt to close the security weakness that JIT-ROP
has demonstrated, researchers suggest marking code sec-
tions as non-readable. Such Execute-no-Read (XnR)
schemes were proposed by Backes et al. [2], and were
strengthened by Crane et al. [11, 12] shortly thereafter.
The common goal is to prevent step (J1) of the JIT-ROP
attack, as the attacker can no longer dynamically search
for gadgets in non-readable code sections.

XnR: Lacking support for XnR pages in the current
hardware, Backes et al. implemented XnR in software by
marking code pages as non-present and checking the
permissions inside a custom pagefault handler [2]. To in-
crease the efficiency of this scheme, the authors propose
to leave a window of N pages present. This exposes a
few readable pages to the attacker, but prevents her from
reading arbitrary code pages. As the authors suggest, at
low window size (N = 3), the likelihood that an attacker
can leverage code-reuse attacks using only the present
code pages is negligible.

Readactor(++): Crane et al. suggested Readactor [11]
and Readactor++ [12], both of which leverage hardware
support to realize XnR. The authors suggest using Ex-
tended Page Tables (EPT), which were introduced re-
cently to the hardware to assist virtualized environments.
While regular page tables translate virtual addresses into
physical ones, EPTs add another layer of indirection

3

142 25th USENIX Security Symposium USENIX Association

and translate physical addresses of a VM to physical
addresses of the host. EPTs allow marking pages as
(non-)readable, (non-)writable, or (non-)executable, al-
lowing enforcement of XnR in hardware. In addition,
Readactor(++) hides code pointers by creating trampo-
lines, and replacing all code pointers in readable mem-
ory with trampoline pointers. The underlying assump-
tion of Readactor(++) is that fine-grained code diversifi-
cation techniques are in place, such as function permuta-
tion, register allocation randomization, and callee-saved
register save slot reordering.

Despite the fact that Readactor hid code pointers, the
layout of some function tables (e.g., import tables or vta-
bles) stayed the same. This allows an adversary to guess
and reuse the function pointers from these tables [27].
Readactor++ fixed this issue by randomizing these ta-
bles (to get rid of the predictable layout) and randomly
injecting pointers to illegal code (to forbid function fin-
gerprinting by executing it).

Alternative XnR Designs: Gionta et al. [15] proposed
HideM, which, using a split TLB technology, differenti-
ates between memory accesses and only allows instruc-
tion fetches to access code pages. Further, HideM con-
siders the data in the executable memory pages that need
to be read and uses read policies to guarantee their se-
curity. However, although HideM might be used to en-
force non-readable code, it highly depends on the hard-
ware support (e.g., split TLB). Furthermore, HideM does
not hide code pointers. In addition, Pereira et al. [26]
designed a technique similar to Readactor(++) that aims
to get non-readable code for mobile devices in ARM.
One of the advantages of their approach, called Leakage-
Resilient Layout Randomization (LR2), is that it is im-
plemented in software and does not require the under-
lying hardware support. LR2 achieves this by splitting
the memory space in half (into code and data pages) and
instrumenting load instructions to forbid the attacker to
read code. LR2 also optimizes the use of trampolines by
creating only a single trampoline for each callee instead
of encoding one for each callee-caller pair.

Summarizing XnR: Even though the current XnR im-
plementations mark JIT-compiled code as non-readable,
existing prototypes allow to leak JIT code pointers via
JIT-compiled code. We will show that an adversary that
controls the JavaScript code can still run code-reuse at-
tacks on the code generated by the JIT compilers.

2.4 JIT-Compiled Gadgets

JIT compilation remains a major challenge for XnR im-
plementations. During JIT compilation, the JIT engine
(e.g., of a browser) compiles JavaScript code into assem-
bly instructions to optimize performance. This is done
by converting each JavaScript statement into a sequence

of corresponding assembly instructions, making the code
output of the JIT compiler predictable. The deterministic
JIT compilation allows an attacker to influence the code
output by controlling the JavaScript code. For example,
Blazakis [7] and Athanasakis et al. [1] propose to craft
special JavaScript statements that JIT-compile into gad-
gets. Consider a statement with an immediate value, such
as the assignment var a=0x90909090. The JIT engine
will compile this into a sequence of assembly instruc-
tions, one of them being a mov eax,0x90909090 instruc-
tion that encodes the attacker-chosen immediate value.
After the compilation, the attacker can jump in the mid-
dle of the instruction and use the bytes of the immediate
value as an unaligned gadget, such as four consecutive
nop instructions in our simple example.

JIT Compiler Defenses: Modern JavaScript compil-
ers prevent such unaligned gadgets by constant blind-
ing. Instead of directly emitting constants in native code,
compilers XOR them with randomly generated keys, mak-
ing the resulting constants unpredictable. After constant
blinding, the aforementioned JavaScript statement will
be compiled to the following assembly instructions, ef-
fectively removing the attacker-controlled constant:

mov eax, (0x90909090 ⊕ KEY)

xor eax, KEY

For performance reasons, modern browsers only blind
large constants. For example, Chrome and IE blind
constants containing three or more bytes, giving the
attacker a chance to emit arbitrary two-byte gadgets.
Athanasakis et al. [1] demonstrated that two-byte gad-
gets are sufficient to mount a successful ROP attack, pro-
vided that (i) code sections are readable, and (ii) avail-
able gadgets happen to be followed by a ret instruction.

While constant blinding protects against such gadget
emissions, as we will show, it does not protect against our
novel form of JIT-compiled implicit constant gadgets.

3 Assumptions

We now describe our assumptions that we follow
throughout this paper, detailing a threat model and dis-
cussing defenses that we assume are in place on the tar-
get system. These assumptions are in accordance with
the recently proposed defense mechanisms against JIT-
ROP, such as XnR [2] and Readactor [11].

3.1 Defense Techniques
We assume that the following defense mechanisms of the
operating systems and the target application are in place:

• Non-Executable Data: Data Execution Policy
(DEP) is enabled on the target system, e.g., by us-

4

USENIX Association 25th USENIX Security Symposium 143

ing the NX-bit support of the hardware, marking
writable memory pages non-executable.

• Address Space Layout Randomization: The tar-
get system deploys base address randomization
techniques such as ASLR, i.e., the attacker cannot
predict the location of a page without a memory dis-
closure vulnerability. In addition, we assume popu-
lar fine-grained ASLR schemes [20, 33, 16, 25, 17],
as suggested by current XnR implementations [11,
12], are applied on the executable, libraries, and JIT-
compiled code.

• Non-Readable Code: We assume that all code
segments are non-readable, with this being either
software- [2] or hardware-enforced [11, 12], no-
tably also assuming that JIT-compiled code is non-
readable.

• Hidden Code Pointers: We assume that all code
pointers, except for JIT-compiled ones, are present
but anonymized, e.g., via pointer indirections such
as trampolines proposed by Readactor. Note that, as
mentioned by Crane et al., Readactor(++) could be
extended to also hide code pointers in JIT-compiled
code. However, there is no implementation that
shows this, neither is the performance impact of
such a scheme clear. In addition, having the com-
piler running in the same process as the attacker
might give the adversary the ability to read code
pointers during the compilation process. We thus
believe that hiding all possible (direct or indirect)
code pointers is a challenging task and the attacker
might still be able to leak the required function ad-
dresses.

• JIT Hardening: We assume modern JIT defenses
such as randomized JIT pages, constant blinding,
and guard pages (i.e., putting an unmapped page be-
tween mapped ones). In our attack, for simplicity,
we assume that sandboxing is either disabled or can
be bypassed via additional vulnerabilities. In ad-
dition, assessing the security of Control Flow In-
tegrity (CFI) defenses in JIT compilers is out of
scope of this paper, as our core contribution is to
show that an attacker can inject gadgets, and not
to discuss the actual process of diverting control
flow. Instead, we demonstrate the threat of attacker-
controlled code emitted by the JIT compiler.

3.2 Threat Model

In the following, we enumerate our assumptions about
the attacker. This model is consistent with the threat
model of previous attacks such as JIT-ROP [31] and with
the XnR-based defense schemes.

• Memory Disclosure Vulnerability: We assume
that the target program has a memory disclosure
vulnerability, which can be exploited repeatedly by
the attacker to disclose the readable memory space
(i.e., we can read data, but cannot read code).

• Control-Flow Diversion: We assume that the target
program has a control-flow vulnerability, allowing
the attacker to divert the control flow to an arbitrary
location. Note that this by itself does not allow the
attacker to exploit the program, given the lack of
ROP gadgets due to fine-grained ASLR and XnR.

• JavaScript Environment: We assume that the vul-
nerable process has a scripting environment sup-
porting JIT compilation, for which the attacker can
generate arbitrary JavaScript code. This is common
for victims that use a browser to visit an attacker-
controlled web site. Similarly, it applies to other
programs such as PDF readers.

4 JIT-Compiled Displacement Gadgets

In this section, we discuss how an attacker can induce
new JIT-compiled gadgets by crafting special JavaScript
code. Intuitively, we show that an attacker can generate
predictable JIT-compiled code such that she can reuse
the code without searching for it. We introduce new
techniques to trigger predictable gadgets that all mod-
ern JavaScript engines happen to generate. We demon-
strate that an attacker can create and use almost arbi-
trary x86/x64 gadgets in modern browsers and their cor-
responding JavaScript engines, such as Google Chrome
(V8), MS Internet Explorer (Chakra), and Mozilla Fire-
fox (SpiderMonkey).

We introduce two techniques to emit gadgets via im-
plicit constants. First, in Section 4.1, we leverage
JavaScript’s control flow instructions and emit condi-
tional jumps (such as je 0x123456) that may encode
dangerous offsets. Second, in Section 4.3, we show how
an attacker can leverage offsets in direct calls, such as
call 0x123456, to create gadgets.

4.1 Conditional Jump Gadgets
Our first target is to turn offsets encoded in conditional
jumps (in JIT-compiled code) into gadgets. To this
end, we use JavaScript statements, such as condition-
als (if/else) or loops (for/while), that are compiled
to conditional jumps. Figure 1(A) shows an example.
In js gadget, the body of the if statement contains a
variable-length JavaScript code. After compilation, the
if statement is converted to a sequence of assembly in-
structions containing a conditional jump, which, depend-
ing on the branch condition, either jumps over the body
or falls through (e.g., je <if body size>). By varying

5

144 25th USENIX Security Symposium USENIX Association

function js_gadget(arg){

 if (arg)
 {

 /* More JS Code */

 }
 return;
}

test eax, eax

... ;asm code

ret

je 0x

(A) JavaScript function (B) Disassembly

<epilogue>

c380cd

Figure 1: JavaScript function js gadget and its corre-
sponding disassembly

the code size inside the if body, we change the jump
distance and thus the value encoded in the displacement
field of the jump instruction in the compiled code. For
example, if we aim for a int 0x80;ret (0xcd80c3) gad-
get, we have to fill the body of the if statement with
JavaScript code that is compiled to 0xc380cd bytes. The
size of the JIT-compiled code for each JavaScript state-
ment is fixed by the corresponding JIT compiler, and thus
an attacker can precisely generate code of any arbitrary
length. Note that the bytes of the size and the emitted
gadget are mirrored because of the little-endian format
used in x86/x64 architectures. The compiled version of
js gadget is shown in Figure 1(B).

Emitting such three-byte gadgets requires large por-
tions of JavaScript code. In case the malicious JavaScript
code has to be loaded via the Internet, this might drasti-
cally increase the time required for all gadgets to be in
place. An attacker could overcome this limitation by uti-
lizing the eval function. Instead of having ready-made
JavaScript code, we thus use a function that constructs
and emits all required gadgets on-the-fly. Such a script
to dynamically generate arbitrary gadgets occupies less
than one kilobyte.

In a naı̈ve attack instantiation, each additional gadget
will increase the overall code size. To counter this poten-
tial limitation, we can also embed smaller gadgets into
the bigger ones by stacking if statements inside the body
of another if statement, ideally reducing the size of the
JavaScript code to the size of the biggest gadget.
Computing addresses of JavaScript functions: In or-
der to use generated gadgets, we have to compute their
addresses. We start by revealing the address of the JIT-
compiled JavaScript function, which contains emitted
gadgets, by employing a memory disclosure vulnerabil-
ity. We can do this, for example, by passing the func-
tion as a parameter to another one, thus pushing its value
on the stack. Afterwards, in the callee, we read the
stack, revealing the pointer to the function’s JavaScript
object, which contains the code pointer to the actual (JIT-
compiled) function. Note that here we assume that we
know the location of the stack. This can be done by
chasing the data pointers in the readable memory, until
we find a pointer pointing to the stack.

Because of the predictable code output of JIT compil-

ers, we know the offsets inside the JIT-compiled func-
tion, at which conditional jumps will be emitted and can
thus compute the addresses of emitted gadgets.

4.2 Conditional Jump Gadgets in Browsers

We tested this technique against three modern browsers:
Chrome 33 (32-bit)/Chrome 51(64-bit), Firefox 42 (64-
bit) and IE 11 (64-bit with 32-bit JavaScript engine).
There are some differences that need to be taken into
account for each of them. For example, Chrome com-
piles JavaScript functions the first time they are called,
while Firefox and IE interpret them a few times until
they are called too often (e.g., around 50 times for IE
and 10 times for Firefox) and only then JIT-compile the
JavaScript code. Therefore, to trigger the compilation we
just call the function multiple times and then wait until it
is compiled (which takes a few milliseconds).
Chrome: As each browser has its own JIT compiler, an
attacker has to vary the JavaScript code to fill the exact
number of bytes in the if body. This is just a matter of
finding a mapping between JavaScript statements and the
number of bytes of their JIT-compiled equivalent. We
will demonstrate this by emitting a system call gadget
(int 0x80;ret) in 32-bit Chrome. To this end, we need
to emit 0xcd80c3, i.e., we need to fill the if body with
JavaScript code that is JIT-compiled to 0xc380cd bytes.
We use the following two JavaScript statements:
S1: v=v1+v2, compiling to 0x10 bytes, and
S2: v=0x01010101, compiling to 0xd bytes.
By combining these two statements, we can generate ar-
bitrary gadgets. In our case, we use S1 0x0c 38 0c times
(resulting in 0xc3 80 c0 bytes) and S2 once—summing
up to 0xc3 80 cd, our desired gadget.

Note that the JavaScript statement that compiles to
0x10 bytes allows us to control each hex digit of the emit-
ted jump distance except the last one (i.e., the least sig-
nificant half-byte of the gadgets’ first byte). Moreover,
any JavaScript statement that compiles to an odd number
of bytes allows us to control the least significant half-
byte of the distance. Combining these two properties,
we can generate any gadget by using these two selected
JavaScript statements multiple times.

The sizes of JIT-compiled JavaScript statements differ
in 64- and 32-bit versions of Chrome. In 64-bit Chrome
we replace S1 with v=v, which is compiled to 0x10 bytes.
Note, however, that even though the size of S2 in 64-bit
is also changed to 0x1b bytes, we can still use it because
it is compiled to an odd number of bytes.
Firefox: To generate arbitrary gadgets for Firefox, we
choose the following two statements:
S1: v=v, compiled to 8 bytes (two of them to 0x10), and
S2: v+=0x1, compiled to 0x21 bytes.

6

USENIX Association 25th USENIX Security Symposium 145

0x0000: call FUN_1 ; 0xe8fb1f0000

0x0005: call FUN_1 ; 0xe8f61f0000

0x000a: ...

0x2000: push ebp ; 0x5d(@FUN_1)

Figure 2: Direct call

IE: IE deploys JIT-hardening mechanisms that go be-
yond the protections in Chrome and Firefox. IE (i) has
a size limit on code segments generated by the JIT com-
piler, and (ii) randomly inserts NOPs (i.e., instructions
that do not change the program state) in JIT-compiled
code. Because of (i), we can only emit two-byte gadgets.
Due to (ii), these gadgets are then further modified by in-
serting NOPs inside the if body and, thus, changing the
value emitted in the conditional jump. The latter tech-
nique is similar to librando [17]. Nevertheless, even with
these defenses in place, we can still emit arbitrary two-
byte gadgets by measuring the size of the emitted code
at run time. We will describe this attack in Section 4.4 in
the discussion about Internet Explorer.

4.3 Direct Call Gadgets

We found that conditional jumps are not the only in-
structions to embed implicit constants that can be in-
directly controlled by the attacker. Direct calls (e.g.,
call 0x1234560) are another example of such instruc-
tions. In our second approach, we leverage the JavaScript
statements that are compiled to instructions containing
direct calls.
Direct call constants: Direct calls in x86/x64 change the
execution flow of the program by modifying the instruc-
tion pointer (eip/rip). The constant encoded in a direct
call instruction represents a relative address of the callee.
That is, the call instruction’s displacement field contains
the distance between the addresses of the instruction fol-
lowing the call and the callee. Therefore, any two di-
rect call instructions to the same function will encode
different constants. For example, in Figure 2, there are
two consecutive calls to the function FUN 1 (at address
0x2000). The constant encoded in the first call denotes
the distance between FUN 1 and the instruction following
the call (i.e., the second call at 0x05). Therefore, its value
is 0x2000-0x5=0x1ffb, which is 0xfb1f0000 encoded in
little-endian.

In the example above, the difference between two con-
secutive direct call constants is 0x5 (the size of a direct
call instruction). In general, the difference is equal to the
size of the instructions between two consecutive calls. In
our case, we want to use JavaScript statements to emit
direct calls in the JIT-compiled code. Therefore, the dif-
ference between the constants will be the size of the in-

function js_call_gadget () {

asm_call (); /* emits a call */

asm_call ();

/* ... (many asm_call () statements) */

asm_call (); }

Listing 1: JavaScript function js call gadget

structions in which the JavaScript statement is compiled.
To generalize this attack vector, we aim for a

JavaScript function similar to js call gadget (List-
ing 1). The asm call() statement is a placeholder for
any JavaScript statement (not necessarily a function call)
that is compiled into a sequence of instructions contain-
ing a direct call. The exact statement that replaces the
placeholder depends on the target browser.
Finding callee address: Let our goal be to emit a three-
byte gadget and fix its third byte to 0xc3 (ret). To cal-
culate the constant encoded in the displacement field of
a direct call instruction, we have to know the addresses
of the call instruction and its destination. The destina-
tions of the emitted call instructions that we have encoun-
tered are either helper functions (e.g., inline caches gen-
erated by V8) or built-in functions (such as Math.random
or String.substring). The helper functions are JIT-
compiled by V8 as regular functions. We can leak
their addresses either by stack reading (e.g., by leaking
the return address put there by the call instruction in-
side the helper function), or by reading the V8’s heap,
where all the references of compiled helper functions
are stored. In IE, the built-in functions are located in
libraries and thus are randomized via fine-grained ASLR
schemes [12, 11, 17]. However, their corresponding
JavaScript objects (e.g., Math.random) contain the code
pointer to the function. Knowing the structure of these
JavaScript objects, which are not randomized according
to our assumptions, we can get the addresses of built-in
functions via a memory disclosure vulnerability. Note
that after code pointer hiding, the addresses that the at-
tacker leaks from these JavaScript objects will be the ad-
dresses of the trampolines and not the actual functions.
Nevertheless, offsets, encoded in call (or jump) instruc-
tions, will also be computed relative to the trampolines
and thus can be used for calculating emitted constants.
Emitting call instructions: Knowing the address of the
callee, the next step is to emit direct call instructions at
the correct distance. Given that we cannot influence the
address where the function will be compiled, we have to
acquire sufficiently large code space to cover all three-
byte distances to the callee. To this end, we create a
JavaScript function that spans 0x1 00 00 00 bytes after JIT
compilation and consists of JavaScript statements emit-
ting direct calls. More precisely, we require the dis-
tance between the first and the last emitted direct call

7

146 25th USENIX Security Symposium USENIX Association

instructions to be at least 0x1 00 00 00 bytes. This way,
regardless of where our function is allocated, we will be
guaranteed that it covers all possible three-byte distances
from the callee, allowing us to emit arbitrary three-byte
gadgets by carefully placing direct call instructions.
Emitting required gadgets: Creating such a large func-
tion (16 MB) emits many three-byte gadgets, and also
covers all two-byte gadgets. For example, if we have a
JavaScript statement that generates a call instruction and
is compiled to 0x10 bytes of native code, we can create a
big function containing this statement 0x10 00 00 times.
The compiled function will have 0x10 00 00 direct call
instructions 0x10 bytes apart. If we consider the least
significant three bytes of the emitted displacement fields
of these direct calls, they will have the following form:
0x*Y ** **, where * denotes any hexadecimal digit [0-f]
and Y is a constant, which encodes the least significant
half-bytes of emitted values.

Because of the little-endian format used in x86/x64 ar-
chitectures, Y is part of the first byte of emitted gadgets.
Therefore, to emit three-byte gadgets, we must be able
to set Y accordingly. To this end, we modify the value of
Y by varying the size of the instructions before the first
direct call. That is, we find any JavaScript statement that
compiles to an odd number of bytes, and then use it up to
15 times to get any out of all possible 16 half-bytes. For
example, if the least significant half-byte of the call in-
struction is 0x0 and we want to make it 0xd, and we have
a JavaScript statement that compiles to an odd number of
bytes (e.g., i+=1 in 32-bit Chrome, 0x13 bytes), we use
this statement 15 times (0x13*15=0x11d).
Computing addresses of emitted gadgets: Assuming
that the address of the first call instruction in our func-
tion is Fcall , and the address of the callee is Fdest , we
can compute three bytes of the displacement field of
the first call instruction by C1=Fdest-(Fcall+5) mod 224. If
the required gadget is G, then we can compute the dis-
tance (dist) between the call instruction, emitting G,
and the first call instruction: dist=C1-G mod 224. Using
dist, we can calculate the address of the call instruc-
tion emitting G (Fcall+dist), and therefore the address of
the gadget (Gaddr) which is located 1 byte after the call:
Gaddr=(Fcall+dist)+1.

4.4 Direct Call Gadgets in Browsers

We will next discuss techniques that we use to instantiate
the attack in three popular browsers.
Firefox: Emission of direct call gadgets is not possible in
Firefox, as the baseline JIT compiler of Firefox does not
emit direct calls. Although the optimizing JIT compiler
of Firefox emits direct calls, e.g., when compiling regular
expressions, it only optimizes JavaScript functions after
they have been executed more than 1,000 times. Trig-

gering the optimizing compiler on the large functions (as
required for our attack) thus makes our attack impractical
against Firefox.
Chrome: Chrome compiles most JavaScript statements
to direct calls. Consequently, we have a large selection
of JavaScript statements with varying post-compilation
sizes. We use a statement that is compiled to 0x10 bytes
of assembly code (e.g., i=i+j for 32-bit Chrome). For
demonstration purposes, we aim to emit a system call
gadget (int 0x80;ret), implicitly also revealing all two-
byte gadgets. To this end, we create a function shown
in Figure 3(A). The function starts with a sequence of
JavaScript statements that align the first call instruc-
tion to 0xe. After this, the emitted call distances will
be calculated relative to 0x3, i.e., (0xe+0x5) mod 0x10,
where a direct call is 0x5 bytes large. Considering that
the callee is at least half-byte aligned, the lower half-
byte of all emitted gadgets’ first bytes will be 0xd, i.e.,
(0x0-0x3) mod 0x10. The alignment code is followed by
a sequence of call-generating statements (e.g., i=i+j),
each of which compiles to 0x10 byte-long code. The
compiled i=i+j statement emits a call instruction at off-
set 0x*e (due to alignment) as shown in Figure 3(B).
Generating a sequence of 0x10 00 00 call instructions, we
are guaranteed to have an int 0x80;ret gadget encoded
into one of the call instruction constants (Figure 3(C)).

Note that the aforementioned technique is used in the
32-bit version of Chrome. For 64-bit, we use the v++

statement, which is compiled to 0x20 bytes (instead of
0x10) and emits a call instruction. Having 0x20 bytes
between call instructions changes the upper half of the
least significant byte. For example, after aligning the
least significant half-byte to 0xd via padding, the emit-
ted first bytes will be either 0x{0,2,4,6,8,a,c,e}d or
0x{1,3,5,7,9,b,d,f}d, depending on the initial value of
the upper half of the least significant byte. We can mod-
ify this value to our liking by adding the i=i statement,
which is compiled to 0x10 bytes, as padding.
Internet Explorer: For the two main reasons mentioned
in Section 4.1 (code size limit and NOP insertion), emit-
ting gadgets is harder in IE. The per-function code size
limit forbids us to emit 0x1 00 00 00 bytes of native code,
which is required to span all possible third bytes of the
constants encoded in call instructions. However, in the
following, we describe how an attacker can still encode
gadgets in direct calls even in IE.

Emitting calls at correct distance: IE still allows us
to create many small functions. These functions will
be distributed in the set of pages, each of them be-
ing 0x2 00 00 bytes large. We thus allocate many func-
tions (200 in our case), each of them being �0x1 00 00

bytes (i.e., two functions per page). Given the align-
ment (0x1 00 00) and the size (0x2 00 00) of the spanned
code pages, each page will cover two third-bytes of

8

USENIX Association 25th USENIX Security Symposium 147

(B) i=i+j direct calls (C) Bytes emitted by direct calls(A) JavaScript function

 var

 // Align calls to 0xe

 i = i + j;

 // i=i+j 0x3a86b times

 i = i + j;

 // i=i+j 0xc5793 times

 i = i + j;

0x*0: ...

0x*7: ...

0x*e: call BINARY_OP_IC

...

0x*7: ...

...

0x*7: ...

0x*e: call BINARY_OP_IC

;e8 8d07feff

;e8 cd80c3ff

;e8 8d07fefe

0x*e: call BINARY_OP_IC

}

function

i,j;

js_call_gadget_v8(){

Figure 3: JavaScript function emitting gadgets via direct call constants

the absolute address completely (e.g., from 0x12 34 00 00

to 0x12 35 ff ff). Considering that the callee is not
aligned to the same boundary, direct calls emitted in
these pages will have three distinct third bytes in their
constants, only one of them covered completely. For
example, if we assume the callee to be at address
0x12 34 56 70 and the page emitted at 0x01 70 00 00,
only the call instructions located in the address range
[0x01 70 56 70, 0x01 71 56 70] can emit complete three-
byte constants, having 0xc3 as their third byte, i.e., con-
stants from 0x12 34 56 70 - 0x01 70 56 70 = 0x10 c4 00 00

to 0x12 34 56 70 - 0x01 71 56 70 = 0x10 c3 00 00. On the
other hand, the ranges [0x01 70 00 00, 0x01 70 56 70] and
[0x01 71 56 70, 0x01 71 ff ff] cover only parts of the con-
stants, with 0xc4 and 0xc2 as their third bytes.

After allocating the functions, we dynamically check
their addresses to find the one with the correct distance
from the callee (using the same technique as described
at the end of Section 4.1), i.e., the one having the cor-
rect third byte in its direct call instruction’s displace-
ment field. Allocating 200 JavaScript functions, each of
them containing 0x1 00 00 bytes, is inefficient, especially
if the code has to be downloaded to the victim’s machine.
Therefore, we use eval to spam IE’s code pages with the
dynamically created functions. The problem with evalu-
ated functions is that IE does not emit direct call instruc-
tions in them and uses indirect calls instead. Therefore,
we use these functions only as temporary placeholders.
Once we find any evaluated function at the correct place,
we deallocate it to make its place available for the sub-
sequently compiled functions. To deallocate a JavaScript
function, we set null to all of its references and wait un-
til the garbage collector removes it (typically within less
than a second).

Verifying emitted gadgets: At first sight, IE’s NOP
insertion conflicts with our assumption about the pre-
dictability of JIT-compiled code. With NOP insertion,
and likewise with many other fine-grained code random-
ization schemes, we cannot guarantee that the call in-
struction, which is supposed to emit the gadget, ends up

function js_call_gadget_IE () {

// Padding to correct address

var i = Math.random (); // emit direct call

check_address(<random cookie value >);

}

Listing 2: JavaScript function js call gadget IE

at the correct address. However, because NOPs are in-
serted at random, compiling the same JavaScript func-
tion multiple times actually increases the chance that in
one of the compiled versions, the call instruction ends
up at the correct place.

Following our threat model, though, we cannot read
executable code segments to verify if the compiled
call instruction is at the desired place. As an alter-
native, we read the stack, as shown in Listing 2. In
js call gadget IE(), the statement i=Math.random()

emits a direct call. We pad the beginning of the
function with a few JavaScript statements to place
i=Math.random() at approximately the correct address,
such that the relative address would encode the desired
gadget, accounting the randomness induced by NOP in-
sertions. We then check the correctness of the position
via check address, a JavaScript function that reads the
stack to find the return instruction pointer put there by
the call instruction.

Using the leaked return address, we can calculate
the address of the direct call instruction emitted by
i=Math.random(), verify that it is at the correct place
and if so, use it as a gadget. A simple implementation
of check address is shown in Listing 3, where it uses a
memory disclosure vulnerability (mem read in this case)
to read the stack from some starting point (ESP), until
it finds its own parameter (cookie). The parameter is a
random number, reducing the chance that multiple po-
sitions have the same value (note that this chance can
be further reduced by using multiple random parame-
ters). After finding the cookie on the stack and thus
the address of the parameter, we know the exact offset

9

148 25th USENIX Security Symposium USENIX Association

function check_address(cookie) {

// ESP_: Any address on stack

// NEEDED_ADDRESS: address where

// call must reside

while(mem_read(ESP_) != cookie)

ESP_ -= 4; // Check next value

// get return address from parameter

var ret_ = mem_read(ESP_ - 0xC);

// get call instruction address

var call_addr = ret_ - 5;

return call_addr == NEEDED_ADDRESS;

}

Listing 3: JavaScript function check address

from the parameter’s address, and from there we can tell
where the return address is located. Reading the return
instruction pointer, we recover the address of the corre-
sponding call instruction and verify that it is at the correct
place (NEEDED ADDRESS in this case). We can add another
call to check address before i=Math.random() to verify
if NOPs are inserted between the emitted call instruc-
tions of i=Math.random() and check address(). If both
checks (check address) succeed, we will be guaranteed
that no NOPs were inserted.

IE summary: An attacker can evade both aforemen-
tioned defenses and emit three-byte gadgets even in IE.
To demonstrate this, we first dynamically create many
JavaScript functions to get the correct third byte (0xc3).
After finding the function at the correct distance from the
callee, we replace it with a special function, which, af-
ter compilation, emits direct call instructions and checks
their positions. We trigger the recompilation of the lat-
ter function multiple times, until the checks are true,
which means that the gadget is found. In our experi-
ments, spamming the code pages with functions took ap-
proximately four seconds, and for most of the time, we
found the correct third byte on the first try. Triggering
the recompilation of a function takes the following steps:
(i) Remove the included JavaScript file from the head of
the HTML file, (ii) wait until the function gets removed
by the garbage collector, and (iii) include the JavaScript
file again and trigger the compilation of the same func-
tion. Each iteration of the above steps takes around 2
seconds, most of the delay coming from the second step
(waiting for the garbage collector).

For two-byte gadgets, on the other hand, an attacker
can discard the third byte. In this case, she can directly
compile multiple functions at once, check the positions
of emitted direct calls and use the ones with the required
displacements.

4.4.1 Proof-of-Concept Gadget Generation

To demonstrate the practicality of the aforementioned
gadget emitting techniques, we crafted a special
JavaScript code for Chrome and IE, which generated the
gadgets required for the exploit. The gadgets that we
aimed to generate are the ones used by Athanasakis et al.
Namely, the set of gadgets to load the registers with the
arguments used in a system call and one for the system
call itself. We created these gadgets in Chrome 51 (64
bit) and IE 11 (32 bit).

Chrome: For Chrome, we targeted for the follow-
ing instructions: pop r8; pop r9; pop rcx; pop rdx

(to prepare the system call arguments) and int 0x80 (to
execute the system call). Being able to emit three-byte
gadgets, we encoded these instructions into the follow-
ing gadgets:

pop r8, ret ; 4158c3

pop r9, ret ; 4159c3

pop rcx, ret ; 59c3

pop rdx, ret ; 5ac3

int 0x80, ret ; cd80c3

We used both our proposed techniques for the emis-
sion of these gadgets. We generated a system call gad-
get via direct calls. First, we created a string represen-
tation of a JavaScript function containing 0x80000 j++

statements (j++ takes 0x20 bytes), then we created a
JavaScript function from it via eval, and finally we com-
piled it by calling the generated function. This gave us
a system call gadget, together with all possible two-byte
gadgets, hence also covering pop rcx and pop rdx.

For the generation of pop r8 and pop r9 gadgets,
we used cascaded if statements (also created with
eval). The JavaScript function generating the afore-
mentioned gadgets is shown in Listing 4. As gad-
gets pop r8 and pop r9 differ by 0x100, their corre-
sponding if statements also have to be 0x100 bytes
apart. Note however that in the first if body (F1), we
add 0xed bytes to fill up the space instead of 0x100.
This is due to the fact that an if statement is com-
piled to 0x13 bytes, which is also added to the dis-
tance between relative jumps. To get 0xed bytes, we use
j=0x1010101 7 times (0x1b*7=0xbd) and j++;j=i;j=i

(0x20+0x8+0x8=0x30). To generate 0xc35841 bytes (F2),
we use j=0x1010101 0xd3 times (0x1b*0xd3=0x1641),
and fill the remaining 0xC34200 bytes by using j++

0x61A10 times (0x20*0x61A10=0xC34200).
The entire gadget generation process in Chrome took

≈1.3 seconds, in a VirtualBox Virtual Machine running
Windows 10 (Intel Core i5-4690 CPU 3.50GHz).

Internet Explorer: As we have mentioned earlier, In-
ternet Explorer, by default, comes with a 32-bit JIT com-
piler. Therefore, for gadget generation we chose gadgets
that would be used in a 32-bit system. For simplicity

10

USENIX Association 25th USENIX Security Symposium 149

function popr8r9(r8 ,r9) {

var i=0,j=0;

if(r9) {

/* F1: fillup 0xed Bytes */

if (r8) {

/* F2: fillup 0xc35841 Bytes */

}

}

}

Listing 4: JavaScript function popr8r9

function syscallIE () {

var i=0;

i=Math.random ();

... /* 240 times in total */

check_address ();

i=Math.random ();

... /* 10 times in total */

return i;

}

Listing 5: JavaScript function syscallIE

we used the set: popa; int 0x80, where popa sets the
contents all x86 registers from the stack and int 0x80

performs the system call.
The first part of the gadget emission process in IE is

finding the right distance from the callee, i.e., a page
that is 0xc3 bytes away from the callee. This part
was done by a JavaScript code, which simply creates
and compiles big functions (in our case 200 of them,
≈0x10 000 bytes each). After finding the correct page,
we deallocated it and spammed the page with 16 spe-
cially crafted JavaScript functions, each of them cov-
ering 0x1000 bytes. For example, the JavaScript func-
tion used for emitting a system call (Listing 5) contains
250 Math.random calls (each of them compiling to 0xc

bytes). At the correct place between these calls, i.e.,
when the caller is at approximately the correct distance
from Math.random, we inserted a call to check address

to verify the correctness of the gadget. In case the emit-
ted call is not at the correct place, we deallocated the
function and reallocated it again. Note that the reallo-
cation is only needed for three-byte gadgets, where we
also want to control the least significant byte. For two-
byte gadgets (e.g., for popa;ret), we only need to call
check address to compute the address of the call instruc-
tion, for which we already know that is at the correct
place (Listing 6).

In comparison to Chrome, gadget generation in IE is
probabilistic and thus the time required for it also dif-
fers. There are two sources of the variance. First, gen-
erating the large functions to search for the correct third-
byte distance from the callee; and second, compiling the
gadget-emitting function in the found (correct) page, and

function poparetIE () {

var i=0;

i=Math.random ();

... /* 232 times in total */

check_address ();

i=Math.random ();

... /* 28 times in total */

return i;

}

Listing 6: JavaScript function poparetIE

Defense Chrome Firefox IE
Const. Blinding � × �
NOP Insertion × × �
Code Size Limit × × �

Table 1: Current defenses in modern browsers

recompiling it until the correct gadget is emitted. In our
experiments, we created 200 large functions and got the
required third-byte distance for the first time in most of
the cases. Compilation of these 200 functions took ≈4
seconds on a physical machine running Windows 10 (In-
tel Core i5-6200U CPU 2.3GHz). Each recompilation
in the second step took 2-3 seconds. We ran the gadget
generator in IE 10 times. Generating popa; ret and int

0x80; ret took on average 32 seconds, 11 and 47 sec-
onds being the fastest and the slowest respectively.

4.4.2 Summary of Defenses and Vulnerabilities

We have shown that an attacker can encode arbitrary
gadgets by triggering implicit constants with specially-
crafted JavaScript code. Combining this with the abil-
ity to leak code pointers, an adversary can guess the ad-
dresses of the emitted gadgets without reading any code,
thus making the attack possible even if code pages are
non-readable.

Table 1 summarizes the defense techniques of mod-
ern browsers against code-reuse attacks in JIT-compiled
code. Both IE and Chrome deploy constant blinding.
Furthermore, IE uses NOP insertion as a fine-grained
code randomization scheme, as also suggested in li-
brando [17]. However, as Table 2 shows, none of the
modern browsers sufficiently protect against the pro-
posed attacks. Only Firefox “avoids” implicit constants
by not using direct calls in baseline JIT compiler, but still
exposes implicit constants in relative jumps.

1Gadgets up to two bytes can be emitted.

11

150 25th USENIX Security Symposium USENIX Association

Attack Chrome Firefox IE
Relative Jumps � � �1

Direct calls � – �

Table 2: Browsers vulnerable to implicit constants

5 Defense

Seeing the threat of implicit constants, we now propose
a technique to defend against it. We identify two steps
that the attacker needs to take for using implicit con-
stants as gadgets: (i) The attacker must be able to emit
the required gadgets, and (ii) she must be able to acquire
the necessary information (e.g., leak function pointers)
to compute the addresses of the emitted gadgets.

One solution to tackle this problem would be to hide
code pointers, e.g., by extending Readactor(++) to also
cover the JIT-compiled code, as Crane et al. suggested.
This would hinder the attacker from executing step (ii).
However, this would still allow the attacker to emit arbi-
trary gadgets by leveraging the implicit constants (step
(i)). Furthermore, the fact that the JIT compiler runs
in the same process as the attacker makes it challeng-
ing to remove all possible code pointers that could, di-
rectly or indirectly, reveal the addresses of emitted gad-
gets. Therefore, we propose an orthogonal defense tech-
nique that forbids the attacker to emit the gadgets in the
first place (i.e., step (i)). Our defense could be comple-
mented with holistic code pointer hiding techniques to
get additional security guarantees.

The main idea of our defense can be split in two parts:
(i) We convert direct calls and jumps into indirect ones,
such that their destination is taken from a register, and
(ii) we use constant blinding to obfuscate the constants
that are emitted by step (i) and may potentially contain
attacker-controlled gadgets. For step (ii), we use the
same cookie that is used by V8 to blind integer con-
stants, and is generated anew before the compilation of
each function. Note that the cookie is encoded in non-
readable code and cannot be leaked. However, even if
the attacker was able to leak the cookie, she could only
guess the immediate values emitted in the current func-
tion, and any future function will have a different cookie
value.

5.1 Removing Implicit Constants from V8

We integrated our defense into V8, Chrome’s JavaScript
engine. We have chosen V8 due to its popularity and due
to the fact that it is vulnerable to both our suggested at-
tacks. Moreover, since V8 JIT-compiles JavaScript di-
rectly to the native code, it emits many checks (con-
ditional jumps) and function calls (e.g., calls to inline

caches), which makes V8 a suitable candidate for our
defense prototype evaluation. For our defense technique,
we changed the functions of V8 that are responsible for
emitting native code. In total, we modified ≈200 lines
of code to account for all the cases of attacker controlled
relative calls or jumps.

5.1.1 Conditional Jumps

To harden conditional jumps, we modified the native
code that is emitted when JavaScript conditionals (such
as if,while,for,do-while) are compiled. Our basic
idea is to switch from relative to absolute jumps, and
blind the resulting immediate values. To this end, we
first add a padding (a sequence of NOP instructions) to
each compiled conditional to reserve the space for later
changes. For the hardened version of the conditional
jump we need 19 bytes (instead of 6 bytes). We thus ap-
pend 13 NOP instructions after the existing conditional
jump. At the end of the compilation, when the constants
of all jumps are calculated, we convert all relative jumps
to absolute jumps, eliminating the need to fill a displace-
ment with potential gadgets.

Figure 4 illustrates the steps of the aforementioned
modifications. Figure 4(A) shows the compiled if state-
ment in original V8. Figure 4(B) shows the same state-
ment with the NOP padding. Finally, Figure 4(C) shows
the assembly of the hardened if statement. In this final
form, the condition of the original jump is inverted and
the original long jump (having 4 byte jump distance) is
replaced with the 1-byte short jump. Consequently, the
new jump is taken if the original condition was false, i.e.,
the fall-through case. Otherwise, we convert the relative
address into the absolute one, by adding it to the current
instruction pointer (rip). This can be done with a single
instruction in x64 (lea r10,[rip+0xc380ca]).

As this instruction will still emit the relative address as
the displacement, we split it in two instructions. First, we
add the current instruction pointer to the relative address
AND-ed with a random key (rip+0xc380ca&KEY). In the
second lea instruction, we add the sum to the relative
address AND-ed with the inverted (bitwise not) random
key, resulting in the desired offset (rip+0xc380ca). Note
that we use obfuscation by AND-ing the constant with a
random key instead of XOR-ing it, because (A+B⊕C)⊕
C does not equal to A+B, while (A+B∧C)+B∧¬C
does. Moreover, this obfuscation scheme allows us to
use lea instructions only, which has the advantage of not
modifying any flags.

5.1.2 Direct Calls

We mitigate the implicit constants in direct calls by con-
verting the direct calls into indirect ones. To this end, we

12

USENIX Association 25th USENIX Security Symposium 151

0x00: je 0xc380c4

....

0xc380ca:

(A) Original V8 (B) NOP Padding (C) Modified V8

0x06: <if_body>

0x00: je 0xc380cd

0x07: nop

0x08: ...

0x12: nop

0x13: <if_body>

0xc380d3:

....

0x00: jne 0x11

0x02: lea r10,[rip+0xc380ca&KEY]

0x09: lea r10,[r10+0xc380ca&~KEY]

0x10: jmp r10

0x13: <if_body>
....

0xc380d3:

Figure 4: Steps of JIT hardening in V8

0x00: lea r10, [rip+ADDRESS&KEY]

0x07: lea r10, [r10+ADDRESS&~KEY]

0x0e: call r10 ; calls 0xc380d3

0x11:

Figure 5: Hardening direct calls

distinguish whether the address of the callee is known
at compile time (e.g., when calling built-in functions).
If the callee’s address is known, we can move it to a
scratch register (r10) and then execute an indirect call
mov r10,ADDRESS;call r10. We thus emit the absolute
address of the callee as the immediate value of the mov

instruction, which is not under the control of the attacker
and is thus safe—in contrast to the relative address.

If the address is unknown at compile time, we use a
similar technique as we did for the conditional jumps,
i.e., we convert the relative address into an absolute
one (blinding the relative address during the conversion),
store it in the scratch register, and then execute an indi-
rect call, as shown in Figure 5.

5.2 Evaluation
To evaluate our defense technique we ran the V8 Bench-
mark Suite 7 on our modified V8. We performed each
benchmark 100 times on both the modified and original
V8s, and compared their corresponding averaged results.
Table 3 illustrates the average scores that were returned
by the benchmark suite, where a higher score indicates
better performance. The modified V8 has an average
overhead of less than 2%, and the worst overhead less
than 3%. The observation that the overhead is negative
for the NavierStokes benchmark can be explained by sta-
tistical variations across the different runs.

Additionally, we tested the modified V8 with mi-
crobenchmarks. To this end, we created two JavaScript
functions (ifs true and ifs false), both of them con-
taining 1,000,000 if statements. The condition of the if

statement in ifs true is always true (i.e., the if body
is executed), while the condition of ifs false is always
false. This way the JIT-compiled functions will contain
1,000,000 conditional jump instructions modified by us,

each of them testing separate execution paths. Further-
more, evaluation of the expression in the if statements
is done via a function call. Therefore, both of these
functions generate 1,000,000 modified call instructions
each and will thus incorporate the overhead caused by
the function calls. Each run of the microbenchmark calls
each of these functions 10 times. We ran the benchmark
1,000 times. We distinguish the first execution of these
functions from the remaining nine, as the first execution
is significantly slower due to the JIT-compiler modifying
the generated intermediate functions to adjust them to the
type information. Because the overhead was dominated
mostly by the compiler, we did not see any overhead for
the first function execution. For the remaining function
executions we had 14,25% overhead in ifs false and
9,81% for ifs true.

Besides computational performance, our defense tech-
nique also causes a memory overhead due to added code.
To measure this overhead, we compared the sizes of the
functions compiled by the original and the modified ver-
sions of V8. To get the needed output from V8, we ran it
with the --print-code flag, which outputs the disassem-
bled code for each function after the compilation together
with additional information about the compiled function
including the size of the generated instructions. Run-
ning the benchmark suite with the aforementioned flag
yielded that the total size of the instructions emitted by
the original V8 was 1,123 kB, while the modified V8
emitted 1,411 kB, giving 287 kB of additional code, i.e.,
≈26% code size overhead. Given the significant size of
the benchmark suite, and given that memory of nowa-
days x86/x64 systems are typically in the range of giga-
bytes, we think that hundreds of kB of additional code
does not cause any bottlenecks on COTS systems.

6 Discussion

6.1 Defense Security Considerations

Our defense follows the general goal to remove unin-
tended gadgets from constants in JIT-compiled code. We
tailored our defense implementation towards protecting
jump and call offsets. Other offsets may be usable to en-

13

152 25th USENIX Security Symposium USENIX Association

Benchmark Original Modified Overhead(%)
Richards 36,263 35,555 1.95
DeltaBlue 63,641 62,045 2.51
Crypto 33,366 32,725 1.92
RayTrace 77,198 75,488 2.21
EarleyBoyer 44,900 43,700 2.67
RegExp 6,525 6,414 1.71
Splay 21,095 20,479 2.92
NavierStokes 31,924 31,998 -0.23
Total 32,255 31,662 1.96

Table 3: Scores by the V8 benchmark (higher is faster)

code further gadgets. For example, relative addressing
is frequently used in combination with the base pointer,
such as when accessing parameters of a JavaScript func-
tion. As parameters are stored on the stack, they are
accessed relative to the frame pointer (ebp/rbp). Each
parameter access, after JIT-compilation, emits an assem-
bly instruction, which contains the offset of the param-
eter from the frame pointer in its displacement field:
mov [ebp+0x0c],0x1. The number of possible gad-
gets, in this technique, is restricted by (i) limited stack
size (e.g., maximum 216 − 1 (0xffff) function parame-
ters in Chrome) and (ii) stack alignment (4 or 8 bytes). In
combination, this only allows generating gadgets whose
opcodes are multiples of 4 (or 8) and are in the range be-
tween 0xc and 0x40000, and thus gives the attacker only
limited capabilities. The stack size restrictions impose
the same limitations on implicit gadgets encoded in rela-
tive accesses to function’s local variables

While we think that the most important constants are
blinded, we cannot exclude the existence of further ways
to encode gadgets in assembly instructions. To eradicate
all potential gadgets, one could prevent the JIT compiler
from creating any potential gadgets (even in unaligned
instructions). Most notably, G-Free [24] is a gadget-
free compiler, which tries to generate gadget free bina-
ries. However, G-Free requires multiple recompilations
and code adjustments to reliably remove all possible gad-
gets. This will increase the runtime overhead for the JIT
compilers, as the compilation time is included in their
runtime.

6.2 Fine-Grained Code Randomization

An orthogonal approach to our defense would be to re-
move the attacker’s capability to find the gadget’s loca-
tion (i.e., address). One way of doing so would be to
hide code pointers, e.g., via trampolines, as suggested
by Crane et al. [11]. If code pointers are not hidden,
the attacker can read the return instruction pointer on the
stack to get a pointer to the created gadget—which rep-

resents the current status in XnR implementations. This
results in (i) getting access to the gadget, (ii) a possibil-
ity to verify the gadget at runtime, and (iii) the ability to
retry in the case of a false result. By using similar tech-
niques as we used against NOP insertion, the attacker
can defeat fine-grained code randomizations such as the
ones underlying Readactor [11]. Even though current
XnR implementations do not hide code pointers in JIT-
compiled code, XnR’s ideal implementation could also
expand fully to the JIT-compiled code, e.g., by introduc-
ing trampolines. This, together with the fine-grained ran-
domization schemes such as NOP insertion, would suc-
cessfully protect against our attack. Note, however, that
NOP insertion does not remove gadgets, but tries to re-
duce the chances of the attacker to guess their locations.
In contrast, our proposed defense technique removes the
gadgets, hence also removing the risk of the attacker do-
ing a guesswork. Combining our technique with the ex-
tended XnR implementation would further improve the
security guarantees, removing the chances of both emit-
ting the gadgets and leaking the code layout information.

To guard against JIT-compiled gadgets, Wei et al. pro-
posed to do several code modifications such as (i) secur-
ing immediate values via constant blinding, (ii) modify-
ing internal fields of the instruction (e.g., registers being
used), and (iii) randomizing the order of the parameters
and local variables to randomize the offsets emitted by
them [34]. However, this is not effective against the at-
tacks proposed in Section 4, as the modifications do not
secure the displacement fields emitted by relative call-
s/jumps. Finally, the code randomization proposed by
Homescu et al. [17] that adds NOP instructions to ran-
domize the code output from the JIT compiler remains
ineffective if code pointers in JIT-compiled code are not
hidden.

6.3 Attack Generality

A natural question is how the proposed attack general-
izes, in particular to other operating systems or CPU
architectures. We have evaluated the attacks against
Chrome and Firefox running on Linux and IE on Win-
dows. As we exploit properties of the JIT compilers to
generate desired gadgets, the choice of the underlying
operating system is arbitrary. The proposed attacks rely
on the x86 system architecture (32- or 64-bit), though. In
RISC architectures, such as ARM and MIPS, instruction
lengths are fixed, and execution of unaligned instructions
is forbidden by the hardware. However, the attacks may
still apply to ARM, as an attacker could emit arbitrary
two-byte values in the code if she can force the program
to switch to 16-bit THUMB mode. Although this lim-
its the attacker to using a single instruction, it still allows
setting the register contents and diverting the control flow

14

USENIX Association 25th USENIX Security Symposium 153

at the same time, e.g., by using a pop instruction.
We implemented our defense in the 64-bit version of

V8, taking advantage of the x64 architecture’s ability to
directly read the instruction pointer (rip). This simpli-
fied the effort of converting relative addresses into ab-
solute ones. Even though one can read the instruction
pointer indirectly in 32-bit, e.g., by call 0x0;pop eax,
such additional memory read instructions would increase
the performance overhead. In addition, 32-bit features
only eight general-purpose registers. While in x64 we
could freely use a scratch register (r10 for Chrome), in
x86 we would likely need to save and restore the register.
Similar defenses in x86-32 are thus possible, but come at
an additional performance penalty. However, given that
64-bit systems are increasingly dominating the x86 mar-
ket, we think that 64-bit solutions are most relevant.

7 Related Work

In the following, we will summarize existing code-reuse
attacks and proposed defense mechanisms.

7.1 Code-Reuse Attacks: ROP / JIT-ROP
The most widespread defense against ROP is ASLR [32],
which randomizes the base addresses of memory seg-
ments. Although it raises the bar, ASLR suffers from
low entropy on 32-bit systems [30] and is not deployed
in many libraries [28]. In addition, ALSR does not ran-
domize within a memory segment, and thus leaves code
at fixed offsets from the base address. Attackers can thus
undermine ASLR by leaking a code pointer [18].

Researchers thus suggested fine-grained ASLR
schemes that randomize code within segments. Fine-
grained ASLR hides the exact code addresses from an
attacker, even if a base pointer was leaked. For example,
Pappas et al. [25] suggest diversifying code within basic
blocks, such as by renaming and swapping registers,
substituting instructions with semantically equivalent
ones, or changing the order of register saving instruc-
tions. ASLP, proposed by Kil et al. [20], randomizes
addresses of the functions as well as other data structures
by statically rewriting an ELF executable. To increase
the frequency of randomization, Wartell et al. propose
STIR [33], which increases randomness by permuting
basic blocks during program startup.

However, the invention of JIT-ROP undermined fine-
grained ALSR schemes [31]. JIT-ROP assumes a mem-
ory disclosure vulnerability, which can be used by the
attacker repeatedly. The attacker then follows the point-
ers to find executable memory, which she can read to find
gadgets and build ROP chains on-the-fly.

Recently, Athanasakis et al. [1] proposed to extend
JIT-ROP-like attacks by encoding gadgets in immediate

values of JIT-compiled code. Despite being limited to
two-byte constant emission by IE, the authors managed
to use aligned ret instructions, located at the end of each
function, as the part of their gadget. Note that, in their
attack, the authors were able to emit complete two-byte
gadgets in IE. Therefore, this attack will be further lim-
ited against the 32-bit version of Chakra, which is a de-
fault JIT compiler, even for 64-bit IE. In addition, there
are by now known defenses, such as constant blinding,
that protect against explicit constants.

7.2 Hidden or Non-Readable Code

In reaction to JIT-ROP, researchers started to propose a
great number of defensive schemes that try to hide code
or function pointers. In Oxymoron, Backes et al. [3]
aim to defend against JIT-ROP by hiding code pointers
from direct calls. However, the attacker can still find in-
direct code pointers (e.g., return addresses on the stack
or code pointers on the heap), and follow them to read
the code. Davi et al. [13] thus proposed Isomeron, an
improved defense. They keep two versions of the code
at the same time, one original and another diversified us-
ing fine-grained ASLR. At each function call, they flip
a coin to decide which version of the code to execute.
This gives a 50% chance of success for each gadget in
the chain, making it unlikely to guess correctly for long
gadgets.

Gionta et al. [15] proposed HideM, which utilizes a
split TLB to serve read and execute accesses separately,
thus forbidding the attacker to read code pages. Apart
from requiring hardware support, HideM also has a limi-
tation that it does not protect function pointers, allowing
the attacker to use them in code reuse attacks.

Backes et al. [2] and Crane et al. [11] proposed
two independent defense techniques, XnR and Readac-
tor, respectively, based on the same principle: mak-
ing executable regions of the memory non-readable.
XnR does this in software, marking executable pages
non-present and checking the validity of the accesses
in a custom page-fault handler. This leaves only a
small window of (currently executing) readable code
pages, significantly reducing the surface of gadgets an
attacker can learn. Readactor uses Extended Page Tables
(EPT), hardware-assisted virtualization support for mod-
ern CPUs. EPTs allow keeping all executable pages non-
readable throughout the entire program execution. In ad-
dition, Readactor diversifies the static code of the pro-
gram and hides addresses of the functions by introduc-
ing call/jump trampolines, making it impossible to guess
the address of any existing code. While being effective
against ROP attacks, Readactor left some pointers, such
as function addresses in import tables and vtable point-
ers, intact, thus leaving the programs vulnerable against

15

154 25th USENIX Security Symposium USENIX Association

function-wise code reuse attacks like return-to-libc [22]
or COOP [27]. The fixes to these problems have been
proposed by Crane et al. in their followup work Readac-
tor++ [12]. We have demonstrated how an adversary
can undermine these proposals if code pointer in JIT-
compiled code are not hidden. As an orthogonal defense
to hiding code pointer in JIT code, we proposed to elim-
inate implicit constants from JIT-compiled code to pre-
serve XnR’s security guarantees.

Pereira et al. [26] designed a similar defense technique
via a software-only approach for the ARM architecture.
They propose Leakage-Resilient Layout Randomization
(LR2), which achieves non-readability of code in ARM
by splitting the memory space in data and code pages and
instrumenting load instructions to forbid code reading.
Furthermore, LR2 proposed to reduce the size overhead
caused by trampolines by using a single trampoline for
each callee and encoding the return address with secret
per-function keys.

7.3 Defending JIT Against Attacks

Finally, we discuss research that aims to protect JIT
compilers against exploitation. In JITDefender, Chen et
al. [9] remove executable rights from the JIT-compiled
code page until it is actually called by the compiler, and
remove the rights when it is done executing. In this way
they try to limit the time during which attackers can jump
to JIT-sprayed shellcode. Although this was effective
against some existing JIT-spraying attacks, JITDefender
can be tricked by the attacker to keep the needed pages
always executable, e.g., by keeping the executed code
busy. Wu et al. [35] proposed RIM (Removing IMme-
diate), in which they rewrite instructions containing im-
mediate values such that they cannot be used as a NOP
sled. Later, Chen et al. [10] proposed to combine RIM
and JITDefender, i.e., remove the executable rights from
JIT-compiled code pages when not needed and also re-
place instructions containing immediate values.

In INSeRT, Wei et al. [34] propose fine-grained ran-
domizations for JIT-compiled code. Their technique
combines (i) removing immediate values via XORing
them with random keys (i.e., constant blinding); (ii) reg-
ister randomization; and (iii) displacement randomiza-
tion (e.g., changing the order of parameters and local
variables). Furthermore, INSeRT randomly inserts trap-
ping instruction sequences, trying to catch attackers di-
verting the control flow. Still, its randomization neither
affects call/jump displacements, nor would randomiza-
tion without hiding code actually hinder our approach.

Most related to our attack are the defensive JIT ran-
domization approaches proposed by Homescu et al. [17].
They propose librando, a library that uses NOP insertions
to randomize the code offsets of JIT-compiled code. We

have demonstrated that even browsers leveraging NOP
insertion (like IE) are susceptible to our proposed attack
and thus proposed a non-probabilistic defense.

8 Conclusion

We have shown that commodity browsers do not protect
against code reuse in attacker-generated, JIT-compiled
code. Our novel attack challenges the assumption of
XnR schemes in that we demonstrate that an attacker
can create predictable ROP gadgets without the need
to read them prior to use. To close this gap, we sug-
gested to extend XnR schemes with our proposed coun-
termeasure that eliminates all critical implicit constants
in JIT-compiled code, effectively defending against our
attack. Our defense evaluation shows that such practical
defenses impose little performance overhead.

Acknowledgment

The authors would like to thank the anonymous review-
ers for their valuable comments. Moreover, we are grate-
ful for the guidance from our shepherd, Ben Livshits,
during the process of finalizing the paper. We also
want to thank Stefan Nürnberger, Dennis Andriesse, and
David Pfaff for their comments during the writing pro-
cess of the paper.

This work was supported by the German Federal Min-
istry of Education and Research (BMBF) through fund-
ing for the Center for IT-Security, Privacy and Account-
ability (CISPA) and for the BMBF project 13N13250.

References
[1] ATHANASAKIS, M., ATHANASOPOULOS, E., POLYCHRON-

AKIS, M., PORTOKALIDIS, G., AND IOANNIDIS, S. The Devil
is in the Constants: Bypassing Defenses in Browser JIT Engines.
In Proceedings of the Network and Distributed System Security
(NDSS) Symposium (February 2015).

[2] BACKES, M., HOLZ, T., KOLLENDA, B., KOPPE, P.,
NÜRNBERGER, S., AND PEWNY, J. You Can Run but You Can’T
Read: Preventing Disclosure Exploits in Executable Code. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security (New York, NY, USA, 2014), CCS
’14, ACM, pp. 1342–1353.

[3] BACKES, M., AND NÜRNBERGER, S. Oxymoron: Making Fine-
grained Memory Randomization Practical by Allowing Code
Sharing. In Proceedings of the 23rd USENIX Conference on Se-
curity Symposium (Berkeley, CA, USA, 2014), SEC’14, USENIX
Association, pp. 433–447.

[4] BHATKAR, E., DUVARNEY, D. C., AND SEKAR, R. Address
Obfuscation: an Efficient Approach to Combat a Broad Range
of Memory Error Exploits. In Proceedings of the 12th USENIX
Security Symposium (2003), pp. 105–120.

[5] BHATKAR, S., AND SEKAR, R. Data Space Randomization. In
Proceedings of the 5th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (Berlin,
Heidelberg, 2008), DIMVA ’08, Springer-Verlag, pp. 1–22.

16

USENIX Association 25th USENIX Security Symposium 155

[6] BHATKAR, S., SEKAR, R., AND DUVARNEY, D. C. Efficient
Techniques for Comprehensive Protection from Memory Error
Exploits. In Proceedings of the 14th Conference on USENIX
Security Symposium - Volume 14 (Berkeley, CA, USA, 2005),
SSYM’05, USENIX Association, pp. 17–17.

[7] BLAZAKIS, D. Interpreter Exploitation. In Proceedings of the
4th USENIX Conference on Offensive Technologies (Berkeley,
CA, USA, 2010), WOOT’10, USENIX Association, pp. 1–9.

[8] CHECKOWAY, S., DAVI, L., DMITRIENKO, A., SADEGHI, A.-
R., SHACHAM, H., AND WINANDY, M. Return-oriented Pro-
gramming Without Returns. In Proceedings of the 17th ACM
Conference on Computer and Communications Security (New
York, NY, USA, 2010), CCS ’10, ACM, pp. 559–572.

[9] CHEN, P., FANG, Y., MAO, B., AND XIE, L. JITDefender: A
Defense against JIT Spraying Attacks. In Future Challenges in
Security and Privacy for Academia and Industry, J. Camenisch,
S. Fischer-Hbner, Y. Murayama, A. Portmann, and C. Rieder,
Eds., vol. 354 of IFIP Advances in Information and Communica-
tion Technology. Springer Berlin Heidelberg, 2011, pp. 142–153.

[10] CHEN, P., WU, R., AND MAO, B. JITSafe: a Framework against
Just-in-time Spraying Attacks. IET Information Security 7, 4
(2013), 283–292.

[11] CRANE, S., LIEBCHEN, C., HOMESCU, A., DAVI, L.,
LARSEN, P., SADEGHI, A.-R., BRUNTHALER, S., AND
FRANZ, M. Readactor: Practical Code Randomization Resilient
to Memory Disclosure. In 36th IEEE Symposium on Security and
Privacy (Oakland) (May 2015).

[12] CRANE, S., VOLCKAERT, S., SCHUSTER, F., LIEBCHEN, C.,
LARSEN, P., DAVI, L., SADEGHI, A.-R., HOLZ, T., SUTTER,
B. D., AND FRANZ, M. It’s a TRAP: Table Randomization and
Protection against Function Reuse Attacks. In Proceedings of
22nd ACM Conference on Computer and Communications Secu-
rity (CCS) (2015).

[13] DAVI, L., LIEBCHEN, C., SADEGHI, A.-R., SNOW, K. Z., AND
MONROSE, F. Isomeron: Code Randomization Resilient to (Just-
In-Time) Return-Oriented Programming. In 22nd Annual Net-
work & Distributed System Security Symposium (NDSS) (Feb.
2015).

[14] DAVI, L. V., DMITRIENKO, A., NÜRNBERGER, S., AND
SADEGHI, A.-R. Gadge Me if You Can: Secure and Efficient
Ad-hoc Instruction-level Randomization for x86 and ARM. In
Proceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security (New York, NY, USA,
2013), ASIA CCS ’13, ACM, pp. 299–310.

[15] GIONTA, J., ENCK, W., AND NING, P. Hidem: Protecting the
contents of userspace memory in the face of disclosure vulnera-
bilities. In Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy (New York, NY, USA, 2015),
CODASPY ’15, ACM, pp. 325–336.

[16] HISER, J., NGUYEN-TUONG, A., CO, M., HALL, M., AND
DAVIDSON, J. W. ILR: Where’D My Gadgets Go? In Pro-
ceedings of the 2012 IEEE Symposium on Security and Privacy
(Washington, DC, USA, 2012), SP ’12, IEEE Computer Society,
pp. 571–585.

[17] HOMESCU, A., BRUNTHALER, S., LARSEN, P., AND FRANZ,
M. Librando: Transparent Code Randomization for Just-in-time
Compilers. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security (New York, NY, USA,
2013), CCS ’13, ACM, pp. 993–1004.

[18] HUKU, A. Exploiting VLC. A Case Study on Jemalloc Heap
Overflows. http://www.phrack.org/issues/68/13.html.

[19] JACKSON, T., SALAMAT, B., HOMESCU, A., MANIVANNAN,
K., WAGNER, G., GAL, A., BRUNTHALER, S., WIMMER, C.,

AND FRANZ, M. Compiler-Generated Software Diversity. In
Moving Target Defense, S. Jajodia, A. K. Ghosh, V. Swarup,
C. Wang, and X. S. Wang, Eds., vol. 54 of Advances in Infor-
mation Security. Springer New York, 2011, pp. 77–98.

[20] KIL, C., JUN, J., BOOKHOLT, C., XU, J., AND NING, P. Ad-
dress Space Layout Permutation (ASLP): Towards Fine-Grained
Randomization of Commodity Software. In Proceedings of
the 22Nd Annual Computer Security Applications Conference
(Washington, DC, USA, 2006), ACSAC ’06, IEEE Computer So-
ciety, pp. 339–348.

[21] LARSEN, P., HOMESCU, A., BRUNTHALER, S., AND FRANZ,
M. SoK: Automated Software Diversity. In Proceedings of the
2014 IEEE Symposium on Security and Privacy (Washington,
DC, USA, 2014), SP ’14, IEEE Computer Society, pp. 276–291.

[22] NERGAL. The Advanced Return-into-lib(c) Exploits.
http://phrack.org/issues/58/4.html.

[23] NOVARK, G., AND BERGER, E. D. DieHarder: Securing the
Heap. In Proceedings of the 17th ACM Conference on Computer
and Communications Security (New York, NY, USA, 2010), CCS
’10, ACM, pp. 573–584.

[24] ONARLIOGLU, K., BILGE, L., LANZI, A., BALZAROTTI, D.,
AND KIRDA, E. G-Free: Defeating Return-oriented Program-
ming Through Gadget-less Binaries. In Proceedings of the 26th
Annual Computer Security Applications Conference (New York,
NY, USA, 2010), ACSAC ’10, ACM, pp. 49–58.

[25] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. D.
Smashing the Gadgets: Hindering Return-Oriented Programming
Using In-place Code Randomization. In Proceedings of the 2012
IEEE Symposium on Security and Privacy (Washington, DC,
USA, 2012), SP ’12, IEEE Computer Society, pp. 601–615.

[26] PEREIRA, O., STANDAERT, F.-X., AND VIVEK, S. Leakage-
resilient authentication and encryption from symmetric crypto-
graphic primitives. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security (New
York, NY, USA, 2015), CCS ’15, ACM, pp. 96–108.

[27] SCHUSTER, F., TENDYCK, T., LIEBCHEN, C., DAVI, L.,
SADEGHI, A.-R., AND HOLZ, T. Counterfeit Object-oriented
Programming: On the Difficulty of Preventing Code Reuse At-
tacks in C++ Applications. In 36th IEEE Symposium on Security
and Privacy (Oakland) (May 2015).

[28] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. Q: Ex-
ploit Hardening Made Easy. In Proceedings of the 20th USENIX
Conference on Security (Berkeley, CA, USA, 2011), SEC’11,
USENIX Association, pp. 25–25.

[29] SHACHAM, H. The Geometry of Innocent Flesh on the Bone:
Return-into-libc Without Function Calls (on the x86). In Pro-
ceedings of the 14th ACM Conference on Computer and Commu-
nications Security (New York, NY, USA, 2007), CCS ’07, ACM,
pp. 552–561.

[30] SHACHAM, H., PAGE, M., PFAFF, B., GOH, E.-J.,
MODADUGU, N., AND BONEH, D. On the Effectiveness of
Address-space Randomization. In Proceedings of the 11th ACM
Conference on Computer and Communications Security (New
York, NY, USA, 2004), CCS ’04, ACM, pp. 298–307.

[31] SNOW, K. Z., MONROSE, F., DAVI, L., DMITRIENKO, A.,
LIEBCHEN, C., AND SADEGHI, A.-R. Just-In-Time Code
Reuse: On the Effectiveness of Fine-Grained Address Space Lay-
out Randomization. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy (Washington, DC, USA, 2013), SP ’13,
IEEE Computer Society, pp. 574–588.

[32] TEAM, P. Address Space Layout Randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt.

17

156 25th USENIX Security Symposium USENIX Association

[33] WARTELL, R., MOHAN, V., HAMLEN, K. W., AND LIN, Z. Bi-
nary Stirring: Self-randomizing Instruction Addresses of Legacy
x86 Binary Code. In Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security (New York, NY,
USA, 2012), CCS ’12, ACM, pp. 157–168.

[34] WEI, T., WANG, T., DUAN, L., AND LUO, J. INSeRT: Protect
Dynamic Code Generation against Spraying. In Information Sci-
ence and Technology (ICIST), 2011 International Conference on
(March 2011), pp. 323–328.

[35] WU, R., CHEN, P., MAO, B., AND XIE, L. RIM: A Method
to Defend from JIT Spraying Attack. In Proceedings of the 2012
Seventh International Conference on Availability, Reliability and
Security (Washington, DC, USA, 2012), ARES ’12, IEEE Com-
puter Society, pp. 143–148.

18

USENIX Association 25th USENIX Security Symposium 157

zxcvbn: Low-Budget Password Strength Estimation

Daniel Lowe Wheeler
Dropbox Inc.

Abstract

For over 30 years, password requirements and feedback
have largely remained a product of LUDS: counts of
lower- and uppercase letters, digits and symbols. LUDS
remains ubiquitous despite being a conclusively burden-
some and ineffective security practice.
zxcvbn is an alternative password strength estimator

that is small, fast, and crucially no harder than LUDS
to adopt. Using leaked passwords, we compare its esti-
mations to the best of four modern guessing attacks and
show it to be accurate and conservative at low magni-
tudes, suitable for mitigating online attacks. We find 1.5
MB of compressed storage is sufficient to accurately esti-
mate the best-known guessing attacks up to 105 guesses,
or 104 and 103 guesses, respectively, given 245 kB and
29 kB. zxcvbn can be adopted with 4 lines of code
and downloaded in seconds. It runs in milliseconds and
works as-is on web, iOS and Android.

1 Introduction

Passwords remain a key component of most online
authentication systems [32], but the quest to replace
them [20] is an active research area with a long history of
false starts and renewed enthusiasm (recently e.g., [33]).
Whatever the future may hold for passwords, we argue
that one of the most unusable and ineffective aspects
of password authentication as encountered in 2016 truly
does belong in the past: composition requirements and
feedback derived from counts of lower- and uppercase
letters, digits and symbols – LUDS for short.

LUDS requirements appear in many incarnations:
some sites require digits, others require the presence of
at least 3 character classes, some banish certain sym-
bols, and most set varying length minimums and max-
imums [21, 29, 52]. It is also now commonplace to pro-
vide real-time password feedback in the form of visual
strength bars and dynamic advice [50, 28]. As with pass-

word requirements, inconsistent LUDS calculations tend
to lurk behind these feedback interfaces [25].

We review the history of LUDS in Section 2 as well
as its usability problems and ineffectiveness at mitigat-
ing guessing attacks, facts that are also well known out-
side of the security community [23, 44]. But because
it isn’t obvious what should go in place of LUDS, Sec-
tion 3 presents a framework for evaluating alternatives
such as zxcvbn. We argue that anything beyond a small
client library with a simple interface is too costly for
most would-be adopters, and that estimator accuracy is
most important at low magnitudes and often not impor-
tant past anywhere from 102 to 106 guesses depending
on site-specific rate limiting capabilities.

The Dropbox tech blog presented an early version of
zxcvbn in 2012 [55]. We’ve made several improvements
since, and Section 4 presents the updated algorithm in de-
tail. At its core, zxcvbn checks how common a password
is according to several sources – common passwords ac-
cording to three leaked password sets, common names
and surnames according to census data, and common
words in a frequency count of Wikipedia 1-grams. For
example, if a password is the 55th most common entry
in one of these ranked lists, zxcvbn estimates it as re-
quiring 55 attempts to be guessed. Section 5.2.3 demon-
strates that this simple minimum rank over several lists
is responsible for most of zxcvbn’s accuracy.

Section 4 generalizes this idea in two ways. First, it in-
corporates other commonly used password patterns such
as dates, sequences, repeats and keyboard patterns. Sim-
ilar to its core, zxcvbn estimates the attempts needed
to guess other pattern types by asking: if an attacker
knows the pattern, how many attempts would they need
to guess the instance? For example, the strength of the
QWERTY pattern zxcvfr is estimated by counting how
many other QWERTY patterns have up to six charac-
ters and one turn. Second, Section 4 generalizes beyond
matching single patterns by introducing a search heuris-
tic for multi-pattern sequences. That way, C0mpaq999

158 25th USENIX Security Symposium USENIX Association

can be matched as the common password C0mpaq fol-
lowed by the repeat pattern 999.

We simulate a professional guessing attack in Sec-
tion 5 by running four attack models in parallel via
Ur et al.’s Password Guessability Service [51, 8]. For
each password in a test set sampled from real leaks, we
take the minimum guess attempts needed over these four
models as our conservative gold standard for strength.
Section 5 measures accuracy by comparing strength es-
timations of each password to this gold standard. We
investigate two other estimators in addition to zxcvbn:
the estimator of KeePass Password Safe [5] (hereafter
KeePass) as it is the only other non-LUDS estimator
studied in [25],1 and NIST entropy, an influential LUDS
estimator reviewed in Section 2.

Our experiments are motivated by two intended uses
cases: smarter password composition requirements and
strength meters. Given a good estimator, we believe
the best-possible strength requirement both in terms
of usability and adopter control becomes a minimum
check: does it take more than N attempts to guess the
password? If not, tell the user their choice is too obvious
and let them fix it however they want. For such a policy,
an adopter needs confidence that their estimator won’t
overestimate below their chosen N value. Similarly,
smarter strength meters need to know over what range
their estimator can be trusted.

Contributions:

• We demonstrate how choice of algorithm and data
impacts accuracy of password strength estimation,
and further demonstrate the benefit of matching
patterns beyond dictionary lookup. We observe
that KeePass and NIST substantially overestimate
within the range of an online guessing attack and
suggest a fix for KeePass.

• We show zxcvbn paired with 1.5MB of compressed
data is sufficient to estimate the best-known guess-
ing attacks with high accuracy up to 105 guesses.
We find 245 kB is sufficient to estimate up to 104

guesses, and 29 kB up to 103 guesses.

• We present the internals of zxcvbn in detail, to
serve immediately as a LUDS replacement for web
and mobile developers, and in the future as a refer-
ence point that other estimators can measure against
and attempt to beat.

• We present an evaluation framework for low-cost
estimators to help future improvements balance se-
curity, usability, and ease of adoption.

1We exclude Google’s estimator, a server-side estimator with no
details available.

2 Background and Related Work

2.1 LUDS
LUDS has its roots at least as far back as 1985, trac-
ing to the U.S. Defense Department’s influential Pass-
word Management Guideline [12] (nicknamed the Green
Book) and NIST’s related Password Usage of the Fed-
eral Information Processing Standards series that same
year [13]. The Green Book suggested evaluating pass-
word strength in terms of guessing space, modeled as
S = AM , where S is the maximum guess attempts needed
to guess a password, M is the password’s length, and A
is its alphabet size. For example, a length-8 password of
random lowercase letters and digits would have a guess-
ing space of S = (26+ 10)8, and a passphrase of three
random words from a 2000-word dictionary would have
S = 20003. S is often expressed in bits as M · log2(A), a
simple metric that is properly the Shannon entropy [47]
when every password is assigned randomly in this way.

While this metric works well for machine-generated
passwords, NIST’s related guideline applied similar rea-
soning to user-selected passwords at a time before much
was known about human password habits. This er-
roneous randomness assumption persists across the In-
ternet today. For example, consider our pseudocode
summary of the metric NIST recommends (albeit with
some disclaimers) in its most recent Special Publication
800-63-2 Electronic Authentication Guideline of August
2013 [22], commonly referred to as NIST entropy (here-
after NIST):

1: function NIST_ENTROPY(p, dict)
2: e ← 4+2·p[2:8].len+1.5·p[9:20].len+ p[21:].len
3: e ← e+6 if p contains upper and non-alpha
4: e ← e+6 if p.len < 20 and p �∈ dict
5: return e

That is, NIST adds 4 bits for the first character in a pass-
word p, 2 bits each for characters 2 through 8, progres-
sively fewer bits for each additional character, 6 more
bits if both an uppercase and non-alphabetic character are
used – so far, all LUDS. Up to now the 0 in Passw0rd
would give it a higher entropy than QJqUbPpA. NIST
recommends optionally adding up to 6 more bits if the
password is under 20 characters and passes a dictio-
nary check,2 the idea being that longer passwords are
likely to be multiword passphrases that don’t deserve a
bonus. Even then, assuming Passw0rd fails the dic-
tionary check and QJqUbPpA passes, these sample pass-
words would oddly have equal scores.

NIST entropy remains influential on password policy.
Shay et al. [48] studied Carnegie Mellon University’s

2a non-LUDSian detail.

USENIX Association 25th USENIX Security Symposium 159

policy migration as part of joining the InCommon Fed-
eration and seeking its NIST-entropy-derived Silver As-
surance certification [9], to give one notable example.

Whether used for feedback or for requirements, the
goal of any LUDS formulation is ultimately to guide
users towards less guessable passwords,3 and herein lies
the first problem – it’s ineffective. Numerous studies
confirm that people use types of characters in skewed dis-
tributions [27, 38, 48]: title case, all caps, digit suffixes,
some characters more often than others within a class –
to give only a small taste. Worse, the most commonly
used patterns in passwords cannot be captured by charac-
ter class counts, such as words, dates, and keyboard pat-
terns. By taking tens of millions of leaked passwords and
comparing NIST entropy to the guess order enumeration
of a modern password cracker, Weir et al. [53] conclu-
sively demonstrated that even with an added dictionary
check and varied parameters, LUDS counts cannot be
synthesized into a valid metric for password guessability.
In a collaboration with Yahoo, Bonneau [19] found that
a six-character minimum length policy exhibited almost
no difference in online guessing resistance compared to
no length requirement.

The second problem with LUDS is its high usability
cost [34]. Any LUDS requirement beyond a low min-
imum length check necessarily disallows many strong
passwords and places a burden on everyone, instead of
a subgroup with a known risk of having their password
guessed. Florêncio and Herley [29] studied the password
policies of 75 American websites and concluded that pol-
icy stringency did not correlate with a heightened need
for security, but rather with absence of competition and
insulation from the consequences of poor usability.

This usability problem is compounded by policy in-
consistency among sites. Wang and Wang [52] studied
the password composition policies of 50 sites in 2015
(30 from mainland China, the rest mostly American) and
found that no two sites enforced the same policy. Bon-
neau and Preibusch [21] found 142 unique policies in a
2010 survey of 150 high-traffic sites. As a result of these
inconsistent policies, people often have to jump through
unique hoops upon selecting new passwords [23].

Password feedback is similarly inconsistent across the
Internet. Carnavalet and Mannan [25] investigated the
registration flows of 18 prominent services spanning
multiple countries, platforms, and product domains, and
with three exceptions (Google, Dropbox, and KeePass),
they found simple but widely inconsistent LUDS-based
calculations powering visual feedback, sometimes com-
bined with dictionary checks.

3Proximate goals might include compliance or perception of secu-
rity, both of which still derive from a notion of guessing resistance in
most instances.

2.2 Password Guessing

In their seminal 1979 publication, Morris and Thomp-
son [43] conducted one of the first studies of password
habits and detailed the early UNIX history of co-evolving
password attacks and mitigations. The decades that
followed have seen immense development in password
guessing efficiency.

Our gold standard for measuring a password’s strength
is the minimum attempts needed to guess it over
four modern guessing attacks, obtained by running the
min_auto configuration of Ur et al.’s Password Guess-
ability Service [8] (hereafter PGS), demonstrated in [51]
to be a conservative estimate of an experienced and well-
resourced professional. We run two cutting-edge attacks
from the literature, consisting of a PCFG model [54] with
Komanduri’s improvements [36] and a Smoothed Order-
5 Markov model [39]. Because our gold standard should
be a safe lower bound not just over the theoretical best
attacks, but also the best-productized attacks in common
use by professionals, we further run Hashcat [2] and John
the Ripper [3] mangled dictionary models with carefully
tuned rule sets.

Throughout this paper, we will differentiate between
online guessing, where an attacker attempts guesses
through a public interface, and offline guessing, where,
following a theft of password hashes, an attacker makes
guesses at a much higher rate on their own hardware.
We recommend [30] for a more detailed introduction to
guessing attacks.

2.3 Guessing Resistance

We focus on guessing resistance techniques that influ-
ence usability, as opposed to developments in cryptogra-
phy, abuse detection, and other service-side precautions.

The idea of a proactive password checker, a program
that offers feedback and enforces policy at composi-
tion time, traces to the late 80s and early 90s with pi-
oneering work by Nagle [45], Klein [35], Bishop [17]
and Spafford [49]. Eight days after the Morris worm,
which spread in part by guessing weak passwords, Na-
gle presented his Obvious Password Detector program
that rejected any password that didn’t have a sufficient
number of uncommon triplets of characters. Klein fo-
cused on dictionary checks with various transformations,
such as reversed token lookup, common character sub-
stitutions, and stemming, but also recommended LUDS
rules including the rejection of all-digit passwords. In
his pwcheck program, Bishop introduced a concise lan-
guage for system administrators to formulate composi-
tion rules in terms of dictionary lookups, regular ex-
pression matching, and relations to personal information.
This language is also one of the first to allow customized

160 25th USENIX Security Symposium USENIX Association

user feedback, a precursor to today’s ubiquitous pass-
word strength meters. None of these early rule-based
systems estimate password strength, making it hard to
correctly balance usability and answer whether a pass-
word is sufficiently unguessable.

Spafford and others proposed space-efficient dictio-
nary lookup techniques using Bloom filters [49, 40] and
decision trees [15, 18]. These approaches similarly do
not directly estimate guessing resistance or compare their
output to modern guessing attacks, providing instead a
binary pass/fail. Yan [56] highlights the need to catch
patterns beyond dictionary lookups, something we find
modest supporting evidence for in Section 5.2.3.

Castelluccia et al. [24] propose maintaining a pro-
duction database of character n-gram counts in order
to model a password’s guessability with an adaptive
Markov model. Schechter et al. [46] outline a count-min
sketch datastructure to allow all passwords that aren’t al-
ready too popular among other users. Both of these pro-
posals have the advantage of modeling a service’s unique
password distribution. Both aggregate information that,
if stolen, aid offline cracking attacks, and both include
noise mitigations to reduce that threat. We argue in Sec-
tion 3 that their respective requirements to maintain and
secure custom production infrastructure at scale is too
costly for most would-be adopters.

Dell’Amico and Filippone [26] detail a Monte Carlo
sampling method that converts a password’s probabil-
ity as computed by any generative model into an esti-
mate of a cracker’s guessing order when running that
model. Given that some of today’s best guessing tech-
niques are built on probabilistic models [39, 54, 36], the
benefit of this approach is fast and accurate estimation of
guessing order, even up to as high as 280 (1024) guesses.
But while the conversion step itself is time- and space-
efficient, we haven’t encountered investigations in the
literature that limit the size of the underlying probability
model to something that would fit inside a mobile app or
browser script. Comparing space-constrained probabilis-
tic estimators to today’s best guessing attacks (or perhaps
a minimum over several parallel attacks as we do) would
be valuable future work. Melicher et al.’s concurrent and
independent research on lean estimation with Recurrent
Neural Networks is quite promising [42].

Turning to open-source industry contributions,
zxcvbn and KeePass [5] were originally designed for
password strength feedback, but we consider them here
for policy enforcement as well. Industry adoption of
zxcvbn is growing, currently deployed by Dropbox,
Stripe, Wordpress, Coinbase, and others. KeePass
(reviewed in [25]) matches several common patterns
including a dictionary lookup with common transfor-
mations, then applies an optimal static entropy encoder
documented in their help center [4] to search for the

simplest set of candidate matches covering a password.
We extracted KeePass into a stand-alone command-line
utility such that we could compare it against realistic
guessing attacks in Section 5.

Telepathwords [37] offers some of the best real-time
password feedback currently available. It employs a
client-server architecture that is hosted as a stand-alone
site, and does not output a guess attempt estimate or
equivalent, so we do not evaluate it as a candidate LUDS
alternative.

Ur et al. [50] and Egelman et al. [28] studied the effect
of strength meters on password composition behavior.
The consensus is that users do follow the advice of these
meters for accounts of some importance; however, both
studies employed LUDS metrics to power their meters as
is common in the wild, conditionally with an added dic-
tionary check in the case of [50]. Our aim is to provide
strength meters with more accurate underlying estima-
tion.

3 Evaluation Framework

While the problems of LUDS are well understood, it isn’t
obvious what should go in its place. We motivate some
of the important dimensions and reference two LUDS
methods for comparison: NIST as well 3class8 – the
easy-to-adopt requirement that a password contain 8 or
more characters of at least 3 types.

It should be no harder than LUDS to adopt
In the wider scheme of password authentication, com-
position policy and feedback are small details. Bonneau
and Preibusch [21] demonstrated that the big details –
cryptography and rate-limiting, for example – are com-
monly lacking throughout the Internet with little eco-
nomic incentive to do better. To then have a starting
chance of widespread adoption, a LUDS alternative can-
not be harder than LUDS to adopt. We believe this real-
istically eliminates alternatives that require hosting and
scaling special infrastructure from mainstream consider-
ation, whereas small client libraries with simple inter-
faces are more viable. To give an example, the following
is working web integration code for a policy that disal-
lows passwords guessable in under 500 attempts accord-
ing to zxcvbn:

var zxcvbn = require(‘zxcvbn’);
var meets_policy = function(password) {

return zxcvbn(password).guesses > 500;
};

This sample assumes a CommonJS module interface.
For comparison, Appendix A lists our implementation of
3class8 back-to-back with two other zxcvbn integra-
tion options.

USENIX Association 25th USENIX Security Symposium 161

It should only burden at-risk users
Users face many threats in addition to guessing attacks,
including phishing, keylogging, and credential reuse at-
tacks. Because guessing attacks often rank low on a
user’s list of worries, short and memorable password
choices are often driven by rational cost-benefit analysis
as opposed to ignorance [31]. To encourage less guess-
able choices, a LUDS alternative must accept this real-
ity by imposing as few rules as possible and burdening
only those facing a known guessing risk. As examples,
words should be recognized and weighted instead of, as
with space-efficient dictionary lookups, rejected. All-
digit and all-lowercase passwords – respectively the most
common password styles in mainland China and the U.S.
according to a comprehensive study [38] – should simi-
larly be weighted instead of rejected via blanket rules.
3class8 is a prime offender in this category.

While underestimation harms usability, overestima-
tion is arguably worse given an estimator’s primary goal
of mitigating guessing attacks. In Section 5 we measure
accuracy and overestimation as separate quantities in our
comparison of alternative estimators. We find KeePass
and NIST tend to overestimate at lower magnitudes.

It should estimate guessing order
The security community’s consensus definition of a pass-
word’s strength is the number of attempts that an at-
tacker would need in order to guess it [26]. Strength
estimators should thus estimate this guessing order di-
rectly, versus an entropy, percentage, score, or binary
pass/fail. This detail provides adopters with an intuitive
language for modeling guessing threats and balancing
usability. An alternative should further measure its es-
timations against real guessing attacks and communicate
its accuracy bounds. For example, given enough sam-
ples, [26] is accurate up to the highest feasible guess-
ing ranges, whereas with 1.5MB of data, zxcvbn is only
highly accurate up to 105 guesses.

It should be accurate at low magnitudes
Online guessing attacks are a threat that password au-
thentication systems must defend against continually.
While rate limiting and abuse detection can help, pass-
words guessable in, say, 10 to 100 guesses could re-
main vulnerable to capable adversaries over time. As we
show in Section 5.2, NIST greatly overestimates pass-
word strength at low magnitudes. Similarly, 3class8
permits obvious choices such as Password1!. A strict
improvement over LUDS in terms of security, then, is to
improve accuracy at low guessing magnitudes.

Past an online guessing threshold, the benefit of accu-
rate estimation becomes more situation-dependent. Ref-
erencing the online-offline chasm of [30], the added secu-
rity benefit from encouraging or requiring stronger pass-
words might only start to appear after many orders of

magnitude past an online guessing cutoff, indicating a
substantial usability-security trade-off that often won’t
be justified. While we focus on online attack mitigation,
key stretching techniques such as Argon2 [16] can fur-
ther render offline attacks unfeasible at higher guessing
magnitudes.

For the remainder of this paper, we will use 106

guesses as our approximate online attack cutoff, citing
the back-of-the-envelope upper limit estimation in [30]
for a depth-first online attack (thus also bounding an on-
line trawling attack). By studying leaked password dis-
tributions, [30] also points out that an attacker guessing
in optimal order would face a reduction in success rate
by approximately 5 orders of magnitude upon reaching
106 guesses.

While we use 106 as an online cutoff for safe and sim-
ple analysis in Section 5, we recognize that an upper
bound on online guessing is highly dependent on site-
specific capabilities, and that some sites will be able to
stop an online attack starting at only a few guesses. This
motivates our next item:

It should have an adjustable size
An estimator’s accuracy is greatly dependent on the data
it has available. Adopters should be given control over
this size / accuracy trade-off. Some might want to bun-
dle an estimator inside their app, selecting a smaller size.
We expect most will want to asynchronously download
an estimator in the background on demand, given that
password creation only happens once per user and typ-
ically isn’t the first step in a registration flow. Current
bandwidth averages should factor into this discussion:
a South Korean product might tolerate a gzipped-5MB
estimator (downloadable in 2 seconds at 20.5Mbps na-
tional average in Q3 2015 [14]4), whereas 1.5MB is a
reasonable global upper bound in 2016 (2.3 seconds at
5.1Mbps Q3 2015 global default). Need should also fac-
tor in: a site that is comfortable in its rate-limiting might
only need accurate estimation up to 102 guesses.

4 Algorithm

We now present the internals of zxcvbn in detail. Sec-
tions 4.2 and 4.3 explain how common token lookup and
pattern matching are combined into a single guessing
model. Section 4.4 is primarily about speed, providing
a fast algorithm for finding the simplest set of matches
covering a password. We start with a high-level sketch.

4.1 Conceptual Outline
zxcvbn is non-probabilistic, instead heuristically esti-
mating a guessing attack directly. It models passwords

4We cite figures from Akamai’s State of the Internet series.

162 25th USENIX Security Symposium USENIX Association

as consisting of one or more concatenated patterns. The
2012 version of zxcvbn assumes the guesser knows the
pattern structure of the password it is guessing, with
bounds on how many guesses it needs per pattern. For
example, if a password consists of two top-100 common
words, it models an attacker who makes guesses as con-
catenations of two words from a 100-word dictionary,
calculating 1002 as its worst-case guess attempt estimate.

To help prevent overly complex matching, zxcvbn
now loosens the 2012 assumption by instead assuming
the attacker knows the patterns that make up a password,
but not necessarily how many or in which order. To il-
lustrate the difference, compare the respective 2012 and
2016 analyses of jessiah03:

jess(name) i(word) ah0(surname) 3(bruteforce)
jessia(name) h03(bruteforce)

The 2012 version has no bias against long pattern
sequences, matching i and jess as common words.
(jessia is in the common surname dictionary at about
rank 3.5k, jess is at about rank 440, and jessiah is in
neither dictionary.) To give another example, the random
string 3vMs3o7B7eTo is now matched as a single brute-
force region by zxcvbn, but as a 5-pattern sequence by
the 2012 version, including 7eT as a l33ted “let.”

To formalize this difference in behavior, at a high
level, both versions consist of three phases: match, es-
timate and search. Given a plaintext password input,
the pattern matching phase finds a set S of overlapping
matches. For example, given lenovo1111 as input, this
phase might return lenovo (password token), eno (En-
glish “one” backwards), no (English), no (English “on”
backwards), 1111 (repeat pattern), and 1111 (Date pat-
tern, 1/1/2011). Next, the estimation phase assigns a
guess attempt estimation to each match independently. If
lenovo is the 11007th most common password in one
of our password dictionaries, it’ll be assigned 11007,
because an attacker iterating through that dictionary by
order of popularity would need that many guesses be-
fore reaching it. The final phase is to search for the
sequence of non-overlapping adjacent matches S drawn
from S such that S fully covers the password and min-
imizes a total guess attempt figure. In this example,
the search step would return [lenovo (token), 1111
(repeat)], discarding the date pattern which covers the
same substring but requires more guesses than the repeat.
zxcvbn’s formalized assumption about what an attacker
knows is represented by the following search heuristic:

argmin
S⊆S

D|S|−1 + |S|! ∏
m∈S

m.guesses (1)

|S| is the length of the sequence S, and D is a constant.
The intuition is as follows: if an attacker knows the pat-
tern sequence with bounds on how many guesses needed

for each pattern, the Π term measures how many guesses
they would need to make in the worst case. This Π term,
by itself, is the heuristic employed by the 2012 version.
With the added |S|! term, the guesser now knows the
number of patterns in the sequence but not the order.
For example, if the password contains a common word
c, uncommon word u, and a date d, there are 3! possible
orderings to try: cud, ucd, etc.

The D|S|−1 term attempts to model a guesser who
additionally doesn’t know the length of the pattern se-
quence. Before attempting length-|S| sequences, zxcvbn
assumes that a guesser attempts lower-length pattern se-
quences first with a minimum of D guesses per pattern,
trying a total of ∑|S|−1

l=1 Dl ≈ D|S|−1 guesses for suffi-
ciently large D. For example, if a password consists of
the 20th most common password token t with a digit d
at the end – a length-2 pattern sequence – and the at-
tacker knows the D = 10000 most common passwords,
and further, td is not in that top-10000 list (otherwise it
would have been matched as a single token), the D1 term
models an attacker who iterates through those 10000 top
guesses first before moving on to two-pattern guessing.
While an attacker might make as few as 10 guesses for
a single-digit pattern or as many as tens of millions of
guesses iterating through a common password dictio-
nary, we’ve found D = 1000 to D = 10000 to work well
in practice and adopt the latter figure for zxcvbn.

In practical terms, the additive D penalty and multi-
plicative |S|! penalty address overly complex matching
in different ways. When two pattern sequences of differ-
ing length have near-equal Π terms, the |S|! factor biases
towards the shorter sequence. The D term biases against
long sequences with an overall low Π term.

4.2 Matching
The matching phase finds the following patterns:

pattern examples

token logitech l0giT3CH ain’t
parliamentarian 1232323q

reversed DrowssaP

sequence 123 2468 jklm ywusq

repeat zzz ababab l0giT3CHl0giT3CH

keyboard qwertyuio qAzxcde3 diueoa

date 7/8/1947 8.7.47 781947 4778
7-21-2011 72111 11.7.21

brute f orce x$JQhMzt

The token matcher lowercases an input password
and checks membership for each substring in each
frequency-ranked dictionary. Additionally, it attempts

USENIX Association 25th USENIX Security Symposium 163

each possible l33t substitution according to a table. An
input @BA1one is first lowercased to @ba1one. If the l33t
table maps @ to a and l to either i or l, it tries two addi-
tional matches by subbing [@->a, 1->i] and [@->a,
1->l], finding abalone with the second substitution.

Taking a cue from KeePass, sequence matching in
zxcvbn looks for sequences where each character is a
fixed Unicode codepoint distance from the last. This
has two advantages over the hardcoded sequences of the
2012 version. It allows skipping, as in 7531, and it
recognizes sequences beyond the Roman alphabet and
Arabic numerals, such as Cyrillic and Greek sequences.
Unicode codepoint order doesn’t always map directly to
human-recognizable sequences; this method imperfectly
matches Japanese kana sequences as one example.

The repeat matcher searches for repeated blocks of
one or more characters, a rewrite of the 2012 equiv-
alent, which only matched single-character repeats. It
tries both greedy /(.+)\1+/ and lazy /(.+?)\1+/ reg-
ular expressions in search of repeated regions spanning
the most characters. For example, greedy beats lazy for
aabaab, recognizing (aab) repeated over the full string
vs (a) repeated over aa, whereas lazy beats greedy for
aaaaa, matching (a) spanning 5 characters vs (aa)
spanning 4. The repeat matcher runs a match-estimate-
search recursively on its winning repeated unit, such that,
for example, repeated words and dates are identified.

The keyboard matcher runs through password lin-
early, looking for chains of adjacent keys according to
each of its keyboard adjacency graphs. These graphs
are represented as a mapping between each key to a
clockwise positional list of its neighbors. The matcher
counts chain length, number of turns, and number of
shifted characters. On QWERTY, zxcvfR$321 would
have length 10, 2 turns, and 2 shifted characters. QW-
ERTY, DVORAK, and Windows and Mac keypad lay-
outs are included by default. Additional layouts can be
prepackaged or dynamically added.

Date matching considers digit regions of 4 to 8 char-
acters, checks a table to find possible splits, and attempts
a day-month-year mapping for each split such that the
year is two or four digits, the year isn’t in the mid-
dle, the month is between 1 and 12 inclusive, and the
day is between 1 and 31 inclusive. For example, a six-
digit sequence 201689 could be broken into 2016-8-9,
20-16-89, or 2-0-1689. The second candidate would
be discarded given no possible month assignment, and
the third discarded because 0 is an invalid day and month.
Given multiple valid splits, the choice with year closest
to a reference year of 2016 wins. Two-digit years are
matched as 20th- or 21st-century years, depending on
whichever is closer to 2016. For ease of portability, date
matching does not filter improper Gregorian dates; for
example, it allows Feb. 29th on a non-leap year.

4.3 Estimation
Next, a guess attempt estimate guesses is determined for
each match m ∈ S. The guiding heuristic is to ask: if an
attacker knows the pattern, how many guesses might they
need to guess the instance? Green Book-style guessing
space calculations then follow, but for patterns instead
of random strings, where a guesser attempts simpler or
more likely patterns first.

For tokens, we use the frequency rank as the estimate,
because an attacker guessing tokens in order of popular-
ity would need at least that many attempts. A reversed to-
ken gets a doubled estimate, because the attacker would
then need to try two guesses (normal and reversed) for
each token. A conservative factor of 2 is also added for
an obvious use of uppercase letters: first-character, last-
character, and all caps. The capitalization factor is other-
wise estimated as

1
2

min(U,L)

∑
i=1

(
U +L

i

)
(2)

where U and L are the number of uppercase and low-
ercase letters in the token. For example, to guess
paSswOrd, an attacker would need to try a guessing
space of 8 different single-character capitalizations plus
28 different two-character capitalizations. The 1/2 term
converts the total guessing space into an average at-
tempts needed, assuming that each capitalization scheme
is equally likely – this detail could be improved by bet-
ter modeling observed distributions of capitalization pat-
terns in leaked password corpora. The min() term flips
the lowercasing game into an uppercasing game when
there are more upper- than lowercase letters, yielding 8
for PAsSWORD.

Guesses for keyboard patterns are estimated as:

1
2

L

∑
i=1

min(T,i−i)

∑
j=1

(
i−1
j−1

)
SD j (3)

where L is the length of the pattern, T is the number
of terms, D is the average number of neighbors per key
(a tilde has one neighbor on QWERTY, the ‘a’ key has
four) and S is the number of keys on the keyboard. For T
turns throughout a length L keyboard pattern, we assume
a guesser attempts lower-length, lower-turn patterns first,
starting at length 2. The binomial term counts the differ-
ent configuration of turning points for a length-i pattern
with j turns, with −1 added to each term because the first
turn is defined to occur on the first character. The min()
term avoids considering more turns than possible on a
lower-length pattern. The sequence might have started
on any of S keys and each turn could have gone any of D
ways on average, hence the S ·D j. Equation 3 estimates
about 103 guesses for kjhgfdsa on QWERTY and 106

164 25th USENIX Security Symposium USENIX Association

guesses for kjhgt543. Shifted keys in the pattern add a
factor according to expression 2, where L and U become
shifted and unshifted counts.

Repeat match objects consist of a base repeated n
times, where a recursive match-estimate-search step pre-
viously assigned a number of guesses g to the base. Re-
peat guess attempts are then estimated as g ·n. For exam-
ple, nownownow is estimated as requiring 126 guesses:
now is at rank 42 in the Wiktionary set, times 3.

Sequences are scored according to s ·n · |d|, where s is
the number of possible starting characters, n is the length,
and d is the codepoint delta (e.g., -2 in 9753). s is set to
a low constant 4 for obvious first choices like 1 and Z,
set to 10 for other digits, or otherwise 26, an admittedly
Roman-centric default that could be improved.

For dates, we assume guessers start at 2016 and guess
progressively earlier or later dates, yielding a ballpark of
365 · |2016− year|

Finally, bruteforce matches of length l are assigned a
constant C = 10 guesses per character, yielding a total
estimate of Cl . The 2012 version performs a guessing
space calculation, treating bruteforce regions as random,
and determines a cardinality C that adds 26 if any lower-
case letters are present, 26 if uppercase, 10 if digits, and
33 for one or more symbols. This dramatically overesti-
mates the common case, for example a token that isn’t in
the dictionary. The 2012 version scores Teiubesc (Ro-
manian for “I love you”) as (26+ 26)8 ≈ 1014, whereas
zxcvbn now estimates it 6 orders of magnitude lower at
108. (Thanks to the addition of RockYou’09 data, it also
matches it as a common password at rank 104).

4.4 Search
Given a string password and a corresponding set of over-
lapping matches S, the last step is to search for the
non-overlapping adjacent match sequence S that covers
password and minimizes expression (1). We outline a
dynamic programming algorithm that efficiently accom-
plishes this task. The idea is to iteratively find the opti-
mal length-l sequence of matches covering each length-k
character prefix of password. It relies on the following
initial state:

1: n ← password.length
2: Bopt ← []×n
3: Πopt ← []×n
4: lopt ← 0
5: gopt ← null

Bopt is a backpointer table, where Bopt [k][l] holds
the ending match in the current optimal length-l match
sequence covering the length-k prefix of password.
Πopt [k][l] correspondingly holds the product term in ex-

pression (1) for that sequence. When the algorithm ter-
minates, gopt holds the optimum guesses figure and lopt
holds the length of the corresponding optimal sequence.
Note that if no length-l sequence exists such that it
scores lower than every alternative sequence with fewer
matches covering the same k-prefix, then l �∈Bopt [k].

Each match object m has a guess value m.guesses and
covers a substring of password at indices m.i and m. j, in-
clusive. The search considers one character of password
at a time, at position k, and for each match m ending at k,
evaluates whether adding m to any length-l optimal se-
quence ending just before m (at m.i− 1) leads to a new
candidate for the optimal match sequence covering the
prefix up to k:

1: function SEARCH(n, S)
2: for k ∈ 0 to n−1
3: gopt ← ∞
4: for m ∈ S when m. j = k
5: if m.i > 0
6: UPDATE(m, l +1) for l ∈Bopt [m.i−1]
7: else
8: UPDATE(m, 1)
9: BF_UPDATE(k)

10: return UNWIND(n)

Instead of including a bruteforce match object in S for
every O(n2) substring in password, bruteforce matches
are considered incrementally by BF_UPDATE:

1: function BF_UPDATE(k)
2: m ← bruteforce from 0 to k
3: UPDATE(m, 1)
4: for l ∈Bopt [k−1]
5: if Bopt [k−1][l] is bruteforce
6: m ← bruteforce from Bopt [k−1][l].i to k
7: UPDATE(m, l)
8: else
9: m ← bruteforce from k to k

10: UPDATE(m, l +1)

That is, at each index k, there are only three cases
where a bruteforce match might end an optimal se-
quence: it might span the entire k-prefix, forming a
length-1 sequence, it might extend an optimal bruteforce
match ending at k− 1, or it might start as a new single-
character match at k. Note that given the possibility of
expansion, it is always better to expand by one character
than to append a new bruteforce match, because either
choice would contribute equally to the Π term, but the
latter would increment l.

The UPDATE helper computes expression (1) and up-
dates state if a new minimum is found. Thanks to the
Πopt table, it does so without looping:

USENIX Association 25th USENIX Security Symposium 165

1: function UPDATE(m, l)
2: Π ← m.guesses
3: if l > 1
4: Π ← Π×Πopt [m.i−1][l −1]

5: g ← Dl−1 + l!×Π
6: if g < gopt
7: gopt ← g
8: lopt ← l
9: Πopt [k][l]← Π

10: Bopt [k][l]← m

At the end, UNWIND steps through the backpointers
to form the final optimal sequence:

1: function UNWIND(n)
2: S ← []
3: l ← lopt
4: k ← n−1
5: while k ≥ 0
6: m ← Bopt [k][l]
7: S.prepend(m)
8: k ← m.i−1
9: l ← l - 1

10: assert l = 0
11: return S

Each match m ∈ S is considered only once during the
search, yielding a runtime of O(lmax · (n+ |S|)), where
lmax is the maximum value of lopt over each k iteration.
In practice, lmax rarely exceeds 5, and this method rapidly
terminates even for passwords of hundreds of characters
and thousands of matches.

4.5 Deployment

zxcvbn is written in CoffeeScript and compiled via an
npm build flow into both a server-side CommonJS mod-
ule and a minified browser script. The ranked token lists
take up most of the total library size: each is represented
as a sorted comma-separated list of tokens which then get
converted into an object, mapping tokens to their ranks.
The browser script is minified via UglifyJS2 with in-
structions on how to serve as gzipped data.
zxcvbn works as-is on most browsers and javascript

server frameworks. Because iOS and Android both ship
with javascript interpreters, zxcvbn can easily interface
with most mobile apps as well. JSContext on iOS7+ or
UIWebView for legacy support both work well. Running
javascript with or without a web view works similarly on
Android.

Dropbox uses zxcvbn for feedback and has never en-
forced composition requirements other than a 6-character
minimum. For those implementing requirements, we
suggest a client-side soft enforcement for simplicity,

such as a submit button that is disabled until the re-
quirement is met. Because different versions and ports
give slightly different estimates, we suggest those need-
ing server-side validation either skip client-side valida-
tion or make sure to use the exact same build across their
server and various clients. zxcvbn ports exist for Java,
Objective-C, Python, Go, Ruby, PHP, and more.

4.6 Limitations
zxcvbn doesn’t model interdependencies between pat-
terns, such as common phrases and other collocations.
However, its ranked password dictionaries include many
phrases as single tokens, such as opensesame. It only
matches common word transformations that are easy to
implement given limited space; it doesn’t match words
with deleted letters and other misspellings, for exam-
ple. Unmatched regions are treated equally based on
length; the English-sounding made-up word novanoid
gets the same estimate as a length-8 random string, and
unmatched digits and symbols are treated equally even
though some are more common than others.

5 Experiments

We investigate how choice of algorithm and dataset im-
pacts the estimation accuracy of a realistic guessing at-
tack. We also show the impact of matching patterns be-
yond token lookup. Our experiments employ a test set
of 15k passwords from the RockYou’09 leak [7]. Ap-
pendix C includes the same analysis on a 15k sample
from the Yahoo’12 leak [11]. We close the Section with
runtime benchmarks for zxcvbn.

5.1 Methodology

Algorithms and Data
The algorithms we selected for our experiment – NIST,
KeePass, and zxcvbn – estimate guess attempts or
equivalent (excludes [49, 17]) and can operate without
a backing server (excludes [46, 24]).

For our password strength gold standard, as intro-
duced in Section 2.2, we ran the min_auto configura-
tion of PGS [8] with the same training data found to be
most effective in [51]. The PGS training data (roughly
21M unique tokens) consists of the RockYou’09 pass-
word leak (minus a randomly sampled 15k test set), Ya-
hoo’12 leak (minus a similar 15k test set), MySpace’06
leak, 1-grams from the Google Web Corpus, and two En-
glish dictionaries. To make brute force guessing attacks
infeasible, the 15k test sets are sampled from the subset
of passwords that contain at least 8 characters. Of the
four attacks, we ran the Markov attack up through 1010

guesses, John the Ripper and Hashcat up through 1013,

166 25th USENIX Security Symposium USENIX Association

and PCFG up to 1014. Detailed specifics can be found
in [51].

While our test data is distinct from our training data,
it is by design that both include samples from the same
RockYou’09 distribution; our aim is to simulate an at-
tacker with knowledge of the distribution they are guess-
ing. While a real attacker wouldn’t have training data
from their target distribution, they might be able to tai-
lor their attack by deriving partial knowledge – common
locales and other user demographics (RockYou includes
many Romanian-language passwords in addition to En-
glish), site-specific vocabulary (game terminology, say),
and so on.

Our estimators are given ranked lists of common to-
kens as their training data, with one separately ranked
list per data source. NIST and KeePass do not make
use of rank, instead performing membership tests on a
union of their lists. Rather than attempting to precisely
match the training sources supplied to PGS, our estimator
sources more closely match those used in the current pro-
duction version of zxcvbn. For example, in the spirit of
free software, we avoid the Google Web Corpus which is
only available through a license via the Linguistic Data
Consortium. Instead of counting top passwords from the
MySpace’06 leak, our estimators use the Xato’15 corpus
which is over 200 times bigger.

In all, we count top tokens from the PGS training
portion of RockYou’09 and Yahoo’12 (test sets are ex-
cluded from the count), Xato’15, 1-grams from English
Wikipedia, common words from a Wiktionary 29M-
word frequency study of US television and film [10], and
common names and surnames from the 1990 US Cen-
sus [1]. Appendix B has more details on our data sources
and algorithm implementations.

We experiment with three estimator training set sizes
by truncating the frequency lists at three points: 100k
(1.52 MB of gzipped storage), 10k (245 kB), and 1k
(29.3 kB). In the 10k set, for example, each ranked list
longer than 10k tokens is cut off at that point.

Metrics

When PGS is unable to guess a password, we exclude
it from our sample set S. On each sampled password
xi ∈ S, we then measure an algorithm’s estimation error
by computing its order-of-magnitude difference ∆i from
PGS,

∆i = log10
galg(xi)

gpgs(xi)
(4)

where galg is the guess attempt estimate of the algorithm
and gpgs is the minimum guess order of the four PGS
guessing attacks. For example, ∆i =−2 means the algo-
rithm underestimated guesses by 2 orders of magnitude
compared to PGS for password xi.

We compare PGS to the estimator algorithms in three
ways. First, to give a rough sense of the shape of esti-
mator accuracy, we show log-log scatter plots spanning
from 100 to 1015 guesses, with gpgs on the x axis, galg on
the y axis, and a point for every xi ∈ S. Second, we show
the distribution of ∆i as a histogram by binning values to
their nearest multiple of .5, corresponding to half-orders
of magnitude. Third, we calculate the following sum-
mary statistics:

|∆|= 1
|S| ∑

i∈S
|∆i| (5)

∆+ =
1
|S| ∑

i∈S

{
∆i if ∆i ≥ 0
0 if ∆i < 0 (6)

|∆| gives a sense of accuracy, equally penalizing under-
and overestimation. ∆+ measures overestimation. Fewer
and smaller overestimations improve (reduce) this met-
ric. We calculate summary statistics within an online
range gpgs < 106 and separately higher magnitudes.

One comparison challenge is that KeePass and NIST
output entropy as bits, whereas we want to compare algo-
rithms in terms of guesses. While commonplace among
password strength estimators, including the 2012 version
of zxcvbn, it is mathematically improper to apply en-
tropy, a term that applies to distributions, to individual
events. Neither KeePass nor NIST formalize the type of
entropy they model, so we assume that n bits of strength
means guessing the password is equivalent to guessing a
value of a random variable X according to

n = H(X) =−∑
i

p(xi) log2 p(xi) (7)

Assuming the guesser knows the distribution over X and
tries guesses xi in decreasing order of probability p(xi), a
lower bound on the expected number of guesses E[G(X)]
can be shown [41] to be:

E[G(X)]≥ 2H(X)−2 +1 (8)

provided that H(X)≥ 2. We use this conservative lower
bound to convert bits into guesses. Had we additionally
assumed a uniform distribution, our expected guesses
would be 2H(X)−1, a negligible difference for our loga-
rithmic accuracy comparisons.

5.2 Results
Of the RockYou 15k test set, PGS cracked 39.68% within
our online guessing range of up to 106 guesses and
52.65% above 106, leaving 7.67% unguessed.

5.2.1 Choice of Algorithm
Figures 1-3 give a sense of how algorithm choice af-
fects guess attempt estimation. The solid diagonal cor-
responds to ∆ = 0, indicating estimator agreement with

USENIX Association 25th USENIX Security Symposium 167

Figure 1: PGS (x axis) vs. NIST (y axis), 100k token set.
Points on the solid diagonal indicate agreement between
PGS and NIST (∆i = 0). Points above the solid diagonal
indicate overestimation. Points above the top dashed di-
agonal indicate overestimation by more than two orders
of magnitude (∆i > 2).

PGS. Points above the top / below the bottom dotted lines
over/underestimate by more than 2 orders of magnitude
(∆i > 2 above the top line, ∆i < −2 below the bottom
line). Points to the left of gpgs = 106 indicate samples
potentially susceptible to online guessing as argued in
Section 3.
NIST and KeePass both exhibit substantial horizon-

tal banding in the low online range. Figure 2 shows
that a KeePass estimate of about 104.5 can range any-
where from about 10.25 to 106 PGS guesses. Figure 1
shows that NIST has a similar band at about 104.8, and
that NIST tends to overestimate in the online range and
lean towards underestimation at higher magnitudes. In
Table 1 we measured NIST and KeePass to be respec-
tively off by |∆|= 1.81 and 1.43 orders of magnitude on
average within the online range. We conclude neither are
suitable for estimating online guessing resistance; how-
ever, we expect KeePass could fix its low-order banding
problem by incorporating token frequency rank instead
of a fixed entropy for each dictionary match.

Figure 3 demonstrates that zxcvbn grows roughly lin-
ear with PGS up until about 105, corresponding to the
maximum rank of the 100k token set. Both zxcvbn and
KeePass suffer from a spike in overestimation approx-
imately between 105 and 107. We speculate this is be-
cause PGS is trained on 21M unique tokens and, in one at-
tack, tries all of them in order of popularity before mov-
ing onto more complex guessing. Hence, the greatest
overestimation in both cases happens between the esti-
mator dictionary cutoff and PGS dictionary cutoff, high-

Figure 2: PGS (x) vs. KeePass (y), 100k token set.

Figure 3: PGS (x) vs. zxcvbn (y), 100k token set.

lighting the sensitivity of estimator dictionary size.
The horizontal banding at fixed orders of magnitude

in zxcvbn corresponds to bruteforce matches where no
other pattern could be identified. Detailed in Section 4,
zxcvbn rewards 10l guesses for length-l unmatched re-
gions. zxcvbn has comparable but slightly worse |∆| and
∆+ than NIST past the online range. Given both have a
low ∆+, this primarily demonstrates a usability problem
at higher magnitudes (overly harsh feedback).

Figure 4 counts and normalizes ∆i in bin multiples of
.5, demonstrating that zxcvbn is within ±.25 orders of
magnitude of PGS about 50% of the time within the on-
line range. The sharp drop-off to the right indicates infre-
quent overestimation in this range. Figure 4 also shows
that, within the online range, NIST and KeePass accu-
racy could be improved by respectively dividing their
estimates by about 102 and 101 guesses; however, both

168 25th USENIX Security Symposium USENIX Association

Figure 4: ∆ histograms, 100k token set, online attack
range (gpgs < 106). zxcvbn spikes at ∆ = 0 then conser-
vatively falls off to the right.

Figure 5: PGS (x) vs. zxcvbn (y), 10k token set.

would still exhibit substantial overestimation tails.

5.2.2 Choice of Data

We now contrast a single algorithm zxcvbn with varying
data. Figures 3, 5, and 6 show zxcvbn with the 100k,
10k and 1k token sets. The noticeable effect is linear
growth up until 105, 104 and 103, respectively. Overesti-
mation is nearly non-existent in these respective ranges.

Within the online range, |∆| and ∆+ noticeably im-
prove with more data. Past the online range, more data
makes the algorithm more conservative, with progres-
sively higher |∆| and lower ∆+.

Figure 6: PGS (x) vs. zxcvbn (y), 1k token set.

5.2.3 Impact of Pattern Matching

We lastly measure the impact of matching additional pat-
terns beyond token lookup. Figure 7 shows a variant of
zxcvbn that recognizes case-insensitive token lookups
only. Differences from Figure 3 include noticeably more
overestimation before 105 and more prominent horizon-
tal banding.

For our |∆| and ∆+ figures, we show the cumulative
effect of starting with case-insensitive token matching
only, and then incrementally matching additional types
of patterns. Overall the impact is small compared to sup-
plying additional data, but the space- and time- cost is
near-zero, hence we consider these extra patterns a strict

PGS < 106 PGS > 106

|∆| ∆+ |∆| ∆+

NIST-100k 1.81 1.79 2.04 0.14
KP-100k 1.43 1.31 1.81 0.70
ZX-100k 0.58 0.27 2.20 0.21

ZX-1k 1.47 1.23 2.13 0.46
ZX-10k 0.82 0.53 2.18 0.28

ZX-100k 0.58 0.27 2.20 0.21

ZX-100k:
tokens only 0.68 0.48 1.85 0.30

+reversed/l33t 0.68 0.47 1.87 0.29
+date/year 0.60 0.35 2.13 0.23
+keyboard 0.60 0.34 2.13 0.22

+repeat 0.57 0.28 2.19 0.21
+sequence 0.58 0.27 2.20 0.21

Table 1: |∆| and ∆+ summary statistics. The top, middle
and bottom portions correspond to Sections 5.2.1-5.2.3,
respectively.

USENIX Association 25th USENIX Security Symposium 169

Figure 7: PGS (x) vs. zxcvbn (y), 100k token set, case-
insensitive token lookups only. Table 1 shows the cumu-
lative benefit of matching additional patterns.

improvement.
Within the online range, |∆| shrinks by 15% after all

pattern types are included. ∆+ shrinks by 44%. As with
adding more data, past 106, adding patterns increases es-
timator conservatism, with a progressively higher |∆| and
lower ∆+.

5.3 Performance Benchmarks

To measure zxcvbn runtime performance, we con-
catenated the RockYou’09 and Yahoo’12 test sets
into a single 30k list. We ran through that sam-
ple 1000 times, recording zxcvbn runtime for
each password, and finally averaged the runtimes
across the batches for each password. We obtained
the following runtime percentiles in milliseconds:

25th 50th 75th 99.9th max
Chrome (ms) 0.31 0.44 0.60 3.34 27.33

node (ms) 0.38 0.53 0.72 3.00 29.61

We checked that these numbers are comparable to run-
ning a single batch, to verify that we avoided caching
effects and other interpreter optimizations. Our trials
used 64-bit Chrome 48 and 64-bit node v5.5.0 on OS X
10.10.4 running on a late 2013 MacBook Pro with a 2.6
GHz Intel Core i7 Haswell CPU.

5.4 Limitations

Because we measured estimator accuracy against the cur-
rent best guessing techniques, accuracy will need to be
reevaluated as the state of the art advances. By includ-
ing training and test data from the same distribution, we

erred on the side of aggressiveness for our guessing sim-
ulation; however, test data aside, to the extent that PGS
and zxcvbn are trained on the same or similar data with
the same models, we expect similar accuracy at low mag-
nitudes up until zxcvbn’s frequency rank cutoff (given a
harder guessing task, that range might span a lower per-
centage of the test set). Our experiments measured esti-
mator accuracy but not their influence on password selec-
tion behavior; a separate user study would be valuable,
with results that would likely depend on how competing
estimators are used and presented.

6 Conclusion

To the extent that our estimator is trained on the same
or similar password leaks and dictionaries as employed
by attackers, we’ve demonstrated that checking the min-
imum rank over a series of frequency ranked lists, com-
bined with light pattern matching, is enough to accu-
rately and conservatively predict today’s best guessing
attacks within the range of an online attack. zxcvbn
works entirely client-side, runs in milliseconds, and
has a configurable download size: 1.5MB of com-
pressed storage is sufficient for high accuracy up to 105

guesses, 245 kB up to 104 guesses, or 29 kB up to 103

guesses. zxcvbn can be bundled with clients or asyn-
chronously downloaded on demand. It works as-is on
most browsers, browser extensions, Android, iOS, and
server-side javascript frameworks, with ports available
in several other major languages. In place of LUDS, it
is our hope that client-side estimators such as zxcvbn
will increasingly be deployed to allow more flexibility
for users and better security guarantees for adopters.

Acknowledgments

I’d like to thank Tom Ristenpart for shepherding this pa-
per as well as the anonymous reviewers for their help-
ful comments. Thanks to Blase Ur, Sean Segreti, Henry
Dixon, and the rest of the Password Research Group for
their advice and help running the Password Guessability
Service. Thanks to Mark Burnett for his password cor-
pus. Thanks to Rian Hunter for extracting the KeePass
estimator into a standalone Mono binary. Thanks to Dev-
datta Akhawe, Andrew Bortz, Hongyi Hu, Anton Mitya-
gin, Brian Smith, and Josh Lifton for their feedback and
guidance. Last but not least, a big thanks to Dropbox for
sponsoring this research.

Availability

zxcvbn is free software under the MIT License:

http://github.com/dropbox/zxcvbn

170 25th USENIX Security Symposium USENIX Association

References

[1] Frequently Occurring Surnames from Census 1990.
http://www.census.gov/topics/population/
genealogy/data/1990_census/1990_census_
namefiles.html.

[2] Hashcat advanced password recovery. http://hashcat.net.

[3] John the Ripper password cracker
http://www.openwall.com/john.

[4] KeePass Help Center: Password Quality Estimation.
http://keepass.info/help/kb/pw_quality_est.html.

[5] KeePass Password Safe. http://keepass.info.

[6] Penn Treebank tokenization. http://www.cis.upenn.edu/
~treebank/tokenization.html.

[7] RockYou Hack: From Bad To Worse.
http://techcrunch.com/2009/12/14/
rockyou-hack-security-myspace-facebook-passwords.

[8] The CMU Password Research Group’s Password Guessability
Service. https://pgs.ece.cmu.edu/.

[9] The InCommon Assurance Program.
https://incommon.org/assurance.

[10] Wiktionary: Frequency lists. https://en.wiktionary.org/
wiki/Wiktionary:Frequency_lists.

[11] Yahoo hacked, 450,000 passwords posted online. http://www.
cnn.com/2012/07/12/tech/web/yahoo-users-hacked.

[12] Password management guideline. CSC-STD-002-85. U.S. De-
partment of Defense, May 1985.

[13] Password usage. Federal Information Processing Standards Pub-
lication 112. U.S. National Institute of Standards and Technology,
April 1985.

[14] Q3 2015 State Of The Internet. Akamai Technologies, December
2015.

[15] BERGADANO, F., CRISPO, B., AND RUFFO, G. Proactive pass-
word checking with decision trees. In 4th ACM Conference on
Computer and Communications Security (New York, NY, USA,
1997), CCS ’97, ACM, pp. 67–77.

[16] BIRYUKOV, A., DINU, D., AND KHOVRATOVICH, D. Argon2:
New generation of memory-hard functions for password hashing
and other applications. In 2016 IEEE European Symposium on
Security and Privacy (March 2016), pp. 292–302.

[17] BISHOP, M. Anatomy of a proactive password changer. In
3rd UNIX Security Symposium (Berkeley, CA, USA, Sep. 1992),
USENIX, pp. 171–184.

[18] BLUNDO, C., D’ARCO, P., DE SANTIS, A., AND GALDI, C.
Hyppocrates: a new proactive password checker. Journal of Sys-
tems and Software 71, 1 (2004), 163–175.

[19] BONNEAU, J. The science of guessing: Analyzing an
anonymized corpus of 70 million passwords. In 2012 IEEE Sym-
posium on Security and Privacy (May 2012), pp. 538–552.

[20] BONNEAU, J., HERLEY, C., OORSCHOT, P. C. V., AND STA-
JANO, F. The quest to replace passwords: A framework for com-
parative evaluation of web authentication schemes. In 2012 IEEE
Symposium on Security and Privacy (Washington, DC, USA,
2012), IEEE Computer Society, pp. 553–567.

[21] BONNEAU, J., AND PREIBUSCH, S. The password thicket:
Technical and market failures in human authentication on the
web. In WEIS (2010).

[22] BURR, W., DODSON, D., NEWTON, E., PERLNER, R., POLK,
T., GUPTA, S., AND NABBUS, E. NIST Special Publication 800-
63-2 Electronic Authentication Guideline. Computer Security Di-
vision, Information Technology Laboratory, National Institute of
Standards and Technology, August 2013.

[23] CALIFA, J. Patronizing passwords. http://joelcalifa.com/
blog/patronizing-passwords, 2015.

[24] CASTELLUCCIA, C., DÜRMUTH, M., AND PERITO, D. Adap-
tive password-strength meters from markov models. In NDSS
(2012), The Internet Society.

[25] DE CARNÉ DE CARNAVALET, X., AND MANNAN, M. A large-
scale evaluation of high-impact password strength meters. ACM
Transactions on Information and System Security (TISSEC) 18, 1
(2015).

[26] DELL’AMICO, M., AND FILIPPONE, M. Monte Carlo strength
evaluation: Fast and reliable password checking. In 22nd ACM
Conference on Computer and Communications Security (Denver,
CO, USA, October 2015).

[27] DELL’AMICO, M., MICHIARDI, P., AND ROUDIER, Y. Pass-
word strength: An empirical analysis. In INFOCOM, 2010 Pro-
ceedings IEEE (March 2010), pp. 1–9.

[28] EGELMAN, S., SOTIRAKOPOULOS, A., MUSLUKHOV, I.,
BEZNOSOV, K., AND HERLEY, C. Does my password go up
to eleven? the impact of password meters on password selection.
In SIGCHI Conference on Human Factors in Computing Systems
(New York, NY, USA, 2013), CHI ’13, ACM, pp. 2379–2388.

[29] FLORÊNCIO, D., AND HERLEY, C. A large-scale study of web
password habits. In 16th international conference on the World
Wide Web (May 2007), ACM, pp. 657–666.

[30] FLORÊNCIO, D., HERLEY, C., AND OORSCHOT, P. C. V. An
administrator’s guide to internet password research. In 28th
USENIX Conference on Large Installation System Administration
(Berkeley, CA, USA, 2014), LISA’14, USENIX, pp. 35–52.

[31] HERLEY, C. So long, and no thanks for the externalities: the
rational rejection of security advice by users. In New Security
Paradigms Workshop (2009), ACM, pp. 133–144.

[32] HERLEY, C., AND OORSCHOT, P. C. V. A research agenda ac-
knowledging the persistence of passwords. 2012 IEEE Sympo-
sium on Security and Privacy 10, 1 (Jan 2012), 28–36.

[33] HOLLY, R. Project Abacus is an ATAP project aimed at killing
the password. Android Central, May 2015.

[34] INGLESANT, P. G., AND SASSE, M. A. The true cost of un-
usable password policies: Password use in the wild. In SIGCHI
Conference on Human Factors in Computing Systems (New York,
NY, USA, 2010), CHI ’10, ACM, pp. 383–392.

[35] KLEIN, D. V. Foiling the cracker: A survey of, and improve-
ments to, password security. In 2nd USENIX Security Workshop
(1990), pp. 5–14.

[36] KOMANDURI, S., BAUER, L., CHRISTIN, N., AND OORSCHOT,
P. C. V. Modeling the adversary to evaluate password strengh
with limited samples. PhD thesis, Carnegie Mellon University,
2015.

[37] KOMANDURI, S., SHAY, R., CRANOR, L. F., HERLEY, C., AND
SCHECHTER, S. Telepathwords: Preventing weak passwords
by reading users’ minds. In 23rd USENIX Security Symposium
(2014), pp. 591–606.

[38] LI, Z., HAN, W., AND XU, W. A large-scale empirical analysis
of chinese web passwords. In 23rd USENIX Security Symposium
(San Diego, CA, Aug. 2014), USENIX, pp. 559–574.

[39] MA, J., YANG, W., LUO, M., AND LI, N. A study of proba-
bilistic password models. In 2014 IEEE Symposium on Security
and Privacy (2014), IEEE, pp. 689–704.

[40] MANBER, U., AND WU, S. An algorithm for approximate mem-
bership checking with application to password security. Informa-
tion Processing Letters 50, 4 (1994), 191–197.

[41] MASSEY, J. L. Guessing and entropy. In IEEE International
Symposium on Information Theory (1994), IEEE, p. 204.

USENIX Association 25th USENIX Security Symposium 171

[42] MELICHER, W., UR, B., SEGRETI, S. M., KOMANDURI, S.,
BAUER, L., CHRISTIN, N., AND CRANOR, L. F. Fast, lean, and
accurate: Modeling password guessability using neural networks.
In Proceedings of the 25th USENIX Security Symposium (Aug.
2016). To appear.

[43] MORRIS, R., AND THOMPSON, K. Password security: A case
history. Communications of the ACM 22, 11 (1979), 594–597.

[44] MUNROE, R. xkcd: password strength.
https://xkcd.com/936/, August 2011.

[45] NAGLE, J. An Obvious Password Detector.
http://securitydigest.org/phage/archive/240,
November 1988.

[46] SCHECHTER, S., HERLEY, C., AND MITZENMACHER, M. Pop-
ularity is everything: A new approach to protecting passwords
from statistical-guessing attacks. In 5th USENIX Conference on
Hot Topics in Security (Berkeley, CA, USA, 2010), HotSec’10,
USENIX, pp. 1–8.

[47] SHANNON, C. E. A mathematical theory of communication. In
The Bell System Technical Journal (1948), vol. 27, pp. 379–423,
623–656.

[48] SHAY, R., KOMANDURI, S., KELLEY, P. G., LEON, P. G.,
MAZUREK, M. L., BAUER, L., CHRISTIN, N., AND CRANOR,
L. F. Encountering stronger password requirements: User at-
titudes and behaviors. In 6th Symposium on Usable Privacy
and Security (New York, NY, USA, 2010), SOUPS ’10, ACM,
pp. 2:1–2:20.

[49] SPAFFORD, E. H. OPUS: Preventing weak password choices.
Computers & Security 11, 3 (May 1992), 273–278.

[50] UR, B., KELLEY, P. G., KOMANDURI, S., LEE, J., MAASS,
M., MAZUREK, M. L., PASSARO, T., SHAY, R., VIDAS, T.,
BAUER, L., CHRISTIN, N., AND CRANOR, L. F. How does your
password measure up? the effect of strength meters on password
creation. In 21st USENIX Security Symposium (Bellevue, WA,
2012), USENIX, pp. 65–80.

[51] UR, B., SEGRETI, S. M., BAUER, L., CHRISTIN, N., CRANOR,
L. F., KOMANDURI, S., KURILOVA, D., MAZUREK, M. L.,
MELICHER, W., AND SHAY, R. Measuring real-world accu-
racies and biases in modeling password guessability. In 24th
USENIX Security Symposium (2015), pp. 463–481.

[52] WANG, D., AND WANG, P. The emperor’s new password cre-
ation policies. In Computer Security, ESORICS 2015. Springer,
2015, pp. 456–477.

[53] WEIR, M., AGGARWAL, S., COLLINS, M., AND STERN,
H. Testing metrics for password creation policies by attacking
large sets of revealed passwords. In 17th ACM Conference on
Computer and Communications Security (New York, NY, USA,
2010), CCS ’10, ACM, pp. 162–175.

[54] WEIR, M., AGGARWAL, S., DE MEDEIROS, B., AND GLODEK,
B. Password cracking using probabilistic context-free grammars.
In 2009 IEEE Symposium on Security and Privacy (May 2009),
pp. 391–405.

[55] WHEELER, D. zxcvbn: Realistic password strength estimation.
Dropbox Tech Blog, 2012.

[56] YAN, J. J. A note on proactive password checking. In 2001
Workshop on New Security Paradigms (2001), ACM, pp. 127–
135.

A zxcvbn vs. 3class8

We made the claim that zxcvbn is no harder to adopt than LUDS strate-
gies such as 3class8. We provided a CommonJS implementation in

Section 3 that rejects passwords guessable in 500 attempts according
to zxcvbn. For comparison, here we provide our implementation of
3class8 back-to-back with equivalent zxcvbn integrations using two
other common JavaScript module interfaces: global namespacing and
Asynchronous Module Definition with RequireJS.

var meets_3class8 = function(password) {
var classes = 0;
if /[a-z]/.test(password) {classes++;}
if /[A-Z]/.test(password) {classes++;}
if /\d/.test(password) {classes++;}
if /[\W_]/.test(password) {classes++;}
return classes >= 3 and password.length > 8;

}

// in .html: <script src="zxcvbn.js"></script>
var meets_policy_global = function(password) {

return zxcvbn(password).guesses > 500;
};

requirejs(["path/to/zxcvbn"], function(zxcvbn) {
var meets_policy_amd = function(password) {

return zxcvbn(password).guesses > 500;
};

});

B Experiment implementation details

For the sake of reproducibility, we detail the specifics of the algorithms
and data we employed in our experiments.

Algorithms
KeePass: We downloaded the C# source of KeePass 2.31 released on
1/9/2016 and extracted its strength estimator into a stand-alone Mono
executable that takes a token dictionary as input.

NIST: calculated as specified in Section 2. The NIST 2013
guideline [22] does not precisely define the dictionary check but
recommends applying common word transformations. We ignore case
and check for reversed words and common l33t substitutions, the same
as in zxcvbn. NIST specifies awarding up to 6 bits for passing the
dictionary check, decreasing to 0 bits at or above 20 characters, but
doesn’t otherwise specify how to award bits. We award a full 6 bits
for passwords at or under 10 characters, 4 bits if between 11 and 15,
and otherwise 2 bits. NIST recommends a dictionary of at least 50k
tokens. The 100k token set described in Section 5 consists of about
390k unique tokens (consisting of several lists ending up to rank-100k).

zxcvbn: Outlined in detail in Section 4.

Data
Within each data source, all tokens were lowercased, counted, and
sorted by descending count. When multiple lists contained the
same token, that token was filtered from every list but the one with
the lowest (most popular) rank. We made use of the following raw data:

RockYou: 32M passwords leaked in 2009 [7], excluding a random 15k
test set consisting of passwords of 8 or more characters.

Yahoo: 450k passwords leaked in 2012 [11], excluding a random 15k
test set consisting of passwords of 8 or more characters. We cut this
list off at 10k top tokens, given the smaller size of the leak.

Xato: Mark Burnett’s 10M password corpus, released in 2015 on
Xato.net and compiled by sampling thousands of password leaks

172 25th USENIX Security Symposium USENIX Association

over approximately 15 years. These passwords mostly appear to be
from Western users. The authors confirmed with Burnett that the
RockYou set is not sampled in Xato; however, Xato likely includes a
small number of samples from the Yahoo set. Given the relative sizes
of the two sets, Yahoo could at most make up 4.5% of Xato; however,
we expect a much smaller percentage from talking to Mark.

Wikipedia: 1-grams from the the English Wikipedia database dump
of 2015-10-2. We include all Wikipedia articles but not previous
revisions, edit histories, template files, or metadata. We parse text from
wiki markup via the open-source WikiExtractor.py and tokenize
according to the Penn Treebank method [6].

Wiktionary: Words from a 2006 Wiktionary word frequency study
counting 29M words from US television and film [10]. This list
balances Wikipedia’s formal English with casual language and slang.
40k unique tokens.

USCensus: Names and surnames from the 1990 United States
Census [1] ranked by frequency as three separate lists: surnames,
female names, and male names. We cut surnames off at 10k tokens.

C Yahoo Analysis

For reference, we reproduce the results of Section 5.2 with a sample
of Yahoo’12 passwords instead of RockYou’09. Of the 15k test set,
PGS cracked 29.05% within our Section 3 online guessing cutoff at 106

guesses and 60.07% above 106, leaving 10.88% unguessed.

Choice of Algorithm
Figures 8-10 respectively show PGS vs NIST, KeePass, and zxcvbn,
with each estimator supplied with the same 100k token set. As in
the RockYou sample, NIST and KeePass exhibit substantial horizontal
banding and overestimate at low magnitudes. At higher magnitudes,
NIST tends to underestimate.

Figure 10 demonstrates that zxcvbn grows roughly linear with PGS,
leaning towards underestimation, up until 105 guesses. Observable in
the RockYou sample but more pronounced here, KeePass and zxcvbn
both experience a spike in overestimation between 105 and 107. We
offer the same explanation as with RockYou: PGS is trained on a little
over 107 unique tokens, some of which are long and unrecognized by
the estimators. PGS occasionally succeeds making single-token guesses
at these higher magnitudes, leading to a spike in inaccuracy between
estimator dictionary cutoff and PGS dictionary cutoff.

In Figure 11, we see a similar ∆i spike at zero for zxcvbn followed
by a sharp decline to the right, indicating high accuracy and low over-
estimation within an online range.

Choice of Data
Figures 12-13 show PGS vs. zxcvbn with 10k and 1k token sets, re-
spectively. We observe the same noticeable effect as with RockYou:
high accuracy at low magnitudes up until the max token rank cutoff at
104 and 103, respectively. Referring to Table 2, |∆| and ∆+ noticeably
improve with more data within the online range. Past the online range,
more data makes the algorithm more conservative, with progressively
higher |∆| and lower ∆+.

Impact of Pattern Matching
Figure 14 shows a variant of zxcvbn, supplied with the 100k token set,
that matches case-insensitive token lookups only. We similarly observe
more overestimation before gpgs = 105 and more prominent horizontal
banding at higher magnitudes compared to Figure 10.

The bottom portion of Table 2 shows the cumulative effect of match-
ing additional pattern types. Within the online range, |∆| and ∆+ shrink
by about 5% and 46%, respectively.

PGS < 106 PGS > 106

|∆| ∆+ |∆| ∆+

NIST-100k 1.46 1.43 2.19 0.13
KP-100k 1.24 1.05 1.85 0.83
ZX-100k 0.74 0.19 2.45 0.26

ZX-1k 0.74 0.19 2.45 0.26
ZX-10k 0.91 0.39 2.40 0.32

ZX-100k 1.42 1.04 2.28 0.50

ZX-100k:
tokens only 0.78 0.35 2.13 0.33

+reversed/l33t 0.79 0.33 2.19 0.32
+date/year 0.74 0.26 2.35 0.28
+keyboard 0.74 0.25 2.36 0.27

+repeat 0.73 0.19 2.43 0.26
+sequence 0.74 0.19 2.45 0.26

Table 2: |∆| and ∆+ summary statistics.

Figure 8: PGS (x) vs. NIST (y), 100k token set.

Figure 9: PGS (x) vs. KeePass (y), 100k token set.

USENIX Association 25th USENIX Security Symposium 173

Figure 10: PGS (x) vs. zxcvbn (y), 100k token set.

Figure 11: ∆ histograms, 100k token set, online attack
range (gpgs < 106). zxcvbn spikes at ∆ = 0 then conser-
vatively falls off to the right.

Figure 12: PGS (x) vs. zxcvbn (y), 10k token set.

Figure 13: PGS (x) vs. zxcvbn (y), 1k token set.

Figure 14: PGS (x) vs. zxcvbn (y), 100k token set, case-
insensitive token lookups only.

USENIX Association 25th USENIX Security Symposium 175

Fast, Lean, and Accurate:
Modeling Password Guessability Using Neural Networks

William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri,
Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor

Carnegie Mellon University

Abstract

Human-chosen text passwords, today’s dominant form of
authentication, are vulnerable to guessing attacks. Un-
fortunately, existing approaches for evaluating password
strength by modeling adversarial password guessing are
either inaccurate or orders of magnitude too large and
too slow for real-time, client-side password checking.
We propose using artificial neural networks to model
text passwords’ resistance to guessing attacks and ex-
plore how different architectures and training methods
impact neural networks’ guessing effectiveness. We
show that neural networks can often guess passwords
more effectively than state-of-the-art approaches, such
as probabilistic context-free grammars and Markov mod-
els. We also show that our neural networks can be highly
compressed—to as little as hundreds of kilobytes—
without substantially worsening guessing effectiveness.
Building on these results, we implement in JavaScript
the first principled client-side model of password guess-
ing, which analyzes a password’s resistance to a guessing
attack of arbitrary duration with sub-second latency. To-
gether, our contributions enable more accurate and prac-
tical password checking than was previously possible.

1 Introduction

Text passwords are currently the most common form of
authentication, and they promise to continue to be so
for the foreseeable future [53]. Unfortunately, users of-
ten choose predictable passwords, enabling password-
guessing attacks. In response, proactive password check-
ing is used to evaluate password strength [19].

A common way to evaluate the strength of a pass-
word is by running or simulating password-guessing
techniques [35,59,92]. A suite of well-configured guess-
ing techniques, encompassing both probabilistic ap-
proaches [37,65,93] and off-the-shelf password-recovery
tools [74, 83], can accurately model the vulnerability of

passwords to guessing by expert attackers [89]. Unfortu-
nately, these techniques are often very computationally
intensive, requiring hundreds of megabytes to gigabytes
of disk space, and taking days to execute. Therefore, they
are typically unsuitable for real-time evaluation of pass-
word strength, and sometimes for any practically useful
evaluation of password strength.

With the goal of gauging the strength of human-chosen
text passwords both more accurately and more prac-
tically, we propose using artificial neural networks to
guess passwords. Artificial neural networks (hereafter
referred to as “neural networks”) are a machine-learning
technique designed to approximate highly dimensional
functions. They have been shown to be very effective at
generating novel sequences [49,84], suggesting a natural
fit for generating password guesses.

In this paper, we first comprehensively test the impact
of varying the neural network model size, model archi-
tecture, training data, and training technique on the net-
work’s ability to guess different types of passwords. We
compare our implementation of neural networks to state-
of-the-art password-guessing models, including widely
studied Markov models [65] and probabilistic context-
free grammars [59, 93], as well as software tools using
mangled dictionary entries [74, 83]. In our tests, we
evaluate the performance of probabilistic models to large
numbers of guesses using recently proposed Monte Carlo
methods [34]. We find that neural networks guess pass-
words more successfully than other password-guessing
methods in general, especially so beyond 1010 guesses
and on non-traditional password policies. These cases
are interesting because password-guessing attacks often
proceed far beyond 1010 guesses [44,46] and because ex-
isting password-guessing attacks underperform on new,
non-traditional password policies [79, 80].

Although more effective password guessing using
neural networks is an important contribution on its own,
we also show that the neural networks we use can be
highly compressed with minimal loss of guessing ef-

176 25th USENIX Security Symposium USENIX Association

fectiveness. Our approach is thus far more suitable
than existing password-guessing methods for client-side
password checking. Most existing client-side password
checkers are inaccurate [33] because they rely on simple,
easily compressible heuristics, such as counting the num-
ber of characters or character classes in a password. In
contrast, we show that a highly compressed neural net-
work more accurately measures password strength than
existing client-side checkers. We can compress such a
neural network into hundreds of kilobytes, which is small
enough to be included in an app for mobile devices, bun-
dled with encryption software, or used in a web page
password meter.

To demonstrate the practical suitability of neural net-
works for client-side password checking, we implement
and benchmark a neural-network password checker in
JavaScript. This implementation, which we have re-
leased as open-source software,1 is immediately suitable
for use in mobile apps, browser extensions, and web page
password meters. Our implementation gives real-time
feedback on password strength in fractions of a second,
and it more accurately measures resistance to guessing
than existing client-side methods.

In summary, this paper makes three main contribu-
tions that together substantially increase our ability to
detect and help eliminate weak passwords. First, we pro-
pose neural networks as a model for guessing human-
chosen passwords and comprehensively evaluate how
varying their training, parameters, and compression im-
pacts guessing effectiveness. In many circumstances,
neural networks guess more accurately than state-of-art
techniques. Second, leveraging neural networks, we cre-
ate a password-guessing model sufficiently compressible
and efficient for client-side proactive password checking.
Third, we build and benchmark a JavaScript implementa-
tion of such a checker. In common web browsers running
on commodity hardware, this implementation models an
arbitrarily high number of adversarial guesses with sub-
second latency, while requiring only hundreds of kilo-
bytes of data to be transferred to a client. Together, our
contributions enable more accurate proactive password
checking, in a far broader range of common scenarios,
than was previously possible.

2 Background and Related Work

To highlight when password strength matters, we first
summarize password-guessing attacks. We then discuss
metrics and models for evaluating password strength,
as well as lightweight methods for estimating password
strength during password creation. Finally, we summa-
rize prior work on generating text using neural networks.

1https://github.com/cupslab/neural_network_cracking

2.1 Password-Guessing Attacks

The extent to which passwords are vulnerable to guess-
ing attacks is highly situational. For phishing attacks,
keyloggers, or shoulder surfing, password strength does
not matter. Some systems implement rate-limiting poli-
cies, locking an online account or a device after a small
number of incorrect attempts. In these cases, passwords
other than perhaps the million most predictable are un-
likely to be guessed [39].

Guessing attacks are a threat, however, in three other
scenarios. First, if rate limiting is not properly im-
plemented, as is believed to have been the case in the
2014 theft of celebrities’ personal photos from Apple’s
iCloud [50], large-scale guessing becomes possible. Sec-
ond, if a database of hashed passwords is stolen, which
sadly occurs frequently [20, 23, 27, 45, 46, 67, 73, 75, 87],
an offline attack is possible. An attacker chooses likely
candidate passwords, hashes them, and searches the
database for a matching hash. When a match is found,
attackers can rely on the high likelihood of password
reuse across accounts and try the same credentials on
other systems [32]. Attacks leveraging password reuse
have real-world consequences, including the recent com-
promise of Mozilla’s Bugzilla database due to an admin-
istrator reusing a password [76] and the compromise of
20 million accounts on Taobao, a Chinese online shop-
ping website similar to eBay, due to password reuse [36].

Third, common scenarios in which cryptographic key
material is derived from, or protected by, a password
are vulnerable to large-scale guessing in the same way
as hashed password databases for online accounts. For
instance, for password managers that sync across de-
vices [52] or privacy-preserving cloud backup tools (e.g.,
SpiderOak [82]), the security of files stored in the cloud
depends directly on password strength. Furthermore,
cryptographic keys used for asymmetric secure messag-
ing (e.g., GPG private keys), disk-encryption tools (e.g.,
TrueCrypt), and Windows Domain Kerberos Tickets [31]
are protected by human-generated passwords. If the file
containing this key material is compromised, the strength
of the password is critical for security. The importance
of this final scenario is likely to grow with the adoption
of password managers and encryption tools.

2.2 Measuring Password Strength

Models of password strength often take one of two con-
ceptual forms. The first relies on purely statistical meth-
ods, such as Shannon entropy or other advanced sta-
tistical approaches [21, 22]. However, because of the
unrealistically large sample sizes required, we consider
these types of model out of scope. The second concep-
tual approach is to simulate adversarial password guess-

2

USENIX Association 25th USENIX Security Symposium 177

ing [34, 65, 89]. Our application of neural networks fol-
lows this method. Below, we describe the password-
guessing approaches that have been widely studied in
academia and used in adversarial password cracking, all
of which we compare to neural networks in our analyses.
Academic studies of password guessing have focused on
probabilistic methods that take as input large password
sets, then output guesses in descending probability or-
der. Password cracking tools rely on efficient heuristics
to model common password characteristics.

Probabilistic Context-Free Grammars One proba-
bilistic method uses probabilistic context-free grammars
(PCFGs) [93]. The intuition behind PCFGs is that pass-
words are built with template structures (e.g., 6 letters
followed by 2 digits) and terminals that fit into those
structures. A password’s probability is the probability
of its structure multiplied by those of its terminals.

Researchers have found that using separate training
sources for structures and terminals improves guess-
ing [59]. It is also beneficial to assign probabilities
to unseen terminals by smoothing, as well as to aug-
ment guesses generated by the grammar with passwords
taken verbatim from the training data without abstracting
them into the grammar [60]. Furthermore, using natural-
language dictionaries to instantiate terminals improves
guessing, particularly for long passwords [91].

Markov Models Using Markov models to guess pass-
words, first proposed in 2005 [70], has recently been
studied more comprehensively [37, 65]. Conceptually,
Markov models predict the probability of the next char-
acter in a password based on the previous characters, or
context characters. Using more context characters can
allow for better guesses, yet risks overfitting. Smooth-
ing and backoff methods compensate for overfitting.
Researchers have found that a 6-gram Markov model
with additive smoothing is often optimal for modeling
English-language passwords [65]. We use that configu-
ration in our analyses.

Mangled Wordlist Methods In adversarial password
cracking, software tools are commonly used to generate
password guesses [44]. The most popular tools transform
a wordlist (passwords and dictionary entries) using man-
gling rules, or transformations intended to model com-
mon behaviors in how humans craft passwords. For ex-
ample, a mangling rule may append a digit and change
each ‘a’ to ‘@’. Two popular tools of this type are Hash-
cat [83] and John the Ripper (JtR, [74]). While these ap-
proaches are not directly based on statistical modeling,
they produce fairly accurate guesses [89] quickly, which
has led to their wide use [44].

2.3 Proactive Password Checking

Although the previously discussed password-guessing
models can accurately model human-created pass-
words [89], they take hours or days and megabytes
or gigabytes of disk space, making them too resource-
intensive to provide real-time feedback to users. Current
real-time password checkers can be categorized based
on whether they run entirely client-side. Checkers with
a server-side component can be more accurate because
they can leverage large amounts of data. For instance, re-
searchers have proposed using server-side Markov mod-
els to gauge password strength [26]. Others have studied
using training data from leaked passwords and natural-
language corpora to show users predictions about what
they will type next [61].

Unfortunately, a server-side component introduces
substantial disadvantages for security. In some cases,
sending a password to a server for password checking
destroys all security guarantees. For instance, passwords
that protect an encrypted volume (e.g., TrueCrypt) or
cryptographic keys (e.g., GPG), as well as the master
password for a password manager, should never leave
the user’s device, even for proactive password checking.
As a result, accurate password checking is often miss-
ing from these security-critical applications. In cases
when a password is eventually sent to the server (e.g.,
for an online account), a real-time, server-side compo-
nent both adds latency and opens password meters to
powerful side-channel attacks based on keyboard timing,
message size, and caching [81].

Prior client-side password checkers, such as those run-
ning entirely in a web browser, rely on heuristics that can
be easily encoded. Many common meters rate passwords
based on their length or inclusion of different character
classes [33,88]. Unfortunately, in comprehensive tests of
both client- and server-side password meters, all but one
meter was highly inaccurate [33]. Only zxcvbn [94,95],
which uses dozens of more advanced heuristics, gave
reasonably accurate strength estimations. Such meters,
however, do not directly model adversarial guessing be-
cause of the inability to succinctly encode models and
calculate real-time results. In contrast, our approach
models adversarial guessing entirely on the client side.

2.4 Neural Networks

Neural networks, which we use to model passwords, are
a machine-learning technique for approximating highly
dimensional functions. Designed to model human neu-
rons, they are particularly adept at fuzzy classification
problems and generating novel sequences. Our method
of generating candidate password guesses draws heav-
ily on previous work that generated the probability of

3

178 25th USENIX Security Symposium USENIX Association

the next element in a string based on the preceding el-
ements [49, 84]. For example, in generating the string
password, a neural network might be given passwor and
output that d has a high probability of occurring next.

Although password creation and text generation are
conceptually similar, little research has attempted to use
insights from text generation to model passwords. A
decade ago, neural networks were proposed as a method
for classifying passwords into two very broad categories
(weak or strong) [30], but that work did not seek to
model the order in which passwords would be guessed
or other aspects of a guessing attack. To our knowledge,
the only proposal to use neural networks in a password-
guessing attack was a recent blog post [71]. In sharp
contrast to our extensive testing of different parameters
to make neural networks effective in practice, that work
made few refinements to the application of neural net-
works, leading the author to doubt that the approach has
“any practical relevance.” Additionally, that work sought
only to model a few likely password guesses, as opposed
to our use of Monte Carlo methods to simulate an arbi-
trary number of guesses.

Conceptually, neural networks have advantages over
other methods. In contrast to PCFGs and Markov mod-
els, the sequences generated by neural networks can be
inexact, novel sequences [49], which led to our intu-
ition that neural networks might be appropriate for pass-
word guessing. Prior approaches to probabilistic pass-
word guessing (e.g., Markov models [26]) were suffi-
ciently memory-intensive to be impractical on only the
client-side. However, neural networks can model natu-
ral language in far less space than Markov models [68].
Neural networks have also been shown to transfer knowl-
edge about one task to related tasks [97]. This is cru-
cial for targeting novel password-composition policies,
for which training data is sparse at best.

3 System Design

We experimented with a broad range of options in a large
design space and eventually arrived at a system design
that 1) leverages neural networks for password guessing,
and 2) provides a client-side guess estimation method.

3.1 Measuring Password Strength
Similarly to Markov models, neural networks in our sys-
tem are trained to generate the next character of a pass-
word given the preceding characters of a password. Fig-
ure 1 illustrates our construction. Like in Markov mod-
els [34, 65], we rely on a special password-ending sym-
bol to model the probability of ending a password af-
ter a sequence of characters. For example, to calculate
the probability of the entire password ‘bad’, we would

Input

a: .001
b: .001
c: .20
d: .80
END: 0

a: 0, b: 0
c: 0, d: 0
END: 0

a: 0, b: 0
c: 0, d: 0
END: 0

a: 0, b: 1
c: 0, d: 0
END: 0

context: ba

a: 1, b: 0
c: 0, d: 0
END: 0

Neural
Network

Context
characters

A: 0.0001
a: 0.0009
B: 0.0001
b: 0.0009
C: 0.02
c: 0.18
D: 0.08
d: 0.72
END: 0

Uppercase
modeling

Output

Post-
processing

Figure 1: An example of using a neural network to predict
the next character of a password fragment. The network is
being used to predict a ‘d’ given the context ‘ba’. This network
uses four characters of context. The probabilities of each next
character are the output of the network. Post processing on the
network can infer probabilities of uppercase characters.

start with an empty password, and query the network
for the probability of seeing a ‘b’, then seeing an ‘a’ af-
ter ‘b’, and then of seeing a ‘d’ after ‘ba’, then of see-
ing a complete password after ‘bad’. To generate pass-
words from a neural network model, we enumerate all
possible passwords whose probability is above a given
threshold using a modified beam-search [64], a hybrid
of depth-first and breadth-first search. If necessary, we
can suppress the generation of non-desirable passwords
(e.g., those against the target password policy) by filter-
ing those passwords. Then, we sort passwords by their
probability. We use beam-search because breadth-first’s
memory requirements do not scale, and because it al-
lows us to take better advantage of GPU parallel pro-
cessing power than depth-first search. Fundamentally,
this method of guess enumeration is similar to that used
in Markov models, and it could benefit from the same op-
timizations, such as approximate sorting [37]. A major
advantage over Markov models is that the neural network
model can be efficiently implemented on the GPU.

Calculating Guess Numbers In evaluating password
strength by modeling a guessing attack, we calculate a
password’s guess number, or how many guesses it would
take an attacker to arrive at that password if guessing
passwords in descending order of likelihood. The tradi-
tional method of calculating guess numbers by enumera-
tion is computationally intensive. For example, enumer-
ating more than 1010 passwords would take roughly 16
days in our unoptimized implementation on an NVidia
GeForce GTX 980 Ti. However, in addition to guess
number enumeration, we can also estimate guess num-
bers accurately and efficiently using Monte Carlo simu-
lations, as proposed by Dell’Amico and Filippone [34].

3.2 Our Approach
There are many design decisions necessary to train neu-
ral networks. The design space forces us to decide on

4

USENIX Association 25th USENIX Security Symposium 179

the modeling alphabet, context size, type of neural net-
work architecture, training data, and training methodol-
ogy. We experiment along these dimensions.

Model Architectures In this work, we use recurrent
neural networks because they have been shown to be use-
ful for generating text in the context of character-level
natural language [49, 84]. Recurrent neural networks are
a specific type of neural network where connections in
the network can process elements in sequences and use
an internal memory to remember information about pre-
vious elements in the sequence. We experiment with two
different recurrent architectures in Section 5.1.

Alphabet Size We focus on character-level models,
rather than more common word-level models, because
there is no established dictionary of words for pass-
word generation. We also complement our analysis with
exploratory experiments using syllable-level models in
Section 5.1. We decided to explore hybrid models based
on prior work in machine learning [68]. In the hybrid
construction, in addition to characters, the neural net-
work is allowed to model sub-word units, such as sylla-
bles or tokens. We chose to model 2,000 different tokens
based on prior work [68] and represent those tokens the
same way we would characters. A more thorough study
of tokenized models would explore both more and fewer
tokens. Using tokenized structures, the model can then
output the probability of the next character being an ‘a’
or the token ‘pass’. We generated the list of tokens by to-
kenizing words in our training set along character-class
boundaries and selecting the 2,000 most frequent ones.

Like prior work [26], we observed empirically that
modeling all characters unnecessarily burdens the model
and that some characters, like uppercase letters and rare
symbols, are better modeled outside of the neural net-
work. We can still create passwords with these charac-
ters by interpreting the model’s output as templates. For
example, when the neural network predicts an ‘A’ char-
acter, we post-process the prediction to predict both ‘a’
and ‘A’ by allocating their respective probabilities based
on the number of occurrences of ‘a’ and ’A’ in the train-
ing data—as shown in Figure 1. The intuition here is that
we can reduce the amount of resources consumed by the
neural network when alternate heuristic approaches can
efficiently model certain phenomena (e.g., shifts between
lowercase and uppercase letters).

Password Context Predictions rely on the context
characters. For example, in Figure 1, the context char-
acters are ‘ba’ and the target prediction is ‘d’. Increasing
the number of context characters increases the training

time, while decreasing the number of context characters
could potentially decrease guessing success.

We experimented with using all previous characters in
the password as context and with only using the previous
ten characters. We found in preliminary tests that using
ten characters was as successful at guessing and trained
up to an order of magnitude faster, and thus settled on
this choice. When there are fewer than ten context char-
acters, we pad the input with zeros. In comparison, best-
performing Markov models typically use five characters
of context [34, 65]. While Markov models can overfit if
given too much context, neural networks typically overfit
when there are too many parameters.

Providing context characters in reverse order—e.g.,
predicting ‘d’ from ‘rowssap’ instead of ‘passwor’—has
been shown to sometimes improve performance [48]. We
empirically evaluate this technique in Section 5.1.

Model Size We must also decide how many parameters
to include in models. To gauge the effect of changing the
model size on guessing success, we test a large neural
network with 15,700,675 parameters and a smaller net-
work with 682,851 parameters. The larger size was cho-
sen to limit the amount of time and GPU memory used
by the model, which required one and a half weeks to
fully train on our larger training set. The smaller size was
chosen for use in our browser implementation because it
could realistically be sent over the Internet; compressed,
this network is a few hundred kilobytes. We evaluate the
two sizes of models with a variety of password policies,
since each policy may respond differently to size con-
straints, and describe the results in Section 5.1.

Transference Learning We experimented with a spe-
cialized method of training neural networks that takes ad-
vantage of transference learning, in which different parts
of a neural network learn to recognize different phenom-
ena during training [97]. One of the key problems with
targeting non-traditional password policies is that there
is little training data. For example, in our larger training
set, there are 105 million passwords, but only 2.6 mil-
lion satisfy a password policy that requires a minimum
of 16 characters. The sparsity of training samples lim-
its guessing approaches’ effectiveness against such non-
traditional policies. However, if trained on all passwords,
the learned model is non-optimal because it generates
passwords that are not accurate for our target policy even
if one ignores passwords that do not satisfy the policy.
Transference learning lets us train a model on all pass-
words, yet tailor its guessing to only longer passwords.

When using transference learning, the model is first
trained on all passwords in the training set. Then, the
lower layers of the model are frozen. Finally, the model
is retrained only on passwords in the training set that fit

5

180 25th USENIX Security Symposium USENIX Association

the policy. The intuition is that the lower layers in the
model learn low-level features about the data (e.g., that
‘a’ is a vowel), and the higher layers learn higher-level
features about the data (e.g., that vowels often follow
consonants). Similarly, the lower layers in the model
may develop the ability to count the number of char-
acters in a password, while the higher level layers may
recognize that passwords are typically eight characters
long. By fine-tuning the higher-level parameters, we can
leverage what the model learned about all passwords and
retarget it to a policy for which training data is sparse.

Training Data We experimented with different sets of
training data; we describe experiments with two sets of
passwords in Sections 4.1 and 5.2, and also with includ-
ing natural language in training data in Section 5.1. For
machine-learning algorithms in general, more training
data is better, but only if the training data is a close match
for the passwords we test on.

3.3 Client-Side Models
Deploying client-side (e.g., browser-based) password-
strength-measuring tools presents severe challenges. To
minimize the latency experienced by users, these tools
should execute quickly and transfer as little data as pos-
sible over the network. Advanced guessing tools (e.g.,
PCFG, Markov models, and tools like JtR and Hash-
cat) run on massively parallel servers and require on
the order of hundreds of megabytes or gigabytes of disk
space. Typically, these models also take hours or days
to return results of strength-metric tests, even with re-
cent advances in efficient calculation [34], which is un-
suitable for real-time feedback. In contrast, by com-
bining a number of optimizations with the use of neu-
ral networks, we can build accurate password-strength-
measuring tools that are sufficiently fast for real-time
feedback and small enough to be included in a web page.

3.3.1 Optimizing for Model Size

To deploy our prototype implementation in a browser, we
developed methods for succinctly encoding it. We lever-
aged techniques from graphics for encoding 3D models
for browser-based games and visualizations [29]. Our
encoding pipeline contains four different steps: weight
quantization, fixed-point encoding, ZigZag encoding,
and lossless compression. Our overall strategy is to send
fewer bits and leverage existing lossless compression
methods that are natively supported by browser imple-
mentations, such as gzip compression [41]. We describe
the effect that each step in the pipeline has on compres-
sion in Section 5.3. We also describe encoding a short
wordlist of passwords in Bloom filters.

Weight Quantization First, we quantized the weights
of the neural network to represent them with fewer digits.
Rather than sending all digits of the 32-bit floating-point
numbers that describe weights, we only send the most
significant digits. Weight quantization is routinely used
for decreasing model size, but can increase error [68].
We show the effect of quantization on error rates in Sec-
tion 5.3. We experimentally find that quantizing weights
up to three decimal digits leads to minimal error.

Fixed-point Encoding Second, instead of representing
weights using floating-point encoding, we used fixed-
point encoding. Due to the weight-quantization step,
many of the weight values are quantized to the same
values. Fixed-point encoding allows us to more suc-
cinctly describe the quantized values using unsigned in-
tegers rather than floating point numbers on the wire: one
could internally represent a quantized weight between
−5.0 and 5.0 with a minimum precision of 0.005, as be-
tween −1000 and 1000 with a precision of 1. Avoiding
the floating-point value would save four bytes. While
lossless compression like gzip partially reduces the need
for fixed-point encoding, we found that such scaling still
provides an improvement in practice.

ZigZag Encoding Third, negative values are generally
more expensive to send on the wire. To avoid sending
negative values, we use ZigZag encoding [8]. In ZigZag
encoding, signed values are encoded by using the last bit
as the sign bit. So, the value of 0 is encoded as 0, but
the value of -1 is encoded as 1, 1 is encoded as 2, -2 is
encoded as 3, and so on.

Lossless Compression We use regular gzip or
deflate encoding as the final stage of the compression
pipeline. Both gzip and deflate produce similar re-
sults in terms of model size and both are widely sup-
ported natively by browsers and servers. We did not con-
sider other compression tools, like LZMA, because their
native support by browsers is not as widespread, even
though they typically result in slightly smaller models.

Bloom Filter Word List To increase the success
of client-side guessing, we also store a word list
of frequently guessed passwords. As in previous
work [89], we found that for some types of password-
cracking methods, prepending training passwords im-
proves guessing effectiveness. We stored the first two
million most frequently occurring passwords in our train-
ing set in a series of compressed Bloom filters [69].

Because Bloom filters cannot map passwords to the
number of guesses required to crack, and only compute

6

USENIX Association 25th USENIX Security Symposium 181

existence in a set, we use multiple Bloom filters in dif-
ferent groups: in one Bloom filter, we include passwords
that require fewer than 10 guesses; in another, all pass-
words that require fewer than 100 guesses; and so on.
On the client, a password is looked up in each filter and
assigned a guess number corresponding to the filter with
the smallest set of passwords. This allows us to roughly
approximate the guess number of a password without in-
creasing the error bounds of the Bloom filter. To dras-
tically decrease the number of bits required to encode
these Bloom filters, we only send passwords that meet
the requirements of the policy and would have neural-
network-computed guess numbers more than three or-
ders of magnitude different from their actual guess num-
bers. We limited this word list to be about 150KB after
compression in order to limit the size of our total model.
We found that significantly more space would be needed
to substantially improve guessing success.

3.3.2 Optimizing for Latency

We rely on precomputation and caching to make our pro-
totype sufficiently fast for real-time feedback. Our target
latency is near 100 ms because that is the threshold below
which updates appear instantaneous [72].

Precomputation We precompute guess numbers in-
stead of calculating guess numbers on demand because
all methods of computing guess numbers on demand
are too slow to give real-time feedback. For example,
even with recent advances in calculation efficiency [34],
our fastest executing model, the Markov model, requires
over an hour to estimate guess numbers of our test set
passwords, with other methods taking days. Precomputa-
tion decreases the latency of converting a password prob-
ability to a guess number: it becomes a quick lookup in
a table on the client.

The drawback of this type of precomputation is that
guess numbers become inexact due to the quantization
of the probability-to-guess-number mapping. We exper-
imentally measure (see Section 5.3) the accuracy of our
estimates, finding the effect on accuracy to be low. For
the purpose of password-strength estimation, we believe
the drawback to be negligible, in part because results are
typically presented to users in more heavily quantized
form. For instance, users may be told their password is
“weak” or “strong.” In addition, the inaccuracies intro-
duced by precomputation can be tuned to result in safe
errors, in that any individual password’s guess number
may be an underestimate, but not an overestimate.

Caching Intermediate Results We also cache results
from intermediate computations. Calculating the proba-
bility of a 10-character password requires 11 full compu-

tations of the neural network, one for each character and
one for the end symbol. By caching probabilities of each
substring, we significantly speed up the common case in
which a candidate password changes by having a charac-
ter added to or deleted from its end. We experimentally
show the benefits of caching in Section 5.3.

Multiple Threads On the client side, we run the neural
network computation in a separate thread from the user
interface for better responsiveness of the user interface.

3.4 Implementation

We build our server-side implementation on the Keras li-
brary [28] and the client-side implementation on the neo-
cortex browser implementation [5] of neural networks.
We use the Theano back-end library for Keras, which
trains neural networks faster by using a GPU rather than
a CPU [17,18]. Our implementation trains networks and
guesses passwords in the Python programming language.
Guess number calculation in the browser is performed in
JavaScript. Our models typically used three long short-
term memory (LSTM) recurrent layers and two densely
connected layers for a total of five layers. On the client
side, we use the WebWorker browser API to run neural
network computations in their own thread [10].

For some applications, such as in a password meter, it
is desirable to conservatively estimate password strength.
Although we also want to minimize errors overall, on the
client we prefer to underestimate a password’s resistance
to guessing, rather than overestimate it. To get a stricter
underestimate of guess numbers on our client-side im-
plementation, we compute the guess number without re-
spect to capitalization. We find in practice that our model
is able to calculate a stricter underestimate this way,
without overestimating many passwords’ strength. We
don’t do this for the server-side models because those
models are used to generate candidate password guesses,
rather than estimating a guess number. After computing
guess numbers, we apply to them a constant scaling fac-
tor, which acts as a security parameter, to make the model
more conservative at the cost of making more errors. We
discuss this tradeoff more in Section 5.3.

4 Testing Methodology

To evaluate our implementation of neural networks, we
compare it to multiple other password cracking meth-
ods, including PCFGs, Markov models, JtR, and Hash-
cat. Our primary metric for guessing accuracy is the
guessability of our test set of human-created passwords.
The guessability of an individual password is measured
by how many guesses a guesser would take to crack a

7

182 25th USENIX Security Symposium USENIX Association

password. We experiment with two sets of training data
and with five sets of test data. For each set of test data,
we compute the percentage of passwords that would be
cracked after a particular number of guesses. More accu-
rate guessing methods correctly guess a higher percent-
age of passwords in our test set.

For probabilistic methods—PCFG, Markov models,
and neural networks—we use recent work to effi-
ciently compute guess numbers using Monte Carlo meth-
ods [34]. For Monte Carlo simulations, we generate and
compute probabilities for at least one million random
passwords to provide accurate estimates. While the exact
error of this technique depends heavily on each method,
guess number, and individual password, typically we ob-
served 95% confidence intervals of less than 10% of the
value of the guess-number estimate; passwords for which
the error exceeded 10% tended to be guessed only after
more than 1018 guesses. For all Monte Carlo simulations,
we model up to 1025 guesses for completeness. This is
likely an overestimate of the number of guesses that even
a well-resourced attacker could be able to or would be in-
centivized to make against one password.

To calculate guessability of passwords using
mangling-rule-based methods—JtR and Hashcat—
we enumerate all guesses that these methods make. This
provides exact guess numbers, but fewer guesses than we
simulate with other methods. Across our different test
sets, the mangling-rule-based methods make between
about 1013 and 1015 guesses.

4.1 Training Data

To train our algorithms, we used a mixture of leaked and
cracked password sets. We believe this is ethical because
these password sets are already publicly available and we
cause no additional harm with their use.

We explore two different sets of training data. We term
the first set the Password Guessability Service (PGS)
training set, used by prior work [89]. It contains the
Rockyou [90] and Yahoo! [43] leaked password sets. For
guessing methods that use natural language, it also in-
cludes the web2 list [11], Google web corpus [47], and
an inflection dictionary [78]. This set totals 33 million
passwords and 5.9 million natural-language words.

The second set (the PGS++ training set) augments the
PGS training set with additional leaked and cracked pass-
word sets [1,2,3,6,7,9,12,13,14,15,16,20,23,25,42,43,
55,56,57,62,63,67,75,77,85,90]. For methods that use
natural language, we include the same natural-language
sources as the PGS set. This set totals 105 million pass-
words and 5.9 million natural-language words.

4.2 Testing Data
For our testing data we used passwords collected from
Mechanical Turk (MTurk) in the context of prior re-
search studies, as well as a set sampled from the leak
of plaintext passwords from 000webhost [40]. In addi-
tion to a common policy requiring only eight characters,
we study three less common password policies shown to
be more resistant to guessing [66,80]: 4class8, 3class12,
and 1class16, all described below. We chose the MTurk
sets to get passwords created under more password poli-
cies than were represented in leaked data. Passwords
generated using MTurk have been found to be similar
to real-world, high-value passwords [38, 66]. Nonethe-
less, we chose the 000webhost leak to additionally com-
pare our results to real passwords from a recently leaked
password set. In summary, we used five testing datasets:

• 1class8: 3,062 passwords longer than eight charac-
ters collected for a research study [59]

• 1class16: 2,054 passwords longer than sixteen char-
acters collected for a research study [59]

• 3class12: 990 passwords that must contain at least
three character classes (uppercase letters, lowercase
letters, symbols, digits) and be at least twelve char-
acters long collected for a research study [80]

• 4class8: 2,997 passwords that must contain all four
character classes and be at least eight characters
long collected for a research study [66]

• webhost: 30,000 passwords randomly sampled
from among passwords containing at least eight
characters in the 000webhost leak [40]

4.3 Guessing Configuration
PCFG We used a version of PCFG with termi-
nal smoothing and hybrid structures [60], and in-
cluded natural-language dictionaries in the training data,
weighted for each word to count as one tenth of a pass-
word. We also separated training for structures and ter-
minals, and trained structures only on passwords that
conform to the target policy. This method does not gen-
erate passwords that do not match the target policy.

For PCFG, Monte Carlo methods are not able to es-
timate unique guess numbers for passwords that have
the same probability. This phenomenon manifests in the
Monte Carlo graphs with jagged edges, where many dif-
ferent passwords are assigned the same guess number
(e.g., in Figure 5c before 1023). We assume that an opti-
mal attacker could order these guesses in any order, since
they all have the same likelihood according to the model.
Hence, we assign the lowest guess number to all of these
guesses. This is a strict overestimate of PCFG’s guessing
effectiveness, but in practice does not change the results.

8

USENIX Association 25th USENIX Security Symposium 183

Normal
Transference

0%

20%

40%

60%

101 104 107101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

(a) Transference learning

NoNL
WithNL

0%

20%

40%

60%

80%

101 104 107 101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

(b) Natural-language dictionaries

HeavyTutoring

LightTutoring
Small

0%

20%

40%

60%

80%

101 104 107101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

(c) Tutoring

Figure 2: Alternative training methods for neural networks. The x-axes represent the number of guesses in log scale. The y-axes
show the corresponding percentage of 1class16 passwords guessed. In (b), WithNL is a neural network trained with natural-language
dictionaries, and NoNL is a neural network trained without natural-language dictionaries.

Markov Models We trained 4-, 5-, and 6-gram mod-
els. Prior work found the 6-gram models and additive
smoothing of 0.01 to be an effective configuration for
most password sets [65]. Our results agree, and we use
the 6-gram model with additive smoothing in our tests.
We discard guesses that do not match the target policy.

Mangling Wordlist Methods We compute guess num-
bers using the popular cracking tools Hashcat and John
the Ripper (JtR). For Hashcat, we use the best64 and
gen2 rule sets that are included with the software [83].
For JtR, we use the SpiderLabs mangling rules [86]. We
chose these sets of rules because prior work found them
effective in guessing general-purpose passwords [89]. To
create the input for each tool, we uniqued and sorted the
respective training set by descending frequency. For JtR,
we remove guesses that do not match the target policy.
For Hashcat, however, we do not do so because Hash-
cat’s GPU implementation can suffer a significant perfor-
mance penalty. We believe that this models a real-world
scenario where this penalty would also be inflicted.

5 Evaluation

We performed a series of experiments to tune the train-
ing of our neural networks and compare them to exist-
ing guessing methods. In Section 5.1, we describe ex-
periments to optimize the guessing effectiveness of neu-
ral networks by using different training methods. These
experiments were chosen primarily to guide our deci-
sions about model parameters and training along the de-
sign space we describe in Section 3.2, including training
methods, model size, training data, and network architec-
ture. In Section 5.2, we compare the effectiveness of the
neural network’s guessing to other guessing algorithms.
Finally, in Section 5.3, we describe our browser imple-
mentation’s effectiveness, speed, and size, and we com-
pare it to other browser password-measuring tools.

5.1 Training Neural Networks

We conducted experiments exploring how to tune neural
network training, including modifying the network size,
using sub-word models, including natural-language dic-
tionaries in training, and exploring alternative architec-
tures. We do not claim that these experiments are a com-
plete exploration of the space. Indeed, improving neural
networks is an active area of research.

Transference Learning We find that the transference
learning training, described in Section 3.2, improves
guessing effectiveness. Figure 2a shows in log scale
the effect of transference learning. For example, at 1015

guesses, 22% of the test set has been guessed with trans-
ference learning, as opposed to 15% without transfer-
ence learning. Using a 16 MB network, we performed
this experiment on our 1class16 passwords because they
are particularly different from the majority of our train-
ing set. Here, transference learning improves password
guessing mostly at higher guess numbers.

Including Natural-Language Dictionaries We exper-
imented with including natural-language dictionaries in
the neural network training data, hypothesizing that do-
ing so would improve guessing effectiveness. We per-
formed this experiment with 1class16 passwords because
they are particularly likely to benefit from training on
natural-language dictionaries [91]. Networks both with
and without natural language data were trained using the
transference learning method on long passwords. Nat-
ural language was included with the primary batch of
training data. Figure 2b shows that, contrary to our hy-
potheses, training on natural language decreases the neu-
ral network’s guessing effectiveness. We believe neural
networks do not benefit from natural language, in con-
trast to other methods like PCFG, because this method of
training does not differentiate between natural-language
dictionaries and password training. However, training
data could be enhanced with natural language in other
ways, perhaps yielding better results.

9

184 25th USENIX Security Symposium USENIX Association

1class16 Large
1class16 Small

1class8 Large
1class8 Small
4class8 Large
4class8 Small
Webhost Large
Webhost Small

0%

30%

60%

90%

101 104 107101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

Figure 3: Neural network size and password guessability.
Dotted lines are large networks; solid lines are small networks.

Password Tokenization We find that using hybrid,
sub-word level password models does not significantly
increase guessing performance at low guess numbers.
Hybrid models may represent the same word in multiple
different ways. For example, the model may capture a
word as one token, ‘pass’, or as the letters ‘p’, ‘a’, ‘s’, ‘s’.
Because Monte Carlo simulations assume that passwords
are uniquely represented, instead of using Monte Carlo
methods to estimate guess numbers, we calculated guess
numbers by enumerating the most probable 107 guesses.
However, at this low number of guesses, we show this
tokenization has only a minor effect, as shown in Fig-
ure 4b. We conducted this experiment on long passwords
because we believed that they would benefit most from
tokenization. This experiment shows that there may be
an early benefit, but otherwise the models learn similarly.
We consider this result to be exploratory both due to our
low guessing cutoff and because other options for tuning
the tokenization could produce better results.

Model Size We find that, for at least some password
sets, neural network models can be orders of magnitude
smaller than other models with little effect on guessing
effectiveness. We tested how the following two model
sizes impact guessing effectivess: a large model with
1,000 LSTM cells or 15,700,675 parameters that uses
60 MB, and a small model with 200 LSTM cells or
682,851 parameters that takes 2.7 MB.

The results of these experiments are shown in Figure 3.
For 1class8 and 4class8 policies, the effect of decreas-
ing model size is minor but noticeable. However, for
1class16 passwords, the effect is more dramatic. We at-
tribute differences between the longer and shorter poli-
cies with respect to model size to fundamental differ-
ences in password composition between those policies.
Long passwords are more similar to English language
phrases, and modeling them may require more param-
eters, and hence larger networks, than modeling shorter

passwords. The webhost test set is the only set for which
the larger model performed worse. We believe that this
is due to the lack of suitability of the particular training
data we used for this model. We discuss the differences
in training data more in Section 5.2.

Tutored Networks To improve the effectiveness of our
small model at guessing long passwords, we attempted to
tutor our small neural network with randomly generated
passwords from the larger network. While this had a mild
positive effect with light tutoring, at a roughly one to two
ratio of random data to real data, the effect does not seem
to scale to heavier tutoring. Figure 2c shows minimal
difference in guessing accuracy when tutoring is used,
and regardless of whether it is light or heavy.

Backwards vs. Forwards Training As described in
Section 3.2, processing input backwards rather than for-
wards can be more effective in some applications of
neural networks [48]. We experiment with guessing
passwords backwards, forwards, and using a hybrid ap-
proach where half of the network examines passwords
forwards and the other half backwards. We observed
only marginal differences overall. At the point of great-
est difference, near 109 guesses, the hybrid approach
guessed 17.2% of the test set, backwards guessed 16.4%
of the test set and forwards guessed 15.1% of the test set.
Figure 4a shows the result of this experiment. Since the
hybrid approach increases the amount of time required to
train with only small improvement in accuracy, for other
experiments we use backwards training.

Recurrent Architectures We experimented with two
different types of recurrent neural-network architectures:
long short-term memory (LSTM) models [54] and a re-
finement on LSTM models [58]. We found that this
choice had little effect on the overall output of the net-
work, with the refined LSTM model being slightly more
accurate, as shown in Figure 4c.

5.2 Guessing Effectiveness
Compared to other individual password-guessing meth-
ods, we find that neural networks are better at guessing
passwords at a higher number of guesses and when tar-
geting more complex or longer password policies, like
our 4class8, 1class16, and 3class12 data sets. For exam-
ple, as shown in Figure 5b, neural networks guessed 70%
of 4class8 passwords by 1015 guesses, while the next best
performing guessing method guesses 57%.

Models differ in how effectively they guess specific
passwords. MinGuess, shown in Figure 5, represents an
idealized guessing approach in which a password is con-
sidered guessed as soon as it is guessed by any of our

10

USENIX Association 25th USENIX Security Symposium 185

Backwards
ForwardsHybrid

0%

25%

50%

75%

100%

101 103 105 107 109 10111013101510171019102110231025

Guesses

Pe
rc

en
t g

ue
ss

ed

(a) Training direction.

NoTokenization
Tokenization

0%

2%

4%

6%

8%

10%

101 103 105 107

Guesses

Pe
rc

en
t g

ue
ss

ed

(b) Tokenization on long passwords.

LSTMLSTMRefine

0%

25%

50%

75%

100%

101 103 105 107 109 10111013101510171019102110231025

Guesses

Pe
rc

en
t g

ue
ss

ed

(c) LSTM vs. refined LSTM.

Figure 4: Additional tuning experiments. Our LSTM experiments tested on complex passwords with 16M parameters. We found
very little difference in performance. Our experiments on tokenization examined long passwords. Our experiments on training
direction involved training backwards, forwards, and both backwards and forwards with 16M parameters on complex passwords.

guessing approaches, including neural networks, Markov
models, PCFG, JtR, and Hashcat. That MinGuess out-
performs neural networks suggests that using multiple
guessing methods should still be preferred to using any
single guessing method for accurate strength estimation,
despite the fact that neural networks generally outper-
form other models individually.

For all the password sets we tested, neural networks
outperformed other models beginning at around 1010

guesses, and matched or beat the other most effective
methods before that point. Figures 5-6 show the per-
formance of the different guessing methods trained with
the PGS data set, and Figures 7-8 show the same guess-
ing methods trained with the PGS++ data set. Both data
sets are described in more detail in Section 4.1. In this
section, we used our large, 15.7 million parameter neu-
ral network, trained with transference learning on two
training sets. While performance varies across guessing
method and training set, in general we find that the neural
networks’ performance at high guess numbers and across
policies holds for both sets of training data with one ex-
ception, discussed below. Because these results hold for
multiple training and test sets, we hypothesize that neu-
ral networks would also performe well in guessing pass-
words created under many policies that we did not test.

In the webhost test set using the PGS++ training data,
neural networks performed worse than other methods.
For webhost, all guessing methods using the PGS++ data
set were less effective than the PGS data set, though
some methods, such as PCFG, were only slightly af-
fected. Because all methods perform worse, and because,
when using the PGS training data, neural networks do
better than other methods—similar to other test sets—
we believe that the PGS++ training data is particularly
ineffective for this test set. As Figure 3 shows, this is the
only data set where a smaller neural network performs
significantly better than the larger neural network, which
suggests that the larger neural network model is fitting
itself more strictly to low-quality data, which limits the
larger network’s ability to generalize.

Qualitatively, the types of passwords that our imple-
mentation of neural networks guessed before other meth-
ods were novel passwords that were dissimilar to pass-
words in the training set. The types of passwords that our
implementation of neural networks were late to guess but
that were easily guessable by other methods often were
similar to words in the natural-language dictionaries, or
were low-frequency occurrences in the training data.

Resource Requirements In general, PCFGs require
the most disk, memory, and computational resources.
Our PCFG implementation stored its grammar in 4.7GB
of disk space. Markov models are the second largest
of our implementations, requiring 1.1GB of disk space.
Hashcat and JtR do not require large amounts of space
for their rules, but do require storing the entire training
set, which is 756MB. In contrast, our server-side neural
network requires only 60MB of disk space. While 60MB
is still larger than what could effectively be transferred to
a client without compression, it is a substantial improve-
ment over the other models.

5.3 Browser Implementation
While effective models can fit into 60MB, this is still too
large for real-time password feedback in the browser. In
this section, we evaluate our techniques for compress-
ing neural network models, discussed in Section 3.3, by
comparing the guessing effectiveness of the compressed
models to all server-side models—our large neural net-
work, PCFG, Markov models, JtR, and Hashcat.

Model Encoding Our primary size metric is the gzip-
ed model size. Our compression stages use the JSON for-
mat because of its native support in JavaScript platforms.
We explored using the MsgPack binary format [4], but
found that after gzip compression, there was no bene-
fit for encoding size and minor drawbacks for decoding
speed. The effects of different pipeline stages on com-
pression are shown in Table 1.

11

186 25th USENIX Security Symposium USENIX Association

Hashcat
JTR

Markov
MinGuess
Neural
PCFG

0%

30%

60%

90%

101 104 107 101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

(a) 1class8 passwords

Hashcat
JTR

Markov

MinGuess
Neural

PCFG

0%

25%

50%

75%

100%

101 104 107 101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

(b) 4class8 passwords

Hashcat
JTR

Markov

MinGuess
Neural

PCFG

0%

25%

50%

75%

101 104 107 101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

(c) 1class16 passwords

Figure 5: Guessability of our password sets for different
guessing methods using the PGS data set. MinGuess stands
for the minimum number of guesses for any approach. Y-axes
are differently scaled to best show comparative performance.

Weight and Probability Curve Quantization Be-
cause current methods of calculating guess numbers
from probabilities are too slow, taking hours or days to
return results, we precompute a mapping from password
probability to guess number and send the mapping to the
client, as described in Section 3.3.2. Such a mapping
can be efficiently encoded by quantizing the probability-
to-guess-number curve. Quantizing the curve incurs safe
errors—i.e., we underestimate the strength of passwords.

Hashcat
JTR

Markov

MinGuess
Neural

PCFG

0%

25%

50%

75%

101 104 107 101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

(a) 3class12 passwords

Hashcat
JTR

Markov

MinGuess
Neural

PCFG

0%

25%

50%

75%

100%

101 104 107 101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

(b) Webhost passwords

Figure 6: Guessability of our password sets for different
guessing methods using the PGS data set (continued).

We also quantize the model’s parameters in the browser
implementation to further decrease the size of the model.
Both weight and curve quantization are lossy operations,
whose effect on guessing we show in Figure 9. Curve
quantization manifests in a saw-tooth shape to the guess-
ing curve, but the overall shape of the guessing curve is
largely unchanged.

Evaluating Feedback Speed Despite the large amount
of computation necessary for computing a password’s
guessability, our prototype implementation is efficient
enough to give real-time user feedback. In general,
feedback quicker than 100 ms is perceived as instanta-
neous [72]; hence, this was our benchmark. We per-
formed two tests to measure the speed of calculating
guess numbers: the first measures the time to produce
guess numbers with a semi-cached password; the second
computes the total time per password. The semi-cached
test measures the time to compute a guess number when
adding a character to the end of a password. We believe
this is representative of what a user would experience in
practice because a user typically creates a password by
typing it in character by character.

12

USENIX Association 25th USENIX Security Symposium 187

325 11 0 0 0 0
358 629 97 12 1 0

9 421 531 32 4 0
2 43 223 135 4 2
1 10 5 60 36 1
0 0 0 3 12 31

>1e0

>1e4

>1e8

>1e12

>1e16

>1e20

>1e0 >1e4 >1e8 >1e12 >1e16 >1e20
Neural Network Guess Number

M
in

G
ue

ss
 N

um
be

r

(a) Client-side Neural Network

252 84 0 0 0 0
79 835 180 3 0 0
3 430 555 9 0 0
0 54 325 29 1 0
0 6 66 38 3 0
0 0 9 21 13 3

>1e0

>1e4

>1e8

>1e12

>1e16

>1e20

>1e0 >1e4 >1e8 >1e12 >1e16 >1e20
ZXCVBN Guess Number

M
in

G
ue

ss
 N

um
be

r

(b) zxcvbn

10 156 196 6 0
0 177 791 96 2
0 96 721 196 8
0 1 236 173 7
0 0 28 65 18
0 0 0 18 27

>1e0

>1e4

>1e8

>1e12

>1e16

>1e20

Weakest Weaker Weak Strong Stronger
Yahoo Meter Strength

M
in

G
ue

ss
 N

um
be

r

(c) Yahoo!

Figure 10: Client-side guess numbers compared to the minimum guess number of all server-side methods. The number in
the bin represents the number of passwords in that bin. For example, neural networks rated 358 passwords as being guessed with
between 100 and 104 guesses, while server-side approaches rate them as taking between 104 and 108 guesses. The test passwords
are our 1class8 set. The Yahoo! meter does not provide guess numbers and, as such, has a different x-axis. Overestimates of strength
are shown in shades of red, underestimates in shades of purple, and accurate estimates in shades of green. Color intensity rises with
the number of passwords in a bin.

Pipeline stage Size gzip-ed Size
Original JSON format 6.9M 2.4M
Quantization 4.1M 716K
Fixed point 3.1M 668K
ZigZag encoding 3.0M 664K
Removing spaces 2.4M 640K

Table 1: The effect of different pipeline stages on model size.
This table shows the small model that targets the 1class8 pass-
word policy, with 682,851 parameters. Each stage includes the
previous stage, e.g., the fixed-point stage includes the quanti-
zation stage. We use gzip at the highest compression level.

Total Unsafe

1c
la

ss
8 Neural Network 1311 164

zxcvbn 1331 270
Yahoo! 1900 984

4c
la

ss
8 Neural Network 1826 115

zxcvbn 1853 231
Yahoo! 1328 647

Table 2: The number of total and unsafe misclassifications
for different client-side meters. Because the Yahoo! meter
provides different binning, we pre-process its output for fairer
comparison, as described in Section 5.3.

We perform both tests on a laptop running OSX with a
2.7 GHz i7 processor and using the Chrome web browser
(version 48). We randomly selected a subset of 500 pass-
words from our 1class8 training set for these tests. In the
semi-cached test, the average time to compute a guess
number is 17 ms (stdev: 4 ms); in the full-password test,
the average time is 124 ms (stdev: 48 ms). However,
both the semi-cached test and the uncached test perform
fast enough to give quick feedback to users.

Comparison to Other Password Meters We com-
pared the accuracy of our client-side neural network im-
plementation to other client-side password-strength es-

timators. Approximations of password strength can be
under- or overestimates. We call overestimates of pass-
word strength unsafe errors, since they represent pass-
words as harder to guess than they actually are. We show
that our meter can more precisely measure passwords’
resistance to guessing with up to half as many unsafe er-
rors as existing client-side models, which are based on
heuristics. Our ground truth for this section is the ideal-
ized MinGuess method, described in Section 5.2.

Prior work found nearly all proactive password-
strength estimators to be inconsistent and to poorly es-
timate passwords’ resistance to guessing [33]. The
most promising estimator was Dropbox’s zxcvbn me-
ter [94, 95], which relies on hand-crafted heuristics, sta-
tistical methods, and plaintext dictionaries as training
data to estimate guess numbers. Notably, these plain-
text dictionaries are not the same as those used for our
training data, limiting our ability to fully generalize from
these comparisons. Exploring other ways of configur-
ing zxcvbn is beyond the scope of this evaluation. We
compare our results to both zxcvbn and the Yahoo! me-
ter, which is an example of using far less sophisticated
heuristics to estimate password strength.

The Yahoo! meter does not produce guess numbers
but bins passwords as weakest, weaker, weak, strong,
and stronger. We ignore the semantic values of the bin
names, and examine the accuracy with which the me-
ter classified passwords with different guess numbers (as
computed by the MinGuess of all guessing methods) into
the five bins. To compare the Yahoo! meter to our mini-
mum guess number (Table 2), we take the median actual
guess number of each bin (e.g., the “weaker” bin) and
then map the minimum guess number for each password
to the bin that it is closest to on a log scale. For exam-
ple, in the Yahoo! meter, the guess number of 5.4 · 104

is the median of the “weaker” bin; any password closer
to 5.4 · 104 than to the medians of other bins on a log
scale we consider as belonging in the “weaker” bin. We
intend for this to be an overestimate of the accuracy of

13

188 25th USENIX Security Symposium USENIX Association

Hashcat
JTR

Markov
MinGuess
Neural
PCFG

0%

30%

60%

90%

101 104 107101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

(a) 1class8 passwords

Hashcat
JTR

Markov

MinGuess
Neural

PCFG

0%

25%

50%

75%

100%

101 104 107 101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

(b) 4class8 passwords

Hashcat
JTR

Markov

MinGuess
Neural

PCFG

0%

25%

50%

75%

101 104 107 101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

(c) 1class16 passwords

Figure 7: Guessability of our password sets for different
guessing methods using the PGS++ data set. MinGuess
stands for the minimum number of guesses for any approach.

the Yahoo! meter. Nonetheless, both our work and prior
work [33] find the Yahoo! meter to be less accurate than
other approaches, including the zxcvbn meter.

We find that our client-side neural network approach
is more accurate than the other approaches we test, with
up to two times fewer unsafe errors and comparable safe
errors, as shown in Figure 10 and Table 2. Here, we used
our neural network meter implementation with the tun-
ing described in Section 3.4. We performed the 1class8

Hashcat
JTR

Markov

MinGuess
Neural

PCFG

0%

25%

50%

75%

101 104 107 101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

(a) 3class12 passwords

Hashcat
JTR

Markov

MinGuess
Neural

PCFG

0%

25%

50%

75%

100%

101 104 107 101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

(b) Webhost passwords

Figure 8: Guessability of our password sets for different
guessing methods using the PGS++ data set (continued).

test with the client-side Bloom filter, described in Sec-
tion 3.3.1, while the 4class8 test did not use the Bloom
filter because it did not significantly impact accuracy.
Both tests scale the network output down by a factor
of 300 and ignore case to give more conservative guess
numbers. We chose the scaling factor to tune the net-
work to make about as many safe errors as zxcvbn. In
addition, we find that, compared to our neural network
implementation, the zxcvbn meter’s errors are often at
very low guess numbers, which can be particularly un-
safe. For example, for the 10,000 most likely passwords,
zxcvbn makes 84 unsafe errors, while our neural net-
work only makes 11 unsafe errors.

Besides being more accurate, we believe the neural
network approach is easier to apply to other password
policies. The best existing meter, zxcvbn, is hand-
crafted to target one specific password policy. On the
other hand, neural networks enable easy retargeting to
other policies simply by retraining.

14

USENIX Association 25th USENIX Security Symposium 189

Browser
Server

0%

25%

50%

75%

100%

101 104 107 101010131016101910221025

Guesses

Pe
rc

en
t g

ue
ss

ed

Figure 9: Compressed browser neural network with weight
and curve quantization compared an unquantized network.
Browser is our browser network with weight and curve quanti-
zation. Server is the same small neural network without weight
and curve quantization.

6 Conclusion

This paper describes how to use neural networks to
model human-chosen passwords and measure pass-
word strength. We show how to build and train neu-
ral networks that outperform state-of-the-art password-
guessing approaches in efficiency and effectiveness, par-
ticularly for non-traditional password policies and at
guess numbers above 1010. We also demonstrate how to
compress neural network password models so that they
can be downloaded as part of a web page. This makes
it possible to build client-side password meters that pro-
vide a good measure of password strength.

Tuning neural networks for password guessing and de-
veloping accurate client-side password-strength metrics
both remain fertile research grounds. Prior work has used
neural networks to learn the output of a larger ensemble
of models [24] and obtained better results than our net-
work tutoring (Section 5.1). Other work achieves higher
compression ratios for neural networks than we do by
using matrix factorization or specialized training meth-
ods [51, 96]. Further experiments on leveraging natural
language, tokenized models, or other neural-networks ar-
chitectures might allow passwords to be guessed more
effectively. While we measured client-side strength met-
rics based on guessing effectiveness, a remaining chal-
lenge is giving user-interpretable advice to improve pass-
words during password creation.

7 Acknowledgements

We would like to thank Mahmood Sharif for participating
in discussions about neural networks and Dan Wheeler
for his feedback. This work was supported in part by
gifts from the PNC Center for Financial Services Inno-
vation, Microsoft Research, and John & Claire Bertucci.

References
[1] CSDN password leak. http://thepasswordproject.com/

leaked password lists and dictionaries.

[2] Faith writer leak. https://wiki.skullsecurity.org/
Passwords#Leaked passwords.

[3] Hak5 leak. https://wiki.skullsecurity.org/
Passwords#Leaked passwords.

[4] Msgpack: It’s like JSON but fast and small. http://

msgpack.org/index.html.

[5] Neocortex Github repository. https://github.com/
scienceai/neocortex.

[6] Perl monks password leak. http://news.softpedia.com/
news/PerlMonks-ZF0-Hack-Has-Wider-Implications-

118225.shtml.

[7] Phpbb password leak. https://wiki.skullsecurity.org/
Passwords.

[8] Protocol buffer encoding. https://developers.google.com/
protocol-buffers/docs/encoding.

[9] Stratfor leak. http://thepasswordproject.com/
leaked password lists and dictionaries.

[10] Using Web workers. https://developer.mozilla.org/en-
US/docs/Web/API/Web Workers API/Using web workers.
Accessed:Feb 2016.

[11] The “web2” file of English words. http://www.bee-man.us/
computer/grep/grep.htm#web2, 2004.

[12] Password leaks: Elitehacker. https://

wiki.skullsecurity.org/Passwords, 2009.

[13] Password leaks: Alypaa. https://wiki.skullsecurity.org/
Passwords, 2010.

[14] Specialforces.com password leak. http://

www.databreaches.net/update-specialforces-com-
hackers-acquired-8000-credit-card-numbers/, 2011.

[15] YouPorn password leak, 2012.
http://thepasswordproject.com/
leaked password lists and dictionaries.

[16] WOM Vegas password leak, 2013. https://

www.hackread.com/wom-vegas-breached-10000-user-
accounts-leaked-by-darkweb-goons/.

[17] BASTIEN, F., LAMBLIN, P., PASCANU, R., BERGSTRA, J.,
GOODFELLOW, I. J., BERGERON, A., BOUCHARD, N., AND
BENGIO, Y. Theano: New features and speed improvements. In
Proc. NIPS 2012 Deep Learning workshop (2012).

[18] BERGSTRA, J., BREULEUX, O., BASTIEN, F., LAMBLIN,
P., PASCANU, R., DESJARDINS, G., TURIAN, J., WARDE-
FARLEY, D., AND BENGIO, Y. Theano: A CPU and GPU math
expression compiler. In Proc. SciPy (2010).

[19] BISHOP, M., AND KLEIN, D. V. Improving system security
via proactive password checking. Computers & Security 14, 3
(1995), 233–249.

[20] BONNEAU, J. The Gawker hack: How a million passwords
were lost. Light Blue Touchpaper Blog, December 2010. http:
//www.lightbluetouchpaper.org/2010/12/15/the-
gawker-hack-how-a-million-passwords-were-lost/.

[21] BONNEAU, J. The science of guessing: Analyzing an
anonymized corpus of 70 million passwords. In Proc. IEEE
Symp. Security & Privacy (2012).

[22] BONNEAU, J. Statistical metrics for individual password
strength. In Proc. WPS (2012).

15

190 25th USENIX Security Symposium USENIX Association

[23] BRODKIN, J. 10 (or so) of the worst passwords ex-
posed by the LinkedIn hack. Ars Technica, June 6, 2012.
http://arstechnica.com/security/2012/06/10-
or-so-of-the-worst-passwords-exposed-by-the-

linkedin-hack/.

[24] BUCILUĂ, C., CARUANA, R., AND NICULESCU-MIZIL, A.
Model compression. In Proc. KDD (2006).

[25] BURNETT, M. Xato password set. https://xato.net/.

[26] CASTELLUCCIA, C., DÜRMUTH, M., AND PERITO, D. Adap-
tive password-strength meters from Markov models. In Proc.
NDSS (2012).

[27] CHANG, J. M. Passwords and email addresses leaked
in Kickstarter hack attack. ABC News, Feb 17, 2014.
http://abcnews.go.com/Technology/passwords-email-
addresses-leaked-kickstarter-hack/story?id=

22553952.

[28] CHOLLET, F. Keras Github repository. https://github.com/
fchollet/keras.

[29] CHUN, W. WebGL Models: End-to-End. In OpenGL Insights.
2012.

[30] CIARAMELLA, A., D’ARCO, P., DE SANTIS, A., GALDI, C.,
AND TAGLIAFERRI, R. Neural network techniques for proactive
password checking. IEEE TDSC 3, 4 (2006), 327–339.

[31] CLERCQ, J. D. Resetting the password of the KRBTGT active
directory account, 2014. http://windowsitpro.com/
security/resetting-password-krbtgt-active-

directory-account.

[32] DAS, A., BONNEAU, J., CAESAR, M., BORISOV, N., AND
WANG, X. The tangled web of password reuse. In Proc. NDSS
(2014).

[33] DE CARNÉ DE CARNAVALET, X., AND MANNAN, M. From
very weak to very strong: Analyzing password-strength meters.
In Proc. NDSS (2014).

[34] DELL’AMICO, M., AND FILIPPONE, M. Monte Carlo strength
evaluation: Fast and reliable password checking. In Proc. CCS
(2015).

[35] DELL’AMICO, M., MICHIARDI, P., AND ROUDIER, Y. Pass-
word strength: An empirical analysis. In Proc. INFOCOM
(2010).

[36] DUCKETT, C. Login duplication allows 20m Alibaba
accounts to be attacked. ZDNet, February 5, 2016.
http://www.zdnet.com/article/login-duplication-
allows-20m-alibaba-accounts-to-be-attacked/.

[37] DÜRMUTH, M., ANGELSTORF, F., CASTELLUCCIA, C., PER-
ITO, D., AND CHAABANE, A. OMEN: Faster password guessing
using an ordered markov enumerator. In Proc. ESSoS (2015).

[38] FAHL, S., HARBACH, M., ACAR, Y., AND SMITH, M. On the
ecological validity of a password study. In Proc. SOUPS (2013).

[39] FLORÊNCIO, D., HERLEY, C., AND VAN OORSCHOT, P. C.
An administrator’s guide to internet password research. In Proc.
USENIX LISA (2014).

[40] FOX-BREWSTER, T. 13 million passwords appear to have
leaked from this free web host. Forbes, October 28,
2015. http://www.forbes.com/sites/thomasbrewster/
2015/10/28/000webhost-database-leak/.

[41] GAILLY, J.-L. gzip. http://www.gzip.org/.

[42] GOODIN, D. 10,000 Hotmail passwords myste-
riously leaked to web. The Register, October 5,
2009. http://www.theregister.co.uk/2009/10/05/
hotmail passwords leaked/.

[43] GOODIN, D. Hackers expose 453,000 credentials al-
legedly taken from Yahoo service. Ars Technica, July
12, 2012. http://arstechnica.com/security/2012/07/
yahoo-service-hacked/.

[44] GOODIN, D. Anatomy of a hack: How crackers ransack
passwords like “qeadzcwrsfxv1331”. Ars Technica, May
27, 2013. http://arstechnica.com/security/2013/
05/how-crackers-make-minced-meat-out-of-your-

passwords/.

[45] GOODIN, D. Why LivingSocial’s 50-million password breach
is graver than you may think. Ars Technica, April 27, 2013.
http://arstechnica.com/security/2013/04/why-
livingsocials-50-million-password-breach-is-

graver-than-you-may-think/.

[46] GOODIN, D. Once seen as bulletproof, 11 million+ Ashley
Madison passwords already cracked. Ars Technica, September
10, 2015. http://arstechnica.com/security/2015/
09/once-seen-as-bulletproof-11-million-ashley-

madison-passwords-already-cracked/.

[47] GOOGLE. Web 1T 5-gram version 1,
2006. http://www.ldc.upenn.edu/Catalog/
CatalogEntry.jsp?catalogId=LDC2006T13.

[48] GRAVES, A. Supervised Sequence Labelling with Recurrent Neu-
ral Networks. Springer, 2012.

[49] GRAVES, A. Generating sequences with recurrent neural net-
works. arXiv preprint arXiv:1308.0850, 2013.

[50] GREENBERG, A. The police tool that pervs use to steal nude
pics from Apple’s iCloud. Wired, September 2, 2014. https:

//www.wired.com/2014/09/eppb-icloud/.

[51] HAN, S., MAO, H., AND DALLY, W. J. A deep neural network
compression pipeline: Pruning, quantization, Huffman encoding.
arXiv preprint arXiv:1510.00149, 2015.

[52] HENRY, A. Five best password managers. LifeHacker, January
11, 2015. http://lifehacker.com/5529133/.

[53] HERLEY, C., AND VAN OORSCHOT, P. A research agenda ac-
knowledging the persistence of passwords. IEEE Security & Pri-
vacy Magazine 10, 1 (Jan. 2012), 28–36.

[54] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term
memory. Neural computation 9, 8 (1997), 1735–1780.

[55] HUNT, T. A brief Sony password analysis. http:

//www.troyhunt.com/2011/06/brief-sony-password-
analysis.html, 2011.

[56] HUYNH, T. ABC Australia hacked nearly 50,000 user creden-
tials posted online, half cracked in 45 secs. Techgeek, February
27, 2013. http://techgeek.com.au/2013/02/27/abc-
australia-hacked-nearly-50000-user-credentials-

posted-online/.

[57] JOHNSTONE, L. 9,885 user accounts leaked from Intercessors for
America by Anonymous. http://www.cyberwarnews.info/
2013/07/24/9885-user-accounts-leaked-from-

intercessors-for-america-by-anonymous/, 2013.

[58] JOZEFOWICZ, R., ZAREMBA, W., AND SUTSKEVER, I. An
empirical exploration of recurrent network architectures. In Proc.
ICML (2015).

[59] KELLEY, P. G., KOMANDURI, S., MAZUREK, M. L., SHAY,
R., VIDAS, T., BAUER, L., CHRISTIN, N., CRANOR, L. F.,
AND LOPEZ, J. Guess again (and again and again): Measuring
password strength by simulating password-cracking algorithms.
In Proc. IEEE Symp. Security & Privacy (2012).

[60] KOMANDURI, S. Modeling the adversary to evaluate password
strengh with limited samples. PhD thesis, Carnegie Mellon Uni-
versity, 2016.

16

USENIX Association 25th USENIX Security Symposium 191

[61] KOMANDURI, S., SHAY, R., CRANOR, L. F., HERLEY, C., AND
SCHECHTER, S. Telepathwords: Preventing weak passwords by
reading users’ minds. In Proc. USENIX Security (2014).

[62] KREBS, B. Fraud bazaar carders.cc hacked. http:

//krebsonsecurity.com/2010/05/fraud-bazaar-
carders-cc-hacked/.

[63] LEE, M. Hackers have released what they claim
are the details of over 21,000 user accounts belong-
ing to Billabong customers. ZDNet, July 13, 2012.
http://www.zdnet.com/article/over-21000-plain-
text-passwords-stolen-from-billabong/.

[64] LOWERRE, B. T. The HARPY speech recognition system. PhD
thesis, Carnegie Mellon University, 1976.

[65] MA, J., YANG, W., LUO, M., AND LI, N. A study of probabilis-
tic password models. In Proc. IEEE Symp. Security & Privacy
(2014).

[66] MAZUREK, M. L., KOMANDURI, S., VIDAS, T., BAUER, L.,
CHRISTIN, N., CRANOR, L. F., KELLEY, P. G., SHAY, R., AND
UR, B. Measuring password guessability for an entire university.
In Proc. CCS (2013).

[67] MCALLISTER, N. Twitter breach leaks emails, passwords of
250,000 users. The Register, Feb 2, 2013.

[68] MIKOLOV, T., SUTSKEVER, I., DEORAS, A., LE, H.-S., KOM-
BRINK, S., AND CERNOCKY, J. Subword language modeling
with neural networks. Preprint (http://www.fit.vutbr.cz/
~imikolov/rnnlm/char.pdf), 2012.

[69] MITZENMACHER, M. Compressed Bloom filters. IEEE/ACM
Transactions on Networking (TON) 10, 5 (2002), 604–612.

[70] NARAYANAN, A., AND SHMATIKOV, V. Fast dictionary attacks
on passwords using time-space tradeoff. In Proc. CCS (2005).

[71] NEEF, S. Using neural networks for password cracking.
Blog post. https://0day.work/using-neural-networks-
for-password-cracking/, 2016.

[72] NIELSEN, J., AND HACKOS, J. T. Usability engineering,
vol. 125184069. Academic press Boston, 1993.

[73] PERLROTH, N. Adobe hacking attack was bigger than previously
thought. The New York Times Bits Blog, October 29, 2013. http:
//bits.blogs.nytimes.com/2013/10/29/adobe-online-
attack-was-bigger-than-previously-thought/.

[74] PESLYAK, A. John the Ripper. http://www.openwall.com/
john/, 1996-.

[75] PROTALINSKI, E. 8.24 million Gamigo passwords
leaked after hack. ZDNet, July 23, 2012. http:

//www.zdnet.com/article/8-24-million-gamigo-
passwords-leaked-after-hack/.

[76] RAGAN, S. Mozilla’s bug tracking portal compromised, reused
passwords to blame. CSO, September 4, 2015. http://

www.csoonline.com/article/2980758/.

[77] SCHNEIER, B. Myspace passwords aren’t so dumb. http:

//www.wired.com/politics/security/commentary/
securitymatters/2006/12/72300, 2006.

[78] SCOWL. Spell checker oriented word lists. http://

wordlist.sourceforge.net, 2015.

[79] SHAY, R., BAUER, L., CHRISTIN, N., CRANOR, L. F., FOR-
GET, A., KOMANDURI, S., MAZUREK, M. L., MELICHER, W.,
SEGRETI, S. M., AND UR, B. A spoonful of sugar? The im-
pact of guidance and feedback on password-creation behavior. In
Proc. CHI (2015).

[80] SHAY, R., KOMANDURI, S., DURITY, A. L., HUH, P. S.,
MAZUREK, M. L., SEGRETI, S. M., UR, B., BAUER, L.,
CHRISTIN, N., AND CRANOR, L. F. Can long passwords be
secure and usable? In Proc. CHI (2014).

[81] SONG, D. X., WAGNER, D., AND TIAN, X. Timing analysis of
keystrokes and timing attacks on SSH. In Proc. USENIX Security
Symposium (2001).

[82] SPIDEROAK. Zero knowledge cloud solutions. https://

spideroak.com/, 2016.

[83] STEUBE, J. Hashcat. https://hashcat.net/oclhashcat/,
2009-.

[84] SUTSKEVER, I., MARTENS, J., AND HINTON, G. E. Generating
text with recurrent neural networks. In Proc. ICML (2011).

[85] TRUSTWAVE. eHarmony password dump analysis, June
2012. http://blog.spiderlabs.com/2012/06/eharmony-
password-dump-analysis.html.

[86] TRUSTWAVE SPIDERLABS. SpiderLabs/KoreLogic-Rules.
https://github.com/SpiderLabs/KoreLogic-Rules,
2012.

[87] TSUKAYAMA, H. Evernote hacked; millions must
change passwords. Washington Post, March 4, 2013.
https://www.washingtonpost.com/8279306c-84c7-
11e2-98a3-b3db6b9ac586 story.html.

[88] UR, B., KELLEY, P. G., KOMANDURI, S., LEE, J., MAASS,
M., MAZUREK, M., PASSARO, T., SHAY, R., VIDAS, T.,
BAUER, L., CHRISTIN, N., AND CRANOR, L. F. How does your
password measure up? The effect of strength meters on password
creation. In Proc. USENIX Security (2012).

[89] UR, B., SEGRETI, S. M., BAUER, L., CHRISTIN, N., CRANOR,
L. F., KOMANDURI, S., KURILOVA, D., MAZUREK, M. L.,
MELICHER, W., AND SHAY, R. Measuring real-world accu-
racies and biases in modeling password guessability. In Proc.
USENIX Security (2015).

[90] VANCE, A. If your password is 123456, just make it hackme.
New York Times, January 20, 2010. http://www.nytimes.com/
2010/01/21/technology/21password.html.

[91] VERAS, R., COLLINS, C., AND THORPE, J. On the semantic
patterns of passwords and their security impact. In Proc. NDSS
(2014).

[92] WEIR, M., AGGARWAL, S., COLLINS, M., AND STERN, H.
Testing metrics for password creation policies by attacking large
sets of revealed passwords. In Proc. CCS (2010).

[93] WEIR, M., AGGARWAL, S., MEDEIROS, B. D., AND GLODEK,
B. Password cracking using probabilistic context-free grammars.
In Proc. IEEE Symp. Security & Privacy (2009).

[94] WHEELER, D. zxcvbn: Realistic password strength estimation.
https://blogs.dropbox.com/tech/2012/04/zxcvbn-
realistic-password-strength-estimation/, 2012.

[95] WHEELER, D. L. zxcvbn: Low-budget password strength esti-
mation. In Proc. USENIX Security (2016).

[96] XUE, J., LI, J., YU, D., SELTZER, M., AND GONG, Y. Singular
value decomposition based low-footprint speaker adaptation and
personalization for deep neural network. In Proc. ICASSP (2014).

[97] YOSINSKI, J., CLUNE, J., BENGIO, Y., AND LIPSON, H. How
transferable are features in deep neural networks? In Proc. NIPS
(2014).

17

USENIX Association 25th USENIX Security Symposium 193

An Empirical Study of Textual Key-Fingerprint Representations

Sergej Dechand
USECAP, University of Bonn

Dominik Schürmann
IBR, TU Braunschweig

Karoline Busse
USECAP, University of Bonn

Yasemin Acar
CISPA, Saarland University

Sascha Fahl
CISPA, Saarland University

Matthew Smith
USECAP, University of Bonn

Abstract

Many security protocols still rely on manual fingerprint
comparisons for authentication. The most well-known
and widely used key-fingerprint representation are hexa-
decimal strings as used in various security tools. With
the introduction of end-to-end security in WhatsApp and
other messengers, the discussion on how to best repre-
sent key-fingerprints for users is receiving a lot of inter-
est.

We conduct a 1047 participant study evaluating six
different textual key-fingerprint representations with re-
gards to their performance and usability. We focus on
textual fingerprints as the most robust and deployable
representation.

Our findings show that the currently used hexadeci-
mal representation is more prone to partial preimage at-
tacks in comparison to others. Based on our findings,
we make the recommendation that two alternative repre-
sentations should be adopted. The highest attack detec-
tion rate and best usability perception is achieved with a
sentence-based encoding. If language-based representa-
tions are not acceptable, a simple numeric approach still
outperforms the hexadecimal representation.

1 Introduction

Public key cryptography is a common method for au-
thentication in secure end-to-end communication and
has been a part of the Internet throughout the last two
decades [7, 11]. While security breaches have shown
that systems based on centralized trusted third parties
such as Certificate Authorities and Identity Based Private
Key Generators are prone to targeted attacks [42], decen-
tralized approaches such as Web of Trust and Namecoin
struggle with beeing adopted in practice due to usability
issues [7, 13, 30]. Certificate transparency systems, such
as CONIKS and others [24, 39, 27], aim to solve a subset
of these issues by providing an auditable directory of all

user keys. Still, manual key verification, i. e., the link be-
tween public keys and the entities, such as hostnames or
people, remains a challenging subject, especially in de-
centralized systems without pre-defined authorities, such
as SSH, OpenPGP, and secure messaging [12, 41].

Many traditional authentication systems still rely on
manual key-fingerprint comparisons [17]. Here, key-
fingerprints are generated by encoding the (hashed) pub-
lic key material into a human readable format, usually
encoded in hexadecimal representation. A variety of al-
ternatives such as QR Codes, visual fingerprints, Near
Field Communication (NFC), and Short Authentication
Strings (SAS) have been proposed. Most of these sys-
tems offer specific benefits, e. g., QR codes and NFC do
not require users to compare strings, but they also come
with specific disadvantages, e. g., they require hardware
and software support on all devices. While advances are
being made in these areas, the text-based representation
is still the dominant form in most applications.

However, due to the recent boom of secure messag-
ing tools, the debate of how to best represent and eval-
uate textual fingerprints has opened up again and there
are many very active discussions among security ex-
perts [28, 33]. In April 2016, WhatsApp serving over
one billion users enabled end-to-end encryption as de-
fault by implementing the Signal protocol. Key verifi-
cation is optional and can be done by using QR codes
or comparing numeric representations, in their case 60-
digit numbers [43]. However, it is not clear whether their
solution is more usable than traditional representations.

In this paper, we present an evaluation of different tex-
tual key-fingerprint representation schemes to aid in the
secure messenger discussion. The requirements posed to
the developers are as follows:

• The fingerprint representation scheme should pro-
vide offline support and work asynchronously. One
reason for this is that fingerprints are often printed
on business cards or exchanged by third parties.

194 25th USENIX Security Symposium USENIX Association

• The fingerprint should be transferable via audio
channels, e. g., it should be possible to compare fin-
gerprint over the phone.

• The representation scheme should be as technically
inclusive as possible. No special hardware or soft-
ware should be required to verify the fingerprints:
both require a concerted and coordinated effort be-
tween many actors to get enough coverage for a
comparison mechanism to be worthwhile for users
to adopt.

• The representation should be as inclusive as possi-
ble, i. e., excluding as few people with sensory im-
pairments (visual, color, audio, etc.) as possible.

The above requirements exclude many proposed rep-
resentation schemes and offer an explanation why they
have not seen any adoption outside of academia. For this
reason, we focus exclusively on textual fingerprint rep-
resentations in our study. Textual key-fingerprints do not
require hardware support and work in synchronous and
asynchronous scenarios, i. e., they can be compared via
voice or printed on business cards. Depending on the
scheme, they even could be recalled from memory and
exchanged over a voice channel.

This paper presents our study testing the usability of
various textual key-fingerprint representation schemes.
Our study consists of two parts: (1) an experiment where
we measured how fast and accurate participants perform
for different schemes, and (2) a survey about their per-
ception and sentiment. These also contained a direct
comparison between the representations.

Our findings suggest that the most adopted alphanu-
meric approaches such as the Hexadecimal and Base32
scheme perform worse than other alternatives: under a
realistic threat model, more than 10% of the users failed
to detect attacks targeting Hexadecimal representations,
whereas our best system had failure rates of less than 3%.
While the best system for accuracy is not the fastest, it
is the system which received the highest usability rating
and is preferred by users.

In the following sections, we discuss related work fol-
lowed by an analysis of current implementations deploy-
ing in-persona key-fingerprint representation techniques
and discuss our evaluated representation schemes. Then,
we describe our experiment evaluating text-based key-
fingerprint verification techniques with regards to their
attack-detection accuracy and speed. Our experiment
was conducted as an online study with 1047 participants
recruited via the Amazon Mechanical Turk (MTurk) plat-
form. We consider the scenario outlined above, where
a user compares two key-fingerprint strings encoded by
the different representation schemes. In addition to the
implicit measurements of accuracy and speed, we also

alice@localhost :~$ ssh alice@example.com

The authenticity of host ’example.com (93.184.216.34) ’

can ’t be established.

RSA key fingerprint is

6f:85:66: da:e3:7a:02:c6:5e:62:3f:36:b7:d9:b4:2c.

Are you sure you want to continue connecting (yes/no)?

(a) OpenSSH: Lowercase Hexadecimal with Colons

alice@localhost :~$ gpg --fingerprint Bob

pub 2048R/00012282 2015 -01 -01 [expires: 2020 -01 -01]

Key fingerprint =

73EE 2314 F65F A92E C239 0D3A 718C 0701 0001 2282

uid Bob <bob@example.com >

(b) GnuPG: Uppercase Hexadecimal with Spaces

Figure 1: Alphanumeric Fingerprints Used in Practice

evaluate the self-reported user perception to get feed-
back about which systems are preferred by end users.
Finally, we present our results, discuss their implications
and takeaways, and conclude our work.

2 Related Work

Various key-fingerprint representations have been pro-
posed in academia and industry. Various cryptographic
protocol implementations still rely on manual fingerprint
comparisons, while the hexadecimal representation is
used in most of them. However, previous work suggests
that fingerprint verifications are seldom done in prac-
tice [17, 37].

2.1 Key-Fingerprint Representations
Previous work has shown that users struggle with com-
paring long and seemingly “meaningless” fingerprints
and it is suspected that they even might perform poorly
in this task [19]. While most previous work has focused
on the family of visual fingerprints [35, 32, 19, 10], to
our knowledge, none of those focused on the differences
between various different textual fingerprint representa-
tions.

Hsiao et al. have conducted a study with some tex-
tual and visual representation methods for hash verifi-
cation [19]. They compared Base32 and simple word
list representations with various algorithms for visual
fingerprints and hash representation with Asian charac-
ter sets (a subset of Chinese, Japanese Hiragana, and
Korean Hangul, respectively). A within-subjects online
study with 436 participants revealed that visual finger-
prints score very well in both accuracy and speed, to-
gether with the Base32 text representation. Hsiao et al.
conclude that depending on the available computation
power and display size, either Base32 or one of the vi-
sual fingerprinting schemes should be used. They explic-
itly did not evaluate hexadecimal representation or digits

2

USENIX Association 25th USENIX Security Symposium 195

“because that scheme is similar to Base32 and known to
be error-prone” [19]. However, our work shows that nu-
meric representations actually perform significantly bet-
ter than Base32 and is less error prone. In addition, our
results suggest that language-based schemes, e. g., gen-
erated sentences achieve excellent results comparable to
visual schemes. At the same time, textual approaches are
more flexible (can be read out loud) and do not exclude
people with sensory impairments.

Another study by Olembo et al. also focused mainly
on the topic of visual fingerprints [32]. They devel-
oped a new family of visual fingerprints and compared
them against a Base32 representation. The Base32
strings were twelve characters long and displayed with-
out chunking. The participants performed better with
the visual fingerprints than with Base32, regarding both
accuracy and speed. Olembo et al. conclude that the
Base32 representation is far away from optimal when
it comes to manual key-fingerprint verification. We
test this claim by comparing Base32 representation with
other textual key-fingerprint representation and eventu-
ally prove it wrong.

Regarding chunking, Miller et al. have published The
magical number seven and succeeding work that shows
that most people can recall 7± 2 items from their mem-
ory span [29]. It has been shown that although there
are slight differences between numbers, letters and words
(numbers perform slightly better than letters, and letters
slightly better than words), they perform similar in stud-
ies. More recent studies have shown that human working
memory easily remembers up to 6 digits, 5.6 letters and
5.2 words [1, 6, 8]. Adjusting chunk sizes to these num-
bers can help users when comparing hashes.

While all of the above studies offer interesting insights
into different (mainly visual) fingerprint representations,
to the best of our knowledge there is not work focusing
on which textual representation performs the best. How-
ever, this knowledge would be extremely important to
help in the current debate in the secure messaging com-
munity. The representations currently being put forward
and implemented are far from optimal and the results of
our study can help improve the accuracy and usability of
fingerprint representations. Unlike the above studies we
conduct our study with a more realistic attacker strenth,
as presented in subsection 4.1).

2.2 Passwords and Passphrases

A passphrase is basically a password consisting of a se-
ries of words rather than characters. In academic lit-
erature, passphrases are often considered as a poten-
tially more memorable and more secure alternative to
passwords and are often recommended by system ad-
ministrators [23, 40]. In contrast to most passphrase-

Scheme Example

Hexadecimal 18e2 55fd b51b c808

601b ee5c 2d69

Base32 ddrf l7nv dpea

qya3 5zoc 22i

Numeric 2016 507 6420 1070 394

1136 2973 991 70

PGP

locale voyager waffle disable
Belfast performance slingshot Ohio
spearhead coherence hamlet liberty
reform hamburger

Peerio bates talking duke rummy slurps
iced farce pound day

Sentences Your line works for this kind power cruelly.
That lazy snow agrees upon our tall offer.

Table 1: Examples for different textual key-fingerprint repre-
sentations for the same hash value

based systems, key-fingerprints cannot be chosen by
the end-user and thus are more related to the system-
assigned passphrases field: Bonneau et al. have shown
that users are able to memorize 56-bit passwords [4].
miniLock1 and its commercial successor Peerio2 use
system-assigned passphrases to generate cryptographic
key pairs easing key backup and synchronization among
multiple devices.

Contrary to widespread expectations, Shay et al. were
not able to find any significant recall differences between
system-assigned passphrases and system-assigned pass-
words [40]. However, they reported reduced usability
due to longer submission times due to typing.

Similar to passphrases, the usage of language-based
key-fingerprint representations is claimed to provide bet-
ter memorability than just an arbitrary series of charac-
ter strings despite the lack of empirical evidence. In our
study, we measure the performance of the different ap-
proaches and also collect perception and feedback from
end users.

3 Background

In the past years, various textual key-fingerprint repre-
sentations have been proposed. In this section, we ana-
lyze currently practised in-persona key verification tech-
niques in well-known applications. For comparison, Ta-
ble 1 lists the approaches we used in our evaluation gen-
erated from the same hash value.

Only applications requiring manual key-fingerprint

1https://minilock.io
2https://peerio.com

3

196 25th USENIX Security Symposium USENIX Association

verification are considered. In mechanisms like S/MIME
or X.509, fingerprints play only a secondary role because
certificates are verified via certificate chains.

In the following, SHA-1(x)16 defines the execution of
16 rounds of nested SHA-1 on x, a truncation to the left-
most 16 bits is defined by x[0, . . . ,16], and pk is used as
an abbreviation for the values of a public key (differs for
RSA, DSA, or ECC).

3.1 Numeric
Numeric representation describes the notation of data us-
ing only numeric digits (0-9). The primary advantage of
a such system is that Arabic numerals are universally un-
derstood, and in addition, numeric key-fingerprints show
a similarity to phone numbers. The encoding is achieved
by splitting a binary hash into chunks of equal length
and expressing each chunk as a decimal number, e. g., by
simply switching the representation base from 2 to 10.

The messaging and data exchange application SafeS-
linger3 implements this as a fallback scheme for unsup-
ported languages [14]. A 24 bit SAS in SafeSlinger (cf.
Figure 2a) can be expressed by three decimal encoded
8-bit numbers.

In the messaging platform WhatsApp, a fingerprint
is calculated by SHA-256(pk)5200[0, . . . ,240]. This fin-
gerprint is split up into six chunks, where each chunk
is represented by a five digits long number modulo
100,000 [43]. Concatenating this fingerprint with the fin-
gerprint of the communication partner results in the dis-
played representation, e. g.,

77658 87428 72099 51303

34908 23247 95615 27317

09725 59699 62543 54320

3.2 Alphanumeric
Alphanumeric approaches use numbers and letters to
represent data. Depending on the representation type
and its parameters, the letters can be presented either
in lower-case or in upper-case. The string can be chun-
ked into groups of characters, which are usually of equal
length. Chunking does not alter the information con-
tained, while changing lower-case letters to upper-case
letters (and vice versa) may does, depending on the cod-
ing scheme. Commonly used representations are Hex-
adecimal, Base32, and Base64.

3.2.1 Hexadecimal

Hexadecimal digits use the letters A-F in addition to nu-
merical digits and are a common representation for key-
fingerprints and primarily used in SSH and OpenPGP.

3https://www.cylab.cmu.edu/safeslinger

Note that the case of the letters do not make any differ-
ence. Regarding chunking, both spaces (cf. Figure 1b)
and colons (cf. Figure 1a) are commonly used as separa-
tion characters.

Key fingerprints in OpenPGP version 4 are defined in
RFC 4880 [7] by

Hex(SHA-1(0x99‖ len‖4‖ creation time‖algo‖pk))

where len is the length of the packet, creation time is the
time the key has been created and algo is unique iden-
tifier for the public-key algorithm. While the inclusion
of creation time makes sure that even two keys with the
same key material have different fingerprints, it allows an
attacker to iterate through possible past times to generate
similar fingerprints skipping the key generation step [5].
The actual representation of OpenPGP fingerprints is not
defined in RFC 4880, but most implementations chose to
encode them in hexadecimal form, e. g., GnuPG displays
them uppercase in 16 bit blocks separated by whitespaces
with an additional whitespace after 5 blocks (cf. Fig-
ure 1b), e. g.,

73EE 2314 F65F A92E C239 0D3A 718C 0701 0001 2282

Other implementations, such as OpenKeychain, deviate
only slightly, for example by displaying them lowercase
or with colored letters to ease comparison but still pro-
vide compatibility with GnuPG.

SSH fingerprint strings, as defined in RFC 4716 and
RFC 4253 [15, 44], are calculated by

Hex(MD5(Base64(algo‖pk)))

where algo is a string indicating the algorithm, for ex-
ample “ssh-rsa”. Fingerprints are displayed as “hexadec-
imal with lowercase letters and separated by colons” [15]
(cf. Figure 1a), e. g.,

6f:85:66:da:e3:7a:02:c6:5e:62:3f:36:b7:d9:b4:2c

3.2.2 Base32

Base32 uses the Latin alphabet (A-Z) without the let-
ters O and I (due to the confusion with numbers 1 and
0). There is no difference between lower-case letters and
upper-case letters. In addition, a special padding char-
acter “=” is used, since the conversion algorithm pro-
cesses blocks of 40 bit (5 Byte) in size. The source string
is padded with zeroes to achieve a compatible length
and sections containing only zeroes are represented by
“=” [20, 21].

The ZRTP key exchange scheme for real-time ap-
plications is based on a Diffie-Hellman key exchange
extended by a preceding hash commitment that allows
for very short fingerprints, called Short Authentication

4

USENIX Association 25th USENIX Security Symposium 197

Strings (SAS) without compromising security [45]. The
Base32 encoding used in ZRTP uses a special alphabet
to produce strings that are easier to read out loud. VoIP
applications such as CSipSimple4 use this Base32 op-
tion, usually named “B32” inside the protocol. Here, the
leftmost 20 bits of the 32 bit SAS value are encoded as
Base32. , e. g.,

5 e m g

3.2.3 Base64

There exist a number of specifications for encoding data
into the Base64 format, which uses the Latin alphabet in
both lower-case and upper-case (a-z, A-Z) as well as the
digits 0-9 and the characters “+”, “/”, and “=” to repre-
sent text data. Again, the character “=” is used to encode
padded input [20]. Starting with OpenSSH 6.8 a new
fingerprint format has been introduced that uses SHA-
256 instead of MD5 and Base64 instead of hexadecimal
representation. In addition the utilized hash algorithm is
prepended, e. g.,

SHA256:mVPwvezndPv/ARoIadVY98vAC0g+P/5633yTC4d/wXE

3.3 Unrelated Words
Instead of (alpha)numeric representation, fingerprints
can be mapped to lists of words. Here, the binary rep-
resentation is split into chunks, where each possible
value of a chunk is assigned to a word in a dictionary.
To increase readability, such a dictionary usually con-
tains no pronouns, articles, prepositions and such. Word
lists, such as the PGP Word List [22] and the Basic En-
glish word list compiled by K.C. Ogden [31], are pri-
marily used for verification mechanisms based on SAS.
Key-Fingerprints represented by words have been imple-
mented for VoIP applications based on the ZRTP key
exchange and other real-time communication protocols.
Examples are Signal5, and the messaging and contact
sharing application SafeSlinger [14] (cf. Figure 2). Be-
sides their use in SAS based mechanisms, miniLock and
Peerio utilize unrelated words for passphrase generation.

An example for a modern VoIP implementation that
utilizes ZRTP for key exchange over Secure Real-Time
Transport Protocol (SRTP) is Signal’s private calling fea-
ture, previously distributed as Redphone. The devel-
opers chose to implement only a specific subset of the
ZRTP specification [45], namely Diffie-Hellmann key
exchange via P-256 elliptic curves using “B256” SASs,
i. e., Base256 encoding that maps to the leftmost 16 bits
of the 32 bit SAS values to the previously introduced
PGP Word List [22], e. g.,

4https://github.com/r3gis3r/CSipSimple
5https://github.com/WhisperSystems/Signal-Android

(a) SafeSlinger: List of words (b) OpenKeychain: Sentences

Figure 2: Language-based fingerprint representations

quota holiness

The messaging application SafeSlinger is based on
a Group Diffie-Hellman protocol [14] implementing a
key verification with SASs for up to 10 participants. In
SafeSlinger the leftmost 24 bits of a SHA-1 hash is used
to select 3 words from the PGP Word List, e. g.,

suspense unify talon.

Besides this, two other 3 word triples are selected to force
users to make a selection before proceeding (cf. Fig-
ure 2a).

In contrast to Signal and SafeSlinger, Peerio (based
on miniLock) does not use any SAS based verification
mechanism. It uses pictures for verification and word
lists for code generation. The word list is generated from
most occurring words in movie subtitles. Besides key
verification, these are also used to generate so called
passphrases, which are used to derive their ECC private
keys.

3.4 Generated Sentences
The words from the previous dictionaries can also be
used to generate syntactically correct sentences as pro-
posed by previous research: Goodrich et al. proposed
to use a “syntactically-correct English-like sentence”
representation for exchanging hash-derived fingerprints
over audio by using text-to-speech (TTS) [16]. Michael
Rogers et al. implemented a simple deterministic sen-
tence generator [16, 38]6 Though the sentences from
both approaches rarely make sense in a semantic fash-
ion, they are syntactically correct and are claimed to pro-

6https://github.com/akwizgran/basic-english

5

198 25th USENIX Security Symposium USENIX Association

vide good memorability. In our study, we used Michael
Roger’s approach for our sentence generator.

We implemented this method for PGP fingerprints
in OpenKeychain 3.67 (cf. Figure 2b). To the best of
the authors’ knowledge, to this date, it is the first inte-
gration of key verification via sentences although other
projects are considering to change their fingerprint en-
coding scheme [38, 36].

4 Methodology

In order to evaluate the effect and perception of the dif-
ferent textual key-fingerprint representations, we con-
ducted an online study on Amazon’s Mechanical Turk
(MTurk) crowdsourcing service. Our Universities do not
have an IRB, but the study conformed to the strict data
protection law of Germany and informed consent was
gathered from all participants. Our online study is di-
vided into two parts: The experiment for performance
evaluation followed by a survey extracting self-reported
data from users. The survey ended with demographic
questions.

4.1 Security Assumptions
In this section, we define the underlying security assump-
tions of our study, such as fingerprint method, length, and
strength against an adversary. The fingerprint method
and parameters are utilized consistently for all experi-
ments in our study to offer comparability between all
possible fingerprint representations. This attack model is
important for the usability since an unrealistically strong
or weak attacker could skew the results. Obviously, if the
fingerprint strength is not kept equal between the systems
this would also skew the results.

4.1.1 Fingerprint Method

To decide upon a fingerprint method for humanly verifi-
able fingerprints in our study, we first have to differen-
tiate between human and machine verification to illus-
trate their differences. While a full fingerprint compar-
ison can be implemented for machine verification, hu-
mans can fall for fingerprints that match only partially.
Additionally, machine comparison can work with long
values, whereas for human verification the length must
be kept short enough to fit on business cards and to keep
the time needed for comparison low.

For machine comparison, full SHA-256 hashes should
be calculated binding a unique ID to the public key mate-
rial. The probability of finding a preimage or collision at-
tack is obviously negligible, but the fingerprints can still
be computed fast in an ad-hoc manner when needed.

7https://www.openkeychain.org

It is important to note that collision resistance is not re-
quired for our scenarios. It is required for infrastructure-
based trust models such as X.509, where certificates are
verified by machines and trust is established by authority.
In these schemes, a signature generated by a trusted au-
thority can be requested for a certificate by proving the
control over a domain, but then reused maliciously for
a different certificate/domain. This is already possible
with a collision attack, without targeting a full preimage.
In contrast, the direct human-based trust schemes con-
sidered in this study only need to be protected against
preimage attacks, because no inherently trusted author-
ity is involved here.

While machine comparison needs to be done fast, e. g.,
on key import, manual fingerprint verification by humans
is done asynchronously in person or via voice. Thus, we
can use a key derivation function to provide a proof-of-
work, effectively trading calculation time for a shorter
fingerprint length. Secure messaging applications such
as Signal or OpenPGP-based ones could pre-calculate
the fingerprints after import and cache these before dis-
playing them for verification later.

Thus, modern memory-hard key derivation functions
such as scrypt [34] or Argon2 [3] can be utilized to
shorten the fingerprint length. These key derivation func-
tions are parametrized to allow for different work factors.
Suitable parameters need to be chosen by implementa-
tions based on their targeted devices and protocol.

As discussed in Section 3.2.1, while the generation of
new fingerprints consists of the creation of a new key pair
and the key derivation step, an attacker can potentially
skip the key creation. Thus, in the following we only
consider the key derivation performance as the limiting
factor for brute force attacks.

When utilizing a properly parametrized key derivation
function for bit stretching, the security of a 112 bit long
fingerprint can be increased to require a brute force at-
tack comparable to a classical 2128 brute force attacker.
Consequently, a fingerprint length of 112 bit is assumed
throughout our study.

4.1.2 Attacker Strength for Partial Preimages

In our user study, we assume an average attacker try-
ing to impersonate an existing ID using our fingerprint
method. Thus, an attacker would need to find a 112 bit
preimage for this existing fingerprint using a brute force
search executing the deployed key derivation function in
each step. Due to the work factor, we consider this to be
infeasible and instead concentrate on partial preimages.
For comparability and to narrow the scope of our study,
an attacker is assumed that can control up to 80 bits of
the full 112 bit fingerprint.

Attackers might aim to find partial preimages where

6

USENIX Association 25th USENIX Security Symposium 199

the uncontrolled bits occur at positions that are more eas-
ily missed by inattentive users. First, the bits at the be-
ginning and the end should be fixed as users often begin
their comparison with these bits. Thus, we assume that,
for any representation method, the first 24 and last 24
bits are controlled by the attacker and thus the same as in
the existing fingerprint. Based on the feedback from our
pre-study participants and reports from related work, this
can be considered best-practice [17, 37]. Second, of the
remaining 64 bits in the middle of our 112 bit fingerprint,
we assume that 32 bits are controlled by the attacker in
addition to the first 24 and last 24 bits. In total, we as-
sume that 80 bits are controlled by the attacker, i. e., are
the same as in the existing fingerprint, and 32 bit are un-
controlled.

The probability of finding such a partial preimage for
a fingerprint when executing 249 brute force steps is cal-
culated approximately by

1−

(
2112 −∑32

k=1
(64

k

)
2112

)249

≈ 0.66.

The inner parentheses of this equation define the prob-
ability that no partial preimage exists for one specific
bit permutation. Instead of using

(64
32

)
, a sum over 32

variations has been inserted to include permutations with
more than the uncontrolled 32 bit that are also valid par-
tial preimages. Finally, the probability to find a par-
tial preimage is defined by the inverse of the exponen-
tiation. Assuming the scrypt key derivation function
parametrized with (N,r, p) = (220,8,1), Percival calcu-
lates the computational costs of a brute force attack
against 238 (≈ 268) hashed passwords with $610k and
253 (≈ 958) with $16B [34]. These costs can be consid-
ered a lower and upper bound for our attacker, which we
assume to have average capabilities and resources. While
238 has a probability of finding a partial preimage of only
0.05%, with 242 the probability reaches nearly 1%, and
with 249, as in our example, a partial preimage is found
with over 50%.

In our study, we simulate attacks by inverting the bits
from the existing fingerprint which are uncontrolled by
the attacker, while the controlled bits are unchanged.
For our theoretical approximation, we assume that the
first 24 and last 24 bits should be controlled as well as
32 bits from the middle. In our study, we simulate an
even more careful selection of appropriate fingerprints
from the ones that an attacker would brute force. A gen-
eral criteria here is to minimize the influence of uncon-
trolled bits on the entire fingerprint: For numeric and al-
phanumeric representations all bits affecting a character
or digit are inverted together. For unrelated words, all
bits affecting a word are changed. Sentences are never
changed in a way that would alter the sentence structure.

Figure 3: A screenshot of the actual task a user had to per-
form in the experiment. A user rates whether the security codes
match, in this case with the Peerio word list approach, by click-
ing on the corresponding buttons shown on the phone.

4.2 Pre-Study

To get additional feedback from participants and eval-
uate our study design for flaws and misunderstandings,
we conducted two small pre-studies: A lab study with 15
participants and an MTurk experiment with 200 partic-
ipants, all required to perform 10 comparisons for each
representation scheme (totally 60 comparisons in a ran-
domized order). In our lab-study, we mainly focused
on qualitative feedback, whereas the main goal of the
MTurk pre-study was to find flaws in the presentation
and task descriptions, as well as to check whether our
proposed methodology is received as expected.

The biggest problem we found regarding the study de-
sign was that participants were uncertain if they should
check for spelling mistakes in the words and sentence-
based representation or if the all attacks would change
entire words. To clarify this, a speech bubble was in-
cluded in the task description that the participants do not
have to look for spelling mistakes for language-based ap-
proaches.

We tested different rates of attack during the pre-study.
The results showed that participants who were exposed
to frequently occurring attacks were more aware and had
a much higher attack detection rate. For our main study,
we reduced the number of attacks to 40 comparisons with
4 attacks to have a good balance between true positives
and false negatives. We received feedback that attacks
on anchor parts of the strings, i. e., in the beginning,
end, and at line breaks could be easily detected. Many
users had problems with distinguishing the hexadecimal
from the Base32 representation as well as distinguish-
ing different word list approaches (Peerio vs. OpenPGP
word list). Thus, we opted for a mixed factorial study

7

200 25th USENIX Security Symposium USENIX Association

design where users test only one scheme of each type.
We grouped the hexadecimal and Base32 scheme for the
alphanumeric type and the PGP and Peerio for the word-
list type together. These two groups were tested between-
subjects in a split-plot design, i. e., the participants test
either hexadecimal or Base32 for the alphanumeric type.
See Table 2 for a graphical representation of our condi-
tion assignment design.

4.3 Experiment Design
The main part of our online study is the experiment
part where users perform actual fingerprint comparisons.
Here, we conducted two separate experiments with a dis-
tinct set of participants: (1) our main experiment test-
ing different textual high-level representation schemes
against each other and (2) a secondary experiment testing
different chunk sizes for the hexadecimal representation.
We opted for two distinct experiments due to the expo-
nential growth of experiment conditions, as described in
Section 4.3.1.

Before letting the participants start our experiment, we
explained the scenario:

“With this HIT, we are conducting an aca-
demic usability study followed by a short sur-
vey about different types of security codes
used in the IT world. Security codes are of-
ten used in encrypted communications to iden-
tify the participants in a communication. If the
security codes match, you are communicating
securely. If they don’t match, an eavesdropper
may be intercepting your communication”.

On MTurk, the term Human Intelligence Task, or HIT
stands for a self-contained task that a worker can work
on, submit answers, and get a reward for completing.
Since our participants might not be familiar with the key-
fingerprint representation term, we replaced it with se-
curity codes for the sake of the study.

We opted not to obfuscate the goal of the study since
our research aims at finding the best possible representa-
tion for the comparison of key-fingerprints in a security
context. This is closest to how users interact with finger-
prints in the real world — their secure messaging appli-
cations also ask them to compare the strings for security
purposes. The question how to motivate users to compare
fingerprints is an entirely different research question. So
in our case, we believe it was not necessary or desirable
to use deception and since deception should be used as
sparingly as possible we opted for the “honest” approach.

After agreeing the terms, participants are shown a fic-
titious business card next to a mobile phone, both dis-
playing a security code (as shown in Figure 3). To
become more familiar with the task, the experiment is

Type (Within-Group) Scheme (Between-Group)

Alphanumeric Hexadecimal XOR Base32
Numeric Numeric
Unrelated Words PGP XOR Peerio
Generated Sentences Generated Sentences

Table 2: To avoid confusion between too similar approaches
(cf. Section 4.2), in our condition assignment, scheme types
(left column) can consist of multiple representation schemes
(right column). Each participant tests only one randomly as-
signed scheme of each type in a randomized order. .

started with 4 training tasks (each method once) not con-
sidered in the evaluation. The user’s only task is to
rate whether the shown fingerprints match by clicking on
Match or Doesn’t Match on the phone. Based on the con-
dition assignment, participants see different approaches
in a randomized order. We measure whether their an-
swer was correct and their speed, i. e., the amount of time
spent on the comparison. The experiment is concluded
with a survey collecting feedback on the used approaches
and the tasks and demographic information discussed in
the “Results” section.

4.3.1 Variables and Conditions

In the main experiment, the used representation scheme
is our controlled independent variable whereas its val-
ues define our experiment conditions. In our additional
chunking experiment, the chunking size is our controlled
independent variable instead of the representation algo-
rithm. During all tasks, we measure how fast participants
perform with their given conditions and whether they are
able to detect attacks by rating “incorrect” (speed and
accuracy as our measured dependent variables).

In both experiments, each user had to perform 46 com-
parisons in total. To detect users clicking randomly, 2
obviously distinct comparisons were added to test a par-
ticipant’s attention. Training comparisons and attention
tests are not included in the evaluation. Based on the
feedback in our pre-study, we added tooltips during the
training comparisons giving hints for language-based ap-
proaches telling the user that spelling attacks would not
occur. We set the number of attacks to six: two obvious
attacks where all bits are altered serving as control ques-
tions and 4 actual attacks with partial 80-bit preimages
(one for each representation scheme). Participants failing
at the control attacks are not considered in the evaluation
but still received a payment if finishing all tasks. The
major challenge in the study design is a high attack de-
tection rate in general: most users perform comparisons
correctly for the given attacker strength.

To avoid side effects, we chose fixed font size, color

8

USENIX Association 25th USENIX Security Symposium 201

Figure 4: A screenshot showing a statement rating in the post-experiment survey. Since the participants might
not distinguish the different types, we have provided an example from their previous task.

and style, i. e., the same typeface for all fingerprint rep-
resentations. In addition, we set fixed line breaks for sen-
tences and word lists. In the main experiment, the same
chunking style was used for all representations: For (al-
pha)numeric approaches a chunk consists of four charac-
ters separated by spaces. For word lists, we opted for a
line break every four words. In the generated sentences
representation, one sentence per line is displayed. We are
aware that all these design decisions can have an effect
on the comparison of the representations. However, our
pre-study results show a significantly lower effect size.
More importantly, we are mainly interested in compar-
ing the concepts, therefore we did not vary any of the
visual attributes like font size or style. In particular, dif-
ferences resulting from the font’s typeface have not been
evaluated. Lund showed in his meta-analysis that there
are no significant legibility differences between serif and
sans serif typefaces [25].

Chunk-Size Testing A question was raised whether
the chunking of a hexadecimal string plays a greater role
in comparison to the different approaches. Thus, in addi-
tion to the main experiment testing different representa-
tion types, we conducted a second experiment with new
participants testing different chunk sizes for the hexadec-
imal representation. Here, we used chunk-sizes ranging
from 2 to 8 in addition to “zero-chunk size” (8 cases).
The zero-chunk size means that no spaces have been in-
cluded. To make the results more comparable, we opted
for a similar design as done in the major experiment, i. e.,
we required the same amount of comparisons, used the
same font settings, and had the same amount of attacks.
For each participant, we assigned 4 out of 8 different
chunk-sized randomly. Same as in the major experiment,
all participants had to compare 46 fingerprints whereas
the first 4 are considered as training comparisons, 4 at-
tacks (one for each chunk size), and 2 control attacks
with obviously distinct fingerprints.

The major experiment is followed by a survey fo-

cusing on self-reported user perception and opinions
about the different approaches. This is the main reason
we opted to compare as much as possible in a within-
groups fashion and only selected a small number of con-
ditions in total. Since users might not notice the dif-
ference between the various dictionary or alphabet ap-
proaches, we designed a mixed factorial design where
the users would only get one of the alphabets/dictionar-
ies (between-subjects) but they would test all different
high-level systems (within-group) as depicted in Table 2.
The between-group conditions have been assigned ran-
domly with a uniform distribution. Since participants
from our pre-study had difficulties to distinguish the dif-
ferent chunking approaches, we skipped the survey part
in the chunk-size experiment.

4.3.2 Online Survey

The experiment was followed by an online survey gath-
ering self-reported data and demographics from partic-
ipants. To measure perception, we asked the partici-
pants whether they agreed with statements discussed in
subsection 5.2 on a 5 point Likert scale: from strongly
disagree to neural strongly agree as shown in Figure 4.
Participants had to rate each representation type for all
statements. Since users might not distinguish the differ-
ent representation schemes, we provide an example from
their previously finished task.

4.3.3 Statistical Testing

We opted for the common significance level of α = 0.05.
To counteract the multiple comparisons problem, we use
the Holm-Bonferronicorrection for our statistical signif-
icance tests [18]. Consequently, all our p-values are re-
ported in the corrected version.

We test the comparison duration with the Mann-
Whitney-Wilcoxon (MWW) test (two-tailed). We opt for
this significance test due to a few outliers, consequently a

9

202 25th USENIX Security Symposium USENIX Association

Scheme Speed Accuracy Total
mean [s] med [s] stdev p-val fail-rate p-val f-pos fails attacks tests

Hexadecimal 11.2 10.0 6.4 10.44 0.49 50 479 4765
Hexadecimal – Base32 1.0 1.1 0.0 <0.001 −1.94 0.690 −2.09 12 32 269
Hexadecimal – Numeric 0.6 0.5 0.6 <0.001 −4.10 0.048 0.21 −9 −452 −4527
Hexadecimal – PGP −1.8 −1.2 −1.0 <0.001 −1.65 0.690 −0.01 11 35 340
Hexadecimal – Peerio 2.5 2.7 0.8 <0.001 −4.69 0.048 0.08 22 −8 −91
Hexadecimal – Sentences −1.1 −0.7 −0.6 <0.001 −7.45 <0.001 −0.99 22 −457 −4518

Base32 10.2 8.9 6.4 8.50 2.58 38 447 4496
Base32 – Hexadecimal −1.0 −1.1 −0.0 <0.001 1.94 0.690 2.09 −12 −32 −269
Base32 – Numeric −0.4 −0.6 0.6 <0.001 −2.16 0.404 2.30 −21 −484 −4796
Base32 – PGP −2.8 −2.3 −1.0 <0.001 0.28 0.714 2.08 −1 3 71
Base32 – Peerio 1.5 1.6 0.8 <0.001 −2.75 0.404 2.17 10 −40 −360
Base32 – Sentences −2.1 −1.8 −0.6 <0.001 −5.51 <0.001 1.10 10 −489 −4787

Numeric 10.6 9.5 5.8 6.34 0.28 59 931 9292
Numeric – Hexadecimal −0.6 −0.5 −0.6 <0.001 4.10 0.048 −0.21 9 452 4527
Numeric – Base32 0.4 0.6 −0.6 <0.001 2.16 0.404 −2.30 21 484 4796
Numeric – PGP −2.4 −1.7 −1.6 <0.001 2.45 0.404 −0.22 20 487 4867
Numeric – Peerio 1.9 2.2 0.2 <0.001 −0.59 0.714 −0.13 31 444 4436
Numeric – Sentences −1.7 −1.2 −1.2 <0.001 −3.35 0.004 −1.20 31 −5 9

PGP 13.0 11.2 7.4 8.78 0.50 39 444 4425
PGP – Hexadecimal 1.8 1.2 1.0 <0.001 1.65 0.690 0.01 −11 −35 −340
PGP – Base32 2.8 2.3 1.0 <0.001 −0.28 0.714 −2.08 1 −3 −71
PGP – Numeric 2.4 1.7 1.6 <0.001 −2.45 0.404 0.22 −20 −487 −4867
PGP – Peerio 4.3 3.9 1.8 <0.001 −3.03 0.337 0.09 11 −43 −431
PGP – Sentences 0.7 0.5 0.4 <0.001 −5.79 <0.001 −0.98 11 −492 −4858

Peerio 8.7 7.3 5.6 5.75 0.41 28 487 4856
Peerio – Hexadecimal −2.5 −2.7 −0.8 <0.001 4.69 0.048 −0.08 −22 8 91
Peerio – Base32 −1.5 −1.6 −0.8 <0.001 2.75 0.404 −2.17 −10 40 360
Peerio – Numeric −1.9 −2.2 −0.2 <0.001 0.59 0.714 0.13 −31 −444 −4436
Peerio – PGP −4.3 −3.9 −1.8 <0.001 3.03 0.337 −0.09 −11 43 431
Peerio – Sentences −3.6 −3.4 −1.4 <0.001 −2.76 0.075 −1.07 0 −449 −4427

Sentences 12.3 10.7 7.0 2.99 1.48 28 936 9283
Sentences – Hexadecimal 1.1 0.7 0.6 <0.001 7.45 <0.001 0.99 −22 457 4518
Sentences – Base32 2.1 1.8 0.6 <0.001 5.51 <0.001 −1.10 −10 489 4787
Sentences – Numeric 1.7 1.2 1.2 <0.001 3.35 0.004 1.20 −31 5 −9
Sentences – PGP −0.7 −0.5 −0.4 <0.001 5.79 <0.001 0.98 −11 492 4858
Sentences – Peerio 3.6 3.4 1.4 <0.001 2.76 0.075 1.07 0 449 4427

Table 3: Our experiment results showing the differences between the representation schemes. The top rows of each row group
separated by a rule, show the raw performance of a baseline scheme, followed by italic rows showing a direct comparison delta.
Greyed-out values are not backed by statistical significance. The columns fail-rate (undetected attacks) and false-pos (same string
rated as an attack) display percentage values.

slightly skewed normal distribution, and a large amount
of collected data. The common language effect size is
shown by mean and median comparisons [26].

The attack detection rate is tested with a pairwise
Holm-Bonferroni-corrected Barnard’s exact test (Exakt
package in R) achieving one of highest statistical power
for 2x2 contingency tables [2].

Survey ratings are, again, tested by using the MWW
significance test (two-tailed test). As has been shown in
previous research [9], it is most suitable for 5-point Lik-
ert scales, especially if not multimodal distributed as in
our survey results. In case two fingerprint representation
schemes are statistically tested against each other, only
participants encountering both schemes were considered.

5 Results

In this section, we present our results: our online study
with 1047 participants has been conducted in August and
September 2015. The study for testing the chunk size has
been conducted in February 2016 with 400 participants.
Starting with our online experiment evaluation showing
the raw performance of users, we then present user per-
ception results from the follow-up survey. Finally, we
discuss the demographics of our participants.

5.1 Online Experiment
Participants who have not finished all comparisons or
failed the attention tests were excluded from our eval-

10

USENIX Association 25th USENIX Security Symposium 203

Scheme Speed Accuracy Total
mean [s] med [s] p-val fail-rate p-val false-pos fails attacks tests

Hexadecimal (4) 12.3 10.4 6.78 0.38 16 236 2360
hex (4) – hex (0) −2.4 −2.6 <0.001 0.33 1.000 −0.28 −2 −17 −170
hex (4) – hex (2) −0.3 −0.9 <0.001 1.37 1.000 0.00 −3 3 30
hex (4) – hex (3) −0.3 0.1 0.362 −0.64 1.000 0.09 2 8 80
hex (4) – hex (5) −1.4 −1.2 <0.001 1.01 1.000 −0.40 −2 5 50
hex (4) – hex (6) −1.9 −1.8 <0.001 2.43 1.000 0.09 −5 8 80
hex (4) – hex (7) −1.7 −1.8 <0.001 3.35 1.000 0.19 −8 −1 −10
hex (4) – hex (8) −2.8 −3.2 <0.001 1.35 1.000 −0.12 −4 −10 −100

Table 4: Comparison of the chunking experiment results showing the differences between the representation schemes. The top row
shows the raw performance of the hexadecimal scheme with a four-character chunking, followed by italic rows showing a direct
comparison delta. Greyed-out values are not backed by statistical significance. The columns fail-rate (undetected attacks) and
false-pos (same string rated as an attack) display percentage values.

uation: all participant compared 46 security codes in a
randomized order, whereas 40 (10 of each scheme) were
considered in the evaluation. The four training samples
and the control questions are excluded. Few comparisons
done in less than 2 seconds and more than one minute
have been excluded. The reason for such can either be
multiple clicks during the page load, or external inter-
ruptions of the participants. None of the attack could be
successfully detected in under 4 seconds.

Our experiment results, summarized in Table 3, show
the raw performance of all schemes regarding their
speed, accuracy and false-positive rate. The top rows of
each row group, separated by a rule, show the raw perfor-
mance of a representation scheme as baseline (negative
values indicate lower values than the baseline). The fol-
lowing rows show a direct comparison delta between be-
tween two schemes. The speed column group consists of
the mean and median (in seconds), the standard deviation
and the according p-values for a direct comparison. The
fail-rate column shows the rate of the undetected attacks
with the according p-values for a direct comparison. The
total column group simply shows the total numbers of
tests, attacks and undetected attacks.

The results show that the average time spent on com-
parisons plays only a minor role among the schemes:
4.3s difference between the best and the worst scheme.
Note that the Peerio word-list scheme performed best
with 8.7s mean whereas the PGP word list performed
worst with 13s mean (p < 0.001).

However, there is a clear effect regarding the attack de-
tection rate (see Table 3). All alternative key-fingerprint
representations performed better than the state-of-the-
art hexadecimal representation, where 10.1% of attacks
have not been detected by the users. Previous work
shows similar numbers for Base32 [19]. To our surprise,
the numeric approach performs better in both categories:
it features an attack detection rate of 93.57% (p < 0.01)
and an average speed of 10.6s (p < 0.001). Generated
sentences achieved the highest attack detection rate of

97.97% with a similar average speed as the hexadecimal
scheme. On the downside, this scheme has produced a
slightly higher false-positive rate. We found that the false
positives occurred mostly with longer sentences where
there has been a line break on the phone mock-up due
to portrait orientation. This is a realistic problem of this
system if used with portrait orientation and not a problem
with our mock-up in itself. Improvements on making the
sentences shorter could mitigate this situation.

Chunk-Size Experiment

Table 4 summarizes the results of our secondary chunk-
size experiment. As can be seen, no statistically signif-
icant results have been achieved for the attack detection
fail-rate (undetected attacks by end users). However, we
observed that the chunk sizes with 3 and 4 characters per-
formed best in speed, even though the effect sizes were
minor: only 3.3 seconds difference with similar standard
deviations between the best and worst chunk size setting.

Firstly, we notice that despite the same attack strength
as in our major experiment, participants were able to de-
tect more attacks. We suspect that the higher attack de-
tection rate is based on (1) a higher learning effect due
to the same scheme for all comparisons and (2) in con-
trast to our major study, participants had a slightly higher
drop-out rate and thus only more motivated participants
were considered. This is supported by the numbers in the
total tests column of Table 4: here, we can see that for
the zero-chunking and chunking with 8 characters less
tests have been performed. This is based on the fact that
although the chunk sizes have been assigned almost uni-
formly, participants assigned with harder chunk settings
often dropped out before even finishing their entire task.

More importantly, our results also support the claim
from our pre-study: The chunking parameter in hexadec-
imal strings plays only a minor role in the attack detec-
tion fail-rate.

11

204 25th USENIX Security Symposium USENIX Association

5%

12%

8%
8%

82%

67%

76%
75%

17%

5%

9%
6%

63%

85%

76%
80%

Trustworthiness

Usability

Generated Sentences
Unrelated Words

Numeric
Alphanumeric

Generated Sentences
Unrelated Words

Numeric
Alphanumeric

100 50 0 50 100
Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 5: Aggregated survey results for statement rating regarding the usability and trustworthiness.

5.2 Online Survey
To measure the usability and trustworthiness of all rep-
resentation schemes, we asked our participants whether
they agreed with the following statements:

S1 The comparisons were easy for me with this method

S2 I am confident that I can make comparisons using this
method without making mistakes

S3 I think making comparisons using this method would
help me keep my communications secure

S4 I was able to do the comparisons very quickly with
this method

S5 I found this method difficult to use

S6 Overall, I liked this method

We mixed positive and negative statements, e. g., S1
and S5, to create a more robust measure. S6 is used to
calculate the overall ranking of the different representa-
tion schemes.

Figure 5 shows the aggregated results where the us-
ability statements are grouped to one usability feature
and the trustworthiness derived from the rating on the
statement S3. Negative statement ratings have been in-
verted for a better comparison. Figure 6 shows the rating
results for each specific statement in the survey. The or-
der of the tested schemes has been chosen randomly, but
was kept consistent across all statements. Same as in
our online experiment evaluation, the pairwise statistical

tests are Holm-Bonferroni corrected. In case of a direct
statistical test between two schemes, only users encoun-
tering both schemes have been considered. All in all, the
usability perception of the participants is almost consis-
tent with the performance results from the experiment.

To measure the perception of the task difficulty, we
asked the participants whether they agreed with the state-
ments S1, S2 and S3 respectively. As illustrated in Fig-
ure 6 in the Appendix A, the effect size between the dif-
ferent approaches is low. However, the participants were
more likely to agree that language-based representation
schemes are easier to use. For instance, we see that in
comparison to the alphanumeric schemes (average rat-
ing of 3.4), word list (average rating of 3.9, p < 0.001)
and generated sentence schemes (average rating of 4.2,
p < 0.001) are rated to be easier by our participants (S1,
S5). While the experiment results of the sentence genera-
tors clearly outperformed all other approaches, they also
were rated better by the participants. Same applies for
the low-performing hexadecimal and Base32 schemes
which clearly received lower ratings. Consistently with
the surprising performance results in the experiment, the
numeric scheme is also considered to be easier by many
participants: average rating of 3.9 and p < 0.001.

The sentence generator scheme achieved the highest
user confidence rating “making comparisons without any
mistakes” (S2, p < 0.001 for all pairwise comparisons).
The participants’ perception is consistent with the ex-
periment results where the word-list-based and sentence
generator schemes lead to higher attack detection rates.

12

USENIX Association 25th USENIX Security Symposium 205

The ratings for S4 illustrate that more complex repre-
sentation schemes from the user’s point of view, such as
hexadecimal and Base32, are considered to be more se-
cure by participants, even though all approaches provide
the same level of security.

5.3 Demographics
A total of 1047 users participated in the online study
while only 1001 have been considered in the evaluation
due to our two control questions. Out of the evaluated
participants, 534 participants were male, 453 were fe-
male, 4 chose other while the rest opted to not give any
information. No significant difference between genders
could be found, with a subtle trend of a higher accuracy
for women and higher speed among men. The median
age was 34 (34.4 average) years, while 34 participants
chose not to answer (no statistically significant differ-
ences between ages).

A total of 39 people reported to have “medical con-
ditions that complicated the security code comparisons
(e. g., reading disorders, ADHD, visual impairments,
etc.)” with a slightly higher undetected attack rate (sta-
tistically insignificant due to small sample size and thus
low statistical power).

The majority of the participants stated to have a Bach-
elor’s degree (399 of 1047) as their highest education
whereas 34% chose not to answer. 931 participants have
started our HIT but stopped early during the experiment
(mostly after the first few comparisons). 160 users re-
ported the general task to be annoying.

6 Discussion

The results of our study show that while there are subtle
speed variations among all approaches, the attack detec-
tion rate and user perception for the current state-of-the-
art hexadecimal key-fingerprint representation is signif-
icantly lower than those of most alternative representa-
tion schemes. Language-based representations (with the
exception of the PGP word list) show improved user be-
haviour leading to a higher detection rate of attacks. To
improve the usability of key-fingerprints, we propose the
following takeaways based on our study results.

6.1 Takeaways
Our results show that all representation schemes achieve
a high accuracy (high attack detection rate) and can be
performed quickly by users. As expected, language-
based fingerprint representations are more resilient
against attacks (higher attack detection rate) and achieve
better usability scores. Among all conditions, alphanu-
meric approaches performed worse and have been out-

performed. For instance, the numeric representation was
more suitable than hexadecimal and Base32. The raw
performance results suggest a similar speed for the nu-
meric representation with a higher attack detection rate,
and it also has received better usability ratings from end-
users.

Our chunking experiment has shown that chunk-sizes
play only a minor role in improving attack detection rates
(we could not find statistically significant differences).
However, if a hexadecimal representation is used chunks
of 3 and 4 characters perform best.

As shown by the word list representations, the compar-
ison speed can be increased by larger dictionaries leav-
ing room for improvement in this area. Even though all
representation schemes provide the same level of secu-
rity, exotic looking solutions are considered to be more
secure by end users.

6.2 Limitations

Most importantly, our study design does not test whether
end users are actually willing to compare any finger-
prints in practice. We only aim to study how easy differ-
ent representations are to compare from the users’ point
of view.

As with any user study conducted with MTurk, there
is concern about the external validity of the results: users
in the real world might show different behaviour. This
is mainly because of two reasons: (1) in practice finger-
print comparisons will seldom occur in a such frequency,
and (2) when performed in practice play a more impor-
tant role than just participating in an anonymous online
study. Additionally, MTurkers have been shown to be
more tech-savvy and are better in solving textual and vi-
sual tasks in comparison to the average population. Thus,
they could have performed better in most of the compar-
ison conditions than the average population. It is also
known that some MTurkers just “click through” studies
to get the fee and thus distort study results. Our coun-
terbalanced study design with included control questions
and statistical significance tests mitigate this effect. For
instance, we excluded 46 out of 1047 participants from
our main study part based on these questions being an-
swered incorrectly.

Due to the within-group part of our factorial design,
many parameter choices such as different fonts, font
sizes, attack rates, etc. could not be considered. These
are, however, interesting avenues for future work. As
shown in our additional chunking experiment, another
challenge in testing different parameters is the high at-
tack detection rate, where subtle changes would require
a high amount of users to produce statistically significant
results.

Due to the anonymous nature of online studies, it is

13

206 25th USENIX Security Symposium USENIX Association

also impossible to reliably tell which languages a partic-
ipant is fluent in. We specified that we only wanted par-
ticipants from English-speaking countries, however we
had no way of checking compliance except by relying
on self-reported data. Language-based representation ap-
proaches might induce additional barriers for non-native
speakers, e. g., due to unknown or unfamiliar words.

7 Conclusion and Future Work

We evaluated six different key-fingerprint representation
types with regards to their comparison speed, attack de-
tection accuracy and usability, which encompasses at-
tack detection but also resilience against human errors
in short-term memory. An online study with 1047 partic-
ipants was conducted to compare numeric, alphanumeric
(Hexadecimal and Base32), word lists (PGP and Peerio),
as well as generated sentences representation schemes
for key-fingerprint verification. All fingerprint represen-
tations were configured to offer the same level of security
with the same attacker strength.

Our results show that usage of the large word lists (as
used in Peerio) lead to the fastest comparison perfor-
mance, while generated sentences achieved highest at-
tack detection rates. In addition, we found that additional
parameters such as chunking of characters plays only a
minor role in the overall performance. The widely-used
hexadecimal representation scheme performed worst in
all tested categories which indicates that it should be re-
placed by more usable schemes. Unlike proposals which
call for radically new fingerprint representations, we
studied only textual fingerprint representations, which
means that the results of our work can be directly applied
to various encryption applications with minimal changes
needed. Specifically, no new hardware or complex soft-
ware is required: applications merely need to replace the
strings they output to achieve a significant improvement
in both attack-detection accuracy and usability.

There are various interesting areas of future work.
Firstly, we chose to study only a selected sample from the
design space of fingerprint representations in a within-
subjects design, so we could facilitate a direct compar-
ison between the different classes of fingerprints. Fur-
ther work exploring line breaks, font settings, dictionar-
ies, different attacker strengths, etc. will likely lead to
further improvement possibilities.

While this work shows that there are better ways to
represent key-fingerprints than currently being used, it
does not explore what can be done to motivate more users
to actually compare the fingerprints in the first place.
Follow-up studies to research this important question are
naturally an interesting and vital area of research.

Acknowledgments

The authors would like to thank the anonymous review-
ers for their insightful comments, and Trevor Perrin, Jake
McGinty, Tom Ritter and Skylar Nagao for their discus-
sion and excellent feedback.

References
[1] BADDELEY, A. Working memory. Science 255, 5044 (1992),

556–559.

[2] BARNARD, G. Significance tests for 2×2 tables. Biometrika
(1947), 123–138.

[3] BIRYUKOV, A., DINU, D., AND KHOVRATOVICH, D. Argon2:
the memory-hard function for password hashing and other appli-
cations. Tech. rep., Password Hashing Competition (PHC), De-
cember 2015.

[4] BONNEAU, J., AND SCHECHTER, S. Towards reliable storage
of 56-bit secrets in human memory. In Proceedings of the 23rd
USENIX Security Symposium (August 2014).

[5] BREITMOSER, V. pgp-vanity-keygen. https://github.com/
Valodim/pgp-vanity-keygen, 2014.

[6] BUCKNER, R. L., PETERSEN, S. E., OJEMANN, J. G., MIEZIN,
F. M., SQUIRE, L., AND RAICHLE, M. Functional anatomical
studies of explicit and implicit memory retrieval tasks. The Jour-
nal of Neuroscience 15, 1 (1995), 12–29.

[7] CALLAS, J., DONNERHACKE, L., FINNEY, H., SHAW, D., AND
THAYER, R. OpenPGP Message Format. RFC 4880 (Proposed
Standard), Nov. 2007. Updated by RFC 5581.

[8] CRANNELL, C., AND PARRISH, J. A comparison of immedi-
ate memory span for digits, letters, and words. The Journal of
Psychology 44, 2 (1957), 319–327.

[9] DE WINTER, J. C., AND DODOU, D. Five-point Likert items: t
test versus Mann-Whitney-Wilcoxon. Practical Assessment, Re-
search & Evaluation 15, 11 (2010), 1–12.

[10] DHAMIJA, R. Hash visualization in user authentication. In CHI
’00 Extended Abstracts on Human Factors in Computing Systems
(New York, NY, USA, 2000), CHI EA ’00, ACM, pp. 279–280.

[11] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
Protocol Version 1.2. RFC 5246, Aug. 2008. Updated by RFCs
5746, 5878, 6176.

[12] ELECTRONIC FRONTIER FOUNDATION. Secure
Messaging Scorecard. https://www.eff.org/

secure-messaging-scorecard, 2014.

[13] ELLISON, C., ET AL. Establishing identity without certification
authorities. In USENIX Security Symposium (1996), pp. 67–76.

[14] FARB, M., LIN, Y.-H., KIM, T. H.-J., MCCUNE, J., AND
PERRIG, A. Safeslinger: easy-to-use and secure public-key ex-
change. In Proceedings of the 19th annual international confer-
ence on Mobile computing & networking (2013), ACM, pp. 417–
428.

[15] GALBRAITH, J., AND THAYER, R. The Secure Shell (SSH) Pub-
lic Key File Format. RFC 4716 (Informational), Nov. 2006.

[16] GOODRICH, M. T., SIRIVIANOS, M., SOLIS, J., TSUDIK, G.,
AND UZUN, E. Loud and clear: Human-verifiable authentica-
tion based on audio. In Distributed Computing Systems, 2006.
ICDCS 2006. 26th IEEE International Conference on (2006),
IEEE, pp. 10–10.

[17] GUTMANN, P. Do users verify SSH keys? USENIX;login: 36, 4
(2011).

14

USENIX Association 25th USENIX Security Symposium 207

[18] HOLM, S. A simple sequentially rejective multiple test proce-
dure. Scandinavian journal of statistics (1979), 65–70.

[19] HSIAO, H.-C., LIN, Y.-H., STUDER, A., STUDER, C., WANG,
K.-H., KIKUCHI, H., PERRIG, A., SUN, H.-M., AND YANG,
B.-Y. A study of user-friendly hash comparison schemes. In
Computer Security Applications Conference, 2009. ACSAC’09.
Annual (2009), IEEE, pp. 105–114.

[20] JOSEFSSON, S. The Base16, Base32, and Base64 Data Encod-
ings. RFC 3548 (Informational), July 2003.

[21] JOSEFSSON, S. The Base16, Base32, and Base64 Data Encod-
ings. RFC 4648, Oct. 2006.

[22] JUOLA, P. Whole-word phonetic distances and the PGPFone
alphabet. In Spoken Language, 1996. ICSLP 96. Proceedings.,
Fourth International Conference on (1996), vol. 1, IEEE, pp. 98–
101.

[23] KEITH, M., SHAO, B., AND STEINBART, P. A behavioral anal-
ysis of passphrase design and effectiveness. Journal of the Asso-
ciation for Information Systems 10, 2 (2009), 2.

[24] LAURIE, B., LANGLEY, A., AND KASPER, E. Certificate Trans-
parency. RFC 6962 (Experimental), June 2013.

[25] LUND, O. Knowledge construction in typography: the case of
legibility research and the legibility of sans serif typefaces. PhD
thesis, The University of Reading, Department of Typography &
Graphic Communication., 1999.

[26] MCGRAW, K. O., AND WONG, S. A common language effect
size statistic. Psychological bulletin 111, 2 (1992), 361.

[27] MELARA, M. S., BLANKSTEIN, A., BONNEAU, J., FREED-
MAN, M. J., AND FELTEN, E. W. CONIKS: A Privacy-
Preserving Consistent Key Service for Secure End-to-End Com-
munication. Tech. Rep. 2014/1004, Cryptology ePrint Archive,
December 2014.

[28] [MESSAGING] MAILING-LIST ARCHIVE. Usability of
Public-Key Fingerprints. https://moderncrypto.org/

mail-archive/messaging/2014/000004.html, 2014.

[29] MILLER, G. A. The magical number seven, plus or minus two:
some limits on our capacity for processing information. Psycho-
logical review 63, 2 (1956), 81.

[30] NAMECOIN PROJECT. Namecoin. http://namecoin.info,
Nov. 2014.

[31] OGDEN, C. K., ET AL. System of Basic English. Self-published
(1934).

[32] OLEMBO, M. M., KILIAN, T., STOCKHARDT, S., HÜLSING,
A., AND VOLKAMER, M. Developing and testing a visual hash
scheme. In EISMC (2013), pp. 91–100.

[33] [OPENPGP] IETF MAIL ARCHIVE. Fingerprints.
https://mailarchive.ietf.org/arch/msg/openpgp/

2C9gTsxTgh29W8VX8x70OYZqfUY, 2015.

[34] PERCIVAL, C. Stronger key derivation via sequential memory-
hard functions. Self-published (2009).

[35] PERRIG, A., AND SONG, D. Hash visualization: A new tech-
nique to improve real-world security. In International Workshop
on Cryptographic Techniques and E-Commerce (1999), pp. 131–
138.

[36] PINGEL, I., IRVING, A., GENERALMANAGER, WIKINAUT, TIN-
LOAF, FARB, M., AND JPOPPLEWELL. Fingeprint exchange -
issue #826 - whispersystems/textsecure - github.

[37] PLASMOID. Fuzzy Fingerprints: Attacking Vulnerabilities in
the Human Brain. http://www.thc.org/papers/ffp.html,
Oct. 2003.

[38] ROGERS, M., AND PERRIN, T. Key-Fingerprint Poems.
https://moderncrypto.org/mail-archive/messaging/

2014/000125.html, 2014.

[39] RYAN, M. D. Enhanced certificate transparency and end-to-end
encrypted mail. In NDSS (2014), NDSS.

[40] SHAY, R., KELLEY, P. G., KOMANDURI, S., MAZUREK, M. L.,
UR, B., VIDAS, T., BAUER, L., CHRISTIN, N., AND CRANOR,
L. F. Correct horse battery staple: Exploring the usability of
system-assigned passphrases. In Proceedings of the Eighth Sym-
posium on Usable Privacy and Security (2012), ACM, p. 7.

[41] UNGER, N., DECHAND, S., BONNEAU, J., FAHL, S., PERL,
H., GOLDBERG, I., AND SMITH, M. Sok: Secure messaging.
In Security and Privacy (SP), 2015 IEEE Symposium on (2015),
IEEE, pp. 232–249.

[42] VASCO.COM. http://www.vasco.com/company/

about_vasco/press_room/news_archive/2011/news_

diginotar_reports_security_incident.aspx, Sept.
2011.

[43] WHATSAPP. Encryption Overview. https://www.whatsapp.
com/security/WhatsApp-Security-Whitepaper.pdf,
Apr. 2016.

[44] YLONEN, T., AND LONVICK, C. The Secure Shell Transport
Layer Protocol. RFC 4253, Jan. 2006. Updated by RFC 6668.

[45] ZIMMERMANN, P., JOHNSTON, A., AND CALLAS, J. ZRTP:
Media Path Key Agreement for Unicast Secure RTP. RFC 6189
(Informational), Apr. 2011.

15

208 25th USENIX Security Symposium USENIX Association

A Appendix

14%

5%

7%
7%

71%

87%

82%
80%

49%

71%

67%
61%

36%

14%

18%
21%

5%

12%

8%
8%

82%

67%

76%
75%

27%

8%

13%
12%

54%

80%

71%
71%

22%

11%

12%
14%

55%

69%

64%
67%

25%

6%

11%
11%

58%

83%

76%
72%

I am confident that I can make comparisons using this method without making mistakes

I found this method difficult to use

I think making comparisons using this method would help me keep my communications secure

I was able to do the comparisons very quickly with this method

Overall, I liked this method

The comparisons were easy for me with this method

Generated Sentences
Unrelated Words

Numeric
Alphanumeric

Generated Sentences
Unrelated Words

Numeric
Alphanumeric

Generated Sentences
Unrelated Words

Numeric
Alphanumeric

Generated Sentences
Unrelated Words

Numeric
Alphanumeric

Generated Sentences
Unrelated Words

Numeric
Alphanumeric

Generated Sentences
Unrelated Words

Numeric
Alphanumeric

100 50 0 50 100
Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 6: Survey results for all statement ratings

16

USENIX Association 25th USENIX Security Symposium 209

Off-Path TCP Exploits: Global Rate Limit Considered
Dangerous

Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V. Krishnamurthy, Lisa M. Marvel†

University of California, Riverside, †US Army Research Laboratory
{ycao009,zhiyunq,zwang048,tdao006,krish}@cs.ucr.edu, lisa.m.marvel.civ@mail.mil

Abstract
In this paper, we report a subtle yet serious side chan-

nel vulnerability (CVE-2016-5696) introduced in a re-
cent TCP specification. The specification is faithfully
implemented in Linux kernel version 3.6 (from 2012)
and beyond, and affects a wide range of devices and
hosts. In a nutshell, the vulnerability allows a blind
off-path attacker to infer if any two arbitrary hosts on
the Internet are communicating using a TCP connection.
Further, if the connection is present, such an off-path at-
tacker can also infer the TCP sequence numbers in use,
from both sides of the connection; this in turn allows
the attacker to cause connection termination and perform
data injection attacks. We illustrate how the attack can
be leveraged to disrupt or degrade the privacy guarantees
of an anonymity network such as Tor, and perform web
connection hijacking. Through extensive experiments,
we show that the attack is fast and reliable. On average,
it takes about 40 to 60 seconds to finish and the success
rate is 88% to 97%. Finally, we propose changes to both
the TCP specification and implementation to eliminate
the root cause of the problem.

1 Introduction

TCP and networking stacks have recently been shown to
leak various types of information via side channels, to a
blind off-path attacker [22, 14, 12, 21, 11, 29, 5]. How-
ever, it is generally believed that an adversary cannot eas-
ily know whether any two arbitrary hosts on the Internet
are communicating using a TCP connection without be-
ing on the communication path. It is further believed that
such an off-path attacker cannot tamper with or terminate
a connection between such arbitrary hosts. In this work,
we challenge this belief and demonstrate that it can be
broken due to a subtle yet serious side channel vulnera-
bility introduced in the latest TCP specification.

The two most relevant research efforts are the fol-
lowing: 1) In 2012, Qian et al., framed the so called

“TCP sequence number inference attack”, which can be
launched by an off-path attacker [22, 23]. However,
the attack requires a piece of unprivileged malware to
be running on the client to assist the off-path attacker;
this greatly limits the scope of the attack. 2) In 2014,
Knockel et al., identified a side channel that allows an
off-path attacker to count the packets sent between two
arbitrary hosts [21]. The limitation is that the proposed
attack requires on average, an hour of preparation time
and works at the IP layer only (cannot count how many
packets are sent over a specific TCP connection).

In this paper, we discover a much more powerful off-
path attack that can quickly 1) test whether any two arbi-
trary hosts on the Internet are communicating using one
or more TCP connections (and discover the port num-
bers associated with such connections); 2) perform TCP
sequence number inference which allows the attacker to
subsequently, forcibly terminate the connection or inject
a malicious payload into the connection. We emphasize
that the attack can be carried out by a purely off-path at-
tacker without running malicious code on the communi-
cating client or server. This can have serious implications
on the security and privacy of the Internet at large.

The root cause of the vulnerability is the introduc-
tion of the challenge ACK responses [26] and the global
rate limit imposed on certain TCP control packets. The
feature is outlined in RFC 5961, which is implemented
faithfully in Linux kernel version 3.6 from late 2012.
At a very high level, the vulnerability allows an at-
tacker to create contention on a shared resource, i.e., the
global rate limit counter on the target system by send-
ing spoofed packets. The attacker can then subsequently
observe the effect on the counter changes, measurable
through probing packets.

Through extensive experimentation, we demonstrate
that the attack is extremely effective and reliable. Given
any two arbitrary hosts, it takes only 10 seconds to suc-
cessfully infer whether they are communicating. If there
is a connection, subsequently, it takes also only tens of

1

210 25th USENIX Security Symposium USENIX Association

seconds to infer the TCP sequence numbers used on the
connection. To demonstrate the impact, we perform case
studies on a wide range of applications.

The contributions of the paper are the following:
• We discover and report a serious vulnerability unin-

tentionally introduced in the latest TCP specification
which is subsequently implemented in the latest Linux
kernel.

• We design and implement a powerful attack exploit-
ing the vulnerability to infer 1) whether two hosts are
communicating using a TCP connection; 2) the TCP
sequence number currently associated with both sides
of the connection.

• We provide a thorough analysis and evaluation of the
proposed attack. We present case studies to illustrate
the attack impact.

• We identify the root cause of the subtle vulnerability
and discuss how it can be prevented in the future. We
propose changes to the kernel implementation to elim-
inate or mitigate the side channel.

2 Background
Security was not the primary concern in the design of
TCP. There have been many security patches over the
years at both the specification and implementation level.
Interestingly, most new specifications are well thought
out and typically improve security. Unfortunately, as we
discover, one of the most recent specifications intended
to improve security creates an even more serious vulner-
ability.

In this section, we first present the threat model that
is being addressed in RFC 5961 and how the new spec-
ification is supposed to protect against blind in-window
attacks. In the next section, we will show that how this
specification introduces a new vulnerability.

Threat model: As illustrated in Figure 1, a realistic
threat model for TCP is off-path attacks. There are three
hosts involved: a victim client, a victim server and an off-
path attacker. Any machine might act as the attacker in
this model as long as its ISP allows the off-path attacker
to send packets to the server with the spoofed IP address
of the victim client. Alternatively, as shown in Figure 2,
the off-path attacker is able to send packets to the client
with the spoofed IP address of the victim server.

Blind in-window attacks: Under the above threat
models, the most common attacks considered are “blind
in-window attacks” where an off-path attacker sends
spoofed TCP packets with guessed sequence numbers in
an attempt to achieve DoS or data injection attacks. To
succeed in such an attack, it is necessary to first know
the target 4-tuple <src IP, dst IP, src port, dst port> of an

ongoing TCP connection between a client and a server 1.
Once the correct 4-tuple is known, if the guessed se-
quence number of the spoofed packet happens to fall
in the receive window, (called an in-window sequence
number), one can in fact reset or inject acceptable mali-
cious data into the connection. To be more precise, an in-
window sequence number is one that satisfies the follow-
ing condition, (RCV.NXT ≤ SEG.SEQ ≤ RCV.NXT +
RCV.WND), where SEG.SEQ is the guessed sequence
number, RCV.NXT and RCV.WND are the sequence
number of the next byte that the receiver expects to re-
ceive, and the receive window size, respectively. To carry
out a blind attack, one typically needs to blast the entire
sequence number space by sending a large sequence of
spoofed packets. In this sequence, the sequence num-
ber of a packet is larger than that of its predecessor by a
window size.

To defend against such attacks, RFC 5961 proposes
several modifications on how TCP should process in-
coming packets, We highlight only the necessary details
below.

2.1 Mitigating the Blind Reset Attack us-
ing the SYN Bit

An attacker might tear down an existing TCP connec-
tion by injecting SYN packets (TCP packets in which the
SYN flag is set). This is because a valid SYN packet will
cause the receiver to believe that the sender has restarted
and thus, the connection should be reset.

In the former (pre-RFC 5961) Linux kernel versions,
an incoming SYN packet is processed as follows:
• If the sequence number is outside the valid receive

window, the receiver will send an ACK back to sender.
• If the sequence number is in-window, the receiver will

reset this connection.
It is obvious that the attacker only needs a single SYN
packet with an in-window sequence number to reset
an ongoing TCP connection. Instead, RFC 5961 pro-
poses modifications in processing the SYN packets as
follows:
• If a receiver sees an incoming SYN packet, regardless

of the sequence number, it sends back an ACK (re-
ferred to as a challenge ACK) to the sender to confirm
the loss of the previous connection.

• If the packet is indeed initiated from the legitimate re-
mote peer, it must have truly lost the previous connec-
tion and is now attempting to initiate a new one. Upon
receiving the challenge ACK, the remote peer will
send a RST packet with the correct sequence num-

1This can be achieved, among other methods, through brute-force
attempts.

2

USENIX Association 25th USENIX Security Symposium 211

Client

Attacker

Network

Server

Figure 1: Threat model 1

Client

Attacker

Network

Server

Figure 2: Alternative threat model

SND.NXT

SND.UNA

SND.UNA –
SND.MAX.WIN

SND.UNA
– 2G

Challenge ACK
Window

Acceptable
ACK Range

Invalid ACK
Range

Figure 3: ACK window illustration

ber (derived from the ACK field of the challenge ACK
packet) to prove that the previous connection is indeed
terminated.
Hence, if the SYN packet is a spoofed one, it can

no longer terminate a connection with an in-window se-
quence number.

2.2 Mitigating the Blind Reset Attack us-
ing the RST Bit

An attacker might also tear down the connection by in-
jecting RST packets (TCP packets in which the RST flag
is set) into an ongoing TCP connection.

In pre-RFC 5961 Linux kernels, just like in the
SYN packet case, a RST packet can terminate a con-
nection successfully as long as its sequence num-
ber is in-window. RFC 5961 suggests the following
changes:
• If the sequence number is outside the valid receive

window, the receiver simply drops the packet. No
modifications are proposed for this case.

• If the sequence number exactly matches the next ex-
pected sequence number (RCV.NXT), the connection
is reset.

• If the sequence number is in-window but does not ex-
actly match RCV.NXT , the receiver must send a chal-
lenge ACK packet to the sender, and drop the unac-
ceptable RST packet.

In the final case, if the sender is legitimate, it sends back
a RST packet with the correct sequence number (derived
from the ACK number in the challenge ACK) to reset the
connection. On the other hand, if the RST is spoofed,
the challenge ACK packet will not be observable by the
off-path attacker. Therefore, the attacker needs to be ex-
tremely lucky to be able to succeed — only one out of
232 sequence numbers will be accepted.

2.3 Mitigating the Blind Data Injection
An attacker might corrupt the contents of a transmission
by injecting spoofed DATA packets. When a packet ar-
rives, the receiver first checks the sequence number to

make sure it is in-window; in addition, the ACK num-
ber will be checked. Pre-RFC 5961, the ACK number is
considered valid as long as it falls in the wide range of
[SND.UNA− (231 − 1), SND.NXT]; this is effectively
half of the ACK number space. Here, SND.UNA is
the sequence number of the first unacknowledged byte.
SND.NXT is the sequence number of the next byte about
to be sent.

RFC 5961 suggests a much smaller valid ACK number
range of [SND.UNA − MAX .SND.WND,SND.NXT],
where MAX .SND.WND is the maximum window size
the receiver has ever seen from its peer. This is illus-
trated in Figure 3. The reasoning is that the only valid
ACK numbers are those that are (i) not too old (bytes that
are recently sent) and (ii) not too new (receiver cannot
ACK bytes that are yet to be sent). The remaining ACK
values will be in the range of [SND.UNA − (231 − 1),
SND.UNA − MAX .SND.WND), denoted as the chal-
lenge ACK window. Even though ACK numbers inside
this window are still considered invalid, the specifica-
tion requires the receiver to generate outgoing challenge
ACKs in response to packets with such ACK numbers.
Overall, this more stringent ACK number check does not
eliminate, but helps dramatically reduce the probability
that invalid data is successfully injected. Specifically, if
the MAX .SND.WND is small (which is typically the case
for most connections), then the acceptable ACK window
will be much smaller than the half of the ACK number
space (as illustrated in Figure 3).

2.4 ACK Throttling
In general, as explained earlier, RFC 5961 enforces a
much stricter check on incoming TCP packets; for ex-
ample, it requires the RST packets to have an exact se-
quence number to actually reset the connection, whereas
a “good enough” in-window value only triggers a chal-
lenge ACK. In order to reduce the number of challenge
ACK packets that waste CPU and bandwidth resources,
an ACK throttling mechanism is also proposed. Specif-
ically, the system administrator can configure the max-
imum number of challenge ACKs that can be sent out
in a given interval (say, 1 second). The RFC clearly
states “An implementation SHOULD include an ACK

3

212 25th USENIX Security Symposium USENIX Association

throttling mechanism to be conservative.” Therefore, the
Linux kernel has faithfully implemented this feature by
storing the challenge ACK counter in a global variable
shared by all TCP connections. This approach, unfor-
tunately, creates an undesirable side channel, as will be
elaborated. We emphasize that the RFC states that ACK
throttling applies to only challenge ACKs and not to reg-
ular ACKs. This means that the challenge ACK counter
is unlikely to be affected by legitimate ACK traffic as the
conditions that trigger challenge ACKs are all considered
rare or due to attacks.

3 Vulnerability Overview

The Linux kernel first implemented all the features sug-
gested in RFC 5961, in version 3.6 in September 2012.
The changes were backported to certain prior distribu-
tions as well. The ACK throttling feature is specif-
ically implemented as follows: a global system vari-
able sysctl tcp challenge ack limit was in-
troduced to control the maximum number of challenge
ACKs generated per second. It is set to 100 by default.
As this limit is shared across all connections (possibly
including the connections established with the attacker),
the shared state can be exploited as a side channel.

Assuming we follow the threat model in Figure 1,
the basic idea is to repeat the following steps: 1) send
spoofed packets to the connection under test (with a spe-
cific four-tuple), 2) create contention on the global chal-
lenge ACK rate limit, i.e., by creating a regular connec-
tion from the attacker to the server and intentionally trig-
gering the maximum allowed challenge ACKs per sec-
ond, and 3) count the actual number of challenge ACKs
received on that connection. If this number is less than
the system limit, some challenge ACKs must have been
sent over the connection under test, as responses to the
spoofed packets.

Depending on the types of spoofed packets sent in
step 1, the off-path attacker can infer 1) if a connec-
tion specified by its four-tuple exists; 2) the next ex-
pected sequence number (RCV.NXT) on the server (or
client); 3) the next expected ACK number (SND.UNA)
on the server (or client). It is intriguing to realize that
the three information leakages are enabled by the three
(and only three) conditions that trigger challenge ACKs
as described in §2.1, §2.2, and §2.3, respectively.

We elaborate below, the intuition on how the inference
can be done in each case.

Connection (four-tuple) inference. Figure 4 shows
the sequence of packets that an off-path attacker can send
to differentiate between the cases of (i) the presence or
(ii) the absence of an ongoing connection. In both cases,
the attacker sends the same sequence of packets. Dashed
lines represent packets with spoofed IP addresses. In

the figure, the initial SYN-ACK packet is spoofed so
that it appears to come from the client. The counter for
the number of challenge ACKs that can be issued (100
initially) is tracked and depicted on the timeline of the
server.

The hope is that the initial spoofed SYN-ACK packet
will hit a correct four-tuple that corresponds to an active
connection between the client and the server. In such a
case (the left of Figure 4) the server will reply with a
challenge ACK2 (in accordance with the countermeasure
proposed to defend against blind SYN packet injection as
described in §2.1). At the same time, this will reduce the
global challenge ACK count from 100 to 99. In the case
where the spoofed SYN-ACK does not hit a correct four-
tuple (on the right of the figure), the server will simply
reply with a RST back to the corresponding client (as per
TCP standards).

The attacker will then send 100 non-spoofed in-
window RST packets to exhaust the challenge ACK
count (this behavior is described in §2.2). In the active
connection case, since the challenge ACK count is 99,
the attacker can now observe only 99 challenge ACKs.
In the no connection case, the attacker can observe 100.
The difference in the number of challenge ACKs effec-
tively leaks the information about whether a tested four-
tuple corresponds to an active connection or not.

Sequence number inference. Assuming the attacker
has already identified a four-tuple that corresponds to
an active connection between the client and server, the
off-path attacker now needs to guess a valid sequence
number that is considered acceptable by the server. Fig-
ure 5 shows the sequence of packets that an attacker can
send to distinguish between the cases of (i) in-window
and (ii) out-of-window sequence number. In the first
case where the spoofed RST packet has an in-window
sequence number (but not the next expected sequence
number), as per the countermeasure proposed to defend
against blind RST packet injection as described in §2.2,
a challenge ACK is triggered and this reduces the global
challenge ACK count from 100 to 99. In the second case
where the sequence number falls outside of the window,
no challenge ACK will be generated (the global chal-
lenge ACK count remains at 100).

Similar to connection inference, the attacker will now
send 100 non-spoofed in-window RST packets to ex-
haust the challenge ACK count. Once again, based on
how many challenge ACKs are received, the attacker can
tell if the guessed sequence number in the spoofed RST,
is in-window or out-of-window.

ACK number inference. After an in-window se-
quence number of an active connection is identified, the
attacker now will need to guess a valid ACK number that

2The effect is the same as sending a spoofed SYN. However, send-
ing a SYN-ACK is generally more stealthy.

4

USENIX Association 25th USENIX Security Symposium 213

Off-path
attackerServer1 Client1

SYN-ACK

Server2Client2

Active connection No connection

Challenge
ACK

100 RSTs

ACK
count
= 100

ACK
count
= 99

ACK
count

= 0

ACK
count
= 100

SYN-ACK

RST

100 RSTs

ACK
count

= 0
99

Challenge
ACKs

100
Challenge

ACKs

Figure 4: Connection (four-tuple) test

Off-path
attackerServer1 Client1

RST

Server2Client2

In-window seq Out-of-window seq

Challenge
ACK

100 RSTs

ACK
count
= 100
ACK

count
= 99

ACK
count

= 0

ACK
count
= 100RST

100 RSTs

ACK
count

= 0

Drop

100
Challenge

ACKs

99
Challenge

ACKs

Figure 5: Sequence number test

Off-path
attackerServer1 Client1

ACK

Server2Client2

ACK in challenge
ACK window Other ACK

Challenge
ACK

100 RSTs

ACK
count
= 100
ACK

count
= 99

ACK
count

= 0

ACK
count
= 100ACK

100 RSTs

ACK
count

= 0

Drop or
accept

99
Challenge

ACKs

100
Challenge

ACKs

Figure 6: ACK number test

is considered acceptable by the server. Figure 6 shows
the sequence of packets that an attacker can send to dif-
ferentiate the cases of (i) ACKs in challenge ACK win-
dow and (ii) other ACK numbers. In the first case where
the spoofed ACK packet has an ACK number in chal-
lenge ACK window (but with an in-window sequence
number), the server will reply with a challenge ACK, in
accordance with the countermeasure proposed to defend
against blind data packet injection (as described in §2.3).
Following the same procedure as before, an attacker can
infer if the guessed ACK number falls in the challenge
ACK window. As will be described in §5.2, this helps
the attacker to eventually identify the SND.NXT on the
server.

It is worth noting that once both the sequence number
and ACK number acceptable by the server are inferred,
an attacker can determine the sequence number and the
ACK number acceptable by the client as well. This is
because the RCV.NXT and SND.NXT on the server are
basically equivalent to SND.NXT and RCV.NXT on the
client [25, 18]. In practice, if the victim connection has
ongoing traffic, the inferred sequence and ACK number
may shift as the attack is in progress. We discuss such
cases in §6.

An alternative approach for sequence number in-
ference. In some cases a large number of RST packets
observed in a short period time may be considered ab-
normal. Firewalls may even rate limit RST packets on a
per-connection basis. In order to alleviate this, one can
in fact replace RST packets with ACK packets, which
are likely to stay under the radar. As shown in Figure 3,
a challenge ACK will be sent when ACK number is in
challenge ACK window while sequence number is in-
window. Since the challenge ACK window space is at
least 1/4 of the entire 4G of the ACK number space,
one can send 4 packets with ACK numbers 0, 1G, 2G,
and 3G respectively and at least one packet will trigger
a challenge ACK if the guessed sequence number is in-
window. To understand why the challenge ACK window
is at least this large, we first point out that the maximum
receive window size is 1G with the TCP window scaling

option (RFC 7323), which means that SND.MAX.WIN
cannot be larger than 1G. Therefore, according to defi-
nition of the challenge ACK window described in §2.3,
it is at least 1G as well. Given this, every spoofed RST
packet sent earlier for sequence number inference is re-
placed by four ACK packets, which is less efficient but
still effective. We have implemented and tested this al-
ternative approach for sequence number inference. How-
ever, to simplify the description, we assume the use the
original sequence number inference with RST packets in
the subsequent sections.

4 Off-Path Connection Reset Attack

In the previous section, we illustrate how the global chal-
lenge ACK rate limit can theoretically leak information
about an ongoing connection to an off-path attacker. In
this section, we focus on how to construct a practical
off-path connection reset attack that succeeds when a
spoofed RST arrives with a matching sequence number
of RCV.NXT . This requires an attacker to successfully
carry out both connection (four-tuple) inference and se-
quence number inference. As will be discussed, to con-
struct a realistic attack, several practical challenges need
to be overcome. We assume the threat model to be the
one in Figure 1 throughout the section, but the attack
works with the alternative threat model (Figure 2) as
well.

Goals and constraints. The main goal of the attack
is to quickly and reliably conduct the sequence number
inference and use it to reset an ongoing connection. The
faster the attack succeeds, the more potent the DoS effect
will be. However, the extent of the effect is subject to two
practical constraining factors: (i) The bandwidth may be
limited between the attacker and the victim (either server
or client). (ii) Packet loss may occur between the attacker
and victim, especially when they are far away. In this
section, we focus only on designing fast probing schemes
with given bandwidth constraints and leave the strategy
to deal with packet loss to §6.

5

214 25th USENIX Security Symposium USENIX Association

4.1 Time Synchronization
Challenge: As mentioned in §3, the challenge ACK rate
limit is on a per second basis. In other words, the counter
for the number of challenge ACK packets that can be is-
sued, gets reset each second. Therefore, it is critical that
in each cycle, all the spoofed and non-spoofed packets
sent from the attacker arrive within the same 1-second
interval, at the server.

One naive solution is that the attacker sends all those
packets in a very short period (say, 10 ms), to ensure
that the likelihood that they arrive within the same 1-
second interval is high. Unfortunately, in practice, this
solution does not work well since (i) many factors influ-
ence packet delays and thus, the gaps between packet ar-
rival times at the receiver, might be much larger than the
gaps in their transmission times, (ii) such bursts of traf-
fic are likely going to experience congestion and packet
loss. Thus, it is best for the attacker to synchronize with
the clock on the server, so that the attacker can spread the
traffic over the 1-second interval, without worrying that
some packet arrivals may cross the boundary between
two 1-second intervals.

The most common way to synchronize time be-
tween two machines is using the Network Time Protocol
(NTP). But in practice, the attacker does not know if the
server uses NTP, or to what NTP server it connects to;
thus, it is not a reliable solution.

Solution: We propose a time synchronization strategy
based on the very side channel introduced by the chal-
lenge ACK rate limit. The idea is to send more than 200
in-window RST packets spread out evenly in one second
and check if we can see more than 100 challenge ACKs;
if so, this indicates that we have crossed the boundary be-
tween two one second intervals (and have therefore not
synced with the server yet). We then adjust the timing
for next round of probing (shift it just enough) until we
receive exactly the 100 challenge ACKs; in this case, we
have succeeded in synchronizing with the server clock.

The reason we choose 200 packets is two-fold: 1) We
are able to trigger at most 200 challenge ACKs no matter
how many RST packets we send. These 200 challenge
ACKs are triggered only when half of the RST packets
arrive before the start of a new 1-second interval and half
arrive after. 2) By evenly spreading the 200 packets over
a 1-second window, i.e., sending one packet every 5ms,
allows us to adjust the timing of the next round probing
with the finest granularity. Specifically, we show that the
time synchronization can be done in at most three rounds
of probing in an ideal case (without packet losses).

Round 1: As described before, the attacker sends 200
in-window RST packets to the server evenly spread out
over a 1-second window. The attacker then listens and
counts the number of received challenge ACK packets.

This value is stored as n1. Here, the attacker listens for
incoming packets for 2 seconds conservatively, before
sending any additional packets to make sure a 1-second
interval on the server has elapsed. Note that apart from
the 200 RST packets, no other packet is sent to the server
in this interval. If n1 equals 100, it means that all 200
RST packets all arrive in the same 1-second interval on
the server, thereby indicating that we have already syn-
chronized with the server. Otherwise, it must be true that
n1 > 100, in which case the attacker proceeds to the next
round.

Round 2: The attacker waits for 5ms (shifting the start
time of the probes by 5ms) and repeats the same process
as in the first step. The number of received challenge
ACK this time is stored as n2. If n2 equals 100, the syn-
chronization is done. Otherwise, the attacker proceeds to
round 3.

Round 3: By comparing n1 with n2, the attacker can
determine the final move to be synchronized. Specif-
ically, we provide the following reasoning to support
the decision. Assume that in step 1, x RST packets
arrive in the first 1-second interval on the server, and
y RST packets arrive in the second 1-second interval;
note that x + y = 200. Similarly, in step 2, there are
(x− 1) and (y+ 1) RST packets arrive in the first and
second 1-second intervals respectively, since in step 2
the attacker time shifts its probes by a period of 1 sub-
interval. Thus, n1 = min(x,100)+min(y,100) and n2 =
min(x−1,100)+min(y+1,100).

(i) If n2 ≥ n1: Let us assume that y ≥ 100 and x ≤ 100;
then n1 = min(x,100)+min(y,100) = x+100, and n2 =
min(x− 1,100)+min(y+ 1,100) = (x− 1)+ 100 < n1,
which contradicts the assumption that n2 ≥ n1; thus y <
100 and x > 100. With these conditions, n2 = 100+(y+
1) = 100+(200−x+1), or (x−1) = 300−n2. In step 2,
(x− 1) RST packets arrive in the first 1-second interval
on the server; thus, the attacker has to wait for (x− 1)
sub-intervals, i.e., (300−n2).

1
200 seconds to synchronize

her time interval with the server.
(ii) If n2 < n1: With the same reasoning, the attacker

knows that x < 100 and y > 100. In this case, n2 =
(x− 1)+ 100; thus, the attacker has to wait (n2 − 100)
sub-intervals, or n2−100

200 seconds to synchronize her time
interval with the server.

If no packet loss occurs (which is likely due to the
small number of packets sent every second), then the
three rounds are enough to complete the synchronization
process. To handle the rare event that packet loss may
occur, we double check that the synchronization was suc-
cessful by sending another round of 200 RST packets. If
it is inconsistent with the previous round, we start over.
As will be discussed later, such cases were almost never
seen in our experiments.

6

USENIX Association 25th USENIX Security Symposium 215

Algorithm 1: Binary search for source port number
1: le f t = left boundary of the port range
2: right = right boundary of the port range
3: while le f t < right do
4: mid = (le f t + right)/2
5: for i = mid to right do
6: Send a spoofed SYN packet with i as the client port number
7: end for
8: Send 100 RST packets on the legitimate connection
9: Wait until the end of the 1-second interval, count the number of

received challenge ACK packets
10: if received ACK packets = 100 then
11: right = mid −1
12: else
13: le f t = mid
14: end if
15: end while
16: return le f t; //the correct port value

4.2 Connection (Four-tuple) Inference
After time synchronization, the attacker can successfully
launch subsequent attacks by knowing the boundaries be-
tween the 1-second intervals. The first step is “four-tuple
inference”, wherein the attacker determines if a connec-
tion is established between the client and the server. As
mentioned in §2.1, the receiver will send back a chal-
lenge ACK (regardless of the sequence number of the
packet) when a packet with a SYN flag set, arrives.

In §3, we discussed how this behavior can be exploited
to determine whether or not a specific four-tuple is cur-
rently active. Basically, for each four-tuple in question,
the attacker needs to send a spoofed SYN-ACK packet
(a TCP packet in which the SYN and ACK flags are
set) with <srcIP = clientIP, dstIP = serverIP, srcPort =
X, dstPort = serverPort>. The above assumes both the
client and server IP addresses are known. In addition,
the server port is assumed to be publicly known accord-
ing to its service type. Therefore, the only unknown is
the source port the client uses. The maximum possible
port range is 216 = 65536, and the default range on Linux
is only from 32768 to 61000.

A naive approach is to test each port number at a time
per second, as depicted in Figure 4, which, in the worst
case, requires hours to complete. Therefore, a practical
attack requires the attacker to test several port numbers in
a second. Let us denote the maximum number of spoofed
packets that can be sent in one second by n (constrained
by network bandwidth). If n is large, one can search for
the port number using a binary-search-like algorithm, the
pseudo-code of which is shown in Algorithm 1. Specifi-
cally, assuming n is larger than 32767, in the first round
the attacker can test the port range from 32768 to 65535
(the most likely half) in a 1-second interval. If the actual
port number falls in the range, then the challenge ACK
observed by the attacker at the end of the interval will

if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq,
↪→ TCP_SKB_CB(skb)->end_seq)) {

...
goto discard;

}
if (th->rst) {

if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt
↪→)

tcp_reset(sk);
else

tcp_send_challenge_ack(sk, skb)
↪→ ;

goto discard;
}

Figure 7: Logic of handling an incoming packet with RST flag
in latest Linux kernels

be 99 (one goes to the victim). If the actual port number
does not fall in this range, the observed number of chal-
lenge ACKs will be 100. In either case, the attacker can
narrow down the search space by half and proceed to the
next round of search.

An even better strategy is to divide the search space
into multiple bins and probe them together in the same
round. That way, one can eliminate n−1

n of the search
space. A similar multi-bin search strategy is used for
sequence number inference in (§4.3).

In cases where n is smaller than 32767 (due to band-
width constraints), the best the attacker can do is to sim-
ply try as many port numbers as possible in each round.
The binary search or multi-bin search can be applied later
when the search space becomes small enough.

4.3 Sequence Number Inference
As discussed in §2.2, the receiver generates a challenge
ACK in response to a RST packet that contains an in-
window sequence number which does not match exactly
the expected value. The related Linux kernel code is
shown in Figure 7; the tcp sequence() function re-
turns true if the sequence number is in-window, and false
if it is out-of-window. In the latter case, the packet will
simply be dropped. When the sequence number is in-
window and the packet has the RST flag set, its sequence
number is analyzed further. As we can see, the con-
nection is terminated only when the sequence number
matches RCV.NXT ; otherwise, a challenge ACK is sent.

The main difference between port number inference
and sequence number inference is that the attacker does
not need to check every possible sequence number to
trigger a challenge ACK. Therefore, the attacker can
divide the sequence number space into blocks whose
sizes are equal to the receive window size, and probe
with a guessed sequence number in each block to de-
termine which sequence numbers fall in the receive win-
dow. Theoretically, an attacker can apply the same binary

7

216 25th USENIX Security Symposium USENIX Association

()

1 1 11
…...

2G 4G

4G

(a). First iteration

1

(RCV.NXT, RCV.NXT+WIN)

()

1 1 11…
2G

(b). Second iteration

3G

of packets:

of packets:

WIN

(RCV.NXT, RCV.NXT+WIN)

Figure 8: Binary search for sequence number illustration

Chunk
start

(a). Locating the in-window block

…

(b). Locating the left boundary of the window

1 2 … 3

Bin 1 Bin 2 Bin 3 Bin 4

Bin 1 Bin 2 Bin 3 Bin 4

…# of packets: 1 2 3

Chunk
endWIN

Block
start

Block
end

(
1 1 1

)

()

Figure 9: Multi-bin search for sequence number illustration

search algorithm used in connection inference. This pro-
cess is illustrated in Figure 8. In the first round of prob-
ing, the attacker can probe the right half of the sequence
number space — (2G, 4G). If any of the spoofed RST
packets triggers a challenge ACK, the attacker will ob-
serve less than 100 challenge ACKs at the end of the 1-
second interval. If there are exactly 100 challenge ACKs
observed, it indicates that the receive window is on the
left side of the search space. In either case, in the second
round, the attacker knows “which half the receive win-
dow belongs to.” Let us say that the receive window is in
the right half. The attacker would then divide the search
space of (2G, 4G) into (2G, 3G) and (3G, 4G). Similar to
the first round, only (3G, 4G) needs to be probed in order
to determine the part that contains the receive window.
This search will eventually stop after 32 rounds exactly
(because the sequence number is 32-bit).

However, in practice, the sequence number search
space is significantly larger than port number space. Let
us consider a receive window size of 12600. This leaves
the attacker 340870 possible blocks to search through.
If the attacker were to transmit this many packets in
one second, the bandwidth requirement would be around
150Mbps, which is extremely high. Likely, the attacker
will have to perform a linear search by attempting to
search as many blocks as allowed by bandwidth in one
second.

Dealing with unknown window sizes: Ideally, the
block size should be determined by the window size of
the target connection, i.e., the server’s receive window
size. In reality, however, an off-path attacker cannot ob-
serve the window size. If the attacker chooses a smaller
window size (compared to the actual window size), the
attack will send more packets unnecessarily and take
more time. On the other hand, if the guessed value is
larger than the actual value, the attacker might miss the
correct window of sequence numbers while traversing
consecutive blocks. Thus, there is an inherent trade-off
between the success rate and the cost incurred (in terms
of time and bandwidth) of the attack. Even if the attacker
can come up with a correct receive window size at one

particular time, the size can change over time.
Our solution is to use a conservative estimate of the

window size as the block size in the beginning and up-
date it later given proper feedback. The conservative
window size is determined by the initial window size
advertised by the server in the SYN-ACK packet. By
surveying Alexa top 100 websites, we find that the aver-
age initial receive window size is 26703. This window
size is the lower bound as the window typically grows
after the connection is established. To observe the initial
window size, the attacker simply attempts to establish
a valid (non-spoofed) TCP connection with the server.
This strategy works because a server typically uses the
same initial receive window size for all clients. Such a
conservative estimate of window size may force the at-
tacker to send more packets, but it at least will guarantee
success. We will also discuss how to update the window
size dynamically during the search process.

Next, we elaborate the design of sequence number in-
ference:
• Step 1 – Identify the approximate sequence

number range. Let us assume that the attacker, in n
blocks, can send n spoofed packets per second (n is on
the order of thousands in our experiments). We call such
n consecutive blocks a chunk. The guessed sequence
number is always chosen to be the first sequence number
within a block. If at the end of the 1-second interval, the
attacker observes 100 challenge ACKs, then the attacker
proceeds to the next chunk, i.e., the next n consecutive
blocks. If the attacker observes less than 100 challenge
ACKs, it indicates that the receive window is within the
chunk that was just probed. The attack can now proceed
to step 2. Note that if the number of observed challenge
ACKs is less than 99, it indicates that the initially esti-
mated window size (block size) is too small.

For example, as illustrated in Figure 10(a), if there are
two blocks whose beginning sequence numbers are in-
side the actual receive window, then the number of ob-
served challenge ACKs will be 98; this indicates that
the actual window size should be approximately twice
the estimated window size (initial block size). We there-

8

USENIX Association 25th USENIX Security Symposium 217

()
11…... 1

(RCV.NXT, RCV.NXT+WIN)

of packets:
Block size

1
Block size

()
1…... 1

(RCV.NXT, RCV.NXT+WIN)

of packets:
New block size

()
1…... 1

(RCV.NXT, RCV.NXT+WIN)

of packets:
New block size

(a) Initial block size (conservative estimate of window size)

(b) Updated block size (one possible outcome)

(c) Updated block size (the other possible outcome)

Figure 10: Window size estimate and adjustment

fore update the block size to be twice as much in the
subsequent search steps. The two possible outcomes are
shown in Figure 10(b) and Figure 10(c).
• Step 2 – Narrow down the sequence number

space to a single block. From step 1, we know that the
receive window is within a chunk. We now further nar-
row down the search space to an exact block within the
chunk. Note that we have now updated the block size so
that there will be one and only one block that can trig-
ger challenge ACKs. To locate the exact block, the same
binary search strategy outlined in Figure 8 can be used
except that the search space now is dramatically reduced
after step 1.

The located block has a beginning value which, is an
in-window sequence number; therefore, one of the fol-
lowing is true: (i) its beginning value is the correct se-
quence value; or (ii) the correct sequence value is in its
left neighboring block. In the first case, since the se-
quence number matches the RCV.NXT , the spoofed RST
packet can already terminate the connection. In the sec-
ond case, the attacker performs an additional search in
the left neighboring block (see Step 3).
• Step 2 (optimized version) – Identify the correct

sequence block using multi-bin search. With the pre-
vious assumption that the attacker can send n spoofed
packets per second, with a binary search, the first round
requires only n

2 packets (as we divide a chunk into two
halves initially). The second round requires only n

4 pack-
ets and so on. As we see, the number of packets sent in
each round reduces quickly. This is not an efficient use
of the network bandwidth. We show that it is possible to
speed up the search process by sending more packets per
round (still at most n per round).

The idea is, instead of dividing the search space into
two halves in each round, we can divide the space into
multiple bins and probe them simultaneously. This is
illustrated in Figure 9(a) where 4 bins are present in a
chunk. Each bin here holds an equal number of blocks.
To determine which bin the receive window falls in, the

attacker sends a different number of spoofed RST pack-
ets in each bin. In the example, he sends 1 RST packet
per block in the 2nd bin, 2 RST packets per block in the
3rd bin, and 3 RST packets per block in the 4th bin. Since
the receive window can fall into one and only one of the
bins, the attacker can determine which bin it is in, by ob-
serving how many challenge ACKs are received at the
end of the 1-second interval. If there are 100 challenge
ACKs received, it indicates that the receive window is in
the 1st bin (since no RST packets were sent in the 1st
bin). Receipt of 99 challenge ACKs indicates that the
receive window is in the 2nd bin, etc.

Note that the more bins we have, the faster we can
narrow down the sequence number space. However, the
number of bins chosen for each round is constrained by
n. The larger the n, the more the bins that can be created.
The number of bins is also capped at 14, given that the
number of spoofed packets may already exhaust the 100
challenge ACK counter in one round (0+ 1+ 2+ ...+
13 = 91).
• Step 3 – Find the correct sequence number us-

ing binary search. Now we are sure that RCV.NXT is
within a specific block, we need to locate its exact value.
To achieve the goal, another modified binary search strat-
egy is used here. The observation is that the correct se-
quence number (RCV.NXT) is the highest value in the
block, such that any spoofed RST packet with a sequence
number less than it will not trigger a challenge ACK
packet. It is worth noting that we may not realize which
value is the correct sequence number until the connection
is terminated, as all the probing packets are RST packets.
• Step 3 (optimized version) – Find the correct

sequence number using multi-bin search. Similar to
the previous multi-bin search, the attacker can divide the
single block into many small bins and probe them simul-
taneously. All bins before the left boundary of the re-
ceive window (RCV.NXT) will not trigger any challenge
ACKs; the ones after will. Thus, in this step attacker
only sends one spoofed packet per bin and accumulates
all the challenge ACKs received from right to left (See
Figure 9). If the attacker sees (100-X) challenge ACKs
at the end of the 1-second interval, it indicates that X
probed bins are after RCV.NXT . In Figure 9, let us say
we divide the block into 4 bins. After probing them, the
number of observed challenge ACK will be 97 because
2nd, 3rd, and 4th bins turn out to be after RCV.NXT .
Note that if the observed challenge ACK is 100, it in-
dicates that the correct sequence number is somewhere
inside the 4th bin (but not its beginning value).

Similar to the previous multi-bin search, the number
of bins chosen for each round is constrained by n. In ad-
dition, the number of bins is always capped at 100, as the
spoofed packets may exhaust the limit of 100 challenge
ACK count.

9

218 25th USENIX Security Symposium USENIX Association

The RST off-path TCP attack is successfully launched
after the above three steps. The exact number of prob-
ing rounds depends on the available bandwidth, and will
determine the time it takes to finish the attack. We will
evaluate this in §7.

5 Off-Path Connection Hijacking Attack
In this section, we discuss how an off-path attacker can
hijack an ongoing connection and inject spoofed data.
The methodology used to inject data into the client or
to the server are similar; thus, without loss of general-
ity, we exemplify the attack targeting the server. First,
we describe the challenges that the attacker will need to
overcome; subsequently, the entire attack process is de-
scribed in detail.

5.1 Challenges and Overview
The attacker will experience obstacles that are similar to
those associated with launching an off-path reset attack.
In addition, the following additional challenges need to
be addressed.

Preventing unwanted connection reset. As de-
scribed in §4.3, the RST packets with in-window se-
quence numbers are leveraged towards identifying the
next expected sequence number on the connection. How-
ever, with that process, sending a RST packet with the
exact, expected sequence number (RCV.NXT) to the
server will terminate the TCP connection; this is not the
goal of the hijack attack. The challenge is thus, to infer
RCV.NXT without causing connection termination.

Identifying both the sequence number and ACK
number. In order to trick the server into believing that
the injected data is valid, and sent from the server, the at-
tacker needs to know both the correct sequence number
(RCV.NXT) and the acceptable ACK range on the server
side of the connection. The latter is typically a fairly
small range as discussed in §2.3.

At a high level, our design of the attack consists of the
following steps: First, the attacker finds an in-window
sequence number on the server using the techniques de-
scribed in §4.3. Based on this, the attacker will be able
to guess the range of acceptable ACK values that trig-
ger challenge ACKs. The range of these acceptable val-
ues (ACK window) can be used to identify the highest
acceptable ACK number, i.e., SND.NXT , on the server.
We will show next that obtaining this ACK number then
allows the attacker to infer the exact expected sequence
number on the server without resetting the connection.

5.2 Inferring Acceptable ACK Numbers
Assuming an in-window sequence number is already in-
ferred, we now discuss how an attacker can infer the

next ACK number, SND.UNA, which is expected by
the server. As illustrated in Figure 3, an incoming data
packet is accepted if the ACK number is in the range of
[SND.UNA−MAX .SND.WND, SND.NXT]. If not, the
receiver will respond with a challenge ACK packet, if the
ACK number is in the range of [SND.UNA− (231 − 1),
SND.UNA−MAX .SND.WND); this range is called the
challenge ACK window. It is obvious that SND.UNA can
be computed if one can successfully infer the left bound-
ary of the challenge ACK window, SND.UNA− (231 −
1). This in turn can be found using the following ap-
proach.

Step 1: Identify the challenge ACK window posi-
tion. According to RFC 1323, by using the window
scaling option, the maximum receive window size can
be extended from 216 to a maximum of 230 = 1G. Thus,
the MAX .SND.WND cannot be larger than 1G. Accord-
ingly, the challenge ACK window size is between 1G and
2G, which is one quarter of the entire ACK space size.
Because of this, we divide the entire ACK space into 4
bins and probe each bin to check which bin(s) the chal-
lenge ACK window falls in. In our implementation, we
probe the first value of each bin, i.e. 0, 1G, 2G, 3G. We
know for certain that either one or two bins can trigger
challenge ACK packets. Therefore, we need to send dif-
ferent number of packets for each bin to differentiate the
resulting cases. A simple strategy is to send one packet
at ACK number 0, two packets at 1G, four packets at 2G,
and 8 packets at 3G. For instance, if the number of ob-
served challenge ACKs is 94 (6 missing), then we can
infer that both ACK number 1G and 2G have triggered
challenge ACKs. If the number of observed challenge
ACKs is 96 (4 missing), then only ACK number 2G has
triggered challenge ACKs. We can then easily determine
the “left-most” bin whose beginning value falls in chal-
lenge ACK window.

Step 2: Find the left boundary of the challenge
ACK window Now the problem is, given the bin located
in the previous step, we need to identify an ACK number
in the left neighboring bin, such that it is the “left-most”
value (in the circular sense) that can still trigger chal-
lenge ACKs. This is a problem that can be solved in a
similar way to the last step of sequence number inference
using multi-bin search (§4.3).

Finally, when the left boundary of the challenge ACK
window (SND.UNA− (231 −1)) is found, an acceptable
ACK value (SND.UNA) is trivially computed.

5.3 Identify the Exact Sequence Number
To locate RCV.NXT without resetting a connection, we
leverage the knowledge learned about the various ACK
number ranges. The idea is that, instead of sending
spoofed RST packets (which may terminate a connec-

10

USENIX Association 25th USENIX Security Symposium 219

tion), the attacker can send spoofed data packets with
ACK numbers that fall in the challenge ACK window
and thus, intentionally trigger challenge ACKs (if the
sequence number is in-window). Combined with the
fact no challenge ACK will be triggered if the guessed
sequence number is before RCV.NXT (considered old
packet and dropped), RCV.NXT can be located as the
“left-most” value that can trigger challenge ACKs. The
search process is in fact similar to the last step in se-
quence number inference except that we now use spoofed
data packets.

Now that the attacker knows both the RCV.NXT and
SND.UNA on the server, it is trivial to inject legitimate-
looking data packets that will be accepted by the server.
Further, it is also trivial to inject legitimate-looking
data packets to the client because the RCV.NXT on the
server is effectively the SND.UNA on the client, and the
SND.UNA is the RCV.NXT on the client (assuming no
traffic is in flight). In §7.2, we will present a case study
on how a web service can be hijacked by a completely
blind off-path attacker.

6 Other Practical Considerations
We have fully implemented the attacks described in §4
and §5. In §7, we will evaluate the effectiveness and ef-
ficiency of the attacks extensively. In this section, we
outline a few practical considerations that need to be han-
dled.

Detecting and handling packet loss. So far, we have
assumed that spoofed connections will not incur packet
loss and the challenge ACK side channel has no noise.
However, in reality, even if the number of packets sent
per second is chosen conservatively (well below band-
width constraints), there is still no guarantee that packet
loss will not occur, and a host may legitimately gen-
erate challenge ACKs that are not triggered by the at-
tack. They exhibit the same effect to the attacker —
the number of observed challenge ACKs will be smaller
than expected. In this paper, we call them both packet
loss for convenience. We address packet loss based on
the two following principles: 1) when in doubt, repeat
the probes; 2) add redundancy in the probing scheme to
proactively detect packet loss.

In the initial step of the sequence number search, if
packet loss occurs, the number of observed challenge
ACKs may reduce to 99; the attacker thus, may incor-
rectly conclude that a chunk that contains the receive
window is located. This will affect all subsequent search
steps. Therefore, every time when a “plausible” chunk
is detected, we repeat the probe on the same chunk. The
search will proceed to step 2 only when both rounds re-
turn exactly 99 challenge ACKs (no more, no less).

In step 2 and step 3 of the sequence number search,

we add redundancy to actively detect packet loss so that
we repeat only the round of probing that experienced
packet loss. The idea is similar to using parity bits. In
each round, instead of allowing the number of observed
challenge ACKs to be any value equal to or below 100,
we can construct the probing packets such that only odd
number of challenge ACKs will be considered a valid
outcome. If an even number of challenge ACKs is re-
ceived, packet loss must have happened. This strategy
can be visualized by referring to Figure 9(a). Instead of
sending 1, 2, or 3 packets per block for each bin, we will
send 1, 3, and 5 packets per block for each bin. This
means that if the receive window falls in 2nd bin, the
number of challenge ACKs will be 99; if the receive win-
dow is in 3rd bin, the number of challenge ACKs will be
97, etc.

Both schemes are implemented and shown to be very
effective in cases where the network conditions between
the attacker and the victim are poor.

Moving receive window and challenge ACK win-
dow. So far, we have assumed that the connection is
relatively idle, and the window does not change while
the inference is in progress. This is likely to be the case
in many real world scenarios, especially with long-lived
connections. One example is the push notification con-
nections on mobile platforms [2]. They are idle most
of the time until a new push notification arrives. Even
when a connection is not idle at one point, it is likely
to become idle at some point and become more suscep-
tible to the attack. Moreover, the traffic activity will
mostly be concentrated on either uplink and downlink,
rarely both. Typically, downlink traffic dominates; there-
fore, the attacker targeting at resetting the connection on
the server side will experience less difficulty (client’s se-
quence number increases very slowly). Tor network con-
nections are also candidates as the end-to-end throughput
is typically very low.

To support sequence number inference against (slow)
moving receive windows, we implement a simple strat-
egy which conducts a brute-force style sequence number
guessing. Specifically, once a “left-most” in-window se-
quence number is inferred (which may become invalid in
the next interval due to the ongoing activities), we send
20,000 RST packets with sequence numbers, with offset
1, 2, ..., 20,000 to the valid sequence number. As will be
shown in §7.1.2, for low-activity connections, this strat-
egy works well. We leave the exercise to come up with
a strategy to target connections with heavier traffic to fu-
ture work.

Per-connection rate limit. Since the Linux kernel
version 4.0 (released in Apr 2015), in addition to the
global challenge ACK rate limit, a per-connection rate
limit was introduced. The idea is to reduce the im-
pact of potential ACK loops [3] that may occur if client

11

220 25th USENIX Security Symposium USENIX Association

and server are de-synchronized. Theoretically, the per-
connection rate limit provides an isolation between the
victim connection and the attacker connection, and the
side channel should be eliminated completely. For in-
stance, even if the challenge ACK count limit is reached
for the victim connection, it does not affect the limit on
the attacker connection at all.

However, interestingly, the per-connection rate limit
only applies to SYN packets or packets without any pay-
load. The comment in the Linux kernel states “Data
packets without SYNs are not likely part of an ACK
loop”, hinting that such packets do not need to be gov-
erned by the per-connection rate limit. It is evident that
the developers assumed a benign scenario instead of an
adversarial one. To get around this restriction, we simply
send spoofed packets with a single byte of payload. For
the spoofed SYN-ACK packets though, it is impossible
to bypass the per-connection rate limit. Unfortunately,
upon a closer look at the implementation, when a per-
connection challenge ACK is sent out, it is also counted
towards the global challenge ACK limit. Therefore, it
is still possible to infer that the four-tuple of an ongo-
ing connection has been guessed correctly by observing
only 99 challenge ACKs at the end of the 1-second inter-
val. In practice, the per-connection rate limit is 1 packet
every 0.5 second, which does allow the attacker to pro-
ceed with the binary search approach outlined in §4.2.
We have verified experimentally that it does work against
the latest Linux kernels with per-connection rate limit.

Configurable maximum challenge ACK count. For
simplicity, throughout the paper, we assume the chal-
lenge ACK count to be 100, which is the default value.
Our test on a variety of Linux operating systems also
confirmed the result. However, as proposed in RFC
5961, this value is configurable by a system administra-
tor. According to the specification, the flexibility is pro-
vided to allow the tradeoff between resource (bandwidth
and CPU) utilization and how fast the system cleans
up stale connections. Fortunately, the exact configured
value can be inferred quite easily with some simple steps
(as long as it is not excessively large). After establish-
ing a legitimate connection to the server, the attacker
can send many RST packets, e.g., 1000 packets which
is much larger than default value of 100, with in-window
sequence values to trigger as many challenge ACKs as
possible. The packets are sent in a very short period
of time (say, 100 or 200 ms) to increase the likelihood
that they end up in the same 1-second interval. The at-
tacker then counts the total number of challenge ACKs
returned. Finally, the attacker can wait for a short amount
of time and repeat the process one more time to verify the
number of received challenge ACK packets is the same;
that value would be the actual limit set by the server.
Note that this is only a one-time effort for each target.

7 Evaluations
To showcase the effectiveness of our attacks, we next
evaluate them in terms of metrics such as success rate
and the time to succeed.

7.1 Connection Reset Case Studies
There are two sets of experiments reported in this sec-
tion viz., where (i) we reset an SSH connection and (ii)
perform a Tor connection reset.

Experimental setup. For the SSH experiments, we
use a Ubuntu 14.04 host on the University of California
- Riverside campus as the victim client. The victim SSH
server is one of the instances we create on Amazon EC2
in different geographic locations, worldwide. The attack
machine is a Ubuntu 14.04 host in our lab. For the Tor
experiments, we target the connection between a Tor re-
lay (set up in our campus) and a random peer relay. Our
Tor relay is also a Ubuntu 14.04 host and has been run-
ning the service for several months. The attack machine
is the same host as the one in the SSH experiments.

In both the SSH and Tor experiments, the attacker at-
tempts to reset the connection on the server end by con-
necting to it and performing the inference attacks. The
diversity of servers and the corresponding network paths
help test the robustness of the attack. We assume that the
3-tuple <client IP, server IP, and server port> is known.
Further, the attack machine is capable of spoofing the IP
address of both the victim client and server.

7.1.1 SSH Connection Reset

Location Success
Rate

Avg # of rounds
with loss

Avg % of rounds
with loss

BW
(pkts)

Time
Cost (s)

US West 1 10/10 0 0 5000 48.00
US West 2 9/10 1.0 1.91% 5000 58.00
US East 10/10 0 0 5000 32.00
EU German 9/10 0.3 0.67% 5000 48.00
EU Ireland 10/10 0 0 5000 35.20
Asia 1 10/10 0 0 5000 51.00
Asia 2 9/10 1.7 5.34% 5000 36.67
South America 10/10 0 0 5000 45.70

Table 1: SSH connection reset results

Summary. We run the reset attack against 8 different
Amazon EC2 servers in different geographical locations.
They are all micro instances set up for our experiments
only. We establish a connection from the victim client to
each server, and have the attacker perform the off-path
connection reset attack. For each server, we repeat the
experiment 10 times and report the average. As shown
in Table 1, the attack is highly effective: the average suc-
cess rate is 97% over all runs, with an average time cost
of 44.3s. Note that the overall time excludes the time for
synchronization (recall §4.1) as it is a one-time effort for
a server and can be done a priori. The bandwidth cost

12

USENIX Association 25th USENIX Security Symposium 221

here is 5000 spoofed packets per second, which trans-
lates to 4Mbps. Note that the probing scheme has al-
ready built in packet loss detection using “parity bits” as
described in §6. To show that the packet loss detection
scheme works, we report the number of rounds and the
percentage of rounds on average, when packet loss is de-
tected. For instance, even when packet loss between the
attack node and “Asia 2” server is frequent, we still man-
age to succeed 9 times out of 10.

Failures may still occur since the detection scheme is
rudimentary and may fail to detect packet loss. In some
cases, the failure can also be the result of the attacker
and server becoming out-of-sync due to network delay
variance. The success rate can be further improved by
adding more redundancy and using better error detection
schemes. However, we argue that the current success
rate is already good enough to carry out effective DoS
attacks.

Binary search
Multibin search

Ti
m

e
(s

)

0

10

20

30

40

Time
Synchronization

Port
Inference

Seq
Inference

ACK
Inference

Figure 11: Time breakdown

Ti
m

e(
s)

0
20
40
60
80

100
120
140
160

Attack intensity (packets/sec)
2000 4000 6000

Figure 12: Attack intensity impact on time to succeed

Time breakdown. To understand where the time is
spent in our attacks, we conduct another benchmark ex-
periment against one of the SSH servers with both se-
quence number and ACK number inference. As shown
in Figure 11, we break down the time spent into time syn-
chronization and the three search phases of port number
inference, sequence number inference, and ACK num-
ber inference. We also compare the optimized multi-bin
search versus the regular binary search in each phase.
Time synchronization takes around 7 seconds (optimiza-
tion is not applicable). As discussed, it is only a one-time

effort and therefore not on the “critical path”. We see
that with the optimized multi-bin search, the time spent
on port search is fairly short (around 14 seconds). The
time spent on sequence number search takes the most
time due to the fact that the sequence number space is
much larger. The time spent on ACK number inference
is also fairly short (around 8 seconds) due to the fact that
the challenge ACK window is extremely large and easy
to locate.

Compared to the results with binary search, we see
that the optimized multi-bin search has greatly improved
the search speed by more than 30 seconds overall. This
is due to the fact that binary search significantly under-
utilizes the bandwidth resources and significantly in-
creases the number of rounds of probes. The reason why
the sequence number search does not benefit as much is
because most of the time is spent on the initial linear
search of the huge sequence number space. This step
cannot be optimized with the multi-bin search.

Attack intensity vs. Time to succeed. Using the
same experimental setup as before, we vary the attack
intensity, i.e., the number of packets sent per second and
show how this affects the time it takes to succeed. As
shown in Figure 12, we plot the average, min, and max
time to successfully conduct sequence number inference
only (reset attack), as well as with the ACK number in-
ference added (hijacking attack). Clearly, the higher the
attack intensity the faster the attack. When the intensity
is only ≈ 512 Kbps (1000 packets per second), the time
to succeed is over 100 seconds, on average. When the
intensity is ≈ 4 Mbps, (5000 packets per second), the
average time reduces to ≈ 50 seconds for hijacking and
only 30 seconds for reset. Note that an intensity > 4
Mbps does not substantially improve the time to succeed
because we begin to observe more packet losses, which
cause additional rounds of probing. Of course, this is ex-
perienced on the specific network environment between
the attack host and the server, which could differ else-
where; if the network conditions are even better, the time
to succeed can be further improved.

7.1.2 Tor Connection Reset

Node Target Success
Rate

Avg # of rounds
with loss

Avg % of
rounds with loss

BW
(pkts)

Time
Cost(s)

62.210.x.x FR 8/10 1.9 4.58% 4000 46.36
89.163.x.x DE 9/10 4.0 7.97% 4000 49.08
178.62.x.x GB 7/10 3.2 4.20% 4000 53.00
198.27.x.x NA 10/10 0.8 1.45% 4000 59.86
192.150.x.x NL 8/10 4.1 5.64% 4000 68.03
62.210.x.x FR 6/10 2.5 5.85% 4000 49.57
89.163.x.x DE 8/10 1.7 3.06% 4000 52.51
178.62.x.x GB 8/10 6.0 8.15% 4000 78.35
198.27.x.x NA 7/10 2.1 3.64% 4000 72.49
192.150.x.x NL 6/10 5.5 7.14% 4000 79.42

Table 2: Tor connection reset results (first half under browsing
traffic and second half under file downloading traffic)

13

222 25th USENIX Security Symposium USENIX Association

To conduct a realistic experiment, we use a Tor relay
set up in our campus and have a user using it as an en-
try relay. The entry relay establishes connections with an
arbitrary middle relay (anywhere in the world). For eth-
ical reasons, we do not perform attacks against arbitrary
relay nodes that are not connected to our node.

To understand how the attack performs against mostly
idle connections, we test it against connections between
our own Tor relay and 40 other Tor relays throughout the
world. The attack node has to connect to these Tor re-
lays that are far away to perform attacks. In each case,
we repeat the reset experiment 10 times. First, we dis-
cover that 16 of them do not appear vulnerable to the
side channel attacks, even though they appear to be Linux
hosts. We suspect that this is because of certain fire-
walls that drop our spoofed packets. For the remaining
24 hosts, the average success rate is 88.8% and the av-
erage time to succeed is 51.1s. We find these results to
be slightly worse than those in the SSH experiments be-
cause of higher packet loss rates.

In addition, we pick 5 random relays and simulate
background traffic with browsing and file downloading,
and conduct the same experiment as above. Here, to deal
with moving windows, we use the simple brute-force
strategy described in § 6. The results are shown in Ta-
ble 2. The average success rate is now down to 77% and
the average time to succeed is 60.9s. Upon further in-
spection, the increased failure rate is exactly due to the
moving window problem i.e., it interferes with the se-
quence number search. Nevertheless, we think the result
is acceptable as we have not designed a robust solution
specifically for dealing with a moving window (this is
left for future work).

In general, we believe that a DoS attack against Tor
connections can have a devastating impact on both the
availability of the service as a whole and the privacy
guarantees that it can provide. The default policy in Tor
is that if a connection is down between two relay nodes,
say a middle relay and an exit relay, the middle relay
will pick a different exit relay to establish the next con-
nection. If an attacker can dictate which connections are
down (via reset attacks), then the attacker can potentially
force the use of certain exit relays.

7.2 TCP Hijacking Case Study
Our attack does not require any assistance from client-
side or server-side malware or puppet (which are re-
quired in prior studies [23, 14]). Therefore, our target
is any long-lived TCP connection that does not use SS-
L/TLS. There are several attractive targets: video, ad-
vertisements, news, and Internet chat rooms (e.g., IRC).
Depending on the implementation, one can envision the
following possibilities: 1) the client periodically initiates
a request and asks for responses, or 2) the server proac-

Figure 13: USAToday screenshot with phishing registration
window

tively pushes notification messages. In both cases, our
attack can inject malicious messages to the client and
induce a variety of classic attacks such as phishing or
cross-site scripting.

Here, we pick a news website www.usatoday.com
which has a long-lived TCP connection that periodically
retrieves news updates every 30 seconds. This gives am-
ple idle time for our sequence number and ACK number
inference. The attacker machine and the victim client are
Ubuntu 14.04 hosts in our lab (as in the other case stud-
ies). Once the numbers are inferred, we perform a de-
synchronization attack [4] by sending a spoofed request
to the server that will force it to send a response to the
client. Since the request was never sent by the client, it
will not accept the response as the response packet con-
tains an invalid ACK number (acknowledging data that
have not been sent). Later, when the client itself initi-
ates a real request, the server would no longer accept it
as the packet is considered to be data with an old se-
quence number. Now that the client and server become
de-synchronized, the attacker no longer needs to worry
about a race condition where the response to the victim
client is sent back by the server first. During all this, the
attacker simply sends spoofed responses periodically ev-
ery few seconds with ACK numbers properly acknowl-
edging the client’s requests. If such spoofed responses
arrive before the client sends a request, they will simply
be dropped without any adverse effect (because the ACK
numbers are acknowledging data that has not been trans-
mitted yet).

We implement the attack end to end, and successfully
hijack the connection and inject a phishing registration
window to solicit email and passwords at the top of the
webpage as shown in Figure 13. We repeat the experi-
ment 10 times and summarize our results in Table 3. The
attack first infers sequence and ACK numbers before in-
jecting the malicious payload. Success rate 2 quantifies
the rate of inferring the sequence and ACK numbers cor-
rectly. However, USAToday occasionally switches the

14

USENIX Association 25th USENIX Security Symposium 223

Success
rate 1

Success
rate 2

Avg # of rounds
with loss

Avg % of
rounds with loss

BW
(pkts)

Time Cost
(s)

7/10 9/10 2.22 3.63% 5000 81.05
Success rate 1 = success rate of injecting the phishing registration window
Success rate 2 = success rate of inferring the correct sequence and ACK number

Table 3: USAToday injection results

HTTP request from one type to another and therefore
the injected payload will not match the request. Success
rate 1 quantifies the rate of injecting the response that
matches the request, which is strictly lower than success
rate 2, but is still reasonable in our experiments. In addi-
tion, the time to succeed is longer than in the case of SSH
and Tor experiments mostly because of the extra steps of
ACK number inference and data injection.

8 Discussion and Defenses

Vulnerabilities in other OSes: We examine if the
studied vulnerability exist in the latest Windows and
FreeBSD OSes (The latter TCP stack is also used by
Mac OS X). In brief, these OSes are not vulnerable to
the attack. First of all, neither Windows nor FreeBSD
has implemented all three conditions that trigger chal-
lenge ACKs according to RFC 5961. More importantly,
the ACK throttling is not found for Windows or MAC OS
X. Ironically, not implementing the RFC fully, in fact is
safer in this case.
Defenses. As highlighted earlier, the root cause of all the
attacks described is the side channel associated with the
global challenge ACK count. This side channel can leak
various types of information about an ongoing TCP con-
nection. In general, as asserted in previous studies [21],
network protocols are not designed rigorously to guaran-
tee the non-interference property. In our study, we dis-
cover that the design and implementation of RFC 5961
has actually introduced an information flow that leaks
TCP connection state through the shared challenge ACK
counter, and is highly exploitable.

The best defense strategy is to eliminate the side chan-
nel (the global challenge ACK count) altogether. One
can still enable the per-connection rate limit as long as
each connection has a completely separate counter that
does not interfere with those of other connections. The
downside of this strategy is that if the number of connec-
tions in a system increases, the aggregate challenge ACK
count can go up without any bound. There is currently no
evidence to suggest that this worst case scenario is likely
to ever happen. However, if one is really concerned about
wasting resources on sending challenge ACKs, we sug-
gest a second solution which is adding noise to the chan-
nel. This is a common defense strategy in mitigating side
channel attacks [10, 27]. Specifically, instead of having
a fixed global challenge ACK count of 100 in all inter-
vals, we can add random values (either positive or nega-

tive) for each interval. This will essentially confuse the
attacker during the search process. In fact, even if the
attacker repeats the probe many times, the result will al-
ways differ over time. To ensure that the added random-
ness is theoretically sound, one can even apply differ-
ential privacy to systematically introduce noise, as was
done recently in [28]. We leave the design of the exact
scheme to add randomness to future work. We also plan
to propose the defenses to the Linux community.

9 Related Work

Previous work on off-path TCP sequence number infer-
ence heavily relies on executing malicious code on the
client side [22, 23, 14, 16, 17, 1], either in the form of
malware [22, 23] or malicious javascript [14, 16, 17].
They share the same scheme of “guess-then-check”
based on some side channels observable by the mali-
cious code on the client side. They include OS packet
counters [22, 23, 9], global IPID [14, 1], and HTTP re-
sponses [16]. In contrast, our off-path TCP attack elim-
inates the requirement completely, which makes the at-
tack much more dangerous. The only prior study that
shares the same threat model is the one reported by lkm
in phrack magazine in 2007 [1]. The authors exploit the
well-known global IPID side channel on Windows hosts
to perform such attacks. Unfortunately, the IPID side
channel is extremely noisy and the attack can take close
to 20 minutes to succeed, as reported by the authors. Fur-
thermore, as reported in [14], the success rate of such an
attack is very low, unless the attacker has a low latency to
the victim (e.g., on the same LAN). In comparison, our
newly reported attack finishes much faster and is signifi-
cantly more reliable.

Besides the TCP sequence number, it has been shown
that other types of information can be inferred by an off-
path or blind attacker [12, 21, 11, 29, 5, 15]. For in-
stance, Ensafi et al. [12] show that, by leveraging the
SYN cache and RST rate limit on FreeBSD, one can infer
if a port is open on a target host through bouncing scans
off of a “zombie” FreeBSD host. Knockel et al. [21]
demonstrate the use of a new per-destination IPID side
channel that can leak the number of packets sent be-
tween two arbitrary hosts on several major operating sys-
tems with a bootstrapping time of an hour on average.
Alexander et al. [5] can infer the RTT between two ar-
bitrary hosts with reasonable accuracy within minutes.
Gilad et al. [15] are also able to infer if two hosts have es-
tablished a TCP connection identified by a specific four-
tuple, by utilizing the same noisy global IPID side chan-
nel. Compared to the newly discovered side channel, it
has the following limitations: 1) requires the presence
of stateful firewall or NAT which may not be univer-
sally present; 2) has a low success rate even when the

15

224 25th USENIX Security Symposium USENIX Association

tests are repeated multiple times (e.g., for more than a
minute). Utilizing the new side channel, we can do this
much faster.

Many of the side channels can be abused and cause
unwanted information leakage. However, in some cases,
they can also be used legitimately for network measure-
ments. For instance, the global IPID side channel has
been used to infer a network’s port blocking policy [24].
The same side channel has also been used to count how
many hosts are behind a NAT [6]. In addition, even
though commonly considered a vulnerability, ISPs that
allow IP spoofing are still prevalent according to the lat-
est reports in 2009 [7] and 2013 [8]. Further, very re-
cently, IP spoofing has also been used in legitimate ap-
plications such as reverse traceroute [20], detecting Inter-
domain Path changes [19], and detecting routing policy
violations [13].

10 Conclusions
To conclude, we have discovered a subtle yet critical flaw
in the design and implementation of TCP. The flaw man-
ifests as a side channel that affects all Linux kernel ver-
sions 3.6 and beyond and may possibly be replicated in
other operating systems if left unnoticed. We show that
the flaw allows a variety of powerful blind off-path TCP
attacks. Finally, we propose changes to the design and
implementation of TCP’s global rate limit to prevent or
mitigate the side channel.

Acknowledgement
Research was sponsored by the Army Research Labo-
ratory and was accomplished under Cooperative Agree-
ment Number W911NF-13-2-0045 (ARL Cyber Secu-
rity CRA). The views and conclusions contained in this
document are those of the authors and should not be in-
terpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Laboratory
or the U.S. Government. The U.S. Government is au-
thorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation
here on. The work is also supported by National Science
Foundation under Grant #1464410.

References

[1] Blind TCP/IP Hijacking is Still Alive. http://
phrack.org/issues/64/13.html.

[2] Cloud Messaging. https://developers.goo
gle.com/cloud-messaging/.

[3] [tcpm] mitigating TCP ACK loop (“ACK storm”)
DoS attacks. https://www.ietf.org/m

ail-archive/web/tcpm/current/ms
g09450.html.

[4] ABRAMOV, R., AND HERZBERG, A. Tcp ack
storm dos attacks. Journal Computers and Security
(2013).

[5] ALEXANDER, G., AND CRANDALL, J. R. Off-
Path Round Trip Time Measurement via TCP/IP
Side Channels. In INFOCOM (2015).

[6] BELLOVIN, S. M. A Technique for Counting Nat-
ted Hosts. In Proceedings of the 2Nd ACM SIG-
COMM Workshop on Internet Measurment (2002).

[7] BEVERLY, R., BERGER, A., HYUN, Y., AND
K CLAFFY. Understanding the Efficacy of De-
ployed Internet Source Address Validation Filter-
ing. In Proc. ACM SIGCOMM IMC (2009).

[8] BEVERLY, R., KOGA, R., AND K CLAFFY. Initial
Longitudinal Analysis of IP Source Spoofing Ca-
pability on the Internet. In Internet Society Article
(2013).

[9] CHEN, Q. A., QIAN, Z., JIA, Y. J., SHAO, Y.,
AND MAO, Z. M. Static detection of packet injec-
tion vulnerabilities: A case for identifying attacker-
controlled implicit information leaks. In CCS
(2015).

[10] CHEN, S., WANG, R., WANG, X., AND ZHANG,
K. Side-channel Leaks in Web Applications: A Re-
ality Today, a Challenge Tomorrow. In IEEE Sym-
posium on Security and Privacy (2010).

[11] ENSAFI, R., KNOCKEL, J., ALEXANDER, G.,
AND CRANDALL, J. R. Detecting Intentional
Packet Drops on the Internet via TCP/IP Side Chan-
nels. In PAM (2014).

[12] ENSAFI, R., PARK, J. C., KAPUR, D., AND
CRANDALL, J. R. Idle Port Scanning and Non-
interference Analysis of Network Protocol Stacks
using Model Checking. In USENIX Security
(2010).

[13] FLACH, T., KATZ-BASSETT, E., AND GOVIN-
DAN, R. Quantifying Violations of Destination-
based Forwarding on the Internet. In IMC (2012).

[14] GILAD, Y., AND HERZBERG, A. Off-Path Attack-
ing the Web. In USENIX WOOT (2012).

[15] GILAD, Y., AND HERZBERG, A. Spying in the
Dark: TCP and Tor Traffic Analysis. In PETS
(2012).

16

USENIX Association 25th USENIX Security Symposium 225

[16] GILAD, Y., AND HERZBERG, A. When tolerance
causes weakness: the case of injection-friendly
browsers. In WWW (2013).

[17] GILAD, Y., HERZBERG, A., AND SHULMAN,
H. Off-Path Hacking: The Illusion of Challenge-
Response Authentication. Security Privacy, IEEE
(2014).

[18] HAN, B., AND BILLINGTON, J. Termination
properties of TCP’s connection management pro-
cedures. In ICATPN (2005).

[19] JAVED, U., CUNHA, I., CHOFFNES, D., KATZ-
BASSETT, E., ANDERSON, T., AND KRISHNA-
MURTHY, A. Poiroot: Investigating the root
cause of interdomain path changes. In SIGCOMM
(2013).

[20] KATZ-BASSETT, E., MADHYASTHA, H. V., AD-
HIKARI, V. K., SCOTT, C., SHERRY, J., VAN WE-
SEP, P., ANDERSON, T., AND KRISHNAMURTHY,
A. Reverse Traceroute. In NSDI (2010).

[21] KNOCKEL, J., AND CRANDALL, J. R. Counting
Packets Sent Between Arbitrary Internet Hosts. In
FOCI (2014).

[22] QIAN, Z., AND MAO, Z. M. Off-Path TCP Se-
quence Number Inference Attack – How Firewall
Middleboxes Reduce Security. In IEEE Symposium
on Security and Privacy (2012).

[23] QIAN, Z., MAO, Z. M., AND XIE, Y. Collabo-
rative TCP sequence number inference attack: how
to crack sequence number under a second. In CCS
(2012).

[24] QIAN, Z., MAO, Z. M., XIE, Y., AND YU, F.
Investigation of Triangular Spamming: A Stealthy
and Efficient Spamming Technique. In Proc. of
IEEE Security and Privacy (2010).

[25] R. BRADEN, ED. Requirements for Internet Hosts
- Communication Layers. rfc 1122, 1989.

[26] RAMAIAH, ANANTHA AND STEWART, R AND
DALAL, MITESH. Improving TCP’s Robustness to
Blind In-Window Attacks. rfc5961, 2010.

[27] SONG, D. X., WAGNER, D., AND TIAN, X. Tim-
ing Analysis of Keystrokes and Timing Attacks on
SSH. In USENIX Security (2001).

[28] XIAO, Q., REITER, M. K., AND ZHANG, Y. Mit-
igating storage side channels using statistical pri-
vacy mechanisms. In CCS (2015).

[29] ZHANG, X., KNOCKEL, J., AND CRANDALL,
J. R. Original SYN: Finding Machines Hidden Be-
hind Firewalls. In INFOCOM (2015).

17

USENIX Association 25th USENIX Security Symposium 227

Website-Targeted False Content Injection by Network Operators

Gabi Nakibly1,3, Jaime Schcolnik2, and Yossi Rubin1

1
Rafael – Advanced Defense Systems, Haifa, Israel

2Computer Science Department, Interdisciplinary Center, Herzliya, Israel
3Computer Science Department, Technion, Haifa, Israel

Abstract

It is known that some network operators inject false con-

tent into users’ network traffic. Yet all previous works

that investigate this practice focus on edge ISPs (Internet

Service Providers), namely, those that provide Internet

access to end users. Edge ISPs that inject false content

affect their customers only. However, in this work we

show that not only edge ISPs may inject false content,

but also non-edge network operators. These operators

can potentially alter the traffic of all Internet users who

visit predetermined websites. We expose this practice by

inspecting a large amount of traffic originating from sev-

eral networks. Our study is based on the observation that

the forged traffic is injected in an out-of-band manner:

the network operators do not update the network packets

in-path, but rather send the forged packets without drop-

ping the legitimate ones. This creates a race between the

forged and the legitimate packets as they arrive to the end

user. This race can be identified and analyzed. Our anal-

ysis shows that the main purpose of content injection is to

increase the network operators’ revenue by inserting ad-

vertisements to websites. Nonetheless, surprisingly, we

have also observed numerous cases of injected malicious

content. We publish representative samples of the injec-

tions to facilitate continued analysis of this practice by

the security community.

1 Introduction

Over the last few years there have been numerous reports

of ISPs that alter or proxy their customers’ traffic, includ-

ing, for example, CMA Communications in 2013 [7],

Comcast in 2012 [19], Mediacom in 2011 [10], WOW!

in 2008 [31], and Rogers in 2007 [36]. Moreover, several

extensive studies have brought the details of this practice

to light [20, 34, 28, 39]. The main motivations of ISPs to

alter traffic are to facilitate caching, inject advertisements

into DNS and HTTP error messages, and compress or

transcode content.

All of these reports and studies found that these traf-

fic alterations were carried out exclusively by edge ISPs,

namely, retail ISPs that sell Internet access directly to end

customers, and are their “first hop” to the Internet. This

finding stems from the server-centric approach the above

studies have taken. In this approach, one or a handful of

servers are deployed to deliver specific content to users,

after which a large number of clients are solicited to fetch

that content from the servers. Finally, an agent on the

clients – usually a JavaScript delivered by the server it-

self – looks for deviations between the content delivered

by the server and that displayed to the user. Figure 1(a)

illustrates the traffic monitored in this server-centric ap-

proach.

Such an approach can be used to inspect the traffic of

many clients from diverse geographies who are served

by different edge ISPs. The main disadvantage of this

approach is that the content fetched by the clients is very

specific. All clients fetch the same content from the same

web servers. This allows only the detection of network

entities that aim to modify all of the Internet traffic1 of

a predetermined set of users and are generally oblivious

to the actual content delivered to the user. Such entities

indeed tend to be edge ISPs that target only the traffic of

their customers.

In this work we show that the above approach misses

a substantial portion of the on-path entities that modify

traffic on the Internet. Using extensive observations over

a period of several weeks, we analyzed petabits of In-

ternet traffic carrying varied content delivered by servers

having over 1.5 million distinct IP addresses. We newly

reveal several network operators that modify traffic not

limited to a specific set of users. Such network operators

alter Internet traffic on the basis of its content, primarily

by the website a user visits. The traffic of every Internet

1In some cases these network entities modify all internet traffic orig-

inating from very popular websites such as google.com, apple.com,

and bing.com or all Internet traffic originating from .com.

1

228 25th USENIX Security Symposium USENIX Association

server

clients

monitor

(a) Depiction of monitored traffic in the server-centric

approach (of past works). One server with specific

content serves many clients in many edge networks.

server

clients

server server

server

monitor

(b) Depiction of monitored traffic in the client-centric ap-

proach (of the current work). Many servers with varied con-

tent serve many clients in a few edge networks.

Figure 1: Server-centric approach versus client-centric approach to monitoring traffic. The lines between clients and

servers illustrate the monitored traffic.

client servermiddle-box

valid packetforged packet

(a) In-band alteration of packet by a middle-box. Only a

single packet arrives at the client.

client server

injector

valid packet

forged packet

tap

(b) Out-of-band injection of a forged packet. Two packets

arrive at the client.

Figure 2: In-band versus out-of-band alteration of con-

tent

user that traverses these network operators is susceptible

to alteration. This is in contrast to the case of edge ISPs

that alter the traffic of their customers only. Although a

primary focus of these network operators is to inject ad-

vertisements into web pages, we also identified injections

of malicious content.

Our analysis is based on the observation that network

operators alter packets out-of-band: all traffic is pas-

sively monitored, and when the content of a packet needs

to be altered, a forged packet is injected into the connec-

tion between the server and the client. The forged packet

poses as the valid packet. If the forged packet arrives

at the client before the valid one, the client will accept

the forged packet and discard the valid one. Such an ap-

proach has considerable advantages to the network oper-

ators since it does not introduce new points of failure to

their traffic processing and there is no potential for a per-

formance bottleneck. Figure 2 illustrates the differences

between in-band alteration of traffic and out-of-band al-

teration. Note that both in-band and out-of-band traf-

fic alteration is possible only on unprotected traffic, e.g.,

traffic that is not carried by TLS [12] or authenticated

using TCP authentication [32].

The out-of-band operation has a crucial characteristic

that enables our analysis: the client receives two pack-

ets – the forged one and the valid one – that claim to be

the same response from the server. However, they carry

different content. This characteristic allows us to detect

traffic alteration events while monitoring the traffic at the

edge network. We can thus monitor and analyze traffic in

a client-centric manner in which the traffic is not destined

to a specific set of servers but to all servers contacted by

the users at the edge network. Figure 1(b) illustrates the

traffic monitored in our work. In this paper we specifi-

cally focus our analysis on alteration of web traffic, i.e.,

HTTP traffic over port 80.

An example of out-of-band injection To illustrate
how content is altered using out-of-band injection, we
describe in the following one of the injections we iden-
tified during our observations. In this example the
user’s browser sends the following HTTP GET request to
cnzz.com (a Chinese company that collects users’ statis-
tics):

GET /core.php?show=pic&t=z HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64)

Host: c.cnzz.com

Accept-Encoding: gzip

Referer: http://tfkp.com/

In response the user receives two TCP segments having
the same value in the sequence number field. The seg-
ments include different HTTP responses. One segment

2

USENIX Association 25th USENIX Security Symposium 229

carries the legitimate HTTP response that includes the
requested resource (a JavaScript code) from cnzz.com:

HTTP/1.1 200 OK

Server: Tengine

Content-Type: application/javascript

Content-Length: 762

Connection: keep-alive

Date: Tue, 07 Jul 2015 04:54:08 GMT

Last-Modified: Tue, 07 Jul 2015 04:54:08 GMT

Expires: Tue, 07 Jul 2015 05:09:08 GMT

!function(){var p,q,r,a=encodeURIComponent,c=...

The other segment includes a forged response that di-
rects the user via a 302 status code to a different URL
that points to a different JavaScript code:

HTTP/1.1 302 Found

Connection: close

Content-Length: 0

Location: http://adcpc.899j.com/google/google.js

Our analysis shows that this JavaScript redirects the user

through a series of affiliate ad networks ending with

Google’s ad network, which serves the user an ad. In this

injection event the forged segment arrived before the le-

gitimate one, which means that the user sees the injected

ad instead of the original content.

Relation to censorship Website-targeted false content

injection is similar in some ways to content blocking for

the purpose of state-sponsored censorship. There is a

substantial body of work that studies the mechanisms and

characteristics of censorship worldwide [33, 37, 22, 9].

In many cases this blocking of content is also website-

targeted. Moreover, blocking is often done by injecting

false traffic segments, which in some cases is done out-

of-band [33, 11, 8]. In contrast to previous works on cen-

sorship, in this work we study the practice of false con-

tent injection by commercial network operators, rather

than state entities. Such injections primarily serve finan-

cial gains rather than political agenda, with the goal of

altering the web content rather than blocking it. In this

work we study and analyze the practice of financially-

motivated false content injection by network operators.

In Section 7 we discuss in more detail related work on

censorship. During this work we observed numerous oc-

currences of censorship-aimed injections. We do not re-

port on them in this paper.

Our contributions can be summarized as follows:

1. The observation that network operators inject false

web content out-of-band.

2. Investigation of the identities of network operators

that practice website-targeted content injection.

3. Thorough analysis of the characteristics of the in-

jections and the purpose of the injecting operators.

The paper’s structure is as follows. In Section 2 we

present technical background pertaining to injection of

forged TCP and HTTP packets. Section 3 details our

methodology for monitoring web traffic and identifying

injections of forged packets. Section 4 details the sources

of traffic we monitored. In Section 5 we present our anal-

ysis of the injection events and our investigation as to the

identities of the network operators behind them. Sec-

tion 6 proposes effective and efficient client-side miti-

gation measures. Section 7 discusses related work and

Section 8 concludes the paper.

2 Background

2.1 Out-of-band TCP Injection

A TCP [27] connection between two end nodes offers

reliable and ordered delivery of byte streams. To facili-

tate this service, every sent byte is designated a sequence

number. Each TCP segment carries a Sequence Number

field that indicates the sequence number of the first data

byte carried by the segment. The following data bytes in

the segment are numbered consecutively. A third party

that wishes to send a forged TCP segment as part of an

existing TCP connection must correctly set the connec-

tion’s 4-tuple in the IP and TCP header, i.e., the source’s

port number and IP address as well as those of the des-

tination. In addition, for the forged segment to be fully

accepted by the receiver, the sequence numbers of the

forged data bytes must fully reside within the receiver’s

TCP window. Forging such a TCP segment is trivial for

an on-path third party, since it can eavesdrop on the valid

segments of the connection and discover the 4-tuple of

the connection as well as the valid sequence number.

In some circumstances an injected TCP segment may

trigger an undesirable “Ack storm”. An “Ack storm” oc-

curs when the injected segment causes the receiver to

send an acknowledgment for data bytes having sequence

numbers that were not yet sent by the peer. Appendix A

details how an “Ack storm” is formed. Nonetheless, as

long as the injecting third party ensures that the injected

TCP segment is no larger than the valid TCP segment

sent by the peer, no “ACK storm” will be triggered. If

this is not the case, the injector could send a TCP re-

set right after the injection in order to forcibly close the

connection. This will also eliminate the possibility of

an “Ack storm”. The latter option is used only if the

connection is expected to close right after the valid re-

sponse is received. Indeed, in all our observations either

of these alternatives took place and no “Ack storms” were

observed.

3

230 25th USENIX Security Symposium USENIX Association

Nonetheless, the fact that the injected TCP segment

aims to displace an already sent or soon to be sent valid

TCP segment poses a different obstacle for the inject-

ing third party. According to the TCP specification [27],

the first data byte received for a given sequence num-

ber is accepted. A subsequent data byte having the same

sequence number is always discarded as a duplicate re-

gardless of its value. Thus, the injected segment must

arrive at the receiver before the valid TCP segment in or-

der to be accepted. Note that the TCP specification does

not consider the receipt of bytes with duplicate sequence

numbers as an error but rather as a superfluous retrans-

mission.

2.2 HTTP Injection

In this work we focus in particular on the injection of

false HTTP responses received by a web client. HTTP

[15] is a stateless client-server protocol that uses TCP

as its transport. An HTTP exchange begins by a client

sending an HTTP request, usually to retrieve a resource

indicated by a URI included in the request. After pro-

cessing the request the server sends an HTTP response

with a status code. The status codes we later refer to in

this paper are:

• 200 (Successful): The request was successfully re-

ceived, understood, and accepted. Responses of this

type will usually contain the requested resource.

• 302 (Redirection): The requested resource resides

temporarily under a different URI. Responses of

this type include a Location header field containing

the different URI.

An HTTP client will receive only one HTTP response

for a given request even when a false HTTP response

is injected because, as mentioned above, the TCP layer

will only accept the first segment that it receives (be it

the false or the valid segment). When the forged re-

sponse is shorter than and arrived before the valid re-

sponse, the client then receives the byte stream that in-

cludes the forged response, followed by the tail of the

valid response. The tail includes the data bytes having

sequence numbers that immediately follow those of the

forged response. By default, the response message body

length is determined by the number of bytes received un-

til the TCP connection is closed. This might be a prob-

lem for the injecting entity as the client will eventually

receive a mixed HTTP response, which might yield un-

intended consequences. To avoid this problem, the in-

jected response will usually include Content-Length or

Transfer-Encoding headers that explicitly determine the

end of the response. Thus, even if the TCP layer delivers

the tail of the valid response to the HTTP layer, it will

not be processed by the client.

 Capture

Traffic

pcap files queue

 Dispatcher

processes

Worker

process

Worker

process

Worker

process

packets

traffic

source

Figure 3: Depiction of the design of the monitoring sys-

tem

3 Methodology

We now describe our methodology for collection and

identification of TCP injection events.

3.1 Monitoring System

At the core of the collection of injection events was a

monitoring system that eavesdropped on Internet traffic

and identified these events. The monitoring system was

deployed at the entry points of large networks (detailed

in Section 4) and analyzed the bidirectional traffic that

flowed in and out of those networks. The monitoring

system was comprised of the following three stages (de-

picted in Figure 3). First, we captured the traffic using

the ’netsniff-ng’ tool [3] along with a Berkeley packet

filter [25] to capture only HTTP traffic. The tool itera-

tively produced files comprising 200,000 packets each.

These files were fed into a queue for processing by the

next stage. To avoid explosion of the queue when the

traffic rate exceeded the throughput of the next stages,

the queue’s length was bounded. Once the queue reached

its limit, the capturing process was halted until the queue

length decreased.

At the next stage each capture file was processed by

a dispatcher process that read each packet in the file, re-

moved the Ethernet header, and computed a hash on the

IP addresses and TCP ports in such a way that packets

of the same TCP session would have the same hash re-

sult. A packet’s hash result was then used to choose one

of several worker processes to handle that packet. In this

way all packets of the same session were delivered to the

same worker.

At the final stage each worker process grouped the

packets it received into TCP sessions and stored each

session in a data structure. For each received packet a

worker checked all the packets of that session to deter-

mine whether the conditions for a packet race were met

(the conditions are detailed in Section 3.2). If so, the last

30 packets of the session were written to a file, includ-

ing their payload, for later analysis. See Section 3.3 for

the ethics and privacy issues pertaining to the storage and

analysis of packets.

The packet sessions were stored by each worker in a

4

USENIX Association 25th USENIX Security Symposium 231

data structure that is a least-recently-used cache with a

fixed size. Once the cache reached the maximum num-

ber of sessions it can store, the session that was idle the

longest was evicted from the cache. To simplify packet

processing we did not use TCP signaling (SYN and FIN

flags) to create a new session in the cache or evict an

existing one. This design choice gave rise to the possi-

bility that a session would be evicted even if still active.

Nonetheless, as our experiments show, the caches were

large enough so that the minimum idle time after which

a session was evicted did not drop below 10 minutes —

long enough to make the occurrences of active session

evictions negligible. Note that even if such an eviction

were to occur, packet races could still be detected in that

session, since we treated the packets sent after the idle

period as a new session and stored them in the cache. In

this case, however, the packets of the session prior to the

eviction would not be available for analysis.

3.2 Injection Detection

The detection logic of packet injection events is rela-

tively straightforward. Our goal was to detect packet

races within the session, namely, two packets that carry

different payloads, but correspond to the same TCP se-

quence numbers. Usually these packets will arrive in

quick succession. To make our code more efficient we

checked for a race only between pairs of packets that

were received within a time interval that does not exceed

the parameter MaxIntervalTime. Throughout our data

collection process we set MaxIntervalTime = 200msec.

We believe that this value captures the vast majority of

injection events as almost all round trip times on the In-

ternet are below 400msec [18]. Indeed, nearly all of

the time differences we observed between raced pack-

ets were below 100msec (see Section 5). Algorithm 1 in

Appendix B details the procedure for race detection.

The procedure we used to identify packet races should,

in theory, flag only events in which a third party injected

rogue packets into the TCP session. However, inter-

estingly, we observed numerous events which fulfill the

above conditions but are not the result of a packet injec-

tion. We detail such occurrences in Appendix C.

3.3 Ethics and Privacy

As explained above, the monitoring system captures In-

ternet user traffic. To minimize concerns about user pri-

vacy, the system stores only TCP sessions in which a

packet race was detected. All other sessions are only

cached briefly in the workers’ caches, after which they

are permanently erased. Moreover, for each stored ses-

sion, only the last 30 packets (at most) are saved. Earlier

packets are dropped. This is in order to store only those

packets that are relevant to the analysis of the injection

events while minimizing the chance that user privacy will

be breached. Indeed, during our analysis no identifiable

personal information was found in the stored sessions.

Throughout our research we were supervised by the

networks’ administration teams, who reviewed and ap-

proved the code of the monitoring system and procedures

for the analysis of the stored sessions. During the anal-

ysis the location and identity of users associated with IP

addresses were never disclosed to us. Finally, we note

that our monitoring system passively collected informa-

tion; it never interfered or tampered in any way with the

traffic.

3.4 Limitations

Our monitoring system cannot detect content alterations

in which there is no race between the legitimate packet

and the forged one. In particular, we cannot detect the

following cases:

1. In-band changes in which the legitimate packet is

changed in-place. In such cases the client only sees

a forged packet.

2. Additions to the response in which an extra forged

packet is sent such that it extends the HTTP re-

sponse, but does not replace any legitimate part.

3. Drops of packets that are part of a valid HTTP re-

sponse.

We monitored a large volume of traffic originating

from diverse networks having tens of thousands of users

(see Section 4). Nonetheless, as in any other study that

involves uncontrolled traffic, our findings are only as di-

verse as the traffic we monitor. Namely, we cannot iden-

tify an injecting entity on the Internet if we do not mon-

itor traffic that triggers an injection by that entity. Fur-

thermore, the types of injections we have observed are

dependent on the web traffic originating from the net-

works we monitored.

4 Data Sources

During our study we monitored the network traffic of

four institutions. For each institution we monitored the

Internet traffic (incoming and outgoing) of all its users.

In all cases the same monitoring mechanism was used:

traffic was copied to the monitoring system using a SPAN

port out of a border switch. In all cases, we only moni-

tored HTTP traffic, namely traffic having source port or

destination port that equals 80.

Table 1 lists the characteristics of the monitored traffic

sources. For each institution we list the number of users

5

232 25th USENIX Security Symposium USENIX Association

Institution User base
Monitoring

period [week]

Traffic

volume [Tb]

Number of sessions

[Million]

University A 20,000 2 80 8

University B &

University C
50,000 16 1400 120

Enterprise D 5,000 3 24 0.8

Table 1: Monitored traffic sources

who may use Internet connectivity in that institution. For

a university this is the number of students and staff, and

for an enterprise this is the number of employees. In ad-

dition, we list the length of time we monitored the traffic

as well as the total volume traffic and number of sessions

the monitoring system processed. In aggregate, we mon-

itored the traffic of more than 75,000 users, while pro-

cessing 1.4 petabits carried by 129 million HTTP ses-

sions contacting servers having more than 1.5 million

distinct IP addresses. The details of University B and

C are displayed together since we monitored their traffic

jointly on the same border switch. Enterprise D repre-

sents the main branch of a large hi-tech company. The

monitored branch includes an extensive R&D division as

well as the headquarter offices and the international mar-

keting and sales divisions. All institutions wish to remain

anonymous.

5 Injection Analysis

In this section we present an analysis of the injection

events. In Section 5.1 we present an overview of the in-

jections and highlight a few of them. Section 5.2 de-

scribes ways to automatically distinguish between the

valid and forged packets. In Section 5.3 we explore the

time differences between the raced packets. Section 5.4

characterizes the recurrence of injection events. Finally,

Section 5.5 presents an investigation aimed at unveiling

the entities behind the injection events.

5.1 Initial Investigation

In this section we refer to a TCP session into which a

forged packet was injected as an injected session. We

manually analyzed each injection event. We detected

around 400 injection events that aim to alter web con-

tent2. Although this is not a negligible number, it pales

in comparison to the total volume of traffic we moni-

tored to extract these events. This is attributed to the

fact that most of the injected sessions were destined to

web servers in the Far East, a region to which relatively

2We have also found hundreds of additional events that do not aim

to alter web content; these events were related to caching and censor-

ship.

little traffic is destined from the networks we monitored.

Thus the relatively small number of injections. Nonethe-

less, these events were sufficient to gain substantial in-

dications as to the different entities that practice forged

content injection (Section 5.5).

We grouped the injection events into 14 groups based

on the resource that was injected into the TCP session.

In other words, two injections that forged the same con-

tent are placed in the same group. Representative (and

anonymized) captures of the injected sessions can be

found in [4]. For each injection group we publish up to

4 captures of injected sessions that are representative of

their respective group. To preserve the anonymity of the

users, in each capture we zeroed the client’s IP address

as well as the IP and TCP checksum fields.

Table 2 lists the groups. For each group we list the

following details:

1. Group name – an identifier that was given by us to

that group. We selected the name either by the name

of the site whose content was forged or by the name

of a server the forged content directed us to.

2. Destination site(s) – the website(s) of the requested

resource that was forged. There may be several such

sites for a single group.

3. Site type – the category of the destination site(s)

4. Location – the country of the IP address of the des-

tination server3

5. Injected resource – the type of forged content that

was injected

6. Purpose – the aim of the injection

It is evident from Table 2 that the majority of injected

sessions we observed were to web servers located in

China. We note that the networks we monitored are not

located in China or the Far East, but in a Western country.

The proportion of HTTP traffic destined to China in the

monitored networks is only about 2%. This is a first indi-

cation that the majority of entities that injected the forged

3Note that this country might be different than the nationality of the

entity that owns the destination site.

6

USENIX Association 25th USENIX Security Symposium 233

Group name Destination site(s) Site type Location Injected resource Purpose

szzhengan wa.kuwo.cn Ad network China

A JavaScript that

appends content to the

original site

Malware

taobao is.alicdn.com Ad network China

A JavaScript that

generates a pop-up

frame

Advertise-

ment

netsweeper skyscnr.com
Travel search

engine
India

A 302 (Moved) HTTP

response

Content

filtering

uyan uyan.cc
Social

network
China

A redirection using

’meta-refresh’ tag

Advertise-

ment

icourses icourses.cn
Online

courses portal
China

A redirection using

’meta-refresh’ tag

Advertise-

ment

uvclick cnzz.com
Web users’

statistics
Malaysia/China

A JavaScript that

identifies the client’s

device

Advertise-

ment

adcpc cnzz.com
Web users’

statistics
Malaysia/China

A 302 redirection to a

JavaScript that opens a

new window

Advertise-

ment

jiathis jiathis.com
Social

network
China

A redirection using

’meta-refresh’ tag

Advertise-

ment

server erased changsha.cn Travel China

Same as legitimate

response but the value of

HTTP header ’Server’ is

changed

Content

filtering

gpwa gpwa.org Gambling United States

A JavaScript that

redirects to a resource at

qpwa.org

Malware

tupian
www.feiniu.com

www.j1.com
e-commerce China

A JavaScript the directs

to a resource at

www.tupian6688.com

Malware

mi-img mi-img.com Unknown China
A 302 redirection to a

different IP
Malware

duba unknown Unknown China

A JavaScript that

prompts the user to

download an executable

Malware

hao 02995.com
Adware-

related
China

A 302 (Moved) HTTP

response

Advertise-

ment

Table 2: Injection groups and their characteristics

7

234 25th USENIX Security Symposium USENIX Association

content we observed reside in China (we investigate the

injectors’ identity in Section 5.5).

Seven injection groups are aimed at injecting adver-

tisements to web pages. An analysis of the injected re-

sources shows similarities between the various groups.

These similarities might indicate that the injections are

done by the same entity or at least by different entities

that use the same injection mechanism or product. The

injection groups ’icourses’, ’uyan’, and ’jiathis’ all used

the HTML meta refresh tag to redirect the user to a dif-

ferent URL. In all cases, the redirection was to Baidu

(a Chinese search engine) using the URL www.baidu.

com/?tn=95112007_hao_pg. The URL includes a re-

ferral tag that identifies hao123.com – a well-known

adware-related site – as the referring site. The referral

tag is possibly used by Baidu to pay hao123 for referring

traffic to it. In one case, the redirected URL included

a search keyword for a clothing chain store. Interest-

ingly, another injection group, ’hao’, referred the user to

hao123.com itself, but using a different mechanism – an

HTTP 302 response.

Surprisingly, five injection groups showed strong indi-

cations that the aim of the injector was malicious. One

such group is ’gpwa’. The injections in this group tar-

get the traffic to gpwa.org. The forged content here in-

cludes a JavaScript that refers to a resource having the

same name as the one originally requested by the user,

but the forged resource is located at qpwa.org, a domain

that is suspiciously similar to the legitimate domain. The

forged domain is registered to a Romanian citizen, who

appears to be unrelated to the organization that registered

the domain gpwa.org. These are strong indications of

malicious intent. As of May 2016 the web server of

qpwa.org is still active at a web hosting provider based

in the US, however we have not been able to retrieve from

it the malicious script.

The injections in the ’duba’ group add to the original

content of a website a colorful button that prompts the

user to download an executable from a URL at the do-

main duba.net. The executable is flagged as malicious

by several anti-virus vendors.

Another malicious injection group is ’mi-img’. In

these injected sessions the client, which appears to be

an Android device, tries to download an application.

The injected response is a 302 redirection to another IP

address (no domain name is specified). According to

BotScout [2] – an online bot database – this forged IP

address is known to be a bot. We retrieved the applica-

tion from this IP address. The downloaded apk file is

flagged by Fortinet’s antivirus as a malware called ’An-

droid/Gepew.A!tr’.

Another injection group worth mentioning is ’server

erased’. In this group injections were identical to

the legitimate response but instead of original value of

the Server HTTP header, e.g., nginx/1.2.7, the string

’*******’ appeared. This is as if to prevent identifica-

tion of the web server’s software. We assume that this

injection is due to a security measure at the network op-

erator. The HTTP specification [14] indeed recommends

that Server header be configurable.

5.2 Distinguishing the Forged Response

from the Valid One

Identifying a race between two packets is a relatively

straightforward task. However, without a priori knowl-

edge of the legitimate content expected from the server,

automatically distinguishing the forged packet from the

legitimate one is not trivial. Nonetheless, in the follow-

ing we list a few rules that worked well for this difficult

task.

IP identification In many operating systems, such as

Windows and Linux [16], the IP identification value

equals a counter that is incremented sequentially with

each sent packet. Is some operating systems there is a

single global counter for all sessions. In others, there is a

separate counter for each destination. Indeed, our obser-

vations show that in most injected sessions the IP iden-

tification values of the packets sent by the web server

are either monotonically increasing (when the counter

is global) or consecutively increasing (when there is a

counter per destination). In most of the injection events

we observed that the injecting entity made no attempt to

make the identification value of the forged packet similar

to the identification values of the other packets sent by

the server. In Appendix D we detail a few of the (failed)

attempts of the injecting entity to mimic the Identifica-

tion field of the legitimate packet it aims to displace.

We formulate the following rule to determine which

of the two raced packets is the forged one: the forged

packet is the one that has the largest absolute difference

between its identification value and the average of the

identification values of all the other packets (except the

raced one).

For all injection events, we manually identified the

forged packet according to its content and compared it to

the corresponding identification that used the above rule.

The comparison reveals that the rule is accurate about

90% of the time. This is a fairly accurate measure con-

sidering that it is not based on the payload of the raced

packets.

IP TTL The IP TTL value in a received packet is de-

pendent on the initial value set by the sender and the

number of hops the packet has traversed so far. Thus, it

is unusual for packets of the same session to arrive at the

8

USENIX Association 25th USENIX Security Symposium 235

client with different TTL values. Therefore, if the raced

packets have different TTL values we can use them to

distinguish between the two packets. From our observa-

tions, the injecting entity often made no attempt to make

the TTL value of the forged packet similar to the TTL

values of the other packets sent by the server. Similarly

to the case of the IP identification rule above, we iden-

tify the forged packet using the following rule: the forged

packet is the one that has the largest absolute difference

between its TTL value and the average of TTL values of

all the other packets (except the raced one).

Manual analysis of the injection events reveals that the

TTL rule correctly identified the forged packet in 87% of

all injection events. The TTL rule concurs with the IP

identification rule above in 84% of all injection events.

We thus conclude that the TTL and identification val-

ues can serve to effectively distinguish the forged packet

from the valid packet.

We note that our finding that the TTL and Identifica-

tion fields of the forged packets have abnormal values

generally agrees with findings on censorship-related in-

jections which also show that censoring entities do not

align the TTL and Identification values with those of the

legitimate packets (e.g., [8]).

5.3 Timing Analysis

The race between the forged and legitimate packets can

also be characterized by the difference in their arrival

times. By arrival time we mean the time at which the

packet was captured by the monitoring system. Since

the system captures traffic at the entrance to the edge

network close to the client, it is reasonable to assume

that these times are very close to the actual arrival times

at the end client. For each injection event we calculate

the difference between the arrival time of the legitimate

packet and the arrival time of the forged packet. A neg-

ative difference means that the forged packet “won” the

race, and a positive difference means that the legitimate

packet “won”. The histogram of the time differences of

all the injection events we observed are shown in Fig-

ure 4.

It is evident from Figure 4 that in most injection events

the forged packet wins the race. In only 32% of the

events does the legitimate packet arrive first. This re-

sult strengthens our initial assumption that the decision

to inject a forged packet is made according to the HTTP

request sent by the client. This means that the injecting

entity can send the forged packet well before the server

sends the legitimate packet, as the client’s request still

needs to travel to the server. Still, even in such a case,

in a non-negligible portion of events, the forged packet

loses the race. This may indicate injections that occurred

very close the server. Alternatively, it may indicate that

 0

 50

 100

 150

 200

 250

-0
.1

5
-0

.1
4

-0
.1

3
-0

.1
2

-0
.1

1
-0

.1
0

-0
.0

9
-0

.0
8

-0
.0

7
-0

.0
6

-0
.0

5
-0

.0
4

-0
.0

3
-0

.0
2

-0
.0

1
0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6
0
.0

7
0
.0

8
0
.0

9
0
.1

0
0
.1

1
0
.1

2
0
.1

3
0
.1

4
0
.1

5
M

o
re

In
je

c
ti
o
n
 e

v
e
n
ts

 #

Time difference [sec]

Figure 4: Arrival time difference between the forged and

legitimate packets

in some cases the decision to inject the packet is made

at the time the response from the server is encountered.

In the latter case, the forged packet is at a distinct disad-

vantage as it starts the race lagging behind the legitimate

packet. In many cases in which the forged packet won

the race, the legitimate packet arrived very soon after, in

less than 10msec.

5.4 Repeatability

All injection groups were observed for only a short pe-

riod of time, usually one to three days, after which they

were not detected again by our monitoring system. A

few injection types were even encountered only once. No

long-term (3 days or more) injections were observed by

our monitoring system4.

We next tried to reproduce the injection events we ob-

served. This attempt was made several weeks after the

initial observations of the injections. For each injection

event we extracted the HTTP request that triggered the

injection. We then sent from the edge network in which

the injection originally occurred the same HTTP request

(following a proper TCP 3-way handshake) to the des-

tination web server. We sent each request 1000 times.

This is with the aim to reproduce the injections even if

they do not occur for every request. We captured the

resulting TCP sessions and searched for injections. We

were not able to reproduce any of the injection groups.

Following the initial publication of this work an effort

independent of our own to reproduce the injections had

more success [17]. The ’gpwa’ and ’hao’ injections were

successfully reproduced. However, the author of [17] has

4The only long-term injections we did observe were related to cen-

sorship and caching. These injections were the only ones we were able

to reproduce.

9

236 25th USENIX Security Symposium USENIX Association

not been able to reproduce those injections again in a sec-

ond attempt made a few weeks later. Moreover, when the

injections were observed by [17] they were not always

reliable. For one of the resolved IP addresses (for the

destination site’s domain name) the injections were ob-

served only 30% of the time (this information was given

to us via personal communication by the author of [17]).

From the above findings we surmise that, in gen-

eral, injections by on-path entities may be intermittent;

namely, the injecting entity injects forged content to a

particular site for only a short period of time before mov-

ing on to other sites. Moreover, when an injector is active

for a web site it may target only a portion of the HTTP

requests. This might be motivated by the desire of the

injector to stay “under the radar”. It is plausible that in-

jecting forged content to a site for only a short period of

time might go unnoticed by the users and site owners, or

at least would not cause them to expend effort investigat-

ing the forged content’s origin.

The injections we found were triggered by an HTTP

request to specific resources which in most cases were

not the main page of the site. This leads us to assume that

an effort to actively seek other sites for possible injec-

tions may be computationally too expensive as we would

need the crawl those entire sites.

5.5 Who is Behind the Injections?

We finally turn our attention to the culprits behind these

injection events. In general, it is difficult to unveil these

entities as there is no identifying information in the in-

jected content. Nonetheless, we can get indications as to

the identity of the injecting entities by trying to detect the

autonomous system from which the forged packet orig-

inated. We assume that the entity that operates this au-

tonomous system is the entity responsible for the injec-

tion.

Note that the analysis thus far shows strong indications

that the injections do not originate at the web servers

themselves. First, the injected responses had anomalous

IP ID and TTL values. To bring this about an inject-

ing rogue software on the end server would need to cir-

cumvent the standard TCP/IP stack as it sends packets.

While this is possible it would require the injecting soft-

ware elevated privileges and more complex logic to send

the injected responses. Such elevated privileges would

have also allowed the injector to block the valid response

and eliminate the possibility of a race altogether. Second,

most of the injected packets “win” the race. An attacker

injecting packets from the end server does not have a dis-

tinct advantage to win the race. Therefore it is reasonable

to assume that in such a case the race would have been

more even. Third, to the best of our knowledge there is

no malware that injects packets out-of-band. All known

malware that aim to alter traffic on the machine they re-

side alter the the actual packets to be sent (usually by

simply injecting code to the sending process or hooking

the suitable system services).

We note that we ruled out the possibility that the edge

network operators serving the networks we monitored

are responsible for the injections. We verified this by

speaking directly with the network operators’ adminis-

trators and sharing with them the injections we found.

Since the injections were not reproducible during this

analysis, we cannot employ the oft-used traceroute-like

procedure to locate the injector [22, 8, 24]. In this proce-

dure the packet triggering the injection is repeatedly sent

with increasing TTL values until the forged response is

triggered, thereby revealing the location of the injector.

To identify the injecting entities we resort to the follow-

ing procedure:

1. Estimate the number of hops the forged packet tra-

versed: this estimation relies on the packet’s TTL

value. Specifically, it relies on there being a signifi-

cant difference between the default initial TTL val-

ues set by the major operating systems [29]: in gen-

eral, the differences between those initial values are

larger than the length of most routes on the Internet.

The default initial TTL values of the major operat-

ing systems are 32, 64, 128 and 255. This means,

for example, that if a packet is received with a TTL

value of 57, the initial TTL value of that packet was

likely to be 64 and the number of hops traversed

was likely to be 7. If the estimated number of hops

is larger than 30 or smaller than 3 5, we assume the

estimation is incorrect and stop the analysis.

2. Identify the path from the destination server to the

client: the actual path from the server to the client

cannot be known without an agent in the server’s

network. Instead, we use the path from the client

to the server while assuming that the routing on this

path is symmetric. We identify the path from the

client to the server by using a ’traceroute’ tool. The

traceroute used a TCP syn packet with destination

port 80. We found that such a packet triggers re-

sponses from most routers and servers.

3. Infer the hop along the above path from which the

forged packet was injected: using the estimated

number of hops the forged packet traversed and the

estimated path it traversed, we can now infer the hop

on the path from which the packet was sent.

5Nearly all routes on the Internet are shorter than 30 hops [21]. Ad-

ditionally, it is very unlikely that the injecting third party resides less

than 3 hops away since the first couple of hops reside within the edge

networks we were monitoring.

10

USENIX Association 25th USENIX Security Symposium 237

Injection group
Web server’s

AS number

Suspected

injecting AS

number

xunlei 17816 17816

szzhengan 4134 4134

taobao 4837 4837

uvclick 38182 38182

adcpc 38182 38182

server erased 4134 4134

GPWA 6943 6943

tupian 4812 4812

Table 3: The autonomous system numbers in which the

injected web servers reside and in which the suspected

injecting entities reside

4. Identify the autonomous system the injecting hop

belongs to: given the IP address of the hop, we can

now identify the autonomous system to which it be-

longs in order to reveal the entity responsible for

injecting the packet. To this end we leveraged pub-

lic databases that hold current BGP advertisements:

this allows us to identify the autonomous system

that advertises the given IP address. BGP advertise-

ments for mapping of IP addresses to autonomous

systems are known to be more precise and up-to-

date than Internet route registries [23].

It should be noted that this procedure has the following

caveats:

1. The initial TTL value of the injected packet may not

be one of the common default values. In such cases,

this analysis can not be carried out. In particular,

based on the TTL values of the injected packet, we

conclude that this is indeed the case for the injec-

tions in the groups ’jiathis’, ’uyan’, ’mi-img’, and

’icourses’.

2. Not all routes on the Internet are symmetric. If the

path from the client to the server is not symmetric,

the analysis will produce an incorrect result. We

address this issue in the next subsection.

3. The implicit assumption of this procedure is that the

injecting machine resides on-path. Strictly speak-

ing, this need not be the case. An on-path machine

monitoring the traffic can trigger the injection from

a remote machine. In such a case the forged packet

will travel on an entirely different path than the le-

gitimate packets.

In Table 3 we list the results of the above analysis.

For each injection group, we list the autonomous systems

AS number Operator

17816, 4837 China Unicom

4134, 4812 China Telecom

38182 Extreme Broadband (Malaysia)

6943 Information Technology Systems (US)

Table 4: The operators for each suspected injecting au-

tonomous system

in which the destination sites reside and the autonomous

systems suspected of the injections. The table lists only

injection groups for which the analysis can be performed;

namely, the estimated number of hops the injected packet

traversed is not larger than 30 and not smaller than 3, and

it is also not larger than the path between the client and

server.

In all cases where the above analysis succeeded, it

indicated that the forged content was injected 2-5 hops

away from destination site. Since the injection groups

are largely independent we believe that this is a signal

that the assumptions we made throughput the above anal-

ysis are not far off. In all cases the injector is located in

the very same autonomous system where the destination

site resides. Indeed, this is the most reasonable location

for an injector to be in order to alter content for all web

users accessing the targeted site.

Table 4 lists for each suspected injecting autonomous

system the organization that operates it. It is worth not-

ing that two of the largest network operators in China

– China Unicom and China Telecom – are suspected of

practicing content injections. Moreover, the autonomous

systems of these operators originate injections of differ-

ent groups. This might imply that more than one injector

mechanism is deployed in these autonomous systems.

The operator of the suspected autonomous system for

the ’gpwa’ group is Information Technology Systems. In

this particular case, this is the organization that is respon-

sible for the content of the destination site for these injec-

tions – gpwa.org. Since there are strong indications that

the injections of this group are malicious (see discussion

in Section 5.1), we assume that the attacker compromised

a router in the suspected autonomous system.

Using a traceroute from the server-side

As noted above, a caveat of the above analysis is that we

used traceroutes from the client to the server while as-

suming this route is symmetric. This is a necessity since

we cannot execute a traceroute to the client from the ac-

tual server. To address this caveat we leveraged RIPE At-

las [26]. This is a global network comprised of thousands

of probes hosted throughout the Internet. Each probe can

11

238 25th USENIX Security Symposium USENIX Association

AS number Injection groups

4812 tupian

4134 szzhengan, server erased

4808 uyan, icourses, jiathis

Table 5: Autonomous systems which host RIPE At-

las probes and the corresponding injection groups that

forged traffic of web servers residing in those au-

tonomous systems

be instructed to execute a measurement out of a prede-

termined set that includes ping, DNS query, HTTP re-

quest and traceroute. RIPE Atlas hosts 6 probes in 3

autonomous systems that host destination sites the con-

tent of which was forged. The autonomous systems and

the corresponding injection groups that forged content

for destination sites residing in each autonomous system

are listed in Table 5.

For each of the 6 probes we executed a traceroute from

it to the edge network where the corresponding injection

events were identified. We then employed the procedure

we described above on these new traceroutes. We note

that using these traceroutes may still not be without er-

ror. The probes indeed reside in the autonomous systems

that host the destination site; however, we cannot guar-

antee that their route to the client is the same as the route

from the destination site. Specifically, the traffic from the

probe may exit the autonomous system through a differ-

ent point than the traffic originated from the site.

The traceroute from each of the 3 autonomous sys-

tems to the corresponding edge network were different

than the opposite routes from the edge networks to those

autonomous systems. Nonetheless, in all cases, a pair

of routes in opposite directions traversed the same au-

tonomous systems with the exception of one Tier-1 au-

tonomous system; namely, each route traversed a dif-

ferent Tier 1 operator (for example, the route between

the client and the server traversed Level 3’s AS while

the route in the opposite direction traversed Cogentco’s

AS). The other autonomous systems on the routes were

the same; this is why the outcome of the analysis with

these routes was the same as for the routes in the op-

posite direction. The analysis for the ’szzhengan’ and

’server erased’ injections yielded the same suspected au-

tonomous system – 4134, while the analysis for the ’tu-

pian’ injections yielded a different autonomous system

– 4134 instead of 4812 found by the previous analysis.

Nonetheless, these autonomous systems are siblings op-

erated by the same company – China Telecom.

The injecting groups that correspond to destination

sites residing in autonomous system 4808 – ’uyan’,

’icourses’, and ’jiathis’ – were set with an unknown ini-

tial TTL value (namely the estimated number of hops

was larger than 30 or smaller than 3); hence the analy-

sis cannot be performed on them.

6 Proposed Mitigation

The best mitigation against TCP injection attacks is sim-

ply to use HTTPS. Unfortunately, this is not always sub-

ject to the discretion of the user. Many web sites still

do not support HTTPS [5]. A user wishing to access a

website that does not support HTTPS must resort to the

unprotected HTTP. Moreover, about 17% of the Alexa

Top 500 websites still serve a login page over HTTP but

submit the users password over HTTPS [30]. This setup

allows an on-path entity to steal a user’s login creden-

tials by injecting a false login page. In this section we

present a client-side mitigation measure that monitors the

incoming HTTP traffic and blocks injected forged TCP

segments, thereby defending the user even if he must use

HTTP.

A naive mitigation measure is to simply apply the pro-

cedure described in Algorithm 1 on the monitored traffic

in order to identify packet races. Nonetheless, such an

approach means that every incoming packet must be de-

layed for 200msec. Such a delay is necessary in order to

make sure a given packet is not an injected packet forg-

ing a legitimate one. Only after 200msec have passed

with no race detected can we accept the packet. Such an

approach incurs noticeable delay on the incoming traffic

and degrades the user’s browsing experience. This ap-

proach, however, by definition, ensures that all injected

packets will be identified and blocked. In Section 6.1 we

detail our experimental results with such an approach.

We use these results as a benchmark for the next mitiga-

tion approach.

An improved approach is to take advantage of the in-

sights we presented in Section 5.2, where we showed that

for the vast majority of the injected packets, the values

of the TTL and Identification fields in the IP header do

not correspond to the respective values of the legitimate

packets of the session. This insight can be leveraged

to improve the naive mitigation measure such that only

packets with abnormal TTL or Identification values will

be delayed for 200msec, and only for those packets will

we try to detect a race. This way only suspicious packets

are delayed.

Algorithm 2 in Appendix E details the improved miti-

gation algorithm. Note that this algorithm will be effec-

tive only if the forged packets exhibit anomalous TTL or

Identification values as compared to the legitimate pack-

ets in the injected session. We note that it is possible

for an injector to inject a packet with values that will not

appear anomalous, as in most likelihood it can also in-

spect the traffic sent by the web server. Anomalous TTL

12

USENIX Association 25th USENIX Security Symposium 239

and identification values have also been observed in the

censorship-related state-sponsored injections [8]. This

indicates that aligning the TTL and identification values

to the legitimate values might not be trivial to implement.

Indeed, aligning the identification value requires that in-

jector keep track of the identification values of packets

sent by the web server for every potential session that

may be injected, well before the actual injection deci-

sion is made. This may require a substantial addition of

memory space and computational overhead. If the in-

jector does align the TTL and identification values, the

improved mitigation algorithm we propose will not be

effective and the naive approach must be used.

6.1 Experiments

We now detail our experiments to evaluate the two mit-

igation algorithms – the naive and improved algorithms.

We evaluate the algorithms using two measures:

1. Web page load time increase – this measure shows

the increase of time it takes to load a web page as

compared to the case where no mitigation measure

is employed. This measures the extent to which the

algorithm degrades the user’s experience.

2. False negatives – this measure counts how many in-

jections are not identified. This measures the effec-

tiveness of the algorithm.

We evaluated the algorithms against two data sets:

1. Benign data set – this data set includes traffic of

benign web browsing having no content injection.

We used the 200 most popular sites from Alexa’s

list [1]. From these sites we used the ones for which

majority of their objects are fetched using HTTP

(rather than HTTPS). There are 136 of these sites

that met this criterion.

2. Injected data set – This data set includes the injected

sessions we captured throughout our observations.

The two algorithms were evaluated on the benign data-

set to measure the web page load time increase. We

browsed each website using PhantomJS. We inspected

the incoming traffic while leveraging the NFQUEUE tar-

get of Linux iptables [6]. We measured the load time

of each website 5 times and recorded the smallest load

time value to disregard intermittent network delays. We

compared these load times to the load times where no

mitigation algorithm is deployed.

The two algorithms were evaluated on the injected

data set to measure the false negative events, i.e., the

injections that were missed. Table 6 summarizes the

findings. It is evident that the naive algorithm imposes

Algorithm
Load time

increase

False

Negative

naive 120% 0%

improved 12% 0.3%

Table 6: The performance of the two mitigation algo-

rithms.

a considerable increase in page load time – 120%. In

contrast, the improved algorithm incurs a mere 12% in-

crease, while having a negligible false negative rate of

0.3%.

7 Related Work

The practice of Internet traffic alteration has been studied

in several works [20, 34, 28, 39], all of which have em-

ployed the server-centric approach described in the In-

troduction.

In [20, 34] the authors deployed a website that directs

users to about 20 back-end servers that deliver a Java ap-

plet. The applet runs a series of tests which try to fetch

predetermined content. The analysis found many web

proxies of several categories, the most popular of which

are anti-virus software installed on the end clients, HTTP

caches and transcoders deployed by ISPs, and security

and censor proxies deployed by enterprises and coun-

tries. Ref. [34] identifies two ISPs that employ HTTP

error monetization, and one that injects advertisements

into all HTTP connections.

In [28] the authors set up a web server that delivers

the same content from a handful of different domains.

The content includes a JavaScript code that runs when

the page is loaded in the client’s browser and reports any

detected changes to the web page. It found that most

changes to the content were made indiscriminately re-

gardless of the originating domains. Most of the con-

tent modifications were due to software installed locally

on the end clients or due to security gateways deployed

at enterprises. Other modifications were due to ISPs

that compressed content delivered to their users. Addi-

tionally, 4 ISPs and a company that provides free wire-

less service were identified as injecting advertisements to

web pages their customers visit.

In [39] the authors leveraged the online advertising in-

frastructure of several ad networks to spread a specially

crafted Flash-based advertisement that runs a JavaScript

code and retrieves a preconfigured measurement page

while reporting back any change made to it. Almost 1000

page alteration events were detected; however, the por-

tion of events for which ISPs are responsible is unknown.

The authors of [38] investigate inflight modifications

of traffic from an unnamed popular Internet search ser-

13

240 25th USENIX Security Symposium USENIX Association

vice. In contrast to the abovementioned works, here the

changes were detected by the IP address the client con-

tacted, which was different than the addresses owned by

the search service. This work found 9 ISPs that proxy

their customers’ traffic destined to the search service.

The redirection to the proxy is done by resolving the

DNS name of the service to the IP address of the proxy.

A considerable body of work deals with censoring

countries and the mechanisms they use to censor Internet

traffic. The authors of [33] have categorized the mecha-

nisms of the censorship employed by different countries.

It is noted that China and Thailand use out-of-band de-

vices to send forged packets, which are usually HTTP

302 redirection, or a TCP reset.

In [35] it was shown that several ISPs enforce usage

restrictions of their networks by actively terminating un-

desirable TCP connections. The authors note that this is

done by sending forged TCP resets out-of-band. They

then leverage this insight – much as we do in the cur-

rent work – to identify these forged resets. Nonetheless,

the detection conditions are different than the ones we

used since the forged TCP reset has no payload to spoof;

hence, the detection conditions mainly revolve around

the arrival time and sequence number of the reset seg-

ment as compared to those of other segments in the con-

nection.

The authors of [13] discuss attacks that employ out-

of-band injection of forged DNS responses. To mitigate

the effects of such attacks it is suggested that the resolver

wait after receiving an initial reply to allow a subsequent

legitimate reply to also arrive. In particular, the resolver

should wait for another reply if the first reply arrived

sooner than half of the expected RTT since the query was

issued or if the TTL field in the IP header does not have

the expected value. If indeed two replies eventually ar-

rive, this indicates an attack.

8 Conclusions

In this work we reveal a new side to the practice of false

content injection on the Internet. Previously, discussion

on this practice focused on edge ISPs that limit their mis-

deeds to the traffic of their customers. However, we dis-

covered that some network operators inject false content

to the traffic of predetermined websites, regardless of the

users that visit them. Our work leverages the observa-

tion that rogue content injection is done out-of-band. It

can hence be identified while monitoring an edge net-

work in which the victim clients reside. Our analysis is

based on extensive monitoring of a large amount of In-

ternet traffic. We reveal 14 groups of content injections

that primarily aim to impose advertisements or even ma-

liciously compromise the client. Most of the financially-

motivated false content injection we observed originated

form China. Our analysis found indications that nu-

merous injections originated from networks operated by

China Telecom and China Unicom – two of the largest

network operators in Asia.

Acknowledgments

We would like to thank Hank Nussbacher and Eli Beker,

whose cooperation made this research possible. We also

thank Erik Hjelmvik for his efforts to independently re-

produce the injections.

References

[1] Alexa. http://www.alexa.com/.

[2] BotScout. http://botscout.com/.

[3] netsniff-ng toolkit. http://netsniff-ng.org.

[4] Representative captures of the injected sessions. http:

//www.cs.technion.ac.il/~gnakibly/TCPInjections/

samples.zip.

[5] SSL/TLS analysis of the Internet’s top 1,000,000 web-

sites. https://jve.linuxwall.info/blog/index.php?

post/TLS_Survey.

[6] Using NFQUEUE and libnetfilter queue. https:

//home.regit.org/netfilter-en/using-nfqueue-

and-libnetfilter_queue/.

[7] ANDERSON, N. How a banner ad for H&R Block appeared on

apple.com. http://arstechnica.com/tech-policy/2013/

04/how-a-banner-ad-for-hs-ok/.

[8] ANONYMOUS. Towards a comprehensive picture of the great

firewalls dns censorship anonymous. In 4th USENIX Workshop

on Free and Open Communications on the Internet (FOCI 14)

(2014).

[9] ARYAN, S., ARYAN, H., AND HALDERMAN, J. A. Internet cen-

sorship in Iran: A first look. In Proceedings of the USENIX Work-

shop on Free and Open Communications on the Internet (2013).

[10] BODE, K. Mediacom Injecting Their Ads Into Other Websites.

http://www.dslreports.com/shownews/112918.

[11] CLAYTON, R., MURDOCH, S. J., AND WATSON, R. N. Ignoring

the great firewall of China. In Privacy Enhancing Technologies

(2006), Springer, pp. 20–35.

[12] DIERKS, T., AND RESCORLA, E. The transport layer security

(TLS) protocol version 1.2. RFC 5246, August 2008.

[13] DUAN, H., WEAVER, N., ZHAO, Z., HU, M., LIANG, J.,

JIANG, J., LI, K., AND PAXSON, V. Hold-on: Protecting against

on-path dns poisoning. In Proc. Workshop on Securing and Trust-

ing Internet Names, SATIN (2012).

[14] FIELDING, R., AND ET AL. Hypertext transfer protocol –

HTTP/1.1. RFC 2616, June 1999.

[15] FIELDING, R., AND RESCHKE, J. Hypertext transfer protocol

(HTTP/1.1): Message syntax and routing. RFC 7230, June 2014.

[16] HERZBERG, A., AND SHULMAN, H. Security of patched DNS.

In Computer Security–ESORICS 2012. Springer, 2012, pp. 271–

288.

[17] HJELMVIK, E. Packet injection attacks in the wild.

https://www.netresec.com/?page=Blog&month=2016-

03&post=Packet-Injection-Attacks-in-the-Wild.

14

USENIX Association 25th USENIX Security Symposium 241

[18] HUFFAKER, B., PLUMMER, D., MOORE, D., AND CLAFFY, K.

Topology discovery by active probing. In Symposium on Appli-

cations and the Internet (SAINT) (Jan 2002), pp. 90–96.

[19] KEARNEY, R. Comcast caught hijacking web traffic. http:

//blog.ryankearney.com/2013/01/comcast-caught-

intercepting-and-altering-your-web-traffic/.

[20] KREIBICH, C., WEAVER, N., NECHAEV, B., AND PAXSON,

V. Netalyzr: illuminating the edge network. In Proceedings of

the 10th ACM SIGCOMM Conference on Internet Measurement

(2010), pp. 246–259.

[21] LEGUAY, J., LATAPY, M., FRIEDMAN, T., AND SALAMATIAN,

K. Describing and simulating Internet routes. In NETWORKING

2005. Springer, 2005, pp. 659–670.

[22] LEVIS, P. The collateral damage of internet censorship by DNS

injection. ACM SIGCOMM CCR 42, 3 (2012).

[23] MAO, Z. M., REXFORD, J., WANG, J., AND KATZ, R. H. To-

wards an accurate AS-level traceroute tool. In Proceedings of

the Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications (2003), pp. 365–378.

[24] MARCZAK, B., WEAVER, N., DALEK, J., ENSAFI, R., FI-

FIELD, D., MCKUNE, S., REY, A., SCOTT-RAILTON, J., DEIB-

ERT, R., AND PAXSON, V. An analysis of China’s “Great Can-

non”. In 5th USENIX Workshop on Free and Open Communica-

tions on the Internet (FOCI 15) (2015).

[25] MCCANNE, S., AND JACOBSON, V. The BSD packet filter: A

new architecture for user-level packet capture. In Proceedings of

the Winter USENIX Conference (1993), USENIX Association.

[26] NCC, R. RIPE Atlas. https://atlas.ripe.net.

[27] POSTEL, J. Transmission control protocol. RFC 793, September

1981.

[28] REIS, C., GRIBBLE, S. D., KOHNO, T., AND WEAVER, N. C.

Detecting in-flight page changes with web tripwires. In NSDI

(2008), vol. 8, pp. 31–44.

[29] SIBY, S. Default TTL (Time To Live) Values of Differ-

ent OS. https://subinsb.com/default-device-ttl-

values, 2014.

[30] SILVER, D., JANA, S., BONEH, D., CHEN, E., AND JACKSON,

C. Password managers: Attacks and defenses. In 23rd USENIX

Security Symposium (USENIX Security 14) (2014), pp. 449–464.

[31] TOPOLSKI, R. NebuAd and partner ISPs: Wiretapping, forgery

and browser hijacking, June 2008. http://www.freepress.

net/files/NebuAd_Report.pdf.

[32] TOUCH, J., MANKIN, A., AND BONICA, R. The TCP authenti-

cation option. RFC 5925, June 2010.

[33] VERKAMP, J.-P., AND GUPTA, M. Inferring mechanics of web

censorship around the world. Free and Open Communications on

the Internet, Bellevue, WA, USA (2012).

[34] WEAVER, N., KREIBICH, C., DAM, M., AND PAXSON, V. Here

be web proxies. In Passive and Active Measurement (2014),

Springer, pp. 183–192.

[35] WEAVER, N., SOMMER, R., AND PAXSON, V. Detecting forged

TCP reset packets. In NDSS (2009).

[36] WEINSTEIN, L. Google Hijacked – Major ISP to Intercept and

Modify Web Pages. http://lauren.vortex.com/archive/

000337.html.

[37] XU, X., MAO, Z. M., AND HALDERMAN, J. A. Internet cen-

sorship in China: Where does the filtering occur? In Passive and

Active Measurement (2011), Springer, pp. 133–142.

[38] ZHANG, C., HUANG, C., ROSS, K. W., MALTZ, D. A., AND

LI, J. Inflight modifications of content: Who are the cul-

prits. In Workshop of Large-Scale Exploits and Emerging Threats

(LEET11) (2011).

[39] ZIMMERMAN, P. T. Measuring privacy, security, and censorship

through the utilization of online advertising exchanges. Tech.

rep., Princeton University, June 2015.

A “Ack storm” due to TCP Injection

An “Ack storm” occurs when the injected segment

causes the receiver to send an acknowledgment for data

bytes having sequence numbers that were not yet sent

by the peer. This acknowledgment is dropped by the

peer, triggering it to respond by resending an earlier Ack,

which may in turn trigger a retransmission by the re-

ceiver. The retransmitted segment will include again an

acknowledgment for the yet to be sent sequence numbers

and so forth. Such a “ping-pong” exchange, if run long

enough, will cause the connection to timeout and reset.

In many cases this is undesirable for the injector as it

will interfere with the flow of traffic on the connection.

An “Ack storm” can subside if the peer eventually sends

data bytes having sequence numbers that correspond to

those of the forged data bytes injected by the third party.

B Injection Detection Algorithm

Algorithm 1 details the procedure for detecting packet

races. This algorithm is executed by each worker pro-

cess upon the receipt of a new packet. In the following,

CP denotes the currently received packet and S denotes

the set of packets received so far as part of the session

of CP. P(f) denotes the value of parameter f of packet

P. If parameter f is a field of TCP or IP, it is denoted by

the protocol and field names, e.g., P(IP total length) de-

notes the value of the field Total Length in the IP header

of packet P. The algorithm returns True if and only if a

race is detected.

In Algorithm 1, line 1 iterates over the previously

received packets of the current session. Line 2 veri-

fies that the two considered packets have been received

within a time interval that does not exceed the parame-

ter MaxIntervalTime. Lines 5 and 6 compute the total

lengths of the TCP and IP headers of each of the two

packets. Lines 7 and 8 compute the payload size of each

of the two packets. Lines 9 and 10 compute the TCP

sequence number of the last byte delivered in the pay-

load in each of the two packets. Lines 11 and 12 check

for a sequence number overlap between the two packets.

Line 15 checks whether the overlapped payload is differ-

ent. If it is, a race is detected and the algorithm returns

True.

To avoid false positives, we did not consider the fol-

lowing packets (not shown in Algorithm 1):

1. Checksum errors – packets that have checksum er-

rors either in the TCP or IP headers will clearly have

15

242 25th USENIX Security Symposium USENIX Association

Input: CP, S

1 foreach OP in S do

2 if CP(t) - OP(t) > MaxIntervalTime then

3 continue;

4 end

5 CP(headers size) = CP(IP header length) + CP(TCP data offset)*4;

6 OP(headers size) = OP(IP header length) + OP(TCP data offset)*4;

7 CP(payload size) = CP(IP total length) - CP(headers size);

8 OP(payload size) = OP(IP total length) - OP(headers size);

9 CP(top sequence number) = CP(TCP sequence number) + CP(payload size);

10 OP(top sequence number) = OP(TCP sequence number) + OP(payload size);

11 if CP(top sequence number) > OP(TCP sequence number) then

12 if OP(top sequence number) > CP(TCP sequence number) then

13 bottom overlap = MAX(CP(TCP sequence number), OP(TCP sequence number));

14 top overlap = MIN(CP(top sequence number), OP(top sequence number));

15 if CP(TCP payload)[bottom overlap:top overlap] !=

OP(TCP payload)[bottom overlap:top overlap] then

16 return True;

17 end

18 end

19 end

20 end

21 return False;

Algorithm 1: Race detection algorithm

a different payload than that of their retransmission.

2. TCP reset – reset packets can carry data payloads

for diagnostic messages which are not part of the

regular session’s byte stream.

C False Positives

There were numerous events in which the race identifi-

cation algorithm (described in Appendix B) of our mon-

itoring system identified a race that was not due to a

forged packet injection. In the following we describe

these events and why they occur:

Retransmissions with different content As per the

TCP specification [27], the payload of retransmitted seg-

ments must have the same content as the payload of the

original segment. In practice, however, this is not always

the case, and retransmitted segments sometimes carry

slightly different content, for the following reasons:

• Load balancing – some websites serve HTTP re-

quests using more than one server. Usually, a front-

end load balancer redirects the HTTP requests ac-

cording to the current load on each web server. It

is sometimes desirable that the same server serve

all HTTP requests coming from the same client.

To facilitate this, the first HTTP response sent to

a client sets a cookie containing the identity of the

server chosen to serve the client from now on. Sub-

sequent requests from that client will include this

server ID and allow the load balancer to redirect

those requests to that server. If the first HTTP re-

sponse needs to be retransmitted, some load bal-

ancers might, at the time of the retransmission,

choose a different web server than the one they

originally chose when the response was first trans-

mitted. This results in a different cookie value set

in the retransmitted response. Examples of web-

sites that exhibit such behavior are wiley.com and

rottentomatoes.com.

• Accept-Ranges HTTP header – the HTTP 1.1 spec-

ification [15] allows a client to request a portion of

a resource by using the Range header in the HTTP

request. It may do so in cases where the web server

has indicated in previous responses its support of

such range requests. Such support is indicated

by the Accept-Ranges header. We observed cases

where a web server sent an HTTP response which

included ’Accept-Ranges: none’, indicating that the

server is unwilling to accept range requests, while

in a retransmission of the same response the header

was replaced by ’Accept-Ranges: bytes’, indicat-

ing that it is willing to accept range requests having

units of bytes. This happened when the retrieved

16

USENIX Association 25th USENIX Security Symposium 243

resource spanned multiple TCP segments. Presum-

ably, the intention of the server is to allow the client

to retrieve a portion of a resource when network loss

is high. Examples of websites that exhibit such be-

havior are sagemath.org and nih.gov. Further-

more, such behavior was exhibited by several types

of web servers, including Apache, nginx and IIS.

• Non-standard HTTP headers – we have observed

that in some web applications that use non-standard

HTTP headers (namely, headers that begin with

’x-’), a retransmission of an HTTP response has dif-

ferent values for these headers than their value in the

initial response. For example, Amazon’s S3 service

includes in every response the headers ’x-amz-id-2’

and ’x-amz-request-id’, which help to troubleshoot

problems. These headers have a unique value for

each response even if it is a retransmission.

Retransmissions with different sequence numbers

For a few websites we encountered sessions in which a

retransmitted TCP segment started with a sequence num-

ber that was offset by 1 compared to the sequence num-

ber of the original segment. This might occur due to a

bug that caused the unnecessary incrementation when a

FIN segment was sent between the original and retrans-

mitted segment. There were no indications in the HTTP

responses as to the type of software executed by those

web servers. This unnecessary incrementation might also

be an artifact of a middle-box that serves the traffic to

those servers. An example of a website that exhibits such

behavior is www.knesset.gov.il.

Non-compliant TCP traffic We encountered many

TCP sessions (over port 80) which do not appear to

have originated from TCP-compliant nodes. There was

no proper 3-way handshake to open the session, the ac-

knowledgment did not correspond to the actual received

bytes, flags were set arbitrarily, and the sequence num-

bers were not incremented consecutively. This last point

led our monitoring system to flag many of these ses-

sions as injected sessions. Many of these sessions in-

cluded only unidirectional incoming traffic that origi-

nated from a handful of networks primarily residing in

hosting providers (such as GoDaddy and Amazon). We

suspect that these are communication attempts by a com-

mand and control server to its bots. However, we have no

proof of this.

D Attempts to Mimic the Identification

Values of the Legitimate Packet

In the following we account for some of the failed at-

tempts we observed in which the injecting entity tried to

mimic the identification value of the legitimate packet.

Note that in order to increase the chances of winning the

race with the legitimate packet, the forged packet is in-

jected well before the injecting entity has a chance to in-

spect it. For this reason the injecting entity can not sim-

ply copy the identification value of the legitimate packet

to the forged one.

1. Duplicate ID with a packet from the server – in

some cases the injecting entity tries to mimic the

identification values of the packets sent by the

server to make the forged packet less conspicuous.

Sometimes this is done rather carelessly by sim-

ply copying the identification number of one of the

packets the server already sent (not the legitimate

packet the entity wishes to forge). This means that

the client receives two IP packets from the server

having the exact same identification number. This

situation is highly unlikely to occur without the in-

tervention of a third party in the session, as the IP

layer of the server must make sure that each packet

in the session has a unique identification value.

2. Duplicate ID with a packet from the client – in dif-

ferent attempts to, perhaps, mimic the identification

values of the packets sent by the server, some in-

jectors simply copy an identification value from the

HTTP request packet that triggered the response.

Since this packet is, of course, sent by the client,

the injector cannot achieve its goal; the identifica-

tion values of the packets sent by the client are com-

pletely independent of those sent by the server. We

can use this to our advantage. It is possible but un-

likely that two packets – one sent by the server and

the other by the client – have the same identification

value.

3. Swapped bytes of an ID in packets coming from

the client – we noticed that at least one injector that

aims to copy the identification value from a packet

coming from the client (as described in the previ-

ous rule), does so in such a way that the two bytes

of the copied values are swapped. For example, if

the identification value of a packet coming from the

client is 0xABCD, then the identification value of

the injected packet will be 0xCDAB. This is prob-

ably due to a bug of the injector6. Occurrence of

such an event is highly unlikely without third-party

intervention.

E Improved Mitigation Algorithm

Algorithm 2 details the proposed mitigation algorithm.

The algorithm is executed upon the receipt of a new in-

6Most likely the bug is a case of big endian/little endian confusion.

17

244 25th USENIX Security Symposium USENIX Association

Input: CP, S

1 if Check Race(CP,S(Suspicious Queue)) then

2 Block suspicious packet;

3 end

4 Suspicious = False;

5 if abs(CP(IP TTL)-S(Average TTL)) > 1 then

6 Suspicious = True;

7 end

8 Lower ID Boundary = (S(Last ID) - 10)%216;

9 Upper ID Boundary = (S(Last ID) + 5000)%216;

10 if CP(IP ID) < Lower ID Boundary or CP(IP ID) > Upper ID Boundary then

11 Suspicious = True;

12 end

13 if Suspicious == True then

14 S(Suspicious Queue).append(CP);

15 end

16 else

17 Update S(Average TTL) with CP(IP TTL);

18 S(Last ID) = CP(IP ID);

19 Accept CP;

20 end

Algorithm 2: Mitigation algorithm

coming packet – CP. As in Algorithm 1 above, S denotes

the session of CP. P(f) denotes the value of parameter f

of packet P. If parameter f is a field of TCP or IP, it is de-

noted by the protocol and field names, e.g., P(IP ID) de-

notes the value of the field Identification in the IP header

of packet P.

The algorithm maintains a queue of packets that are

suspected of being forged. The incoming packet is first

checked against the suspicious packets for a race. If a

race is detected, the suspicious packet is blocked. Af-

terward, the TTL of the incoming packet is compared

against the average of TTL values of the previous pack-

ets received in the same session. If the difference is larger

than 1, then the packet is marked as suspicious. The

packet is also marked as suspicious if its Identification

value is higher than 5000 plus the Identification value

of the previously received packet of the session or lower

than that value minus 10. The rationale behind this com-

parison is that we generally expect the Identification val-

ues of the session be monotonically increasing, except

in cases of packet reordering. If the packet is marked

as suspicious it is enqueued to the suspicious queue for

200ms. If the packet is not suspicious the value of the

average TTL and last ID are updated and the packet is

accepted.

Note that a race will not be identified if the injected

packet arrives after the legitimate one. This is because

the legitimate packet will not be delayed, and once the

inject packet is received it will not be checked for a race

against the legitimate one. Nonetheless, this does not

compromise the security of the client since in this case

the content of the injected packet will not be accepted by

the client’s TCP layer.

18

USENIX Association 25th USENIX Security Symposium 245

The Ever-changing Labyrinth: A Large-scale Analysis of Wildcard DNS
Powered Blackhat SEO

Kun Du
Tsinghua University

dk15@tsinghua.edu.cn

Hao Yang
Tsinghua University

h-yang@tsinghua.edu.cn

Zhou Li
IEEE Member

lzcarl@gmail.com

Haixin Duan
Tsinghua University

duanhx@tsinghua.edu.cn

Kehuan Zhang
The Chinese University of Hong Kong

khzhang@ie.cuhk.edu.hk

Abstract

Blackhat Search Engine Optimization (SEO) has been
widely used to promote spam or malicious web sites.
Traditional blackhat SEO campaigns often target hot
keywords and establish link networks by spamming pop-
ular forums or compromising vulnerable sites. However,
such SEO campaigns are actively disrupted by search en-
gines providers, making the operational cost much higher
in recent years. In this paper, we reveal a new type
of blackhat SEO infrastructure (called “spider pool”)
which seeks a different operational model. The owners
of spider pools use cheap domains with low PR (PageR-
ank) values to construct link networks and poison long-
tail keywords. To get better rankings of their promoted
content, the owners have to reduce the indexing laten-
cies by search engines. To this end, they abuse wildcard
DNS to create virtually infinite sites and construct com-
plicated loop structure to force search-engine crawlers to
visit them relentlessly.

We carried out a comprehensive study to understand
this emerging threat. As a starting point, we infiltrated
a spider pool service and built a detection system to ex-
plore all the recruited SEO domains to learn how they
were orchestrated. Exploiting the unique features of the
spider pool, we developed a scanner which examined
over 13 million domains under 22 TLDs/SLDs and dis-
covered over 458K SEO domains. Finally, we measured
the spider-pool ecosystem on top of these domains and
analyzed the crawling results from 21 spider pools. The
measurement result reveals their infrastructure features,
customer categories and impact on search engines. We
hope our study could inspire new mitigation methods and
improve the ranking or indexing metrics from search en-
gines.

1 Introduction

To most people, search engine is the entrance to all sorts
of web sites on internet. The traffic volume generated
through search engines is huge: the number one search
engine Google receives 3.5 billion search queries per
day [46] and the subsequent visits referred by the search
results can account for more than 60% of the incoming
traffic of a website [55]. Improving sites’ search rank-
ings and attracting crawlers to visit them frequently are
very important to their owners.

Site owners and researchers have done extensive stud-
ies and come up with a set of “golden rules” on how to
improve one site’s performance in search results, which
are also called Search Engine Optimization (SEO) tech-
niques. Some SEO techniques aim to improve the site
structure (e.g., providing navigation in HTML pages)
and search affinity (e.g., adding descriptive keywords
to titles and metadata). They are termed “whitehat
SEO” techniques and are encouraged by search engine
providers. However, applying these techniques usually
requires great effort from site owners and the effects are
not always immediate. As a shortcut, “blackhat SEO”
techniques are developed, which exploit the blind side of
search-engine algorithms and gain a site big advantage
in search results at low cost.

Traditional blackhat SEO practices recommend stuff-
ing keywords and injecting inbound links into reputable
sites. While the first method can be achieved just by
manipulating the site’s content, the second one is much
more difficult because it requires changing content on
other reputable sites which are not under SEOer’s con-
trol. Common approaches towards this goal include post-
ing spam links in forums [43], compromising sites to
inject links [24, 51], buying links from link exchange
services [54], and constructing link network using ex-

246 25th USENIX Security Symposium USENIX Association

pired domains with high PR (PageRank) value [15, 16].
These techniques, nevertheless, require big investment
(e.g., buying links and expired domains) and could result
in severe penalties from search engines (e.g., when the
SEOer is found to use compromised sites).
New blackhat SEO techniques. Instead of contest-
ing high rankings of trending keywords which are of-
ten dominated by top-brand sites, SEOers start to tar-
get the search queries containing long-tail keywords and
tunnel the traffic to their sites [32]. Long-tail keywords
are usually overlooked by big sites because the traffic to-
wards each keyword is quite limited. However, the traf-
fic combined from many such keywords can be substan-
tial, which motivates SEOers to launch campaigns target-
ing them. The sites competing long-tail keywords usu-
ally have low PR value, leading to infrequent visits from
search-engine crawlers and long waiting time before be-
ing indexed (i.e., site is shown in search results) [18].
To increase the chance of being crawled, new blackhat
SEO strategy is proposed to feed infinite hyperlinks to
crawlers which all point to the sites under SEOer’s con-
trol. When a crawler enters SEOer’s network, it will be
trapped and keep crawling the content fed by the SEOer.

To escape from such network, a crawler can check if it
keeps visiting a fixed set of sites and exit when this hap-
pens. This is actually enforced by many search engines.
As a countermeasure, SEOers can create a massive num-
ber of fresh sites for the crawlers to foil the check, and
it turns out wildcard DNS perfectly serves this purpose.
A site with wildcard DNS toggled on can redirect vis-
its landing on its subdomains (e.g., aaaa.example.com)
to itself (e.g., example.com). Leveraging this tech-
nique, SEOers can create unlimited number of virtual
sites under only one valid domain name. This new attack
clearly harms search engines, as the crawling resources
are wasted and search results are manipulated.

This novel approach quickly gains popularity in the
blackhat SEO community, especially in China. The in-
frastructure built upon wildcard DNS domains is called
spider pool in China (“蜘蛛池” in Kanji) 1 and has been
broadly discussed in underground forums. In this study,
we aim to provide the first comprehensive study of this
new threat in hopes of inspiring new methods for mitiga-
tion.
Our study. In order to understand the spider-pool infras-
tructure, we reached out to an owner of a spider pool in
operation and purchased SEO service to promote a site
created by us. Playing as a customer enabled us to in-
filtrate the spider pool and discover unique features re-
garding its infrastructure. In particular, we found wild-
card DNS was extensively used on each site and dynamic

1Such infrastructure may be named differently in SEO communities
of other countries. We use spider pool to represent all variations for
brevity.

content generation was fully automated. We also discov-
ered a new promotion technique which has never been
reported by previous research. The adversaries are able
to advertise their messages through very popular sites,
like amazon.com, without compromising or even spam-
ming them.

Exploiting the DNS and content features of spider
pool, we developed a scanner based on DNS probing and
differential analysis. We used this scanner to examine
13.5 million domains under 22 TLDs and SLDs. The
result is quite alarming: we identified 458K spider pool
domains distributed among 19 TLDs/SLDs. In addition,
we discovered a trend of misusing new gTLD domains
for this type of SEO and also policy holes for domain
registration process of .ac.cn SLD. We measured these
domains in different aspects and show statistics regard-
ing their hosted IPs, domain registrars and registrants.
We found that though the domains are spread over 28K
IPs, they are rather centralized on a small set of ASNs,
registrars and controlled by a small group of SEOers.

Finally, we extended our study and crawled 20 new
spider pools using seed domains detected by our scan-
ner, to study their business model and impact on search
engines. As a result, we identified 15.8K SEO do-
mains, 1.4K customer domains and 7.2M URLs embed-
ding customer messages. The study on the business
model revealed new categories of customer’s business
that are never reported before. Our results also suggest
that spider pool is clearly effective in attracting search
crawlers and manipulating search results under long-tail
keywords. Baidu, the top search engine vendor in China,
has acknowledged our findings and we are now collab-
orating with Baidu to deploy detection system to purify
search results and capture spider pool services.

2 Background
In this section, we first overview the factors affecting
search rankings and indexing delay of a website. Then,
we survey widely used blackhat SEO techniques and
their infrastructures which aim to promote a website’s
ranking unethically.

2.1 Search Engine Optimization
The goal of search engine is to provide a user with
a list of web pages that are relevant to search key-
words and ranked by their importance. Although rank-
ing algorithm is considered as the topmost secret by
search engine providers and is never released, guide-
lines and techniques called Search Engine Optimization
(SEO) are developed from white-papers published by
the providers, extensive experiments and reverse engi-
neering [17, 20, 44]. Whitehat SEO advocates improv-
ing the structure of a site to make it more friendly to
search crawlers. Advices include adding targeted key-

2

USENIX Association 25th USENIX Security Symposium 247

words to webpage (document body, title, meta tags and
page URLs), creating navigation page (e.g., a sitemap
file) to guide crawler, avoiding repeated page content,
and frequent content update. Improving the site’s quality
also increases the chance of being referred by other web
sites, which in turn increases its PR (PageRank) value.

In addition to gaining high rankings in relevant search
results, it is also important to reduce the indexing delay
of a page. The more frequently a web site is visited by
search crawler, the faster its pages will be indexed (i.e.,
shown in search results). The visit frequency is mainly
determined by the PR value [18], meaning that a new
web site might have to wait for a long time to be indexed
and displayed under search terms it targets.

While most of the web sites attempt to get good rank-
ings under hot keywords, the cost is always high. Instead,
targeting long-tail keywords might help the site harvest a
large volume of traffic without big spending [32]. As
an example, to get top ranking under the search results
of “socks” is challenging, but achieving so for “socks
with dogs on them” or “socks that knock my socks off”
is much easier. In fact, the traffic querying long-tail key-
words can account for 70% of all traffic to a search en-
gine [10]. So, long-tail keywords are also important for
web sites.

2.2 Blackhat SEO Techniques
Tuning the factors that improve site’s quality is allowed
by search engine companies. However, unethical adver-
saries also develop techniques (i.e., Blackhat SEO) to
gain advantages in search results at low cost by gaming
ranking algorithms. We describe known techniques as
follows:
Content spam. Since the number of keywords con-
tained in a web page and URLs play an important role
in computing the ranking score, an adversary can either
repeat the same keywords to increase the relevance to
search terms of the same category, or include a spectrum
of trending keywords to associate the site with many
search terms of different categories (also named search
poisoning [31]). Recently, Google starts to penalize web
pages with excessively repeated contents, which forces
the SEOers to use a new technique called spinning to
generate spam texts with similar meaning but different
appearances [57]. A set of SEO toolkit is developed to
automate this process, like XRumer [6].
Link farm. To accumulate a large number of incom-
ing links to a web site, an adversary can set up link
farm [8, 53] which exploits the vulnerabilities of other
reputable sites to inject link. We show more details about
this blackhat SEO infrastructure in Section 2.3.
Cloaking. Blackhat SEO is becoming one popular chan-
nel for malware and scam delivery. Cloaking technique
is leveraged to serve benign content to search engines

while malicious content to normal visitors, in order to
avoid being detected [50]. User agent, referrer field in
HTTP header, and IP address are inspected to determine
if the request is from a real browser or a search engine
crawler.

2.3 Blackhat SEO Infrastructures
The number and quality of incoming links are key factors
for the effectiveness of a SEO campaign. The adversary
needs to have a large number of incoming links at dis-
posal to elevate the site’s popularity. Different blackhat
SEO infrastructures on organizing the links have been
discovered and they are described below.

Forum spam. Web forum accepts and displays posts
contributed by web users, and the posts are also crawled
by search engines. A forum with high reputation is prone
to be abused by attackers who post links to promote their
sites [37]. Moreover, blog sites allowing comments are
also likely to be spammed by the similar techniques. As
a mitigation strategy, a site can set the rel attribute of
external links as nofollow to stop disseminating repu-
tation score to spam links [20], or request CAPTCHA
solving before comments are posted.

SEO botnet. The adversary has limited privileges in
posting spams to forum/blog. To overcome such restric-
tions, attackers could choose to compromise vulnerable
sites, turn them into botnet, and make them refer to the
sites to be promoted. Later, when search engines visit
the compromised sites and compute rank value, the pro-
moted web site will get an unusual high ranking [24,51].
Some SEO kits are developed to manage thousands of
sites simultaneously, reducing attackers’ workload [2].
Knowing the existence of such infrastructure, search en-
gine vendors are actively detecting compromised sites
and removing sites promoted in this fashion. The com-
promised sites are also alarmed in search results to avoid
being clicked by victim visitors [49].

Link exchange platform. There are also online fo-
rums and platforms helping website administrators to
exchange incoming links and improve their sites’ rank
mutually [54]. Examples include sape.ru [39] and
warriorforum.com [52]. Link exchange through SEO
forum and platform is explicitly forbidden by search en-
gine companies like Google, which for example penal-
izes buyers of sape.ru [40]. This approach is also ex-
pensive for adversaries, because they have to buy links to
maintain their faked popularity.

Private Blog Network (PBN). This is a new type of
black SEO infrastructure. The adversaries first buy and
set up many blog sites on a set of expired domains with
high PR values, then construct link network carefully un-
der their control, and finally inject outgoing links point-
ing to sites to be promoted [15, 16]. Expired domains

3

248 25th USENIX Security Symposium USENIX Association

with high PR values are usually sold at high prices, so
a large-scale and successful PBN could cost consider-
ably [11].

3 Dissecting a Spider Pool Campaign
Since search engine vendors upgrade their ranking al-
gorithm frequently (e.g., Google updates its algorithm
500-600 times per year [42]) and demote sites engaged
in blackhat SEO actively or even seize the back-end
servers [49], attackers are forced to invent new ways to
keep their business effective and profitable. In this sec-
tion, we elaborate our study on “spider pool”, a new type
of blackhat SEO infrastructure unreported by previous
research.

3.1 Overview
All known blackhat SEO techniques ask for massive in-
coming links from reputable sites to increase the impor-
tance score of the promoted site under hot keywords,
which are always competed by numerous sites. In-
evitably, these techniques are very expensive. To reduce
the cost, SEOers start to operationalize their campaigns
under long-tail keywords, for which the competition is
more relaxing. Though the search traffic flowing to an
individual long-tail keyword is nominal, the volume ac-
cumulated for a large set is considerable.

Furthermore, new or expiring domains which are
much cheaper are recruited to set up this SEO infrastruc-
ture. However, since the PR values of these domains are
usually negligible, they cannot be directly used to boost
the score of the customer sites they point to. This causes
a big issue in indexing latency, as search engines prefer
to crawl and index a page faster if it comes from sites
with high PR value.

Instead of sitting and waiting for the search crawler
to knock on the door, spider pool actively traps search
crawlers. In other words, it keeps the crawlers visit-
ing sites (sites of both SEOer and customers) within the
border of attacker’s network.
How to trap a crawler. One intuitional approach to trap
crawler is through link loop, but search engines have al-
ready adopted some algorithms to detect loops that are
constructed intentionally. To evade detection, spider pool
applies techniques including creation of massive subdo-
mains and generation of dynamic contents. By adding a
wildcard DNS record (as shown in Figure 1) to the au-
thoritative DNS server, an adversary can configure the
web server to feed the crawler whatever subdomain she
wants to be visited (e.g., a.example.com). The web
page fed into the crawler is stuffed with spam links,
which instruct the crawler to visit other subdomains (e.g.,
b.example.com). In case the crawler skips the pages
with the same content, the site could render page dynami-
cally and provide distinctive content for each visit. Since

Figure 1: An example of wildcard DNS record.

the crawler always gets a “valid” page from a “valid”
website, it will follow the spam links and keep visiting
sites under adversaries’ control.
Effects. The major benefit through using spider pool
is the boost of visiting frequency from search crawler,
given that there are always new pages fed into them. It
can also improve the importance score of the customers’
sites, as the incoming links from spider pool are mas-
sive. In addition, the number of indexed pages under
customers’ sites can be increased as well.
Comparison with other SEO infrastructures. The
price of buying new or expiring domain is much cheaper
nowadays. As shown in domcomp.com, a web site list-
ing domain prices, one can purchase a domain for only
$0.99 at some registrars [13]. This is a big advantage
over PBN asking for expensive expired domains with
high PR value, and over link exchange service for expen-
sive links. In the meantime, attackers can easily change
the underlying link structure, which outperforms forum
spam in flexibility. Moreover, since the sites in spider
pool are not compromised, they are less likely to be de-
tected and alarmed compared to sites recruited by SEO
botnet, as shown in Section 5.2.
Terms. For simplicity, throughout this paper, we use do-
main to refer to the domain name purchased by the adver-
sary, which is different from hostname or FQDN that can
be created randomly at her will through wildcard DNS.
We call domains controlled by the spider pool owner
SEO domains and pages with spam links SEO pages. The
parties who use spider pool to promote their sites or mes-
sages (explained at the end of this section) are called cus-
tomers.

3.2 Infiltration of a Spider Pool
To better understand the business model, features and op-
erational details of a spider pool, we infiltrated one popu-
lar spider pool service provider called super spider pool2.
In this paper we use SSP to refer to this service. Differ-
ent from dedicated spider pool which is built for a single
customer, this is a shared spider pool which sells SEO
service to customers publicly. It adds the URL provided
by customers to its SEO pages after payment.
Purchasing spider pool service. We bought a domain 3

and set up a web site with fake contents generated from
template downloaded from tttuangou.net 4. The web

2http://www.zhizhuche.com
3his-and-hers.xyz, bought on Oct 30th, 2015 from Goddady.
4http://tttuangou.net/download.html

4

USENIX Association 25th USENIX Security Symposium 249

Gambling Drugs Prostitution

Customers’ Sites Spider Pool

Customers’ Messages

Crawling

Visit from Search Results

Crawling
*.27sb.cn

jftxy.27sb.cn
tonty.27sb.cn

jaozi.27sb.cn

iujic.bkiwd.top

otlxo.bkiwd.top

hzcbz.bkiwd.top 7834115.isdrs.pw

565632296.isdrs.pw

99859.isdrs.pw *.bkiwd.top

*.isdrs.pw

Figure 2: The infrastructure of a spider pool. The spider pool consists of new or expiring domains (e.g., 27sb.cn) which leverage
wildcard DNS to breed unlimited numbers of subdomains (e.g., jftxy.27sb.cn). Subdomains under different domains are inter-
connected and the links are dynamically generated. When a search crawler approaches one subdomain, it will be trapped in the
spider pool until being released to customers’ sites or URLs bearing customers’ messages.

nkjwap.com.cn is a wildcard domain
Fasion Wedding Photo in NewYork

kpkuny.com.cn is a wildcard domain
Real Estate for YaHao in BeiJing

nraogh.com.cn is a wildcard domain
Add Lock for Glove Box in Car

24sb.cn is a wildcard domain
Business Scope of Chess and Card Room

Cute Group Purchase

Figure 3: The returned search results from Google (top 5 only)
when querying using the homepage URL of our site. Except the
No.1 result, all others are linked to SEO pages of SSP.

pages were modified to ensure there is no input box
that accepts user’s sensitive information (e.g., credit card
number) when a real user accidentally visits our site.
Server logging functions were turned on to record infor-
mation of incoming requests like time, user agent, IP ad-
dress, and etc. We filtered out logs that do not belong to
search crawlers using user agent patterns. Then, we reg-
istered an account in SSP, uploaded the homepage link
, and started an advertising campaign of 14 days (from
Nov 1st, 2015 to Nov 14th, 2015) for our testing web
site.

Exploring spider pool infrastructure. Several days af-
ter starting our campaign, we searched the URL of our
site in Google. The results are shown in Figure 3. Our
URL was listed in the results, together with URLs of
SEO pages set up by the spider pool. This finding mo-
tivates us to explore the whole spider pool infrastructure
by iteratively sending queries to Google, which neverthe-
less turns out to be very time-consuming, as described
in Appendix A. Therefore, we start to explore the in-
frastructure through other means. As discussed in Sec-
tion 2.1, well-structured web site (e.g., a site providing
sitemap file) can be visited by crawlers frequently and
indexed timely. We sampled several SEO domains and
found this was also followed by SSP: a sitemap.html

file was put under the root directory of every SEO do-
main to instruct the crawler to find other SEO or cus-
tomer domains. An example of the sitemap file is shown
in Figure 4. This feature motivates us to build a dedicated
crawler which follows sitemap file to excavate sites be-
longing to SSP.

First, we feed a previously discovered SEO domain as
a seed into Q (the queue of domains to be searched). Our
crawler starts from requesting the sitemap.html under
root folder and extracts all the links inside <a href>

tags. The domains of the links which have not been vis-
ited will be appended to Q. The sitemap file is refreshed
twice, to include domains added dynamically by the SEO
toolkit. The crawler then visits the next domain in Q,
checking if the domain is a SEO domain and extracting
all other domain names, until there is no more domain
left. With this approach, we are able to harvest a large
number of domains in SSP under moderate time.

5

250 25th USENIX Security Symposium USENIX Association

 <HTML><HEAD><TITLE>摄影包排名-网站地图-apple-iw.cn</TITLE>
<META name=GENERATOR content="MSHTML 8.00.6001.19393"></HEAD>
<BODY link=#333333 vLink=#333333>
<DIV id=content>
…
北京摄影培训指南
同学聚会摄影
全国摄影工作室
成都 摄影 培训 机构
圣枫莎摄影工作室
摄影作品集封面欣赏
…
</div>
</body>
</html>

Wildcard subdomain Keywords about photo shooting

Figure 4: An example of sitemap file.

3.3 Features of Spider Pool
The preliminary exploration offers us a partial view of
SSP, and we manually examined the domains included
by SSP (we demonstrate how to automatically classify
the domains in Section 3.4). In particular, we select the
domains used for SEO and present the interesting find-
ings below:

Wildcard DNS usage. As expected, wildcard DNS
plays an important role in spider pool and greatly im-
proves its scalability: the total number of SEO FQDNs
is up to 44,054 but the number of SEO domains is only
514 5. In other words, the size of the spider pool is in-
flated 86 times through this technique. We also find that
DGA (Domain generation algorithm) is incorporated in
domain generation: most of the fabricated subdomain
names are 5-10 characters filled with random letters and
digits (see domain names in Figure 2).

Content generation. The effects of wildcard DNS on
SEO have been discussed by SEO community. In fact,
replicating same pages under different subdomains will
delay the indexing of legitimate content as Google con-
siders the crawl budget is wasted on these site [14, 33].
However, if pages on subdomains are all distinctive, the
site would not be penalized [3]. Therefore, spider pool
site dynamically renders page content for each visit.

To understand how the content is generated, we in-
spected a copy of spider pool toolkit shared for free on
a public cloud drive 6. The SEO pages generated by this
toolkit resembles the SEO pages of SSP. In fact, the
toolkit includes a dictionary of long-tail keywords and
text scraped from trending fictions, and randomly assem-
bles keywords and sentences to construct the SEO pages.
To make the page look more legitimate, the toolkit em-

5We fold the FQDN to domain name using Public Suffix List [36].
For instance, www.abcd.example.com is folded to example.com.

6http://pan.baidu.com

 Text combined from fiction and keywords

Keywords related to melon seeds

Figure 5: An example of SEO pages within SSP.

beds images from the local storage. Another interesting
discovery is that cloaking technique is not used, so the
same contents are presented to both search crawlers and
normal browsers. We verified that by manipulating the
user-agent string of our crawler. Figure 5 shows an ex-
ample of the SEO page.

Link structure. Each spider pool site provides a sitemap
page (sitemap.html) to direct search crawler to visit
other sites according to its intention. By connecting
the discovered spider pool domains under linking rela-
tions, we find that a strongly connected graph can be con-
structed in which there exists a route from any domain to
another. In addition, most of the links on a SEO page are
swapped per visit. To a search crawler, such link struc-
ture looks like an ever-changing labyrinth: every step the
crawler makes refreshes the whole link topology, so the
crawler is always trapped till arriving at customer’s site.
Leveraging this design, the customer’s site connected to
the spider pool can be indexed much faster and updates
on the site can be timely reflected in search results. For
a site running illegal business, such feature is quite ben-

6

USENIX Association 25th USENIX Security Symposium 251

How to make fake CET-4/6 certificate

Figure 6: An example of site free-ride.

eficial as it allows the site to appear quickly in search
results before being taken down.

Domains controlled by adversary are limited and a
search crawler can realize when it is trapped by checking
if it keeps visiting the same set of domains. However,
due to wildcard-DNS techniques, loop detection is much
more difficult as a random FQDN can be easily generated
and inserted into the path at any time.
Site free-ride. We also discovered a new type of pro-
motion method developed to show customer’s message
in search result. This is achieved through crafting a
search URL under a popular site with message filled
in query string and injecting it into the spider pool.
Since some popular sites targeted by adversary display
the query string in their search result no matter whether
meaningful content is returned or not, the message em-
bedded in query string will be fed into search crawler.
Also due to the site’s high PR value, the indexing pro-
cess is much faster and message is more likely to ap-
pear in top of search results. As an example, we found
one Amazon search URL 7 in a SEO page which con-
tains a message for an illegal business (selling counter-
feit certificate) with contact information (QQ number,
one of the most popular instant messenger in China).
Querying with the relevant keywords (“certificate
for CET-4/6 qq” translated from Chinese) in Google
returns the customer’s message at the top spot of search
results (see Figure 6).

We call this SEO trick “site free-ride”, as the reputa-
tion of a popular site is abused by blackhat SEO while
that site is neither compromised nor spammed at all,
which makes detection rather difficult. In Section 5.3,
we show many top sites are misused in this way.

3.4 Classifying Spider Pool Domains
Following the trail of sitemap, different types of domains
are encountered, including SEO domains, customer site
domains, domains abused for message promotion and
other innocent domains. Though they can be distin-
guished through manual investigation, such approach is
not scalable. Therefore, we developed a classifier to dif-
ferentiate these cases automatically.

We started from identifying SEO domains. We found

7http://www.amazon.com/s?ie=utf8&page=1&rh=

[MESSAGE]

that SEO domains are all powered by wildcard DNS. In
addition, the page content is changed per visit while the
content from other types of sites is much more stable.
Therefore, we limited the scope to wildcard DNS domain
and compare the sitemap files for two consecutive visits
to determine if the domain was a SEO domain.

A problem we need to address here is how to measure
the difference between two visits. We first attempted
to measure the text difference between the two HTML
pages, but we encountered a large number of false pos-
itives caused by dynamic content, e.g., online advertise-
ments. We improve this method by considering the dif-
ference of only hyperlinks between two pages. To dis-
card small changes on URLs of hyperlinks customized to
visitors, we normalize the URLs by removing the query
parameters and values. Taking two pages PA and PB as
an example, assuming the set of unique hyperlink URLs
in PA and PB are HA and HB, we compute |HA−HB|

|HA|
and

|HA−HB|
|HB| respectively and then compare the maximum

value to a threshold MinH . If the maximum value is
larger than MinH , the domain is labeled as a SEO do-
main. We set MinH to 20% based on the empirical tests
and it renders good accuracy.

The above method worked well for exploring SSP. In
Section 5.2, we tested 20 other spider pools using the
same detector with small changes. We found the home-
page is also used to guide search crawlers by some spider
pools. Therefore, the homepage was also inspected by
the detector.

After picking out SEO domains, our tool classifies the
remaining domains to the following three types:

• The sites abused for message promotion are iden-
tified first by using the URL patterns related to
search queries. By inspecting a large corpus of
message URLs, we identify 45 URL patterns, like
/search/, and use them to match all remaining
URLs.

• Then, the innocent sites are identified by match-
ing their domain names with Alexa top 1M site list.
Though some of them may use spider pool, we be-
lieve the chance is small if they want to keep good
reputation.

• The sites remained are classified as customer sites.

Our detection mechanism only relies on the feature on
link structure and is robust against different templates
and languages used by SEO pages. To evade our de-
tector, the adversary could suppress the change rate of
the SEO page for each visit, which however will make
the link structure less dynamic and more likely to be de-
tected by search engines. Another evasion is to disable
wildcard DNS support on SEO domains. Although we

7

252 25th USENIX Security Symposium USENIX Association

have found some spider pools are beginning to apply this
change, the majority of the SEO domains are wildcard
DNS powered, suggesting the adversaries are not plan-
ning to give up the benefits brought by wildcard DNS.

4 Detecting SEO Domains through DNS
Scanning

Motivated by the findings from infiltrating SSP, we im-
plemented a scanner aiming to discover and measure
SEO domains of spider pool from an internet-wide view.
Though the detector described in Section 3 is effective in
enumerating SEO domains of spider pool, it highly de-
pends on the seeded domains and the discovery is still
limited. Instead, we launched large-scale DNS scan-
ning to identify wildcard DNS domains and crawled their
sitemaps and homepages. Then, we applied differential
analysis to detect SEO domains, using the heuristics de-
scribed in Section 3.4. The process is elaborated as fol-
lows.

4.1 Data Source

We cluster the SEO domains employed by SSP according
to their TLDs and SLDs and examine their popularity.
Unsurprisingly, a large number of domains are under old
generic TLD (gTLD) like .com and country-code TLD
(ccTLD) like .cn. Interestingly, we also found a notice-
able number of domains under new gTLDs [45] like .xyz
and generic SLDs like .com.cn [9]. In the end, we de-
cide to scan domains under all these categories described
above.

For each TLD or SLD under study, we attempt to gain
access to its DNS zone file first. If zone file is not avail-
able, we resorted to the domain collection offered by
third party and passive DNS data source. For .com, we
downloaded zone file from Verisign in Dec 2015 through
its TLD Zone File Access Program [47]. The unique
count of domains is over 125 million and we sample
2 million (1.6%) for study. We also apply for the ac-
cess to zone files of new gTLDs and several old TLDs
through Centralized Zone Data Service (CZDS) man-
aged by ICANN [23]. We obtained zone files from 10
registries for most popular new gTLDs in Dec 2015. The
.cn zone file was retrieved from viewdns.info [48] in
Dec 2015 (the zone file has over 5.5M domains, account-
ing for around 64% of all 8.6M .cn domains [12]). For
the remaining TLDs, we searched passive DNS database
provided by Farsight Security [41] and extracted do-
mains from all A records within 2015. The list of TLDs
and the statistics are shown in Table 1 8.

8We did not find SEO domains under .gov, .edu, .edu.cn and
.gov.cn in SSP. They are only scanned for comparison.

4.2 Detection System
To detect wildcard domains, we implement a DNS scan-
ner to probe all domains (13.5 million) in our list. For
any name (e.g., a.com) in the list, our scanner issues
a wildcard A record query (*.a.com) to its authorita-
tive server directly, bypassing resolvers provided by local
ISP. If we get a valid IP (same as the one used by a.com),
we consider that the domain supports wildcard. To pre-
vent ISP’s DNS wildcard injection with its web portal’s
IP, we detect such behavior before our large scale prob-
ing, and filter out such IP address used by local ISP.

It is challenging to handle such large volume of do-
mains we collected. To optimize the performance, we
choose to issue DNS queries and process responses asyn-
chronously. In particular, the scanner runs one thread
unremittingly issuing DNS requests in UDP and another
thread picking up matched DNS responses from incom-
ing traffic. Our task was able to finish within 120 hours
and we report the result in Table 1.

We obtained 2.4 million wildcard domains (17.8% of
all scanned domains) after the scanning process and the
next step is to determine which domains are used for spi-
der pool. To this end, we use crawler to visit the sitemap
(or homepage when sitemap is not available) of the root
folder of each wildcard domain twice, then compare the
hyperlinks using the same heuristics described in Sec-
tion 3.4. The domains showing different set of hyper-
links are considered SEO domains. In the end, we cap-
tured 458K (19.1% of all wildcard DNS domains) such
domains in total. This result suggests an unnegligible
proportion of domains have configured wildcard DNS for
SEO purposes.

We further classify the detected SEO domains based
on how the pages are linked to customer’s content and
identify three different types. All of them can be gen-
erated from the templates of known spider pool toolk-
its [22]. We elaborate each type in Appendix B. The
number under each type is reported in #iframe, #link and
#redir columns in Table 1.

Verification. Our detection system discovered a large
amount of SEO domains and we want to know how ac-
curate the outcome is. Counting the true positives among
them accurately is nearly impossible because there is no
off-the-shelf detection system we can use as the oracle
and it will take massive human efforts to examine all of
them. As an alternative, we sample 1,000 SEO domains
at maximum per TLD/SLD and evaluate them to estimate
the accuracy. We manually look into the title, page text
and link structure, and compare them with known SEO
pages from SSP. We consider one as true positive if these
features resemble. We find the highest false-positive rate
(FPR) per TLD/SLD occurs on .com, which is 1.2%.
The main reason for the false positives is that many links

8

USENIX Association 25th USENIX Security Symposium 253

Table 1: Data source for DNS probing and the scanning results. “Zone file*” means the domains are sampled from all domains in
zone file. #All SEO is the number of all detected SEO domains. It is also the sum of #iframe, #link and #redir.

Category TLD&SLD Data Source #All #Wildcards #All SEO #iframe #link #redir

Old TLD

cc Passive DNS 99,934 40,334 10,320 1,499 1,210 7,611
cn Domain List 4,107,679 371,829 222,390 52,013 4,099 166,278

com Zone file* 2,000,000 751,877 37,568 3,995 10,137 23,436
edu Passive DNS 3,619 353 0 0 0 0
gov Passive DNS 1,215 130 0 0 0 0
pw Passive DNS 246,775 146,984 43,561 18,239 24,154 1,168

New gTLD

xyz Zone file 1,695,430 309,983 45,769 581 2,532 42,656
top Zone file 1,033,644 127,532 9,842 5,378 1,198 3,266

wang Zone file 629,757 49,528 6,597 680 287 5,630
win Zone file 570,091 56,020 22,115 1,865 2,696 17,554
club Zone file 535,576 108,665 2,163 149 403 1,611

science Zone file 249,187 44,544 2,271 1,097 1,024 150
ren Zone file 237,372 11,023 121 5 4 112
link Zone file 213,449 40,719 490 146 244 100
party Zone file 217,508 68,239 3,650 874 2,726 50
click Zone file 181,673 43,914 1,059 614 378 67

SLD

ac.cn Passive DNS 86,291 56,944 24,270 977 9,249 14,044
edu.cn Passive DNS 1,347 173 0 0 0 0
gov.cn Passive DNS 12,364 1,745 24 0 0 24
org.cn Passive DNS 53,492 5,206 805 141 34 630
com.cn Passive DNS 1,093,580 152,751 23,264 3,779 2,156 17,329
net.cn Passive DNS 234,039 12,445 1,967 356 45 1,566

Total - - 13,504,022 2,400,938 458,246 92,388 62,576 303,282

on the pages lead to the advertisements which are also
changing for each visit. We do not find any false positive
under .ren, .link, .party and .click. The FPR for
all domains is 0.8%, suggesting that our detector is quite
effective.

4.3 Detection Result
As shown in Table 1, the number of wildcard DNS do-
mains and SEO domains distributes unevenly across dif-
ferent TLDs and SLDs. We elaborate our findings for old
TLDs, new gTLDs and generic SLDs separately below:
Old TLD. Among old TLDs open for general registra-
tion, including .cc, .pw, .com and .cn, we observe a
large number of wildcard DNS domains taking unneg-
ligible portion (ranging from 9% to 66%). The num-
ber of wildcard DNS domains abused for spider pool
is also large, consisting of more than 200K .cn , 30K
.com, 10K .cc and 40K .pw domains. The ratio of SEO
domains under .pw (17.7%) is much higher than other
TLDs. It is reported that .pw domains are extensively
used for email spam [38] and our result shows they are
also favored by SEOers. To the opposite, due to more
restricted controls, only a small ratio of .gov and .edu

domains 9 supports wildcard DNS and we have not found
any SEO domain among them.
New gTLD. Since ICANN launched the new gTLD pro-
gram in 2011, the TLD space has been expanded un-
precedentedly. There are more than 1,000 gTLDs rolled
out already, comparing to dozens of gTLDs before 2011.
The delegated registrars under these TLDs frequently

9The number of .edu and .gov domains we have collected is much
less than other TLDs, but our result is still meaningful, as it represents
49% and 22% domains known to the public [12].

promote their domain registration business through dis-
counts, which have attracted a large volume of registra-
tion [21]. For example, around 1.7 million domains have
been registered under .xyz. However, it was also re-
ported that some new gTLDs were ill-managed, lead-
ing to a large number of spam/malware domains regis-
tered [19]. Our research supports this finding to some
extent. We have identified 137K SEO domains already
and 8 out of 10 new gTLDs have seen more than 1K SEO
domains.

Generic SLD. Similar to TLDs, a generic SLD usually
represents domains used for the same general purpose or
is managed by a central institute. We have picked 3 out of
7 generic SLDs under .cn for study [9]. Similar to .gov

and .edu, domain registration and resell under .edu.cn
and .gov.cn are tightly controlled. We did not iden-
tify any spider pool domains under .edu.cn, but were
able to capture a small amount of SEO domains under
.gov.cn. It is nevertheless surprising to capture more
than 20K SEO domains (28.1%) under .ac.cn, which
represents the research institutes in China. The domain
registration is managed by Chinese Academy of Sciences
(CAS) and Xinnet and the applicant must prove that she
represents a valid research institute. We speculate that
the registration policies are not fully enforced and urge
authorities to harden the registration process.

5 Measurement
As revealed from the large-scale DNS probing, the num-
ber of domains used for spider pool SEO is massive. In
this section, we first measure the infrastructure charac-
teristics (i.e., IP and location distribution, domain regis-
trars and registrant distribution) to study how attackers’

9

254 25th USENIX Security Symposium USENIX Association

Table 2: Top 10 ASNs for hosting SEO domains (sorted by
domain count).

NO. ASN #IP #Domain
1 AS6939 35 94,372
2 AS18779 534 57,286
3 AS38197 1,354 47,790
4 AS8100 546 45,808
5 AS15003 6,398 34,583
6 AS18978 3,719 27,325
7 AS40676 5,132 25,384
8 AS32097 431 18,152
9 AS209 3 17,668

10 AS32787 6 12,673
Total - 18,158 381,061

resources are aligned. Then, to extend our understanding
on spider pool business model, we sample SEO domains
detected from DNS scanning and use 20 of them as seeds
to identify new spider pool campaigns. We show detailed
results regarding their customers and impact on search
engines. We elaborate our findings as follows.

5.1 SEO Domains
We first evaluate how SEO domains are distributed
among spider pools’ hosting infrastructure and how they
are registered. Then we selected one spider pool SSP and
monitored the changes of its SEO domains for one month
to measure the dynamics.
IP distribution. Our first question is whether dis-
tributed hosting is a popular design choice, since such
a structure seems to be more resilient against adminis-
trative take-down actions. We issued DNS queries to
all 458,246 SEO domains described in Section 4.1 af-
ter they were detected. Except the domains that were
unresolvable to these queries, we obtained 28,443 IP ad-
dresses associated with 434,731 domains in total. Then,
we use the API provided by ip-api.com 10 to retrieve
their ASN (AS number) and country information. The
answer turns out to be positive, as over 28K IPs have
been identified and each IP hosted less than 16 domains
on average. But on the other hand, the adversaries prefer
to assign a large number of SEO domains to certain ASs
(autonomous systems), probably for the purpose of re-
ducing the management cost. We obtained ASNs for all
28K IPs and listed the top 10 ASNs sorted by the num-
ber of hosted domains in Table 2. It shows that more
than 87.6% of all domains (381,041 out of all 434,731)
were hosted on these top 10 ASNs and the topmost ASN,
AS6939, hosted nearly 95K domains (21.7%).

Next, we look into geo-locations of the hosts, trying to
identify if adversaries prefer certain countries to run the
operations. It turns out that most of the domains (80.5%
over all 434,731 domains) and IP addresses (80.7% of
28,443 IPs) were hosted in United States, as shown in Ta-
ble 3. In contrast, only 4.5% domains are hosted within

10http://ip-api.com/

Table 3: Top 5 countries for hosting SEO domains.

Country #IP #Domain
United States 22,958 349,879
HongKong 2,319 19,483
China 1,958 13,295
Australia 135 6,387
Japan 285 3,459
Total 27,655 392,503

China, though most of the spider pool campaigns we
have encountered were targeting markets in China. The
reason for this arrangement, we speculate, is to avoid
interventions from local governments including server
take-downs and seizures.

Domain registration. Furthermore, we inspect the in-
formation regarding how the SEO domains are regis-
tered. We queried the TLD Whois servers for registrar,
registrant and registration dates about the 458,246 SEO
domains. In total, we were able to get valid Whois infor-
mation for 425,345 domains. We describe our findings
below.

Similar to the distribution on ASNs, most of the
SEO domains are offered by a small amount of regis-
trars. Table 4 lists the top 10 registrars that account for
81.8% SEO domains (out of 425,345 domains). Among
them, 21.0% domains were registered under Chengdu

West Dimension Digital Technology CO.. We
also found that a lot of SEO domains were owned by a
small number of registrants. As shown in Table 5, the top
10 registrants controlled 51.9% SEO domains (220,854
out of 425,345). Perhaps even more interesting is that a
lot of registrants in deed provide email addresses instead
of leaving them blank or using private registration to hide
their identities. It is recommended by spider pool com-
munity to acquire new and expiring domains, which has
been confirmed by our data. Figure 7 illustrates the num-
ber of all SEO domains registered per month. The oldest
domain we observed was registered in Jan 2014 and the
domain age is about 2 years. Peaks of registration activ-
ities were observed during Oct 2015 and Feb 2016, and
it turns out the spider pool owners tend to register them
in bulk and use them for the same campaigns. Since the
domains are disposable, most of them are only registered
for only 1 or 2 years.

Structure dynamics. The previous results indicate that
spider pool owners usually recruit many new and expir-
ing domains to build up their infrastructures. However,
it is not yet clear about their strategies in maintaining
the infrastructure, especially on how the infrastructure
is evolved. To answer this question, we monitored the
structural changes of SSP for 25 days within Jan 2016.
We use the same spider pool explorer described in Sec-
tion 3 to crawl SSP every day and store the discovered
SEO domains separately. Figure 8 illustrates the daily

10

USENIX Association 25th USENIX Security Symposium 255

Table 4: Top 10 registrars for SEO domains.

NO. Registrar #Domain

1 Chengdu West Dimension Digital 89,378Technology CO., Ltd.
2 ERANET International CO., Ltd. 53,307
3 Xiamen Nawang Technology CO., Ltd. 39,837
4 FABULOUS.COM PTY LTD. 38,398
5 Alpnames Limited 38,247

6 Alibaba Cloud Computing Ltd. 23,583d/b/a HiChina (www.net.cn)
7 PDR Ltd. d/b/a PublicDomainRegistry.com 19,358
8 HANGZHOU Dnbiz Network CO., Ltd. 15,918
9 XIN NET TECHNOLOGY CORPORATION 15,379
10 HANGZHOU AIMING NETWORK CO.,LTD 14,587

Total - 347,992

Table 5: Top 10 registrant email addresses (anonymized).

NO. Email #Domain
1 11*44*42*2@qq.com 38,727
2 je*ny*ro*nb*lk*@gmail.com 32,667
3 13*77*17*5@qq.com 31,285
4 whois.private.service@gmail.com 26,606
5 15*59*72*73@163.com 19,837
6 yu*on*li*g5*1@163.com 19,237
7 du*on*56*02*8@126.com 15,839
8 go*go*@365.com 13,731
9 xi*os*ou*um*ng@163.com 12,712
10 13*19*96*@qq.com 10,213

Total - 220,854

numbers of all SEO domains and the newly recruited
domains that were not seen before. The structure was
relatively stable for the first two weeks, but it started to
change drastically in the third week: the amount of SEO
domains climbed up quickly to 1,800 and then dropped
back to 600. By inspecting the registration information,
it turns out a large number of domains would expire dur-
ing that week. So in order to compensate the loss, a bulk
of new domains was purchased to replenish the spider
pool. As the result, the size of the spider pool bounced
back to 1,600 on the 25th day.

5.2 Statistics of Spider Pool Campaigns
The above measurement study shows an overall view of
SEO domains recruited for spider pool usage. In this
subsection, we studied the structure of individual spi-
der pools, including SEO domains and customer do-
mains/URLs. Among all confirmed SEO domains, we
sample one domain per TLD/SLD as seed and run the
same crawling method described in Section 3.2 to dis-
cover the infrastructure of the whole spider pool. For
certain TLD/SLD containing much more SEO domains,
like .cn and .ac.cn, we sample several other domains.
Each newly discovered spider pool is compared with pre-
vious ones. If the overlap of SEO domains is over 50%,
the spider pool is likely to have been explored and is dis-
carded therefore. Through this process, we harvested 20
independent spider pools and the statistics are shown in
Table 6 (labeled as S1 to S20). The result of SSP is also
included. In total, we have discovered 15,816 SEO do-

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000

D

om
ai

ns
 R

eg
is

te
re

d

Registration Time

Figure 7: The number of all SEO domains registered per
month.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#D

om
ai

ns

Days

All SEO Domains
New SEO Domains

Figure 8: The number of all SEO domains and newly recruited
domains observed each day for SSP.

mains, 1,453 customer site domains, and 7,236,315 cus-
tomer search URLs from the crawling results of the total
21 spider pools.

In terms of the number of used SEO domains, we find
it largely differs between spider pools, which varies from
100 to 1,933 and is averaged at 753. Regarding served
customers, some spider pools include a large amount of
search URLs: the maximum number for one spider pool
is 2.6M. Such result should be taken with a grain of salt,
since the URLs could be dynamically built for each visit
from our crawler. On the other hand, the maximum of
customer sites promoted by spider pool is only 710. We
find that different spider pools tend to have big overlap
of customer sites. By looking into the popular spider
pool toolkit, we found that a lot of customer sites are
included by default. This can explain the big overlap
to some extent. Still, we find several different types of
business (mostly illegal) leveraging spider pools for pro-
motion and we elaborate our study in Section 5.3.

We are also interested in how good the security com-
panies are at capturing the spider pool domains. To an-
swer this question, we scanned all 15,816 SEO domains
using VirusTotal in Feb 2016. Surprisingly, only 474 do-
mains (2.9%) were flagged by at least one blacklist re-
cruited by VirusTotal. The reason could be that most
of SEO domains do not contain malicious content, like
drive-by-download code and phishing page, since their

11

256 25th USENIX Security Symposium USENIX Association

Table 6: Statistics of detected spider pools. “Dom” is short
for Domain. “(S)” and “(M)” represent customer’s site and cus-
tomer’s message. “Total” is the number of unique domains or
URLs altogether.

ID Seed SEO Customer
#Dom #Dom(S) #URL(M)

SSP mianmodaili14.cn 514 14 463
S1 annunciincontri.top 494 0 0
S2 jjytkvk.xyz 100 18 308
S3 1559535.pw 945 22 13,247
S4 604462.win 738 21 10,292
S5 10086wxu.com 699 295 35,295
S6 00u56m.pw 537 59 63
S7 2janp3.science 583 710 1,828,669
S8 mzysw.cn 740 213 208,486
S9 zhcocu.cn 582 105 61,444
S10 01q.ac.cn 984 65 19,006
S11 432364.party 309 19 156,322
S12 ckocn.club 768 319 2,651,720
S13 srkros.com.cn 713 14 1,144
S14 0acrn.pw 677 219 45,171
S15 miead.cn 713 591 4,917
S16 noykr.cn 879 45 6,703
S17 4be9l.ac.cn 1,243 81 1,778,360
S18 exzgyh.science 1,933 89 138,656
S19 lingganpj099.science 1,033 75 102,847
S20 usa4.win 632 94 172,613

Total - 15,816 1,453 7,236,315

main goal is only SEO.

5.3 Customers
We now extend our study to the customers who employ
spider pools to promote their business. We first extract
customers’ sites referred by SEO pages and classify them
into different categories according to the business they
served. Also from the infiltration study on SSP, we dis-
cover that the adversary invent a new promotion tech-
nique which abuses the reputation of popular sites to
advertise her messages, and such message promotion is
also observed in other 20 spider pools as well. We are in-
terested in which sites are abused and how the messages
are composed, and we present our measurement results
below.
Customer sites characterization. We examine all the
crawled web pages from the 1,453 identified customer
sites, and cluster them through content analysis. Previous
works studying spam/scam campaigns [28, 50] looked
into the HTML DOM structure and grouped the pages
under the similar structure, on the premise that most
pages are built with a small set of templates. How-
ever, the pages we have analyzed here do not follow such
premise as the page structures are quite diverse. We ad-
dress this problem through a different way: we used the
well-established nature language processing (NLP) tech-
niques to parse the page’s abstract (including title, meta
keywords and meta description) into terms and identify
the topic model [4] based on the term frequency. We
leveraged an online document analysis service [5] to au-
tomate this process, which classifies a document into one

Table 7: Classification of customers’ sites.

Topic #Domains Ratio
Sales and Services 202 21.72%

Gambling 190 20.43%
Surrogacy 156 16.77%

News 156 16.77%
Sex 114 12.26%

Games 84 9.03%
Hospitals and Drugs 28 3.02%

Total 930 100%

of the topics pre-determined. Then, we manually exam-
ined the results and adjusted the topic when it is incor-
rect. The names of some topics were refined to better
characterize the business as well. Through this proce-
dure, we were able to cluster 930 sites 11 into 7 topics.
Table 7 lists these topics and the number of correspond-
ing sites. We elaborate each topic in Appendix C.

Different from the results revealed by previous studies
on search poisoning [31], we do not find any customer
site delivering malware or phishing content. Moreover,
we identified new types of business, other than stores
selling fake goods or pharmacies [28,34]. It turns out the
goals of the customers are mainly to promote their illegal
business without unveiling traces to local legal authori-
ties. As an example, surrogacy is banned in China [7] and
the agents behind cannot advertise their business through
well regulated channels like TV commercials. Therefore,
they spammed the search results using spider pool as an
alternative.
Customer message characterization. Starting from the
15K spider pool domains, we identified over 7.2M mes-
sage URLs free-riding reputable sites. The adversaries
tend to keep a pool of candidate sites and attach the mes-
sage to their search URLs randomly. In Table 8, the
top 20 sites being abused are listed and the topmost site
serves 114K message URLs. All of these sites are listed
in Alexa top 1M, including highly reputable ones, like
amazon.com and ebay.com. For a search engine, these
message URLs should be removed, which however is not
a trivial task because valid search results about popu-
lar goods on sites like amazon.com are also included in
Google and should not be pruned.

We then look into the promoted messages. Most of
them are composed of a long-tail keyword (e.g., “where
to buy hallucinogen”) and contact (e.g., “the QQ of cus-
tomer service is: 90909090”). While the long-tail key-
word is readable, the contact number is usually obfus-
cated. In particular, we saw “0” is replaced with “o”
(“9o9o9o9o”) and special symbol was inserted into the
number (“909-909-909”). We suspect such obfuscation

11The remaining 523 sites were not processed because their abstracts
were invalid, the sites were down when we crawled their homepages or
the clusters they belong to were small.

12

USENIX Association 25th USENIX Security Symposium 257

Table 8: Top 20 sites abused for message promotion ordered by the number of associated URLs.

Abused Site URL Pattern #URL Alexa Rank
baicai.com http://www.baicai.com/salary-[MESSAGE]/ 114,420 323,377
sogou.com http://www.sogou.com/tx?word=[MESSAGE] 73,590 104
sina.com.cn http://search.sina.com.cn/?q=[MESSAGE] 43,429 13
taofang.com http://www.taofang.com/w [MESSAGE]/ 38,813 766,933
poco.cn http://my.poco.cn/tags/tag search.php?q=[MESSAGE] 30,935 56,687

amazon.com http://www.amazon.com/s/ref=nb sb noss? 28,973 3url=search-alias%3daps&field-keywords=[MESSAGE]
ebay.com http://www.ebay.com/sch/i.html? nkw=[MESSAGE] 28,565 22
qzone.cc http://www.qzone.cc/zipai/search/[MESSAGE] 27,350 12,520
xiami.com http://www.xiami.com/search/song-lyric/h?key=[MESSAGE] 27,244 1,274
qq.com http://v.qq.com/page/j/d/s/[MESSAGE] 26,263 8
jd.com http://search.jd.com/search?keyword=[MESSAGE] 23,240 88
mafengwo.cn http://www.mafengwo.cn/group/s.php?q=[MESSAGE] 22,531 2,677
chazidian.com http://zuowen.chazidian.com/index.php?q=[MESSAGE] 22,164 35,810
mininova.org http://www.mininova.org/search/?search=[MESSAGE] 19,789 38,942
bab.la http://it.bab.la/dizionario/cinese-inglese/[MESSAGE] 19,239 1,489
enet.com.cn http://www.enet.com.cn/enews/[MESSAGE] 18,498 3,57
tianya.cn http://bbs.tianya.cn/index self.jsp?key=[MESSAGE] 18,412 65
wasu.cn http://www.wasu.cn/search/show/k/[MESSAGE] 14,921 9,314
yododo.com http://www.yododo.com/search/searches.ydd?keyword=[MESSAGE] 14,350 93,010
douban.com http://www.douban.com/group/search?q=[MESSAGE] 14,175 277

is used to evade detection of automated tools. Through
some manual efforts, we created rules which map the ob-
fuscated number to original one and were able to parse
about half of the 7.2M messages (3M). In the end, we
identified 23 QQ numbers accounting for 2.4M messages
which are all related to illegal services. The details of
these numbers are shown in Table 9 of Appendix D. We
think extracting the contact information is meaningful
for search engines or other departments. By tracing from
the contact information, the identities of the criminals
could be revealed, which can greatly facilitate criminal
investigation.

5.4 Impact on Search Engines
Spider pool is mainly used to increase the visiting fre-
quency from search crawlers and we evaluate its effec-
tiveness by examining the logs collected on our servers
used for infiltration study of SSP. In addition, we look
into how search results under long-tail keywords are ma-
nipulated.
Visit frequency from search engines. After 14 days,
the targeted search engines (Google, Baidu) began to in-
dex the homepage and other pages under our test site
(his-and-hers.xyz). To determine if the effects from
spider pool are consistent, we relaunched our testing
SEO campaign and added 2 additional sites 12 into SSP
after a pausing period. Statistics are plotted in Figure 9
for Google and Baidu respectively. As shown in both fig-
ures, the effects are obvious: the average number of visits
per day jumped from 28 to 66 for Google and from 4.5
to 37.5 for Baidu during the campaign. Once the cam-

12happysky.info and ttaabb.org were purchased on Dec 6th,
2015 from Godaddy and we set up websites on them using templates
downloaded from http://www.dedecms.com/ and http://www.

emlog.net/.

Figure 9: Google (upper) & Baidu (lower) visit count.

0

50

100

150

200

250

300

10
/3

0

11
/4

11
/9

11
/1

4

11
/1

9

11
/2

4

11
/2

9

12
/4

12
/9

12
/1

4

12
/1

9

12
/2

4

12
/2

9

1/
3

1/
8

1/
13

1/
18

1/
23

1/
28

Vi
si

t C
ou

nt

Date

his-and-hers.xyz
happy-sky.info
ttaabb.org

First Period Second Period

0
5

10
15
20
25
30
35
40
45
50

10
/3

0

11
/4

11
/9

11
/1

4

11
/1

9

11
/2

4

11
/2

9

12
/4

12
/9

12
/1

4

12
/1

9

12
/2

4

12
/2

9

1/
3

1/
8

1/
13

1/
18

1/
23

1/
28

Vi
si

t C
ou

nt

Date

his-and-hers.xyz
happy-sky.info
ttaabb.org

First Period Second Period

paign was stopped, the visit count dropped significantly,
but restored quickly after the campaign was resumed.
Data from the other two sites show similar trends, which
proves the effectiveness of spider pool services.
Search results manipulation. To assess how search re-
sults are manipulated under keywords, especially long-
tail keywords, we sample 43 long-tail keywords under
4 categories discovered from customers’ messages and
query them on Google and Baidu. Then, we examine the
returned results from the first page and look for wildcard
DNS domains in particular. If the search result associ-
ated with the wildcard DNS domain is filled with spam
texts, we consider it is manipulated by spider pool. In

13

258 25th USENIX Security Symposium USENIX Association

the end, we find spider pool compromised 27 keywords
in Google and 30 keywords in Baidu (see Table 10 of
Appendix E), indicating spider pool is quite effective and
widely used for poisoning long-tail keywords. Interest-
ingly, the poisoned keywords show clear distinction be-
tween Google and Baidu under different categories: we
see keywords related to sex and medicine are more likely
to be poisoned in Baidu while for Google they are under
categories of firearms sales and fake certificate. Another
interesting finding is that adversary is able to manipulate
all search results (100%) under some keywords in Baidu,
especially under sex categories.

6 Discussion

Responsible disclosure and feedback. We have con-
tacted the security lab of Baidu and reported our find-
ings and spider pool domains we discovered. Baidu ac-
knowledged our findings and is verifying our results. In
fact, Baidu is aware of the existence of spider pool, but
is surprised by the scale and the impact on search results.
To help Baidu clean the search results and mitigate the
threat, we applied the detection system to the indexed
URLs offered by Baidu and provide a report of spider
pool domains on a weekly basis.

Ethical issues. To understand the internal mechanisms
of spider pool, we paid the owner of SSP advertising fee
to include our sites into the SEO pages. This could raise
ethical concern as the criminal group was funded by us,
however, we argue that the influence was rather limited
as we ran the campaign for a small period and chose the
cheapest service category, costing only 8 dollars in total.
Another concern is that our infiltration experiment could
contribute to the pollution of search engine results. Yet,
we argue that the impact is still limited, as we intention-
ally chose hot keywords. Our sites were shown in search
results only when the user searched our URL directly. In
addition, we have closed the 3 test websites and informed
Google and Baidu via email to eliminate our URLs from
the search results after the study.

Limitations. We have designed and implemented a sys-
tem to detect SEO domains through DNS probing and
another system to explore the spider pool territory from
seed domains. However, if adversaries know these de-
tection algorithms, they can upgrade their infrastructures
for evasion. We discuss several evasion strategies in Sec-
tion 3.4. These strategies would increase the running cost
or reduce the effectiveness of spider pool without excep-
tion. Besides, as an initial step, our goal in this work is
to explore the landscape of this rising threat and measure
its impacts. A large volume of sites have been discov-
ered with the help of our systems and fulfilled the need
for measurement study. For the future work, we will in-
vestigate the feasible ways to improve the systems.

Recommendations to search engines. The search en-
gine can refrain from crawling and indexing pages under
SEO domains when the FQDNs are random and abun-
dant outbound links are embedded. However, extra ef-
forts should be taken to reduce the false positives. As
a matter of fact, it is also common that legitimate web
sites delegate subdomains to others, and they may exhibit
similar characteristics to SEO domains. We also suggest
search engines to keep a close watch on keywords, es-
pecially long-tail keywords, under certain topics. As de-
scribed in Section 5.4, spider pools tend to target limited
topics so their campaigns could be discovered by moni-
toring the associated long-tail keywords.

7 Related Works
Understanding blackhat SEO. The damage caused by
blackhat SEO has been known for a long time and there
have been a corpus of works studying this issue. One
line of such works focused on the infrastructure of black-
hat SEO campaigns and how they are managed. Wang
et al. [51] infiltrated an SEO botnet and showed it is
quite effective in poisoning the trending search terms,
given its small size though. John et al. [24] dissected
an SEO campaign which hosted SEO pages on compro-
mised servers. Also an interesting topic is about how the
adversary makes use of blackhat SEO. McCoy et al. [34]
and Levchenko et al. [28] revealed that blackhat SEO
have been employed extensively for online store sell-
ing fake products and pharmaceutical affiliate networks.
Leontiadis et al. [26] measured the search-redirection at-
tacks used for drug trade and the result suggests such at-
tacks could overwhelm legitimate sites in search results
and provide more traffic than email spam to the store-
front sites. To fight against these threats, search engines
have being taken active actions and the studies show the
countermeasures were effective to some extend but there
is still long way ahead to win the battle [27, 35, 49].
Detecting blackhat SEO. Inspired by the studies of
blackhat SEO campaigns, several detection approaches
have been proposed based on different features revealed
from known SEO attacks. John et al. [24] leveraged
URL signatures to identify SEO pages from a dataset
of URLs provided by search engines. Lu et .al. [31]
detected search poisoning by inspecting the redirection
chains unfolded when visiting a search result. Zhang et
al. [56] presented an approach which is capable of detect-
ing compromised sites abused for search poisoning from
seed sites. The features related to cloaking behaviors of
SEO sites [50] and content spinning on SEO pages [57]
were exploited for detection as well.
Wildcard DNS. Wildcard DNS is a widely used to map
different hostnames to the same IP and save the admin-
istrators from maintaining many different records. The
security implications, however, are not thoroughly eval-

14

USENIX Association 25th USENIX Security Symposium 259

uated yet. The only relevant research we knew so far
measured the prevalence of wildcard DNS configuration
and showed that it is broadly used by malicious sites [25].
Long-tail SEO Spam. Due to the intensive competi-
tion on hot keywords, many blackhat SEOers now start
to target long-tail keywords. Still, the understanding is
limited. So far, we only found one recent work study-
ing this topic and showed the cloud web hosting service
is abused for long-tail SEO spam [30]. Our study com-
plements the existing works by revealing a new strategy
from blackhat SEOers.

8 Conclusion
In this paper, we conducted the first comprehensive in-
vestigation on a new type blackhat SEO technique called
“spider pool” which abuses wildcard DNS to tamper
long-tail keywords of search engines. Based on the un-
derstanding through infiltrating a shared spider pool ser-
vice, we developed a DNS prober which can identify the
SEO domains with high accuracy and efficiency, together
with a spider pool explorer which is able to excavate the
domains used by individual spider pool through seed ex-
pansion. Our results show that spider pool has become
a big threat to registrars, search engines and their users,
as more than 458K SEO domains have been discovered,
popular sites like amazon.com are abused to promote il-
legal messages, and long-tail keywords can be easily pol-
luted. We think this new threat should be mitigated and
call for the attention from the security community.

9 Acknowledgements
This work was supported by the Natural Science Foun-
dation of China (grant 61472215). We thank anonymous
reviewers for their insightful comments. We also owe a
special debt of gratitude to Prof. Thorsen Holz, for his
instructive advice on our paper. We deeply indebted to
Professor Vern Paxson, his suggestion to our research di-
rection is valuable to us. Finally, Special thanks should
go to Baidu company which provide a platform and data
for testing our idea.

References
[1] ARCADIA, M. Legend of Mir Arcadia. http://mirarcadia.

com/, 2016.

[2] BAKII. Bakii Site Management Software (Translated). http:

//www.bakii.cn/, 2016.

[3] BLACKHATWORLD. Wildcard Domains. Bad for website SEO?
http://www.blackhatworld.com/blackhat-seo/black-

hat-seo/23514-wildcard-domains-bad-website-

search-engine-optimization.html, 2008.

[4] BLEI, D. M. Probabilistic topic models. Commun. ACM 55, 4
(Apr. 2012), 77–84.

[5] BOSONNLP. News classification; BosonNLP HTTP API 1.0
documentation (Translated). http://docs.bosonnlp.com/

classify.html, 2016.

[6] BOTMASTERLABS.NET. XRumer 12.0.12 Elite + Hre-
fer 4.6 Professional + SocPlugin 4.0.32 + BlogsPlugin.
http://www.advancedwebranking.com/blog/how-

to-identify-long-tail-keywords-for-your-seo-

campaign/, 2016.

[7] CHINA.ORG.CN. Gestational Surrogacy Banned in China. http:
//www.china.org.cn/english/2001/Jun/15215.htm,
2011.

[8] CHUNG, Y.-J., TOYODA, M., AND KITSUREGAWA, M. A study
of link farm distribution and evolution using a time series of web
snapshots. In Proceedings of the 5th international workshop
on Adversarial information retrieval on the Web (2009), ACM,
pp. 9–16.

[9] CNNIC. .CN Domain Name : User FAQ. http://www1.

cnnic.cn/IS/CNym/cnymyhfaq/, 2016.

[10] DEMERS, J. How to Identify Long-Tail Keywords for Your SEO
Campaign. http://www.advancedwebranking.com/blog/

how-to-identify-long-tail-keywords-for-your-

seo-campaign/, 2013.

[11] DEUTSCH, J. Confessions of a Google Spammer.
https://inbound.org/blog/confessions-of-a-

google-spammer, 2015.

[12] DOMAINTOOLS. Domain Count Statistics for TLDs.
http://research.domaintools.com/statistics/tld-

counts/, 2016.

[13] DOMCOMP. Domain Name Price and Availability. https://

www.domcomp.com, 2016.

[14] DUNN, R. Why Google Dislikes Zombie Sub-Domains.
http://www.thesempost.com/google-dislikes-

zombie-sub-domains/, 2014.

[15] ENGE, E. The Private Blog Network Purge - Are You at
Risk? https://searchenginewatch.com/sew/how-

to/2374165/the-private-blog-network-purge-are-

you-at-risk, 2014.

[16] ENGE, E. Private Blog Networks. http://

nichesiteproject.com/private-blog-networks/,
2015.

[17] ENGE, E., SPENCER, S., FISHKIN, R., AND STRICCHIOLA, J.
The art of SEO. ” O’Reilly Media, Inc.”, 2012.

[18] FISHKIN, R. Indexation for SEO: Real Numbers in 5
Easy Steps. https://moz.com/blog/indexation-for-

seo-real-numbers-in-5-easy-steps, 2010.

[19] GALLAGHER, S. Many new top-level domains have
become Internet’s ”bad neighborhoods” [Updated].
http://arstechnica.com/security/2015/09/many-

new-top-level-domains-have-become-internets-

bad-neighborhoods/, 2015.

[20] GOOGLE. Search Engine Optimization Starter Guide.
http://static.googleusercontent.com/media/www.

google.com/en//webmasters/docs/search-engine-

optimization-starter-guide.pdf, 2008.

[21] HALVORSON, T., DER, M. F., FOSTER, I. D., SAVAGE, S.,
SAUL, L. K., AND VOELKER, G. M. From .academy to .zone:
An analysis of the new tld land rush. In Internet Measurement
Conference (IMC) (2015), ACM, pp. 381–394.

[22] HXZHANQUN. Newest spider pool templates (translated). http:
//www.hxzhanqun.com/forum-42-1.html, 2016.

[23] ICANN. Centralized Zone Data Service (CZDS). https://

newgtlds.icann.org/en/program-status/czds, 2015.

[24] JOHN, J. P., YU, F., XIE, Y., KRISHNAMURTHY, A., AND
ABADI, M. deseo: Combating search-result poisoning. In
USENIX security symposium (2011).

15

260 25th USENIX Security Symposium USENIX Association

[25] KALAFUT, A., GUPTA, M., RATTADILOK, P., AND PATEL,
P. Surveying dns wildcard usage among the good, the bad, and
the ugly. In Security and Privacy in Communication Networks.
Springer, 2010, pp. 448–465.

[26] LEONTIADIS, N., MOORE, T., AND CHRISTIN, N. Measuring
and analyzing search-redirection attacks in the illicit online pre-
scription drug trade. In USENIX Security Symposium (2011).

[27] LEONTIADIS, N., MOORE, T., AND CHRISTIN, N. A nearly
four-year longitudinal study of search-engine poisoning. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (New York, NY, USA, 2014), CCS ’14,
ACM, pp. 930–941.

[28] LEVCHENKO, K., PITSILLIDIS, A., CHACHRA, N., ENRIGHT,
B., FÉLEGYHÁZI, M., GRIER, C., HALVORSON, T., KANICH,
C., KREIBICH, C., LIU, H., MCCOY, D., WEAVER, N., PAX-
SON, V., VOELKER, G. M., AND SAVAGE, S. Click trajectories:
End-to-end analysis of the spam value chain. In Proceedings of
the 2011 IEEE Symposium on Security and Privacy (Washington,
DC, USA, 2011), SP ’11, IEEE Computer Society, pp. 431–446.

[29] LI, Z., ZHANG, K., XIE, Y., YU, F., AND WANG, X. Knowing
your enemy: Understanding and detecting malicious web adver-
tising. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security (New York, NY, USA, 2012), CCS
’12, ACM, pp. 674–686.

[30] LIAO, X., LIU, C., MCCOY, D., SHI, E., HAO, S., AND
BEYAH, R. A. Characterizing long-tail SEO spam on cloud web
hosting services. In Proceedings of the 25th International Confer-
ence on World Wide Web, WWW 2016, Montreal, Canada, April
11 - 15, 2016 (2016), pp. 321–332.

[31] LU, L., PERDISCI, R., AND LEE, W. Surf: detecting and mea-
suring search poisoning. In Proceedings of the 18th ACM confer-
ence on Computer and communications security (2011), ACM,
pp. 467–476.

[32] LURIE, I. SEO 101: Defining the long tail. https:

//www.portent.com/blog/seo/long-tail-seo-101-

defined.htm, 2010.

[33] MACDONALD, M. Negative SEO vs. MattCutts.com.
http://webmarketingschool.com/matt-cutts-

negative-seo/, 2013.

[34] MCCOY, D., PITSILLIDIS, A., JORDAN, G., WEAVER, N.,
KREIBICH, C., KREBS, B., VOELKER, G. M., SAVAGE, S.,
AND LEVCHENKO, K. Pharmaleaks: Understanding the business
of online pharmaceutical affiliate programs. In Proceedings of the
21st USENIX Conference on Security Symposium (Berkeley, CA,
USA, 2012), Security’12, USENIX Association, pp. 1–1.

[35] MOORE, T., LEONTIADIS, N., AND CHRISTIN, N. Fashion
crimes: Trending-term exploitation on the web. In Proceedings
of the 18th ACM Conference on Computer and Communications
Security (New York, NY, USA, 2011), CCS ’11, ACM, pp. 455–
466.

[36] MOZILLA. Public Suffix List. https://publicsuffix.org/,
2016.

[37] NIU, Y., WANG, Y.-M., CHEN, H., MA, M., AND HSU, F. A
quantitative study of forum spamming using context-based analy-
sis. Tech. Rep. MSR-TR-2006-173, Microsoft Research, Decem-
ber 2006.

[38] PARK, E. Rise of .pw URLs in Spam Messages.
http://www.symantec.com/connect/blogs/rise-pw-

urls-spam-messages, 2013.

[39] SAPE. System to attract customers (translated). http://www.

sape.ru/, 2016.

[40] SCHWARTZ, B. Google Penalizes Another Link Network:
SAPE Links. https://www.seroundtable.com/google-

sape-link-network-16465.html, 2013.

[41] SECURITY, F. DNSDB. https://www.dnsdb.info/, 2016.

[42] SEOMOZ. Google Algorithm Change History. https://moz.

com/google-algorithm-change, 2016.

[43] SHIN, Y., GUPTA, M., AND MYERS, S. The Nuts and Bolts
of a Forum Spam Automator. In Proceedings of the 4th USENIX
Workshop on Large-Scale Exploits and Emergent Threats (LEET)
(Mar. 2011).

[44] SISSON, D. Google SEO Secrets. http://www.umid.info/

system/files/Google+SEO+Secrets.pdf, 2003.

[45] SOLUTIONS, G. new gTLD Statistics by Top-Level Domains.
https://ntldstats.com/tld, 2016.

[46] STATS, I. L. Google Search Statistics. http://www.

internetlivestats.com/google-search-statistics/,
2016.

[47] VERISIGN. Zone Files For Top-Level Domains (TLDs). https:
//www.verisign.com/en_US/channel-resources/

domain-registry-products/zone-file/index.xhtml,
2016.

[48] VIEWDNS. Download ccTLD domain name lists and zone files.
http://viewdns.info/data/, 2016.

[49] WANG, D. Y., DER, M., KARAMI, M., SAUL, L., MCCOY, D.,
SAVAGE, S., AND VOELKER, G. M. Search+seizure: The effec-
tiveness of interventions on seo campaigns. In Proceedings of the
2014 Conference on Internet Measurement Conference (2014),
ACM, pp. 359–372.

[50] WANG, D. Y., SAVAGE, S., AND VOELKER, G. M. Cloak and
dagger: dynamics of web search cloaking. In Proceedings of the
18th ACM conference on Computer and communications security
(2011), ACM, pp. 477–490.

[51] WANG, D. Y., SAVAGE, S., AND VOELKER, G. M. Juice: A
longitudinal study of an SEO botnet. In 20th Annual Network and
Distributed System Security Symposium, NDSS 2013, San Diego,
California, USA, February 24-27, 2013 (2013).

[52] WARRIORFORUM. The #1 Internet Marketing Forum & Market-
place. http://www.warriorforum.com/, 2016.

[53] WU, B., AND DAVISON, B. D. Identifying link farm spam
pages. In Special interest tracks and posters of the 14th inter-
national conference on World Wide Web (2005), ACM, pp. 820–
829.

[54] ZARRAS, A., PAPADOGIANNAKIS, A., IOANNIDIS, S., AND
HOLZ, T. Revealing the Relationship Network Behind Link
Spam. In 13th Annual Conference on Privacy, Security and Trust
(PST) (July 2015).

[55] ZECKMAN, A. Organic Search Accounts for Up to 64% of
Website Traffic [STUDY]. https://searchenginewatch.

com/sew/study/2355020/organic-search-accounts-

for-up-to-64-of-website-traffic-study, 2014.

[56] ZHANG, J., YANG, C., XU, Z., AND GU, G. Poisonamplifier:
a guided approach of discovering compromised websites through
reversing search poisoning attacks. In Research in Attacks, Intru-
sions, and Defenses. Springer, 2012, pp. 230–253.

[57] ZHANG, Q., WANG, D. Y., AND VOELKER, G. M. Dspin:
Detecting automatically spun content on the web. In 21st An-
nual Network and Distributed System Security Symposium, NDSS
2014, San Diego, California, USA, February 23-26, 2014 (2014).

16

USENIX Association 25th USENIX Security Symposium 261

Appendix
A Seed Expansion through Google Search
We can start from our testing site, identify the first layer
of parent sites S1 leading to it, and recursively identify
sites at upper layers Sn(n > 1), till there are no more new
sites discovered. We seek the help from Google Search
for this task and develop a C++ program which directs
Firefox to automatically search on Google. In essence,
it keeps a queue of domains to be searched, pops out
the first URL and queries Google, extracts all search re-
sult URLs in top 10 pages, and saves the domains unvis-
ited into the queue. The process ends when the queue is
empty.

Though the spider pool sites could be detected, the
performance is poor and the process is hard to converge.
We find there are two main reasons. First of all, it takes
quite some time for Google to respond to our web re-
quest, and CAPTCHA has to be solved occasionally.
Second, the returned search results usually include sites
not in spider pool, e.g., sites providing domain regis-
tration information and fake search engines which copy
search results from other search engines 13. Such irrel-
evant sites have to be excluded, otherwise the iterations
will be inaccurate and may not even converge, but using
straightforward filtering metrics like domain ranking and
URL patterns are not effective through our testing.

B Classifications of SEO domains
We identified three types of methods of linking cus-
tomer’s content to SEO pages. They are listed below:

1. Through iframe. Instead of pointing to customer’s
site, the SEO page directly encloses the customer’s
page in an HTML iframe. It leverages JavaScript
API document.write to inject the iframe, which
occupies the whole screen when the user lands on
the site. It could accumulate more traffic towards
customer’s site when visitors happen to land on
SEO page.

2. Through hyperlink. The hyperlink pointing to cus-
tomer’s site or containing customer’s message is
displayed in the SEO page. This type is also used in
SSP we infiltrated.

3. Through redirection. For this type, a visit to
SEO page using certain user-agent string (e.g.,
Opera browser) is immediately redirected to cus-
tomer’s site through HTTP 302 redirect. In fact,
it uses JavaScript code to assign customer’s URL
to window.top.location.href and HTML meta
refresh tag to redirect visitor’s browser. Likewise,

13The purpose of setting up such fake search engines is not yet clear.
We suspect they are used for click fraud [29].

customer’s content can be directly pushed to visi-
tor’s browser.

Table 9: QQ Number (anonyimzed) identified for message
promotion.

NO. QQ Number Topic #URL
1 53*95*1 Sex 156,306
2 34*06*58* Drugs 261,135
3 37*40*42* Sex 225,413
4 41*88*10* Drugs 186,370
5 51*89*17* Drugs, Sex 224,310
6 51*45*63* Drugs, Sex 155,459
7 63*11*95* Drugs, Sex 150,176
8 71*40*27* Sex 225,655
9 76*26*01* Sex 222,864

10 77*72*10* Drugs, Sex 224,476
11 79*43*07* Sex 225,000
12 10*36*03*3 Sex 5,986
13 10*33*91*1 Drugs, Sex 23,944
14 10*38*34*5 Drugs, Sex 17,267
15 11*07*07*2 Drugs, Sex 19,405
16 11*35*39*2 Sex 19,883
17 11*58*92*2 Sex 16,393
18 14*14*38*6 Gambling, Sex 6,906
19 15*53*65*8 SEO 5,339
20 19*82*12*3 Gambling, Sex 6,644
21 24*50*13*5 Sex 24,949
22 24*92*74*4 Gambling 24,736
23 25*17*02*5 Gambling, Sex 6,495

Total - - 2,435,111

C Topics of Customer Sites
The 930 customer sites are classified under 7 categories
below:

1. Sales and Services. We find industrial equipments
and products, like elevator and seamless pipe, are
sold on the customers’ sites. Services of gray areas
are also provided, like private detective and empty
invoices.

2. Gambling. It includes sites for online casino and
sports betting.

3. Surrogacy. The sites provide channels for infertile
parents to find women willing to carry pregnancy.

4. News. The sites serve as news portals about local
events.

5. Sex. Some of the sites host adult content like porn
video and photos, while others list contacts of affil-
iated prostitutes or their agents.

6. Games. Online games developed by less known
companies are provided. In addition, some sites
provide information about the unauthorized servers
for big-brand games, like The Legend of Mir [1],
which can be connected to play the same game for
free or less fees.

7. Hospitals and Drugs. We find the sites in this cat-
egory introduce hospitals which do not have valid
licenses. Besides, illegal drugs, like hallucinogen,
are sold in some sites.

17

262 25th USENIX Security Symposium USENIX Association

Table 10: Percentage of spider pool domains shown in search result of long-tail keywords.

Keyword Type Google Baidu
深圳福田外围商务模特报价 Sex no search result 80%

怎么联系深圳罗湖外围模特微信 Sex 10% no search result
怎么联系深圳罗湖兼职模特 Sex no search result 100%
深圳龙岗高端外围大概多少钱 Sex 10% 90%
深圳福田找高端外围女多少钱 Sex 20% 100%
深圳哪里有平面模特外围资源 Sex no search result 100%
深圳兼职女外围经济人电话 Sex 70% 100%

深圳罗湖美空高端商务模特经济人微信号 Sex no keyword 100%
深圳福田兼职女在哪有 Sex no search result 100%

深圳福田哪里找美女兼职微信 Sex no search result 100%
深圳找白领兼职价格 Sex no keyword 100%

深圳南山小姐一夜多少钱 Sex 100% 100%
深圳龙岗哪里能找到兼职模特 Sex 10% 90%
安眠镇定药哪里买什么价钱 Medicine no keyword 25%
日本兴奋剂怎么在网上买 Medicine no keyword 17.5%
男性催情药怎么买价格多少 Medicine no keyword 20%
去哪买喷雾型迷幻药 Medicine no keyword 20%

金阳县哪里买真的拍肩迷药 Medicine no keyword 37.5%
龙岩市安定片怎么购买 Medicine no keyword 30%
铜川哪里有迷情水卖的 Medicine 70% 22.5%
故城县三挫仑哪里买到 Medicine no keyword 45%
湘乡市网上哪买迷倒药 Medicine no keyword 30%
湛江迷幻药水哪出售 Medicine no keyword 25%

海南省三亚市哪里有汽枪买 Firearms sales 37.5% 10%
云南省楚雄市哪里有汽枪买 Firearms sales 32.5% 15%

哪里有麻醉枪买 Firearms sales 42.5% no keyword
仿真手枪哪里买得到 Firearms sales 37.5% no keyword
芜湖哪里有汽枪买 Firearms sales 52.5% no keyword
平管双猎枪 Firearms sales 30% no keyword

大连仿真枪团购 Firearms sales 17.5% 12.5%
打鸟枪消声器货到付款 Firearms sales 20% 2.5%

舒兰汽枪买卖 Firearms sales 50% no keyword
出售77手枪 Firearms sales 40% no keyword

陕西代办本科毕业证 Fake certificate 37.5% no keyword
金华市办理真实研究生本科毕业证 Fake certificate 32.5% no keyword
牡丹江办理英语四、六级证书 Fake certificate 70% no keyword
晋中办理英语四六级证书 Fake certificate 62.5% no keyword
徐州办理日语二级证书 Fake certificate 80% no keyword
茂名办自考本科文凭 Fake certificate 42.5% no keyword
大同代开发票 Fake certificate 27.5% 17.5%
岳阳开发票公司 Fake certificate 87.5% 32.5%

哪里有制作假本科文凭的 Fake certificate 35% 12.5%
办张假本科文凭多少钱 Fake certificate 40% 12.5%

D Classifications on Customer Messages
We analyze customer messages, extract QQ numbers
from customer messages, and sort them by the number
of associated URLs. The result is shown in Table 9.

E Impact on Search Engines
We sampled 43 long-tail keywords extracted from the
SEO pages crawled from the 21 spider pools and search
them in Google and Baidu. The result is shown in Ta-
ble10. We count the percentage of search results showing
spider pool domains. If no search results are returned,
we write “no search result”. If no spider domains are
presented in search results, we write “no keyword”.

18

USENIX Association 25th USENIX Security Symposium 263

A Comprehensive Measurement Study of Domain Generating Malware

Daniel Plohmann
Fraunhofer FKIE

Khaled Yakdan
University of Bonn

Michael Klatt
DomainTools

Johannes Bader

Elmar Gerhards-Padilla
Fraunhofer FKIE

Abstract

Recent years have seen extensive adoption of domain
generation algorithms (DGA) by modern botnets. The
main goal is to generate a large number of domain names
and then use a small subset for actual C&C communica-
tion. This makes DGAs very compelling for botmasters
to harden the infrastructure of their botnets and make it
resilient to blacklisting and attacks such as takedown ef-
forts. While early DGAs were used as a backup com-
munication mechanism, several new botnets use them
as their primary communication method, making it ex-
tremely important to study DGAs in detail.

In this paper, we perform a comprehensive measure-
ment study of the DGA landscape by analyzing 43 DGA-
based malware families and variants. We also present a
taxonomy for DGAs and use it to characterize and com-
pare the properties of the studied families. By reimple-
menting the algorithms, we pre-compute all possible do-
mains they generate, covering the majority of known and
active DGAs. Then, we study the registration status of
over 18 million DGA domains and show that correspond-
ing malware families and related campaigns can be reli-
ably identified by pre-computing future DGA domains.
We also give insights into botmasters’ strategies regard-
ing domain registration and identify several pitfalls in
previous takedown efforts of DGA-based botnets. We
will share the dataset for future research and will also
provide a web service to check domains for potential
DGA identity.

1 Introduction

Botnets are networks of malware-affected machines
(bots) that are remotely controlled by an adversary (bot-
master) through a command and control (C&C) com-
munication channel. Botnets have become the primary
means for cyber-criminals to carry out their malicious
activities, such as launching denial-of-service attacks,

sending spam, and stealing personal data. Recent studies
have shown that some botnets consist of more than a mil-
lion bots [40], illustrating the magnitude of their threat.

Law enforcement and security researchers often try to
disrupt active botnets by performing takedown attempts.
The main target of these attacks is the C&C communica-
tion infrastructure of the botnet. A prominent example of
these attacks is sinkholing, where all bots are redirected
to an attacker-controlled machine called a sinkhole. In
consequence, the bots will be prevented from communi-
cating with the original C&C servers. As a response to
these efforts, botmasters have started inventing new tech-
niques to protect the infrastructure of their botnets. An
important approach that has gained wide popularity in
recent years is the use of domain generation algorithms.

A domain generation algorithm (DGA) is used to dy-
namically generate a large number of seemingly random
domain names and then selecting a small subset of these
domains for C&C communication. The generated do-
mains are computed based on a given seed, which can
consist of numeric constants, the current date/time, or
even Twitter trends. The seed serves as a shared secret
between botmasters and the bots to compute shared ren-
dezvous points. By constantly changing the used do-
mains, detection approaches that rely on static domain
blacklists are rendered ineffective. Moreover, by dy-
namically generating domain names, botmasters do not
have to include hard-coded domain names in their mal-
ware binaries, complicating the extraction of this infor-
mation. Also, making the generated domains dependent
on time lessens the value of domains extracted from dy-
namic malware analysis systems since different domains
will be observed at different time points. Another ad-
vantage of using short-lived domains that are registered
shortly before they become valid is evading domain rep-
utation services.

The use of DGAs creates a highly asymmetric situa-
tion between attackers (botmasters) and defenders (secu-
rity researchers and law enforcement). Botmasters need

1

264 25th USENIX Security Symposium USENIX Association

access to a single domain to control or migrate their bots
while defenders need to control all of the domains to en-
sure a successful takedown. With more than 1000 top-
level domains (TLDs) [9] to choose from, it is easy for an
attacker to create a global spread of responsibility for do-
mains, forcing the defenders into additional coordination
and cooperation efforts. For example, the DGA of the
infamous Conficker botnet (version C) generated 50,000
domain names per day, which spread out over 113 TLDs.
This required global cooperative efforts of 30 different
organizations including ICANN [2] to contain the threat.

In this work we perform a comprehensive measure-
ment study of the DGA landscape by analyzing 43 DGA-
based malware families and variants. Our analysis is
based on reverse-engineering the DGAs of these fami-
lies. We propose a taxonomy to characterize the main
aspects of DGAs and use it to describe and compare
the studied DGAs. We furthermore reimplemented all
of these DGAs and computed all their possible outputs
based on a set of 253 seeds used in previous and ongo-
ing malicious campaigns. We then used this set to iden-
tify DGA-generated domains in a set of 9 billion WHOIS
records collected over the last 14 years. We analyze the
registration status of these domains and their ownership
changes, which often indicates transitioning from a mali-
cious into a sinkholed domain. This enables us to profile
the registration behaviour of both botmasters and sink-
hole operators and investigate in detail the lifetime of
DGA domains.

To the best of our knowledge, our work reflects the
first systematic study of the DGA landscape as employed
by modern botnets. Security researchers have previously
examined DGAs and proposed approaches to detect and
cluster DGA-based malware [13, 18, 43, 54]. Our study
is instead based on an in-depth analysis of the DGAs in
a bottom-up manner, by reimplementing the algorithms
and enumerating the complete set of domains they gen-
erate, enabling us to have a ground truth about DGA-
generated domains with no false positives.

In summary, we make the following contributions:

• We propose a taxonomy for DGAs to characterize
and compare their properties.

• We analyze the DGAs of 43 malware family and
variants. Using 253 identified seeds, we enumerate
all possible domains generated by those algorithms,
covering the majority of known and active DGAs.

• We study the registration status of 18 million DGA-
generated domains covering a period of 8 years and
show that corresponding malware families and re-
lated campaigns can be reliably identified by pre-
computing future DGA domains.

• We analyze the strategies of both botmasters and
sinkholers with regard to domain registration and

identify several pitfalls in previous takedown efforts
of DGA-based botnets.

• We share the dataset for future research and pro-
vide a web service called DGArchive [38] to check
whether a queried domain originates from a DGA.

2 A DGA Taxonomy

In this section, we propose a taxonomy for DGAs to char-
acterize their properties and enable a comparison. To
model the entire spectrum of different properties, we pro-
pose two features designed to capture the different as-
pects of a domain generation algorithm. Both features
are then combined in a single taxonomy that classifies
DGAs into classes.

2.1 Seed Source
The seed serves as a shared secret required for the cal-
culation of generated domains, also referred to by the
term Algorithmically-Generated Domains (AGD) [54].
It is the aggregated set of parameters required for the ex-
ecution of a domain generation algorithm. Typical pa-
rameters include numerical constants (e.g., length of do-
mains or seeds for pseudo random number generators) or
strings (e.g., the alphabet or the set of possible TLDs).

Two properties of seeding have superior significance
to characterize a DGA (cp. Barabosch et al.[16]):

Time dependence means that the DGA incorporates
a time source (e.g. the system time of the compromised
host or the date field in a HTTP response) for calculation
of AGDs. In consequence, generated domains will have
a validity period only during which these domains are
queried by the compromised system.

Determinism addresses the observability and avail-
ability of parameters. For the majority of known DGAs,
all parameters required for DGA execution are known to
a degree that all possible domains can be calculated. Two
DGAs use temporal non-determinism to disallow arbi-
trary prediction of future AGDs by using unpredictable
but publicly accessible data for seeding. The malware
family Bedep [44] makes use of foreign exchange refer-
ence rates published daily by the European Central Bank
while a later variant of Torpig [50] used Twitter trends
for seeding. In both cases, this only leads to attack-
ers and defenders having to compete for the registration
of domains in each active time window once the unpre-
dictable data used for seeding becomes available. How-
ever, it does not prevent historic analysis, as the seeding
data and thus generated domains can still be collected
over time. Another kind of non-determinism has been
observed by Symantec [45]. Their analysis of Jiripbot
revealed that the malware exfiltrates a set of system prop-
erties including MAC address and hard drive volume ID

2

USENIX Association 25th USENIX Security Symposium 265

to make it available to the attacker to be used in a DGA
seed. In this case, the system information is consid-
ered non-deterministic to the attacker prior to compro-
mise and also never publicly observable.

Time-dependence and determinism allow the follow-
ing four combinations: time-independent and determin-
istic (TID), time-dependent and deterministic (TDD),
time-dependent and non-deterministic (TDN), time-
independent and non-deterministic (TIN). In our dataset,
we have only observed DGAs using the first three classes
of seeding properties.

2.2 Generation Schemes

Apart from the characteristics of seeding, 4 different gen-
eration schemes emerged during our analysis.

Arithmetic-based DGAs calculate a sequence of values
that either have a direct ASCII representation usable for a
domain name or designate an offset in one or more hard-
coded arrays, constituting the alphabet of the DGA. They
are the most common type of DGA.

Hash-based DGAs use the hexdigest representation of
a hash to produce an AGD. We identified DGAs using
MD5 and SHA256 to generate domains.

Wordlist-based DGAs will concatenate a sequence of
words from one or more wordlists, resulting in less
randomly appealing and thus more camouflaging do-
mains. These wordlists are either directly embedded in
the malware binary or obtained from a publicly accessi-
ble source.

Permutation-based DGAs derive all possible AGDs
through permutation of an initial domain name.

We abbreviate the generation scheme with the respec-
tive starting letter: A, H, W, or P. As part of any of
the above-mentioned generation schemes, some DGAs
leverage pseudo-random number generators (PRNGs) to
generate domains. These range from implementing own
PRNGs to the use of well-known techniques such as lin-
ear congruential generators (LCGs) [36].

2.3 DGA Types

As DGA type, we consider the combination of seed-
ing properties and generation scheme, denominated by
the combined abbreviations, e.g. “TID-A” for a time-
independent, deterministic DGA using a arithmetic-
based domain generation scheme. Of 16 possible com-
binations, we have only observed 6 types being used by
the 43 DGAs in our dataset: TDD-A (20), TID-A (16),
TDD-W (3), TDD-H (2), TDN-A (1), TID-P (1).

Alexa Filter

DGA Filter

Filtering

input
domains

DGA Score

Detectors

Identification

Verification

Generation

Enumeration

Known AGDs

new DGA

new
see

d

update AGDs

Figure 1: DGA collection approach.

3 DGA-Malware Dataset

In this section, we describe how we identified and col-
lected malware samples that employ a DGA. Then, we
describe our efforts to reverse-engineer the algorithms,
reimplementing and evaluating their implementation.

3.1 Identifying DGA-based Malware

The first step of our study was to collect a representa-
tive set of DGA-based malware families. To this end, we
developed a system to automatically identify potentially
new DGAs by analyzing a set of domain names gener-
ated by a given malware sample. This helps us to min-
imize the set of malware samples we need to manually
reverse-engineer, and thus focus our efforts on samples
that are likely to implement new DGAs. A high-level
overview of the system is presented in Figure 1. First,
we filter out known AGDs and benign domains. Second,
we identify domains that are generated by a previously
known DGA but with a new seed, and domains poten-
tially generated by new DGAs. Third, if a new DGA or
a new seed is identified, we manually reverse-engineer
the corresponding sample, extract the seed and the algo-
rithm, and compute the set of domains it generates. In
the following, we discuss these steps in detail.

Filtering. We first filter out known benign and popular
domains by comparing them against the first 10,000 en-
tries of the Alexa list of top-ranked domain names [10].
Second, we filter out known AGDs by comparing the in-
put domains against our current collection of enumerated
AGDs. A good starting point for collecting DGA-based
malware samples are malware analysis reports and blogs.
Using these as sources and based on our experience, we
identified an initial set of 22 families using DGAs. In
9 of these cases, we already found a reimplementation
of the DGA that we only had to verify. This enables us
to compute an initial set of domains to use in the DGA
filter.

3

266 25th USENIX Security Symposium USENIX Association

Identification. In this step we identify samples that im-
plement a previously known DGA but use new seeds, and
potentially new DGAs. To that end, we use a set of detec-
tors implemented as regular expressions to quickly de-
cide for a given domain if it matches the expected output
of one of these known DGAs. The regular expressions
catch major characteristics such as minimum and maxi-
mum length of the generated part (Lmin and Lmax), DGA
alphabet Σ, and the set of known TLDs. If a majority of
input domains is matched by the same pattern, we mark
the sample as using a known DGA with new seed.

If the detectors produce an inconsistent or insufficient
result, we compute a collective DGA score for the in-
put domains to measure the likelihood of these domains
being generated by a DGA. This score is based on fea-
tures such as n-gram frequency, entropy, and length anal-
ysis. If available, we further increase the score in case of
an NX domain result. This approach relies on previous
work on DGAs [13, 18, 34, 43, 54]. If the score exceeds
a threshold derived through prior experiments and man-
ual verification, we mark the sample as a candidate for
using a new unknown DGA.

DGA enumeration. Whenever the system identi-
fies a potentially new DGA, we manually verified this
by reverse-engineering the corresponding sample. If
present, we then extracted the domain generation logic
from the binary, reimplemented it, identified the used
seed, and finally computed all domains generated by the
algorithm. Moreover, by analyzing the algorithm we up-
dated the set of detectors to identify future samples that
use the same algorithm with different seeds.

As input to our system, we used a special sandbox feed
that was kindly provided by the Shadowserver Foun-
dation, consisting of timestamp, malware sample hash,
DNS query, and DNS response. This feed contains a
mix of both newly observed malware samples and older
samples undergoing re-processing, dating back to at least
2009. This re-processing increases the likelihood to en-
counter unknown seeds and families that may no longer
be active. Taking data of 3 months starting in May 2015
from this feed, we examined a total of 1,235,443 sandbox
runs, performing a total of 15,660,256 DNS queries to-
wards 959,607 unique domain names. Based on the data
of the Shadowserver feed, our system enabled us to iden-
tify, analyze, and re-implement another 21 DGAs and the
majority of seeds listed in Table 3.

3.2 Reimplementing DGAs
To ensure our reimplementation is correct, we compared
its output against the domain queries issued by the re-
spective malware sample when executed in a sandbox.
For each family, the reverse-engineering and reimple-
mentation of the corresponding DGA took around one

day. After analyzing the algorithm, we extracted the
DGA seed from the binary. In many cases, we fully au-
tomated the process of seed extraction, which enabled
us to easily extract seeds from new binaries of the same
family. After unpacking the malware binaries, we rarely
encountered further protection layers of the original un-
packed code, which allowed considerable analysis speed.
Nymaim and Suppobox samples are heavily obfuscated
and employ family-specific code obfuscations. To handle
these cases, we analyzed the obfuscation techniques and
implemented custom deobfuscators to automatically de-
obfuscate these samples. Pykspa 2 was an exceptionally
difficult case. Instead of reverse-engineering the seed
derivation function, it was much easier to instrument it
in order to generate all possible seed values that we later
used in the reimplementation of the DGA.

The manual analysis of samples previously identified
by the system helped us to eliminate several samples that
would otherwise be false positives. For example, during
the evaluations of the sandbox DNS feed, we came across
many samples whose DNS queries appeared like typical
AGDs but were in fact hardcoded domains as verified
through our reverse-engineering. Furthermore, we only
consider DGAs in which the AGDs are actually used as
valid, potential C&C endpoints and not as distractions
like in the following cases. For instance, we found an
early variant of Sality [1] prepending dynamically gen-
erated third-level parts to hardcoded domains, which is
the earliest hint to DGA-like behavior we were able to
identify. Another example is the Zeus-derivate Citadel,
which produces unused decoy AGDs when having de-
tected a virtualized environment [21].

We are aware that more malware families than listed
in this paper are potentially using DGAs. However, we
believe that the given data set provides a sufficient basis
to draw meaningful conclusions on a majority of effects
caused by domain generation algorithms.

4 Insights into the DGA Landscape

In this section, we present a comprehensive overview of
the 43 DGA implementations and their 253 seeds that
we collected. We use our taxonomy to characterize and
compare the studied DGAs. More specifically, we com-
pare domain structure, validity periods, and generation
schemes. We also study how random the generated do-
mains are and the priority of the DGA as C&C commu-
nication mechanism. Table 1 presents an overview of the
different DGA features. The table includes different vari-
ants of some families with different DGAs. This is the
case for Gameover Zeus, Murofet, Pushdo, and Pykspa.

4

USENIX Association 25th USENIX Security Symposium 267

Name Reference DGA Type C2prio Valid |Dcycle| Lmin Lmax TLDs |Σ| Hrel

Bamital [37] TDD-H (MD5) 1/1 1d 104 32 32 4 16 1.000
Banjori [14] TID-A 2/2* ∞ 2,196-15,373 11 26 1 26 0.948
Bedep [44] TDN-A 1/1 7d 22-28 12 18 1 36 0.944
Conficker [25] TDD-A 2/2 1d 250-50,000 4 11 123 26 1.000
Corebot [14] TDD-A (NR LCG) 2/2 1d 40 12 23 1 34 1.000
CryptoLocker [3] TDD-A 1/1 1d 1,000 12 15 7 25 1.000
DirCrypt [14] TID-A (PM LCG) 1/1 ∞ 30 8 20 1 26 0.999
Dyre [5] TDD-H (SHA256) 3/3 1d 1,000 34 34 8 36 0.805
Feodo - TID-A (NR LCG) 1/1 ∞ 64 16 18 1 26 0.993
Fobber [47] TID-A (own LCG) 1/1 ∞ 1,000 10 17 2 26 1.000
Gameover DGA [14] TDD-A (MD5) 1/1 1d 1,000/10,000 20 28 4 36 0.983
Gameover P2P [11] TDD-A (MD5) 2/2 1-7d 1,000 11 32 6 26 1.000
Geodo [30] TDD-A 1/1 900s time-based 16 16 1 25 1.000
Gootkit [48] TDD-A (PM LCG) 1/1 12h 1 16 16 1 26 0.997
Gozi [4] TDD-W (NR LCG) 1/1 1-3mo 5-80 12 24 12 26 0.883
Hesperbot [27] TID-A 2/2 ∞ 50-64 8 24 1 26 0.997
Kraken [41] TID-A 1/1 ∞ 300 6 11 4 26 0.998
Matsnu [49] TDD-W 2/2* 3d 3 12 24 1 27 0.895
Mewsei [14] TDD-A (MS LCG) 1/1 16d 64 8 15 1 23 0.939
Murofet 1 [14] TDD-A (MD5) 1/1 1d 1,020 8 16 5 26 0.965
Murofet 2 [14] TDD-A (MD5) 1/1 1-7d 1,000 32 47 6 36 0.994
Necurs [14] TDD-A 2/2 4d 2,048 7 21 43 25 1.000
Nymaim [15] TDD-A (Xorshift) 2/2* 1d 30 6 11 8 26 1.000
Pushdo [6] TDD-A (MD5) 2/2 60d 30 8 12 2 26 0.962
Pushdo TID - TID-A (NR LCG) 1/1 ∞ 6,000 10 10 5 26 1.000
Pykspa 1 [14] TDD-A 1/1 2d 5,000 6 15 6 26 0.963
Pykspa 2 [14] TDD-A (own LCG) 1/1 1-20d 1,000 6 12 4 26 0.998
QakBot - TDD-A (MT, CRC32) 1/1 8-11d 5,000 8 25 5 26 1.000
Ramdo [29] TID-A 1/1 ∞ 1,000 16 16 1 13 1.000
Ramnit [46] TID-A (PM LCG) 2/2 ∞ 1,000 8 19 1 25 1.000
Ranbyus [14] TDD-A 1/1 28-31d 40 14 14 8 25 1.000
Redyms [32] TID-A 1/1 ∞ 34 9 15 1 27 0.990
Rovnix - TID-A (MS LCG) 2/3 ∞ 10,000 18 18 5 34 0.999
Shifu [24] TID-A (own LCG) 2/2 ∞ 777 7 7 1 25 1.000
Simda [14] TID-A 1/1 ∞ 1,000 5 11 4 26 0.965
Suppobox [22] TDD-W 1/1 12h 168 8 26 1 26 0.889
Szribi [52] TDD-A 2/2 1-3d 4 8 8 1 15 0.949
Tempedreve [7] TID-A (own LCG) 1/1 ∞ 204 7 11 4 26 0.996
TinyBanker [14] TID-A 2/2* ∞ 100-4,000 12 12 15 25 0.987
Torpig [50] TDD-A 1/1 1d 3 7 9 3 30 0.937
UrlZone [14] TID-A 2/2* ∞ 2,000 9 15 2 32 1.000
Virut [20] TDD-A (Delpi LCG) 2/2 1d 100*100 6 6 1 26 0.984
VolatileCedar [17] TID-P 2/2 ∞ 170 14 14 1 9 0.959

Table 1: Overview of studied DGA implementation characteristics. Type according to our taxonomy. C2prio lists the priority of
DGA among all C&C rendezvous mechanisms found (with * indicating hardcoded domains being redundant or used as part of
seed). Valid describes the duration and Dcycle the number of domains generated per period. Lmin,max denotes extrema of domain
length, TLDs is a combined value over all seeds of this DGA. Σ is the alphabet used in AGDs, Hrel normalized entropy.

4.1 Domain Structure

Alphabet. We first study the alphabet, denoted by Σ,
used by the DGAs to generate domains. The alphabets
contain between 9 and 36 characters. While some DGAs
use intentionally short alphabets, the majority of DGAs
with small alphabets seems to result from flawed imple-
mentations. An example of the first case is VolatileCedar,
which generates domains by permuting the second-level
part of a hard-coded domain (dotnetexplorer.net).
Ramdo’s DGA is an example of a buggy implementation.
Only letters with odd indexes are chosen when building
the domain name (i.e., a, c, e, ...), resulting in an
alphabet with only 13 letters. Hash-based DGAs have
alphabets of 16 characters consisting of digits and letters
from a to f.

Many DGAs use a hard-coded array of characters from
which is chosen by an index computed iteratively. A

common bug in these DGAs are off-by-one errors, where
one or more characters are never chosen. For example,
Geodo omits the last character of its alphabet, thus gen-
erated domains never contain a z. Other DGAs with this
bug include CryptoLocker, Necurs, Ramnit, Ranbyus,
Shifu, TinyBanker, and Torpig. They all miss the last
character in their alphabet. This type of error is worse for
DGAs that use multiple separate arrays to choose char-
acters from. For example, Mewsei uses two arrays, one
for vowels and one for consonants (intentionally or not,
missing the letter j). An off-by-one bug results in one
character in each array to be missed, reducing the effec-
tive alphabet size by two. Rovnix and Corebot use two
separate arrays of letters and digits and suffer from the
same malfunction, causing their AGDs to never contain
a z or 9. We found this bug in 11 of the studied DGAs.

5

268 25th USENIX Security Symposium USENIX Association

We also observed truncation errors, where the alpha-
bet is truncated into a smaller array that is used for com-
puting the domains. For example, Szribi truncates its 26
intended hard-coded letters to only 15. The same error
occurs in Urlzone, reducing the possible 35 characters to
only 32. Torpig suffers from both bugs: Torpig’s ran-
domness is flawed in a way that only 30 out of 34 possi-
ble (36 minus 2 resulting from the off-by-one error) are
reachable. The largest alphabet of 36 symbols is used
Dyre, Gameover DGA, and Murofet 2.

AGD length. The length of generated domains ranges
from 4 to 47 with median minimum length 9 and median
maximum length 16. 14 DGAs produce AGDs that all
have identical length. In three cases (Banjori, Simda, and
Torpig), we found multiple length values across seeds but
all AGDs of one seed have the same length.

Domains levels. Only three families (Corebot, Kraken,
and Mewsei) generate third-level domains, using one or
more Dynamic DNS providers. All remaining DGAs
only generate a second-level domain that is then concate-
nated with a top-level part. Note that we consider con-
structs as co.uk or com.tw as top-level part since they
are managed by a single registry. Conficker and Necurs
make extensive use of TLDs with 123 and 43 TLDs re-
spectively. These cases strikingly illustrate the need of
global cooperation to successfully sinkhole some bot-
nets. This also holds for botnets with DGAs that use a
smaller set of TLDs. Table 2 shows the most popular
TLDs used by the studied DGAs and identified seeds.
The 7 most common TLDs are the same in both list-
ings and they only differ in their order. com and net

are the two top TLDs. We observe a trend to use popu-
lar TLDs with no regional reference, as com and net to-
gether make up about 45% of all registered domains [8].
We assume that attackers want their generated domains
to blend in well with benign traffic.

per DGAs per Seeds
TLD Occurrences TLD Occurrences

com 28 com 178
net 21 net 82
org 16 ru 56
info 15 biz 40
biz 13 in 40
ru 10 info 32
in 6 org 29
cc 5 pw 26
su 5 su 21
eu 4 cc 18

Table 2: Popularity of TLDs, both on for DGAs and seeds.

4.2 Domain Validity Periods

More than half of the studied DGAs (24/43) are time-
dependent, meaning that the generated domains are only

valid for a certain period of time. Most of these DGAs
(21/24) generate domains with disjunct validity periods.
That is, only a single set of domains is valid at each point
in time. The three exceptions are 1) Matsnu, which gen-
erates 3 domains which are each valid for 3 consecutive
days, meaning that there are 9 potential C&C domains at
a time; 2) Pushdo, which will generate domains relative
to a given date, starting 45 days in the past and up to 15
days in the future. With 30 domains per day, this gives
900 domains valid at a time; and 3) Suppobox, produc-
ing one AGD per 512 seconds, which is then valid for
the next 85 periods, totalling to 12 hours, 5 minutes, 20
seconds per AGD.

11 time-dependent DGAs generate domains that are
valid for one day. Other families increase their domain
validity by performing certain calculations on the date.
For example, both Gameover P2P and Murofet 2 round
the day of month down to the next lowest value of 1,
7, 14, 21, or 28, resulting in validity periods of variable
length (1-7 days). Qakbot employs a similar scheme but
uses different values for rounding (1, 11, and 21). The
domains generated by Szribi’s DGA [52] are valid for 1-
3 days. This variable period length appears to be a bug
since the DGA tries to round the day to the nearest third
day (i.e., Julian days).

Both versions of Pykspa have unique characteris-
tics with regard to the validity of generated domains.
Pykspa 1 generates a list of 5000 domains every two
days, and the validity of each domain depends on its po-
sition in this list. The first 20 domains are generated at
random while the remaining 4,980 are chosen from two
static sets of domains, alternating between these sets ev-
ery two days. This is caused by the DGA raising the ini-
tial 32-bit seed to power of 2 for each new computed do-
main, thus drastically reducing the randomness of com-
puted domains. In order to increase resilience to detec-
tion, Pykspa 2 generates fake domains with shorter va-
lidity periods than the real ones. While 200 real domains
are generated that are valid for 20 days, the DGA gen-
erates 800 fake domains, each of which is only valid for
one day.

Geodo has a unique generation strategy with regard
to validity periods among all time-dependant DGAs. It
queries the current date from the response of an HTTP re-
quest to a Microsoft website. Then, it will consequently
generate one AGD every 900 seconds starting from a
hard-coded start date until this current date is reached.

4.3 Generation Schemes

Arithmetic-based DGAs are by far the most common
generation scheme (37/43). Among these, 26 DGAs
directly compute the ASCII codes of the characters to
be used in the domain, while 11 DGAs compute an in-

6

USENIX Association 25th USENIX Security Symposium 269

dex that is used to select characters from hard-coded ar-
rays representing the used alphabet. Three DGAs are
wordlist-based: Matsnu, Suppobox, and Gozi. Mat-
snu and Suppobox embed the list of words in their
corresponding malware binary. On the other hand,
Gozi extracts its wordlist from a publicly available text
file, which is very unlikely to be changed in the fu-
ture. For example, it uses the United States Decla-
ration of Independence to generate domains such as
amongpeaceknownlife.com. Matsnu and Gozi ran-
domly combine words until a certain length is reached,
while Suppobox only combines 2 of its 384 included
words and adds .net as TLD.

The two families Bamital and Dyre are hash-based and
use the hexdigest output of hashing functions MD5 and
SHA256 over date and domain index as input parame-
ters. VolatileCedar is the only permutation-based family,
which can produce 170 possible permutations of the ini-
tial domain. It is worth mentioning that Banjori, Tiny-
Banker, Urlzone and VolatileCedar use a domain muta-
tion scheme where either a seed or a previously gener-
ated domain is used as input for the calculation of the
subsequent domain.

4.4 Domain Randomness

Given that various DGAs make use of PRNGs in their
domain generation schemes, we analyzed the random-
ness of generated domains. To this end, for each DGA,
we compute the global string by concatenating all gener-
ated parts of the domains. Then we calculate the Shan-
non entropy of this string. This gives a global indicator
for the randomness of the algorithm. Finally, we com-
pute the relative entropy, denoted by Hrel , by dividing
the calculated value with the maximum entropy. This
enables us to compare the relative entropy of different
DGAs. For simplicity, we use the term entropy to refer
to Hrel .

We make the following observations. All wordlist-
DGAs have a significantly lower entropy (Hrel < 0.9),
which is expected since they combine complete words
whose characters are not uniformly distributed. How-
ever, the lowest entropy is observed in Dyre, a hash-
based DGA. While the SHA256 algorithm produces uni-
formly distributed characters, Dyre prepends an extra
character in the range [a-z] to the calculated hexdigest,
thus destroying the uniform distribution since the hexdi-
gest does not contain any letters in the range [g-z].

The low entropy (Hrel < 0.99) observed in other DGAs
is a result of specific implementation choices. We discuss
this in the following.
1) Multiple sub-alphabets. By splitting the alphabet
into multiple distinct lists and randomly drawing charac-
ters from these lists for different positions in the com-

puted domain name, some DGAs cause an imbalance on
the overall distribution of characters. This is the case for
Bedep, Gameover DGA, Mewsei, Pushdo, Simda, Tor-
pig, and Virut. Redyms uses a hyphen in every AGD.
2) Imperfect PRNG. We observed several causes of im-
perfect PRNGs: first, some DGAs (Pykspa 1 and Szribi)
use their own self-designed PRNGs, which have imper-
fect randomness. Second, other DGAs (Murofet 1 and
TinyBanker) impose certain conditions on the output of
the used PRNGs, and thus cause an imbalance in the dis-
tribution of derived characters.
3) Partial modifications. Some DGAs compute the
next domain based on an initial domain name. This trans-
formation may impact the DGA entropy if it does not in-
troduce enough modifications in the initial domain seed.
An example of this category is Banjori, which only mod-
ifies the first four positions of a given hard-coded seed
domain.

It is worth mentioning that several DGAs use well-
known PRNG algorithms. Notably, almost a third of
the studied DGAs (14/43) use a linear congruential gen-
erator (LCG) [36] defined by the recurrence relation
Xn+1 = (aXn + c) mod m. By matching the used pa-
rameters a, c, and m against those of common LCGs,
we found that 10 DGAs use known LCG constants: 4
DGAs use the implementation described in the Numer-
ical Recipes book [39] (NR LCG), 3 DGAs use the
minimal standard implementation proposed by Park and
Miller [36] (PM LCG), 2 DGAs use the Microsoft Visual
C library (MS LCG), and one DGA uses the Delphi LCG.
The remaining 4 LCGs use self-chosen constants. Other
uses of well-known PNRGs we identified are Mersenne
Twister [33] and Xorshift [31]. Five DGAs use MD5 for
initializing their own PRNG and one uses the checksum
CRC32.

4.5 Command & Control Priority

More than half of the studied botnets (23/43) use their
DGA as the only C&C rendezvous mechanism. More-
over, although 5 other families (identified by a star in Ta-
ble 1) first try hard-coded domains before turning to their
DGAs, the DGAs can also be considered as the primary
communication mechanism. Banjori, TinyBanker, and
UrlZone first try a single hard-coded domain that is later
used in computing the initial seed of the corresponding
DGA. Matsnu contains multiple prioritized hard-coded
domains. However, the same domains are also gener-
ated by its DGA at some point in time. Nymaim con-
tains a legacy primary hard-coded domain that is long
mitigated and probably disregarded by the botmasters,
meaning that it mainly relies on its DGA instead.

Other families use their DGAs as a backup mecha-
nism when their primary communication method (usu-

7

270 25th USENIX Security Symposium USENIX Association

ally hard-coded domains) fails. For example, Rovnix
tries to connect to one of its hard-coded domains. If this
fails, it resorts to its DGA before finally trying a connec-
tion via Invisible Internet Project (I2P). The remaining
families use their DGAs as a last resort to reach the C&C
server.

This clearly shows the prevalence of DGAs in modern
botnets. For this reason, we believe that DGAs should be
no longer perceived mainly as a backup mechanism but
instead as a primary C&C concept.

5 DGA Domain Usage

In this section, we present the results of our analysis on
how DGAs are actually used in practice. We base our
analysis on WHOIS data for the last 14 years, and give
insights into the family activity periods, registration sta-
tus of DGA domains, and botmaster registration strate-
gies. We also analyze the mitigation response time.

5.1 WHOIS Dataset

We based our analysis on the DomainTools WHOIS
dataset, which contains over 9 billion WHOIS records
collected over the last 14 years [19]. Based on our reim-
plementations and the available seeds, we computed all
possible domains generated by the studied 43 DGAs. We
provided the computed domains to DomainTools, and
they kindly provided us with WHOIS records for DGA
domains they found in their dataset. The data provided
by DomainTools for this study was compiled on the 22nd
September of 2015. This enabled us to identify 303,165
DGA-related WHOIS records for 115,387 domains.

A special care had to be given to time-dependant
DGAs, which use the date information for computing
their domains. To ensure a good coverage and minimize
the set of DGA domains we miss, we computed all do-
mains that cover a time period of one year before any
publicly known starting date until 31st December 2015
(three months after the last WHOIS record in the Do-
mainTools dataset). This end date provides around 3
months of lookahead, detecting domains that are regis-
tered for some time before being actually used.

These WHOIS records contain the following fields
• Date of the WHOIS record
• Date of updates to the WHOIS record
• Dates for domain creation and expiration
• Registrar name
• Registrant name and e-mail address
• Nameservers registered in WHOIS
This enabled us to infer the following information:

1) Domain first registration. This is based on the date of
the WHOIS record and date of domain creation.

2) Start of botnet activity. The first record for any do-
main implicitly indicates that the domain is registered
and helps to estimate when the corresponding malware
family started its operation.
3) Changes in domain ownership. The date of updates
to a WHOIS record often corresponds to a change in re-
sponsibility for a domain. This can be verified by ac-
companying changes to the registrar, registrant, and reg-
istered nameserver fields. This allows us to derive when
a potential C&C domain has been mitigated (e.g., sink-
holed), by observing changes of the WHOIS record from
a non-sinkhole operator to a sinkhole operator. We iden-
tify 29 different organizations running sinkholes, but we
will not disclose further details about the features used to
detect sinkhole organizations to protect their operations.
4) Parked domains. The registrar, registrant, and regis-
tered nameserver fields convey information that we use
to identify parked domains in order to investigate how
common AGDs are held for the purpose of picking up
accidental traffic or reselling. In total, we identify 36
services offering domain parking or domain reselling.

Our dataset covers all but five of the studied families:
Conficker and Virut generate an exceedingly large num-
ber of domains, and were therefore not included in the
dataset provided to us. Corebot, Kraken, and Mewsei
use DDNS-based DGAs, and are thus not available in
the original DomainTools WHOIS dataset, which only
contains primary domain names but no subdomains. It
is noteworthy that non-deterministic seeding as used by
Bedep does not prevent retroactive analysis, as we are
still able to generate all domains by collecting the used
exchange rates over time.

5.2 Family Activity Periods

In this section, we analyze the period of time in which the
studied botnets were active and domains were registered
for malicious purposes. To this end, we first identify the
date of the first related record in our dataset, denoted by
Tf irst . In many cases, this is the first observed registration
overall. In cases where the data indicates collisions with
benign domains (cp. Section 5.4), we analyze records
from the first sinkhole event backwards. Then, we iden-
tify the time when the domains were either taken down
or they were registered last, denoted by Tlast . The de-
tailed activity periods for the studied botnets are shown
in Table 3. For families we did not have data for, their
respective Tf irst is estimated from public sources as men-
tioned before.

In case of Bamital, CryptoLocker, and Gameover P2P,
Tlast is the date of their takedown, marked by a †. For
Conficker, Tlast identifies the date on which the last
known Conficker variant deleted itself from compro-
mised systems [26]. A special case is Rovnix, for which

8

USENIX Association 25th USENIX Security Symposium 271

Name Tf irst Tlast |S| |Dgen| |Duniq| |Rall |
|Rall |
|Duniq |

|RP| |RM | |RS|

Kraken 2007-07* - 1 300 300 - - - - -
Torpig 2008-01 2011-06-22 2 17,610 17,610 139 0.79% 2 1 57
Szribi 2008-11 2011-06-22 1 4,396 2,949 54 1.83% 0 8 40
Conficker 2008-11* 2009-05-03† 3 129,807,750 125,118,625 - - - - -
Pushdo TID 2009-07 2012-04-06 1 6,000 6,000 245 4.08% 0 0 0
Pykspa 1 2009-10 2012-09-09 1 32,920 22,764 455 2.00% 12 0 49
Gozi 2010-01 2015-09-18 9 21,890 16,963 305 1.80% 48 4 143
Murofet 1 2010-08 2011-09-08 2 4,063,680 4,063,680 3,172 0.08% 0 50 369
Bamital 2010-11 2013-02-06† 1 197,600 197,600 8,340 4.22% 0 150 30 (7,891)
Nymaim 2011-06 2015-09-16 3 277,112 65,040 656 1.01% 70 17 388
Simda 2011-06 2014-11-06 12 13,000 11,528 379 3.29% 66 9 44
Ramnit 2011-06 2015-02-07 18 18,000 18,000 939 5.22% 0 126 372
Virut 2011-08* - 1 16,140,000 15,355,008 - - - - -
Murofet 2 2011-09 2011-12-20 1 262,000 262,000 559 0.21% 0 4 261
Gameover P2P 2011-09 2014-05-28† 1 262,000 262,000 74,755 28.53% 0 23 391 (72,713)
Feodo 2012-02 2012-10-06 3 192 192 110 57.29% 0 1 9
Gootkit 2012-06 2013-11-08 1 2,190 730 198 27.12% 0 0 4
Redyms 2012-12 2014-02-10 1 34 34 11 32.35% 0 2 2
Necurs 2013-01 2015-06-12 6 3,551,232 3,551,232 295 0.01% 10 0 158
CryptoLocker 2013-01 2014-05-30† 1 1,108,000 1,108,000 3,820 0.34% 0 341 240 (2,899)
Suppobox 2013-02 2015-09-20 3 545,169 98,304 11,338 11.53% 8,434 19 792
Banjori 2013-03 2013-09-10 30 434,556 421,390 683 0.16% 0 3 33
Pushdo 2013-03 2015-08-05 4 124,080 124,021 453 0.37% 3 0 54
Pykspa 2 2013-04 2013-10-01 2 775,400 775,342 1,927 0.25% 757 5 101
VolatileCedar 2013-04 2015-03-30 1 170 170 13 7.65% 0 0 7
DirCrypt 2013-07 2014-06-15 14 420 420 86 20.48% 0 13 21
Hesperbot 2013-07 2015-01-07 3 178 178 15 8.43% 0 1 10
Ramdo 2013-10 2014-05-03 3 3,000 3,000 47 1.57% 0 5 23
UrlZone 2013-11 2015-09-20 6 12,006 10,009 127 1.27% 0 24 34
QakBot 2013-12 2015-09-20 1 385,000 385,000 1,088 0.28% 0 61 35
Matsnu 2014-01 2015-09-20 2 3,375 3,346 610 18.23% 244 33 61
Dyre 2014-06 2015-08-19 1 592,000 592,000 850 0.14% 0 1 273
Gameover DGA 2014-07 2014-11-21 2 6,182,000 6,182,000 1,081 0.02% 0 14 549
TinyBanker 2014-08 2015-09-21 90 84,291 81,930 1,733 2.12% 0 272 326
Geodo 2014-10 2014-11-16 2 90,240 90,232 107 0.12% 0 0 39
Tempedreve 2014-10 2015-04-19 1 204 204 20 9.80% 0 0 13
Mewsei 2014-10* - 1 1,984 1,984 - - - - -
Fobber 2014-10 2015-07-01 2 2,000 2,000 13 0.65% 0 2 4
Ranbyus 2015-01 2015-08-10 7 105,840 64,400 98 0.15% 0 0 36
Rovnix 2015-01* - 1 10,000 10,000 1 0.01% 0 0 1
Bedep 2015-02 2015-09-20 4 3,906 3,806 654 17.18% 0 10 201
Corebot 2015-06* - 2 18,160 18,160 - - - - -
Shifu 2015-07 2015-09-10 2 1,554 1,554 11 0.71% 0 0 8

Aggregated - - 253 165,161,439 159,712,234 115,387 0.63% 9,646 1,199 5,177 (83,503)

Table 3: Overview of DGA usage characteristics. |S|: seeds known for this DGA. D: domains generated until 31.12.2015, R:
registered domains (|RP|: prior to Tf irst ; |RM |: turned into a sinkhole; |RS|: directly registered as sinkhole; in brackets: related to
botnet takedowns). Registration percentage based on Duniq∗ , thus considering only AGDs where registration data was available.

we only identified a single registration by a sinkhole op-
erator, and thus decided to leave Tlast open.

After identifying the starting date for each family
(Tf irst), we removed the AGDs we computed for ear-
lier points in time. This reduces the computed set to
165,161,439 AGDs in total, 159,712,234 of them being
unique across all DGAs. Additionally, we remove the
computed domains for the families not available in the
DomainTools dataset, leaving us with a set of 18,446,125
unique AGDs. We denote this set by Duniq∗ and use it for
all following examinations.

Having a closer look at Tf irst shows that although the
concept has been first used in 2007, more than half of the
analyzed DGAs (25/43) were introduced 2013 and later.
It seems like malware authors waited for early adopters
to gather experience with running DGA-based botnets
before trying it out themselves. Cases with short activ-

ity times indicate that some authors seemingly also only
experimented with DGAs. For example, while early ver-
sions of Geodo used hard-coded IP addresses for C&C
communication, one version with a DGA was used for
only about 6 weeks. After that, the botmasters returned
back to the old communication method.

Murofet 2 remained active for three months only, be-
fore its widespread successor Gameover P2P, which used
a very similar DGA, appeared. Gameover DGA, an-
other successor that appeared shortly after the takedown
of Gameover P2P, was active for only about 5 months.
Although binary diffing implies that it relies on the same
source code as Gameover P2P, it is uncertain whether it
was operated by same original author Slavik [42] or if it
was only used as a distracting maneuver.

We use Tlast to identify active families as of this writ-
ing. We consider a family to be active if its DGA gener-

9

272 25th USENIX Security Symposium USENIX Association

ated a domain that was used within the last month of the
time period covered by the WHOIS dataset. Based on
that, we identify 10 families: Gozi, Nymaim, Suppobox,
UrlZone, QakBot, Matsnu, Dyre, TinyBanker, Bedep,
and Shifu. This serves as a lower bound for estimating
active families since some do not use DGA as their pri-
mary C&C rendezvous mechanism.

5.3 Domain Registration Status
Out of the 18,446,125 unique generated AGDs, 115,079
were actually registered (0.62%). 72,37% of these regis-
tered AGDs correspond to sinkhole operators, while the
remaining 27,63% are non-takedown domains. We di-
vide the set of registered AGDs into four categories:
1) Pre-registered domains (30.25%). Domains that
have been registered before Tf irst . These domains were
usually registered long before the corresponding botnet
appeared, and are very likely benign.
2) Mitigated domains (3.76%). Domains that were
originally held by a non-sinkhole registrant but then
changed to a sinkhole operator, usually indicating that
the domain has been mitigated (Section 5.6).
3) Pure sinkhole domains (16.24%). Domains regis-
tered by a sinkhole operator from the start.
4) Remaining domains (49.75%). This set contains
domains that were registered between Tf irst and Tlast but
we were not able to reliably identify them as sinkholes,
or otherwise tell whether they are benign or malicious
(mostly due to the use of a WHOIS privacy service).
However, the number of benign domains (at least for
non-wordlist DGAs) is highly likely to be a minority,
given that few DGAs have pre-registered domains and
the common randomness and domain length produced by
most DGAs.

5.4 Domain Collisions
In order to evaluate if AGDs are a good feature to reli-
ably identify the corresponding botnet, we analyze col-
lisions between domains generated by different DGAs.
Out of the 43 DGAs, the two aggressive DGAs Virut
and Conficker have collisions among each other and with
Necurs, Nymaim, and Pykspa 2. More specifically, Virut
has 1791 collisions with Pykspa 2, 1316 with Conficker,
and 179 with Nymaim. Conficker has 11 collisions with
Pykspa 2, 4 with Necurs, and 1 with Nymaim. All of the
colliding domains are 5 to 6 characters long. Apart from
that, only Nymaim and Pykspa 2 have a single collision
since they both generate the AGD wttttf.net.

Next, we analyze collisions between DGA-generated
domains and benign domains. To this end, we use the
Alexa list [10] and compare it to the set of domains gen-
erated by each DGA. Again here, only a small num-

ber of collisions were found. Virut has 2507 collisions
with Alexa top million domains, which corresponds to
0,016% of its unique AGDs. For all other DGAs, we
only found 27 collisions with the Alexa list: 24 collisions
with wordlist-based DGAs (Suppobox: 21, Matsnu: 2,
Gozi: 1), and three collisions with Pykspa 2 domains that
are 6 character long.

We then investigated the collisions between DGA-
generated domains and domains that were already reg-
istered before the corresponding botnet appeared (before
Tf irst). As one would expect, the highest number of colli-
sions were observed with wordlist-based DGAs: 74.39%
of Suppobox AGDs and 40.0% of Matsnu AGDs col-
lide with already existing domains. In spite of being a
wordlist DGA, Gozi has a low number of collisions with
already registered domains. This is because the DGA
truncates, with a probability of 33%, a chosen word be-
fore appending it to the computed AGD. This creates
many domains that contain a broken word, making ac-
cidental registration far less likely. For the remaining
families, 856 of 928 (92.24%) pre-registered AGDs have
length 5 to 6, and everything longer is accidentally a
word (e.g. veterans.kz) or otherwise very pronounce-
able (e.g. kankanana.com, kandilmed.com).

These results clearly show that DGAs not based on
wordlists and generating domain names longer than 6
characters (which is the case for 34/43 DGAs) serve as a
reliable source to detect the corresponding botnet family.

5.5 Domain Registration Lookahead

A special property of AGDs from time-dependent DGAs
is, that they are only valid during certain periods of time.
In this section, we give insights into the domain reg-
istration lookahead for time-dependant DGAs, i.e., the
amount of time from registering the domain until the
point in time where it becomes valid (produced by the
DGA at that time). Here, we distinguish between sink-
hole and non-sinkhole registrations (potentially by bot-
masters).

Figure 2 provides an overview of our results for the 22
time-dependant DGAs in our dataset. For each family,
the results are summarized using a boxplot showing the
registration times of DGA domains relative to the start of
the corresponding validity periods (day zero). That is, a
registration event at x=−1 means that the corresponding
domain was registered one day before it became valid.
For better visualization, we choose a symmetric mixed
linear (for the first 10 days) and logarithmic (everything
beyond) scale. This allows best to display data with a
finer resolution around the majority of validity periods
but also allows to include events up to a thousand days
away. For better orientation, the red bars indicate the
whole validity period of AGDs per family. In this Fig-

10

USENIX Association 25th USENIX Security Symposium 273

Figure 2: Lookahead of domain registrations in time-dependent DGAs, divided into identifiable sinkholes and remaining domains.
The data in this boxplot is applied relative to the start the respective AGD’s validity period (shown in light red for better orientation).
Bamital, GameoverP2P, CryptoLocker data is further divided into pre and post takedown (indicated by †).

ure, we distinguish between four possible categories for
each family: 1) none sinkhole registrations; 2) sinkhole
(marked by S) registrations; 3) pre-takedown registra-
tions; and 4) post-takedown registrations (marked by †).
Note that the registration numbers may vary from those
in Table 3. This is a result of plotting data after Tf irst with
respect to validity start instead of the registration dates.

The main observation is that for 14 of 22 DGAs, sink-
hole operators registered the domains earlier than non-
sinkholers. Comparing the medians of these cases re-
veals that in 7 cases sinkhole registrations happen be-
tween 1 and 10 days earlier, while in the remaining 7
cases they happen between 18 and 143 days earlier. The
143 days are for Torpig, where the majority of sinkhole
domains were registered 5 months in advance with close
validity periods, which seems to be a takedown attempt.
The second highest difference (48 days) was for Cryp-
toLocker. For 3/22 DGAs, sinkhole and non-sinkhole
registrations happened at the same time. In the remaining
5/22 DGAs, non-sinkhole registrations occurred between
2 and 37 days before sinkhole registrations.

In the case of Gootkit, a single sinkhole operator regis-
tered DGA domains on the same day when they became
valid, indicating a reactive response to these domains be-

ing used by the malware but not being taken yet, poten-
tially blocking the botmaster from registering them.

Sinkhole operators usually do not fear that their do-
mains will be taken away by other entities, which ex-
plains the general trend of sinkholers registering domains
before botmasters. Moreover, this enables them to eval-
uate incoming traffic for these domains even before they
become valid. On the other hand, botmasters have to
assume that their domains will eventually be mitigated.
As a result, they register their domains shortly before or
inside the validity period in order to ensure the availabil-
ity of these domains when the bots are expected to try
to contact them. This means that constant monitoring of
AGDs with validity periods around the takedown date is
a necessary condition for success.

For the three families with takedowns, sinkhole reg-
istrations happened at least weeks and often months
prior to validity of the AGDs. This ensures that bot-
masters cannot quickly regain control of their botnet
by registering further AGDs. While the takedown of
Gameover P2P’s AGDs was seemingly complete, AGDs
for both Bamital and CryptoLocker were registered by
non-sinkholers after the takedown. In case of Cryp-
toLocker, these domains were registered shortly before

11

274 25th USENIX Security Symposium USENIX Association

their validity started, indicating that not all domains re-
main blocked through the same central authority.

We observed an interesting pattern in the case of
Bamital. On January 1st, 2011, AGDs for January 4th,
2012, January 3rd, 2013, and January 4th, 2014 domains
were registered by the same registrant. We believe that
this was done by the operators of Bamital in an attempt to
timely secure insurance domains to be used as backup in
case of a later takedown, speculating that these domains
do not get discovered. We identified similar strategies by
the botmasters of Nymaim and Murofet. In case of Ny-
maim, on December 6th, 2012 and December 9th, 2012,
two domains becoming valid in 1 and 2 years respec-
tively were registered. For Murofet, on March 12th, 2011
and the 3 following days, 4 domains becoming valid in 1
year, 5 valid in 2 years, 3 valid in 3 years, and 3 valid
in 4 years have been registered. All of them use dif-
ferent, apparently fake identities but the same registrar.
This shows that potential registrations of AGDs should
be checked considerably far ahead during the preparation
of a takedown campaign.

The number for sinkhole registrations of Pykspa 1 and
Suppobox is impressively small. For these families, most
AGDs are registered with the same lookahead by single
sinkhole operators over longer periods of time. Regis-
tering only a small fraction of available domains indi-
cates botnet monitoring operations by sinkholers. On
the other hand, we observed many different entities in-
volved on non-sinkhole registrations of Suppobox do-
mains. Given the comparatively high collision rate with
benign domains (Section 5.4), we believe that many of
these domains belong to benign registrants. This shows
that the Suppobox DGA blends in very well with legit-
imate domain owners, allowing the botmasters to hide
their C&Cs among benign domains.

We observed a few peculiarities with regard to domain
registrations. Registrations for Gozi tend to be late for
both sinkholers and others. We found no coherent expla-
nation for this. Another oddity are the sinkhole registra-
tions for Szribi. While 8 registrations happened in 2008
when the botnet was active, another 32 registrations hap-
pened in 2015, more than 4 years after the botnet disap-
peared. Moreover, all of these 32 domains were regis-
tered one month after they became invalid. We believe
that the respective sinkholing organization used a wrong
DGA reimplementation to calculate the AGDs.

5.6 Mitigation Response Time

By mitigation we mean a change of domain ownership
from a non-sinkhole to a sinkhole operator. In this sec-
tion, we analyze the time offset for these events in order
to measure the effectiveness of these operations. Here,
we only consider DGAs where 10 or more mitigations

were identified that are not related to takedowns. Ta-
ble 4 summarizes the results of this examination. In most
cases, the first mitigations against new DGAs or seeds
are carried out within a week.

One would expect that after initial identification of a
DGA or a new seed for a DGA, all further mitigations
would have a much lower response time as the potentially
generated domains should be known. We observe rela-
tively short median reaction times m̃ for Murofet 1, Sup-
pobox, Gameover DGA, and TinyBanker. These are also
the DGAs where most AGDs were mitigated within their
respective validity periods. On the other hand, the coun-
termeasures for Bamital and CryptoLocker have been
very ineffective as they mostly targeted AGDs that were
no longer valid.

Response times for all other DGAs increase after the
first mitigation. Interestingly, multiple follow-up mitiga-
tions for these DGAs were carried out on the same day.
This pattern corresponds to a common practice by de-
fenders. After identifying initial malicious domains, they
look at other domains that point to the same C&C server
by performing a reverse IP lookup. This identifies addi-
tional AGDs which may have been registered even be-
fore the initially identified AGD. This was observed for
Nymaim, Ramnit, and UrlZone.

5.7 DGAs and Domain Parking

Next, we examine how many AGDs are registered to-
wards domain parking services. For identification of
such domains, we used a procedure similar to Vissers et
al. [51]. In total, we found 6,458 AGDs that contained a
registration pointing to a parking service at some point in
time. This corresponds to the common practice that after
the registration period of an original owner ends, the ex-
pired domain is transferred to domain parking or picked
up by a domain reseller.

To our surprise, for 3,852 of these AGDs, the park-
ing registration was also the first and in many cases only
registration entry. In particular, first parking registration
events constitute a significant portion of registrations for
the following DGAs: Banjori 620 (90.78%), QakBot 595
(54.69%), Pykspa 2 883 (45.82%), Necurs 122 (41.36%),
Pushdo TID 91 (37.14%), Ramnit 286 (30.46%), Muro-
fet 1 736 (23.20%). Except for Pykspa 2, none of these
DGAs has a significant number of pre-registrations |RP|,
which makes unintended or accidental registration ex-
tremely unlikely. It is also noteworthy, that for these
DGAs, 2,917 (87.52%) domains are registered with the
same domain parking service. With regard to validity pe-
riods, 464 out of 2336 (19.86%) time-dependent AGDs
are registered before the end of the respective validity
periods. In this special case, together with the time-
independent AGDs, at least 1461 AGDs were potentially

12

USENIX Association 25th USENIX Security Symposium 275

Name Seeds Mitigations Validity Period First Reponse (in days) Further Reponses (in days)
within after mmin m̃ m̄ mmax mmin m̃ m̄ mmax

Murofet 1 1 50 37 13 25 25 25.00 25 0 0 1.77 25
Bamital 1 148 16 132 6 6 6.00 6 3 49 47.37 92
Nymaim 2 16 4 12 1 16 16.00 31 0 5 31.46 212
Ramnit 16 126 - - 2 19 34.60 153 0 35 54.28 363
CryptoLocker 1 216 25 191 9 9 9.00 9 0 8 14.69 130
Suppobox 2 19 13 6 3 117 117.50 232 0 0 25.12 194
DirCrypt 7 13 - - 0 3 7.00 26 0 5 10.50 41
UrlZone 4 24 - - 0 4 6.75 19 0 114 112.40 251
QakBot 1 33 15 18 0 0 0.00 0 0 21 28.41 66
Matsnu 2 33 11 22 2 2 2.50 3 2 7 9.16 72
Gameover DGA 2 14 9 5 0 1 1.50 3 0 1 54.17 161
TinyBanker 51 272 - - 0 3 6.39 61 0 2 5.66 60
Bedep 2 10 4 6 2 5 5.00 8 1 12 13.12 28

Table 4: Mitigation Response Timings for selected DGAs. For time-dependent DGAs, Validity Period describes the identified
mitigations for active and outdated AGDs. First Response is the time until the first mitigation occurred, with values for minimum,
median, average, and maximum, aggregated over seeds. Further Responses describes the same measures for all following events.

abused to drive automatically generated traffic from com-
promised hosts towards a domain parking system.

5.8 Discussion: Countering DGAs
In this section, we summarize the observations made in
previous sections and discuss how they influence coun-
termeasures against DGAs.

Looking at the distribution of domain generation
schemes (Section 4.3), only 3 of 43 DGAs are based
on wordlists and therefore produce somewhat meaning-
ful domain names. On the other hand, methods for the
detection of domains that appear randomly generated are
well-studied [13, 34, 54] and our data suggests that they
remain relevant and applicable in the future.

As the study of activity periods has shown (Sec-
tion 5.2), DGAs have become very relevant to malware
authors, especially over the last 2 years, as 25 out of the
43 considered DGAs surfaced 2013 and later.

One of the core concepts of DGAs is the implied eco-
nomic asymmetry: A single valid domain grants an at-
tacker control while the defender needs to deny access
to all potential domains. The overall low number of ac-
tually registered AGDs (Section 5.3) underlines the fact
that attackers only need to make sparse use of all po-
tential domains when operating their botnets. Addition-
ally, since most attackers seem to register domains very
shortly before their validity or use (Section 5.5), there
is a high chance that they can be hit by surprise and
the perceived backup utility of DGAs can be cancelled.
However, having identified registration events up to 4
years upfront means future domains should be carefully
checked to ensure successful takedowns.

Our data indicates that in past takedowns, domains
were acquired on a large scale, imposing significant fi-
nancial efforts connected to the takedown. Having do-

mains registered as consequence of a takedown allows
them to be used as sinkholes in order to gather teleme-
try on compromised systems calling in. However, single
AGDs per validity period would be enough to achieve
the same monitoring effect, similar to how an attacker
only needs a single domain, as long as the remaining do-
mains are not available. Therefore, we propose to raise
awareness of the relevance and innerworkings of DGAs
to ICANN and make extensive use of blocking AGDs on
the level of registry operators. The expected impact of
blocking would actually be negligable for the majority
AGDs: 34/43 of the DGAs analyzed have AGDs with
minimum length 7 or more, for which we observed ba-
sically no collisions with existing domains for their en-
tire set of AGDs (Section 5.4), meaning that these do-
mains seem unlikely to be registered for benign purposes
anyway. In case of time-dependent DGAs, this block-
ing could even be lifted once the validity period of the
respective AGDs has passed, which could be a compro-
mise to address wordlist-based DGAs.

Furthermore, we identified only 3,302 collisions be-
tween 5 DGAs within 159,712,234 unique DGA do-
mains (Section 5.4). This means that a lookup database
of AGDs like our data set serves as a very reliable re-
source to aid the identification of malware families based
on contacted domains with basically no false positives.
As a service to the community, we continue to col-
lect information on DGAs and provide this data for free
through DGArchive [38].

6 Related Work

Among others, the following works have addressed Do-
main Generation Algorithms in detail. Stone-Gross et
al. [50] have performed a botnet takeover for Torpig in
early 2009. Based on reverse-engineering, they took ad-

13

276 25th USENIX Security Symposium USENIX Association

vantage of the fact that this family was using a Domain
Generation Algorithm without further protection mech-
anisms in the C&C protocol. Their publication was one
of the first descriptions detailing the concept of DGAs in
academic literature. Barabosch et al.[16] have defined a
taxonomy of DGA types based on the 2 features time-
dependency and causality. They also explained a method
for the automated localization of DGA-related code us-
ing dynamic analysis for unpacking and API tracing in
combination with data flow analysis for code extraction.
Mowbray et al. [34] have used collected DNS data to
identify potential DGA domains examining the query
source IP address and length distribution of queried do-
main names. With this approach they identified 19 differ-
ent schemes of AGDs and list a subset of characteristics
of those given in Table 1.

Several works target the detection of DGAs and other
maliciously used domains based on collected network
traffic. In 2010, Yadav et al. [54] have evaluated several
statistical measures over character distributions and n-
grams in domain names in order to detect generated do-
main names through anomalies. Antonakakis et al. [13]
have presented Pleiades, a DNS-based system that de-
tects clusters of potential DGA domains by monitoring
unsuccessful DNS requests. As confirmed by our work,
they built their system on the assumption that only a frac-
tion of AGDs is actually registered. They were able to
find 6 new DGAs that were unknown at the time by eval-
uating traffic from a large ISP. Another approach using
DNS data named Phoenix is proposed by Schiavoni et
al. [43]. They have defined a model for pronounceable
domains and afterwards detect those domains deviating
from this model. Their system also groups identified
domains and allows tracking the activity of DGA-based
botnets. Bilge et al. [18] have introduced their system
Exposure. It is used to detect malicious domain names
based on a selection of 15 features observable for DNS
traffic, including time-based, DNS answer-based, TTL,
and domain name features.

There are also works that explore capabilities of dy-
namic and proactive blacklisting. In 2009, Ma et al. [28]
have compared the usefulness of different information
sources for blacklisting. They found out that WHOIS
data, especially temporal information of registrations,
are very valuable in this regard. Antonakakis et al. [12]
have proposed Notos, a system to automatically assign
scores to domain names that can be used to automati-
cally generate blacklists. They focus on features of do-
main strings and TLDs. Xu et al. [53] have mentioned the
idea to pre-generate AGDs in order to enable predictive
blocking. However, they did not evaluate the effective-
ness of this idea, as shown by us in this paper.

Recently, Vissers et al. [51] have investigated the re-
lationship of domain parking services and malicious do-

mains, using DNS and WHOIS data sets. Nadji et al. [35]
have developed a concept for effective botnet takedowns
in which they identify covering potential DGA pres-
ence as important step for effectiveness. With regard to
the analysis of further innovations in C&C rendezvous
mechanisms, Holz et al. [23] have investigated Fast-Flux
Service Networks, while Rossow et al. [40] have per-
formed a survey of botnets using P2P mechanisms.

7 Conclusion

In this work, we presented the first comprehensive mea-
surement study of domain generation algorithms as used
by modern botnets. Our study is based on reverse-
engineering the DGAs of 43 malware families and vari-
ants. Using reimplementations of the algorithms, we
generated a collection of 159,712,234 unique DGA do-
mains. We then performed an analysis on domain reg-
istrations, utilizing historic WHOIS data provided by
DomainTools. Our main findings are that our domain
dataset can be used for both predictive blocking of at-
tempted C&C accesses as well as the accurate determi-
nation of malware families and campaigns with basically
no false positives. Additionally, we characterized the
registration behavior of botmasters and sinkholers and
examined the effectiveness of domain mitigations.

As a further contribution, we continuously col-
lect further information on DGAs. The full do-
main data set which results from our work is pub-
lished for free here: https://dgarchive.caad.

fkie.fraunhofer.de. This web service called
DGArchive offers reverse domain lookups to support
malware analysis, as well as forward generation of do-
main lists, which can be particularly used as blocklists
for network protection.

Acknowledgments
The authors would like to express eternal gratitude to
the Shadowserver Foundation for continuously support-
ing malware research. We would also like to thank
the anonymous reviewers of USENIX Security as well
as Daniela Bennewitz, Arnold Sykosch, and Matthias
Wübbeling for their valuable feedback.

References
[1] W32/sality.m, February 2006. Malware description

by McAfee: http://www.mcafee.com/threat-

intelligence/malware/default.aspx?id=138354.

[2] Conficker Working Group: Lessons Learned. Tech. rep., The
Rendon Group, http://www.confickerworkinggroup.org,
January 2011.

[3] Ransom Cryptolocker. Tech. rep., McAfee Labs Threat Advisory,
November 2014.

14

USENIX Association 25th USENIX Security Symposium 277

[4] Tracking Rovnix, 2014. Blog post: http://labs.

bitdefender.com/2014/11/tracking-rovnix-2/.

[5] Chasing cybercrime: network insights of Dyre and Dridex Trojan
bankers. Tech. rep., Blueliv, 2015.

[6] Pushdo It To Me One More Time. Tech. rep., Fidelis Cybersecu-
rity, April 2015.

[7] Tempedreve - Botnet overview and malware analysis. Tech. rep.,
Anubisnetworks, 2015.

[8] The Domain Name Industry Brief - Volume 12, Issue 3. Tech.
rep., Verisign, 2015.

[9] TLD DNSSEC Report, 2015. Statistics page published by
ICANN: http://stats.research.icann.org/dns/tld_

report/.

[10] ALEXA. Top sites on the Web, 2015. Website: http://www.

alexa.com/topsites.

[11] ANDRIESSE, D., ROSSOW, C., STONE-GROSS, B.,
PLOHMANN, D., AND BOS, H. Highly resilient peer-to-
peer botnets are here: An analysis of Gameover Zeus. In
Proceedings of the 8th International Conference on Malicious
and Unwanted Software (MALWARE) (2013).

[12] ANTONAKAKIS, M., PERDISCI, R., DAGON, D., LEE, W.,
AND FEAMSTER, N. Building a Dynamic Reputation System for
DNS. In Proceedings of the 19th USENIX Conference on Secu-
rity (Berkeley, CA, USA, 2010), USENIX Security’10, USENIX
Association.

[13] ANTONAKAKIS, M., PERDISCI, R., NADJI, Y., VASILOGLOU,
N., ABU-NIMEH, S., LEE, W., AND DAGON, D. From Throw-
away Traffic to Bots: Detecting the Rise of DGA-based Malware.
In Proceedings of the 21st USENIX Conference on Security Sym-
posium (2012).

[14] BADER, J. Domain Generation Algorithm analyses, 2015. Blog
posts on various DGAs: http://www.johannesbader.ch/

tag/dga/.

[15] BARABOSCH, T. Behavior-Driven Development in Mal-
ware Analysis: Can it Improve the Malware Analysis Pro-
cess?, 2015. Presentation: https://itsec.cs.uni-bonn.

de/spring2015/downloads/barabosch.pdf.

[16] BARABOSCH, T., WICHMANN, A., LEDER, F., AND
GERHARDS-PADILLA, E. Automatic Extraction of Domain
Name Generation Algorithms from Current Malware. In Pro-
ceedings of the NATO Symposium IST-111 on Information Assur-
ance and Cyber Defence (2012).

[17] BAUMGARTNER, K., AND RAIU, C. Sinkholing Volatile
Cedar DGA Infrastructure, 2015. Blog post: https:

//securelist.com/blog/research/69421/sinkholing-

volatile-cedar-dga-infrastructure/.

[18] BILGE, L., SEN, S., BALZAROTTI, D., KIRDA, E., AND
KRUEGEL, C. Exposure: A Passive DNS Analysis Service to
Detect and Report Malicious Domains. ACM Trans. Inf. Syst.
Secur. 16, 4 (Apr. 2014).

[19] DOMAINTOOLS. Company Profile, 2015. Website: https://
www.domaintools.com/company/.

[20] FALLIERE, N. W32.Virut: Using Cryptography to
Prevent Domain Hijacking, 2011. Blog post: http:

//www.symantec.com/connect/blogs/w32virut-using-

cryptography-prevent-domain-hijacking.

[21] GASTESI, M., AND GEGENY, J. Citadel Updates: Anti-
VM and Encryption change, June 2012. Blog post
for S21sec: http://securityblog.s21sec.com/2012/06/

citadel-updates-anti-vm-and-encryption.html.

[22] GEFFNER, J. End-To-End Analysis of a Domain Generating Al-
gorithm Malware Family. In Proceedings of the 2013 Blackhat
Conference (2013).

[23] HOLZ, T., GORECKI, C., RIECK, K., AND FREILING, F. Mea-
suring and Detecting Fast-Flux Service Networks. In Proceed-
ings of the 15th Annual Network & Distributed System Security
Conference (NDSS) (2008).

[24] KESSEM, L. Shifu: ’Masterful’ New Banking Trojan Is
Attacking 14 Japanese Banks, 2015. Blog post: https:

//securityintelligence.com/shifu-masterful-new-

banking-trojan-is-attacking-14-japanese-banks/.

[25] LEDER, F., AND WERNER, T. Know Your Enemy: Containing
Conficker, To Tame a Malware. Tech. rep., The Honeynet Project,
http://honeynet.org, 2009.

[26] LEUNG, K., LIU, Y., AND KIERNAN, S. W32.Downadup.E
Technical Details. Tech. rep., Symantec, 2009.

[27] LIPOVSKY, R. Hesperbot - A new, Advanced Banking Trojan in
the Wild. Tech. rep., ESET, 2013.

[28] MA, J., SAUL, L. K., SAVAGE, S., AND VOELKER, G. M. Be-
yond Blacklists: Learning to Detect Malicious Web Sites from
Suspicious URLs. In Proceedings of the 15th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Min-
ing (New York, NY, USA, 2009), KDD ’09, ACM, pp. 1245–
1254.

[29] MALWARE PROTECTION CENTER. MSRT April 2014
on Ramdo, 2014. Malware description by Microsoft:
http://blogs.technet.com/b/mmpc/archive/2014/

04/08/msrt-april-2014-ramdo.aspx.

[30] MALWARE PROTECTION CENTER. Trojan:Win32/Emotet.C,
2014. Malware description by Microsoft: https:

//www.microsoft.com/security/portal/threat/

encyclopedia/entry.aspx?Name=Trojan:Win32/

Emotet.C.

[31] MARSAGLIA, G. Xorshift RNGs. Journal of Statistical Software
8, 1 (2003).

[32] MATROSOV, A. What do Win32/Redyms and TDL4 have in
common, 2013. Blog post: http://www.welivesecurity.

com/2013/02/04/what-do-win32redyms-and-tdl4-

have-in-common/.

[33] MATSUMOTO, M., AND NISHIMURA, T. Mersenne Twister:
A 623-dimensionally Equidistributed Uniform Pseudo-random
Number Generator. ACM Trans. Model. Comput. Simul. 8, 1 (Jan.
1998).

[34] MOWBRAY, M., AND HAGEN, J. Finding Domain-Generation
Algorithms by Looking at Length Distribution. In Proceedings of
the 25th IEEE International Symposium on Software Reliability
Engineering Workshops, ISSRE Workshops, Naples, Italy (2014).

[35] NADJI, Y., ANTONAKAKIS, M., PERDISCI, R., DAGON, D.,
AND LEE, W. Beheading Hydras: Performing Effective Botnet
Takedowns. In Proceedings of the 2013 ACM SIGSAC Confer-
ence on Computer and Communications Security (New York, NY,
USA, 2013), CCS ’13, ACM.

[36] PARK, S. K., AND MILLER, K. W. Random Number Genera-
tors: Good Ones Are Hard to Find. Commun. ACM 31, 10 (Oct.
1988).

[37] PIOTR KRYSIUK, V. T. Trojan.Bamital. Tech. rep., Symantec,
2013.

[38] PLOHMANN, D. DGArchive. Fraunhofer FKIE: https://

dgarchive.caad.fkie.fraunhofer.de.

[39] PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. Numerical Recipes 3rd Edition: The Art of
Scientific Computing, 3 ed. Cambridge University Press, New
York, NY, USA, 2007.

15

278 25th USENIX Security Symposium USENIX Association

[40] ROSSOW, C., ANDRIESSE, D., WERNER, T., STONE-GROSS,
B., PLOHMANN, D., DIETRICH, C. J., AND BOS, H. SoK:
P2PWNED — Modeling and Evaluating the Resilience of Peer-
to-Peer Botnets. In Proceedings of the 34th IEEE Symposium on
Security and Privacy (S&P) (San Francisco, CA, May 2013).

[41] ROYAL, P. On the Kraken and Bobax Botnets. Tech. rep.,
Damballa, April 2008.

[42] SANDEE, M. GameOver ZeuS - Backgrounds on the Badguys
and the Backends. Tech. rep., Fox IT, 2013.

[43] SCHIAVONI, S., MAGGI, F., CAVALLARO, L., AND ZANERO,
S. Phoenix: DGA-Based Botnet Tracking and Intelligence. In
Detection of Intrusions and Malware, and Vulnerability Assess-
ment (DIMVA) (2014), vol. 8550 of Lecture Notes in Computer
Science.

[44] SCHWARZ, D. Bedep’s DGA: Trading Foreign Ex-
change for Malware Domains, 2015. Blog post:
https://asert.arbornetworks.com/bedeps-dga-

trading-foreign-exchange-for-malware-domains/.

[45] SECURITY RESPONSE. Butterfly: Corporate spies out for finan-
cial gain. Tech. rep., Symantec, July 2015.

[46] SECURITY RESPONSE. W32.Ramnit Analysis. Tech. rep.,
Symantec, February 2015.

[47] SEGURA, J. Elusive HanJuan EK Drops New Tinba Version,
2015. Blog post: https://blog.malwarebytes.org/

intelligence/2015/06/elusive-hanjuan-ek-caught-

in-new-malvertising-campaign/.

[48] SINEGUBKO, D. Runforestrun and Pseudo Random Do-
mains, June 2012. Blog post for Unmask Parasites:
http://blog.unmaskparasites.com/2012/06/22/

runforestrun-and-pseudo-random-domains/.

[49] SKURATOVICH, S. Matsnu. Tech. rep., Check Point Software
technologies Ltd., May 2015.

[50] STONE-GROSS, B., COVA, M., CAVALLARO, L., GILBERT,
B., SZYDLOWSKI, M., KEMMERER, R., KRUEGEL, C., AND
VIGNA, G. Your Botnet is My Botnet: Analysis of a Botnet
Takeover. In Proceedings of the 16th ACM Conference on Com-
puter and Communications Security (2009).

[51] VISSERS, T., JOOSEN, W., AND NIKIFORAKIS, N. Parking
Sensors: Analyzing and Detecting Parked Domains. In Proceed-
ings of the 2015 Network and Distributed System Security (NDSS)
Symposium (2015).

[52] WOLF, J. Technical details of Srizbi’s domain genera-
tion algorithm, November 2008. Blog post for Fire-
Eye: https://www.fireeye.com/blog/threat-

research/2008/11/technical-details-of-srizbis-

domain-generation-algorithm.html.

[53] XU, W., SANDERS, K., AND ZHANG, Y. We Know It Before
You Do: Predicting Malicious Domains. In Proceedings of the
24th Virus Bulletin Conference (VB2014) (2014).

[54] YADAV, S., REDDY, A. K. K., REDDY, A. N., AND RANJAN, S.
Detecting Algorithmically Generated Malicious Domain Names.
In Proceedings of the 10th ACM SIGCOMM Conference on In-
ternet Measurement (2010), IMC ’10.

16

USENIX Association 25th USENIX Security Symposium 279

Enhancing Bitcoin Security and Performance with
Strong Consistency via Collective Signing

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly,
Ismail Khoffi, Linus Gasser, and Bryan Ford

EPFL

Abstract

While showing great promise, Bitcoin requires users to
wait tens of minutes for transactions to commit, and
even then, offering only probabilistic guarantees. This
paper introduces ByzCoin, a novel Byzantine consen-
sus protocol that leverages scalable collective signing to
commit Bitcoin transactions irreversibly within seconds.
ByzCoin achieves Byzantine consensus while preserv-
ing Bitcoin’s open membership by dynamically form-
ing hash power-proportionate consensus groups that rep-
resent recently-successful block miners. ByzCoin em-
ploys communication trees to optimize transaction com-
mitment and verification under normal operation while
guaranteeing safety and liveness under Byzantine faults,
up to a near-optimal tolerance of f faulty group members
among 3 f + 2 total. ByzCoin mitigates double spend-
ing and selfish mining attacks by producing collectively
signed transaction blocks within one minute of trans-
action submission. Tree-structured communication fur-
ther reduces this latency to less than 30 seconds. Due
to these optimizations, ByzCoin achieves a throughput
higher than Paypal currently handles, with a confirma-
tion latency of 15-20 seconds.

1 Introduction

Bitcoin [47] is a decentralized cryptocurrency providing
an open, self-regulating alternative to classic currencies
managed by central authorities such as banks. Bitcoin
builds on a peer-to-peer network where users can sub-
mit transactions without intermediaries. Special nodes,
called miners, collect transactions, solve computational
puzzles (proof-of-work) to reach consensus, and add the
transactions in form of blocks to a distributed public
ledger known as the blockchain.

The original Bitcoin paper argues that transaction pro-
cessing is secure and irreversible, as long as the largest
colluding group of miners represents less than 50% of

total computing capacity and at least about one hour has
elapsed. This high transaction-confirmation latency lim-
its Bitcoin’s suitability for real-time transactions. Later
work revealed additional vulnerabilities to transaction
reversibility, double-spending, and strategic mining at-
tacks [25, 31, 34, 35, 48, 3].

The key problem is that Bitcoin’s consensus algo-
rithm provides only probabilistic consistency guarantees.
Strong consistency could offer cryptocurrencies three
important benefits. First, all miners instantly agree on
the validity of blocks, without wasting computational
power resolving inconsistencies (forks). Second, clients
need not wait for extended periods to be certain that a
submitted transaction is committed; as soon as it ap-
pears in the blockchain, the transaction can be consid-
ered confirmed. Third, strong consistency provides for-
ward security: as soon as a block has been appended
to the blockchain, it stays there forever. Although in-
creasing the consistency of cryptocurrencies has been
suggested before [17, 19, 43, 52, 56], existing propos-
als give up Bitcoin’s decentralization, and/or introduce
new and non-intuitive security assumptions, and/or lack
experimental evidence of performance and scalability.

This work introduces ByzCoin, a Bitcoin-like cryp-
tocurrency enhanced with strong consistency, based on
the principles of the well-studied Practical Byzantine
Fault Tolerance (PBFT) [14] algorithm. ByzCoin ad-
dresses four key challenges in bringing PBFT’s strong
consistency to cryptocurrencies: (1) open membership,
(2) scalability to hundreds of replicas, (3) proof-of-work
block conflicts, and (4) transaction commitment rate.

PBFT was not designed for scalability to large consen-
sus groups: deployments and experiments often employ
the minimum of four replicas [38], and generally have
not explored scalability levels beyond 7 [14] or 16 repli-
cas [16, 32, 1]. ByzCoin builds PBFT atop CoSi [54],
a collective signing protocol that efficiently aggregates
hundreds or thousands of signatures. Collective sign-
ing reduces both the costs of PBFT rounds and the costs

1

280 25th USENIX Security Symposium USENIX Association

for “light” clients to verify transaction commitment. Al-
though CoSi is not a consensus protocol, ByzCoin imple-
ments Byzantine consensus using CoSi signing rounds to
make PBFT’s prepare and commit phases scalable.

PBFT normally assumes a well-defined, closed group
of replicas, conflicting with Bitcoin’s open membership
and use of proof-of-work to resist Sybil attacks [23].
ByzCoin addresses this conflict by forming consensus
groups dynamically from windows of recently mined
blocks, giving recent miners shares or voting power
proportional to their recent commitment of hash power.
Lastly, to reduce transaction processing latency we adopt
the idea from Bitcoin-NG [24] to decouple transaction
verification from block mining.

Experiments with a prototype implementation of Byz-
Coin show that a consensus group formed from approxi-
mately the past 24 hours of successful miners (144 min-
ers) can reach consensus in less than 20 seconds, on
blocks of Bitcoin’s current maximum size (1MB). A
larger consensus group formed from one week of suc-
cessful miners (1008) reached consensus on an 8MB
block in 90 seconds, showing that the systems scales
both with the number of participants and with the block
size. For the 144-participant consensus group, with a
block size of 32MB, the system handles 974 transac-
tions per second (TPS) with a 68-second confirmation la-
tency. These experiments suggest that ByzCoin can han-
dle loads higher than PayPal and comparable with Visa.

ByzCoin is still a proof-of-concept with several lim-
itations. First, ByzCoin does not improve on Bitcoin’s
proof-of-work mechanism; finding a suitable replace-
ment [4, 28, 37, 58] is an important but orthogonal area
for future work. Like many BFT protocols in prac-
tice [15, 32], ByzCoin is vulnerable to slowdown or tem-
porary DoS attacks that Byzantine nodes can trigger. Al-
though a malicious leader cannot violate or permanently
block consensus, he might temporarily exclude minority
sets (< 1

3) of victims from the consensus process, depriv-
ing them of rewards, and/or attempt to censor transac-
tions. ByzCoin guarantees security only against attack-
ers who consistently control less than a third (not 50%)
of consensus group shares – though Bitcoin has analo-
gous weaknesses accounting for selfish mining [25].

In this paper we make the following key contributions:
• We use collective signing [54] to scale BFT protocols

to large consensus groups and enable clients to verify
operation commitments efficiently.

• We present (§3) the first demonstrably practical
Byzantine consensus protocol supporting not only
static consensus groups but also dynamic membership
proportional to proof-of-work as in Bitcoin.

• We demonstrate experimentally (§4) that a strongly-
consistent cryptocurrency can increase Bitcoin’s
throughput by two orders of magnitude, with a trans-

action confirmation latency under one minute.
• We find through security analysis (§5) that ByzCoin

can mitigate several known attacks on Bitcoin pro-
vided no attacker controls more than 1

4 of hash power.

2 Background and Motivation

This section first outlines the three most relevant areas
of prior work that ByzCoin builds on: cryptocurrencies
such as Bitcoin and Bitcoin-NG, Byzantine fault toler-
ance (BFT) principles, and collective signing techniques.

2.1 Bitcoin and Variations
Bitcoin. At the core of Bitcoin [47] rests the so-called
blockchain, a public, append-only database maintained
by miners and serving as a global ledger of all transac-
tions ever issued. Transactions are bundled into blocks
and validated by a proof-of-work. A block is valid if its
cryptographic hash has d leading zero bits, where the dif-
ficulty parameter d is adjusted periodically such that new
blocks are mined about every ten minutes on average.
Each block includes a Merkle tree [44] of new transac-
tions to be committed, and a cryptographic hash chaining
to the last valid block, thereby forming the blockchain.
Upon successfully forming a new block with a valid
proof-of-work, a miner broadcasts the new block to the
rest of the miners, who (when behaving properly) accept
the new block, if it extends a valid chain strictly longer
than any they have already seen.

Bitcoin’s decentralized consensus and security derive
from an assumption that a majority of the miners, mea-
sured in terms of hash power or ability to solve hash-
based proof-of-work puzzles, follows these rules and al-
ways attempts to extend the longest existing chain. As
soon as a quorum of miners with the majority of the
network’s hash power approves a given block by min-
ing on top of it, the block remains embedded in any fu-
ture chain [29]. Bitcoin’s security is guaranteed by the
fact that this majority will be extending the legitimate
chain faster than any corrupt minority that might try to
rewrite history or double-spend currency. However, Bit-
coin’s consistency guarantee is only probabilistic, which
leads to two fundamental problems.

First, multiple miners might find distinct blocks with
the same parent before the network has reached consen-
sus. Such a conflict is called a fork, an inconsistency that
is temporarily allowed until one of the chains is extended
yet again. Subsequently, all well-behaved miners on the
shorter chain(s) switch to the new longest one. All trans-
actions appearing only in the rejected block(s) are invalid
and must be resubmitted for inclusion into the winning
blockchain. This means that Bitcoin clients who want
high certainty that a transaction is complete (e.g., that

2

USENIX Association 25th USENIX Security Symposium 281

they have irrevocably received a payment) must wait not
only for the next block but for several blocks thereafter,
thus increasing the time interval until a transaction can
be considered complete. As a rule of thumb [47], a block
is considered as permanently added to the blockchain af-
ter about 6 new blocks have been mined on top of it, for
a confirmation latency of 60 minutes on average.

Second, the Bitcoin block size is currently limited to
1 MB. This limitation in turn results in an upper bound
on the number of transactions per second (TPS) the Bit-
coin network can handle, estimated to be an average
of 7 TPS. For comparison, Paypal handles 500 TPS and
VISA even 4000 TPS. An obvious solution to enlarge
Bitcoin’s throughput is to increase the size of its blocks.
Unfortunately, this solution also increases the probability
of forks due to higher propagation delays and the risk of
double-spending attacks [53, 30, 36]. Bitcoin’s liveness
and security properties depend on forks being relatively
rare. Otherwise, the miners would spend much of their
effort trying to resolve multiple forks [31, 17], or in the
extreme case, completely centralize Bitcoin [24]

Bitcoin-NG. Bitcoin-NG [24] makes the important ob-
servation that Bitcoin blocks serve two different pur-
poses: (1) election of a leader who decides how to re-
solve potential inconsistencies, and (2) verification of
transactions. Due to this observation, Bitcoin-NG pro-
poses two different block types: Keyblocks are generated
through mining with proof-of-work and are used to se-
curely elect leaders, at a moderate frequency, such as ev-
ery 10 minutes as in Bitcoin. Microblocks contain trans-
actions, require no proof-of-work, and are generated and
signed by the elected leader. This separation enables
Bitcoin-NG to process many microblocks between the
mining of two keyblocks, enabling transaction through-
put to increase.

Bitcoin-NG, however, retains many drawbacks of Bit-
coin’s consistency model. Temporary forks due to near-
simultaneous keyblock mining, or deliberately intro-
duced by selfish or malicious miners, can still throw the
system into an inconsistent state for 10 minutes or more.
Further, within any 10-minute window the current leader
could still intentionally fork or rewrite history and inval-
idate transactions. If a client does not wait several tens
of minutes (as in Bitcoin) for transaction confirmation,
he is vulnerable to double-spend attacks by the current
leader or by another miner who forks the blockchain.
Although Bitcoin-NG includes disincentives for such be-
havior, these disincentives amount at most to the “mining
value” of the keyblock (coinbase rewards and transaction
fees): Thus, leaders are both able and have incentives to
double-spend on higher-value transactions.

Consequently, although Bitcoin-NG permits higher
transaction throughput, it does not solve Bitcoin’s con-

sistency weaknesses. Nevertheless, Bitcoin-NG’s decou-
pling of keyblocks from microblocks is an important
idea that we build on in Section 3.6 to support high-
throughput and low-latency transactions in ByzCoin.

2.2 Byzantine Fault Tolerance

The Byzantine Generals’ Problem [39, 49] refers to the
situation where the malfunctioning of one or several
components of a distributed system prevents the latter
from reaching an agreement. Pease et al. [49] show that
3 f +1 participants are necessary to be able to tolerate f
faults and still reach consensus. The Practical Byzantine
Fault Tolerance (PBFT) algorithm [14] was the first ef-
ficient solution to the Byzantine Generals’ Problem that
works in weakly synchronous environments such as the
Internet. PBFT offers both safety and liveness provided
that the above bound applies, i.e., that at most f faults
among 3 f +1 participants occur. PBFT triggered a surge
of research on Byzantine replication algorithms with var-
ious optimizations and trade-offs [1, 16, 38, 32].

Every round of PBFT has three distinct phases. In
the first, pre-prepare phase, the current primary node or
leader announces the next record that the system should
agree upon. On receiving this pre-prepare, every node
validates the correctness of the proposal and multicasts
a prepare message to the group. The nodes wait until
they collect a quorum of (2 f + 1) prepare messages and
publish this observation with a commit message. Finally,
they wait for a quorum of (2 f + 1) commit messages to
make sure that enough nodes have recorded the decision.

PBFT relies upon a correct leader to begin each
round and proceeds if a two-thirds quorum exists; con-
sequently, the leader is an attack target. For this reason
PBFT has a view-change protocol that ensures liveness
in the face of a faulty leader. All nodes monitor the
leader’s actions and if they detect either malicious be-
havior or a lack of progress, initiate a view-change. Each
node independently announces its desire to change lead-
ers and stops validating the leader’s actions. If a quorum
of (2 f + 1) nodes decides that the leader is faulty, then
the next leader in a well-known schedule takes over.

PBFT has its limitations. First, it assumes a fixed,
well-defined group of replicas, thus contradicting Bit-
coin’s basic principle of being decentralized and open
for anyone to participate. Second, each PBFT replica
normally communicates directly with every other replica
during each consensus round, resulting in O(n2) com-
munication complexity: This is acceptable when n is
typically 4 or not much more, but becomes impractical
if n represents hundreds or thousands of Bitcoin nodes.
Third, after submitting a transaction to a PBFT service,
a client must communicate with a super-majority of the
replicas in order to confirm the transaction has been com-

3

282 25th USENIX Security Symposium USENIX Association

1 record 2 record 3 record

Authority

Witness

Cosigners

each statement collectively

signed by both authority

and all or most witnesses

Authoritative statements: e.g. log records

Figure 1: CoSi protocol architecture

mitted and to learn its outcome, making secure transac-
tion verification unscalable.

2.3 Scalable Collective Signing
CoSi [54] is a protocol for scalable collective signing,
which enables an authority or leader to request that state-
ments be publicly validated and (co-)signed by a decen-
tralized group of witnesses. Each protocol run yields
a collective signature having size and verification cost
comparable to an individual signature, but which com-
pactly attests that both the leader and its (perhaps many)
witnesses observed and agreed to sign the statement.

To achieve scalability, CoSi combines Schnorr multi-
signatures [51] with communication trees that are long
used in multicast protocols [13, 21, 55]. Initially, the
protocol assumes that signature verifiers know the public
keys of the leader and those of its witnesses, all of which
combine to form a well-known aggregate public key. For
each message to be collectively signed, the leader then
initiates a CoSi four-phase protocol round that require
two round-trips over the communication tree between the
leader and its witnesses:
1. Announcement: The leader broadcasts an announce-

ment of a new round down the communication tree.
The announcement can optionally include the message
M to be signed, otherwise M is sent in phase three.

2. Commitment: Each node picks a random secret
and uses it to compute a Schnorr commitment. In
a bottom-up process, each node obtains an aggre-
gate Schnorr commitment from its immediate chil-
dren, combines those with its own commitment, and
passes a further-aggregated commitment up the tree.

3. Challenge: The leader computes a collective Schnorr
challenge using a cryptographic hash function and
broadcasts it down the communication tree, along with
the message M to sign, if the latter has not already

been sent in phase one.
4. Response: Using the collective challenge, all nodes

compute an aggregate response in a bottom-up fashion
that mirrors the commitment phase.
The result of this four-phase protocol is the production

of a standard Schnorr signature that requires about 64
bytes, using the Ed25519 elliptic curve [6], and that any-
one can verify against the aggregate public key nearly as
efficiently as the verification of an individual signature.
Practical caveats apply if some witnesses are offline dur-
ing the collective signing process: in this case the CoSi
protocol can proceed, but the resulting signature grows
to include metadata verifiably documenting which wit-
nesses did and did not co-sign. We refer to the CoSi pa-
per for details [54].

3 ByzCoin Design

This section presents ByzCoin with a step-by-step ap-
proach, starting from a simple “strawman” combination
of PBFT and Bitcoin. From this strawman, we progres-
sively address the challenges of determining consensus
group membership, adapting Bitcoin incentives and min-
ing rewards, making the PBFT protocol scale to large
groups and handling block conflicts and selfish mining.

3.1 System Model
ByzCoin is designed for untrustworthy networks that can
arbitrarily delay, drop, re-order or duplicate messages.
To avoid the FLP impossibility [27], we assume the net-
work has a weak synchrony property [14]. The Byz-
Coin system is comprised of a set of N block miners
that can generate key-pairs, but there is no trusted public-
key infrastructure. Each node i has a limited amount of
hash power that corresponds to the maximum number of
block-header hashes the node can perform per second.

At any time t a subset of miners M (t) is controlled by
a malicious attacker and are considered faulty. Byzantine
miners can behave arbitrarily, diverting from the protocol
and colluding to attack the system. The remaining hon-
est miners follow the prescribed protocol. We assume
that the total hash power of all Byzantine nodes is less
than 1

4 of the system’s total hash power at any time, since
proof-of-work-based cryptocurrencies become vulnera-
ble to selfish mining attacks by stronger adversaries [25].

3.2 Strawman Design: PBFTCoin
For simplicity, we begin with PBFTCoin, an unrealisti-
cally simple protocol that naively combines PBFT with
Bitcoin, then gradually refine it into ByzCoin.

For now, we simply assume that a group of n = 3 f +1
PBFT replicas, which we call trustees, has been fixed and

4

USENIX Association 25th USENIX Security Symposium 283

globally agreed upon upfront, and that at most f of these
trustees are faulty. As in PBFT, at any given time, one of
these trustees is the leader, who proposes transactions
and drives the consensus process. These trustees col-
lectively maintain a Bitcoin-like blockchain, collecting
transactions from clients and appending them via new
blocks, while guaranteeing that only one blockchain his-
tory ever exists and that it can never be rolled back or
rewritten. Prior work has suggested essentially such a
design [17, 19], though without addressing the scalabil-
ity challenges it creates.

Under these simplifying assumptions, PBFTCoin
guarantees safety and liveness, as at most f nodes are
faulty and thus the usual BFT security bounds apply.
However, the assumption of a fixed group of trustees
is unrealistic for Bitcoin-like decentralized cryptocurren-
cies that permit open membership. Moreover, as PBFT
trustees authenticate each other via non-transferable
symmetric-key MACs, each trustee must communicate
directly with most other trustees in every round, thus
yielding O(n2) communication complexity.

Subsequent sections address these restrictions, trans-
forming PBFTCoin into ByzCoin in four main steps:
1. We use Bitcoin’s proof-of-work mechanism to deter-

mine consensus groups dynamically while preserving
Bitcoin’s defense against Sybil attacks.

2. We replace MAC-authenticated direct communica-
tion with digital signatures to make authentication
transferable and thereby enabling sparser communica-
tion patterns that can reduce the normal case commu-
nication latency from O(n2) to O(n).

3. We employ scalable collective signing to reduce per-
round communication complexity further to O(logn)
and reduce typical signature verification complexity
from O(n) to O(1).

4. We decouple transaction verification from leader elec-
tion to achieve a higher transaction throughput.

3.3 Opening the Consensus Group

Removing PBFTCoin’s assumption of a closed consen-
sus group of trustees presents two conflicting challenges.
On the one hand, conventional BFT schemes rely on a
well-defined consensus group to guarantee safety and
liveness. On the other hand, Sybil attacks [23] can triv-
ially break any open-membership protocol involving se-
curity thresholds, such as PBFT’s assumption that at
most f out of 3 f +1 members are honest.

Bitcoin and many of its variations employ a mecha-
nism already suited to this problem: proof-of-work min-
ing. Only miners who have dedicated resources are al-
lowed to become a member of the consensus group. In
refining PBFTCoin, we adapt Bitcoin’s proof-of-work
mining into a proof-of-membership mechanism. This

L

blockchain

share window of size w

trustees

L

block

share

miner

leader

Figure 2: Valid shares for mined blocks in the blockchain
are credited to miners

mechanism maintains the “balance of power” within the
BFT consensus group over a given fixed-size sliding
share window. Each time a miner finds a new block, it re-
ceives a consensus group share, which proves the miner’s
membership in the group of trustees and moves the share
window one step forward. Old shares beyond the cur-
rent window expire and become useless for purposes of
consensus group membership. Miners holding no more
valid shares in the current window lose their membership
in the consensus group, hence they are no longer allowed
to participate in the decision-making.

At a given moment in time, each miner wields “vot-
ing power” of a number of shares equal to the number
of blocks the miner has successfully mined within the
current window. Assuming collective hash power is rel-
atively stable, this implies that within a window, each
active miner wields a number of shares statistically pro-
portionate to the amount of hash power that the miner
has contributed during this time period.

The size w of the share window is defined by the av-
erage block-mining rate over a given time frame and in-
fluences certain properties such as the resilience of the
protocol to faults. For example, if we assume an average
block-mining rate of 10 minutes and set the duration of
the time frame to one day (or one week), then w = 144
(w = 1008). This mechanism limits the membership of
miners to recently active ones, which prevents the sys-
tem from becoming unavailable due to too many trustees
becoming inactive over time, or from miners aggregat-
ing many shares over an extended period and threatening
the balance in the consensus group. The relationship be-
tween blocks, miners and shares is illustrated in Fig. 2.

Mining Rewards and Transaction Fees. As we can
no longer assume voluntary participation as in PBFT-
Coin’s closed group of trustees, we need an incentive
for nodes to obtain shares in the consensus group and to
remain active. For this purpose, we adopt Bitcoin’s ex-

5

284 25th USENIX Security Symposium USENIX Association

isting incentives of mining rewards and transaction fees.
But instead of these rewards all going to the miner of
the most recent block we split a new block’s rewards and
fees across all members of the current consensus group,
in proportion to the number of shares each miner holds.
As a consequence, the more hash power a miner has de-
voted within the current window, hence the more shares
the miner holds, the more revenue the miner receives dur-
ing payouts in the current window. This division of re-
wards also creates incentives for consensus group mem-
bers to remain live and participate, because they receive
their share of the rewards for new blocks only if they con-
tinually participate, in particular contributing to the pre-
pare and commit phases of each BFT consensus round.

3.4 Replacing MACs by Digital Signatures
In our next refinement step towards ByzCoin, we tackle
the scalability challenge resulting from PBFT’s typical
communication complexity of O(n2), where n is the
group size. PBFT’s choice of MAC-authenticated all-
to-all communication was motivated by the desire to
avoid public-key operations on the critical transaction
path. However, the cost for public-key operations has
decreased due to well-optimized asymmetric cryptosys-
tems [6], making those costs less of an issue.

By adopting digital signatures for authentication, we
are able to use sparser and more scalable communica-
tion topologies, thus enabling the current leader to col-
lect and distribute third-party verifiable evidence that cer-
tain steps in PBFT have succeeded. This removes the
necessity for all trustees to communicate directly with
each other. With this measure we can either enable the
leader to collect and distribute the digital signatures, or
let nodes communicate in a chain [32], reducing the
normal-case number of messages from O(n2) to O(n).

3.5 Scalable Collective Signing
Even with signatures providing transferable authentica-
tion, the need for the leader to collect and distribute –
and for all nodes to verify – many individual signatures
per round can still present a scalability bottleneck. Dis-
tributing and verifying tens or even a hundred individual
signatures per round might be practical. If we want con-
sensus groups with a thousand or more nodes, however
(e.g., representing all blocks successfully mined in the
past week), it is costly for the leader to distribute 1000
digital signatures and wait for everyone to verify them.
To tackle this challenge, we build on the CoSi proto-
col [54] for collective signing. CoSi does not directly im-
plement consensus or BFT, but it offers a primitive that
the leader in a BFT protocol can use to collect and aggre-
gate prepare and commit messages during PBFT rounds.

We implement a single ByzCoin round by using two
sequential CoSi rounds initiated by the current leader
(i.e., the owner of the current view). The leader’s an-
nouncement of the first CoSi round (phase 1 in Sec-
tion 2.3) implements the pre-prepare phase in the stan-
dard PBFT protocol (Section 2.2). The collective sig-
nature resulting from this first CoSi round implements
the PBFT protocol’s prepare phase, in which the leader
obtains attestations from a two-thirds super-majority
quorum of consensus group members that the leader’s
proposal is safe and consistent with all previously-
committed history.

As in PBFT, this prepare phase ensures that a proposal
can be committed consistently, but by itself it is insuffi-
cient to ensure that the proposal will be committed. The
leader and/or some number of other members could fail
before a super-majority of nodes learn about the success-
ful prepare phase. The ByzCoin leader therefore initi-
ates a second CoSi round to implement the PBFT proto-
col’s commit phase, in which the leader obtains attesta-
tions from a two-thirds super-majority that all the sign-
ing members witnessed the successful result of the pre-
pare phase and made a positive commitment to remem-
ber the decision. This collective signature, resulting from
this second CoSi round, effectively attests that a two-
thirds super-majority of members not only considers the
leader’s proposal “safe” but promises to remember it, in-
dicating that the leader’s proposal is fully committed.

In cryptocurrency terms, the collective signature re-
sulting from the prepare phase provides a proof-of-
acceptance of a proposed block of transactions. This
block is not yet committed, however, since a Byzantine
leader that does not publish the accepted block could
double-spend by proposing a conflicting block in the next
round. In the second CoSi commit round, the leader
announces the proof-of-acceptance to all members, who
then validate it and collectively sign the block’s hash to
produce a collective commit signature on the block. This
way a Byzantine leader cannot rewrite history or double-
spend, because by counting arguments at least one honest
node would have to sign the commit phase of both histo-
ries, which an honest node by definition would not do.

The use of CoSi does not affect the fundamental prin-
ciples or semantics of PBFT but improves its scalability
and efficiency in two main ways. First, during the com-
mit round where each consensus group member must
verify that a super-majority of members have signed the
prior prepare phase, each participant generally needs to
receive only an O(1)-size rather than O(n)-size message,
and to expend only O(1) rather than O(n) computation
effort by verifying a single collective signature instead
of n individual ones. This benefit directly increases the
scalability and reduces the bandwidth and computation
costs of consensus rounds themselves.

6

USENIX Association 25th USENIX Security Symposium 285

A second benefit is that after the final CoSi commit
round has completed, the final resulting collective com-
mit signature serves as a typically O(1)-size proof, which
anyone can verify in O(1) computation time that a given
block – hence any transaction within that block – has
been irreversibly committed. This secondary scalability-
benefit might in practice be more important than the
first, because it enables “light clients” who neither mine
blocks nor store the entire blockchain history to verify
quickly and efficiently that a transaction has committed,
without requiring active communication with or having
to trust any particular full node.

3.6 Decoupling Transaction Verification
from Leader Election

Although ByzCoin so far provides a scalable guarantee
of strong consistency, thus ensuring that clients need to
wait only for the next block rather than the next sev-
eral blocks to verify that a transaction has committed,
the time they still have to wait between blocks can, nev-
ertheless, be significant: e.g., up to 10 minutes using
Bitcoin’s difficulty tuning scheme. Whereas ByzCoin’s
strong consistency might in principle make it “safe” from
a consistency perspective to increase block mining rate,
doing so could still exacerbate liveness and other per-
formance issues, as in Bitcoin [47]. To enable lower
client-perceived transaction latency, therefore, we build
on the idea of Bitcoin-NG [24] to decouple the functions
of transaction verification from block mining for leader
election and consensus group membership.

As in Bitcoin-NG, we use two different kinds of
blocks. The first, microblocks or transaction blocks, rep-
resent transactions to be stored and committed. The cur-
rent leader creates a new microblock every few seconds,
depending on the size of the block, and uses the CoSi-
based PBFT protocol above to commit and collectively
sign it. The other type of block, keyblocks, are mined
via proof-of-work as in Bitcoin and serve to elect leaders
and create shares in ByzCoin’s group membership pro-
tocol as discussed earlier in Section 3.3. As in Bitcoin-
NG, this decoupling allows the current leader to pro-
pose and commit many microblocks that contain many
smaller batches of transactions, within one ≈ 10-minute
keyblock mining period. Unlike Bitcoin-NG, in which
a malicious leader could rewrite history or double-spend
within this period until the next keyblock, ByzCoin en-
sures that each microblock is irreversibly committed re-
gardless of the current leader’s behavior.

In Bitcoin-NG one blockchain includes both types of
blocks, which introduces a race condition for miners.
As microblocks are created, the miners have to change
the header of their keyblocks to mine on top of the lat-
est microblock. In ByzCoin, in contrast, the blockchain

1 2

1 2 3 4 5

Keyblock Microblock Collective Signature

Figure 3: ByzCoin blockchain: Two parallel chains store
information about the leaders (keyblocks) and the trans-
actions (microblocks)

becomes two separate parallel blockchains, as shown
in Fig. 3. The main blockchain is the keyblock chain,
consisting of all mined blocks. The microblock chain is
a secondary blockchain that depends on the primary to
identify the era in which every microblock belongs to,
i.e., which miners are authoritative to sign it and who is
the leader of the era.

Microblocks. A microblock is a simple block that the
current consensus group produces every few seconds
to represent newly-committed transactions. Each mi-
croblock includes a set of transactions and a collective
signature. Each microblock also includes hashes refer-
ring to the previous microblock and keyblock: the for-
mer to ensure total ordering, and the latter indicating
which consensus group window and leader created the
microblock’s signature. The microblock’s hash is collec-
tively signed by the corresponding consensus group.

Keyblocks. Each keyblock contains a proof-of-work,
which is used to determine consensus group membership
via the sliding-window mechanism discussed earlier, and
to pay signers their rewards. Each newly-mined key-
block defines a new consensus group, and hence a new
set of public keys with which the next era’s microblocks
will be collectively signed. Since each successive con-
sensus group differs from the last in at most one mem-
ber, PBFT ensures the microblock chain’s consistency
and continuity across this group membership change pro-
vided at most f out of 3 f +2 members are faulty.

Bitcoin-NG relies on incentives to discourage the next
leader from accidentally or maliciously “forgetting” a
prior leader’s microblocks. In contrast, the honest super-
majority in a ByzCoin consensus group will refuse to
allow a malicious or amnesiac leader to extend any but
the most recently-committed microblock, regardless of
which (current or previous) consensus group committed
it. Thus, although competing keyblock conflicts may
still appear, these “forks” cannot yield an inconsistent
microblock chain. Instead, a keyblock conflict can at

7

286 25th USENIX Security Symposium USENIX Association

L

share window of size w

L

keyblock (co-signed)

microblock (co-signed)

share

miner (co-signer)

leader

Figure 4: Overview of the full ByzCoin design

worst temporarily interrupt the PBFT protocol’s liveness,
until it is resolved as mentioned in Section 3.6.1.

Decoupling transacton verification from leader elec-
tion and consensus group evolution in this way brings
the overall ByzCoin architecture to completion, as illus-
trated in Fig. 4. Subsequent sections discuss further im-
plications and challenges this architecture presents.

3.6.1 Keyblock Conflicts and Selfish Mining

PBFT’s strong consistency by definition does not permit
inconsistencies such as forks in the microblock chain.
The way the miners collectively decide how to resolve
keyblock conflicts, however, can still allow selfish min-
ing [25] to occur as in Bitcoin. Worse, if the min-
ers decide randomly to follow one of the two blocks,
then keyblock forks might frequently lead to PBFT live-
ness interruptions as discussed above, by splitting min-
ers “too evenly” between competing keyblocks. Another
approach to deciding between competing keyblocks is
to impose a deterministic priority function on their hash
values, such as “smallest hash wins.” Unfortunately, this
practice can encourage selfish mining.

One way to break a tie without helping selfish miners,
is to increase the entropy of the output of the determinis-
tic prioritization function. We implement this idea using
the following algorithm. When a miner detects a key-
block fork, it places all competing blocks’ header hashes
into a sorted array, from low to high hash values. The
array itself is then hashed, and the final bit(s) of this hash
determine which keyblock wins the fork.

This solution, shown in Fig. 5, also uses the idea of a
deterministic function applied to the blocks, thus requir-
ing no voting. Its advantage is that the input of the hash
function is partially unknown before the fork occurs, thus
the entropy of the output is high and difficult for an at-
tacker to be able to optimize. Given that the search space
for a possible conflict is as big as the search space for
a new block, trying to decide if a block has better than
50% probability of winning the fork is as hard as finding
a new block.

H0 H1
... Hn−2 null

0 1 n − 2 n − 1

Hash

h

i = h mod (n − 1)

se
le
ct

it
h
en
tr
y

Figure 5: Deterministic fork resolution in ByzCoin

3.6.2 Leader Election and PBFT View Changes

Decoupling transaction verification from the block-
mining process comes at a cost. So far we have as-
sumed, as in PBFT, that the leader remains fixed unless
he fails. If we keep this assumption, then this leader
gains the power of deciding which transactions are ver-
ified, hence we forfeit the fairness-enforcing benefit of
Bitcoin’s leader election. To resolve this issue, every
time a keyblock is signed, ByzCoin forces a mandatory
PBFT view-change to the keyblock’s miner. This way
the power of verifying transactions in blocks is assigned
to the rightful miner, who has an era of microblock cre-
ation from the moment his keyblock is signed until the
next keyblock is signed.

When a keyblock conflict occurs, more than one such
“mandatory” view-change occurs, with the successful
miners trying to convince other participants to adopt their
keyblock and its associated consensus group. For exam-
ple, in a keyblock fork, one of the two competing key-
blocks wins the resolution algorithm described above.
However, if the miner of the “losing” block races to
broadcast its keyblock and more than 33% honest min-
ers have already committed to it before learning about
the competing keyblock, then the “winning” miner is too
late and the system either commits to the first block or (in
the worst case) loses liveness temporarily as discussed
above. This occurs because already-committed miners
will not accept a mandatory view-change except to a key-
block that represents their committed state and whose
microblock chain extends all previously-committed mi-
croblocks. Further analysis of how linearizability is pre-
served across view-changes may be found in the original
PBFT paper [14].

3.6.3 Tree Creation in ByzCoin

Once a miner successfully creates a new keyblock, he
needs to form a CoSi communication tree for collec-
tive signing, with himself as the leader. If all miners
individually acknowledge this keyblock to transition to

8

USENIX Association 25th USENIX Security Symposium 287

the next view, this coordination normally requires O(N)
messages. To avoid this overhead at the beginning of
each keyblock round, the miners autonomously create
the next round’s tree bottom-up during the previous key-
block round. This can be done in O(1) by using the
blockchain as an array that represents a full tree.

This tree-building process has three useful side-
effects. First, the previous leader is the first to get the new
block, hence he stops creating microblocks and wasting
resources by trying to sign them. Second, in the case of
a keyblock conflict, potential leaders use the same tree,
and the propagation pattern is the same; this means that
all nodes will learn and decide on the conflict quickly.
Finally, in the case of a view change, the new view will
be the last view that worked correctly. So if the leader
of the keyblock i fails, the next leader will again be the
miner of keyblock i−1.

3.7 Tolerating Churn and Byzantine Faults

In this section we discuss the challenges of fault toler-
ance in ByzCoin, particularly tree failures and maximum
tolerance for Byzantine faults.

3.7.1 Tree Fault Tolerance

In CoSi, there are multiple different mechanisms that al-
low substantial fault-tolerance. Furthermore the strict
membership requirements and the frequent tree changes
of ByzCoin increase the difficulty for a malicious at-
tacker with less than around 25% of the total hash power
to compromise the system. A security analysis, however,
must assume that a Byzantine adversary is able to get the
correct nodes of the ByzCoin signing tree so that it can
compromise the liveness of the system by a simple DoS.

To mitigate this risk, we focus on recent Byzantine
fault tolerance results [32], modifying ByzCoin so that
the tree communication pattern is a normal-case perfor-
mance optimization that can withstand most malicious
attacks. But when the liveness of the tree-based ByzCoin
is compromised, the leader can return to non-tree-based
communication until the end of his era.

The leader detects that the tree has failed with the fol-
lowing mechanism: After sending the block to his chil-
dren, the leader starts a timer that expires before the
view-change timer. Then he broadcasts the hash of the
block he proposed and waits. When the nodes receive
this message they check if they have seen the block and
either send an ACK or wait until they see the block and
then send the ACK. The leader collects and counts the
ACKs, to detect if his block is rejected simply because
it never reaches the witnesses. If the timer expires or a
block rejection arrives before he receives two-thirds of
the ACKs, the leader knows that the tree has failed and

reverts to a flat ByzCoin structure before the witnesses
assume that he is faulty.

As we show in Section 4, the flat ByzCoin structure
can still quickly sign keyblocks for the day-long window
(144 witnesses) while maintaining a throughput higher
than Bitcoin currently supports. Flat ByzCoin is more
robust to faults, but increases the communication latency
back to O(n). Furthermore, if all faults (�N

3 �) are con-
secutive leaders, this can lead back to a worst case O(n2)
communication latency.

3.7.2 Membership Churn and BFT

After a new leader is elected, the system needs to en-
sure that the first microblock of the new leader points
to the last microblock of the previous leader. Having
2 f + 1 supporting votes is not enough. This occurs be-
cause there is the possibility than an honest node lost its
membership when the new era started. Now in the worst
case, the system has f Byzantine nodes, f honest nodes
that are up to date, f slow nodes that have a stale view of
the blockchain, and the new leader that might also have
a stale view. This can lead to the leader proposing a new
microblock, ignoring some signed microblocks and get-
ting 2 f +1 support (stale+Byzantine+his own). For this
reason, the first microblock of an era needs 2 f + 2 sup-
porting signatures. If the leader is unable to obtain them,
this means that he needs to synchronize with the system,
i.e., he needs to find the latest signed microblock from
the previous roster. He asks all the nodes in his roster,
plus the node that lost its membership, to sign a latest-
checkpoint message containing the hash of the last mi-
croblock. At this point in time, the system has 3 f + 2
(3 f + 1 of the previous roster plus the leader) members
and needs 2 f +1 honest nodes to verify the checkpoint,
plus an honest leader to accept it (a Byzantine leader will
be the f +1 fault and compromise liveness). Thus, Byz-
Coin can tolerate f fails in a total of 3 f +2 nodes.

4 Performance Evaluation

In this section we discuss the evaluation of the ByzCoin
prototype and our experimental setup. The main ques-
tion we want to evaluate is whether ByzCoin is usable in
practice without incurring large overheads. In particular
we focus on consensus latency and transaction through-
put for different parameter combinations.

4.1 Prototype Implementation
We implemented ByzCoin in Go1 and made it pub-
licly available on GitHub.2 ByzCoin’s consensus mecha-

1https://golang.org
2https://github.com/DeDiS/Cothority

9

288 25th USENIX Security Symposium USENIX Association

nism is based on the CoSi protocol with Ed25519 signa-
tures [6] and implements both flat- and tree-based collec-
tive signing layouts as described in Section 3. For com-
parison, we also implemented a conventional PBFT con-
sensus algorithm with the same communication patterns
as above and a consensus algorithm that uses individual
signatures and tree-based communication.

To simulate consensus groups of up to 1008 nodes,
we oversubscribed the available 36 physical machines
(see below) and ran up to 28 separate ByzCoin pro-
cesses on each server. Realistic wide-area network con-
ditions are mimicked by imposing a round-trip latency
of 200 ms between any two machines and a link band-
width of 35 Mbps per simulated host. Note that this sim-
ulates only the connections between miners of the con-
sensus group and not the full Bitcoin network. Full nodes
and clients are not part of the consensus process and can
retrieve signed blocks only after consensus is reached.
Since Bitcoin currently is rather centralized and has only
a few dozen mining pools [3], we assume that if/when
decentralization happens, all miners will be able to sup-
port these rather constrained network requirements.

The experimental data to form microblocks was taken
by ByzCoin clients from the actual Bitcoin blockchain.
Both micro- and keyblocks are fully transmitted and col-
lectively signed through the tree and are returned to the
clients upon request together with the proof. Verifi-
cation of block headers is implemented but transaction
verification is only emulated to avoid further measure-
ment distortion through oversubscribed servers. A sim-
ilar practice is used in Shadow Bitcoin [45]. We base
our emulation both on measurements [31] of the aver-
age block-verification delays (around 200 ms for 500 MB
blocks) and on the claims of Bitcoin developers [8] that
as far as hardware is concerned Bitcoin can easily ver-
ify 4000 TPS. We simulate a linear increase of this delay
proportional to the number of transactions included in the
block. Because of the communication pattern of Byz-
Coin, the transaction-verification cost delays only the
leaf nodes. By the time the leaf nodes finish the block
verification and send their vote back to their parents, all
other tree nodes should have already finished the verifi-
cation and can immediately proceed. For this reason the
primary delay factor is the transmission of the blocks that
needs to be done logN sequential times.

We ran all our experiments on DeterLab [22] using
36 physical machines, each having four Intel E5-2420
v2 CPUs and 24 GB RAM and being arranged in a star-
shaped virtual topology.

4.2 Consensus Latency

The first two experiments focus on how microblock com-
mitment latency scales with consensus group size and

Figure 6: Influence of the consensus group size on the
consensus latency

with number of transactions per block.

4.2.1 Consensus Group Size Comparison

This experiment focuses on the scalability of ByzCoin’s
BFT protocol in terms of the consensus group size. The
number of unique miners participating in a consensus
group is limited by the number of membership shares
in the window (Section 3.3), but can be smaller if some
miners hold multiple shares (i.e., successfully mined sev-
eral blocks) within the same window.

We ran experiments for Bitcoin’s maximum block size
(1 MB) with a variable number of participating hosts.
Every time we increased the number of hosts, we also in-
creased the servers’ bandwidth so that the available band-
width per simulated host remained constant (35 Mbps).
For the PBFT simulation, the 1 MB block was too big
to handle, thus the PBFT line corresponds to a 250 KB
block size.

As Fig. 6 shows, the simple version of ByzCoin
achieves acceptable latency, as long as the consensus
group size is less than 200. After this point the cost
for the leader to broadcast the block to everyone incurs
large overheads. On the contrary, the tree-based Byz-
Coin scales well, since the same 1 MB block for 1008
nodes suffers signing latency less than the flat approach
for 36 nodes. Adding 28 times more nodes (from 36 to
1008) causes a latency increase close to a factor 2 (from
6.5 to 14 seconds). The basic PBFT implementation is
quite fast for 2 nodes but scales poorly (40 seconds for
100 nodes), whereas the tree-based implementation with
individual signatures performs the same as ByzCoin for
up to 200 hosts. If we aim for the higher security level of
1008 nodes, however, then ByzCoin is 3 times faster.

Fig. 7 shows the performance cost of keyblock sign-

10

USENIX Association 25th USENIX Security Symposium 289

Figure 7: Keyblock signing latency

ing. The flat variant outperforms the tree-based version
when the number of hosts is small since the blocks have
as many transactions as there are hosts and thus are small
themselves. This leads to a fast transmission even in the
flat case and the main overhead comes from the block
propagation latency, which scales with O(logN) in the
tree-based ByzCoin variant.

4.2.2 Block Size Comparison

The next experiment analyzes how different block sizes
affect the scalability of ByzCoin. We used a constant
number of 144 hosts for all implementations. Once
again, PBFT was unable to achieve acceptable latency
with 144 nodes, thus we ran it with 100 nodes only.

Fig. 8 shows the average latency of the consensus
mechanism, determined over 10 blocks when their re-
spective sizes increase. As in the previous section we
see that the flat implementation is acceptable for a 1 MB
block, but when the block increases to 2 MB the latency
quadruples. This outcome is expected as the leader’s
link saturates when he tries to send 2 MB messages to
every participating node. In contrast ByzCoin scales
well because the leader outsources the transmission of
the blocks to other nodes and contacts only his chil-
dren. The same behavior is observed for the algorithm
that uses individual signatures and tree-based communi-
cation, which shows that the block size has no negative
effect on scalability when a tree is used. Finally, we find
that PBFT is fast for small blocks, but the latency rapidly
increases to 40 seconds for 250 KB blocks.

ByzCoin’s signing latency for a 1 MB block is close
to 10 seconds, which should be small enough to make
the need for 0-confirmation transactions almost disap-
pear. Even for a 32 MB block (≈ 66000 transactions) the
delay is much lower (around 90 seconds) than the ≈ 10

Figure 8: Influence of the block size on the consensus
latency

Figure 9: Influence of the consensus group size on the
block signing latency

minutes required by Bitcoin.

Fig. 9 demonstrates the signing latency of various
blocks sizes on tree-based ByzCoin. Signing one-
transaction blocks takes only 3 seconds even when 1008
miners co-sign it. For bigger blocks, we have included
Bitcoin’s current maximum block size of 1 MB along
with the proposed limits of 2 MB in Bitcoin Classic and
8 MB in Bitcoin Unlimited [2]. As the graph shows,
1 MB and 2 MB blocks scale linearly in number of nodes
at first but after 200 nodes, the propagation latency is
higher than the transmission of the block, hence the la-
tency is close to constant. For 8 MB blocks, even with
1008 the signing latency increases only linearly.

11

290 25th USENIX Security Symposium USENIX Association

Figure 10: Throughput of ByzCoin

4.3 Transaction Throughput

In this experiment, we investigate the maximum through-
put in terms of transactions per second (TPS) that Byz-
Coin can achieve, and show how Bitcoin could improve
its throughput by adopting a ByzCoin-like deployment
model. We tested ByzCoin versions with consensus
group sizes of 144 and 1008 nodes, respectively. Note
that performance-wise this resembles the worst case sce-
nario since the miner-share ratio is usually not 1:1 as
miners in the consensus group are allowed to hold multi-
ple shares, as described in Section 3.3.

Analyzing Fig. 10 shows that Bitcoin can increase its
overall throughput by more than one order of magnitude
through adoption of a flat ByzCoin-like model, which
separates transaction verification and block mining and
deals with forks via strong consistency. Furthermore, the
144 node configuration can achieve close to 1000 TPS,
which is double the throughput of Paypal, and even the
1008-node roster achieves close to 700 TPS. Even when
the tree fails, the system can revert back to 1 MB mi-
croblocks on the flat and more robust variant of ByzCoin
and still have a throughput ten times higher than the cur-
rent maximum throughput of Bitcoin.

In both Figs. 8 and 10, the usual trade-off between
throughput and latency appears. The system can work
with 1–2 MB microblocks when the load is normal and
then has a latency of 10–20 seconds. If an overload oc-
curs, the system adaptively changes the block size to en-
able higher throughput. We note that this is not the case
in the simple ByzCoin where 1 MB microblocks have op-
timal throughput and acceptable latency.

5 Security Analysis

In this section, we conduct a preliminary, informal se-
curity analysis of ByzCoin, and discuss how its consen-
sus mechanism can mitigate or eliminate some known
attacks against Bitcoin.

5.1 Transaction Safety
In the original Bitcoin paper [47], Nakamoto mod-
els Bitcoin’s security against transaction double spend-
ing attacks as in a Gambler’s Ruin Problem. Further-
more, he models the progress an attacker can make as a
Poisson distribution and combines these two models to
reach Eq. (1). This equation calculates the probability of
a successful double spend after z blocks when the adver-
sary controls q computing power.

P = 1−
z

∑
k=0

λ ke−λ

k!

(
1−

(
q
p

)(z−k)
)

(1)

In Figs. 11 and 12 we compare the relative safety
of a transaction over time in Bitcoin3 versus ByzCoin.
Fig. 11 shows that ByzCoin can secure a transaction in
less than a minute, because the collective signature guar-
antees forward security. On the contrary, Bitcoin’s trans-
actions need hours to be considered fully secured from a
double-spending attempt. Fig. 12 illustrates the required
time from transaction creation to the point where a dou-
ble spending attack has less than 0.1% chance of success.
ByzCoin incurs a latency of below one minute to achieve
the above security, which boils down to the time the sys-
tems needs to produce a collectively signed microblock.
Bitcoin on the other hand needs several hours to reach
the same guarantees. Note that this graph does not con-
sider other advanced attacks, such as eclipse attacks [34],
where Bitcoin offers no security for the victim’s transac-
tions.

5.2 Proof-of-Membership Security
The security of ByzCoin’s proof-of-membership mecha-
nism can be modeled as a random sampling problem with
two possible independent outcomes (honest, Byzantine).
The probability of picking a Byzantine node (in the worst
case) is p = 0.25 and the number of tries corresponds to
the share window size w. In this setting, we are inter-
ested in the probability that the system picks less than
c = �w

3 � Byzantine nodes as consensus group members
and hence guarantees safety. To calculate this probabil-
ity, we use the cumulative binomial distribution where
X is the random variable that represents the number of
times we pick a Byzantine node:

3Based on data from https://blockchain.info.

12

USENIX Association 25th USENIX Security Symposium 291

Figure 11: Successful double-spending attack probabil-
ity

Figure 12: Client-perceived secure transaction latency

P [X ≤ c] =
c

∑
k=0

(
w
k

)
pk (1− p)w−k (2)

Table 1 displays the results for the evaluation of Eq. (2)
for various window sizes w both in the common threat
model where an adversary controls up to 25% hash
power and in the situation where the system faces a
stronger adversary with up to 30% computing power.
The latter might temporarily occur due to hash power
variations and resource churn.

Table 1: Expected proof-of-membership security levels
p | w 12 100 144 288 1008 2016

0.25 0.842 0.972 0.990 0.999 0.999 1.000
0.30 0.723 0.779 0.832 0.902 0.989 0.999

At this point, recall that w specifies the number of

available shares and not necessarily the number of ac-
tual miners as each member of the consensus group is
allowed to hold multiple shares. This means that the
number of available shares gives an upper bound on the
latency of the consensus mechanism with the worst case
being that each member holds exactly one share.

In order to choose a value for w appropriately one
must take into account not only consensus latency and
the desired security level (ideally ≥ 99%) but also the in-
creased chance for resource churn when values of w be-
come large. From a security perspective the results of Ta-
ble 1 suggest that the share window size should not be set
to values lower than w = 144. Ideally, values of w = 288
and above should be chosen to obtain a reasonable secu-
rity margin and, as demonstrated in Section 4, values up
to w = 1008 provide excellent performance numbers.

Finally, care should be taken when bootstrapping the
protocol, as for small values of w there is a high proba-
bility that a malicious adversary is able to take over con-
trol. For this reason we suggest that ByzCoin starts with
vanilla Nakamoto consensus and only after w keyblocks
are mined the ByzCoin consensus is activated.

5.3 Defense Against Bitcoin Attacks
0-confirmation Double-Spend Attacks. Race [35]
and Finney [26] attacks belong to the family of 0-
confirmation double-spend attacks which might affect
traders that provide real-time services to their clients. In
such scenarios the time between exchange of currency
and goods is usually short because traders often cannot
afford to wait an extended period of time (10 or more
minutes) until a transaction they received can be consid-
ered indeed confirmed.

ByzCoin can mitigate both attacks by putting the mer-
chant’s transaction in a collectively signed microblock
whose verification latency is in the order of a few sec-
onds up to a minute. If this latency is also unacceptable,
then he can send a single transaction for signing, which
will cost more, but is secured in less than 4 seconds.

N-confirmation Double-Spend Attacks. The as-
sumption underlying this family of attacks [7] is that,
after receiving a transaction for a trade, a merchant
waits N − 1 additional blocks until he concludes the
interaction with his client. At this point, a malicious
client creates a new double-spending transaction and
tries to fork the blockchain, which has a non-negligible
success-probability if the adversary has enough hash
power. For example, if N = 3 then an adversary
holding 10% of the network’s hash power has a 5%
success-chance to mount the above attack [47].

In ByzCoin the merchant would simply check the
collective signature of the microblock that includes the

13

292 25th USENIX Security Symposium USENIX Association

transaction, which allows him to verify that it was ac-
cepted by a super-majority of the network. Afterwards
the attacker cannot succeed in forking the blockchain as
the rest of the signers will not accept his new block. Even
if the attacker is the leader, the proposed microblock will
be rejected, and a view change will occur.

Eclipse and Delivery-Tampering Attacks. In an
eclipse attack [34] it is assumed that an adversary con-
trols a sufficiently large number of connections between
the victim and the Bitcoin network. This enables the at-
tacker to mount attacks such as 0- and N-confirmation
double-spends with an ever increasing chance of suc-
cess the longer the adversary manages to keep his control
over the network. Delivery-tampering attacks [31] ex-
ploit Bitcoin’s scalability measures to delay propagation
of blocks without causing a network partition. This al-
lows an adversary to control information that the victim
receives and simplifies to mount 0- and 1-confirmation
double-spend attacks as well as selfish-mining.

While ByzCoin does not prevent an attacker from
eclipsing a victim or delaying messages in the peer-to-
peer network, its use of collective signatures in transac-
tion commitment ensure that a victim cannot be tricked
into accepting an alternate attacker-controlled transac-
tion history produced in a partitioned network fragment.

Selfish and Stubborn Mining Attacks. Selfish min-
ing [25] allows a miner to increase his profit by adding
newly mined blocks to a hidden blockchain instead of in-
stantly broadcasting them. This effect can be further am-
plified if the malicious miner has good connectivity to the
Bitcoin network. The authors of selfish mining propose
a countermeasure that thwarts the attack if a miner has
less than 25% hash power under normal circumstances or
less than 33% in case of an optimal network. Stubborn
mining [48] further generalizes the ideas behind selfish
mining and combines it with eclipse attacks in order to
increase the adversary’s revenue.

In ByzCoin, these strategies are ineffective as forks are
instantly resolved in a deterministic manner, hence build-
ing a hidden blockchain only wastes resources and min-
imizes revenue. Another approach to prevent the above
attacks would be to include bias-resistant public random-
ness [40] in every keyblock. This way even if an attacker
gains control over the consensus mechanism (e.g., by
having > 33% hash power) he would still be unable to
mine hidden blocks. We leave exploring this approach
for future research.

Transaction Censorship. In Bitcoin-NG, a malicious
leader can censor transactions for the duration of his
epoch(s). The same applies for ByzCoin. However, as

not every leader is malicious, the censored transactions
are only delayed and will be processed eventually by the
next honest leader. ByzCoin can improve on this, as the
leader’s actions are double-checked by all the other min-
ers in the consensus group. A client can announce his
censored transaction just like in classic PBFT; this will
indicate a potential leader fault and will either stop cen-
sorship efforts or lead to a view-change to remove the
malicious leader. Finally, in Bitcoin(-NG) a miner can
announce his intention to fork over a block that includes
a transaction, giving an incentive to other miners to ex-
clude this transaction. In ByzCoin using fork-based at-
tacks to censor transactions is no longer possible due to
ByzCoin’s deterministic fork resolution mechanism. An
attacker can therefore only vote down a leader’s propos-
als by refusing to co-sign. This is also a limitation, how-
ever, as an adversary who controls more than 33% of the
shares (Section 7) deny service and can censor transac-
tions for as long as he wants.

6 Related Work

ByzCoin and Bitcoin [47] share the same primary ob-
jective: implement a state machine replication (SMR)
system with open membership [9, 29]. Both therefore
differ from more classic approaches to Byzantine fault-
tolerant SMRs with static or slowly changing consensus
groups such as PBFT [14], Tendermint [10], or Hyper-
ledger [42].

Bitcoin has well-known performance shortcomings;
there are several proposals [41, 57] on how to address
these. The GHOST protocol [53] changes the chain se-
lection rule when a fork occurs. While Bitcoin declares
the fork with the most proof-of-work as the new valid
chain, GHOST instead chooses the entire subtree that
received the most computational effort. Put differently,
the subtree that was considered correct for the longest
time will have a high possibility of being selected, mak-
ing an intentional fork much harder. One limitation of
GHOST is that no node will know the full tree, as in-
valid blocks are not propagated. While all blocks could
be propagated, this makes the system vulnerable to DoS
attacks since an adversary can simply flood the network
with low-difficulty blocks.

Off-chain transactions, an idea that originated from the
two-point channel protocol [33], are another alternative
to improve latency and throughput of the Bitcoin net-
work. Other similar proposals include the Bitcoin Light-
ning Network [50] and micro-payment channels [20],
which allow transactions without a trusted middleman.
They use contracts so that any party can generate proof-
of-fraud on the main blockchain and thereby deny rev-
enue to an attacker. Although these systems enable faster
cryptocurrencies, they do not address the core problem

14

USENIX Association 25th USENIX Security Symposium 293

of scaling SMR systems, thus sacrificing the open and
distributed nature of Bitcoin. Finally, the idea behind
sidechains [5] is to connect multiple chains with each
other and enable the transfer of Bitcoins from one chain
to another. This enables the workload distribution to
multiple subsets of nodes that run the same protocol.

There are several proposals that, like ByzCoin, tar-
get the consensus mechanism and try to improve differ-
ent aspects. Ripple [52] implements and runs a variant
of PBFT that is low-latency and based on collectively-
trusted subnetworks with slow membership changes.
The degree of decentralization depends on the concrete
configuration of an instance. Tendermint [10] also im-
plements a PBFT-like algorithm, but evaluates it with at
most 64 “validators”. Furthermore, Tendermint does not
address important challenges such as the link-bandwidth
between validators, which we found to be a primary bot-
tleneck. PeerCensus [19] is an interesting alternative that
shares similarities with ByzCoin, but is only a prelimi-
nary theoretical analysis.

Finally, Stellar [43] proposes a novel consensus proto-
col named Federated Byzantine Agreement, which intro-
duces Quorum slices that enable a BFT protocol “open
for anyone to participate”. Its security, however, depends
on a nontrivial and unfamiliar trust model requiring cor-
rect configuration of trustees by each client.

7 Limitations and Future Work

This section briefly outlines several of ByzCoin’s impor-
tant remaining limitations, and areas for future work.

Consensus-Group Exclusion. A malicious ByzCoin
leader can potentially exclude nodes from the consen-
sus process. This is easier in the flat variant, where
the leader is responsible for contacting every participat-
ing miner, but it is also possible in the tree-based ver-
sion, if the leader “reorganizes” the tree and puts nodes
targeted for exclusion in subtrees where the roots are
colluding nodes. A malicious leader faces a dilemma,
though: excluded nodes lose their share of newly minted
coins which increases the overall value per coin and thus
the leader’s reward. The victims, however, will quickly
broadcast view-change messages in an attempt to remove
the Byzantine leader.

As an additional countermeasure to mitigate such an
attack, miners could run a peer-to-peer network on top of
the tree to communicate protocol details. Thus each node
potentially receives information from multiple sources.
If the parent of a node fails to deliver the announcement
message of a new round, this node could then choose
to attach itself (together with its entire subtree) to an-
other participating (honest) miner. This self-adapting

tree could mitigate the leader’s effort to exclude miners.
As a last resort, the malicious leader could exclude the
commitments of the victims from the aggregate commit-
ment, but as parts of the tree have witnessed these com-
mitments, the risk of triggering a view-change is high.

In summary, the above attack seems irrational as the
drawbacks of trying to exclude miners seem to outweigh
the benefits. We leave a more thorough analysis of this
situation for future work.

Defenses Against 33%+ Attacks. An attacker pow-
erful enough to control more than 1

3 of the consensus
shares can, in the Byzantine threat model, trivially censor
transactions by withholding votes, and double-spend by
splitting honest nodes in two disjoint groups and collect-
ing enough signatures for two conflicting microblocks.
Fig. 12 shows how the safety of ByzCoin fails at 30%,
whereas Bitcoin remains safe even for 48%, if a client
can wait long enough.

However, the assumption that an attacker completely
controls the network is rather unrealistic, especially if
messages are authenticated and spoofing is impossi-
ble [3]. The existence of the peer-to-peer network on
top of the tree, mentioned in the previous paragraph, en-
ables the detection of equivocation attacks such as mi-
croblock forks and mitigates the double-spending efforts,
as honest nodes will stop following the leader. Thus,
double-spending and history rewriting attacks in Byz-
Coin become trivial only after the attacker has 66% of
the shares, effectively increasing the threshold from 51%
to 66%. This assumption is realistic, as an attacker con-
trolling the complete network can actually split Bitcoin’s
network in two halves and trivially double-spend on the
weaker side. This is possible because the weak side cre-
ates blocks that will be orphaned once the partition heals.
We again leave a more thorough analysis of this situation
for future work.

Proof-of-Work Alternatives. Bitcoin’s hash-based
proof-of-work has many drawbacks, such as energy
waste and the efficiency advantages of custom ASICs
that have made mining by “normal users” impracti-
cal. Many promising alternatives are available, such
as memory-intensive puzzles [4], or proof-of-stake de-
signs [37]. Consensus group membership might in prin-
ciple also be based on other Sybil attack-resistant meth-
ods, such as those based on social trust networks [58].
A more democratic alternative might be to apportion
mining power on a “1 person, 1 vote” principle, based
on anonymous proof-of-personhood tokens distributed at
pseudonym parties [28]. Regardless, we treat the ideal
choice of Sybil attack-resistance mechanism as an issue
for future work, orthogonal to the focus of this paper.

15

294 25th USENIX Security Symposium USENIX Association

Other Directions. Besides the issues outlined above,
there are many more interesting open questions worth
considering: Sharding [17] presents a promising ap-
proach to scale distributed protocols and was already
studied for private blockchains [18]. A sharded variant of
ByzCoin might thus achieve even better scalability and
performance numbers. A key obstacle that needs to be
analyzed in that context before though is the generation
of bias-resistant public randomness [40] which would
enable to pick members of a shard in a distributed and se-
cure manner. Yet another challenge is to find ways to in-
crease incentives of rational miners to remain honest, like
binding coins and destroying them when misbehavior is
detected [10]. Finally, asynchronous BFT [12, 11] is an-
other interesting class of protocols, which only recently
started to be analyzed in the context of blockchains [46].

8 Conclusion

ByzCoin is a scalable Byzantine fault tolerant consen-
sus algorithm for open decentralized blockchain systems
such as Bitcoin. ByzCoin’s strong consistency increases
Bitcoin’s core security guarantees—shielding against at-
tacks on the consensus and mining system such as
N-confirmation double-spending, intentional blockchain
forks, and selfish mining—and also enables high scal-
ability and low transaction latency. ByzCoin’s applica-
tion to Bitcoin is just one example, though: theoreti-
cally, it can be deployed to any blockchain-based system,
and the proof-of-work-based leader election mechanism
might be changed to another approach such as proof-
of-stake. If open membership is not an objective, the
consensus group could be static, though still potentially
large. We developed a wide-scale prototype implemen-
tation of ByzCoin, validated its efficiency with measure-
ments and experiments, and have shown that Bitcoin can
increase the capacity of transactions it handles by more
than two orders of magnitude.

Acknowledgments

We would like to thank the DeterLab project team for
providing the infrastructure for our experimental evalu-
ation, Joseph Bonneau for his input on our preliminary
design, and the anonymous reviewers for their helpful
feedback.

References

[1] ABD-EL-MALEK, M., GANGER, G. R., GOOD-
SON, G. R., REITER, M. K., AND WYLIE, J. J.
Fault-scalable Byzantine Fault-tolerant Services.

SIGOPS Operating Systems Review 39, 5 (Oct.
2005), 59–74.

[2] ANDRESEN, G. Classic? Unlimited? XT? Core?,
Jan. 2016.

[3] APOSTOLAKI, M., ZOHAR, A., AND VAN-
BEVER, L. Hijacking Bitcoin: Large-scale Net-
work Attacks on Cryptocurrencies. arXiv preprint
arXiv:1605.07524 (2016).

[4] ATENIESE, G., BONACINA, I., FAONIO, A., AND
GALESI, N. Proofs of Space: When Space is of
the Essence. In Security and Cryptography for Net-
works. Springer, 2014, pp. 538–557.

[5] BACK, A., CORALLO, M., DASHJR, L.,
FRIEDENBACH, M., MAXWELL, G., MILLER,
A., POELSTRA, A., TIMÓN, J., AND WUILLE,
P. Enabling Blockchain Innovations with Pegged
Sidechains.

[6] BERNSTEIN, D. J., DUIF, N., LANGE, T.,
SCHWABE, P., AND YANG, B.-Y. High-speed
high-security signatures. Journal of Cryptographic
Engineering 2, 2 (2012), 77–89.

[7] BITCOIN WIKI. Confirmation, 2016.

[8] BITCOIN WIKI. Scalability, 2016.

[9] BONNEAU, J., MILLER, A., CLARK, J.,
NARAYANAN, A., KROLL, J., AND FELTEN,
E. W. Research Perspectives and Challenges for
Bitcoin and Cryptocurrencies. In 2015 IEEE Sym-
posium on Security and Privacy. IEEE (2015).

[10] BUCHMAN, E. Tendermint: Byzantine Fault Tol-
erance in the Age of Blockchains, 2016.

[11] CACHIN, C., KURSAWE, K., PETZOLD, F., AND
SHOUP, V. Secure and Efficient Asynchronous
Broadcast Protocols. In Advances in Cryptology
(CRYPTO) (Aug. 2001).

[12] CACHIN, C., KURSAWE, K., AND SHOUP, V.
Random Oracles in Constantinople: Practical asyn-
chronous Byzantine agreement using cryptography.
In 19th ACM Symposium on Principles of Dis-
tributed Computing (PODC) (July 2000).

[13] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-
M., NANDI, A., ROWSTRON, A., AND SINGH, A.
SplitStream: high-bandwidth multicast in coopera-
tive environments. In ACM Symposium on Operat-
ing Systems Principles (SOSP) (2003).

16

USENIX Association 25th USENIX Security Symposium 295

[14] CASTRO, M., AND LISKOV, B. Practical Byzan-
tine Fault Tolerance. In 3rd USENIX Symposium
on Operating Systems Design and Implementation
(OSDI) (Feb. 1999).

[15] CLEMENT, A., WONG, E. L., ALVISI, L.,
DAHLIN, M., AND MARCHETTI, M. Making
Byzantine Fault Tolerant Systems Tolerate Byzan-
tine Faults. In 6th USENIX Symposium on Net-
worked Systems Design and Implementation (Apr.
2009).

[16] COWLING, J., MYERS, D., LISKOV, B., RO-
DRIGUES, R., AND SHRIRA, L. HQ Replication:
A Hybrid Quorum Protocol for Byzantine Fault
Tolerance. In 7th Symposium on Operating Systems
Design and Implementation (Berkeley, CA, USA,
2006), OSDI ’06, USENIX Association, pp. 177–
190.

[17] CROMAN, K., DECKE, C., EYAL, I., GENCER,
A. E., JUELS, A., KOSBA, A., MILLER, A.,
SAXENA, P., SHI, E., SIRER, E. G., AN, D. S.,
AND WATTENHOFER, R. On Scaling Decentral-
ized Blockchains (A Position Paper). In 3rd Work-
shop on Bitcoin and Blockchain Research (2016).

[18] DANEZIS, G., AND MEIKLEJOHN, S. Centrally
Banked Cryptocurrencies.

[19] DECKER, C., SEIDEL, J., AND WATTENHOFER,
R. Bitcoin Meets Strong Consistency. In 17th
International Conference on Distributed Comput-
ing and Networking (ICDCN), Singapore (January
2016).

[20] DECKER, C., AND WATTENHOFER, R. A Fast and
Scalable Payment Network with Bitcoin Duplex
Micropayment Channels. In Stabilization, Safety,
and Security of Distributed Systems. Springer, Aug.
2015, pp. 3–18.

[21] DEERING, S. E., AND CHERITON, D. R. Mul-
ticast Routing in Datagram Internetworks and Ex-
tended LANs. ACM Transactions on Computer
Systems 8, 2 (May 1990).

[22] DeterLab Network Security Testbed, September
2012.

[23] DOUCEUR, J. R. The Sybil Attack. In 1st Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS)
(Mar. 2002).

[24] EYAL, I., GENCER, A. E., SIRER, E. G., AND
VAN RENESSE, R. Bitcoin-NG: A Scalable
Blockchain Protocol. In 13th USENIX Symposium
on Networked Systems Design and Implementation

(NSDI 16) (Santa Clara, CA, Mar. 2016), USENIX
Association.

[25] EYAL, I., AND SIRER, E. G. Majority is not
enough: Bitcoin mining is vulnerable. In Financial
Cryptography and Data Security. Springer, 2014,
pp. 436–454.

[26] FINNEY, H. Best practice for fast transaction ac-
ceptance – how high is the risk?, Feb. 2011. Bitcoin
Forum comment.

[27] FISCHER, M. J., LYNCH, N. A., AND PATERSON,
M. S. Impossibility of distributed consensus with
one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374–382.

[28] FORD, B., AND STRAUSS, J. An offline founda-
tion for online accountable pseudonyms. In 1st In-
ternational Workshop on Social Network Systems
(SocialNets) (2008).

[29] GARAY, J., KIAYIAS, A., AND LEONARDOS, N.
The Bitcoin backbone protocol: Analysis and ap-
plications. In EUROCRYPT 2015. Springer, 2015,
pp. 281–310.

[30] GERVAIS, A., KARAME, G. O., WUST, K.,
GLYKANTZIS, V., RITZDORF, H., AND CAPKUN,
S. On the Security and Performance of Proof of
Work Blockchains. Tech. rep., IACR: Cryptology
ePrint Archive, 2016.

[31] GERVAIS, A., RITZDORF, H., KARAME, G. O.,
AND CAPKUN, S. Tampering with the Delivery of
Blocks and Transactions in Bitcoin. In 22nd ACM
SIGSAC Conference on Computer and Communi-
cations Security (2015), ACM, pp. 692–705.

[32] GUERRAOUI, R., KNEŽEVIĆ, N., QUÉMA, V.,
AND VUKOLIĆ, M. The next 700 BFT protocols.
In 5th European conference on Computer systems
(2010), ACM, pp. 363–376.

[33] HEARN, M., AND SPILMAN, J. Rapidly-adjusted
(micro)payments to a pre-determined party, 2015.

[34] HEILMAN, E., KENDLER, A., ZOHAR, A., AND
GOLDBERG, S. Eclipse Attacks on Bitcoin’s Peer-
to-Peer Network. In 24th USENIX Security Sympo-
sium (2015), pp. 129–144.

[35] KARAME, G. O., ANDROULAKI, E., AND CAP-
KUN, S. Double-spending fast payments in Bitcoin.
In 19th ACM Conference on Computer and commu-
nications security (2012), ACM, pp. 906–917.

17

296 25th USENIX Security Symposium USENIX Association

[36] KIAYIAS, A., AND PANAGIOTAKOS, G. Speed-
Security Tradeoffs in Blockchain Protocols. Tech.
rep., IACR: Cryptology ePrint Archive, 2015.

[37] KING, S., AND NADAL, S. PPCoin: Peer-to-peer
Crypto-Currency with Proof-of-Stake.

[38] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT,
A., AND WONG, E. Zyzzyva: Speculative Byzan-
tine Fault Tolerance. In 21st ACM SIGOPS Sym-
posium on Operating Systems Principles (SOSP)
(Oct. 2007), ACM.

[39] LAMPORT, L., SHOSTAK, R., AND PEASE, M.
The Byzantine Generals Problem. ACM Trans-
actions on Programming Languages and Systems
(TOPLAS) 4, 3 (1982), 382–401.

[40] LENSTRA, A. K., AND WESOLOWSKI, B. A ran-
dom zoo: sloth, unicorn, and trx. IACR eprint
archive, Apr. 2015.

[41] LEWENBERG, Y., SOMPOLINSKY, Y., AND ZO-
HAR, A. Inclusive Block Chain Protocols. In Fi-
nancial Cryptography and Data Security. Springer,
Jan. 2015, pp. 528–547.

[42] LINUX FOUNDATION. Hyperledger Project, 2016.

[43] MAZIÈRES, D. The Stellar Consensus Protocol: A
Federated Model for Internet-level Consensus.

[44] MERKLE, R. C. Secrecy, Authentication, and Pub-
lic Key Systems. PhD thesis, Stanford University,
June 1979.

[45] MILLER, A., AND JANSEN, R. Shadow-Bitcoin:
scalable simulation via direct execution of multi-
threaded applications. In 8th Workshop on Cy-
ber Security Experimentation and Test (CSET 15)
(2015).

[46] MILLER, A., XIA, Y., CROMAN, K., SHI, E.,
AND SONG, D. The honey badger of BFT pro-
tocols. Tech. rep., Cryptology ePrint Archive
2016/199, 2016.

[47] NAKAMOTO, S. Bitcoin: A Peer-to-Peer Elec-
tronic Cash System, 2008.

[48] NAYAK, K., KUMAR, S., MILLER, A., AND SHI,
E. Stubborn Mining: Generalizing Selfish Min-
ing and Combining with an Eclipse Attack. In 1st
IEEE European Symposium on Security and Pri-
vacy (Mar. 2015).

[49] PEASE, M., SHOSTAK, R., AND LAMPORT, L.
Reaching agreement in the presence of faults. Jour-
nal of the ACM (JACM) 27, 2 (1980), 228–234.

[50] POON, J., AND DRYJA, T. The Bitcoin Lightning
Network: Scalable Off-Chain Instant Payments,
Jan. 2016.

[51] SCHNORR, C. P. Efficient signature generation by
smart cards. Journal of Cryptology 4, 3 (1991),
161–174.

[52] SCHWARTZ, D., YOUNGS, N., AND BRITTO, A.
The Ripple protocol consensus algorithm. Ripple
Labs Inc White Paper (2014), 5.

[53] SOMPOLINSKY, Y., AND ZOHAR, A. Accelerat-
ing Bitcoin’s Transaction Processing. Fast Money
Grows on Trees, Not Chains, Dec. 2013.

[54] SYTA, E., TAMAS, I., VISHER, D., WOLINSKY,
D. I., L., GAILLY, N., KHOFFI, I., AND FORD, B.
Keeping Authorities “Honest or Bust” with Decen-
tralized Witness Cosigning. In 37th IEEE Sympo-
sium on Security and Privacy (May 2016).

[55] VENKATARAMAN, V., YOSHIDA, K., AND FRAN-
CIS, P. Chunkyspread: Heterogeneous Unstruc-
tured Tree-Based Peer-to-Peer Multicast. In 14th
International Conference on Network Protocols
(ICNP) (Nov. 2006).

[56] VUKOLIĆ, M. The quest for scalable blockchain
fabric: Proof-of-work vs. BFT replication. In Inter-
national Workshop on Open Problems in Network
Security (2015), Springer, pp. 112–125.

[57] WOOD, G. Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum Project Yel-
low Paper (2014).

[58] YU, H., GIBBONS, P. B., KAMINSKY, M., AND
XIAO, F. SybilLimit: A Near-Optimal Social Net-
work Defense against Sybil Attacks. In 29th IEEE
Symposium on Security and Privacy (S&P) (May
2008).

18

USENIX Association 25th USENIX Security Symposium 297

Faster Malicious 2-party Secure Computation
with Online/Offline Dual Execution

Peter Rindal∗

Oregon State University
Mike Rosulek∗

Oregon State University

Abstract

We describe a highly optimized protocol for general-
purpose secure two-party computation (2PC) in the pres-
ence of malicious adversaries. Our starting point is a pro-
tocol of Kolesnikov et al. (TCC 2015). We adapt that
protocol to the online/offline setting, where two parties
repeatedly evaluate the same function (on possibly dif-
ferent inputs each time) and perform as much of the com-
putation as possible in an offline preprocessing phase be-
fore their inputs are known. Along the way we develop
several significant simplifications and optimizations to
the protocol.

We have implemented a prototype of our protocol and
report on its performance. When two parties on Ama-
zon servers in the same region use our implementation to
securely evaluate the AES circuit 1024 times, the amor-
tized cost per evaluation is 5.1ms offline + 1.3ms online.
The total offline+online cost of our protocol is in fact
less than the online cost of any reported protocol with
malicious security. For comparison, our protocol’s clos-
est competitor (Lindell & Riva, CCS 2015) uses 74ms
offline + 7ms online in an identical setup.

Our protocol can be further tuned to trade performance
for leakage. As an example, the performance in the
above scenario improves to 2.4ms offline + 1.0ms online
if we allow an adversary to learn a single bit about the
honest party’s input with probability 2−20 (but not vio-
late any other security property, e.g. correctness).

1 Introduction
Secure two-party computation (2PC) allows mutually
distrusting parties to perform a computation on their
combined inputs, while revealing only the result. 2PC
was conceived in a seminal paper by Yao [34] and
shown to be feasible in principle using a construction
now known as garbled circuits. Later, the Fairplay

∗Supported by NSF award 1149647. The first author is also sup-
ported by an ARCS foundation fellowship.

project [24] was the first implementation of Yao’s proto-
col, which inspired interest in the practical performance
of 2PC.

1.1 Cut & Choose, Online/Offline Setting
The leading technique to secure Yao’s protocol against
malicious adversaries is known as cut-and-choose. The
idea is to have the sender generate many garbled circuits.
The receiver will choose a random subset of these to
be checked for correctness. If all checked circuits are
found to be correct, then the receiver has some confi-
dence about the unopened circuits, which can be evalu-
ated.

The cost of the cut-and-choose technique is therefore
tied to the number of garbled circuits that are generated.
To restrict a malicious adversary to a 2−s chance of vi-
olating security, initial cut-and-choose mechanisms re-
quired approximately 17s circuits [20]. This overhead
was later reduced to 3s circuits [21, 31, 32] and then s
circuits [19].

Suppose two parties wish to perform N secure com-
putations of the same function f (on possibly differ-
ent inputs each time), and are willing to do offline pre-
processing (which does not depend on the inputs). In
this online/offline setting, far fewer garbled circuits are
needed per execution. The idea, due to [14, 22], is to
generate many garbled circuits (enough for all N execu-
tions) and perform a single cut-and-choose on them all.
Then each execution of f will evaluate a random subset
(typically called a bucket) of the unopened circuits. Be-
cause the unopened circuits are randomly assigned to ex-
ecutions, only O(s/ logN) circuits are needed per bucket
to achieve security 2−s. Concretely, 4 circuits per bucket
suffice for security 2−40 and N = 1024.

1.2 Dual-execution Paradigm
An alternative to cut-and-choose for malicious-secure
2PC is the dual-execution protocol of Mohassel &
Franklin [25], which requires only two garbled circuits.

298 25th USENIX Security Symposium USENIX Association

The idea is that two parties run two instances of Yao’s
protocol, with each party acting as sender in one instance
and receiver in the other. They then perform a reconcilia-
tion step in which their garbled outputs are securely com-
pared for equality. Intuitively, one of the garbled outputs
is guaranteed to be correct, so the reconciliation step al-
lows the honest party to check whether its garbled output
agrees with the correct one held by the adversary.

Unfortunately, the dual execution protocol allows an
adversary to learn an arbitrary bit about the honest party’s
input. Consider an adversary who instead of garbling
the function f , garbles a different function f ′. Then the
output of the reconciliation step (secure equality test)
reveals whether f (x1,x2) = f ′(x1,x2). However, it can
be shown that the adversary can learn only a single bit,
and, importantly, cannot violate output correctness for
the honest party.

1.3 Reducing Leakage in Dual-execution
Kolesnikov et al. [16] proposed a combination of dual-
execution and cut-and-choose that reduces the probabil-
ity of a leaked bit. The idea is for each party to garble
and send s circuits instead of 1, and perform a cut-and-
choose to check each circuit with probability 1/2. Each
circuit should have the same garbled encoding for its out-
puts, so if both parties are honest, both should receive
just one candidate output.

However, a malicious party could cause the honest
party to obtain several candidate outputs. The approach
taken in [16] is to have the parties use private set inter-
section (PSI) to find a common value among their sets
of reconciliation values. This allows the honest party to
identify which of its candidate outputs is the correct one.

In Section 4 we discuss in more detail the security of-
fered by this protocol. Briefly, an adversary cannot vi-
olate output correctness for the honest party, and learns
only a single bit about the honest party’s input with prob-
ability at most 1/2s (which happens only when the hon-
est part doesn’t evaluate any correct garbled circuit).

2 Overview of Our Results
We adapt the dual-execution protocol of [16] to the on-
line/offline setting. The result is the fastest protocol to
date for 2PC in the presence of malicious adversaries.
At a very high level, both parties exchange many gar-
bled circuits in the offline phase and perform a cut-and-
choose. In the online phase, each party evaluates a ran-
dom bucket of its counterpart’s circuits. The parties then
use the PSI-based reconciliation to check the outputs.

2.1 Technical Contributions
While the high-level idea is straight-forward, some non-
trivial technical changes are necessary to adapt [16] to
the online/offline setting while ensuring high perfor-
mance in practice.

In particular, an important part of any malicious-
secure protocol is to ensure that parties use the same
inputs in all garbled circuits. The method suggested in
[16] is incompatible with offline pre-processing, whereas
the method from [23] does not ensure consistency be-
tween circuits generated by different parties, which is
the case for dual-execution (both parties generate gar-
bled circuits). We develop a new method for input con-
sistency that is tailored specifically to the dual-execution
paradigm and that incurs less overhead than any existing
technique.

In [16], the parties evaluate garbled circuits and then
use active-secure private set intersection (PSI) to recon-
cile their outputs. We improve the analysis of [16] and
show that it suffices to use PSI that gives a somewhat
weaker level of security. Taking advantage of this, we
describe an extremely lightweight PSI protocol (a vari-
ant of one in [30]) that satisfies this weak level of security
while being round-optimal.

2.2 Implementation, Performance
We implemented a C++ prototype of our protocol us-
ing state-of-the-art optimizations, including the garbled-
circuit construction of [35]; the OT-extension protocol
of [15] instantiated with the base OTs of [7]. The pro-
totype is heavily parallelized within both phases. Work
is divided amongst threads that concurrently generate &
evaluate circuits, allowing network throughput to be the
primary bottleneck. The result is an extremely fast 2PC
system. When securely evaluating the AES circuit on co-
located Amazon AWS instances, we achieve the lowest
amortized cost to date of 5.1ms offline + 1.3ms online
per execution.

2.3 Comparison to GC-based Protocols
There have been several implementations of garbled-
circuit-based 2PC protocols that achieve malicious secu-
rity [1, 12, 18, 23, 29, 31, 32]. Except for [23], none of
these protocols are in the online/offline settings so their
performance is naturally much lower (100-1000× slower
than online/offline protocols). Among them, the fastest
reported secure evaluation of AES is that of [12], which
was 0.46s exploiting consumer GPUs. Other protocols
have been described (but not implemented) that com-
bine cut-and-choose with the dual-execution paradigm to
achieve malicious security [13, 26]. The protocol of [13]
leaks more than one bit when the adversary successfully
cheats during cut-and-choose.

Our protocol is most closely related to that of [23],
which also achieves fast, active-secure 2PC in the on-
line/offline setting. [23] is an implementation of the pro-
tocol of [22], and we refer to the protocol and its imple-
mentation as “LR” in this section. Both the LR protocol
and ours are based on garbled circuits but use fundamen-
tally different approaches to achieveing malicious secu-

2

USENIX Association 25th USENIX Security Symposium 299

Input Labels Reconciliation
LR [23] |x|(B+B′)κc |x|B′κc

Us (Async PSI) |x|Bκc
B2κsκc

Us (Sync PSI) Bκs +B2κc

Figure 1: Asymptotic communication costs of the LR protocol
vs. ours (comparing online phases). B is the number of cir-
cuits in a bucket; B′ ≈ 3B is the number of auxiliary cheating-
recovery circuits in [23]; |x| is length of sender’s inputs; κs is
the statistical security parameter; κc is the computational secu-
rity parameter.

rity. For clarity, we now provide a list of major differ-
ences between the two protocols.

(1) LR uses a more traditional cut-and-choose mecha-
nism where one party acts as sender and the other as re-
ceiver & evaluator. Our protocol on the other hand uses a
dual-execution paradigm in which both parties play sym-
metric roles, so their costs are identical.

Since parties act as both sender and receiver, each
party performs more work than in the traditional cut-
and-choose paradigm. However, the symmetry of dual-
execution means that both parties are performing com-
putational work simultaneously, rather than idle waiting.
The increase in combined work does not significantly af-
fect latency or throughput if the communication channel
is full-duplex.

(2) Our protocol can provide more flexible security
guarantees; in particular, it may be used with smaller pa-
rameter choices. In more detail, let κs denote a statistical
security parameter, meaning that the protocol allows the
adversary to completely break security with probability
1/2κs . In the LR protocol, a failure of the cut-and-choose
step can violate all security properties, so the number of
garbled circuits is proportional to κs.

Our protocol has an additional parameter κb, where
the protocol leaks (only) a single bit to the adversary with
probability 1/2κb . In our protocol (as in [16]), the num-
ber of garbled circuits is proportional to κb. When instan-
tiated with κb = κs = 40, our protocol gives an equivalent
guarantee to the LR protocol with κs = 40. From this
baseline, our protocol allows either κs to be increased
(strictly improving the security guarantee without involv-
ing more garbled circuits) or κb to be decreased (trading
performance for a small chance of a single bit leaking).1

(3) Our online phase has superior asymptotic cost,
stemming from the differences in protocol paradigm —
see a summary in Figure 1. LR uses a cheating-recovery
phase, introduced in [19]: after evaluating the main cir-
cuits, the parties evaluate auxiliary circuits that allow the
receiver to learn the sender’s input if the receiver can

1For example, two parties might want to securely evaluate AES a
million times on the same secret-shared key each time, where the key
is not used for anything else. In that case, a 1/220 or 1/230 chance of
leaking a single bit about this key might be permissible.

“prove” that the sender was cheating. Our protocol uses
the PSI-based dual-execution reconciliation phase.

The important difference is that in the LR protocol,
the sender’s input is provided to both the main circuits
and auxiliary circuits. If there are B main garbled cir-
cuits in a bucket, then there are B′ ≈ 3B auxiliary cir-
cuits, and garbled inputs must be sent for all of them in
the online phase. Each individual garbled input is sent
by decommitting to an offline commitment, so it con-
tributes to communication as well as a call to a hash func-
tion. Furthermore, the cheating-recovery phase involves
decommitments to garbled outputs for the auxiliary cir-
cuits, which are again proprotional to the sender’s input
length.

In contrast, our protocol uses no auxiliary circuits so
has less garbled inputs to send (and less associated de-
commitments to check). Our reconciliation phase scales
only with B and is independent of the parties’ input size.
The overall effect is that our online phase involves sig-
nificantly less communication and computation, with the
difference growing as the computations involve longer
inputs. With typical parameters B = 4 and κs = 40, our
reconciliation phase is cheaper whenever |x| ≥ 54 bits.
Even for the relatively small AES circuit, our protocol
sends roughly 10× less data in the online phase.

(4) LR’s online phase uses 4 rounds of interaction2 and
delivers output only to one party. If both parties require
output, their protocol must be modified to include an ad-
ditional round. Our online phase also delivers outputs to
both parties using either 5 or 6 rounds (depending on the
choice of PSI subprotocols). We conjecture that our pro-
tocol can be modified to use only 4 rounds, but leave that
question to follow-up work.

(5) Our implementation is more efficient than LR. The
offline phase more effectively exploits parallelism and
LR is implemented using a mix of Java & C++. The
architecture of LR has a serial control flow with com-
putationally heavy tasks performed in parallel using low
level C++ code. In contrast, our protocol implementation
is in C++ and fully parallelized with low level synchro-
nization primitives.

2.4 Comparison to Non-GC Protocols
Another paradigm for malicious security in the on-
line/offline setting is based not on garbled circuits but
arithmetic circuits and secret sharing. Notable proto-
cols and implementations falling into this paradigm in-
clude [8, 9, 10, 11, 27]. These protocols indeed have

2For our purposes, a round refers to both parties sending a message.
In other words, messages in the same round are allowed to be sent
simultaneously, and our implementation takes advantage of full-duplex
communication to reduce latency. We emphasize that synchronicity is
not required for our security analysis. The protocol is secure against
an adversary who waits to obtain the honest party’s message in round i
before sending its own round i message.

3

300 25th USENIX Security Symposium USENIX Association

lightweight online phases, and many instances can be
batched in parallel to achieve throughput comparable to
our protocol. However, all of these protocols have an on-
line phase whose number of rounds depends on the depth
of the circuit being evaluated. As a result, they suffer
from significantly higher latency than the constant-round
protocols in the garbled circuit paradigm like ours. The
latest implementations of [9] can securely evaluate AES
with online latency 20ms [33]. Of special note is the im-
plementation of the [11] protocol reported in [10], which
achieves latency of only 6ms to evaluate AES. However,
the implementation is heavily optimized for the special
case of computing AES, and it is not clear how applica-
ble their techniques are for general-purpose MPC. In any
case, no protocol has reported online latency for AES
that is less than our protocol’s total offline+online cost.

The above protocols based on secret-sharing also have
significantly more expensive offline phases. Not all im-
plementations report the cost of their offline phases, but
the latest implementations of the [9] protocol require 156
seconds of offline time for securely computing AES [33];
many orders of magnitude more than ours. We note that
the protocols in the secret-sharing paradigm have an of-
fline phase which does not depend on the function that
will be evalauted, whereas ours does.

3 Preliminaries
Secure computation. We use the standard notion of
universally composable (UC) security [6] for 2-party
computation. Briefly, the protocol is secure if for every
adversary attacking the protocol, there is a straight-line
simulator attacking the ideal functionality that achieves
the same effect. We assume the reader is familiar with
the details.

We define the ideal functionality Fmulti-sfe that we
achieve in Figure 2. The functionality allows parties to
evaluate the function f , N times. Adversaries have the
power to delay (perhaps indefinitely) the honest party’s
output, which is typical in the setting of malicious secu-
rity. In other words, the functionality does not provide
output fairness.

Furthermore, the functionality occasionally allows the
adversary to learn an arbitrary additional bit about the in-
puts. This leakage happens according to the distribution
L chosen by the adversary at setup time. The probability
of a leaked bit in any particular evaluation of f is guar-
anteed to be at most ε . Further, the leakage is “risky” in
the sense that the honest party detects cheating when the
leaked bit is zero.

Building blocks. In Figures 10 & 11 we define obliv-
ious transfer (OT) and commitment functionalities that
are used in the protocol. In the random oracle model,
where H is the random oracle, a party can commit to v by
choosing random r ←{0,1}κc and sending c = H(r‖v).

We use and adapt the Garbled Circuit notation and
terminology of [5]; for a formal treatment, consult that
paper. In Appendix A we define the syntax and secu-
rity requirements, highlighting the differences we adopt
compared to [5].

4 The Dual Execution Paradigm
We now give a high-level outline of the (non-
online/offline) 2PC protocol paradigm of [16], which is
the starting point for our protocol. The protocol makes
use of a two-phase PSI subprotocol. In the first phase,
both parties become committed to their PSI inputs; in
the second phase, the PSI output is revealed. This com-
ponent is modeled in terms of the F n,�

psi functionality in
Figure 12.

Assume the parties agree on a function f to be eval-
uated on their inputs. The protocol is symmetric with
respect to Alice and Bob, and for simplicity we describe
only Alice’s behavior.
(1) Alice generates κb garbled circuits computing f , us-

ing a common garbled output encoding for all of
them.

(2) Alice announces a random subset of Bob’s circuits
to open. However, the actual checking of the cir-
cuits is delayed until later in the protocol.

(3) Alice uses OT to receive garbled inputs for the cir-
cuits generated by Bob, as in Yao’s protocol. Alice
sends the garbled circuits she generated, along with
her own garbled input for these circuits.

(4) Alice evaluates the garbled circuits received from
Bob. If Bob is honest, then all of his circuits use
the same garbled output encoding and Alice will re-
ceive the same garbled output from each one. But in
the general case, Alice might obtain several incon-
sistent garbled outputs.

(5) Assume that Alice can decode the garbled outputs
to obtain the logical circuit output. For each candi-
date circuit output y with garbled encoding Y b

y (b for
a garbled output under Bob’s encoding), let Y a

y de-
note the encoding of y under Alice’s garbled output
encoding (which Alice can compute). Interpreting
Y a

y and Y b
y as sets of individual wire labels, let Ry

be the XOR of all items in Y a
y ∪Y b

y , which we write
as Ry =

⊕
[Y a

y ∪Y b
y] and which we call the reconcil-

iation value for y. Alice sends the set of all {Ry}
values as input to a PSI instance.

(6) With the PSI inputs committed, the parties open and
check the circuits chosen in the cut-and-choose step.
They abort if any circuit is not correctly garbled, or
the circuits do not have consistent garbled output
encodings.

(7) The parties release the PSI output. Alice aborts if
the PSI output is not a singleton set. Otherwise, if

4

USENIX Association 25th USENIX Security Symposium 301

Setup stage: On common input (SETUP, f ,N,ε) from both parties, where f is a boolean circuit:
• If neither party is corrupt, set L = 0N . Otherwise, wait for input (CHEAT,L) where L is a distribution over

{0,1}N ∪{⊥} with the property that for every i, PrL←L [Li = 1]≤ ε . Sample L ←L using random coins χ
and give (CHEATRESULT,χ) to the adversary. If L =⊥ then give output (CHEATING!) to the honest party
and stop responding.

• Send output (READY) to both parties. Initialize counter ctr = 1. Proceed to the execution stage.

Execution stage: Upon receiving inputs (INPUT,x1) from P1 and (INPUT,x2) from P2:
• Compute z = f (x1,x2). If both parties are honest, give (OUTPUT,ctr,z) to both parties.
• If any party is corrupt, give (OUTPUT,ctr,z) to the adversary.
• If Lctr = 1, wait for a command (LEAK,P) from the adversary, where P is a boolean predicate. Compute

p = P(x1,x2) and give (LEAKRESULT, p) to the adversary.
• If any party is corrupt, then on input (DELIVER) from the adversary, if p = 0 above, then give output

(CHEATING!) to the honest party, else give output (OUTPUT,ctr,z) to the honest party.
• If ctr = N then stop responding; otherwise set ctr = ctr+1 and repeat the execution stage.

Figure 2: The (ε-leaking) secure function evaluation functionality Fmulti-sfe.

the output is {R∗} then Alice outputs the value y
such that R∗ = Ry.

4.1 Security Analysis and Other Details
Suppose Alice is corrupt and Bob is honest. We will ar-
gue that Alice learns nothing beyond the function output,
except that with probability 2−κb she learns a single bit
about Bob’s input.

Suppose Alice uses input x1 as input to the OTs, and
Bob has input x2. Since Bob’s circuits are honestly gen-
erated and use the same garbled output encoding, every
circuit evaluated by Alice leads to the same garbled out-
put Y b

y∗ that encodes logical value y∗ = f (x1,x2). Note
that by the authenticity property of the garbled circuits,
this is the only valid garbled output that Alice can pre-
dict.

Since Alice may generate malicious garbled circuits,
honest Bob may obtain several candidate outputs from
these circuits. Bob’s input to the PSI computation will
be a collection of reconciliation values, each of the form
Ry =

⊕
[Y a

y ∪Y b
y].

At the time of PSI input, none of Bob’s (honestly) gar-
bled circuits have been opened, so they retain their au-
thenticity property. Then Alice cannot predict any valid
reconciliation value except for this Ry∗ . This implies that
the PSI output will be either {Ry∗} or /0. In particular,
Bob will either abort or output the correct output y∗. Fur-
thermore, the output of the PSI computation can be simu-
lated knowing only whether honest Bob has included Ry∗

in his PSI input.
The protocol includes a mechanism to ensure that Al-

ice uses the same x1 input for all of the garbled circuits.
Hence, if Bob evaluates at least one correctly generated
garbled circuit, it will give output y∗ and Bob will surely
include the Ry∗ reconciliation value in his PSI input. In
that case, the PSI output can be simulated as usual.

The probability the Alice manages to make Bob evalu-
ate no correctly generated garbled circuits is 2−κb — she
would have to completely predict Bob’s cut-and-choose
challenge to make all opened circuits correct and all eval-
uated circuits incorrect. But even in this event, the simu-
lator only needs to know whether f ′(x1,x2) = y∗ for any
of the f ′ computed by Alice’s malicious garbled circuits.
This is only one bit of information about x2 which the
simulator can request from the ideal functionality.

4.2 Outline for Online/Offline Dual-
Execution

Our high-level approach is to adapt the [16] protocol to
the online/offline setting. The idea is that the two par-
ties plan to securely evaluate the same function f , N
times, on possibly different inputs each time. In prepara-
tion they perform an offline pre-processing phase that de-
pends only on f and N, but not on the inputs. They gener-
ate many garbled circuits and perform a cut-and-choose
on all of them. Then the remaining circuits are assigned
randomly to buckets. Later, once inputs are known in the
online phase, one bucket’s worth of garbled circuits are
consumed for each evaluation of f .

Our protocol will leak a single bit about the honest
party’s input only when a bucket contains no “good”
circuit from the adversary (where “good” is the condi-
tion that is verified for opened circuits during cut-and-
choose). Following the lead of [23], we focus on choos-
ing the number of circuits so that the probability of such
an event in any particular bucket is 2−κb . We note that
the analysis of parameters in [14, 22] considers an over-
all cheating condition, i.e., that there exists a bucket that
has no “good” circuits, which leads to slightly different
numbers.

Lemma 1 ([23]). If the parties plan to perform N exe-

5

302 25th USENIX Security Symposium USENIX Association

cutions, using a bucket of B circuits for each execution
and a total of N̂ ≥ NB garbled circuits generated for the
overall cut-and-choose, then the probability that a spe-
cific bucket contains no good circuit is at most:

max
t∈{B,...,NB}

(N̂−t
NB−t

)
(N̂

NB

) ·
(t

B

)
(NB

B

)

 .

Suppose the parties will perform N executions, us-
ing buckets of size B in the online phase, and wish for
2−κb probability of leakage. We can use the formula
to determine the smallest compatible N̂. In the full
version we show all reasonable parameter settings for
κb ∈ {20,40,80} and N ∈ {8,16,32, . . . ,32768}.

By adapting [16] to the online/offline setting, we ob-
tain the generic protocol outlined in Figure 3. Even with
pre-processing, an online OT requires two rounds, one
of which can be combined with the direct sending of gar-
bled inputs. The protocol therefore requires three rounds
plus the number of rounds needed for the PSI subproto-
col (at least two).

4.3 Technicalities
We highlight which parts of the [16] protocol break down
in the online/offline setting and require technical modifi-
cation:

Same garbled output encoding. In [16] each party is re-
quired to generate garbled circuits that have a common
output encoding. Their protocol includes a mechanism
to enforce this property. In our setting, we require each
bucket of circuits to have the same garbled output encod-
ing. But this is problematic because in our setting a gar-
bled circuit is generated before the parties know which
bucket it will be assigned to.

Our solution is to have the garbler provide for each
bucket a translation of the following form. The garbler
chooses a bucket-wide garbled output encoding; e.g., for
the first output wire, he chooses wire labels W ∗

0 ,W
∗
1 en-

coding false and true, respectively. Then if W j
0 ,W

j
1 are

the output wire labels already chosen for the jth circuit
in this bucket, the garbler is supposed to provide trans-
lation values W j

v ⊕W ∗
v for v ∈ {0,1}. After evaluating,

the receiver will use these values to translate the garbled
input to this bucket-wide encoding that is used for PSI
reconciliation.

Of course, a cheating party can provide invalid transla-
tion values. So we use step 3 of the online phase (Figure
3) to check them. In more detail, a sender must commit
in the offline phase to the output wire labels of every gar-
bled circuit. These will be checked if the circuit is chosen
in the cut-and-choose. In step 3 of the online phase, these
commitments are opened so that the receiver can check
the consistency of the translation values (i.e., whether

Offline phase:
(1) Parties perform offline preprocessing for the OTs

that will be needed, and for the PSI subprotocol,
if appropriate.

(2) Based on N and κb, the parties determine appro-
priate parameters N̂, B according to the discus-
sion in Section 4.2. Each party generates and
sends N̂ garbled circuits, and chooses a random
subset of N̂−NB of their counterpart’s circuits to
be opened. The chosen circuits are opened and
parties abort if circuits are found to be generated
incorrectly.

(3) Each party randomly assigns their counterpart’s
circuits to buckets of size B. Each online execu-
tion will consume one bucket’s worth of circuits.

Online phase:
(1) Parties exchange garbled inputs: For one’s own

garbled circuits in the bucket, a party directly
sends the appropriate garbled inputs; for the
counterpart’s garbled circuits, a party uses OT as
a receiver to obtain garbled inputs as in Yao’s pro-
tocol.

(2) Parties evaluate the garbled circuits and compute
the corresponding set of reconciliation values.
They commit their sets of reconciliation values as
inputs to a PSI computation.

(3) With the PSI inputs committed, the parties open
some checking information (see text in Section
4.3) and abort if it is found to be invalid.

(4) The parties release the PSI output and abort if the
output is /0. Otherwise, they output the plaintext
value whose reconciliation value is in the PSI out-
put.

Figure 3: High-level outline of the online/offline, dual-
execution protocol paradigm.

they map to a hash of the common bucket-wide encod-
ing provided during bucketing.). This step reveals all of
the bucket-wide encoding values, making it now easy for
an adversary to compute any reconciliation value. This
is why we employ a 2-phase PSI protocol, so that PSI
inputs are committed before these translation values are
checked.

Adaptive garbling. Standard security definitions for gar-
bled circuits require the evaluator to choose the input
before the garbled circuit is given. However, the entire
purpose of offline pre-processing is to generate & send
the garbled circuits before the inputs are known. This
requires the garbling scheme to satisfy an appropriate
adaptive security property, which is common to all works
in the online/offline setting [14, 22]. See Appendix A for
details.

6

USENIX Association 25th USENIX Security Symposium 303

Input consistency. To achieve security against active ad-
versaries, GC-based protocols must ensure that parties
provide the same inputs to all circuits that are evaluated.
This is known as the problem of input consistency. The
protocol of [16] uses the input consistency mechanism of
shelat & Shen [32] which is unfortunately not compati-
ble with the online/offline setting. More details follow in
the next section.

5 Input Consistency
In this section we describe a new, extremely lightweight
input-consistency technique that is tailored for the dual-
execution paradigm.

5.1 Consistency Between Alice’s & Bob’s
Circuits

We start with the “classical” dual-execution scenario,
where Alice and Bob each generate one garbled circuit.
We describe how to force Alice to use the same input in
both of these garbled circuits (of course, the symmetric
steps are performed for Bob). The high-level idea is to
bind her behavior as OT receiver (when obtaining gar-
bled inputs for Bob’s circuits) to the commitments of her
garbled inputs in her own circuits.

It is well-known [2] that oblivious transfers on ran-
dom inputs can be performed offline, and later “deran-
domized” to OTs of chosen inputs. Suppose two parties
perform a random string OT offline, where Alice receives
c,mc and Bob receives m0,m1, for random c ∈ {0,1} and
m0,m1 ∈ {0,1}k. Later when the parties wish to per-
form an OT of chosen inputs c∗ and (m∗

0,m
∗
1), Alice can

send d = c ⊕ c∗ and Bob can reply with m∗
0 ⊕ md and

m∗
1 ⊕m1⊕d .
In the offline phase of our protocol, the parties perform

a random OT for each Alice-input wire of each circuit,
where Alice acts as the receiver. These will be later used
for Alice to pick up her garbled input for Bob’s circuit.
Let c denote the string denoting Alice’s random choice
bits for this collection of OTs.

Also in the offline phase, we will have Alice commit
to all of the possible garbled input labels for the circuits
that she generated. Suppose she commits to them in an
order determined by the bits of c; that is, the wire la-
bel commitments for the first input wire are in the order
(false,true) if the first bit of c is 0 and (true,false) other-
wise.

In the online phase with input x, Alice sends the OT
“derandomized” message d = x⊕ c. She also sends her
garbled inputs for the circuits she generated by opening
the commitments indexed by d; that is, she opens the
first or second wire label of the ith pair, depending on
whether di = 0 or di = 1, respectively. Bob will abort if
Alice does not open the correct commitments.

Alice’s effective OT input is x = d ⊕ c, so she picks

up garbled input corresponding to x. If Alice did indeed
commit to her garbled inputs arranged according to c,
then she opens the commitments whose truth values are
also x = d ⊕ c. More formally,

Offline: Alice garbles the labels A0,A1 and Bob
garbles B0,B1 for Alice’s input. Alice receives OT
message mc and Bob holds m0,m1. Alice sends
(COMMIT,(sid, i),Ai⊕c) to Fcom for i ∈ {0,1}.

Online: Alice send d = c⊕ x to Bob and (OPEN,(sid,
d)) to Fcom. Bob receives (OPEN,(sid,d),Ax) from
Fcom and sends (B0 ⊕md ,B1 ⊕m1⊕d) to Alice who
computes Bx = mc ⊕ (Bc⊕d ⊕mc).

Figure 4: Input consistency on a single bit of Alice’s input for
“classic” dual-execution.

Looking ahead, we will use cut-and-choose to guar-
antee that there is at least one circuit for which Alice’s
garbled input commitments are correct in this way.

5.2 Aggregating Several OTs
In our protocol, both parties evaluate a bucket of several
circuits. Within the bucket, each of Alice’s circuits is
paired with one of Bob’s, as above. However, this im-
plies that Alice uses separate OTs to pick up her garbled
inputs in each of Bob’s circuits. To address this, we ag-
gregating several OTs together to form a single OT.

Suppose Alice & Bob have performed two random
string OTs, with Alice receiving c,c′,mc,m′

c′ and Bob re-
ceiving m0,m1,m′

0,m
′
1, for random c,c′ ∈ {0,1}. Sup-

pose further that Alice sends δ = c⊕ c′ to Bob in an of-
fline phase. To aggregate these two random OTs into
a single chosen-input OT with inputs c∗,m∗

0,m
∗
1, Alice

can send d = c⊕ c∗, and Bob can reply with m∗
0 ⊕ (md ⊕

m′
d⊕δ) and m∗

1 ⊕ (m1⊕d ⊕m′
1⊕d⊕δ).

The idea extends to aggregate any number B of dif-
ferent random OTs into a single one, with Alice sending
B− 1 different δ difference values. In our protocol, we
aggregate in this way the OTs for the same wire across
different circuits. Intuitively, Alice either receives wire
labels for the same value on each of these wires (by re-
porting correct δ values), or else she receives nothing for
this wire on any circuit.

5.3 Combining Everything with Cut-and-
Choose

Now consider a bucket of B circuits. In the offline phase
Alice acts as receiver in many random OTs, one collec-
tion of them for each of Bob’s circuits. Let c j be her
(string of) choice bits for the OTs associated with the jth
circuit. Alice is then supposed to commit to the garbled
inputs of her jth circuit arranged according to c j. Bob
will check this property for all circuits that are opened
during the cut-and-choose phase by Alice showing the

7

304 25th USENIX Security Symposium USENIX Association

corresponding OT messages.3 Hence with probability at
least 1− 2−κb , at least one circuit in any given bucket
has this property. Alice also reports aggregation values
δ j = c1 ⊕ c j for these OTs.

In the online phase Alice chooses her input x and sends
d1 = c1 ⊕ x as the OT-derandomization message. This is
equivalent to Alice sending d j = δ j ⊕ d1 as the message
to derandomize the jth OTs. To send her garbled input
for the jth circuit, Alice is required to open her commit-
ments indexed by d j.

If Alice lies in any of the aggregation strings, then
she will be missing at least one of the B-out-of-B secret
shares which mask her possible inputs. Intuitively, Al-
ice’s two strategies are either to provide honest aggrega-
tion strings or not obtain any garbled inputs in the po-
sition that she lied. In the latter case, the simulator can
choose an arbitrary input for Alice in that position.

If we then consider the likely case where Bob’s jth
circuit is “good” and Alice provided honest aggregation
strings, then Alice will have decommitted to inputs for
the jth circuit that are consistent with her effective OT in-
put x∗1. From the discussion in Section 4.1, this is enough
to guarantee that the reconciliation phase leaks nothing.

Even if there are no “good” circuits in the bucket
(which happens with probability 1/2κb), it is still the
case that Alice learns no more than if she had received
consistent garbled input x∗1 for all of Bob’s circuits. So
the reconciliation phase can be simulated knowing only
whether Bob evaluates any circuit resulting in f (x∗1,x2).
This is a single bit of information about Bob’s input x2.

6 Selective Failure Attacks
In the garbled circuit paradigm, suppose Alice is acting
as evaluator of some garbled circuits. She uses OT to
pick up the wire labels corresponding to her input. A
corrupt Bob could provide incorrect inputs to these OTs,
so that (for instance) Alice picks up an invalid garbled
input if and only if the first bit of her input is 0. By ob-
serving whether the evaluator aborts (or produces other-
wise unexpected behavior), Bob can deduce the first bit
of Alice’s input. This kind of attack, where the adversary
causes the honest party to abort/fail with probability de-
pending on its private input is called a selective failure
attack.

A common way to prevent selective failure is to use
what is called a k-probe-resistant input encoding:

Definition 2 ([20, 32]). Matrix M ∈ {0,1}�×n is called k-
probe resistant if for any L ⊆ {1,2, ...,n}, the Hamming
distance of

⊕
i∈L Mi is at least k, where Mi denotes the

ith row vector of M.

3In fact, since the OT messages are long random strings, Alice can
prove that she had particular choice bits in many OTs by simply report-
ing the XOR of all of the corresponding OT messages.

The idea is for Alice to choose a random encoding x̃1
of her logical input x1 satisfying Mx̃1 = x1. Then the par-
ties evaluate the function f ′(x̃1,x2) = f (Mx̃1,x2). This
additional computation of Mx̃1 involves only XOR op-
erations, so it does not increase the garbled circuit size
when using the Free-XOR optimization [17] (it does in-
crease the number OTs needed).

Alice will now use x̃1 as her choice bits to the OTs.
The adversary can probe any number of bits of x̃1, by
inserting invalid inputs to the OT in those positions, and
seeing whether the other party aborts. For each position
probed, the adversary incurs a 1/2 probability of being
caught.4

The property of k-probe-resistance implies that prob-
ing k bits of the physical input x̃1 leaks no information
about the logical input Mx̃1. However, probing k bits
incurs a 1 − 2−k probability of being caught. Hence,
our protocol requires a matrix that is κs-probe resistant,
where κs is the statistical security parameter. We refer
the reader to [23] for the construction details of k-probe
resistant matrices and their parameters.

6.1 Offlining the k-probe computations
Using k-probe-resistant encodings, the encoded input x̃1
is significantly longer than the logical input x1. While
the computation of Mx̃1 within the garbled circuit can
involve no cryptographic operations (using Free-XOR),
it still involves a quadratic number of XOR operations.

Lindell & Riva [22] suggest a technique that moves
these computations associated with k-probe-resistant en-
codings to the offline phase. The parties will compute the
related function f ′(x̂1,c,x2) = f (x̂1 ⊕Mc,x2). In the of-
fline phase, Alice will use OT to obtain wire labels for a
random string c. She can also begin to partially evaluate
the garbled circuit, computing wire labels for the value
Mc.

In the online phase, Alice announces x̂1 = x1 ⊕ Mc
where x1 is her logical input. Then Bob directly sends
the garbled inputs corresponding to x̂1. This introduces
an asymmetry into our input consistency technique. The
most obvious solution to maintain compatibility is to
always evaluate circuits of the form f ′(x̂1,c1, x̂2,c2) =
f (x̂1 ⊕Mc1, x̂2 ⊕Mc2), so that Alice uses the same phys-
ical input (c1, x̂1) in both hers and Bob’s circuits. How-
ever, we would prefer to let Alice use logical input x1
rather than its (significantly longer) k-probe-encoded in-
put, to reduce the concrete overhead. It turns out that we
can accommodate this by exploiting the Z2-linearity of
the encoding/decoding operation.

Consider a bucket of circuits {1, . . . ,B}. For the jth

4Technically, the sender will commit to all garbled inputs, and then
the OTs will be used to transfer the decommitment values. That way,
the receiver can abort immediately if an incorrect decommitment value
is received.

8

USENIX Association 25th USENIX Security Symposium 305

circuit, Alice acts as receiver in a set of random OTs,
and receives random choice bits c j. The number of OTs
per circuit is the number of bits in a k-probe-resistant
encoding of Alice’s input.

For Alice’s jth circuit, she must commit to her garbled
inputs in the order given by the string Mc j (rather than
just c j as before). This condition will be checked by Bob
in the event that this circuit is opened during cut-and-
choose. To assemble a bucket, Alice reports aggregation
values δ j = c1⊕c j as before. Imagine Alice derandomiz-
ing these OTs by sending an all-zeroes derandomization
message. This corresponds to her accepting the random
c1 as her choice bits. (Of course, an all-zeroes message
need not be actually sent.) Bob responds and uses the ag-
gregated OTs to send Alice the garbled inputs for c1 for
all of his garbled circuits (indeed, even in the jth circuit
Alice receives garbled inputs corresponding to c1).

In the online phase, Alice decides her logical input x1,
and she sends x̂1 = Mc1 ⊕ x1. This value derandomizes
the offline k-probe-resistant encoding. Then in her own
jth circuit, Alice must open the garbled input commit-
ments indexed by the (public) string x̂1 ⊕Mδ j.

To see why this solution works, suppose that Alice’s
jth circuit is “good” (i.e., garbled correctly and input
commitments arranged by Mc j). As before, define her
effective OT input to the jth OTs as c∗ = c j ⊕ δ j (which
should be c1 if Alice did not lie about δ j). Even if Alice
lied about the δ values she surely learns no more than she
would have learned by being truthful about the δ values
and using effective input c∗ in all OTs. Hence, we can
imagine that she uses logical input x∗1 = x̂1 ⊕Mc∗ in all
of Bob’s garbled circuit.

Alice is required to open garbled inputs indexed by
x̂1 ⊕Mδ j = x̂1 ⊕M(c∗ ⊕ c j) = x∗1 ⊕Mc j. These are ex-
actly the garbled inputs corresponding to logical input x∗1,
since the commitments were arranged according to Mc j.
We see that Bob evaluates at least one correctly garbled
circuit with Alice using input x∗1, which is all that is re-
quired for weak input consistency.

7 Optimizing PSI Reconciliation
7.1 Weaker security.
Our main insight is that our PSI reconciliation step does
not require a fully (UC) secure PSI protocol. Instead, a
weaker security property suffices. Recall that the final
steps of the [16] protocol proceed as follows:
• Alice & Bob commit to their PSI inputs.

• The garbled-output translations are opened and
checked.

• The parties either abort or release the PSI output.
For simplicity, assume for now that only one party re-
ceives the final PSI output. We will address two-sided
output later.

Suppose Alice is corrupt and Bob is honest. Following
from the discussion of security in Section 4, Bob will use
as PSI input a collection of valid reconciliation values.
At the time Alice provides her PSI inputs, the authen-
ticity property of the garling scheme is in effect. This
means that Alice can predict a valid reconciliation value
only for the “correct” output y∗. All other valid recon-
ciliation values that might be part of Bob’s PSI input are
unpredictable.

Below we formalize a weak notion of security for in-
put distributions of this form:

Definition 3. Let Π be a two-phase protocol for set in-
tersection (F n,�

psi , Figure 12). We say that Π is weakly
malicious-secure if it achieves UC-security with respect
to environments that behave as follows:
(1) The adversary sends a value a∗ ∈ {0,1}� to the envi-

ronment along with the description of a distribution
D whose support is cardinality-(n− 1) subsets of
{0,1}�. We further require that D is unpredictable
in the sense that the procedure “A ← D; output a
uniformly chosen element of A” yields the uniform
distribution over {0,1}� (the joint distribution of all
elements of A need not be uniform).

(2) The environment (privately) samples A ← D and
gives input A∪{a∗} to the honest party for the first
phase of PSI.

(3) After the first phase finishes (i.e., both parties’ in-
puts are committed), the environment gives the coins
used to sample A to the adversary.

(4) The environment then instructs the honest party to
perform the second phase of PSI to obtain output.

In this definition, the adversary knows only one value
in the honest party’s set, while all other values are essen-
tially uniform. We claim that when � is large, the simu-
lator for this class of environments does not need to fully
extract the adversary’s PSI input! Rather, the following
are enough to ensure weakly-malicious security:
• The adversary is indeed committed to some (un-

known to the simulator) effective input during the
commit phase.

• The simulator can test whether the adversary’s ef-
fective PSI input contains the special value a∗.

With overwhelming probability, no effective input ele-
ment other than a∗ can contribute to the PSI output. Any
other values in the adversary’s effective input can simply
be ignored; they do not need to be extracted.

For technical reasons and convenience in the proof, we
have the environment give the adversary the coins used
to sample A, but only after the PSI input phase.

7.2 PSZ protocol paradigm.
We now describe an inexpensive protocol paradigm for
PSI, due to Pinkas et al. [30]. Their protocol is proven

9

306 25th USENIX Security Symposium USENIX Association

secure only against passive adversaries. We later discuss
how to achieve weak malicous security.

The basic building block is a protocol for private
equality test (PEQT) based on OT. A benefit of using
OT-based techniques is that the bulk of the effort in gen-
erating OTs can be done in the offline phase, again lead-
ing to a lightweight online phase for the resulting PSI
protocol.

Suppose a sender has input s and receiver has input
r, with r,s ∈ {0,1}n, where the receiver should learn
whether r = s (and nothing more). The PEQT protocol
requires n string OTs; in the ith one, the receiver uses
choice bit r[i] and the sender chooses random string in-
puts (mi

0,m
i
1). The sender finally sends S =

⊕
i mi

s[i], and
the receiver checks whether S =

⊕
i mi

r[i], which is the
XOR of his OT outputs.

The PEQT can be extended to a private set mem-
bership test (PSMT), in which the sender has a set
{s1, . . . ,st} of strings, and receiver learns whether r ∈
{s1, . . . ,st}. We simply have the sender randomly
permute the s j values, compute for each one S j =⊕

i F(mi
s j [i], j) and send {S1, . . . ,St}, where F is a PRF.5

The receiver can check whether
⊕

i F(mi
r[i], j) matches

S j for any j. Finally, we can achieve a PSI where the
receiver has strings {r1, . . . ,rt} by running independent
PSMTs of the form r j ∈ {s1, . . . ,st} for each r j (in ran-
dom order).

The overhead of this approach is O(t2), and [30] de-
scribe ways to combine hashing with this basic PSI pro-
tocol to obtain asymptotically superior PSI protocols for
large sets. However, we are dealing with very small val-
ues of t (typically at most 5), so the concrete cost of this
simple protocol is very low.

To make the PSI protocol two-phase, we run the OTs
and commit to the S values in the input-committing
phase. Then the output phase consists simply of the
sender opening the commitments to S.

7.3 Achieving weakly-malicious security
and double-sided output.

We use the [30] protocol but instantiate it with malicious-
secure OTs. This leads to the standard notion of security
against an active receiver since the simulator can extract
the receiver’s input from its choice bits to the OTs.

However, the protocol does not achieve full security
against a malicious sender. In the simple PEQT building
block, the simulator cannot extract a malicious sender’s
input. Doing so would require inspecting S,{mi

b} and
determining a value s such that S =

⊕
i mi

s[i]. Such an
s may not exist, and even if it did, the problem seems

5Simply XORing the mi
b values would reveal some linear dependen-

cies; applying a PRF renders all of the S j values independently random
except the ones for which r = s j .

closely related to a subset-sum problem.
However, if the simulator knows a candidate s∗, it can

certainly check whether the corrupt sender has sent the
corresponding S value. This is essentially the only prop-
erty required for weakly malicious security.

We note that a corrupt sender could use inconsistent
sets {s1, . . . ,st} in the parallel PSMT instances. How-
ever, the simulator can still extract whether the candidate
s∗ was used in each of them. If the sender used s∗ in t ′

of the t subprotocols, then the simulator can send s∗ to
the ideal PSI functionality with probability t ′/t, which is
a sound simulation for weakly-malicious security.

Regarding double-sided output, it suffices to simply
run two instances of the one-sided-output PSI protocol,
one in each direction, in parallel. Again, this way of
composing PSI protocols is not sound in general, but it is
sound for the special case of weakly-malicious security.

7.4 Trading computation for lower round
complexity.

Even when random OTs are pre-processed offline, the
PSI protocol as currently described requires two rounds
to commit to the outputs, and one round to release the
output. The two input-committing rounds are (appar-
ently) inherently sequential, stemming from the sequen-
tial nature of OT derandomization.

In terms of round complexity, these two PSI rounds
are a bottleneck within the overall dual-execution pro-
tocol. We now describe a variant of the PSI protocol
in which the two input-committing messages are asyn-
chronous and can be sent simultaneously. The modi-
fied protocol involves (a nontrivial amount of) additional
computation but reduces the number of rounds in the
overall 2PC online phase by one. This tradeoff does not
always reduce the overall latency of the 2PC online phase
— only sometimes, depending on the number of garbled
circuits being evaluated and the network latency. The
specific break-even points are discussed in Section 9.

In our PEQT protocol above, the two parties have pre-
processed random OTs, with choice bits c and random
strings mi

0,m
i
1. To commit to his PSI input, the receiver’s

first message is d = c⊕ r, to which the sender responds
with S =

⊕
i mi

d[i]⊕s[i].
Consider randomizing the terms of this summation as

S =
⊕

i[m
i
d[i]⊕s[i] ⊕ zi] where zi are random subject to⊕

i zi = 0. Importantly, (1) each term in this sum de-
pends only on a single bit of d; (2) revealing all terms in
the sum reveals no more than S itself. We let the sender
commit to all the potential terms of this sum and reveal
them individually in response to d. In more detail, the
sender commits to the following values (in this order):

(�) [m1
s[1] ⊕ z1] [m2

s[2] ⊕ z2] · · · [mn
s[n] ⊕ zn]

[m1
s[1]⊕1 ⊕ z1] [m2

s[2]⊕1 ⊕ z2] · · · [mn
s[n]⊕1 ⊕ zn]

10

USENIX Association 25th USENIX Security Symposium 307

Importantly, these commitments can be made before d is
known. In response to the message d from the receiver,
the sender is expected to release the output by opening
the commitments indexed by the bits of d. The sender
will open the commitments {mi

d[i]⊕s[i]⊕ zi}; the receiver
will compute their XOR S and proceed as before.

The simulator for a corrupt sender simulates a random
message d and then checks whether the sender has used
a candidate input s∗ by extracting the commitments in-
dexed by d to see whether their XOR is

⊕
i mi

d[i]⊕s∗[i].
6

We can further move the commitments to the offline
phase, since there are two commitments per bit of s per
PEQT. Observe that the commitments in (�) are arranged
according to the bits of s, which are not known until the
online phase. Instead, in the offline phase the sender can
commit to these values arranged according to a random
string π . In the online phase, the sender commits to its
input s by sending s⊕ π . Then in response to receiver
message d, the sender must open the commitments in-
dexed by the bits of d ⊕ (s⊕π).

When extending the asynchronous PEQT to a PSMT
protocol, the sender commits to an array of F(mi

b, j)⊕ z j
i

values for each j.

7.5 Final Protocols
For completeness, we provide formal descriptions of
the final PSI protocols (synchronous 3-round and asyn-
chronous 2-round) in Figures 13 & 14.

We defer the proof of their security to the full version.

Theorem 4. The protocols Πsync-psi and Πasync-psi de-
scribed in Figures 13 & 14 are weakly-malicious secure
(in the sense of Definition 3) when � ≥ κs, the statistical
security parameter.

8 Protocol Details & Implementation
The full details of our protocol are given in Figure 15
and the c++ implementation may be found at https:
//github.com/osu-crypto/batchDualEx. The pro-
tocol uses three security parameters:

κb is chosen so that the protocol will leak a bit to the
adversary with probability at most 2−κb . This pa-
rameter controls the number of garbled circuits used
per execution.

κs is the statistical security parameter, used to deter-
mine the length of the reconciliation strings used as
PSI input (the PSI protocol scales with the length
of the PSI input values). The adversary can guess
an unknown reconciliation value with probability at
most 2−κs .

6Note: although we intend for the two parties’ messages to be sent
simultaneously, we must be able to simulate in the case that a corrupt
sender waits for incoming message d before sending its commitments.

κc is the computational security parameter, that con-
trols the key sizes for OTs, commitments and gar-
bled circuits.

In our evaluations we consider κc = 128, κs ∈ {40,80}
and κb ∈ {20,40,80}. In the full version we prove the
security of our protocol:

Theorem 5. Our protocol (Figure 15) securely realizes
the Fmulti-sfe functionality, in the presence of malicious
adversaries.

8.1 Implementation & Architecture
In the offline phase, the work is divided between p paral-
lel sets of 4 threads. Within each set, two threads gener-
ate OTs and two threads garble and receive circuits and
related commitments. Parallelizing OT generation and
circuit generation is key to our offline performance; we
find that these two activities take roughly the same time.

We generate OTs using an optimized implementation
of the Keller et al. [15] protocol for OT extension. Start-
ing from 128 base OTs (computed using the protocol of
[28]), we first run an OT extension to obtain 128 · p OT
instances. We then distribute these instances to the p dif-
ferent thread-sets, and each thread-set uses its 128 OT
instances as base OTs to perform its own independent
OT extension.

We further modified the OT extension protocol to pro-
cess and finalize OT instances in blocks of 128 instances.
This has two advantages: First, OT messages can be
used by other threads in the offline phase as they are
generated. Second, OT extension involves CPU-bound
matrix transposition computations along with I/O-bound
communication, and this approach interlaces these oper-
ations.

The offline phase concludes by checking the circuits in
the cut-and-choose, bucketing the circuits, and exchang-
ing garbled inputs for the random k-probe-encoded in-
puts.

The online phase similarly uses threading to exploit
the inherently parallel nature of the protocol. Upon re-
ceiving input, a primary thread sends the other party
their input correction value as the first protocol message.
This value is in turn given to B sub-threads (where B
is the bucket size) that transmit the appropriate wire la-
bels. Upon receiving the labels, the B threads (in par-
allel) each evaluate a circuit.Each of the B threads then
executes (in parallel) one of the set-membership PSI sub-
protocols. After the other party has committed to their
PSI inputs, the translation tables of each circuit is opened
and checked in parallel. The threads then obtain the in-
tersection and the corresponding output value.

8.2 Low-level Optimizations
We instantiate the garbled circuits using the state-of-the-
art half-gates construction of [35]. The implementation

11

308 25th USENIX Security Symposium USENIX Association

utilizes the hardware accelerated AES-ni instruction set
and uses fixed-key AES as the gate-level cipher, as sug-
gested by [3]. Since circuit garbling and evaluation is the
major computation bottleneck, we have taken great care
to streamline and optimize the execution pipeline.

The protocol requires the bucket’s common output la-
bels to be random. Instead, we can optimize the online
phase choose these labels as the output of a hash at a ran-
dom seed value. The seed can then be sent instead of
sending all of the common output labels. From the seed
the other party regenerates the output labels and proceed
to validate the output commitments.

9 Performance Evaluation
We evaluated the prototype on Amazon AWS instances
c4.8xlarge (64GB RAM and 36 virtual 2.9 GHz
CPUs). We executed our prototype in two network set-
tings: a LAN configuration with both parties in the same
AWS geographic region and 0.2 ms round-trip latency;
and a WAN configuration with parties in different regions
and 75 ms round-trip latency.

We demonstrate the scalability of our implementation
by evaluating a range of circuits:
• The AES circuit takes a 128-bit key from one party

and a 128-bit block from another party and outputs
a 128-bit block to both. The circuit consists of 6800
AND gates and 26,816 XOR gates.

• The SHA256 circuit takes 512 bits from both par-
ties, XORs them together and returns the 256-bit
hash digest of the XOR’ed inputs. The circuit con-
sists of 90,825 AND gates and 145,287 XOR gates.

• The AES-CBC-MAC circuit takes a 16-block
(2048-bit) input from one party and a 128-bit key
from the other party and returns the 128-bit result
of 16-round AES-CBC-MAC. The circuit consists
of 156,800 AND gates and 430,976 XOR gates.7

In all of our tests, we use system parameters derived
from Lemma 1. N denotes the number of executions, and
B denotes the bucket size (number of garbled circuits per
execution) and we use ∼ B online threads.

9.1 PSI protocol comparison
In Section 7 we describe two PSI protocols that can
be used in our 2PC protocol — a synchronous protocol
that uses three rounds total, and an asynchronous pro-
tocol that uses two rounds total (at higher communica-
tion cost). We now discuss the tradeoffs between these
two PSI protocols. A summary is given in Figure 5. For
small parameters in the LAN setting, the 2-round asyn-
chronous protocol is faster overall, but for larger param-
eters the 3-round synchronous protocol is faster. This is

7The circuit is not optimized; each call to AES recomputes the en-
tire key schedule.

PSI Async Sync
κs B Time Size Time Size

40

2 0.31 2,580 0.35 138
3 0.34 5,790 0.39 303
4 0.42 10,280 0.46 532
6 0.65 32,100 0.55 1,182

80
5 0.55 23,100 0.51 850
7 0.83 62,860 0.66 1,638
9 1.39 103,860 0.83 2,682

Figure 5: The running time (ms) and online communication
size (bytes) of the two PSI protocols when executed with κs-bit
strings and input sets of size B.

κs = κb = 40 [23] This
Circuit N Offline Online Offline Online

LAN

AES

32 197 12 45 1.7
128 114 10 16 1.5
1024 74 7 5.1 1.3

SHA256

32 459 50 136 10.0
128 275 40 78 8.8
1024 206 33 48 8.4

WAN

AES

32 1,126 163 282 190
128 919 164 71 191

1,024 760 160 34 189

SHA256

32 3,638 290 777 194
128 3,426 256 399 192

1,024 2,992 207 443 191

Figure 6: Amortized running times per execution (reported in
ms) for [23] and our prototype. We used bucket size B = 6,5,4
for N = 32,128,1024.

due to the extra data sent by the 2-round protocol. Specif-
ically, the asynchronous protocol sends O(B2κsκc) bytes
while the synchronous one sends O(Bκs +B2κc). In the
remaining comparisons, we always use the PSI protocol
with lowest latency, according to Figure 5.

9.2 Comparison to the LR protocol
We compare our prototype to that of [23] with 40-bit se-
curity. That is, we use κb = κs = 40; both protocols have
identical security and use the same bucket size. We use
identical AWS instances and a similar number of threads
to those reported in [23].

Figure 6 shows the results of the comparison in the
LAN setting. It can be seen that our online times are 5
to 7 times faster and our offline times are 4 to 15 times
faster. Indeed, for N = 1024 our total (online plus offline)
time is less than the online time of [23].

In the WAN setting with small circuits such as AES
where the input size is minimal we see [23] achieve faster
online times. Their protocol has one fewer round than
ours protocol, which contributes 38ms to the difference
in performance. However, for the larger SHA256 cir-
cuit our implementation outperforms that of [23] by 16
to 100ms per execution and we achieve a much more ef-

12

USENIX Association 25th USENIX Security Symposium 309

κb = κs = 80 κb = κs = 40 κb = 20; κs = 40
Circuit N Storage Offline Online Storage Offline Online Storage Offline Online

AES
32 0.21 69 2.3 0.12 45 1.7 0.06 40 1.1

128 0.88 25 2.1 0.32 16 1.4 0.38 16 1.1
1,024 6.8 16 1.8 1.6 5.1 1.3 0.76 2.4 1.0

SHA-256
32 6.8 234 15.7 1.3 136 10.0 0.68 65 7.6

128 8.7 190 12.3 3.5 78 8.8 4.4 95 6.4
1,024 62.1 131 11.4 15.6 48 8.4 8.8 24 6.3

2048
CBC-MAC

32 3.8 621 22.7 2.4 655 14.9 1.2 247 11.1
128 15.4 450 18.1 6.2 191 13.4 7.9 246 10.6

1,024 109.5 378 15.8 31.0 95 12.3 15.6 71 10.6

Figure 7: Amortized running times per execution (reported in ms) and total offline storage (reported in GB) for our prototype in
the LAN configuration. The peak offline storage occurs before the cut and choose, consisting of the circuits, commitments, and
OT messages. For κb = 80 we use parameters (N,B) ∈ {(32,12),(128,9),(1024,7)}. For κb = 40 we use parameters (N,B) ∈
{(32,6),(128,5),(1024,5)}. For κb = 20 we use parameters (N,B) ∈ {(32,3),(128,2),(1024,2)}.

ficient offline phase ranging from 4 to 22 times faster for
both circuits.

As discussed in Section 2.3, our protocol has asymp-
totically lower online communication cost, especially for
computations with larger inputs. Since both protocols are
more-or-less I/O bound in these experiments, the differ-
ence in communication cost is significant. Concretely,
when evaluating AES with N = 1024 and B = 4 our pro-
tocol sends 16,384 bytes of wire labels and just 564 bytes
of PSI data. The online phase of [23] reports to use
170,000 bytes with the same parameters. Even using our
asynchronous PSI sub-protocol, the total PSI cost is only
10,280 bytes.

9.3 Effect of security parameters
We show in Figure 7 how our prototype scales for differ-
ent settings of security parameters in the LAN setting. In
particular, the security properties of our protocol allow
us to consider smaller settings of parameters than are ad-
vised with traditional cut-and-choose protocols such as
[23]. As a representative example, we consider κb = 20
and κs = 40 which means that our protocol will leak a
single bit only with probability 1/220 but guarantee all
other security properties with probability 1−1/240.

Our protocol scales very well both in terms of secu-
rity parameter and circuit size. Each doubling of κs only
incurs an approximate 25% to 50% increase in running
time. This is contrasted by [23] reporting a 200% to
300% increase in running time for larger security pa-
rameters. Our improvement is largely due to reducing
the number of cryptographic steps and no cheat-recovery
circuit which consume significant online bandwidth.

We see a more significant trend in the total storage re-
quirement of the offline phase. For example, when per-
forming N = 1024 AES evaluations for security parame-
ter κb = 20 the protocol utilizes a maximum of 0.76 GB
of storage while κb = 40 requires 1.6 GB of storage. This
further validates κb = 20 as a storage and bandwidth sav-
ing mechanism. [23] reports that 3.8 GB of offline com-

LAN WAN
κs B Time Bandwidth Time Bandwidth

40

2 0.26 327 0.63 144
3 0.41 353 0.72 206
4 0.56 381 1.01 213
6 0.82 465 1.32 293

80
5 0.75 568 1.39 300
7 1.01 725 2.02 366
9 2.42 465 3.41 331

Figure 8: Maximum amortized throughput (ms/execution) and
resulting bandwidth (Kbps) when performing many parallel
evaluations of AES with the given bucket size B and statisti-
cal security κs.

munication for N = 1024 and 40-bit security.

9.4 Throughput & Bandwidth
In addition to considering the setting when executions
are performed sequentially, we tested our prototype
when performing many executions in parallel to maxi-
mize throughput. Figure 8 shows the maximum aver-
age throughput for AES evaluations that we were able to
achieve, under different security parameters and bucket
sizes. The time reported is the average number of mil-
liseconds per evaluation.

In the LAN setting, 8 evaluations were performed in
parallel and achieved an amortized time of 0.26ms per
evaluation for bucket size B = 2. A bucket size of 2
can be obtained by performing a modest number (say
N = 256) of executions with κb = 20, or a very large
number of executions with κb = 40. We further tested our
prototype in the WAN setting where we obtain a slightly
decreased throughput of 0.72ms per AES evaluation with
40-bit security.

References
[1] AFSHAR, A., MOHASSEL, P., PINKAS, B., AND RIVA,

B. Non-interactive secure computation based on cut-and-
choose. In EUROCRYPT 2014 (May 2014), P. Q. Nguyen

13

310 25th USENIX Security Symposium USENIX Association

and E. Oswald, Eds., vol. 8441 of LNCS, Springer, Hei-
delberg, pp. 387–404.

[2] BEAVER, D. Precomputing oblivious transfer. In
CRYPTO’95 (Aug. 1995), D. Coppersmith, Ed., vol. 963
of LNCS, Springer, Heidelberg, pp. 97–109.

[3] BELLARE, M., HOANG, V. T., KEELVEEDHI, S., AND

ROGAWAY, P. Efficient garbling from a fixed-key block-
cipher. In 2013 IEEE Symposium on Security and Privacy
(May 2013), IEEE Computer Society Press, pp. 478–492.

[4] BELLARE, M., HOANG, V. T., AND ROGAWAY, P.
Adaptively secure garbling with applications to one-time
programs and secure outsourcing. In ASIACRYPT 2012
(Dec. 2012), X. Wang and K. Sako, Eds., vol. 7658 of
LNCS, Springer, Heidelberg, pp. 134–153.

[5] BELLARE, M., HOANG, V. T., AND ROGAWAY, P. Foun-
dations of garbled circuits. In ACM CCS 12 (Oct. 2012),
T. Yu, G. Danezis, and V. D. Gligor, Eds., ACM Press,
pp. 784–796.

[6] CANETTI, R. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd FOCS
(Oct. 2001), IEEE Computer Society Press, pp. 136–145.

[7] CHOU, T., AND ORLANDI, C. The simplest protocol
for oblivious transfer. In Progress in Cryptology - LAT-
INCRYPT 2015 (2015), K. E. Lauter and F. Rodrı́guez-
Henrı́quez, Eds., vol. 9230 of Lecture Notes in Computer
Science, Springer, pp. 40–58.

[8] DAMGAARD, I., LAURITSEN, R., AND TOFT, T. An
empirical study and some improvements of the Mini-
Mac protocol for secure computation. Cryptology ePrint
Archive, Report 2014/289, 2014. http://eprint.

iacr.org/2014/289.
[9] DAMGÅRD, I., PASTRO, V., SMART, N. P., AND ZA-

KARIAS, S. Multiparty computation from somewhat ho-
momorphic encryption. In CRYPTO 2012 (Aug. 2012),
R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of LNCS,
Springer, Heidelberg, pp. 643–662.

[10] DAMGÅRD, I., AND ZAKARIAS, R. W. Fast oblivi-
ous AES: a dedicated application of the MiniMac proto-
col. Cryptology ePrint Archive, Report 2015/989, 2015.
ia.cr/2015/989.

[11] DAMGÅRD, I., AND ZAKARIAS, S. Constant-overhead
secure computation of boolean circuits using preprocess-
ing. In TCC 2013 (Mar. 2013), A. Sahai, Ed., vol. 7785
of LNCS, Springer, Heidelberg, pp. 621–641.

[12] FREDERIKSEN, T. K., JAKOBSEN, T. P., AND NIELSEN,
J. B. Faster maliciously secure two-party computation
using the GPU. In SCN 14 (Sept. 2014), M. Abdalla and
R. D. Prisco, Eds., vol. 8642 of LNCS, Springer, Heidel-
berg, pp. 358–379.

[13] HUANG, Y., KATZ, J., AND EVANS, D. Efficient secure
two-party computation using symmetric cut-and-choose.
In CRYPTO 2013, Part II (Aug. 2013), R. Canetti and
J. A. Garay, Eds., vol. 8043 of LNCS, Springer, Heidel-
berg, pp. 18–35.

[14] HUANG, Y., KATZ, J., KOLESNIKOV, V., KUMARESAN,
R., AND MALOZEMOFF, A. J. Amortizing garbled cir-
cuits. In CRYPTO 2014, Part II (Aug. 2014), J. A. Garay
and R. Gennaro, Eds., vol. 8617 of LNCS, Springer, Hei-
delberg, pp. 458–475.

[15] KELLER, M., ORSINI, E., AND SCHOLL, P. Ac-
tively secure OT extension with optimal overhead. In
CRYPTO 2015, Part I (Aug. 2015), R. Gennaro and
M. J. B. Robshaw, Eds., vol. 9215 of LNCS, Springer,
Heidelberg, pp. 724–741.

[16] KOLESNIKOV, V., MOHASSEL, P., RIVA, B., AND RO-
SULEK, M. Richer efficiency/security trade-offs in 2PC.
In TCC 2015, Part I (Mar. 2015), Y. Dodis and J. B.
Nielsen, Eds., vol. 9014 of LNCS, Springer, Heidelberg,
pp. 229–259.

[17] KOLESNIKOV, V., AND SCHNEIDER, T. Improved gar-
bled circuit: Free XOR gates and applications. In
ICALP 2008, Part II (July 2008), L. Aceto, I. Damgård,
L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and
I. Walukiewicz, Eds., vol. 5126 of LNCS, Springer, Hei-
delberg, pp. 486–498.

[18] KREUTER, B., SHELAT, A., AND SHEN, C. Billion-gate
secure computation with malicious adversaries. In Pro-
ceedings of the 21th USENIX Security Symposium (2012),
T. Kohno, Ed., USENIX Association, pp. 285–300.

[19] LINDELL, Y. Fast cut-and-choose based protocols for
malicious and covert adversaries. In CRYPTO 2013, Part
II (Aug. 2013), R. Canetti and J. A. Garay, Eds., vol. 8043
of LNCS, Springer, Heidelberg, pp. 1–17.

[20] LINDELL, Y., AND PINKAS, B. An efficient protocol
for secure two-party computation in the presence of ma-
licious adversaries. In EUROCRYPT 2007 (May 2007),
M. Naor, Ed., vol. 4515 of LNCS, Springer, Heidelberg,
pp. 52–78.

[21] LINDELL, Y., AND PINKAS, B. Secure two-party
computation via cut-and-choose oblivious transfer. In
TCC 2011 (Mar. 2011), Y. Ishai, Ed., vol. 6597 of LNCS,
Springer, Heidelberg, pp. 329–346.

[22] LINDELL, Y., AND RIVA, B. Cut-and-choose Yao-based
secure computation in the online/offline and batch set-
tings. In CRYPTO 2014, Part II (Aug. 2014), J. A. Garay
and R. Gennaro, Eds., vol. 8617 of LNCS, Springer, Hei-
delberg, pp. 476–494.

[23] LINDELL, Y., AND RIVA, B. Blazing fast 2PC in the
offline/online setting with security for malicious adver-
saries. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security (2015),
I. Ray, N. Li, and C. Kruegel, Eds., ACM, pp. 579–590.

[24] MALKHI, D., NISAN, N., PINKAS, B., AND SELLA, Y.
Fairplay - secure two-party computation system. In Pro-
ceedings of the 13th USENIX Security Symposium (2004),
M. Blaze, Ed., USENIX, pp. 287–302.

[25] MOHASSEL, P., AND FRANKLIN, M. Efficiency trade-
offs for malicious two-party computation. In PKC 2006
(Apr. 2006), M. Yung, Y. Dodis, A. Kiayias, and
T. Malkin, Eds., vol. 3958 of LNCS, Springer, Heidelberg,
pp. 458–473.

[26] MOHASSEL, P., AND RIVA, B. Garbled circuits check-
ing garbled circuits: More efficient and secure two-party
computation. In CRYPTO 2013, Part II (Aug. 2013),
R. Canetti and J. A. Garay, Eds., vol. 8043 of LNCS,
Springer, Heidelberg, pp. 36–53.

[27] NIELSEN, J. B., NORDHOLT, P. S., ORLANDI, C., AND

BURRA, S. S. A new approach to practical active-secure

14

USENIX Association 25th USENIX Security Symposium 311

two-party computation. In CRYPTO 2012 (Aug. 2012),
R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of LNCS,
Springer, Heidelberg, pp. 681–700.

[28] PEIKERT, C., VAIKUNTANATHAN, V., AND WATERS,
B. A framework for efficient and composable oblivious
transfer. In CRYPTO 2008 (Aug. 2008), D. Wagner, Ed.,
vol. 5157 of LNCS, Springer, Heidelberg, pp. 554–571.

[29] PINKAS, B., SCHNEIDER, T., SMART, N. P., AND

WILLIAMS, S. C. Secure two-party computation is prac-
tical. In ASIACRYPT 2009 (Dec. 2009), M. Matsui, Ed.,
vol. 5912 of LNCS, Springer, Heidelberg, pp. 250–267.

[30] PINKAS, B., SCHNEIDER, T., AND ZOHNER, M. Faster
private set intersection based on OT extension. In
Proceedings of the 23rd USENIX Security Symposium
(2014), K. Fu and J. Jung, Eds., USENIX Association,
pp. 797–812.

[31] SHELAT, A., AND SHEN, C.-H. Two-output secure
computation with malicious adversaries. In EURO-
CRYPT 2011 (May 2011), K. G. Paterson, Ed., vol. 6632
of LNCS, Springer, Heidelberg, pp. 386–405.

[32] SHELAT, A., AND SHEN, C.-H. Fast two-party secure
computation with minimal assumptions. In ACM CCS 13
(Nov. 2013), A.-R. Sadeghi, V. D. Gligor, and M. Yung,
Eds., ACM Press, pp. 523–534.

[33] SMART, N. Personal communication, November 2015.
[34] YAO, A. C.-C. Protocols for secure computations (ex-

tended abstract). In 23rd FOCS (Nov. 1982), IEEE Com-
puter Society Press, pp. 160–164.

[35] ZAHUR, S., ROSULEK, M., AND EVANS, D. Two halves
make a whole - reducing data transfer in garbled circuits
using half gates. In EUROCRYPT 2015, Part II (Apr.
2015), E. Oswald and M. Fischlin, Eds., vol. 9057 of
LNCS, Springer, Heidelberg, pp. 220–250.

A Adaptively Secure Garbling Schemes
A garbling scheme is a tuple of algorithms
(Gb,En,Ev,De) with the following syntax and se-
mantics. All algorithms accept a security parameter as
explicit input, which we leave implicit.
• Gb(f ,d)→ (F,e); Here f is a boolean circuit with

m inputs and n outputs; d is an n× 2 array of (out-
put) wire labels; F is a garbled circuit; and e is an
m×2 array of input wire labels.

By wire labels, we simply mean strings (i.e., ele-
ments of {0,1}κc). We deviate from [5] in requiring
the output wire labels d to be chosen by the caller of
Gb, rather than chosen by Gb itself. In the notation
of [5], we assume that the scheme is projective in
both its input and output encodings, meaning that e
and d consist of two possible wire labels for each
wire.

• En(e,x) → X takes an m × 2 array of wire la-
bels e and a plaintext input x ∈ {0,1}m and out-
puts a garbled encoding X of x. By assuming
that the scheme is projective, we assume that X =
(X1, . . . ,Xm) where Xi = e[i,xi].

• Ev(F,X)→Y ; takes a garbled circuit F and garbled
encoding X of an input, and returns a garbled en-
coding of the output Y .

• D̃e(Y)→ y. We assume a way to decode a garbled
output to a plaintext value. It is a deviation from [5]
to allow this to be done without the decoding infor-
mation d. Rather, we may assume that the garbled
outputs contain the plaintext value, say, as the last
bit of each wire label.

Our correctness condition is that for the variables de-
fined above, we have Ev(F,En(e,x)) = En(d, f (x)) and
D̃e(Ev(F,En(e,x))) = f (x) for all inputs x to the circuit
f . In other words, evaluating the garbled circuit should
result in the garbled output that encodes f (x) under the
encoding d.

In our construction, an adversary sees the garbled cir-
cuit F first, then it receives some of the garbled inputs
(corresponding to the k-probe matrix encoded inputs).
Finally in the online phase it is allowed to choose the
rest of its input to the ciruict and receive the rest of the
garbled inputs. Hence, our security game considers an
adversary that can obtain the information in this order.

We overload the syntax of the encoding algorithm En.
Since En is projective, we write En(e, i,b) to denote the
component ei,b — that is, the garbled input for the ith
wire corresponding to truth value b. Recall that we also
garble a circuit with output wire labels d specified (rather
than chosen by the Gb algorithm). Our security definition
lets the adversary choose d.

Definition 6. For a garbling scheme (Gb,En,Ev,De),
an interactive oracle program Adv, and algo-
rithms S = (S0,S1,S2), we define the following two
games/interactions:

G Adv
real :

get f ,d from AdvH

(F,e)← Gb(f ,d)
give F to AdvH

for i = 1 to m:
get xi from AdvH

Xi ← En(e, i,xi)
give Xi to AdvH

AdvH outputs a bit

G Adv,S
ideal :

get f ,d from AdvS0

F ← S1(f)
give F to AdvS0

for i = 1 to m−1:
get xi from AdvS0

Xi ← S2(i)
give Xi to AdvS0

get xm from AdvS0

y = f (x1 · · ·xm)
Y ← En(d,y)
Xm ← S2(m,y,Y)
give Xm to AdvS0

AdvS0 outputs a bit

In Gideal, H is a random oracle. In Gideal, the tuple
S = (S0,S1,S2) all share state. All algorithms receive
the security parameter as implicit input.

15

312 25th USENIX Security Symposium USENIX Association

Then the garbling scheme is adaptively secure if there
exists a simulator S such that for all polynomial-time ad-
versaries Adv, we have that

∣∣Pr[G Adv
real outputs 1]−Pr[G Adv,S

ideal outputs 1]
∣∣

is negligible in the security parameter.

Note that in the Gideal game, the simulator receives no
information about the input x as it produces the garbled
circuit F and all but one of the garbled input components.
Finally when producing the last garbled input compo-
nent, the simulator learns f (x) and its garbled output en-
coding En(d, f (x)). In particular, the simulator receives
no information about x, so its outputs carry no informa-
tion about x beyond f (x). The game also implies an
authenticity property for garbled outputs of values other
than f (x) — the simulator’s total output contains no in-
formation about the rest of the garbled outputs d.

In Figure 9 we describe a generic, random-oracle
transformation from a standard (static-secure) garbling
scheme to one with this flavor of adaptive security. The
construction is quite similar to the transformations in
[4], with some small changes. First, since we know in
advance which order the adversary will request its gar-
bled inputs, we include the random oracle nonce R in the
last garbled input value (rather than secret-sharing across
all garbled inputs). Second, since we garble a circuit
with particular garbled output values in mind, we provide
“translation values” that will map the garbled outputs of
the static scheme to the desired ones. These translation
values also involve the random oracle, so they can be
equivocated by the simulator.

Theorem 7. If (Gb,En,Ev,De, D̃e) is a doubly-
projective garbling scheme satisfying the (static) prv and
aut properties of [5] then the scheme in Figure 9 satisfies
adaptive security notion of Definition 6 in the random or-
acle model.

The proof is very similar to analogous proofs in [4].
The main idea is that the simulator can choose the
“masked” F̂ and δ translation values upfront. Then it
is only with negligible probability that an adversary will
call the random oracle on the secret nonce R, so the rel-
evant parts of the oracle are still free to be programmed
by the simulator. When the adversary provides the final
bit of input, the simulator gets f (x) and can obtain a sim-
ulated garbled circuit F and garbled outputs d from the
static-secure scheme. Then it can program the random
oracle to return the appropriate masks.8

8Technically, the proof assumes that the simulator for the static-
secure scheme can set the (simulated) garbled input encoding arbitrar-
ily. This is true for common existing schemes; e.g., [35].

Ĝb(f , d̂):
(F,e,d)← Gb(f)
R ←{0,1}κ

for each output wire i:
δ b

i ← H(R‖out‖i‖b‖db
i)⊕ d̂b

i
F̂ ← (F ⊕H(R‖gc),{δ b

i })
ê ← (e0

1,e
1
1,e

0
2,e

1
2, . . . ,e

0
m‖R,e1

m‖R)
return (F̂ , ê)

Êv(F̂ , X̂):
parse X̂m as Xm‖R and F̂ as (F ′,δ)
X ← (X̂1, X̂2, . . . ,Xm)
Y ← Ev(F ′ ⊕H(R‖gc),X)

y ← D̃e(Y)
for each output wire i:

Ŷi = δ yi
i ⊕H(R‖out‖i‖yi‖Yi)

return Ŷ

Figure 9: Transformation from a static-secure doubly-
projective garbling scheme (Gb,En,Ev,De,D̃e) to one satis-
fying Definition 6.

16

USENIX Association 25th USENIX Security Symposium 313

Setup stage: On common input (sid, SETUP, f ,N,ε), where f is a boolean circuit, N is the number of executions. The parties
agree on parameters B, N̂ derived from Lemma 1. Let M ∈ {0,1}µ×n be a κs-probe resistant matrix for each party’s input of
size n. Let a ∈ {0,1} denote the role of the current party and b = a⊕1. Note: the protocol is symmetric where both parties
simultaneously play the roles of Pa and Pb.

• Cut-and-Choose Commit: Pa chooses at random the cut and choose set σa ⊂ [N̂] of size N̂ − NB. Pa send
(COMMIT,(sid,CUT-AND-CHOOSE,a),σa) to Fcom. For j ∈ [N̂]:

– OT Init: Pa sends (INIT,(sid,OT,a, j)) to F
µ
rot and receives choice bits ca

j in response.

– Send Circuit: Pa chooses random output wire labels d j, computes (Fa
j ,e j) ← Ĝb(f ′,d j) and sends the Fa

j to
Pb where f ′(xa,r, x̃b) = f (xa,Mr⊕ x̃b) and r, x̃b are Pb’s inputs. Let ea

j ,e
b
j ,e

r
j respectively be the labels encoding

xa, x̃b,r, for circuit Fa
j and e∗j,t,h index the label of the tth wire with value h in the set e∗j

– Input Commit: Pa sends the following to Fcom:
� (COMMIT,(sid,xa-INPUT,a, j, t,h),ea

j,t,Mc[t]⊕h)t∈[n],h∈{0,1}.
� (COMMIT,(sid,xb-INPUT,a, j, t,h),eb

j,t,h)t∈[n],h∈{0,1}
� (COMMIT,(sid, r-INPUT,a, j, t,h),er

j,t,h)t∈[µ],h∈{0,1}
– Output Commit: Pa sends (COMMIT,(sid,OUTPUT,a, j), d j) to Fcom.

• Cut-and-Choose: Pb sends (OPEN,(sid,CUT-AND-CHOOSE,b)) to Fcom and Pa receives σb. For j ∈ σb:
– OT Decommit: Pa sends (OPEN,(sid,OT,a, j)) to F

µ
rot and Pb receives choice bits cb

j .
– Check Circuit: Pa sends Pb the d j and coins used to garble Fa

j . Pb verifies the correctness of Fa
j .

– Input Decommit: Let ea
j ,e

b
j ,e

r
j be the verified labels as above.

� Pa sends (OPEN,(sid,xa-INPUT,a, j, t,h))∀t,h to Fcom and Pb receives labels e′a.
� Pa sends (OPEN,(sid,xb-INPUT,a, j, t,h))∀t,h to Fcom and Pb receives labels e′b.
� Pa sends (OPEN,(sid, r-INPUT,a, j, t,h))∀t,h to Fcom and Pb receives labels e′r.
� If there exists a e′at,h �= ea

j,t,Mcb
j [t]⊕h, or e′b �= eb

j , or e′r �= er
j, Pb returns ABORT .

– Output: Pa sends (OPEN,(sid,OUTPUT,a, j)) to Fcom. Pb receives d′ and return ABORT if d′ �= d j.
• Bucketing: Pb randomly maps the indices of [N̂]−σb into sets β a

1 , ...,β
a
N s.t. |β a

i |= B. For i ∈ [N]:
– Bucket Labels: Pa generates random output labels Oa

i for bucket β a
i . For j ∈ β a

i , Pa send the output translation
T a

j := {Oa
i,t,h ⊕d j,t,h}t,h and H(Oa

i,t,h) to Pb, where d j are the output labels of Fa
j .

– Offline Inputs:
� Pa sends (AGGREGATE,(sid,OT-AG,a, i),{(sid,OT,a, j)| j ∈ β b

i }) to F
µ
rot and Pb receives the OT aggrega-

tion strings δ a
j for j ∈ β a

i .
� Pb sends (DELIVER,(sid,OT-AG,a, i),{er

j,w j| j ∈ β b
i }) to F

µ
rot where w j are the decommitment strings to

{(sid,r-INPUT,b, j, t,h)}t,h.
� For j ∈ β b

i , Pa receives Xr
j and Wj from F

µ
rot. Pa send (OPEN,(sid,r-INPUT,b, j, t,ca

j [t]),Wj,t)∀t to Fcom

and receives X ′r
j . Pa returns ABORT if X ′r

j �= Xr
j .

Execution stage: On common bucket index i and Pa’s input xa.
• Receiver’s Inputs: Let j′ be the first index in β a

i . Pa sends x̃a := xa ⊕Mca
j′ to Pb where ca

j′ are the choice bits of
(sid,OT,a, j′). For all j ∈ β b

i :
– Pb sends Xa

j := {ea
j,t,(x̃a⊕Mδ a

j)[t]
}t and W a

j := {w j,(x̃a⊕Mδ a
j)[t]}t to Pa where ea

j encodes x̃a for Fb
j and w j are the

decommitments string to {(sid,xa-INPUT,b, j, t,h)}t,h.
– Pa receives Xa

j ,W
a
j and sends (OPEN,(sid,xa-INPUT,b, j, t,(xa ⊕Mca

j)[t]),W
a
j,t)∀t to Fcom and receives X ′a

j . Pa

returns ABORT if Xa
j �= X ′a

j .

• Sender’s Inputs: For j ∈ β b
i , Pb sends (OPEN,(sid,xb-INPUT,b, j, t,(xb ⊕Mcb

j)[t]))∀t to Fcom. Pa receives the labels
Xb

j . Pa returns ABORT if x̃b ⊕Mδ b
j �= (xb ⊕Mcb

j).

• Evaluate: For j ∈ β b
i , let Yj := Êv(Fb

j ,(X
b
j ,X

r
j ,X

a
j)) with semantic value y j.

• PSI Commit: For ∀ j, t, if (H(Yj,t) �= H(Ob
i,t,y j [t]

)), then Yj,t ← {0,1}κc . Let I := {
⊕

t Yj,t ⊕T b
j,t,y j [t]

⊕Oa
i,t,y j [t]

} j∈β b
i
.

Pa pads I to size B with random values and sends (INPUT,(sid, PSI, i), I) to Fpsi and receives (INPUT,Pb).
• Output Decommit: For j ∈ β b

i , Pb sends (OPEN,(sid,OUTPUT,b, j)) to Fcom and Pa receives d′
j .

If there exists j, j′ s.t. d′
j,t,h ⊕T b

j,t,h �= d′
j′,t,h ⊕T b

j′,t,h, Pa returns ABORT.
• PSI Decommit: Pb sends (OPEN,(sid, PSI, i)) to Fpsi and Pa receives the intersection R. If |R| �= 1, Pa returns

CHEATING!, else PA returns y j s.t. I j ∈ R.

Figure 15: Malicious secure online/offline dual-execution 2PC protocol Πmulti-sfe.

17

314 25th USENIX Security Symposium USENIX Association

Parameters: A sender P1 and receiver P2.

Setup: On common input S from both parties,
for every s ∈ S choose random m0,m1 ← {0,1}κc

and random c ← {0,1}. Internally store a tuple
(s,m0,m1,c).

P1 output: On input (GET,s) from P1, if there is
a tuple (s,m0,m1,c) for some m0,m1,c then give
(OUTPUT,s,m0,m1) to P1.

P2 output: On input (GET,s) from P2, if there is
a tuple (s,m0,m1,c) for some m0,m1,c then give
(OUTPUT,s,c,mc) to P2.

Figure 10: Random OT functionality Fot.

Parameters: A sender P1 and receiver P2.

Commit: On input (COMMIT,sid,v) from P1: If
a tuple of the form (sid, ·, ·) is stored, then abort.
If P1 is corrupt, then obtain value r from the ad-
versary; otherwise choose r ← {0,1}κc and give r
to P1. Internally store a tuple (sid,r,v) and give
(COMMITTED,sid) to P2.

Reveal: On input (OPEN,sid,r′) from P2: if
a tuple (sid,r′,v) is stored for some v, then
give (OPENED,sid,v) to P2. Otherwise, give
(ERROR,sid) to P2.

Figure 11: Non-interactive commitment functionality Fcom.

Parameters: Two parties: a sender P1 and receiver
P2; � = length of items; n = size of parties’ sets.

First phase (input commitment): On input
(INPUT,Ai) from party Pi (i ∈ {1,2}), with Ai ⊆
{0,1}� and |Ai|= n: If this is the first such command
from Pi then internally record Ai and send message
(INPUT,Pi) to both parties.

Second phase (output): On input (OUTPUT) from
Pi, deliver (OUTPUT,A1 ∩A2) to the other party.

Figure 12: Two-phase private set intersection (PSI) functional-
ity F n,�

psi .

Parameters: Two parties: a sender P1 and receiver P2;
� = bit-length of items in the set; n = size of parties’
sets; F = a PRF.

Offline phase: Parties perform random OTs, resulting
in P1 holding strings mi,t

{0,1} ← {0,1}κc ; and P2 holding

ci and mi,t
ci[t]

. Here, ci ∈ {0,1}� and i ∈ [n], t ∈ [�].

Input committing phase:
• On input (INPUT,{A2,1, . . . ,A2,n}) to P2, P2 ran-

domly permutes its input and then sends di :=
A2,i ⊕ ci for each i ∈ [n].

• On input (INPUT,{A1,1, . . . ,A1,n}) for P1, P1 ran-
domly permutes its input and then computes
Si, j =

⊕
t F(mi,t

di[t]⊕A1, j [t]
, j) for i, j ∈ [n].

• P1 sends (COMMIT,sid,(S1,1, . . . ,Sn,n)) to Fcom.

Output phase: On input (OUTPUT), P1
sends (OPEN,sid) to Fcom and P2 receives
(OPENED,sid,(S1,1, . . . ,Sn,n)). P2 then outputs
{A2,i | ∃ j :

⊕
t F(mi,t

ci[t]
, j) = Si, j}.

Figure 13: Weakly-malicious-secure, synchronous (3-round),
two-phase PSI protocol Πsync-psi.

Parameters: Two parties: a sender P1 and receiver P2;
� = bit-length of items in the set; n = size of parties’
sets; F = a PRF.

Offline phase: Parties perform random OTs, resulting
in P1 holding strings mi,t

{0,1} ← {0,1}κc ; and P2 holding

ci and mi,t
ci[t]

. Here, ci ∈ {0,1}� and i ∈ [n], t ∈ [�].

For i ∈ [n], P1 chooses πi ←{0,1}�. Then for i, j ∈ [n],
party P1 does the following:
• For t ∈ {0,1}�, choose zi, j

t ← {0,1}� subject to⊕
t zi, j

t = 0
• for t ∈ [�],b ∈ {0,1}; P1 sends (COMMIT,

(sid, i, j, t,b),F(mi,t
π j [t]⊕b, j)⊕ zi, j

t) to Fcom.

Input committing phase: On in-
put (INPUT,{A1,1, . . . ,A1,n}) for P1 and
(INPUT,{A2,1, . . . ,A2,n}) for P2, the parties ran-
domly permute their inputs and asynchronously
do:
• P1 sends d1, j := A1, j ⊕π j for each j ∈ [n]
• P2 sends d2,i := A2,i ⊕ ci for each i ∈ [n]

Output phase: On input (OUTPUT): for i, j ∈ [n],
t ∈ [�], party P1 sends (OPEN,(sid, i, j, t,d1, j[t] ⊕
d2,i[t])) to Fcom and P2 expects to receive
(OPENED,(sid, i, j, t,d1, j[t]⊕d2,i[t]),ρ i, j

t).

P2 outputs {A2,i | ∃ j :
⊕

t F(mi,t
ci[t]

, j) =
⊕

t ρ i, j
t }

Figure 14: Weakly-malicious-secure, asynchronous (2-round),
two-phase PSI protocol Πasync-psi.

18

USENIX Association 25th USENIX Security Symposium 315

Egalitarian computing

Alex Biryukov
University of Luxembourg

alex.biryukov@uni.lu

Dmitry Khovratovich
University of Luxembourg
khovratovich@gmail.com

Abstract
In this paper we explore several contexts where an ad-
versary has an upper hand over the defender by using
special hardware in an attack. These include password
processing, hard-drive protection, cryptocurrency min-
ing, resource sharing, code obfuscation, etc.

We suggest memory-hard computing as a generic
paradigm, where every task is amalgamated with a cer-
tain procedure requiring intensive access to RAM both in
terms of size and (very importantly) bandwidth, so that
transferring the computation to GPU, FPGA, and even
ASIC brings little or no cost reduction. Cryptographic
schemes that run in this framework become egalitarian
in the sense that both users and attackers are equal in the
price-performance ratio conditions.

Based on existing schemes like Argon2 and the re-
cent generalized-birthday proof-of-work, we suggest a
generic framework and two new schemes:

• MTP, a memory-hard Proof-of-Work based on the
memory-hard function with fast verification and
short proofs. It can be also used for memory-hard
time-lock puzzles.

• MHE, the concept of memory-hard encryption,
which utilizes available RAM to strengthen the en-
cryption for the low-entropy keys (allowing to bring
back 6 letter passwords).

Keywords: MTP, MHE, Argon2, memory-hard,
asymmetric, proof-of-work, botnets, encryption, time-
lock puzzles.

1 Introduction

1.1 Motivation
Historically attackers have had more resources than de-
fenders, which is still mostly true. Whether it is se-
cret key recovery or document forgery, the attackers are

ready to spend tremendous amount of computing power
to achieve the goal. In some settings it is possible to
make most attacks infeasible by simply setting the key
length to 128 bits and higher. In other settings the secret
is limited and the best the defender can do is to increase
the time needed for the attack, but not to render the attack
impossible.

Passwords, typically stored in a hashed form, are a
classical example. As people tend to choose passwords
of very low entropy, the security designers added unique
salts and then increased the number of hash iterations.
In response the attackers switched to dedicated hardware
for password cracking, so that the price of single pass-
word recovery dropped dramatically, sometimes by a few
orders of magnitude.

A similar situation occurred in other contexts. The
Bitcoin cryptocurrency relies on continuous preimage
search for the SHA-256 hash function, which is much
cheaper on custom ASICs, consuming up to 30,000 times
less energy per solution than most efficient x86 lap-
tops [2]. Eventually, the original concept of an egali-
tarian cryptocurrency [25] vanished with the emergence
of huge and centralized mining pools.

Related problems include password-based key deriva-
tion for hard-drive encryption, where the data confiden-
tiality directly depends on the password entropy, and
where offline attack is exceptionally easy once the drive
is stolen. Similar situation arise in the resource sharing
and spam countermeasures. In the latter it is proposed
that every user presents a certain proof (often called
proof-of-work), which should be too expensive for spam-
mers to generate on a large scale. Yet another setting
is that of code obfuscation, in which powerful reverse-
engineering/de-compilation tools can be used in order to
lift the proprietary code or secrets embedded in the soft-
ware.

316 25th USENIX Security Symposium USENIX Association

1.2 Egalitarian computing
Our idea is to remedy the disparity between ordinary
users and adversaries/cheaters, where latter could use
botnets, GPU, FPGA, ASICs to get an advantage and run
a cheaper attack. We call it egalitarian computing as it
should establish the same price for a single computation
unit on all platforms, so that the defender’s hardware is
optimal both for attack and defence. Equipped with egal-
itarian crypto schemes, defenders may hope to become to
be on par with the most powerful attackers.

The key element of our approach is large (in size) and
intensive (in bandwidth) use of RAM as a widely avail-
able and rather cheap unit for most defenders. In turn,
RAM is rather expensive on FPGA and ASIC1, and slow
on GPU, at least compared to memoryless computing
tasks. All our schemes use a lot of memory and a lot
of bandwidth — almost as much as possible.

We suggest a single framework for this concept and
concrete schemes with an unique combination of fea-
tures.

In the future, adoption of our concept could allow a
homogenization of computing resources, a simplified se-
curity analysis, and relaxed security requirements. When
all attackers use the same hardware as defenders, auto-
mated large-scale attacks are no longer possible. Shorter
keys, shorter passwords, faster and more transparent
schemes may come back to use.

Related work The idea of extensive memory use in the
context of spam countermeasures dates back at least to
2003 [5, 13] and was later refined in [15]. Fast memory-
intensive hash functions were proposed first by Percival
in 2009 [27] an later among the submissions of the Pass-
word Hashing Competition. Memory-intensive proofs-
of-work have been studied both in theory [16] and prac-
tice [6, 32].

Paper structure We describe the goals of our con-
cept and give a high level overview in Section 2. Then
we describe existing applications where this approach
is implicitly used: password hashing and cryptocur-
rency proofs of work (Section 3). We present our own
progress-free Proof-of-Work MTP with fast verification,
which can also serve as a memory-hard time-lock puz-
zle, in Section 4. The last Section 5 is devoted to the

1The memory effect on ASICs can be illustrated as follows. A com-
pact 50-nm DRAM implementation [17] takes 500 mm2 per GB, which
is equivalent to about 15000 10 MHz SHA-256 cores in the best Bit-
coin 40-nm ASICs [1] and is comparable to a CPU size. Therefore, an
algorithm requiring 1 GB for 1 minute would have the same AT cost as
an algorithm requiring 242 hash function calls, whereas the latter can
not finish on a PC even in 1 day. In other words, the use of memory
can increase the AT cost by a factor of 1000 and more at the same time
cost for the desktop user.

novel concept of memory-hard encryption, where we
present our scheme MHE aimed to increase the security
of password-based disk encryption.

2 Egalitarian computing as framework

2.1 Goal

Our goal is to alter a certain function H in order to max-
imize its computational cost on the most efficient archi-
tecture – ASICs, while keeping the running time on the
native architecture (typically x86) the same. We ignore
the design costs due to nontransparent prices, but instead
estimate the running costs by measuring the time-area
product [8, 31]. On ASICs the memory size M translates
into certain area A. The ASIC running time T is deter-
mined by the length of the longest computational chain
and by the ASIC memory latency.

Suppose that an attacker wants to compute H using
only a fraction αM of memory for some α < 1. Using
some tradeoff specific to H , he has to spend C(α) times
as much computation and his running time increases by
the factor D(α) (here C(α) may exceed D(α) as the at-
tacker can parallelize the computation). In order to fit the
increased computation into time, the attacker has to place
C(α)
D(α) additional cores on chip. Therefore, the time-area
product changes from AT1 to ATα as

ATα = A · (α +
βC(α)

D(α)
)T ·D(α) =

= AT1(αD(α)+C(α)β), (1)

where β is the fraction of the original memory occu-
pied by a single computing core. If the tradeoff re-
quires significant communication between the comput-
ing cores, the memory bandwidth limit Bwmax may also
increase the running time. In practice we will have
D(α) ≥ C(α) ·Bw/Bwmax, where Bw is the bandwidth
for α = 1.

Definition 1 We call function F memory-hard (w.r.t.
M) if any algorithm A that computes H using αM
memory has the computation-space tradeoff C(α) where
C() is at least a superlinear function of 1/α .

It is known [19] that any function whose computation is
interpreted as a directed acyclic graph with T vertices
of constant in-degree, can be computed using O(T

logT)

space, where the constant in O() depends on the degree.
However, for concrete hash functions very few tradeoff
strategies have been published, for example [9].

2

USENIX Association 25th USENIX Security Symposium 317

2.2 Framework
Our idea is to combine a certain computation H with a
memory-hard function F . This can be done by modify-
ing H using input from F (amalgamation) or by trans-
forming its code to an equivalent one (obfuscation).

The amalgamation is used as follows. The execution
of H is typically a sequence of smaller steps Hi, i < T ,
which take the output Vi−1 from the previous step and
produce the next output Vi. For our purpose we need an-
other primitive, a memory-hard function F , which fills
the memory with some blocks X [i], i < T . We suggest
combining H with F , for example like:

H ′ = H ′
T ◦H ′

T−1 ◦ · · · ◦H ′
1,

where
H ′

i (Vi−1) = H(Vi−1 ⊕X [i−1]).

Depending on the application, we may also modify X [i]
as a function of Vi−1 so that it is impossible to precom-
pute F . The idea is that any computation of H ′ should
use T blocks of memory, and if someone wants to use
less, the memory-hardness property would impose com-
putational penalties on him. This approach will also
work well for any code that uses nonces or randomness
produced by PRNG. PRNG could then be replaced by (or
intermixed with the output of) F .

The obfuscation principle works as follows. Consider
a compiler producing an assembly code for some func-
tion H . We make it to run a memory-hard function F
on a user-supplied input I (password) and produce cer-
tain number of memory blocks. For each if-statement of
the form

if x then A
else B

the compiler computes a memory-hard bit bi which is
extracted from the block X [i] (the index can also depend
on the statement for randomization) and alters the state-
ment as

if x⊕bi then A
else B

for bi = 0 and
if x⊕bi then B

else A
for bi = 1. This guarantees that the program will have

to run F at least once (the bits bi can be cached if this
if-statement is used multiple times, ex. in a loop).

Accessing the memory block from a random memory
location for each conditional statement in practice would
slow down the program too much, so compiler can per-
form a tradeoff depending on the length of the program,
the number of conditional statements in it and accord-
ing to a tunable degree of required memory-hardness
for a program. Memory-hard bits could be mixed into
opaque predicates or other code obfuscation constructs
like code-flattening logic.

We note that in order for a program to run correctly,
the user needs to supply correct password for F , even
though the source code of the program is public. A smart
decompiler, however, when supplied with the password,
can obtain clean version of the program by running F
only once.

Our schemes described in the further text use the amal-
gamation principle only, so we leave the research direc-
tions in obfuscation for future work.

3 Egalitarian computing in applications

In this section we outline several applications, where
memory-hard functions are actively used in order to
achieve egalitarian computing.

3.1 Password hashing with a memory-hard
function

The typical setting for the password hashing is as fol-
lows. A user selects a password P and submit it to the
authentication server with his identifier U . The server
hashes P and unique salt S with some function F , and
stores (U,S,F(P,S)) in the password file. The common
threat is the password file theft, so that an attacker can
try the passwords from his dictionary file D and check if
any of them yields the stolen hash. The unique S ensures
that the hashes are tried one-by-one.

Following massive password cracking attacks that use
special hardware [23, 30], the security community initi-
ated the Password Hashing Competition [3] to select the
hash function that withstands the most powerful adver-
saries. The Argon2 hash function [10] has been recently
selected as the winner. We stress that the use of memory-
hard function for password hashing does not make the
dictionary attacks infeasible, but it makes them much
more expensive in terms of the single trial cost.

Definition and properties of Argon2 We use Argon2
in our new schemes described in Sections 4 and 5. Here
we outline the key elements of the Argon2 design that are
used in our scheme. For more details and their rationale
we refer the reader to [10].

Argon2 takes P, S, and possibly some additional data
U as inputs. It is parametrized by the memory size M,
number of iterations t, and the available parallelism l.
It fills M blocks of memory X [1],X [2], . . . ,X [M] (1 KB
each) and then overwrites them (t−1) times. Each block
X [i] is generated using internal compression function F ,
which takes X [i − 1] and X [φ(i)] as inputs. For t = 1
this works as follows, where H is a cryptographic hash

3

318 25th USENIX Security Symposium USENIX Association

function (Blake2b).

X [1] = H(P,S);
X [i] = F(X [i−1],X [φ(i)]), i > 1;
Out → H(X [M]).

(2)

The indexing function φ(i) is defined separately for each
of two versions of Argon2: 2d and 2i. The Argon2d ver-
sion, which we use, compute it as a function of the pre-
vious block X [i−1].

The authors proved [10] that all the blocks are gen-
erated distinct assuming certain collision-resistant-like
properties of F . They also reported the performance of
0.7 cpb on the Haswell CPU with 4 threads, and 1.6 cpb
with 1 thread.

Tradeoff security of Argon2 Using the tradeoff algo-
rithm published in [9], the authors report the values C(α)
and D(α) up to α = 1/7 with t = 1. It appears that C(α)
is exponential in α , whereas D(α) is linear.

α 1
2

1
3

1
4

1
5

1
6

1
7

C(α) 1.5 4 20.2 344 4660 218

D(α) 1.5 2.8 5.5 10.3 17 27

Table 1: Time and computation penalties for the ranking
tradeoff attack for Argon2d.

3.2 Proofs of work
A proof-of-work scheme is a challenge-response proto-
col, where one party (Prover) has to prove (maybe prob-
abilistically) that it has performed a certain amount of
computation following a request from another party (Ver-
ifier). It typically relies on a computational problem
where a solution is assumed to have fixed cost, such as
the preimage search in the Bitcoin protocol and other
cryptocurrencies. Other applications may include spam
protection, where a proof-of-work is a certificate that is
easy to produce for ordinary sender, but hard to generate
in large quantities given a botnet (or more sophisticated
platform).

The proof-of-work algorithm must have a few proper-
ties to be suitable for cryptocurrencies:

• It must be amortization-free, i.e. producing q out-
puts for B should be q times as expensive;

• The solution must be short enough and verified
quickly using little memory in order to prevent DoS
attacks on the verifier.

• The time-space tradeoffs must be steep to prevent
any price-performance reduction.

• The time and memory parameters must be tunable
independently to sustain constant mining rate.

• To avoid a clever prover getting advantage over the
others the advertised algorithm must be the most ef-
ficient algorithm to date (optimization-freeness).

• The algorithm must be progress-free to prevent cen-
tralization: the mining process must be stochastic so
that the probability to find a solution grows steadily
with time and is non-zero for small time periods.

• Parallelized implementations must be limited by the
memory bandwidth.

As demonstrated in [11], almost any hard problem can
be turned into a proof-of-work, even though it is difficult
to fulfill all these properties. The well-known hard and
NP-complete problems are natural candidates, since the
best algorithms for them run in (sub)exponential time,
whereas the verification is polynomial. The proof-of-
work scheme Equihash [11] is built on the generalized-
birthday, or k-XOR, problem, which looks for a set of
n-bit strings that XOR to zero. The best existing algo-
rithm is due to Wagner [34]. This problem is particularly
interesting, as the time-space tradeoff steepness can be
adjusted by changing k, which does not hold, e.g., in hard
knapsacks.

Drawbacks of existing PoW We briefly discuss exist-
ing alternatives here. The first PoW schemes by Dwork
and Naor [14] were just computational problems with
fast verification such as the square root computation,
which do not require large memory explicitly. The sim-
plest scheme of this kind is Hashcash [7], where a par-
tial preimage to a cryptographic hash function is found
(the so called difficulty test). Large memory comes into
play in [13], where a random array is shared between the
prover and the verifier thus allowing only large-memory
verifiers. This condition was relaxed in [15], where su-
perconcentrators [28] are used to generate the array, but
the verifier must still hold large memory in the initial-
ization phase. Superconcentrators were later used in the
Proof-of-Space construction [16], which allows fast veri-
fication. However, the scheme [16] if combined with the
difficulty test is vulnerable to cheating (see Section 4.4
for more details) and thus can not be converted to a
progress-free PoW. We note that the superconcentrators
make both [15] and [16] very slow.

Ad-hoc but faster schemes started with scrypt [27],
but fast verification is possible only with rather low

4

USENIX Association 25th USENIX Security Symposium 319

amount of memory. Using more memory (say, using Ar-
gon2 [10]) with a difficulty test but verifying only a sub-
set of memory is prone to cheating as well (Section 4.4).

The scheme [11] is quite promising, but the reference
implementation reported is quite slow, as it takes about
30 seconds to get a proof that certifies the memory allo-
cation of 500 MB. As a result, the algorithm is not truly
progress-free: the probability that the solution is found
within the first few seconds is actually zero. It can be ar-
gued that this would stimulate centralization among the
miners. In addition, the memory parameter does not have
sufficient granularity and there is no correlation between
the allocated memory and the minimal time needed to
find the proof.

Finally, we mention schemes Momentum [21] and
Cuckoo cycle [32], which provide fast verification due
to their combinatorial nature. They rely on the mem-
ory requirements for the collision search (Momentum)
or graph cycle finding (Cuckoo). However, Momen-
tum is vulnerable to a sublinear time-space tradeoff [11],
whereas the first version of the Cuckoo scheme was re-
cently broken in [6].

We summarize the properties of the existing proof-of-
work constructions in Table 2. The AT cost is estimated
for the parameters that enable 1-second generation time
on a PC.

4 MTP: Proofs of work and time-lock puz-
zles based on memory-hard function

In this section we present a novel proof-of-work algo-
rithm MTP (for Merkle Tree Proof) with fast verifica-
tion, which in particular solves the progress-free prob-
lem of [11]. Our approach is based on the memory-hard
function, and the concrete proposal involves Argon2.

Since fast memory-hard functions F such as Argon2
perform a lengthy chain of computations, but do not
solve any NP-like problem, it is not fast to verify that
Y is the output of F . Checking some specific (say, last)
blocks does not help, as explained in detail in the fur-
ther text. We thus have to design a scheme that lower
bounds the time-area product for the attacker, even if he
computes a slightly modified function.

4.1 Description of MTP

Consider a memory-hard function F that satisfies Equa-
tion (2) (for instance, Argon2) with a single pass over the
memory producing T blocks and a cryptographic hash
function H (possibly used in F). We propose the fol-
lowing non-interactive protocol for the Prover (Figure 1)
in Algorithm 1, where L and d are security parameters.
The average number of calls to F is T +2dL.

Algorithm 1 MTP: Merkle-tree based Proof-of-Work.
Prover’s algorithm
Input: Challenge I, parameters L,d.

1. Compute F (I) and store its T blocks X [1], X [2],
. . ., X [T] in the memory.

2. Compute the root Φ of the Merkle hash tree (see
Appendix A).

3. Select nonce N.

4. Compute Y0 = H(Φ,N) where G is a cryptographic
hash function.

5. For 1 ≤ j ≤ L:

i j = Yj−1 (mod T);
Yj = H(Yj−1,X [i j]).

6. If YL has d trailing zeros, then (Φ,N,Z) is the
proof-of-work, where Z is the opening of 2L
blocks {X [i j − 1],X [φ(i j)]}. Otherwise go to Step
3.

Output: Proof (Φ,N,Z).

The verifier, equipped with F and H, runs Algo-
rithm 2.

Algorithm 2 MTP: Verifier’s algorithm
Input: Proof (Φ,N,Z), parameters L,d.

1. Compute Y0 = H(Φ,N).

2. Verify all block openings using Φ.

3. Compute from Z for 1 ≤ j ≤ L:

X [i j] = F(X [i j −1],X [φ(i j)]);
Yj = G(Yj−1,X [i j]).

4. Check whether YL has t trailing zeros.

Output: Yes/No.

4.2 Cheating strategies
Let the computation-space tradeoff for H and the de-
fault memory value T be given by functions C(α) and
D(α) (Section 2).

Memory savings Suppose that a cheating prover wants
to reduce the AT cost by using αT memory for some
α < 1. First, he computes F (I) and Φ, making C(α)T

5

320 25th USENIX Security Symposium USENIX Association

Scheme AT cost Speed Verification Tradeoff Paral-sm Progress

Fast M/less -free

Dwork-Naor I [14] Low High Yes Yes Memoryless Yes Yes

Dwork-Naor II [13] High Low Yes No Memoryless Constr. Yes

Dwork-Naor III [15] Medium Low Yes No Exponential Constr. Yes

Hashcash/Bitcoin [7] Low High Yes Yes Memoryless Yes Yes

Pr.-of-Space [16]+Diff.test High Low Yes Yes Exponential No No

Litecoin Medium High Yes Yes Linear No Yes

Argon2-1GB + Diff.test High High No No Exponential No Yes

Momentum [21] Medium High Yes Yes Attack [11, 33] Yes Yes

Cuckoo cycle [32] Medium [6] Medium Yes Yes Linear [6] Yes Yes

Equihash [11] High Medium Yes Yes Exponential Constr. Yes

MTP High High Yes Yes Exponential Constr. Yes

Table 2: Review of existing proofs of work. Litecoin utilizes scrypt with 128KB of RAM followed by the difficulty
test). M/less – memoryless; constr. – constrained.

calls to F . Then for each N he has to get or recompute
L blocks using only αT stored blocks. The complexity
of this step is equal to the complexity of recomputing
random L blocks during the first computation of F . A
random block is recomputed by a tree of average size
C(α) and depth D(α). Therefore, to compute the proof-
of-work, a memory-saving prover has to make C(α)(T +
2dL) calls to F , so his amount of work grows by C(α).

Block modification The second cheating strategy is to
compute a different function F ′ �= F . More precisely,
the cheater produces some blocks X [i′] (which we call
inconsistent as in [16]) not as specified by Equation (2)
(e.g. by simply computing X [i′] = H(i′)). In contrast to
the verifiable computation approach, our protocol allows
a certain number of inconsistent blocks. Suppose that the
number of inconsistent blocks is εT , then the chance that
no inconsistent block is detected by L opened blocks is

γ = (1− ε)L.

Therefore, the probability for a proof-of-work with εM
inconsistent blocks to pass the opening test is γ . In other
words, the cheater’s time is increased by the factor 1/γ .
We note that it does not make sense to alter the blocks
after the Merkle tree computation, as any modified block
would fail the opening test.

Overall cheating penalties Let us accumulate the two
cheating strategies into one. Suppose that a cheater

stores αT blocks and additionally allows εT inconsis-
tent blocks. Then he makes at least

C(α + ε)(T +2dL)
γ

(3)

calls to F . The concrete values are determined by the
penalty function C(), which depends on F .

4.3 Parallelism
Both honest prover and cheater can parallelize the com-
putation for 2t different nonces. However, the latency of
cheater’s computation will be higher, since each block
generates a recomputation tree of average depth D(α +
ε).

4.4 Why simpler approach does not work:
grinding attack

Now we can explain in more details why the composition
of F and the difficulty test is not a good proof-of-work
even if some internal blocks of H are opened. Suppose
that the proof is accepted if H(X [T]) has certain number
d of trailing zeros. One would expect that a prover has
to try 2d distinct I on average and thus call F 2t times to
find a solution. However, a cheating prover can simply
try 2d values for X [T] and find one that passes the test
in just 2d calls to H. Although X [T] is now inconsistent,
it is unlikely to be selected among L blocks to open, so
the cheater escapes detection easily. Additionally check-
ing X [T] would not resolve the problem since a cheater

6

USENIX Association 25th USENIX Security Symposium 321

I

Argon2

Φ

Merkle tree

N

H

Nonce

i1

H

i1

iL

H

iL

Y

d trailing zeros?
No Yes

Open 2L blocks

Figure 1: MTP: Merkle-tree based Proof-of-Work with
light verification.

would then modify the previous block, or X [φ(T)], or an
earlier block and then propagate the changes. A single
inconsistent block is just too difficult to catch2.

4.5 MTP-Argon2

As a concrete application, we suggest a cryptocurrency
proof-of-work based on Argon2d with 4 parallel lanes.
We aim to make this PoW unattractive for botnets, so we
suggest using 2 GB of RAM, which is very noticeable
(and thus would likely alarm the user), while being bear-
able for the regular user, who consciously decided to use
his desktop for mining. On our 1.8 GHz machine a single
call to 2-GB Argon2d runs in 0.5 seconds, but the Merkle
tree computation is more expensive, as we have to hash
2 GB of data splitted into 1 KB blocks. We suggest us-
ing Blake2b for H, as it is already used in Argon2d, but
restrict to 128-bit output, so that the total running time is
about 3 seconds. In this case a single opening has 16 ·21
bytes of hashes, or 1.3 KB in total.

We suggest L = 70, so that the entire proof consists
of 140 blocks and their openings, or 180 KB in total.
Let us figure out the cheating advantage. The C() and
D() functions are given in Table 1). Assuming certain
ratio between the area needed to implement Blake2b and

2We have not seen any formal treatment of this attack in the liter-
ature, but it appears to be known in the community. It is mentioned
in [26] and [4].

the area needed for DRAM, we get the following lower
bound on the ASIC-equipped cheater.

Proposition 1 For L = 70 and 2 GB of RAM the time-
area product can be reduced by the factor of 12 at most,
assuming that each Blake2b core occupies an equivalent
of 216 bytes.

Proof. Assuming that each core occupies 216 bytes, we
obtain β = 2−15 in terms of Equation (1). Since the
cheater has the success chance γ = (1−ε)L, Equation (1)
is modified as follows:

ATα = AT1
αD(α + ε)+C(α + ε)/215

(1− ε)L . (4)

Consider three options:

• α,ε < 1/12. Then C(α + ε) ≥ 4660 (Table 1) and
we have

ATα ≥ AT1 ·
4660

32768
≥ AT1 ·0.12.

• α < 1/12, 1/6 ≥ ε > 1/12. Then C(α + ε) ≥ 20,
(1− ε)L > 1/441, and we have

ATα ≥ AT1 ·
20 ·441
32768

≥ AT1 ·0.27.

• α < 1/12, 1/6 ≤ ε . Then (1− ε)L > 215, and the
time-area product increases.

• α > 1/12. Then ATα ≥ AT1 ·1/12.

This ends the proof.
We conclude that a cheater can gain at most 12x-

advantage, whereas he can still be detected in the future
by memory-rich verifiers. Tradeoffs are also not helpful
when implementing this Proof-of-Work on ASIC. Alto-
gether, our proposal should reduce the relative efficiency
of potential ASIC mining rigs and allow more egalitarian
mining process. Even if someone decides to use large
botnets (10,000 machines and more), all the botnets ma-
chines would have to use the same 2 GB of memory, oth-
erwise they would suffer large penalty. We note that if
ε = 0, i.e. the prover is honest, then his maximal advan-
tage is max 1

αD(α) ≤ 2.

4.6 MTP as a tool for time-lock puzzles and
timestamping

The paradigm of inherently sequential computation was
developed by [12] in the application to CPU benchmark-
ing and [29] for timestamping, i.e. to certify that the doc-
ument was generated certain amount of time in the past.
Rivest et al. suggested time-lock puzzles for this purpose.

7

322 25th USENIX Security Symposium USENIX Association

In our context, a time-lock puzzle solution is a proof-of-
work that has lower bound on the running time assuming
unlimited parallelism.

The verifier in [20, 29] selects a prime product N =

pq and asks the prover to compute the exponent 22D

(mod N) fpr some D ≈ N. It is conjectured that the
prover who does not know the factors can not exponen-
tiate faster than do D consecutive squarings. In turn, the
verifier can verify the solution by computing the expo-
nent 2D modulo φ(N), which takes log(D) time. So far
the conjecture has not been refuted, but the scheme in-
herently requires a secret held by the verifier, and thus
is not suitable for proofs-of-work without secrets, as in
cryptocurrencies.

Time-lock puzzles without secrets were suggested by
Mahmoody et al. [22]. Their construction is a graph
of hash computations, which is based on depth-robust
graphs similarly to [16]. The puzzle is a deterministic
graph such that removing any constant fraction of nodes
keeps its depth above the constant fraction of the original
one (so the parallel computation time is lower bounded).
A Merkle tree is put atop of it with its root determining
a small number of nodes to open. Therefore, a cheater
who wants to compute the graph in less time has to sub-
vert too many nodes and is likely to be caught. As [16],
the construction by Mahmoody et al., if combined with
the difficulty filter, is subject to the grinding attack de-
scribed above.

The MTP-Argon2 construction can be viewed as
a time-lock puzzle and an improvement over these
schemes. First, the difficulty filter is explicitly based on
the grinding attack, which makes it a legitimate way to
solve the puzzle. Secondly, it is much faster due to high
speed of Argon2d. The time-lock property comes from
the fact that the computation chain can not be parallelized
as the graph structure is not known before the computa-
tion.

Suppose that MTP-Argon2 is parallelized by the ad-
ditional factor of R so that each core computes a chain
of length about T/R. Let core j compute j-th (out of
R) chain, chronologically. Then bu step i each core has
computed i blocks and has not computed T/R− i blocks,
so the probability that core j requests a block that has not
been computed is

(j−1)(T/R− i)
(j−1)T/R+ i

≤ (j−1)(T/R− i)
jT/R

.

Summing by all i, we obtain that core j misses at least
T (1−1/ j)

2R , so the total fraction of inconsistent blocks is
about 0.5− lnR

2R . Therefore, ε quickly approaches 0.5,
which is easily detectable. We thus conclude that a par-
allel implementation of MTP-Argon2 is likely to fail the
Merkle tree verification.

5 Memory-hard encryption on low-
entropy keys

5.1 Motivation

In this section we approach standard encryption from
the memory-hardness perspective. A typical approach to
hard-drive encryption is to derive the master key from the
user password and then use it to encrypt chunks of data in
a certain mode of operation such as XTS [24]. The major
threat, as to other password-based security schemes, are
low-entropy passwords. An attacker, who gets access to
the hard drive encrypted with such password, can deter-
mine the correct key and then decrypt within short time.

A countermeasure could be to use a memory-hard
function for the key derivation, so that the trial keys can
be produced only on memory-rich machines. However,
the trial decryption could still be performed on special
memoryless hardware given these keys. We suggest a
more robust scheme which covers this type of adversaries
and eventually requires that the entire attack code have
permanent access to large memory.

5.2 Requirements

We assume the following setting, which is inspired by
typical disk-encryption applications. The data consists
of multiple chunks Q ∈ Q, which can be encrypted and
decrypted independently. The only secret that is avail-
able to the encryption scheme E is the user-input pass-
word P ∈ P , which has sufficiently low entropy to be
memorized (e.g., 6 lowercase symbols). The encryption
syntax is then as follows:

E : P ×S ×Q → C ,

where S ∈ S is associated data, which may contain salt,
encryption nonce or IV, chunk identifier, time, and other
secondary input; and C ∈ C is ciphertext. S serves both
to simplify ciphertext identification (as it is public) and
to ensure certain cryptographic properties. For instance,
unique salt or nonce prevents repetition of ciphertexts for
identical plaintexts. We note that in some settings due to
storage restriction the latter requirement can be dropped.
Decryption then is naturally defined and we omit its for-
mal syntax.

In our proposal we do not restrict the chunk size. Even
though it can be defined for chunks as small as disk sec-
tors, the resistance to cracking attacks will be higher for
larger chunks, up to a megabyte long.

A typical attack setting is as follows. An attacker ob-
tains the encrypted data via some malicious channel or
installs malware and then tries different passwords to de-
crypt it. For the sake of simplicity, we assume that the

8

USENIX Association 25th USENIX Security Symposium 323

plaintext contains sufficient redundancy so that a suc-
cessful guess can be identified easily. Therefore, the ad-
versary tries D passwords from his dictionary D ⊂ P .
Let T be the time needed for the fastest decryption op-
eration that provides partial knowledge of plaintext suf-
ficient to discard or remember the password, and A0 be
the chip area needed to implement this operation. Then
the total amount of work performed by the adversary is

W = D ·T ·A0.

At the same time, the time to encrypt T ′ for a typical user
should not be far larger than T . Our goal is to maximize
W with keeping T ′ the same or smaller.

The memory-hard functions seem to serve perfectly
for the purpose of maximizing W . However, it remains
unclear how to combine such function F with E to get
memory-hard encryption (MHE).

Now we formulate some additional features that
should be desirable for such a scheme:

• The user should be able to choose the requested
memory size A independently of the chunk length
|Q|. Whereas the chunk length can be primarily de-
termined by the CPU cache size, desirable process-
ing speed, or the hard drive properties, the memory
size determines the scheme’s resistance to cracking
attacks.

• The memory can be allocated independently for
each chunk or reused. In the former case the user
can not allocate too much memory as the mas-
sive decryption would be too expensive. How-
ever, for the amounts of memory comparable to
the chunk size the memory-hard decryption should
take roughly as much as memoryless decryption. If
the allocated memory is reused for distinct chunks,
much more memory can be allocated as the alloca-
tion time can be amortized. However, the decryp-
tion latency would be quite high. We present both
options in the further text.

• Full ciphertext must be processed to decrypt a single
byte. This property clearly makes T larger since
the adversary would have to process an entire chunk
to check the password. At the same time, for disk
encryption it should be fine to decrypt in the “all-or-
nothing” fashion, as the decryption time would still
be smaller than the user could wait.

• Encryption should be done in one pass over data.
It might sound desirable that the decryption should
be done in one pass too. However, this would con-
tradict the previous requirement. Indeed, if the de-
cryption can be done in one pass, then the first bytes

of the plaintext can be determined without the last
bytes of the ciphertext3.

• Apart from the memory parameter, the total time
needed to allocate this memory should be tunable
too. It might happen that the application does not
have sufficient memory but does have time. In this
case, the adversary can be slowed down by making
several passes over the memory during its initial-
ization (the memory-hard function that we consider
support this feature).

Our next and final requirement comes from adversary’s
side. When the malware is used, the incoming network
connection and memory for this malware can be limited.
Thus, it would be ideal for the attacker if the memory-
intensive part can be delegated to large machines under
attacker’s control, such as botnets. If we just derived the
secret-key K for encryption as the output of the memory-
hard hash function F , this would be exactly this case.
An adversary would then run F for dictionary D on his
own machine, produce the set K of keys, and supply
them to malware (recall that due to low entropy there
would be only a handful of these keys). Thus the final
requirement should be the following:

• During decryption, it should be impossible to del-
egate the entire memory-hard computation to the
external device without accessing the ciphertext.
Therefore, there could be no memory-hard precom-
putation.

5.3 Our scheme
Our scheme is based on a recent proposal by Za-
verucha [35], who addresses similar properties in the
scheme based on Rivest’s All-or-Nothing transform
(ANT). However, the scheme in [35] does not use an ex-
ternal memory-hard function, which makes it memory
requirements inevitably bound to the chunk size. Small
chunks but large memory is impossible in [35].

Our proposal is again based on the All-or-Nothing
transformation, though we expect that similar proper-
ties can be obtained with deterministic authenticated en-
cryption scheme as a core primitive. The chunk length
q (measured in blocks using by F) and memory size
M ≥ q are the parameters as well as some blockcipher
E (possibly AES). First, we outline the scheme where
the memory is allocated separately for each chunk. The
reader may also refer to Figure 2.

The underlying idea is to use both the header and the
body blocks to produce the ciphertext. In tun, to recom-
pute the body blocks both the ciphertext and the header
must be available during trial decryption.

3The similar argument is made for the online authenticated ciphers

9

324 25th USENIX Security Symposium USENIX Association

pwd H

H
K1

random

m1

C′′
1

E

C′′
2

m2

K0

H

C1 C2 Cq+1

Argon2

header body

K1 K1

K0 K0

ECB
E

ECB

E
CBC

E
CBC

E
CBC

Figure 2: MHE: Disk encryption using memory-hard function Argon2.

The version of the MHE scheme which allocates the
same memory for multiple chunks is very similar. The
S input is ignored at the beginning, so that the header
memory blocks do not depend on the data. Instead, we
set K0 = H(X0,S), so that the body blocks are affected
by S and M, and thus are different for every chunk. In
this case the body blocks have to be stored separately
and should not overwrite the header blocks for t > 1.

Let us verify that the scheme in Algorithm 3 satisfies
the properties we listed earlier:

• The allocated memory size M can be chosen inde-
pendently of the chunk length q (as long as M > q).

• The body memory blocks are allocated and pro-
cessed for each chunk independently. In addition,
the header blocks are also processed independently
for each chunk in the single-chunk version.

• In order to decrypt a single byte of the ciphertext,
an adversary would have to obtain K1, which can be
done only by running F up to the final block, which
requires all C′′

i , which are in turn must be derived
from the ciphertext blocks.

• Encryption needs one pass over data, and decryp-
tion needs two passes over data.

• The total time needed to allocate and fill the header
is tunable.

• The computation of the body memory blocks dur-
ing decryption can not be delegated, as it requires
knowledge both of the header and the ciphertext. It

in [18].

might be possible to generate the header on an ex-
ternal machine, but then random access to its blocks
to decrypt the ciphertext is required.

We note that properties 1, 5, and 6 are not present in [35].

Security First, we address traditional CPA security.
We do not outline the full proof here, just the basic steps.
We assume that the adversary does not have access to the
internals of Argon2, and that blockcipher E is a secure
PRF. Next, we assume collision-resistance of the com-
pression function F used in F . Given that, we prove
that all the memory blocks are distinct, which yields the
CPA security for C′. From the latter we deduce the CPA
security for the final ciphertext. We note that in the case
when the collision-resistance of F can not be guaranteed,
we may additionally require that Xi undergo hashing by
a cryptographic hash function H ′ before encryption, so
that the plaintext blocks are still distinct. All these prop-
erties hold up to the birthday bound of the blockcipher.

Next, we figure out the tradeoff security. The genuine
decrypting user is supposed to spend M memory blocks
for F and q memory blocks to store the plaintext and
intermediate variables (if the ciphertext can be overwrit-
ten, then these q blocks are not needed). Suppose that
an adversary wants to use αM memory for header and
body. Then each missing block, if asked during decryp-
tion, must be recomputed making C(α) calls to F . The
best such strategy for Argon2, described in [9], yields
C(α) that grows exponentially in 1/α . For example, us-
ing 1/5 of memory, an adversary would have to make
344 times as many calls to F , which makes a memory-
reducing encryption cracking inefficient even on special
hardware.

10

USENIX Association 25th USENIX Security Symposium 325

Algorithm 3 Memory-hard encryption with independent
memory allocation (for each chunk).
Input: Password P, memory size M, associated data S,
chunk Q, number of iterations t, memory-hard function
F (preferably Argon2), blockcipher E, cryptographic
hash function H (e.g. SHA-3).

1. Run F on (P,S) with input parameters M and t but
fill only M−q blocks (the header) in the last itera-
tion. Let X0 be the last memory block produced by
F .

2. Produce K0 = H(X0) — the first session key.

3. Generate a random session key K1.

4. Generate the remaining blocks X1, X2, . . ., Xq (body)
for F as follows. We assume that each chunk M
consists of smaller blocks m1, m2, . . ., mq of length
equal to the block size of F . For each i ≥ 1:

• Encrypt Xi−1 by E in the ECB mode under K1
and get the intermediate ciphertext block C′

i .

• Add the chunk data: C′′
i =C′

i ⊕mi.

• Encrypt C′′
i under K0 in the CBC mode and

produce the final ciphertext block Ci.

• Modify the memory: Xi−1 ← Xi−1 ⊕C′′
i .

• Generate the block Xi according to the speci-
fication of F . In Argon2, the modified Xi−1
and some another block X [φ(Xi−1)] would be
used.

5. After the entire chunk is encrypted, encrypt also the
key K1 :

Ct+1 = EK0(H(Xt)⊕K1).

Output: C1, . . . ,Ct+1.

Performance We suggest taking l = 4 in Argon2 in or-
der to fill the header faster using multiple cores, which
reportedly takes 0.7 cpb (about the speed of AES-GCM
and AES-XTS). The body has to be filled sequentially
as the encryption process is sequential. As AES-CBC
is about 1.3 cpb, and we use two of it, the body phase
should run at about 4 cpb. In a concrete setting, sup-
pose that we tolerate 0.1 second decryption time (about
300 Mcycles) for the 1-MB chunk. Then we can take the
header as large as 256 MB, as it would be processed in
170 Mcycles + 4 Mcycles for the body phase.

6 Conclusion

We have introduced the new paradigm of egalitarian
computing, which suggests amalgamating arbitrary com-
putation with a memory-hard function to enhance the
security against off-line adversaries equipped with pow-
erful tools (in particular with optimized hardware). We
have reviewed password hashing and proofs of work as
applications where such schemes are already in use or
are planned to be used. We then introduce two more
schemes in this framework. The first one is MTP, the
progress-free proof-of-work scheme with fast verifica-
tion based on the memory-hard function Argon2, the
winner of the Password Hashing Competition. The sec-
ond scheme pioneers the memory-hard encryption — the
security enhancement for password-based disk encryp-
tion, also based on Argon2.

References
[1] Avalon asic’s 40nm chip to bring hashing boost for less power,

2014. http://www.coindesk.com/avalon-asics-40nm-/

/chip-bring-hashing-boost-less-power/.

[2] Bitcoin: Mining hardware comparison, 2014. avail-
able at https://en.bitcoin.it/wiki/Mining_hardware_
comparison. We compare 232 hashes per joule on the best
ASICs with 217 hashes per joule on the most efficient x86-
laptops.

[3] Password Hashing Competition, 2015. https:

//password-hashing.net/.

[4] 2016. Andrew Miller, Bram Cohen, private communication.

[5] ABADI, M., BURROWS, M., AND WOBBER, T. Moderately
hard, memory-bound functions. In NDSS’03 (2003), The Internet
Society.

[6] ANDERSEN, D. A public review of cuckoo cycle. http://www.
cs.cmu.edu/~dga/crypto/cuckoo/analysis.pdf, 2014.

[7] BACK, A. Hashcash – a denial of service counter-measure, 2002.
available at http://www.hashcash.org/papers/hashcash.
pdf.

[8] BERNSTEIN, D. J., AND LANGE, T. Non-uniform cracks
in the concrete: The power of free precomputation. In ASI-
ACRYPT’13 (2013), vol. 8270 of Lecture Notes in Computer Sci-
ence, Springer, pp. 321–340.

11

326 25th USENIX Security Symposium USENIX Association

[9] BIRYUKOV, A., AND KHOVRATOVICH, D. Tradeoff cryptanaly-
sis of memory-hard functions. In Asiacrypt’15 (2015). available
at http://eprint.iacr.org/2015/227.

[10] BIRYUKOV, A., AND KHOVRATOVICH, D. Argon2: new gener-
ation of memory-hard functions for password hashing and other
applications. In Euro S&P’16 (2016). available at https:

//www.cryptolux.org/images/0/0d/Argon2.pdf.

[11] BIRYUKOV, A., AND KHOVRATOVICH, D. Equihash: Asym-
metric proof-of-work based on the generalized birthday problem.
In NDSS’16 (2016). available at https://eprint.iacr.org/
2015/946.pdf.

[12] CAI, J., LIPTON, R. J., SEDGEWICK, R., AND YAO, A. C. To-
wards uncheatable benchmarks. In Structure in Complexity The-
ory Conference (1993), IEEE Computer Society, pp. 2–11.

[13] DWORK, C., GOLDBERG, A., AND NAOR, M. On memory-
bound functions for fighting spam. In CRYPTO’03 (2003),
vol. 2729 of Lecture Notes in Computer Science, Springer,
pp. 426–444.

[14] DWORK, C., AND NAOR, M. Pricing via processing or combat-
ting junk mail. In CRYPTO’92 (1992), vol. 740 of Lecture Notes
in Computer Science, Springer, pp. 139–147.

[15] DWORK, C., NAOR, M., AND WEE, H. Pebbling and proofs
of work. In CRYPTO’05 (2005), vol. 3621 of Lecture Notes in
Computer Science, Springer, pp. 37–54.

[16] DZIEMBOWSKI, S., FAUST, S., KOLMOGOROV, V., AND
PIETRZAK, K. Proofs of space. In CRYPTO’15 (2015), R. Gen-
naro and M. Robshaw, Eds., vol. 9216 of Lecture Notes in Com-
puter Science, Springer, pp. 585–605.

[17] GIRIDHAR, B., CIESLAK, M., DUGGAL, D., DRESLINSKI,
R. G., CHEN, H., PATTI, R., HOLD, B., CHAKRABARTI, C.,
MUDGE, T. N., AND BLAAUW, D. Exploring DRAM organi-
zations for energy-efficient and resilient exascale memories. In
International Conference for High Performance Computing, Net-
working, Storage and Analysis 2013 (2013), ACM, pp. 23–35.

[18] HOANG, V. T., REYHANITABAR, R., ROGAWAY, P., AND
VIZÁR, D. Online authenticated-encryption and its nonce-
reuse misuse-resistance. In CRYPTO’15 (2015), R. Gennaro and
M. Robshaw, Eds., vol. 9215 of Lecture Notes in Computer Sci-
ence, Springer, pp. 493–517.

[19] HOPCROFT, J. E., PAUL, W. J., AND VALIANT, L. G. On time
versus space. J. ACM 24, 2 (1977), 332–337.

[20] JERSCHOW, Y. I., AND MAUVE, M. Offline submission with
RSA time-lock puzzles. In CIT (2010), IEEE Computer Society,
pp. 1058–1064.

[21] LORIMER, D. Momentum – a memory-hard proof-of-work via
finding birthday collisions, 2014. available at http://www.

hashcash.org/papers/momentum.pdf.

[22] MAHMOODY, M., MORAN, T., AND VADHAN, S. P. Publicly
verifiable proofs of sequential work. In ITCS (2013), ACM,
pp. 373–388.

[23] MALVONI, K. Energy-efficient bcrypt crack-
ing, 2014. Passwords’14 conference, available
at http://www.openwall.com/presentations/

Passwords14-Energy-Efficient-Cracking/.

[24] MARTIN, L. Xts: A mode of aes for encrypting hard disks. IEEE
Security & Privacy, 3 (2010), 68–69.

[25] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system.
http://www.bitcoin.org/bitcoin.pdf.

[26] PARK, S., PIETRZAK, K., ALWEN, J., FUCHSBAUER, G., AND
GAZI, P. Spacecoin: A cryptocurrency based on proofs of space.
IACR Cryptology ePrint Archive 2015 (2015), 528.

[27] PERCIVAL, C. Stronger key derivation via sequential memory-
hard functions. http://www.tarsnap.com/scrypt/scrypt.
pdf.

[28] PIPPENGER, N. Superconcentrators. SIAM J. Comput. 6, 2
(1977), 298–304.

[29] RIVEST, R. L., SHAMIR, A., AND WAGNER, D. A. Time-lock
puzzles and timed-release crypto. https://people.csail.

mit.edu/rivest/pubs/RSW96.pdf.

[30] SPRENGERS, M., AND BATINA, L. Speeding up GPU-based
password cracking. In SHARCS’12 (2012). available at http:
//2012.sharcs.org/record.pdf.

[31] THOMPSON, C. D. Area-time complexity for VLSI. In STOC’79
(1979), ACM, pp. 81–88.

[32] TROMP, J. Cuckoo cycle: a memory bound graph-theoretic
proof-of-work. Cryptology ePrint Archive, Report 2014/059,
2014. available at http://eprint.iacr.org/2014/059,
project webpage https://github.com/tromp/cuckoo.

[33] VAN OORSCHOT, P. C., AND WIENER, M. J. Parallel colli-
sion search with cryptanalytic applications. J. Cryptology 12, 1
(1999), 1–28.

[34] WAGNER, D. A generalized birthday problem. In CRYPTO’02
(2002), vol. 2442 of Lecture Notes in Computer Science,
Springer, pp. 288–303.

[35] ZAVERUCHA, G. Stronger password-based encryption using
all-or-nothing transforms. available at http://research.

microsoft.com/pubs/252097/pbe.pdf.

A Merkle hash trees

We use Merkle hash trees in the following form. A
prover P commits to T blocks X [1],X [2], . . . ,X [T] by
computing the hash tree where the blocks X [i] are at
leaves at depth logT and nodes compute hashes of their
branches. For instance, for T = 4 and hash function G
prover P computes and publishes

Φ = G(G(X [1],X [2]),G(X [3],X [4])).

Prover stores all blocks and all intermediate hashes. In
order to prove that he knows, say, X [5] for T = 8, (or to
open it) he discloses the hashes needed to reconstruct the
path from X [5] to Φ:

open(X [5]) = (X [5],X [6],g78 = G(X [7],X [8]),
g1234 = G(G(X [1],X [2]),G(X [3],X [4])),Φ),

so that the verifier can make all the computations. If G
is collision-resistant, it is hard to open any block in more
than one possible way.

12

USENIX Association 25th USENIX Security Symposium 327

Post-quantum key exchange – a new hope∗

Erdem Alkim
Department of Mathemathics, Ege University, Turkey

Léo Ducas
Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands

Thomas Pöppelmann
Infineon Technologies AG, Munich, Germany

Peter Schwabe
Digital Security Group, Radboud University, The Netherlands

Abstract

At IEEE Security & Privacy 2015, Bos, Costello,
Naehrig, and Stebila proposed an instantiation of Peik-
ert’s ring-learning-with-errors–based (Ring-LWE) key-
exchange protocol (PQCrypto 2014), together with an
implementation integrated into OpenSSL, with the af-
firmed goal of providing post-quantum security for TLS.
In this work we revisit their instantiation and stand-alone
implementation. Specifically, we propose new param-
eters and a better suited error distribution, analyze the
scheme’s hardness against attacks by quantum comput-
ers in a conservative way, introduce a new and more effi-
cient error-reconciliation mechanism, and propose a de-
fense against backdoors and all-for-the-price-of-one at-
tacks. By these measures and for the same lattice dimen-
sion, we more than double the security parameter, halve
the communication overhead, and speed up computation
by more than a factor of 8 in a portable C implementation
and by more than a factor of 27 in an optimized imple-
mentation targeting current Intel CPUs. These speedups
are achieved with comprehensive protection against tim-
ing attacks.

1 Introduction

The last decade in cryptography has seen the birth of
numerous constructions of cryptosystems based on lat-
tice problems, achieving functionalities that were previ-
ously unreachable (e.g., fully homomorphic cryptogra-

∗This work was initiated while Thomas Pöppelmann was a Ph.D.
student at Ruhr-University Bochum with support from the European
Union H2020 SAFEcrypto project (grant no. 644729). This work has
furthermore been supported by TÜBITAK under 2214-A Doctoral Re-
search Program Grant, by the European Commission through the ICT
program under contract ICT-645622 (PQCRYPTO), and by the Nether-
lands Organisation for Scientific Research (NWO) through Veni 2013
project 13114 and through a Free Competition Grant. Permanent ID
of this document: 0462d84a3d34b12b75e8f5e4ca032869. Date:
2016-06-28.

phy [38]). But even for the simplest tasks in asymmetric
cryptography, namely public-key encryption, signatures,
and key exchange, lattice-based cryptography offers an
important feature: resistance to all known quantum algo-
rithms. In those times of quantum nervousness [73, 74],
the time has come for the community to deliver and op-
timize concrete schemes, and to get involved in the stan-
dardization of a lattice-based cipher-suite via an open
process.

For encryption and signatures, several competitive
schemes have been proposed; examples are NTRU en-
cryption [50, 83], Ring-LWE encryption [67] as well as
the signature schemes BLISS [31], PASS [48] or the pro-
posal by Bai and Galbraith presented in [8]. To complete
the lattice-based cipher-suite, Bos et al. [20] recently
proposed a concrete instantiation of the key-exchange
scheme of Peikert’s improved version of the original pro-
tocol of Ding, Xie and Lin [52, 77]. Bos et al. proved its
practicality by integrating their implementation as addi-
tional cipher-suite into the transport layer security (TLS)
protocol in OpenSSL. In the following we will refer to
this proposal as BCNS.

Unfortunately, the performance of BCNS seemed
rather disappointing. We identify two main sources for
this inefficiency. First the analysis of the failure probabil-
ity was far from tight, resulting in a very large modulus
q ≈ 232. As a side effect, the security is also significantly
lower than what one could achieve with Ring-LWE for
a ring of rank n = 1024. Second the Gaussian sampler,
used to generate the secret parameters, is fairly inefficient
and hard to protect against timing attacks. This second
source of inefficiency stems from the fundamental mis-
conception that high-quality Gaussian noise is crucial for
encryption based on LWE1, which has also made various
other implementations [29,79] slower and more complex
than they would have to be.

1This is very different for lattice-based signatures or trapdoors,
where distributions need to be meticulously crafted to prevent any leak
of information on a secret basis.

328 25th USENIX Security Symposium USENIX Association

1.1 Contributions
In this work, we propose solutions to the performance
and security issues of the aforementioned BCNS pro-
posal [20]. Our improvements are possible through a
combination of multiple contributions:

• Our first contribution is an improved analysis of
the failure probability of the protocol. To push
the scheme even further, inspired by analog error-
correcting codes, we make use of the lattice D4
to allow error reconciliation beyond the original
bounds of [77]. This drastically decreases the mod-
ulus to q = 12289 < 214, which improves both effi-
ciency and security.

• Our second contribution is a more detailed secu-
rity analysis against quantum attacks. We pro-
vide a lower bound on all known (or even pre-
supposed) quantum algorithms solving the shortest-
vector problem (SVP), and deduce the potential per-
formance of a quantum BKZ algorithm. Accord-
ing to this analysis, our improved proposal provides
128 bits of post-quantum security with a comfort-
able margin.

• We furthermore propose to replace the almost-
perfect discrete Gaussian distribution by some-
thing relatively close, but much easier to sample,
and prove that this can only affect the security
marginally.

• We replace the fixed parameter a of the original
scheme by a freshly chosen random one in each key
exchange. This incurs an acceptable overhead but
prevents backdoors embedded in the choice of this
parameter and all-for-the-price-of-one attacks.

• We specify an encoding of polynomials in the
number-theoretic transform (NTT) domain which
allows us to eliminate some of the NTT transfor-
mations inside the protocol computation.

• To demonstrate the applicability and performance
of our design we provide a portable reference im-
plementation written in C and a highly optimized
vectorized implementation that targets recent Intel
CPUs and is compatible with recent AMD CPUs.
We describe an efficient approach to lazy reduction
inside the NTT, which is based on a combination
of Montgomery reductions and short Barrett reduc-
tions.

Availability of software. We place all software de-
scribed in this paper into the public domain and
make it available online at https://cryptojedi.

org/crypto/#newhope and https://github.com/
tpoeppelmann/newhope.

Full version of the paper. The full version of this pa-
per contains various appendices in addition to the ma-
terial presented in this proceedings version. The full
version is available online at https://eprint.iacr.
org/2015/1092/ and at https://cryptojedi.org/
papers/#newhope.

Acknowledgments. We are thankful to Mike Hamburg
and to Paul Crowley for pointing out mistakes in a pre-
vious version of this paper, and we are thankful to Isis
Lovecruft for thoroughly proofreading the paper and for
suggesting the name JARJAR for the low-security variant
of our proposal.

2 Lattice-based key exchange

Let Z be the ring of rational integers. We define for an
x ∈ R the rounding function �x� = �x+ 1

2� ∈ Z. Let Zq,
for an integer q ≥ 1, denote the quotient ring Z/qZ. We
define R = Z[X]/(Xn +1) as the ring of integer polyno-
mials modulo Xn+1. By Rq =Zq[X]/(Xn+1) we mean
the ring of integer polynomials modulo Xn + 1 where
each coefficient is reduced modulo q. In case χ is a prob-
ability distribution over R, then x $← χ means the sam-
pling of x ∈ R according to χ . When we write a $← Rq
this means that all coefficients of a are chosen uniformly
at random from Zq. For a probabilistic algorithm A we

denote by y $← A that the output of A is assigned to y
and that A is running with randomly chosen coins. We
recall the discrete Gaussian distribution DZ,σ which is
parametrized by the Gaussian parameter σ ∈ R and de-
fined by assigning a weight proportional to exp(−x2

2σ2) to
all integers x.

2.1 The scheme of Peikert

In this section we briefly revisit the passively secure key-
encapsulation mechanism (KEM) that was proposed by
Peikert [77] and instantiated in [20] (BCNS). Peikert’s
KEM scheme is defined by the algorithms (Setup, Gen,
Encaps, Decaps) and after a successful protocol run both
parties share an ephemeral secret key that can be used to
protect further communication (see Protocol 1).

The KEM scheme by Peikert closely resembles a pre-
viously introduced Ring-LWE encryption scheme [66]
but due to a new error-reconciliation mechanism, one
Rq component of the ciphertext can be replaced by a
more compact element in R2. This efficiency gain is
possible due to the observation that it is not necessary
to transmit an explicitly chosen key to establish a secure

2

USENIX Association 25th USENIX Security Symposium 329

ephemeral session key. In Peikert’s scheme, the recon-
ciliation just allows both parties to derive the session key
from an approximately agreed pseudorandom ring ele-
ment. For Alice, this ring element is us = ass′+ e′s and
for Bob it is v = bs′ + e′′ = ass′ + es′ + e′′. For a full
explanation of the reconciliation we refer to the original
paper [77] but briefly recall the cross-rounding function
〈·〉2 defined as 〈v〉2 := � 4

q · v� mod 2 and the random-
ized function dbl(v) := 2v− ē for some random ē where
ē = 0 with probability 1

2 , ē = 1 with probability 1
4 , and

ē = −1 with probability 1
4 . Let I0 = {0,1, . . . ,� q

2�− 1},
I1 = {−� q

2�, . . . ,−1}, and E = [− q
4 ,

q
4) then the reconcil-

iation function rec(w,b) is defined as

rec(w,b) =

{
0, if w ∈ Ib +E (mod q)
1, otherwise.

If these functions are applied to polynomials this means
they are applied to each of the coefficients separately.

Parameters: q,n,χ
KEM.Setup() :

a $← Rq
Alice (server) Bob (client)
KEM.Gen(a) : KEM.Encaps(a,b) :

s,e $← χ s′,e′,e′′ $← χ
b←as+ e b−→ u←as′+ e′

v←bs′+ e′′

v̄ $← dbl(v)

KEM.Decaps(s,(u,v′)) :
u,v′←−− v′ = 〈v̄〉2

µ←rec(2us,v′) µ←�v̄�2

Protocol 1: Peikert’s KEM mechanism.

2.2 The BCNS proposal

In a work by Bos, Costello, Naehrig, and Stebila [20]
(BCNS), Peikert’s KEM [77] was phrased as a key-
exchange protocol (see again Protocol 1), instantiated for
a concrete parameter set, and integrated into OpenSSL
(see Section 8 for a performance comparison). Selection
of parameters was necessary as Peikert’s original work
does not contain concrete parameters and the security as
well as error estimation are based on asymptotics. The
authors of [20] chose a dimension n = 1024, a modu-
lus q = 232 − 1, χ = DZ,σ and the Gaussian parameter
σ = 8/

√
2π ≈ 3.192. It is claimed that these parameters

provide a classical security level of at least 128 bits con-
sidering the distinguishing attack [62] with distinguish-
ing advantage less than 2−128 and 281.9 bits of security

against an optimistic instantiation of a quantum adver-
sary. The probability of a wrong key being established is
less than 2−217

= 2−131072. The message b sent by Alice
is a ring element and thus requires at least log2(q)n = 32
kbits while Bob’s response (u,r) is a ring element Rq and
an element from R2 and thus requires at least 33 kbits. As
the polynomial a ∈ Rq is shared between all parties this
ring element has to be stored or generated on-the-fly. For
timings of their implementation we refer to Table 2. We
would also like to note that besides its aim for securing
classical TLS, the BCNS protocol has already been pro-
posed as a building block for Tor [84] on top of existing
elliptic-curve infrastructure [41].

2.3 Our proposal: NEWHOPE

In this section we detail our proposal and modifications
of Peikert’s protocol2. For the same reasons as described
in [20] we opt for an unauthenticated key-exchange pro-
tocol; the protection of stored transcripts against future
decryption using quantum computers is much more ur-
gent than post-quantum authentication. Authenticity will
most likely be achievable in the foreseeable future us-
ing proven pre-quantum signatures and attacks on the
signature will not compromise previous communication.
Additionally, by not designing or instantiating a lattice-
based authenticated key-exchange protocol (see [33,85])
we reduce the complexity of the key-exchange protocol
and simplify the choice of parameters. We actually see it
as an advantage to decouple key exchange and authen-
tication as it allows a protocol designer to choose the
optimal algorithm for both tasks (e.g., an ideal-lattice-
based key exchange and a hash-based signature like [16]
for authentication). Moreover, this way the design, se-
curity level, and parameters of the key-exchange scheme
are not constrained by requirements introduced by the
authentication part.

Parameter choices. A high-level description of our pro-
posal is given in Protocol 2 and as in [20, 77] all poly-
nomials except for r ∈ R4 are defined in the ring Rq =
Zq[X]/(Xn + 1) with n = 1024 and q = 12289. We de-
cided to keep the dimension n = 1024 as in [20] to be
able to achieve appropriate long-term security. As poly-
nomial arithmetic is fast and also scales better (doubling
n roughly doubles the time required for a polynomial
multiplication), our choice of n appears to be acceptable
from a performance point of view. We chose the modulus
q = 12289 as it is the smallest prime for which it holds
that q ≡ 1 mod 2n so that the number-theoretic trans-
form (NTT) can be realized efficiently and that we can
transfer polynomials in NTT encoding (see Section 7).

2For the TLS use-case and for compatibility with BNCS [20] the
key exchange is initiated by the server. However, in different scenarios
the roles of the server and client can be exchanged.

3

330 25th USENIX Security Symposium USENIX Association

As the security level grows with the noise-to-modulus
ratio, it makes sense to choose the modulus as small as
possible, improving compactness and efficiency together
with security. The choice is also appealing as the prime is
already used by some implementations of Ring-LWE en-
cryption [29, 63, 81] and BLISS signatures [31, 78]; thus
sharing of some code (or hardware modules) between our
proposal and an implementation of BLISS would be pos-
sible.

Noise distribution and reconciliation. Notably, we also
change the distribution of the LWE secret and error and
replace discrete Gaussians by the centered binomial dis-
tribution ψk of parameter k = 16 (see Section 4). The
reason is that it turned out to be challenging to imple-
ment a discrete Gaussian sampler efficiently and pro-
tected against timing attacks (see [20] and Section 5).
On the other hand, sampling from the centered binomial
distribution is easy and does not require high-precision
computations or large tables as one may sample from ψk
by computing ∑k

i=0 bi − b′i, where the bi,b′i ∈ {0,1} are
uniform independent bits. The distribution ψk is cen-
tered (its mean is 0), has variance k/2 and for k = 16
this gives a standard deviation of ς =

√
16/2. Con-

trary to [20, 77] we hash the output of the reconciliation
mechanism, which makes a distinguishing attack irrele-
vant and allows us to argue security for the modified error
distribution.

Moreover, we generalize Peikert’s reconciliation
mechanism using an analog error-correction approach
(see Section 5). The design rationale is that we only want
to transmit a 256-bit key but have n = 1024 coefficients
to encode data into. Thus we encode one key bit into
four coefficients; by doing so we achieve increased error
resilience which in turn allows us to use larger noise for
better security.

Short-term public parameters. NEWHOPE does not
rely on a globally chosen public parameter a as the ef-
ficiency increase in doing so is not worth the measures
that have to be taken to allow trusted generation of this
value and the defense against backdoors [13]. Moreover,
this approach avoids the rather uncomfortable situation
that all connections rely on a single instance of a lattice
problem (see Section 3) in the flavor of the “Logjam”
DLP attack [1].

No key caching. For ephemeral Diffie-Hellman key-
exchange in TLS it is common for servers to cache a key
pair for a short time to increase performance. For ex-
ample, according to [24], Microsoft’s SChannel library
caches ephemeral keys for 2 hours. We remark that for
the lattice-based key exchange described in [77], for the
key exchange described in [20], and also for the key ex-
change described in this paper, such short-term caching
would be disastrous for security. Indeed, it is crucial that

both parties use fresh secrets for each instantiation (thus
the performance of the noise sampling is crucial). As
short-term key caching typically happens on higher lay-
ers of TLS libraries than the key-exchange implemen-
tation itself, we stress that particular care needs to be
taken to eliminate such caching when switching from
ephemeral (elliptic-curve) Diffie-Hellman key exchange
to post-quantum lattice-based key exchange. This issue
is discussed in more detail in [32].

One could enable key caching with a transformation
from the CPA-secure key exchange to a CCA-secure key
exchange as outlined by Peikert in [77, Section 5]. Note
that such a transform would furthermore require changes
to the noise distribution to obtain a failure probability
that is negligible in the cryptographic sense.

3 Preventing backdoors and all-for-the-
price-of-one attacks

One serious concern about the original design [20] is the
presence of the polynomial a as a fixed system parameter.
As described in Protocol 2, our proposal includes pseu-
dorandom generation of this parameter for every key ex-
change. In the following we discuss the reasons for this
decision.

Backdoor. In the worst scenario, the fixed parameter a
could be backdoored. For example, inspired by NTRU
trapdoors [50, 83], a dishonest authority may choose
mildly small f,g such that f = g = 1 mod p for some
prime p ≥ 4 · 16 + 1 and set a = gf−1 mod q. Then,
given (a,b = as + e), the attacker can compute bf =
afs+ fe = gs+ fe mod q, and, because g,s, f,e are small
enough, compute gs+ fe in Z. From this he can compute
t = s+ e mod p and, because the coefficients of s and
e are smaller than 16, their sums are in [−2 · 16,2 · 16]:
knowing them modulo p ≥ 4 ·16+1 is knowing them in
Z. It now only remains to compute (b− t) · (a−1)−1 =
(as− s) · (a−1)−1 = s mod q to recover the secret s.

One countermeasure against such backdoors is the
“nothing-up-my-sleeve” process, which would, for ex-
ample, choose a as the output of a hash function on a
common universal string like the digits of π . Yet, even
this process may be partially abused [13], and when not
strictly required it seems preferable to avoid it.

All-for-the-price-of-one attacks. Even if this common
parameter has been honestly generated, it is still rather
uncomfortable to have the security of all connections
rely on a single instance of a lattice problem. The sce-
nario is an entity that discovers an unforeseen cryptan-
alytic algorithm, making the required lattice reduction
still very costly, but say, not impossible in a year of
computation, given its outstanding computational power.
By finding once a good enough basis of the lattice Λ =

4

USENIX Association 25th USENIX Security Symposium 331

Parameters: q = 12289 < 214, n = 1024
Error distribution: ψ16

Alice (server) Bob (client)
seed $←{0,1}256

a←Parse(SHAKE-128(seed))
s,e $← ψn

16 s′,e′,e′′ $← ψn
16

b←as+ e
(b,seed)−−−−→ a←Parse(SHAKE-128(seed))

u←as′+ e′
v←bs′+ e′′

v′←us
(u,r)←−− r $← HelpRec(v)

ν←Rec(v′,r) ν←Rec(v,r)
µ←SHA3-256(ν) µ←SHA3-256(ν)

Protocol 2: Our Scheme. For the definitions of HelpRec and Rec see Section 5. For the definition of encodings and
the definition of Parse see Section 7.

{(a,1)x+(q,0)y|x,y ∈ R}, this entity could then com-
promise all communications, using for example Babai’s
decoding algorithm [7].

This idea of massive precomputation that is only de-
pendent on a fixed parameter a and then afterwards can
be used to break all key exchanges is similar in fla-
vor to the 512-bit “Logjam” DLP attack [1]. This at-
tack was only possible in the required time limit because
most TLS implementations use fixed primes for Diffie-
Hellman. One of the recommended mitigations by the
authors of [1] is to avoid fixed primes.

Against all authority. Fortunately, all those pitfalls can
be avoided by having the communicating parties gen-
erate a fresh a at each instance of the protocol (as we
propose). If in practice it turns out to be too expen-
sive to generate a for every connection, it is also possi-
ble to cache a on the server side3 for, say a few hours
without significantly weakening the protection against
all-for-the-price-of-one attacks. Additionally, the perfor-
mance impact of generating a is reduced by sampling a
uniformly directly in NTT format (recalling that the NTT
is a one-to-one map), and by transferring only a short
256-bit seed for a (see Section 7).

A subtle question is to choose an appropriate prim-
itive to generate a “random-looking” polynomial a out
of a short seed. For a security reduction, it seems
to the authors that there is no way around the (non-
programmable) random oracle model (ROM). It is ar-
gued in [34] that such a requirement is in practice an
overkill, and that any pseudorandom generator (PRG)
should also work. And while it is an interesting question
how such a reasonable pseudo-random generator would
interact with our lattice assumption, the cryptographic

3But recall that the secrets s,e,s′,s′,e′′ have to be sampled fresh for
every connection.

notion of a PRG is not helpful to argue security. Indeed,
it is an easy exercise4 to build (under the NTRU assump-
tion) a “backdoored” PRG that is, formally, a legitimate
PRG, but that makes our scheme insecure.

Instead, we prefer to base ourselves on a standard
cryptographic hash-function, which is the typical choice
of an “instantiation” of the ROM. As a suitable op-
tion we see Keccak [19], which has recently been stan-
dardized as SHA3 in FIPS-202 [72], and which offers
extendable-output functions (XOF) named SHAKE. This
avoids costly external iteration of a regular hash function
and directly fits our needs.

We use SHAKE-128 for the generation of a, which
offers 128-bits of (post-quantum) security against colli-
sions and preimage attacks. With only a small perfor-
mance penalty we could have also chosen SHAKE-256,
but we do not see any reason for such a choice, in partic-
ular because neither collisions nor preimages lead to an
attack against the proposed scheme.

4 Choice of the error distribution

On non-Gaussian errors. In works like [20, 29, 81], a
significant algorithmic effort is devoted to sample from a
discrete Gaussian distribution to a rather high precision.
In the following we argue that such effort is not neces-
sary and motivate our choice of a centered binomial ψk
as error distribution.

Indeed, we recall that the original worst-case to
average-case reductions for LWE [80] and Ring-

4Consider a secure PRG p, and parse its output p(seed) as two
small polynomial (f,g): an NTRU secret-key. Define p′(seed) = gf−1

mod q: under the decisional NTRU assumption, p′ is still a secure PRG.
Yet revealing the seed does reveal (f,g) and provides a backdoor as de-
tailed above.

5

332 25th USENIX Security Symposium USENIX Association

LWE [67] state hardness for continuous Gaussian dis-
tributions (and therefore also trivially apply to rounded
Gaussian, which differ from discrete Gaussians). This
also extends to discrete Gaussians [21] but such proofs
are not necessarily intended for direct implementations.
We recall that the use of discrete Gaussians (or other dis-
tributions with very high-precision sampling) is only cru-
cial for signatures [65] and lattice trapdoors [39], to pro-
vide zero-knowledgeness.

The following Theorem states that choosing ψk as er-
ror distribution in Protocol 2 does not significantly de-
crease security compared to a rounded Gaussian distri-
bution with the same standard deviation σ =

√
16/2.

Theorem 4.1 Let ξ be the rounded Gaussian distribu-
tion of parameter σ =

√
8, that is, the distribution of

�
√

8 · x� where x follows the standard normal distribu-
tion. Let P be the idealized version of Protocol 2, where
the distribution ψ16 is replaced by ξ . If an (unbounded)
algorithm, given as input the transcript of an instance
of Protocol 2 succeeds in recovering the pre-hash key ν
with probability p, then it would also succeed against P
with probability at least

q ≥ p9/8/26.

Proof See Appendix B in the full version of this paper.

As explained in Section 6, our choice of parameters
leaves a comfortable margin to the targeted 128 bits
of post-quantum security, which accommodates for the
slight loss in security indicated by Theorem 4.1. Even
more important from a practical point of view is that no
known attack makes use of the difference in error distri-
bution; what matters for attacks are entropy and standard
deviation.

Simple implementation. We remark that sampling from
the centered binomial distribution ψ16 is rather trivial
in hardware and software, given the availability of a
uniform binary source. Additionally, the implementa-
tion of this sampling algorithm is much easier to pro-
tect against timing attacks as no large tables or data-
dependent branches are required (cf. to the issues caused
by the table-based approach used in [20]).

5 Improved error-recovery mechanism

In most of the literature, Ring-LWE encryption allows to
encrypt one bit per coordinate of the ciphertext. It is also
well known how to encrypt multiple bits per coordinate
by using a larger modulus-to-error ratio (and therefore
decreasing the security for a fixed dimension n). How-
ever, in the context of exchanging a symmetric key (of,
say, 256 bits), we end up having a message space larger

(0,0) (1,0)

(0,1) (1,1)

(1

2
,

1

2
)

Figure 1: The lattice D̃2 with Voronoi cells

than necessary and thus want to encrypt one bit in multi-
ple coordinates.

In [79] Pöppelmann and Güneysu introduced a tech-
nique to encode one bit into two coordinates, and verified
experimentally that it led to a better error tolerance. This
allows to either increase the error and therefore improve
the security of the resulting scheme or to decrease the
probability of decryption failures. In this section we pro-
pose a generalization of this technique in dimension 4.
We start with an intuitive description of the approach in
2 dimensions and then explain what changes in 4 dimen-
sions. Appendices C and D in the full version of this
paper give a thorough mathematical description together
with a rigorous analysis.

Let us first assume that both client and server have the
same vector x ∈ [0,1)2 ⊂R2 and want to map this vector
to a single bit. Mapping polynomial coefficients from
{0, . . . ,q− 1} to [0,1) is easily accomplished through a
division by q.

Now consider the lattice D̃2 with basis {(0,1),(1
2 ,

1
2)}.

This lattice is a scaled version of the root lattice D2,
specifically, D̃2 = 1

2 ·D2. Part of D̃2 is depicted in Fig-
ure 1; lattice points are shown together with their Voronoi
cells and the possible range of the vector x is marked
with dashed lines. Mapping x to one bit is done by
finding the closest-vector v ∈ D̃2. If v = (1

2 ,
1
2) (i.e.,

x is in the grey Voronoi cell), then the output bit is 1;
if v ∈ {(0,0),(0,1),(1,0),(1,1)} (i.e., x is in a white
Voronoi cell) then the output bit is 0.

This map may seem like a fairly complex way to map
from a vector to a bit. However, recall that client and
server only have a noisy version of x, i.e., the client has
a vector xc and the server has a vector xs. Those two
vectors are close, but they are not the same and can be on
different sides of a Voronoi cell border.

Error reconciliation. The approach described above
now allows for an efficient solution to solve this
agreement-from-noisy-data problem. The idea is that
one of the two participants (in our case the client) sends
as a reconciliation vector the difference of his vector xc

6

USENIX Association 25th USENIX Security Symposium 333

(1

2
,

1

2
)

Figure 2: Splitting of the Voronoi cell of (1
2 ,

1
2) into 2rd =

16 sub-cells, some with their corresponding difference
vector to the center

and the center of its Voronoi cell (i.e., the point in the
lattice). The server adds this difference vector to xs and
thus moves away from the border towards the center of
the correct Voronoi cell. Note that an eavesdropper does
not learn anything from the reconciliation information:
the client tells the difference to a lattice point, but not
whether this is a lattice point producing a zero bit or a
one bit.

This approach would require sending a full additional
vector; we can reduce the amount of reconciliation in-
formation through r-bit discretization. The idea is to
split each Voronoi cell into 2dr sub-cells and only send
in which of those sub-cells the vector xc is. Both partici-
pants then add the difference of the center of the sub-cell
and the lattice point. This is illustrated for r = 2 and
d = 2 in Figure 2.

Blurring the edges. Figure 1 may suggest that the prob-
ability of x being in a white Voronoi cell is the same as
for x being in the grey Voronoi cell. This would be the
case if x actually followed a continuous uniform distri-
bution. However, the coefficients of x are discrete values
in {0, 1

q , . . . ,
q−1

q } and with the protocol described so far,
the bits of ν would have a small bias. The solution is to
add, with probability 1

2 , the vector (1
2q ,

1
2q) to x before

running the error reconciliation. This has close to no ef-
fect for most values of x, but, with probability 1

2 moves x
to another Voronoi cell if it is very close to one side of a
border. Appendix E in the full version of this paper gives
a graphical intuition for this trick in two dimensions and
with q = 9. The proof that it indeed removes all biases in
the key is given in Lemma C.2. in the full version of this
paper.

From 2 to 4 dimensions. When moving from the 2-
dimensional case considered above to the 4-dimensional
case used in our protocol, not very much needs to change.
The lattice D̃2 becomes the lattice D̃4 with basis B =
(u0,u1,u2,g), where ui are the canonical basis vectors of

Z4 and gt =
(1

2 ,
1
2 ,

1
2 ,

1
2

)
. The lattice D̃4 is a rotated and

scaled version of the root lattice D4. The Voronoi cells
of this lattice are no longer 2-dimensional “diamonds”,
but 4-dimensional objects called icositetrachoron or 24-
cells [61]. Determining in which cell a target point lies
in is done using the closest vector algorithm CVPD̃4

, and
a simplified version of it, which we call Decode, gives
the result modulo Z4.

As in the 2-dimensional illustration in Figure 2, we are
using 2-bit discretization; we are thus sending r · d = 8
bits of reconciliation information per key bit.

Putting all of this together, we obtain the HelpRec
function to compute the r-bit reconciliation information
as

HelpRec(x;b) = CVPD̃4

(
2r

q
(x+bg)

)
mod 2r,

where b ∈ {0,1} is a uniformly chosen random bit. The
corresponding function Rec(x,r) = Decode(1

q x− 1
2r Br)

computes one key bit from a vector x with 4 coefficients
in Zq and a reconciliation vector r ∈ {0,1,2,3}4. The
algorithms CVPD̃4

and Decode are listed as Algorithm 1
and Algorithm 2, respectively.

Algorithm 1 CVPD̃4
(x ∈ R4)

Ensure: An integer vector z such that Bz is a closest
vector to x: x−Bz ∈ V

1: v0←�x�
2: v1←�x−g�
3: k←(‖x−v0‖1 < 1) ? 0 : 1
4: (v0,v1,v2,v3)

t←vk
5: return (v0,v1,v2,k)t + v3 · (−1,−1,−1,2)t

Algorithm 2 Decode(x ∈ R4/Z4)

Ensure: A bit k such that kg is a closest vector to x+Z4:
x− kg ∈ V +Z4

1: v = x−�x�
2: return 0 if ‖v‖1 ≤ 1 and 1 otherwise

Finally it remains to remark that even with this rec-
onciliation mechanism client and server do not always
agree on the same key. Lemma D in the full version
of this paper. provides a detailed analysis of the fail-
ure probability of the key agreement and shows that it is
smaller than 2−60.

6 Post-quantum security analysis

In [20] the authors chose Ring-LWE for a ring of rank
n= 1024, while most previous instantiations of the Ring-
LWE encryption scheme, like the ones in [29,42,63,79],

7

334 25th USENIX Security Symposium USENIX Association

chose substantially smaller rank n = 256 or n = 512. It
is argued that it is unclear if dimension 512 can offer
post-quantum security. Yet, the concrete post-quantum
security of LWE-based schemes has not been thoroughly
studied, as far as we know. In this section we propose
such a (very pessimistic) concrete analysis. In particu-
lar, our analysis reminds us that the security depends as
much on q and its ratio with the error standard deviation
ς as it does on the dimension n. That means that our ef-
fort of optimizing the error recovery and its analysis not
only improves efficiency but also offers superior security.

Security level over-shoot? With all our improvements,
it would be possible to build a scheme with n = 512
(and k = 24, q = 12289) and to obtain security some-
what similar to the one of [20, 42], and therefore fur-
ther improve efficiency. We call this variant JARJAR and
details are provided in Appendix A of the full version
of this paper. Nevertheless, as history showed us with
RSA-512 [28], the standardization and deployment of a
scheme awakens further cryptanalytic effort. In particu-
lar, NEWHOPE could withstand a dimension-halving at-
tack in the line of [36, Sec 8.8.1] based on the Gentry-
Szydlo algorithm [40,60] or the subfield approach of [2].
Note that so far, such attacks are only known for princi-
pal ideal lattices or NTRU lattices, and there are serious
obstructions to extend them to Ring-LWE, but such pre-
caution seems reasonable until lattice cryptanalysis sta-
bilizes.

We provide the security and performance analysis of
JARJAR in Appendix A of the full version of this paper
mostly for comparison with other lower-security propos-
als. We strongly recommend NEWHOPE for any imme-
diate applications, and advise against using JARJAR un-
til concrete cryptanalysis of lattice-based cryptography is
better understood.

6.1 Methodology: the core SVP hardness
We analyze the hardness of Ring-LWE as an LWE prob-
lem, since, so far, the best known attacks do not make use
of the ring structure. There are many algorithms to con-
sider in general (see the survey [3]), yet many of those
are irrelevant for our parameter set. In particular, because
there are only m = n samples available one may rule out
BKW types of attacks [53] and linearization attacks [6].
This essentially leaves us with two BKZ [26,82] attacks,
usually referred to as primal and dual attacks that we will
briefly recall below.

The algorithm BKZ proceeds by reducing a lattice ba-
sis using an SVP oracle in a smaller dimension b. It is
known [47] that the number of calls to that oracle re-
mains polynomial, yet concretely evaluating the number
of calls is rather painful, and this is subject to new heuris-
tic ideas [25, 26]. We choose to ignore this polynomial

factor, and rather evaluate only the core SVP hardness,
that is the cost of one call to an SVP oracle in dimension
b, which is clearly a pessimistic estimation (from the de-
fender’s point of view).

6.2 Enumeration versus quantum sieve

Typical implementations [23, 26, 35] use an enumeration
algorithm as this SVP oracle, yet this algorithm runs in
super-exponential time. On the other hand, the sieve al-
gorithms are known to run in exponential time, but are so
far slower in practice for accessible dimensions b ≈ 130.
We choose the latter to predict the core hardness and will
argue that for the targeted dimension, enumerations are
expected to be greatly slower than sieving.

Quantum sieve. A lot of recent work has pushed the ef-
ficiency of the original lattice sieve algorithms [69, 75],
improving the heuristic complexity from (4/3)b+o(b) ≈
20.415b down to

√
3/2

b+o(b) ≈ 20.292b (see [10, 55]).
The hidden sub-exponential factor is known to be much
greater than one in practice, so again, estimating the
cost ignoring this factor leaves us with a significant pes-
simistic margin.

Most of those algorithms have been shown [54, 56] to
benefit from Grover’s quantum search algorithm, bring-
ing the complexity down to 20.265b. It is unclear if fur-
ther improvements are to be expected, yet, because all
those algorithms require classically building lists of size√

4/3
b+o(b) ≈ 20.2075b, it is very plausible that the best

quantum SVP algorithm would run in time greater than
20.2075b.

Irrelevance of enumeration for our analysis. In [26],
predictions of the cost of solving SVP classically us-
ing the most sophisticated heuristic enumeration algo-
rithms are given. For example, solving SVP in dimension
100 requires visiting about 239 nodes, and 2134 nodes
in dimension 250. Because this enumeration is a back-
tracking algorithm, it does benefit from the recent quasi-
quadratic speedup [70], decreasing the quantum cost to
about at least 220 to 267 operations as the dimension in-
creases from 100 to 250.

On the other hand, our best-known attack bound
20.265b gives a cost of 266 in dimension 250, and the best
plausible attack bound 20.2075b ≈ 239. Because enumera-
tion is super-exponential (both in theory and practice), its
cost will be worse than our bounds in dimension larger
than 250 and we may safely ignore this kind of algo-
rithm.5

5The numbers are taken from the latest full version of [26] available
at http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf.

8

USENIX Association 25th USENIX Security Symposium 335

6.3 Primal attack

The primal attack consists of constructing a unique-SVP
instance from the LWE problem and solving it using
BKZ. We examine how large the block dimension b is
required to be for BKZ to find the unique solution. Given
the matrix LWE instance (A,b = As+ e) one builds the
lattice Λ = {x ∈ Zm+n+1 : (A|−Im|−b)x = 0 mod q} of
dimension d = m+n+1, volume qm, and with a unique-
SVP solution v = (s,e,1) of norm λ ≈ ς

√
n+m. Note

that the number of used samples m may be chosen be-
tween 0 and 2n in our case and we numerically optimize
this choice.

Success condition. We model the behavior of BKZ us-
ing the geometric series assumption (which is known
to be optimistic from the attacker’s point of view), that
finds a basis whose Gram-Schmidt norms are given
by ‖b�

i ‖ = δ d−2i−1 · Vol(Λ)1/d where δ = ((πb)1/b ·
b/2πe)1/2(b−1) [3, 25]. The unique short vector v will
be detected if the projection of v onto the vector space
spanned by the last b Gram-Schmidt vectors is shorter
than b�

d−b. Its projected norm is expected to be ς
√

b,
that is the attack is successful if and only if

ς
√

b ≤ δ 2b−d−1 ·qm/d . (1)

6.4 Dual attack

The dual attack consists of finding a short vector in the
dual lattice w∈Λ′= {(x,y)∈Zm×Zn : Atx= y mod q}.
Assume we have found a vector (x,y) of length � and
compute z = vt ·b = vtAs+vte = wts+vte mod q which
is distributed as a Gaussian of standard deviation �ς if
(A,b) is indeed an LWE sample (otherwise it is uniform
mod q). Those two distributions have maximal vari-
ation distance bounded by6 ε = 4exp(−2π2τ2) where
τ = �ς/q, that is, given such a vector of length � one
has an advantage ε against decision-LWE.

The length � of a vector given by the BKZ algorithm is
given by � = ‖b0‖. Knowing that Λ′ has dimension d =
m+ n and volume qn we get � = δ d−1qn/d . Therefore,
obtaining an ε-distinguisher requires running BKZ with
block dimension b where

−2π2τ2 ≥ ln(ε/4). (2)

Note that small advantages ε are not relevant since the
agreed key is hashed: an attacker needs an advantage of
at least 1/2 to significantly decrease the search space of
the agreed key. He must therefore amplify his success

6A preliminary version of this paper contained a bogus formula for
ε leading to under-estimating the cost of the dual attack. Correcting
this formula leads to better security claim, and almost similar cost for
the primal and dual attacks.

Known Known Best
Attack m b Classical Quantum Plausible

BCNS proposal [20]: q = 232 −1, n = 1024, ς = 3.192
Primal 1062 296 86 78 61
Dual 1055 296 86 78 61
NTRUENCRYPT [49]: q = 212, n = 743, ς ≈

√
2/3

Primal 613 603 176 159 125
Dual 635 600 175 159 124
JARJAR: q = 12289, n = 512, ς =

√
12

Primal 623 449 131 119 93
Dual 602 448 131 118 92
NEWHOPE: q = 12289, n = 1024, ς =

√
8

Primal 1100 967 282 256 200
Dual 1099 962 281 255 199

Table 1: Core hardness of NEWHOPE and JARJAR and se-
lected other proposals from the literature. The value b denotes
the block dimension of BKZ, and m the number of used sam-
ples. Cost is given in log2 and is the smallest cost for all pos-
sible choices of m and b. Note that our estimation is very op-
timistic about the abilities of the attacker so that our result for
the parameter set from [20] does not indicate that it can be bro-
ken with ≈ 280 bit operations, given today’s state-of-the-art in
cryptanalysis.

probability by building about 1/ε2 many such short vec-
tors. Because the sieve algorithms provide 20.2075b vec-
tors, the attack must be repeated at least R times where

R = max(1,1/(20.2075bε2)).

This makes the conservative assumption that all the vec-
tors provided by the Sieve algorithm are as short as the
shortest one.

6.5 Security claims
According to our analysis, we claim that our proposed
parameters offer at least (and quite likely with a large
margin) a post-quantum security of 128 bits. The cost
of the primal attack and dual attacks (estimated by our
script scripts/PQsecurity.py) are given in Table 1.
For comparison we also give a lower bound on the secu-
rity of [20] and do notice a significantly improved se-
curity in our proposal. Yet, because of the numerous
pessimistic assumption made in our analysis, we do not
claim any quantum attacks reaching those bounds.

Most other RLWE proposals achieve considerably
lower security than NEWHOPE; for example, the highest-
security parameter set used for RLWE encryption in [42]
is very similar to the parameters of JARJAR. The situ-
ation is different for NTRUENCRYPT, which has been
instantiated with parameters that achieve about 128 bits
of security according to our analysis7.

7For comparison we view the NTRU key-recovery as an homoge-

9

336 25th USENIX Security Symposium USENIX Association

Specifically, we refer to NTRUENCRYPT with n =
743 as suggested in [49]. A possible advantage of
NTRUENCRYPT compared to NEWHOPE is somewhat
smaller message sizes, however, this advantage becomes
very small when scaling parameters to achieve a sim-
ilar security margin as NEWHOPE. The large down-
side of using NTRUENCRYPT for ephemeral key ex-
change is the cost for key generation. The implemen-
tation of NTRUENCRYPT with n = 743 in eBACS [17]
takes about an order of magnitude longer for key gener-
ation alone than NEWHOPE takes in total. Also, unlike
our NEWHOPE software, this NTRUENCRYPT software
is not protected against timing attacks; adding such pro-
tection would presumably incur a significant overhead.

7 Implementation

In this section we provide details on the encodings of
messages and describe our portable reference implemen-
tation written in C, as well as an optimized implementa-
tion targeting architectures with AVX vector instructions.

7.1 Encodings and generation of a
The key-exchange protocol described in Protocol 1 and
also our protocol as described in Protocol 2 exchange
messages that contain mathematical objects (in particu-
lar, polynomials in Rq). Implementations of these proto-
cols need to exchange messages in terms of byte arrays.
As we will describe in the following, the choice of en-
codings of polynomials to byte arrays has a serious im-
pact on performance. We use an encoding of messages
that is particularly well-suited for implementations that
make use of quasi-linear NTT-based polynomial multi-
plication.

Definition of NTT and NTT−1. The NTT is a tool
commonly used in implementations of ideal lattice-based
cryptography [29, 42, 63, 79]. For some background
on the NTT and the description of fast software im-
plementations we refer to [46, 68]. In general, fast
quasi-logarithmic algorithms exist for the computation
of the NTT and a polynomial multiplication can be per-
formed by computing c = NTT−1(NTT(a) ◦NTT(b))
for a,b,c ∈ R. An NTT targeting ideal lattices defined
in Rq = Zq[X]/(Xn + 1) can be implemented very effi-
ciently if n is a power of two and q is a prime for which
it holds that q ≡ 1 mod 2n. This way a primitive n-th
root of unity ω and its square root γ exist. By multiply-
ing coefficient-wise by powers of γ =

√
ω mod q before

neous Ring-LWE instance. We do not take into account the combinato-
rial vulnerabilities [51] induced by the fact that secrets are ternary. We
note that NTRU is a potentially a weaker problem than Ring-LWE: it
is in principle subject to a subfield-lattice attack [2], but the parameters
proposed for NTRUENCRYPT are immune.

the NTT computation and after the reverse transforma-
tion by powers of γ−1, no zero padding is required and
an n-point NTT can be used to transform a polynomial
with n coefficients.

For a polynomial g = ∑1023
i=0 giXi ∈ Rq we define

NTT(g) = ĝ =
1023

∑
i=0

ĝiX i, with

ĝi =
1023

∑
j=0

γ jg jω i j,

where we fix the n-th primitive root of unity to ω = 49
and thus γ =

√
ω = 7. Note that in our implementation

we use an in-place NTT algorithm which requires bit-
reversal operations. As an optimization, our implemen-
tations skips these bit-reversals for the forward transfor-
mation as all inputs are only random noise. This opti-
mization is transparent to the protocol and for simplicity
omitted in the description here.

The function NTT−1 is the inverse of the function
NTT. The computation of NTT−1 is essentially the
same as the computation of NTT, except that it uses ω−1

mod q = 1254, multiplies by powers of γ−1 mod q =
8778 after the summation, and also multiplies each coef-
ficient by the scalar n−1 mod q = 12277 so that

NTT−1(ĝ) = g =
1023

∑
i=0

giXi, with

gi = n−1γ−i
1023

∑
j=0

ĝ jω−i j.

The inputs to NTT−1 are not just random noise, so in-
side NTT−1 our software has to perform the initial bit
reversal, making NTT−1 slightly more costly than NTT.

Definition of Parse. The public parameter a is generated
from a 256-bit seed through the extendable-output func-
tion SHAKE-128 [72, Sec. 6.2]. The output of SHAKE-
128 is considered as an array of 16-bit, unsigned, little-
endian integers. Each of those integers is used as a coef-
ficient of a if it is smaller than 5q and rejected otherwise.
The first such 16-bit integer is used as the coefficient of
X0, the next one as coefficient of X1 and so on. Earlier
versions of this paper described a slightly different way
of rejection sampling for coefficients of a. The more ef-
ficient approach adopted in this final version was sug-
gested independently by Gueron and Schlieker in [45]
and by Yawning Angel in [5]. However, note that a re-
duction modulo q of the coefficients of a as described
in [45] and [5] is not necessary; both our implementa-
tions can handle coefficients of a in {0, . . . ,5q−1}.

Due to a small probability of rejections, the amount of
output required from SHAKE-128 depends on the seed –

10

USENIX Association 25th USENIX Security Symposium 337

what is required is n = 1024 coefficients that are smaller
than 5q. The minimal amount of output is thus 2 KB; the
average amount is ≈ 2184.5 bytes. The resulting poly-
nomial a (denoted as â) is considered to be in NTT do-
main. This is possible because the NTT transforms uni-
form noise to uniform noise.

Using a variable amount of output from SHAKE-128
leaks information about a through timing information.
This is not a problem for most applications, since a is
public. As pointed out by Burdges in [22], such a tim-
ing leak of public information can be a problem when
deploying NEWHOPE in anonymity networks like Tor.
Appendix F in the full version of this paper describes
an alternative approach for Parse, which is slightly more
complex and slightly slower, but does not leak any timing
information about a.

The message format of (b,seed) and (u,r). With the
definition of the NTT, we can now define the format
of the exchanged messages. In both (b,seed) and (u,r)
the polynomial is transmitted in the NTT domain (as in
works like [79,81]). Polynomials are encoded as an array
of 1792 bytes, in a compressed little-endian format. The
encoding of seed is straight-forward as an array of 32
bytes, which is simply concatenated with the encoding
of b. Also the encoding of r is fairly straight-forward:
it packs four 2-bit coefficients into one byte for a to-
tal of 256 bytes, which are again simply concatenated
with the encoding of u. We denote these encodings to
byte arrays as encodeA and encodeB and their inverses
as decodeA and decodeB. For a description of our key-
exchange protocol including encodings and with explicit
NTT and NTT−1 transformations, see Protocol 3.

7.2 Portable C implementation

This paper is accompanied by a C reference implemen-
tation described in this section and an optimized imple-
mentation for Intel and AMD CPUs described in the next
section. The main emphasis in the C reference imple-
mentation is on simplicity and portability. It does not
use any floating-point arithmetic and outside the Kec-
cak (SHA3-256 and SHAKE-128) implementation only
needs 16-bit and 32-bit integer arithmetic. In particular,
the error-recovery mechanism described in Section 5 is
implemented with fixed-point (i.e., integer-) arithmetic.
Furthermore, the C reference implementation does not
make use of the division operator (/) and the modulo op-
erator (%). The focus on simplicity and portability does
not mean that the implementation is not optimized at all.
On the contrary, we use it to illustrate various optimiza-
tion techniques that are helpful to speed up the key ex-
change and are also of independent interest for imple-
menters of other ideal-lattice-based schemes.

NTT optimizations. All polynomial coefficients are
represented as unsigned 16-bit integers. Our in-place
NTT implementation transforms from bit-reversed to
natural order using Gentleman-Sande butterfly oper-
ations [27, 37]. One would usually expect that each
NTT is preceded by a bit-reversal, but all inputs to
NTT are noise polynomials that we can simply consider
as being already bit-reversed; as explained earlier, the
NTT−1 operation still involves a bit-reversal. The core
of the NTT and NTT−1 operation consists of 10 layers
of transformations, each consisting of 512 butterfly
operations of the form described in Listing 2.

Montgomery arithmetic and lazy reductions. The per-
formance of operations on polynomials is largely deter-
mined by the performance of NTT and NTT−1. The
main computational bottleneck of those operations are
5120 butterfly operations, each consisting of one addi-
tion, one subtraction and one multiplication by a precom-
puted constant. Those operations are in Zq; recall that q
is a 14-bit prime. To speed up the modular-arithmetic
operations, we store all precomputed constants in Mont-
gomery representation [71] with R = 218, i.e., instead
of storing ω i, we store 218ω i (mod q). After a multi-
plication of a coefficient g by some constant 218ω i, we
can then reduce the result r to gω i (mod q) with the fast
Montgomery reduction approach. In fact, we do not al-
ways fully reduce modulo q, it is sufficient if the result of
the reduction has at most 14 bits. The fast Montgomery
reduction routine given in Listing 1a computes such a re-
duction to a 14-bit integer for any unsigned 32-bit integer
in {0, . . . ,232 −q(R−1)−1}. Note that the specific im-
plementation does not work for any 32-bit integer; for
example, for the input 232 −q(R−1) = 1073491969 the
addition a=a+u causes an overflow and the function re-
turns 0 instead of the correct result 4095. In the following
we establish that this is not a problem for our software.

Aside from reductions after multiplication, we also
need modular reductions after addition. For this task
we use the “short Barrett reduction” [9] detailed in List-
ing 1b. Again, this routine does not fully reduce modulo
q, but reduces any 16-bit unsigned integer to an integer
of at most 14 bits which is congruent modulo q.

In the context of the NTT and NTT−1, we make sure
that inputs have coefficients of at most 14 bits. This al-
lows us to avoid Barrett reductions after addition on ev-
ery second level, because coefficients grow by at most
one bit per level and the short Barrett reduction can
handle 16-bit inputs. Let us turn our focus to the in-
put of the Montgomery reduction (see Listing 2). Be-
fore subtracting a[j+d] from t we need to add a mul-
tiple of q to avoid unsigned underflow. Coefficients
never grow larger than 15 bits and 3 · q = 36867 > 215,
so adding 3 · q is sufficient. An upper bound on the

11

338 25th USENIX Security Symposium USENIX Association

Parameters: q = 12289 < 214, n = 1024
Error distribution: ψn

16
Alice (server) Bob (client)
seed $←{0, . . . ,255}32

â←Parse(SHAKE-128(seed))
s,e $← ψn

16 s′,e′,e′′ $← ψn
16

ŝ←NTT(s)

b̂←â◦ ŝ+NTT(e)
ma=encodeA(seed,b̂)−−−−−−−−−−−−→

1824 Bytes
(b̂,seed)←decodeA(ma)

â←Parse(SHAKE-128(seed))
t̂←NTT(s′)
û←â◦ t̂+NTT(e′)
v←NTT−1(b̂◦ t̂)+ e′′

(û,r)←decodeB(mb)
mb=encodeB(û,r)←−−−−−−−−−−

2048 Bytes
r $← HelpRec(v)

v′←NTT−1(û◦ ŝ) ν←Rec(v,r)
ν←Rec(v′,r) µ←SHA3-256(ν)
µ←SHA3-256(ν)

Protocol 3: Our proposed protocol including NTT and NTT−1 computations and sizes of exchanged messages; ◦
denotes pointwise multiplication; elements in NTT domain are denoted with a hat (ˆ)

expression ((uint32_t)t + 3*12289 - a[j+d]) is
obtained if t is 215 − 1 and a[j+d] is zero; we
thus obtain 215 + 3 · q = 69634. All precomputed
constants are in {0, . . . ,q − 1}, so the expression
(W * ((uint32_t)t + 3*12289 - a[j+d]), the in-
put to the Montgomery reduction, is at most 69634 · (q−
1) = 855662592 and thus safely below the maximum in-
put that the Montgomery reduction can handle.

Listing 1 Reduction routines used in the reference im-
plementation.
(a) Montgomery reduction (R = 218).

uint16_t mred(uint32_t a) {
uint32_t u;
u = (a * 12287);
u &= ((1 << 18) - 1);
a += u * 12289;
return a >> 18;

}

(b) Short Barrett reduction.

uint16_t bred(uint16_t a) {
uint32_t u;
u = ((uint32_t) a * 5) >> 16;
a -= u * 12289;
return a;

}

Fast random sampling. As a first step before perform-
ing any operations on polynomials, both Alice and Bob
need to expand the seed to the polynomial a using
SHAKE-128. The implementation we use is based on
the “simple” implementation by Van Keer for the Kec-

Listing 2 The Gentleman-Sande butterfly inside odd lev-
els of our NTT computation. All a[j] and W are of type
uint16_t.

W = omega[jTwiddle++];
t = a[j];
a[j] = bred(t + a[j+d]);
a[j+d] = mred(W * ((uint32_t)t + 3*12289 - a[j+d]));

cak permutation and slightly modified code taken from
the “TweetFIPS202” implementation [18] for everything
else.

The sampling of centered binomial noise polynomi-
als is based on a fast PRG with a random seed from
/dev/urandom followed by a quick summation of 16-
bit chunks of the PRG output. Note that the choice of
the PRG is a purely local choice that every user can
pick independently based on the target hardware archi-
tecture and based on routines that are available anyway
(for example, for symmetric encryption following the
key exchange). Our C reference implementation uses
ChaCha20 [12], which is fast, trivially protected against
timing attacks, and is already in use by many TLS clients
and servers [57, 58].

7.3 Optimized AVX2 implementation

Intel processors since the “Sandy Bridge” generation
support Advanced Vector Extensions (AVX) that oper-
ate on vectors of 8 single-precision or 4 double-precision

12

USENIX Association 25th USENIX Security Symposium 339

floating-point values in parallel. With the introduction
of the “Haswell” generation of CPUs, this support was
extended also to 256-bit vectors of integers of various
sizes (AVX2). It is not surprising that the enormous com-
putational power of these vector instructions has been
used before to implement very high-speed crypto (see,
for example, [14, 16, 43]) and also our optimized refer-
ence implementation targeting Intel Haswell processors
uses those instructions to speed up multiple components
of the key exchange.

NTT optimizations. The AVX instruction set has been
used before to speed up the computation of lattice-based
cryptography, and in particular the number-theoretic
transform. Most notably, Güneysu, Oder, Pöppelmann
and Schwabe achieve a performance of only 4480 cycles
for a dimension-512 NTT on Intel Sandy Bridge [46].
For arithmetic modulo a 23-bit prime, they represent co-
efficients as double-precision integers.

We experimented with multiple different approaches
to speed up the NTT in AVX. For example, we vector-
ized the Montgomery arithmetic approach of our C ref-
erence implementation and also adapted it to a 32-bit-
signed-integer approach. In the end it turned out that
floating-point arithmetic beats all of those more sophisti-
cated approaches, so we are now using an approach that
is very similar to the approach in [46]. One computation
of a dimension-1024 NTT takes 8448 cycles, unlike the
numbers in [46] this does include multiplication by the
powers of γ and unlike the numbers in [46], this excludes
a bit-reversal.

Fast sampling. Intel Haswell processors support the
AES-NI instruction set and for the local choice of noise
sampling it is obvious to use those. More specifically,
we use the public-domain implementation of AES-256 in
counter mode written by Dolbeau, which is included in
the SUPERCOP benchmarking framework [17]. Trans-
formation from uniform noise to the centered binomial
is optimized in AVX2 vector instructions operating on
vectors of bytes and 16-bit integers.

For the computation of SHAKE-128 we use the same
code as in the C reference implementation. One might
expect that architecture-specific optimizations (for exam-
ple, using AVX instructions) are able to offer significant
speedups, but the benchmarks of the eBACS project [17]
indicate that on Intel Haswell, the fastest implementation
is the “simple” implementation by Van Keer that our C
reference implementation is based on. The reasons that
vector instructions are not very helpful for speeding up
SHAKE (or, more generally, Keccak) are the inherently
sequential nature and the 5 × 5 dimension of the state
matrix that makes internal vectorization hard.

Error recovery. The 32-bit integer arithmetic used by
the C reference implementation for HelpRec and Rec

is trivially 8-way parallelized with AVX2 instructions.
With this vectorization, the cost for HelpRec is only 3404
cycles, the cost for Rec is only 2804 cycles.

8 Benchmarks and comparison

In the following we present benchmark results of our
software. All benchmark results reported in Table 2 were
obtained on an Intel Core i7-4770K (Haswell) running
at 3491.953 MHz with Turbo Boost and Hyperthreading
disabled. We compiled our C reference implementation
with gcc-4.9.2 and flags -O3 -fomit-frame-pointer
-march=corei7-avx -msse2avx. We compiled our
optimized AVX implementation with clang-3.5 and flags
-O3 -fomit-frame-pointer -march=native.

As described in Section 7, the sampling of a is not
running in constant time; we report the median run-
ning time and (in parentheses) the average running time
for this generation, the server-side key-pair generation
and client-side shared-key computation; both over 1000
runs. For all other routines we report the median of
1000 runs. We built the software from [20] on the
same machine as ours and—like the authors of [20]—
used openssl speed for benchmarking their software
and converted the reported results to approximate cycle
counts as given in Table 2.

Comparison with BCNS and RSA/ECDH. As previ-
ously mentioned, the BCNS implementation [20] also
uses the dimension n = 1024 but the larger modulus
q = 232 − 1 and the Gaussian error distribution with
Gaussian parameter σ = 8/

√
2π = 3.192. When the au-

thors of BCNS integrated their implementation into SSL
it only incurred a slowdown by a factor of 1.27 compared
to ECDH when using ECDSA signatures and a factor of
1.08 when using RSA signatures with respect to the num-
ber of connections that could be handled by the server.
As a reference, the reported cycle counts in [20] for a
nistp256 ECDH on the client side are 2 160 000 cycles
(0.8 ms @2.77 GHz) and on the server side 3 221 288
cycles (1.4 ms @2.33 GHz). These numbers are obvi-
ously not state of the art for ECDH software. Even on
the nistp256 curve, which is known to be a far-from-
optimal choice, it is possible to achieve cycle counts of
less than 300000 cycles for a variable-basepoint scalar
multiplication on an Intel Haswell [44]. Also OpenSSL
optionally includes fast software for nistp256 ECDH
by Käsper and Langley and we assume that the authors
of [20] omitted enabling it. Compared to BCNS, our
C implementation is more than 8 times faster and our
AVX implementation even achieves a speedup factor of
more than 27. At this performance it is in the same ball-
park as state-of-the-art ECDH software, even when TLS
switches to faster 128-bit secure ECDH key exchange

13

340 25th USENIX Security Symposium USENIX Association

Table 2: Intel Haswell cycle counts of our proposal as compared to the BCNS proposal from [20].

BCNS [20] Ours (C ref) Ours (AVX2)
Generation of a 43440a 37470a

(43607)a (36863)a

NTT 55360 8448
NTT−1 59864b 9464b

Sampling of a noise polynomial 32684c 5900c

HelpRec 14608 3404
Rec 10092 2804

Key generation (server) ≈ 2477958 258246 88920
(258965) (89079)

Key gen + shared key (client) ≈ 3995977 384994 110986
(385146) (111169)

Shared key (server) ≈ 481937 86280 19422
a Includes reading a seed from /dev/urandom
b Includes one bit reversal
c Excludes reading a seed from /dev/urandom, which is shared across multiple calls to the noise generation

based on Curve25519 [11], as recently specified in RFC
7748 [59].

In comparison to the BCNS proposal we see a large
performance advantage from switching to the binomial
error distribution. The BCNS software uses a large pre-
computed table to sample from a discrete Gaussian dis-
tribution with a high precision. This approach takes
1042700 cycles to samples one polynomial in constant
time. Our C implementation requires only 32684 cy-
cles to sample from the binomial distribution. Another
factor is that we use the NTT in combination with a
smaller modulus. Polynomial multiplication in [20] is
using Nussbaumer’s symbolic approach based on re-
cursive negacyclic convolutions [76]. The implemen-
tation in [20] only achieves a performance of 342800
cycles for a constant-time multiplication. Additionally,
the authors of [20] did not perform pre-transformation
of constants (e.g., a) or transmission of coefficients in
FFT/Nussbaumer representation.

Follow-Up Work. We would like to refer the reader to
follow-up work in which improvements to NEWHOPE
and its implementation were proposed based on a
preprint version of this work [4]. In [45] Gueron and
Schlieker introduce faster pseudorandom bytes gener-
ation by changing the underlying functions, a method
to decrease the rejection rate during sampling (see Sec-
tion 7.1), and a vectorization of the sampling step. Longa
and Naehrig [64] optimize the NTT and present new
modular reduction techniques and are able to achieve a
speedup of factor-1.90 for the C implementation and a
factor-1.25 for the AVX implementation compared to the
preprint [4] (note that this version has updated numbers).

An alternative NTRU-based proposal and implementa-
tion of a lattice-based public-key encryption scheme,
which could also be used for key exchange, is given by
Bernstein, Chuengsatiansup, Lange, and van Vredendaal
in [15], but we leave a detailed comparison to future
work. An efficient authenticated lattice-based key ex-
change scheme has recently been proposed by del Pino,
Lyubashevsky, and Pointcheval in [30].

References
[1] ADRIAN, D., BHARGAVAN, K., DURUMERIC, Z., GAUDRY,

P., GREEN, M., HALDERMAN, J. A., HENINGER, N.,
SPRINGALL, D., THOMÉ, E., VALENTA, L., VANDERSLOOT,
B., WUSTROW, E., BÉGUELIN, S. Z., AND ZIMMERMANN, P.
Imperfect forward secrecy: How Diffie-Hellman fails in practice.
In CCS ’15 Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (2015), ACM, pp. 5–17.
https://weakdh.org/. 4, 5

[2] ALBRECHT, M., BAI, S., AND DUCAS, L. A subfield lattice
attack on overstretched NTRU assumptions. IACR Cryptology
ePrint Archive report 2016/127, 2016. http://eprint.iacr.
org/2016/127. 8, 10

[3] ALBRECHT, M. R., PLAYER, R., AND SCOTT, S. On the con-
crete hardness of learning with errors. IACR Cryptology ePrint
Archive report 2015/046, 2015. http://eprint.iacr.org/
2015/046/. 8, 9

[4] ALKIM, E., DUCAS, L., PÖPPELMANN, T., AND SCHWABE,
P. Post-quantum key exchange - a new hope. IACR Cryptol-
ogy ePrint Archive report 2015/1092, 2015. https://eprint.
iacr.org/2015/1092/20160329:201913. 14

[5] ANGEL, Y. Post-quantum secure hybrid handshake based
on NewHope. Posting to the tor-dev mailing list, 2016.
https://lists.torproject.org/pipermail/tor-dev/
2016-May/010896.html. 10

[6] ARORA, S., AND GE, R. New algorithms for learning in
presence of errors. In Automata, Languages and Programming

14

USENIX Association 25th USENIX Security Symposium 341

(2011), L. Aceto, M. Henzingeri, and J. Sgall, Eds., vol. 6755 of
LNCS, Springer, pp. 403–415. https://www.cs.duke.edu/
~rongge/LPSN.pdf. 8

[7] BABAI, L. On Lovász’ lattice reduction and the nearest
lattice point problem. Combinatorica 6, 1 (1986), 1–13.
http://www.csie.nuk.edu.tw/~cychen/Lattices/
On%20lovasz%20lattice%20reduction%20and%20the%
20nearest%20lattice%20point%20problem.pdf. 5

[8] BAI, S., AND GALBRAITH, S. D. An improved compression
technique for signatures based on learning with errors. In Topics
in Cryptology – CT-RSA 2014 (2014), J. Benaloh, Ed., vol. 8366
of LNCS, Springer, pp. 28–47. https://eprint.iacr.org/
2013/838/. 1

[9] BARRETT, P. Implementing the Rivest Shamir and Adleman pub-
lic key encryption algorithm on a standard digital signal proces-
sor. In Advances in Cryptology – CRYPTO ’86 (1987), A. M.
Odlyzko, Ed., vol. 263 of Lecture Notes in Computer Science,
Springer-Verlag Berlin Heidelberg, pp. 311–323. 11

[10] BECKER, A., DUCAS, L., GAMA, N., AND LAARHOVEN, T.
New directions in nearest neighbor searching with applications to
lattice sieving. In SODA ’16 Proceedings of the twenty-seventh
annual ACM-SIAM symposium on Discrete Algorithms (2016 (to
appear)), SIAM. 8

[11] BERNSTEIN, D. J. Curve25519: new Diffie-Hellman speed
records. In Public Key Cryptography – PKC 2006 (2006),
M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, Eds., vol. 3958
of LNCS, Springer, pp. 207–228. http://cr.yp.to/papers.
html#curve25519. 14

[12] BERNSTEIN, D. J. ChaCha, a variant of Salsa20. In Workshop
Record of SASC 2008: The State of the Art of Stream Ciphers
(2008). http://cr.yp.to/papers.html#chacha. 12

[13] BERNSTEIN, D. J., CHOU, T., CHUENGSATIANSUP, C., HÜLS-
ING, A., LANGE, T., NIEDERHAGEN, R., AND VAN VREDEN-
DAAL, C. How to manipulate curve standards: a white paper for
the black hat. IACR Cryptology ePrint Archive report 2014/571,
2014. http://eprint.iacr.org/2014/571/. 4

[14] BERNSTEIN, D. J., CHUENGSATIANSUP, C., LANGE, T., AND
SCHWABE, P. Kummer strikes back: new DH speed records. In
Advances in Cryptology – EUROCRYPT 2015 (2014), T. Iwata
and P. Sarkar, Eds., vol. 8873 of LNCS, Springer, pp. 317–337.
full version: http://cryptojedi.org/papers/#kummer. 13

[15] BERNSTEIN, D. J., CHUENGSATIANSUP, C., LANGE, T., AND
VAN VREDENDAAL, C. NTRU Prime. IACR Cryptology ePrint
Archive report 2016/461, 2016. https://eprint.iacr.org/
2016/461. 14

[16] BERNSTEIN, D. J., HOPWOOD, D., HÜLSING, A., LANGE, T.,
NIEDERHAGEN, R., PAPACHRISTODOULOU, L., SCHNEIDER,
M., SCHWABE, P., AND WILCOX-O’HEARN, Z. SPHINCS:
practical stateless hash-based signatures. In Advances in Cryp-
tology – EUROCRYPT 2015 (2015), E. Oswald and M. Fis-
chlin, Eds., vol. 9056 of LNCS, Springer, pp. 368–397. https:
//cryptojedi.org/papers/#sphincs. 3, 13

[17] BERNSTEIN, D. J., AND LANGE, T. eBACS: ECRYPT bench-
marking of cryptographic systems. http://bench.cr.yp.to
(accessed 2015-10-07). 10, 13

[18] BERNSTEIN, D. J., SCHWABE, P., AND ASSCHE, G. V.
Tweetable FIPS 202, 2015. http://keccak).noekeon.org/
tweetfips202.html (accessed 2016-03-21). 12

[19] BERTONI, G., DAEMEN, J., PEETERS, M., AND ASSCHE,
G. V. Keccak. In Advances in Cryptology – EUROCRYPT 2013
(2013), T. Johansson and P. Q. Nguyen, Eds., vol. 7881 of LNCS,
Springer, pp. 313–314. 5

[20] BOS, J. W., COSTELLO, C., NAEHRIG, M., AND STEBILA, D.
Post-quantum key exchange for the TLS protocol from the ring
learning with errors problem. In 2015 IEEE Symposium on Secu-
rity and Privacy (2015), pp. 553–570. http://eprint.iacr.
org/2014/599. 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14

[21] BRAKERSKI, Z., LANGLOIS, A., PEIKERT, C., REGEV, O.,
AND STEHLÉ, D. Classical hardness of learning with errors. In
Proceedings of the forty-fifth annual ACM symposium on Theory
of computing (2013), ACM, pp. 575–584. http://arxiv.org/
pdf/1306.0281. 6

[22] BURDGES, J. Post-quantum secure hybrid handshake
based on NewHope. Posting to the tor-dev mailing
list, 2016. https://lists.torproject.org/pipermail/
tor-dev/2016-May/010886.html. 11

[23] CADÉ, D., PUJOL, X., AND STEHLÉ, D. fplll 4.0.4, 2013.
https://github.com/dstehle/fplll (accessed 2015-10-
13). 8

[24] CHECKOWAY, S., FREDRIKSON, M., NIEDERHAGEN, R., EV-
ERSPAUGH, A., GREEN, M., LANGE, T., RISTENPART, T.,
BERNSTEIN, D. J., MASKIEWICZ, J., AND SHACHAM, H. On
the practical exploitability of Dual EC in TLS implementations.
In Proceedings of the 23rd USENIX security symposium (2014).
https://projectbullrun.org/dual-ec/index.html. 4

[25] CHEN, Y. Lattice reduction and concrete security of fully
homomorphic encryption. PhD thesis, l’Université Paris
Diderot, 2013. Available at http://www.di.ens.fr/~ychen/
research/these.pdf. 8, 9

[26] CHEN, Y., AND NGUYEN, P. Q. BKZ 2.0: Better lattice
security estimates. In Advances in Cryptology – ASIACRYPT
2011, D. H. Lee and X. Wang, Eds., vol. 7073 of LNCS.
Springer, 2011, pp. 1–20. http://www.iacr.org/archive/
asiacrypt2011/70730001/70730001.pdf. 8

[27] CHU, E., AND GEORGE, A. Inside the FFT Black Box Serial and
Parallel Fast Fourier Transform Algorithms. CRC Press, Boca
Raton, FL, USA, 2000. 11

[28] COWIE, J., DODSON, B., ELKENBRACHT-HUIZING, R. M.,
LENSTRA, A. K., MONTGOMERY, P. L., AND ZAYER, J. A
world wide number field sieve factoring record: on to 512 bits.
In Advances in Cryptology – ASIACRYPT’96 (1996), K. Kim and
T. Matsumoto, Eds., vol. 1163 of LNCS, Springer, pp. 382–394.
http://oai.cwi.nl/oai/asset/1940/1940A.pdf. 8

[29] DE CLERCQ, R., ROY, S. S., VERCAUTEREN, F., AND VER-
BAUWHEDE, I. Efficient software implementation of ring-LWE
encryption. In Design, Automation & Test in Europe Conference
& Exhibition, DATE 2015 (2015), EDA Consortium, pp. 339–
344. http://eprint.iacr.org/2014/725. 1, 4, 5, 7, 10

[30] DEL PINO, R., LYUBASHEVSKY, V., AND POINTCHEVAL, D.
The whole is less than the sum of its parts: Constructing more ef-
ficient lattice-based AKEs. IACR Cryptology ePrint Archive re-
port 2016/435, 2016. https://eprint.iacr.org/2016/435.
14

[31] DUCAS, L., DURMUS, A., LEPOINT, T., AND LYUBASHEVSKY,
V. Lattice signatures and bimodal Gaussians. In Advances
in Cryptology – CRYPTO 2013 (2013), R. Canetti and J. A.
Garay, Eds., vol. 8042 of LNCS, Springer, pp. 40–56. https:
//eprint.iacr.org/2013/383/. 1, 4

[32] FLUHRER, S. Cryptanalysis of ring-LWE based key exchange
with key share reuse. IACR Cryptology ePrint Archive report
2016/085, 2016. http://eprint.iacr.org/2016/085. 4

[33] FUJIOKA, A., SUZUKI, K., XAGAWA, K., AND YONEYAMA,
K. Practical and post-quantum authenticated key exchange from
one-way secure key encapsulation mechanism. In Symposium on
Information, Computer and Communications Security, ASIA CCS
2013 (2013), K. Chen, Q. Xie, W. Qiu, N. Li, and W. Tzeng, Eds.,
ACM, pp. 83–94. 3

15

342 25th USENIX Security Symposium USENIX Association

[34] GALBRAITH, S. D. Space-efficient variants of cryptosystems
based on learning with errors, 2013. https://www.math.
auckland.ac.nz/~sgal018/compact-LWE.pdf. 5

[35] GAMA, N., NGUYEN, P. Q., AND REGEV, O. Lattice enu-
meration using extreme pruning. In Advances in Cryptology –
EUROCRYPT 2010 (2010), H. Gilbert, Ed., vol. 6110 of LNCS,
Springer, pp. 257–278. http://www.iacr.org/archive/
eurocrypt2010/66320257/66320257.pdf. 8

[36] GARG, S., GENTRY, C., AND HALEVI, S. Candidate mul-
tilinear maps from ideal lattices. In Advances in Cryptology
– EUROCRYPT 2013 (2013), vol. 7881, Springer, pp. 1–17.
https://eprint.iacr.org/2012/610. 8

[37] GENTLEMAN, W. M., AND SANDE, G. Fast Fourier transforms:
for fun and profit. In Fall Joint Computer Conference (1966),
vol. 29 of AFIPS Proceedings, pp. 563–578. http://cis.rit.
edu/class/simg716/FFT_Fun_Profit.pdf. 11

[38] GENTRY, C. Fully homomorphic encryption using ideal
lattices. In STOC ’09 Proceedings of the forty-first an-
nual ACM symposium on Theory of computing (2009),
ACM, pp. 169–178. https://www.cs.cmu.edu/~odonnell/
hits09/gentry-homomorphic-encryption.pdf. 1

[39] GENTRY, C., PEIKERT, C., AND VAIKUNTANATHAN, V. Trap-
doors for hard lattices and new cryptographic constructions. In
STOC ’08 Proceedings of the fortieth annual ACM symposium
on Theory of computing (2008), ACM, pp. 197–206. https:
//eprint.iacr.org/2007/432/. 6

[40] GENTRY, C., AND SZYDLO, M. Cryptanalysis of the re-
vised NTRU signature scheme. In Advances in Cryptology –
EUROCRYPT 2002 (2002), XXX, Ed., vol. XXX of LNCS,
Springer, pp. 299–320. https://www.iacr.org/archive/
eurocrypt2002/23320295/nsssign_short3.pdf. 8

[41] GHOSH, S., AND KATE, A. Post-quantum secure onion routing
(future anonymity in today’s budget). IACR Cryptology ePrint
Archive report 2015/008, 2015. http://eprint.iacr.org/
2015/008. 3

[42] GÖTTERT, N., FELLER, T., SCHNEIDER, M., BUCHMANN,
J. A., AND HUSS, S. A. On the design of hardware building
blocks for modern lattice-based encryption schemes. In Crypto-
graphic Hardware and Embedded Systems - CHES 2012 (2012),
E. Prouff and P. Schaumont, Eds., vol. 7428 of LNCS, Springer,
pp. 512–529. http://www.iacr.org/archive/ches2012/
74280511/74280511.pdf. 7, 8, 9, 10

[43] GUERON, S. Parallelized hashing via j-lanes and j-pointers tree
modes, with applications to SHA-256. IACR Cryptology ePrint
Archive report 2014/170, 2014. https://eprint.iacr.org/
2014/170. 13

[44] GUERON, S., AND KRASNOV, V. Fast prime field elliptic-curve
cryptography with 256-bit primes. Journal of Cryptographic En-
gineering 5, 2 (2014), 141–151. https://eprint.iacr.org/
2013/816/. 13

[45] GUERON, S., AND SCHLIEKER, F. Speeding up r-lwe post-
quantum key exchange. IACR Cryptology ePrint Archive report
2016/467, 2016. https://eprint.iacr.org/2016/467. 10,
14

[46] GÜNEYSU, T., ODER, T., PÖPPELMANN, T., AND SCHWABE,
P. Software speed records for lattice-based signatures. In
Post-Quantum Cryptography (2013), P. Gaborit, Ed., vol. 7932
of LNCS, Springer, pp. 67–82. http://cryptojedi.org/
papers/#lattisigns. 10, 13

[47] HANROT, G., PUJOL, X., AND STEHLÉÉ, D. Terminating BKZ.
IACR Cryptology ePrint Archive report 2011/198, 2011. http:
//eprint.iacr.org/2011/198/. 8

[48] HOFFSTEIN, J., PIPHER, J., SCHANCK, J. M., SILVERMAN,
J. H., AND WHYTE, W. Practical signatures from the partial
Fourier recovery problem. In Applied Cryptography and Net-
work Security (2014), I. Boureanu, P. Owesarski, and S. Vaude-
nay, Eds., vol. 8479 of LNCS, Springer, pp. 476–493. https:
//eprint.iacr.org/2013/757/. 1

[49] HOFFSTEIN, J., PIPHER, J., SCHANCK, J. M., SILVERMAN,
J. H., WHYTE, W., AND ZHANG, Z. Choosing parameters
for NTRUEncrypt. IACR Cryptology ePrint Archive report
2015/708, 2015. http://eprint.iacr.org/2015/708. 9, 10

[50] HOFFSTEIN, J., PIPHER, J., AND SILVERMAN, J. H. NTRU:
a ring-based public key cryptosystem. In Algorithmic num-
ber theory (1998), J. P. Buhler, Ed., vol. 1423 of LNCS,
Springer, pp. 267–288. https://www.securityinnovation.
com/uploads/Crypto/ANTS97.ps.gz. 1, 4

[51] HOWGRAVE-GRAHAM, N. A hybrid lattice-reduction and
meet-in-the-middle attack against NTRU. In Advances in
Cryptology-CRYPTO 2007. Springer, 2007, pp. 150–169.
http://www.iacr.org/archive/crypto2007/46220150/
46220150.pdf. 10

[52] JINTAI DING, XIANG XIE, X. L. A simple provably secure
key exchange scheme based on the learning with errors prob-
lem. IACR Cryptology ePrint Archive report 2012/688, 2012.
http://eprint.iacr.org/2012/688. 1

[53] KIRCHNER, P., AND FOUQUE, P.-A. An improved BKW al-
gorithm for LWE with applications to cryptography and lattices.
In Advances in Cryptology – CRYPTO 2015 (2015), R. Gennaro
and M. Robshaw, Eds., vol. 9215 of LNCS, Springer, pp. 43–62.
https://eprint.iacr.org/2015/552/. 8

[54] LAARHOVEN, T. Search problems in cryptography. PhD the-
sis, Eindhoven University of Technology, 2015. http://www.
thijs.com/docs/phd-final.pdf. 8

[55] LAARHOVEN, T. Sieving for shortest vectors in lattices using
angular locality-sensitive hashing. In Advances in Cryptology
– CRYPTO 2015 (2015), R. Gennaro and M. Robshaw, Eds.,
vol. 9216 of LNCS, Springer, pp. 3–22. https://eprint.
iacr.org/2014/744/. 8

[56] LAARHOVEN, T., MOSCA, M., AND VAN DE POL, J.
Finding shortest lattice vectors faster using quantum search.
Designs, Codes and Cryptography 77, 2 (2015), 375–400.
https://eprint.iacr.org/2014/907/. 8

[57] LANGLEY, A. TLS symmetric crypto. Blog post on im-
perialviolet.org, 2014. https://www.imperialviolet.org/
2014/02/27/tlssymmetriccrypto.html (accessed 2015-10-
07). 12

[58] LANGLEY, A., AND CHANG, W.-T. ChaCha20 and Poly1305
based cipher suites for TLS: Internet draft. https://tools.
ietf.org/html/draft-agl-tls-chacha20poly1305-04
(accessed 2015-02-01). 12

[59] LANGLEY, A., HAMBURG, M., AND TURNER, S. RFC 7748:
Elliptic curves for security, 2016. https://www.rfc-editor.
org/rfc/rfc7748.txt. 14

[60] LENSTRA, H. W., AND SILVERBERG, A. Revisiting the gentry-
szydlo algorithm. In Advances in Cryptology – CRYPTO 2014,
J. A. Garay and R. Gennaro, Eds., vol. 8616 of LNCS. Springer,
2014, pp. 280–296. https://eprint.iacr.org/2014/430.
8

[61] LEYS, J., GHYS, E., AND ALVAREZ, A. Dimensions,
2010. http://www.dimensions-math.org/ (accessed 2015-
10-19). 7

[62] LINDNER, R., AND PEIKERT, C. Better key sizes (and at-
tacks) for LWE-based encryption. In Topics in Cryptology - CT-
RSA 2011 (2011), A. Kiayias, Ed., vol. 6558 of LNCS, Springer,
pp. 319–339. https://eprint.iacr.org/2010/613/. 3

16

USENIX Association 25th USENIX Security Symposium 343

[63] LIU, Z., SEO, H., ROY, S. S., GROSSSCHÄDL, J., KIM, H.,
AND VERBAUWHEDE, I. Efficient Ring-LWE encryption on 8-
bit AVR processors. In Cryptographic Hardware and Embed-
ded Systems - CHES 2015 (2015), T. Güneysu and H. Hand-
schuh, Eds., vol. 9293 of LNCS, Springer, pp. 663–682. https:
//eprint.iacr.org/2015/410/. 4, 7, 10

[64] LONGA, P., AND NAEHRIG, M. Speeding up the number theo-
retic transform for faster ideal lattice-based cryptography. IACR
Cryptology ePrint Archive report 2016/504, 2016. https://
eprint.iacr.org/2016/504. 14

[65] LYUBASHEVSKY, V. Lattice signatures without trapdoors.
In Advances in Cryptology – EUROCRYPT 2012 (2012),
D. Pointcheval and T. Johansson, Eds., vol. 7237 of LNCS,
Springer, pp. 738–755. https://eprint.iacr.org/2011/
537/. 6

[66] LYUBASHEVSKY, V., PEIKERT, C., AND REGEV, O. On
ideal lattices and learning with errors over rings. In Advances
in Cryptology – EUROCRYPT 2010 (2010), H. Gilbert, Ed.,
vol. 6110 of LNCS, Springer, pp. 1–23. http://www.di.ens.
fr/~lyubash/papers/ringLWE.pdf. 2

[67] LYUBASHEVSKY, V., PEIKERT, C., AND REGEV, O. On ideal
lattices and learning with errors over rings. Journal of the ACM
(JACM) 60, 6 (2013), 43:1–43:35. http://www.cims.nyu.
edu/~regev/papers/ideal-lwe.pdf. 1, 6

[68] MELCHOR, C. A., BARRIER, J., FOUSSE, L., AND KILLI-
JIAN, M. XPIRe: Private information retrieval for everyone.
IACR Cryptology ePrint Archive report 2014/1025, 2014. http:
//eprint.iacr.org/2014/1025. 10

[69] MICCIANCIO, D., AND VOULGARIS, P. Faster exponential
time algorithms for the shortest vector problem. In SODA ’10
Proceedings of the twenty-first annual ACM-SIAM symposium
on Discrete Algorithms (2010), SIAM, pp. 1468–1480. http:
//dl.acm.org/citation.cfm?id=1873720. 8

[70] MONTANARO, A. Quantum walk speedup of backtracking al-
gorithms. arXiv preprint arXiv:1509.02374, 2015. http://
arxiv.org/pdf/1509.02374v2. 8

[71] MONTGOMERY, P. L. Modular multiplication without
trial division. Mathematics of Computation 44, 170
(1985), 519–521. http://www.ams.org/journals/
mcom/1985-44-170/S0025-5718-1985-0777282-X/
S0025-5718-1985-0777282-X.pdf. 11

[72] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY.
FIPS PUB 202 – SHA-3 standard: Permutation-based hash and
extendable-output functions, 2015. http://nvlpubs.nist.
gov/nistpubs/FIPS/NIST.FIPS.202.pdf. 5, 10

[73] NATIONAL INSTITUTE OF STANDARDS AND TECHNOL-
OGY. Workshop on cybersecurity in a post-quantum
world, 2015. http://www.nist.gov/itl/csd/ct/
post-quantum-crypto-workshop-2015.cfm. 1

[74] NATIONAL SECURITY AGENCY. NSA suite B cryp-
tography. https://www.nsa.gov/ia/programs/suiteb_
cryptography/, Updated on August 19, 2015. 1

[75] NGUYEN, P. Q., AND VIDICK, T. Sieve algorithms for the short-
est vector problem are practical. Journal of Mathematical Cryp-
tology 2, 2 (2008), 181–207. ftp://ftp.di.ens.fr/pub/
users/pnguyen/JoMC08.pdf. 8

[76] NUSSBAUMER, H. J. Fast polynomial transform algorithms for
digital convolution. IEEE Transactions on Acoustics, Speech and
Signal Processing 28, 2 (1980), 205–215. 14

[77] PEIKERT, C. Lattice cryptography for the Internet. In Post-
Quantum Cryptography (2014), M. Mosca, Ed., vol. 8772 of
LNCS, Springer, pp. 197–219. http://web.eecs.umich.edu/
~cpeikert/pubs/suite.pdf. 1, 2, 3, 4

[78] PÖPPELMANN, T., DUCAS, L., AND GÜNEYSU, T. Enhanced
lattice-based signatures on reconfigurable hardware. In Crypto-
graphic Hardware and Embedded Systems – CHES 2014 (2014),
L. Batina and M. Robshaw, Eds., vol. 8731 of LNCS, Springer,
pp. 353–370. https://eprint.iacr.org/2014/254/. 4

[79] PÖPPELMANN, T., AND GÜNEYSU, T. Towards practi-
cal lattice-based public-key encryption on reconfigurable hard-
ware. In Selected Areas in Cryptography – SAC 2013 (2013),
T. Lange, K. Lauter, and P. Lisoněk, Eds., vol. 8282 of LNCS,
Springer, pp. 68–85. https://www.ei.rub.de/media/sh/
veroeffentlichungen/2013/08/14/lwe_encrypt.pdf. 1,
6, 7, 10, 11

[80] REGEV, O. On lattices, learning with errors, random linear codes,
and cryptography. Journal of the ACM 56, 6 (2009), 34. http:
//www.cims.nyu.edu/~regev/papers/qcrypto.pdf. 5

[81] ROY, S. S., VERCAUTEREN, F., MENTENS, N., CHEN, D. D.,
AND VERBAUWHEDE, I. Compact Ring-LWE cryptoproces-
sor. In Cryptographic Hardware and Embedded Systems – CHES
2014 (2014), L. Batina and M. Robshaw, Eds., vol. 8731 of
LNCS, Springer, pp. 371–391. https://eprint.iacr.org/
2013/866/. 4, 5, 11

[82] SCHNORR, C.-P., AND EUCHNER, M. Lattice basis re-
duction: improved practical algorithms and solving sub-
set sum problems. Mathematical programming 66, 1-
3 (1994), 181–199. http://www.csie.nuk.edu.tw/
~cychen/Lattices/Lattice%20Basis%20Reduction_
%20Improved%20Practical%20Algorithms%20and%
20Solving%20Subset%20Sum%20Problems.pdf. 8

[83] STEHLÉ, D., AND STEINFELD, R. Making NTRU as secure as
worst-case problems over ideal lattices. In Advances in Cryptol-
ogy – EUROCRYPT 2011 (2011), K. G. Paterson, Ed., vol. 6632
of LNCS, Springer, pp. 27–47. http://www.iacr.org/
archive/eurocrypt2011/66320027/66320027.pdf. 1, 4

[84] Tor project: Anonymity online. https://www.torproject.
org/. 3

[85] ZHANG, J., ZHANG, Z., DING, J., SNOOK, M., AND DAGDE-
LEN, Ö. Authenticated key exchange from ideal lattices. In Ad-
vances in Cryptology – EUROCRYPT 2015 (2015), E. Oswald
and M. Fischlin, Eds., vol. 9057 of LNCS, Springer, pp. 719–751.
https://eprint.iacr.org/2014/589/. 3

17

USENIX Association 25th USENIX Security Symposium 345

Automatically Detecting Error Handling Bugs using Error Specifications

Suman Jana1, Yuan Kang1, Samuel Roth2, and Baishakhi Ray3

1Columbia University
2Ohio Northern University

3University of Virginia

Abstract

Incorrect error handling in security-sensitive code often
leads to severe security vulnerabilities. Implementing
correct error handling is repetitive and tedious especially
in languages like C that do not support any exception
handling primitives. This makes it very easy for the de-
velopers to unwittingly introduce error handling bugs.
Moreover, error handling bugs are hard to detect and lo-
cate using existing bug-finding techniques because many
of these bugs do not display any obviously erroneous be-
haviors (e.g., crash and assertion failure) but cause subtle
inaccuracies.

In this paper, we design, implement, and evaluate
EPEX, a tool that uses error specifications to identify
and symbolically explore different error paths and re-
ports bugs when any errors are handled incorrectly along
these paths. The key insights behind our approach are:
(i) real-world programs often handle errors only in a lim-
ited number of ways and (ii) most functions have sim-
ple and consistent error specifications. This allows us
to create a simple oracle that can detect a large class of
error handling bugs across a wide range of programs.
We evaluated EPEX on 867,000 lines of C Code from
four different open-source SSL/TLS libraries (OpenSSL,
GnuTLS, mbedTLS, and wolfSSL) and 5 different ap-
plications that use SSL/TLS API (Apache httpd, cURL,
Wget, LYNX, and Mutt). EPEx discovered 102 new er-
ror handling bugs across these programs—at least 53 of
which lead to security flaws that break the security guar-
antees of SSL/TLS. EPEX has a low false positive rate
(28 out of 130 reported bugs) as well as a low false neg-
ative rate (20 out of 960 reported correct error handling
cases).

1 Introduction

Error handling is an important aspect of software de-
velopment. Errors can occur during a program’s exe-

cution due to various reasons including network packet
loss, malformed input, memory allocation failure, etc.
Handling these errors correctly is crucial for develop-
ing secure and robust software. For example, in case
of a recoverable error, a developer must ensure that the
affected program invokes the appropriate error recov-
ery code. In contrast, if an error is critical, the pro-
gram must display an appropriate error message and
fail in a safe and secure manner. Error handling mis-
takes not only cause incorrect results, but also often
lead to security vulnerabilities with disastrous conse-
quences (e.g., CVE-2014-0092, CVE-2015-0208,
CVE-2015-0288, CVE-2015-0285, and CVE-
-2015-0292). More worryingly, an attacker can often
remotely exploit error handling vulnerabilities by send-
ing malformed input, triggering resource allocation fail-
ures through denial-of-service attacks etc.

To understand how incorrect error handling can lead
to severe security vulnerabilities in security-sensitive
code, consider the bug in GnuTLS (versions before
3.2.12), a popular Secure Sockets Layer (SSL) and
Transport Layer Security (TLS) library used for com-
municating securely over the Internet, that caused
CVE-2014-0092. Listing 1 shows the relevant part
of the affected X.509 certificate verification code. The
function _gnutls_verify_certificate2 called
another function check_if_ca to check whether the
issuer of the input certificate is a valid Certificate Au-
thority (CA). check_if_ca returns < 0 to indicate
an error (lines 4 and 5 of Listing 1). However, as line
16 shows, _gnutls_verify_certificate2, the
caller function, only handles the case where the return
value is 0 and ignores the cases where check_if_ca
returns negative numbers as errors. This missing er-
ror check makes all applications using GnuTLS incor-
rectly classify an invalid certificate issuer as valid. This
bug completely breaks the security guarantees of all SS-
L/TLS connections setup using GnuTLS and makes them
vulnerable to man-in-the-middle attacks. In summary,

1

346 25th USENIX Security Symposium USENIX Association

Listing 1: GnuTLS error handling bug
(CVE-2014-0092). The lines marked in
color gray show an error path and
the red lines highlight the source of
error handling bug.

1 int check_if_ca (...)
2 { ...
3 result = ...;

4 if (result < 0) {

5 goto cleanup;

6 }
7 ...
8 result = 0;
9

10 cleanup:
11 return result;
12 }
13
14 int _gnutls_verify_certificate2 (...)
15 { ...
16 if (check_if_ca (...) == 0) {
17 result = 0;
18 goto cleanup;
19 }
20 ...
21 result = 1;
22
23 cleanup:
24 return result;

this bug renders all protections provided by GnuTLS use-
less.

Developers often introduce error handling bugs unwit-
tingly, as adding error checking code is repetitive and
cumbersome (especially in languages like C that do not
provide any exception handling primitives). Moreover,
a large number of errors in real systems cannot be han-
dled correctly at their source due to data encapsulation
and, therefore, must be propagated back to the rele-
vant module. For example, if a protocol implementa-
tion receives a malformed packet that cannot be parsed
correctly, the parsing error must be appropriately trans-
formed and propagated to the module implementing the
protocol state machine in order to ignore the packet and
recover gracefully. Implementing correct error propa-
gation in real-world software is non-trivial due to their
complex and intertwined code structure.

Automated detection of error handling bugs can help
developers significantly improve the security and robust-
ness of critical software. However, there are three major
challenges that must be tackled in order to build such a
tool: (i) error path exploration. Error handling code
is only triggered in corner cases that rarely occur dur-
ing regular execution. This severely limits the ability of
dynamic analysis/testing to explore error paths. More-
over, error handling code is usually buried deep inside
a program and, therefore, is hard to reach using off-the-
shelf symbolic execution tools due to path explosion; (ii)
lack of an error oracle. Error handling bugs often result

in silent incorrect behavior like producing wrong output,
causing memory corruption, etc. as shown in the previ-
ous example. Therefore, accurately separating incorrect
error handling behavior from the correct ones is a hard
problem; and (iii) localizing error handling bugs. Fi-
nally, the effects of error handling bugs are usually man-
ifested far away from their actual sources. Accurately
identifying the origin of these bugs is another significant
problem.
Our contributions. In this paper, we address all these
three problems as discussed below. We design, imple-
ment, and evaluate EPEX, a novel algorithm that can
automatically detect error-handling bugs in sequential C
code.
Identification and scalable exploration of error paths.
As low-level languages like C do not provide any excep-
tion handling primitives, the developers are free to use
any arbitrary mechanism of their choice for communi-
cating errors. However, we observe that real-world C
programs follow simple error protocols for conveying
error information across different modules. For exam-
ple, distinct and non-overlapping integer values are used
throughout a C program to indicate erroneous or error-
free execution. Integer values like 0 or 1 are often used to
communicate error-free execution and negative integers
typically indicate errors. Moreover, functions that have
related functionality tend to return similar error values.
For example, most big number functions in OpenSSL re-
turn 0 on error. These observations allow us to create
simple error specifications for a given C program, in-
dicating the range of values that a function can return
on error. Given such specifications as input, our algo-
rithm performs under-constrained symbolic execution at
the corresponding call-sites to symbolically explore only
those paths that can return error values and ignores the
rest of the paths. Such path filtering minimizes the path
exploration problem often plaguing off-the-shelf sym-
bolic execution tools.
Design of an error oracle. We observe that when an er-
ror occurs, most C programs usually handle the scenario
in one of the following simple ways: (i) propagate an
appropriate error value (according to the corresponding
error protocol) upstream, (ii) stop the program execution
and exit with an error code, or (iii) display/log a rele-
vant error message. We leverage this behavior to create a
simple program-independent error oracle. In particular,
our algorithm checks whether errors are handled follow-
ing any of the above three methods along each identified
error path; if not, we mark it as a potential bug.
Accurate bug localization. Our error oracle also helps
us accurately localize the error handling bugs as it al-
lows our algorithm to detect the bugs at their source. As
a side-effect, we can precisely identify buggy error han-
dling code and thus drastically cut down developers’ ef-

2

USENIX Association 25th USENIX Security Symposium 347

fort in fixing these bugs.
Implementation and large-scale evaluation. Using our
algorithm, we design and implement a tool, EPEX, and
evaluate it. EPEX’s analysis is highly parallelizable and
scales well in practice. EPEX can be used to find error-
handling bugs in any C program as long as the above
mentioned assumptions hold true. We evaluated EPEX
on a total of 867,000 lines of C code [56] from 4 differ-
ent open-source SSL/TLS libraries (OpenSSL, GnuTLS,
mbedTLS, and wolfSSL) and 5 different applications us-
ing SSL/TLS APIs (cURL, Wget, Apache httpd, mutt,
and LYNX). EPEX discovered 102 new error handling
bugs across these programs—at least 53 of which lead
to critical security vulnerabilities that break the security
guarantees of SSL/TLS. We also found that EPEX has
both low false positive (28 out of 130 reported bugs)
and false negative rates (20 out of 960 reported correct
error handling cases). Thus, EPEX has a 78% preci-
sion and 83% recall on our tested programs. Several of
our tested programs (e.g., PolarSSL, cURL, and Apache
httpd) have been regularly checked with state-of-the-art
static analysis tools like Coverity, Fortify, etc. The fact
that none of these bugs were detected by these tools also
demonstrates that EPEX can detect bugs that the state-
of-the-art bug finding tools miss.

The rest of this paper is organized as follows. We
present a brief overview of error handling conventions
in C programs in Section 2. We describe our platform-
and language-independent technique for detecting error
handling bugs in Section 3. The details of implement-
ing our algorithm in Clang and the results are presented
in Sections 4 and 5 respectively. We survey the related
work in Section 6 and present several directions for fu-
ture work in Section 7. Section 8 concludes our paper.

2 Error handling in C programs

C does not support exception handling primitives like
try-catch. In C, a fallible function, which may fail
due to different errors, e.g., memory allocation failure or
network error, usually communicates errors to the caller
function either through return values or by modifying ar-
guments that are passed by reference. While there are no
restrictions on the data types/values that can be used to
communicate errors, C programmers, in general, create
an informal, program-specific error protocol and follow
it in all fallible functions of a program to communicate
errors. An error protocol consists of a range of error-
indicating and non-error-indicating values for different
data types. For example, a program may use an error pro-
tocol where any negative integer value indicates an error
and 0 indicates an error-free execution. Similarly, an er-
ror protocol may also use a NULL pointer or a boolean
value of false to indicate errors. The existence of such

Error Non-Error
Range Range

Libraries

OpenSSL e ≤ 0 e = 1
GnuTLS −403 ≤ e ≤−1 e = 0
mbedTLS e < 0 e = 0
wolfSSL −213 ≤ e ≤−1 e ∈ {0,1}

Applications

httpd [51] 1 ≤ e ≤ 720000 e = 0
curl 1 ≤ e ≤ 91 e = 0
lynx −29999 ≤ e ≤−1 e ≥ 0
mutt e = −1 e ≥ 0
wget e = −1 e = 0

e represents the return values of fallible functions

Table 1: Error protocols of the tested libraries/applications

error handling protocols makes it easier for us to create
error specifications for different functions of a program.

For example, consider the C programs that we studied
in this work. Table 1 shows their error protocols. Fal-
lible functions in OpenSSL usually return 0 or a nega-
tive integer to indicate errors and 1 to indicate error-free
execution. In contrast, GnuTLS uses negative integers
between -1 and -403 to indicate errors and 0 to indicate
error-free execution. In spite of the variety of protocols,
in all the cases, error-indicating and non-error-indicating
ranges for fallible functions do not overlap, to avoid am-
biguities.

3 Methodology

In this section, we introduce the details of EPEX (Error
Path Explorer), a tool for automatically detecting dif-
ferent types of error handling bugs in sequential C pro-
grams. Our key intuition is that if an error is returned
by a function in a program path, that error must be han-
dled correctly along that path according to the program’s
error convention. Given a function under test, say FT,
EPEX identifies possible error paths—the paths along
which FT returns error values, and ensures that the er-
ror values are handled correctly along the error paths at
the call site; if not, EPEX reports bugs due to missing
error-handling.

3.1 Overview
An overview of EPEX’s workflow for an individual API
function is presented in Figure 1. EPEX takes five inputs:
the signature of the fallible function under test (FT), the
caller functions of FT (FTcallers), a specification defining
a range of error values that FT can return (FTerrSpec), a
range of return values that are used to indicate error-free
execution according to the test program’s error protocol
(GlobalnerrSpec), and a set of error logging functions used
by the program (Loggers). The list of fallible functions,

3

348 25th USENIX Security Symposium USENIX Association

error handling
bugs

error
paths

FTerrSpec

paths with
incorrect

error
handling

(1)		
Iden)fying	
error	paths	

(2)		
Checking	error	
handling	at	call	

site	

(3)		
Improving	precision	by			
leveraging	mul)ple	

error-handling	instances		

FT

GlobalnerrSpec

FTcallers

Loggers

Figure 1: EPEX workflow

their error specifications, and list of error logging func-
tions are created manually, while their caller functions
are automatically identified by EPEX. EPEX then works
in three steps.

In Step-I, by performing under-constrained sym-
bolic execution at FTcallers, EPEX identifies the er-
ror paths along which FT returns an error value,
based on FTerrSpec. For example, in Listing 1,
check_if_ca’s error specification says the function
will return ≤ 0 on error. Hence, Step-I symbolically
executes _gnutls_verify_certificate2 func-
tion and marks the path along the if branch in the
check_if_ca function as an error path (marked in
color gray).

Next, in Step-II, EPEX checks if the call site of FT
handles the error values correctly. In particular, EPEX
checks that if FT returns an error, the error value is han-
dled by the caller in one of the following ways: it (i)
pushed the error upstream by returning a correct error
value from the caller function, (ii) stopped the program
execution with a non-zero error code, or (iii) logged the
error by calling a program-specific logging function. If
none of these actions take place in an error path, EPEX
reports an error handling bug. For instance, in case
of Listing 1, the error path returns < 0 at the call site,
_gnutls_verify_certificate2 (line 16). How-
ever, the error value is not handled at the call site; in fact
it is reset to 1 (line 21), which is a non-error value as per
GlobalnerrSpec. Thus, in this case, an error path will re-
turn a non-error value. EPEX reports such cases as the
potential error-handling bugs (marked in red).

Finally, in Step-III, EPEX checks how error handling
code is implemented in other call sites of FT. For ex-
ample, if all other FT call sites ignore an error value,
EPEX does not report a bug even if the error value is not
handled properly at the call site under investigation. As
FTerrSpec may be buggy or symbolic execution engines
may be imprecise, this step helps EPEX reduce false pos-
itives. The final output of EPEX is a set of program error
paths—FT signature, call-site location, and error paths in
the caller functions along with EPEX’s diagnosis of cor-
rect and buggy error handling. We present the detailed
algorithm in the rest of this section.

Algorithm 1: EPEX workflow
1 EPEX (FT, FTerrSpec, FTcallers, GlobalnerrSpec, Loggers)

Input : function FT, error spec FTerrSpec, callers of FT
FTcallers, global non-error spec GlobalnerrSpec,
error logging functions Loggers

Output: Bugs
2 ———————————————————————
3 Bugs ⇐ φ
4 shouldHandle ⇐ False
5 for each caller c ∈ FTcallers do
6 for each argument a ∈ c.inputArguments do
7 a.isSymbolic ⇐ True
8 end
9 for each path p ∈ c.Paths do

10 isErrPath ⇐ False
11 errPts ⇐ φ
12 for each program point s ∈ p do
13 /* Step-I : identifying error paths */
14 if s calls FT then
15 FTret ⇐ symbolic return value of FT
16 isErrPath ⇐ chkIfErrPath(FTret ,

FTerrSpec)
17 if isErrPath = True then
18 errPts ⇐ errPts ∪ s.location
19 end
20 end
21 if isErrPath = True then
22 /* Step-II : checking error Handling */
23 isHandled ⇐ chkErrHandling(s,

GlobalnerrSpec, Loggers)
24 if (isHandled = unhandled) or

(isHandled = maybe_handled) then
25 Bugs ⇐ Bugs ∪ 〈errPts, isHandled〉
26 end
27 if (isHandled = handled) or (isHandled =

maybe_handled) then
28 /* Resetting an error path */
29 isErrPath ⇐ False
30 errPts ⇐ φ
31 end
32 /* Example requires error handling */
33 if (isHandled = handled) then
34 shouldHandle ⇐ True
35 end
36 end
37 end
38 end
39 end
40 /* Step-III : Leveraging multiple error-handling

instances */
41 if shouldHandle then
42 return Bugs
43 else
44 return φ
45 end

4

USENIX Association 25th USENIX Security Symposium 349

3.2 Step-I: identifying error paths
We define error paths to be the program paths in which
a function call fails and returns error values. To identify
the error paths for a function, EPEX first has to know the
error values that a function can return; EPEX takes such
information as input (see Section 2 for details). Then the
program paths along which the function returns the error
values are identified as error paths. The call sites of the
failed function are treated as error points (errPts in Al-
gorithm 1). For example, in Listing 1, the program path
containing an if-branch (highlighted gray) is an error
path; line 16 of _gnutls_verify_certificate2
is an error point along that error path. Note that an error
path can have one or more error points. Given a function
under test, say FT, and its caller functions FTcaller, the
goal of Step-I is to explore all possible error paths going
through FT and mark the corresponding error points.

Algorithm 2: Step-I: Identifying error paths
1 chkIfErrPath (FTret , FTerrSpec)

Input : FTret , FTerrSpec
Output: isErrPath, FTret

2 ———————————————————————
3 if FTret ∧ FTerrSpec is satisfiable then
4 /* Error path is possible */
5 if FTret ∧ ¬ FTerrSpec is satisfiable then
6 /* Force the error path, if needed */
7 FTret ⇐ FTret ∧ FTerrSpec
8 return True
9 else

10 /* Error path is impossible */
11 return False
12 end

Exploring error paths. First, EPEX performs under-
constrained symbolic execution at each caller function
in FTcallers, and monitors each method call to check if
FT is called. If EPEX finds such a call, then right after
returning from symbolically executing FT, EPEX checks
if the path conditions involving the symbolic return value
(FTret) satisfy its error specifications (FTerrSpec), as men-
tioned in the input spec (see Algorithm 2), i.e. if FTret ∧
FTerrSpec is satisfiable. This helps EPEX identify two
main cases:

• Error path possible. If FTret ∧ FTerrSpec is satisfi-
able, the error path is possible. But while continu-
ing to analyze the error path, EPEX must make sure
the constraints make the error path inevitable, so it
checks if FTret ∧ ¬ FTerrSpec is satisfiable, and if
so, sets FTret to FTret ∧ FTerrSpec, so that the con-
straints force the error path to be taken.

• Error path impossible. When FTret ∧ FTerrSpec is
unsatisfiable, EPEX considers it as not an error path

and stops tracking it any further.

Algorithm 2 illustrates this process. If a path is con-
sidered to be an error path, EPEX notes the correspond-
ing call-site locations in the source code as error points
and continues tracking the path in Step-II. In Listing 1,
the buggy path has check_if_ca return a negative
value, which means that it is certainly an error path, and
the algorithm returns True, without having to further re-
strict the constraints.

3.3 Step-II: checking error handling
If a path is marked as an error path in Step-I (isErrPath=
=True in Algorithm 1), this step checks whether the er-
ror is handled properly along the error path in the caller
function. As the symbolic execution engine explores dif-
ferent error paths, we propagate the error path state (e.g.,
isErrPath, FT, and errPts) to any new path forked from
conditional branches. We let the rest of the symbolic exe-
cution proceed normally unless one of the following hap-
pens (see Algorithm 3):

At return point. If EPEX encounters a return statement
along an error path, it checks whether the error value is
pushed upstream. To do that, Step-II takes program-wide
specifications for non-error values (GlobalnerrSpec) as in-
put and checks the constraints on the returned variable
of FTcaller against GlobalnerrSpec to determine whether
FTcaller is returning an error value along the error path. If
the returned variable can only contain a non-error value,
EPEX marks the corresponding path to be unhandled; if
it may have a non-error value or an error value, EPEX
marks it as maybe_handled; and if it cannot have any
non-error values, EPEX marks the path as handled.

Although both maybe_handled and unhandled indi-
cate potential bugs, we differentiate between them be-
cause in Line 27 of Algorithm 1, we no longer count the
path as an error path in the case of maybe_handled, since
we have already found where the error could be handled;
the same error value does not have to be checked repeat-
edly.

At exit point. A call to libc function exit (or other re-
lated function like _exit) ends the execution of a path.
In such a case, EPEX checks the constraints on the sym-
bolic argument to the exit function along an error path: if
the symbolic argument can have only error or non-error
indicating value, EPEX marks the path as handled or
unhandled respectively. If the argument may have both
error and non-error indicating values, EPEX marks the
path as maybe_handled.

At logging point. The global specifications also sup-
port providing the names of the program-specific error
logging functions (Loggers). In most C programs, errors
are logged through special logging or alerting functions.

5

350 25th USENIX Security Symposium USENIX Association

If an error path calls an error logging function, EPEX
marks that path as handled.

In Listing 1, _gnutls_verify_certificate2
sets result to the non-error value, 1, in the error path
before returning it, so the algorithm classifies the error as
unhandled.

Algorithm 3: Step-II: Checking error handling
1 chkErrHandling (s, GlobalnerrSpec, Loggers)

Input : program point s, global non-error spec
GlobalnerrSpec, error logging functions Loggers

Output: isHandled
2 ——————————————————————–
3 if (s is a top-level ret statement) or (s is a call to “exit”)

then
4 tval ← symbolic return value/exit argument
5 if (tval ∧ GlobalnerrSpec is satisfiable) and (tval ∧ ¬

GlobalnerrSpec is unsatisfiable) then
6 return unhandled
7 else if (tval ∧ GlobalnerrSpec is unsatisfiable) and

(tval ∧ ¬ GlobalnerrSpec is satisfiable) then
8 return handled
9 else if (tval ∧ GlobalnerrSpec is satisfiable) and (tval

∧ ¬ GlobalnerrSpec is satisfiable) then
10 return maybe_handled
11 else if s ∈ Loggers then
12 return handled
13 return not_checked

3.4 Step-III: leveraging multiple error-
handling instances

As program documentation may be buggy or symbolic
execution engines may be imprecise, EPEX compares
the analysis results across multiple callers of the function
under test (FT) to minimize false positives. Lines 34−45
in Algorithm 1 present this step. If EPEX finds that all
the callers of FT return unhandled or maybe_handled,
EPEX ignores the corresponding bugs and does not re-
port them. However, if at least one caller sets isHandled
to handled, all the buggy paths marked from Step-II (line
25 in Algorithm 1) will be reported as bugs. The underly-
ing idea behind this step is inspired by the seminal work
of Engler et al. [16] where deviant behaviors were shown
to indicate bugs.

For example, function gnutls_x509_trust_li-
st_add_trust_file adds each Certificate
Authority (CA) mentioned in the input file to the
list of trusted CAs. In an error-free execution,
it returns the number of added CAs. It returns
a negative number in case of a parsing error.
However, in all the 5 instances in GnuTLS where
gnutls_x509_trust_list_add_trust_file
is called, step II indicates that error values are not
handled correctly. In such cases, Step III assumes that
the error values can be safely ignored and does not

report any bugs. With manual analysis we confirmed
that as trusted certificate authorities can be loaded from
multiple sources, such errors can indeed be ignored
safely.

4 Implementation

EPEX is implemented using the Clang static analysis
framework [42] (part of the LLVM project) and its un-
derlying symbolic execution engine. The Clang analyzer
core symbolically explores all feasible paths along the
control flow graph of an input program and provides a
platform for custom, third-party checkers to monitor dif-
ferent paths, inspect the constraints of different symbolic
values along those paths, and add additional constraints
if necessary. A typical checker often looks for viola-
tions of different invariants along a path (e.g., division
by zero). In case of a violation, the checker reports bugs.
We implement EPEX as a checker inside the Clang an-
alyzer. The rest of this section describes how EPEX is
implemented as a Clang checker in detail.

Error specifications. EPEX takes a text file con-
taining the per-function error specifications (FTerrSpec),
global non-error specification (GlobalnerrSpec), and
global error specification (GlobalerrSpec) as input. List-
ing 2 shows a sample input file. FTerrSpec contains five
parameters: 〈function name, number of arguments, re-
turn type, lower bound of error value, upper bound of
error value〉. The first three parameters define a func-
tion signature. The number of arguments and return type
(e.g., integer, boolean, etc.) help to disambiguate func-
tions with identical names. The last two optional param-
eters represent a range of error values that the function
can return. For example, error specification for function
RAND_bytes is: 〈 RAND_bytes, 2, int, >=−1,<= 0〉
(see line 2 in Listing 2). This shows RAND_bytes takes 2
input arguments and returns an integer value. The fourth
and fifth parameters indicate that error values range from
−1 to 0. Similarly, if a function foo takes four argu-
ments and it has a boolean return type where False
indicates an error, its error spec will be 〈 foo, 4, bool,
=False 〉. We also support specifications for functions
returning NULL pointers to indicate errors.

Since most functions in a project follow the same
global error convention, (e.g., most OpenSSL func-
tions return 0 to indicate error), error specifications
can be simplified by providing a global lower and
upper bound of errors. If the per-function error
spec does not contain any error range, i.e. the fourth
and fifth parameters are empty, the checker uses
GlobalerrSpec. Otherwise, the function-specific bounds
override GlobalerrSpec. For instance, OpenSSL func-
tions RAND_bytes and RAND_pseudo_bytes spec-
ify custom lower and upper bounds −1 <= and <=

6

USENIX Association 25th USENIX Security Symposium 351

Listing 2: Sample error specifications
for OpenSSL functions

1 /* Per-func error spec */
2 RAND_bytes, 2, int, >=-1, <=0
3 RAND_pseudo_bytes, 2, int, >=-1, <=0
4
5 /* Per-func spec with empty error ranges
6 (global error ranges will be used)*/
7 ASN1_INTEGER_set_int64, 2, int
8 ASN1_INTEGER_set, 1, int
9

10 /* Global error spec */
11 __GLOBAL_ERROR_BOUND__, int, =0, NA
12
13 /* Global non-error spec */
14 __GLOBAL_NOERR_VAL__, int, =1
15 __GLOBAL_NOERR_VAL__, ptr, !=NULL

0 respectively, and hence global error bounds are not
valid for them. Finally, GlobalnerrSpec contains non-
error bounds/values for functions with different return
types (see lines 14 and 15 of Listing 2). For ex-
ample, 〈 __GLOBAL_NOERR_VAL__, int, = 1〉 in-
dicates that any function with integer return type re-
turns 1 to indicate an error-free execution. Similarly,
〈__GLOBAL_NOERR_VAL__, ptr, ! =NULL〉 indi-
cates an error-free execution for the functions returning
pointers will result in the return pointer to be non-null.
Such GlobalnerrSpec specifications are used to ensure that
the return value of the caller function of FT is pushing
the errors upstream correctly.

The error specifications for all the functions under test
were created manually. Since, a majority of these func-
tions either follow the per-project global error conven-
tion or, at least, functions inside same modules have the
same error ranges, e.g., all the big number routines in
OpenSSL return 0 on error, the overhead of manual spec
generation is not very significant. In fact, it took only one
man-day to generate error specs for all 256 functions that
we have examined. Table 2 shows the number of speci-
fied functions for each library, and the number of unique
specifications. Except for WolfSSL, where we used more
individualized specifications, each library contained no
more than 10 unique error specifications, so that we were
able to generate 256 specifications out of only 38 unique
constraints.

Table 2: Error specification counts

Library Functions Unique Specifications

OpenSSL 109 9
GnuTLS 58 3
mbedTLS 46 10
wolfSSL 43 16

Total 256 38

As the same set of library functions are used by mul-
tiple applications, the same error specifications can be
reused for all such applications. In fact, for our test

applications, we focused on only OpenSSL API func-
tions. We also found that fallible functions that return
booleans or pointers, irrespective of the library they be-
long to, mostly indicate errors by returning false and
NULL respectively. For functions returning integer error
codes, we found that the error codes were almost always
represented by a macro or enumerated type that is de-
fined in a header file and therefore was very easy to find.
Functions that use the same enumerated type/macro tend
to follow the same error protocol. We show some sample
error specifications for OpenSSL API functions in List-
ing 2.

Note that once the error specifications for a set of API
functions are created manually, testing new applications
using the same API is very easy; the user only needs to
add application-specific non-error values (i.e. the values
indicating error-free execution) for each new application.

Identifying error paths. For identifying error paths,
as mentioned in Step-I of Section 3, EPEX checker
uses the built-in callback method checkPostCall.
checkPostCall is called once the analyzer core
finishes tracking each function body. We overrode
checkPostCall so that it looks for the functions
mentioned in the error spec, i.e. checks whether the cur-
rent function’s name, number of arguments, and return
type match the specification. In case of a match, Algo-
rithm 2 is called to check whether the function’s return
value satisfies the lower and upper bounds of error values
as given in its error spec; if so, the current path is marked
as error path.

Checking error handling. We implemented Step-II
by extending the checkPreStmt callback method for
checking the program state before return statements
and the checkPreCall callback for checking the pro-
gram state before calling exit functions or any program-
specific error logging functions as specified in the input
spec. Inside checkPreStmt callback, EPEX checks
whether the symbolic return value satisfies the global
non-error spec (see Algorithm 3). A similar check is
performed for exit functions inside checkPreCall.

To check the satisfiability conditions of Algorithm 2
and Algorithm 3, we use Clang’s built-in constraint
solver.

Outputs. EPEX can be run on any single source
file (say, foo.c) using the command clang -cc1
-analyze -analyzer-checker=EPEx foo.c.
For running it on large projects like OpenSSL,
mbedTLS, etc. we used Clang’s scan-build utility
such that EPEX can be run as part of the regular build
process. Scan-build overrides different environment
variables (e.g., CC, CPP) to force the build system (e.g.,
make) to use a special compiler script that compiles
the input source file and invokes EPEX on it. We pass
the -analyze-header option to the clang analyzer

7

352 25th USENIX Security Symposium USENIX Association

core to ensure that the functions defined in any included
header files are also analyzed.

The output of EPEX contains one line for each ana-
lyzed error path, as shown in Table 3. Each line in the
output has four components: name of the caller function,
call-site of FT, candidate error-handling location (i.e. re-
turn instruction, exit call or error logging), and EPEX’s
diagnosis about whether the error has been handled cor-
rectly or not. As each output line represents an error
path and multiple error paths may pass through the same
call-site, a call-site for a given FT might be repeated in
the output. For example, lines 1 and 2 in Table 3 have
the same call-site (ssl_lib.c:1836) but their error handling
locations are different (ssl_lib.c:1899 and ssl_lib.c:1905
respectively). Note that we implement Step-III as a sep-
arate script and execute it on the output of EPEX before
producing the final bug report.

Table 3: Sample EPEx output for OpenSSL function under test:
RAND_pseudo_bytes.

Caller Error Handling
Function Call-site Location Diagnosis

SSL_CTX_new ssl_lib.c:1836 ssl_lib.c:1899 handled
SSL_CTX_new ssl_lib.c:1836 ssl_lib.c:1905 unhandled
dtls1_send_ne- d1_srvr.c:1683 d1_srvr.c:1736 maybe_handled
wsession_ticket

5 Results

5.1 Study subjects
To check whether errors are handled correctly in differ-
ent functions of popular SSL/TLS libraries as well as ap-
plications using them, we ran EPEX on four libraries:
OpenSSL, GnuTLS, mbedTLS (formerly known as Po-
larSSL), and wolfSSL (formerly known as cyaSSL), and
five applications that use OpenSSL: cURL, mod_ssl
of the Apache HTTP server, Lynx, Mutt, and Wget (see
Table 4). For the libraries, we primarily focused on the
source files implementing core functionality (e.g., src, lib
sub-directories, etc.) as opposed to the test files, as de-
tecting bugs in the test code may not be a high prior-
ity. All the applications but the HTTP server were small
enough to run EPEX on the entire program, although it
eventually only produced results for the source files that
used the OpenSSL library. For Httpd we only checked
mod_ssl. The second column of Table 4 shows the
modules investigated by EPEX for each tested library.

For each library, we generate a call graph using a tool
named GNU cflow 1. From the call graph, we choose
top functions that are frequently called by other func-
tions within the same library. Note that here we did
not distinguish between internal library functions and

1http://www.gnu.org/software/cflow/

library functions exposed to the outer world as APIs.
We further filtered out functions based on their return
types—functions returning integer, boolean, and pointers
are chosen because Clang’s symbolic analysis engine can
currently only handle these types. In addition, we only
selected those functions that can fail and return at least
one error value. For the applications, we tested all the
OpenSSL APIs that the applications are using. We found
such APIs by simply using grep. Further, we only chose
those APIs for which documentations are available, and
the APIs that could return errors as integers, booleans or
pointers. The third column of Table 4 shows the number
of functions tested for a studied program.

Table 4: Study subjects

Projects Modules #Functions
tested

#Call
sites

#Error
paths

OpenSSL v1.0.1p ssl, crypto 46 507 3171
GnuTLS v3.3.17.1 src, lib 50 877 3507
mbedTLS v1.3.11 library 37 505 1621
wolfSSL v3.6.0 wolfcrypt, src 20 138 418
curl v7.47.0 all 17 49 2012
httpd v2.4.18 mod_ssl 14 86 4368
lynx v2.8.8 all 3 23 494
mutt v1.4.2.3 all 3 9 5
wget v1.17.1 all 5 13 2409

Total 195 2207 18005

5.2 General findings

We evaluated EPEX on 195 unique program-API func-
tion pairs from 2207 call-sites, and covered 18005 er-
ror paths (see Table 4). EPEX found 102 new error-
handling bugs from 4 SSL/TLS libraries and 5 applica-
tions: 48 bugs in OpenSSL, 23 bugs in GnuTLS, 19 bugs
in mbedTLS, and 0 bugs in wolfSSL, 2 in cURL, 7 in
httpd, 1 in Lynx, 2 in Mutt, and 0 in Wget (see Table 5).
We evaluate EPEX’s performance after completion of
Step-II and Step-III separately. Since we are using re-
cent versions of real code, and finding all potential bugs
in such code is an extremely difficult problem, we do not
have a ground truth for bugs against which to compare
the reports. Also, EPEX is not designed to detect all
types of error handling bugs. For this paper, we define a
bug to be any error path whose output behavior is identi-
cal to that of a non-error path, e.g., no logging takes place
and the same values as in the non-error paths are propa-
gated upwards through all channels. Thus, for counting
false positives and negatives, we do not consider bugs
due to incomplete handling, for example, where failures
are only logged, but the required cleanup is missing. Ta-
ble 5 presents the detailed result. After Step-II, EPEX
reported 154 bugs in the library code and 29 bugs in the
application code. After a manual investigation, we found
61 of them to be false positives. Step-III reduced this
false positive to 28 out of 130 reported bugs (106 in li-
brary and 24 in application code). Thus, overall, EPEX

8

USENIX Association 25th USENIX Security Symposium 353

detected bugs with 84% precision in the library code and
50% precision in the application code with an overall
precision of 78%.

In general, measuring false negatives for static analy-
sis tools is non-trivial as it is hard to be confident about
the number of bugs present in the code at any given point
of time. However, for the sake of completeness, we
checked false negatives by randomly selecting 100 cases
at the end of Step-II, where EPEX confirmed that error
handling was indeed implemented correctly. We did not
find any false negatives in any of those examples, i.e. we
did not find any bugs that were filtered out at Step-II.
However, after Step-III’s optimization, among the bugs
that did pass Step-II, we found 15 and 5 false negatives
in Library and Application code respectively. Thus, the
overall recall of EPEX was approximately 83%.

Table 5: Evaluation of EPEX

Step II Step III Summary

Reported False Reported False True Prec-
Bugs +ve Bugs +ve Bugs ision

Library
OpenSSL 51 2 50 2 48 0.96
GnuTLS 41 15 25 1 23 0.96
mbedTLS 35 16 21 2 19 0.90
WolfSSL 27 7 10 2 0 0.80
Total 154 40 106 16 90 0.84

Application
Curl 6 2 4 2 2 0.5
Httpd 13 6 13 6 7 0.53
Lynx 5 2 3 2 1 0.33
Mutt 3 1 3 1 2 0.67
Wget 2 1 1 1 0 0.00
Total 29 12 24 12 12 0.50

Grand Total 183 52 130 28 102 0.78

In general, EPEX performs better for libraries than ap-
plications. There are three main reasons behind this: (i)
unlike libraries, applications’ error handling behavior is
heavily dependent on their configuration parameters. For
example, users can configure the applications to ignore
certain errors. EPEX currently cannot differentiate be-
tween paths that have different values for these configu-
ration parameters; (ii) Applications are more likely to use
complex data types (e.g., error code is embedded within
an object) for propagating errors than libraries that are
not currently supported by EPEX; and (iii) Applications
prioritize user experience over internal consistency, so
if the error is recoverable, they will attempt to use a fall-
back non-error value instead. However, none of these are
fundamental limitations of our approach. EPEX can be
enhanced to support such cases and improve its accuracy
for applications too.

In the following section, we discuss the nature of the
detected bugs and the vulnerabilities caused by them in
detail with code examples from libraries in Section 5.3
and from applications in Section 5.4. All the described

bugs have been reported to the developers, who, for
almost all cases, have confirmed and agreed that they
should be fixed.

5.3 Bugs in libraries

From the four SSL/TLS libraries that we tested, we de-
scribe seven selected examples. They arise due to various
reasons including ignoring error codes, missing checks
for certain error codes, checking with a wrong value,
and propagating incorrect error values upstream. These
bugs affect different modules of the SSL/TLS implemen-
tations, and at least 42 of them result in critical security
vulnerabilities by completely breaking the security guar-
antees of SSL/TLS, as discussed below.

Incorrect random number generation. EPEX found
21 instances in OpenSSL where callers of the func-
tion RAND_pseudo_bytes do not implement the er-
ror handling correctly. We provide two such exam-
ples below. RAND_pseudo_bytes returns cryp-
tographically secure pseudo-random bytes of the de-
sired length. An error-free execution of this func-
tion is extremely important to OpenSSL as the secu-
rity guarantees of all cryptographic primitives imple-
mented in OpenSSL depend on the unpredictability of
the random numbers that RAND_pseudo_bytes re-
turns. The cryptographically secure random numbers,
as returned by RAND_pseudo_bytes, are used for
diverse purposes by different pieces of OpenSSL code,
e.g., creating initialization vectors (IVs), non-repeatable
nonces, cryptographic keys. In case of a failure,
RAND_pseudo_bytes returns 0 or −1 to indicate any
error that makes the generated random numbers insecure
and unsuitable for cryptographic purposes.

Example 1.

1 int PEM_ASN1_write_bio(...)
2 {
3 int ret = 0;
4 ...
5 /* Generate a salt */
6 if (RAND_pseudo_bytes(iv, enc->iv_len) <

0)
7 goto err;
8 ...
9 ret = 1;

10 err:
11 OPENSSL_cleanse(iv, sizeof(iv));
12 ...
13 return ret;
14 }

Example 2.

1 int bnrand(...)
2 {
3 int ret = 0;
4 ...
5 if (RAND_pseudo_bytes(buf, bytes) == -1)
6 goto err;
7 ...
8 ret = 1;
9 err:

10 ...
11 return ret;
12 }

9

354 25th USENIX Security Symposium USENIX Association

The above code shows two examples of in-
correct error handling at different call-sites of
RAND_pseudo_bytes in OpenSSL code. In Ex-
ample 1, function PEM_ASN1_write_bio checks
only if < 0, but not if = 0. In Example 2, function
bnrand only checks for the −1 value but not for the
0 value. bnrand is used by all bignumber routines,
which are in turn used for key generation by many
cryptographic implementations like RSA. These bugs
completely break the security guarantees of any crypto-
graphic implementations (RSA, AES, etc.) and security
protocol implementations (e.g., SSL/TLS, SMIME,
etc.) in OpenSSL that use such buggy code for random
number generation. An attacker can leverage these
bugs to launch man-in-the-middle attacks on SSL/TLS
connections setup using OpenSSL.

The sources of errors in random number generation
functions are diverse and depend on the underlying ran-
dom number generation mechanism (see Listing 3 in the
Appendix for a sample random number generation im-
plementation in OpenSSL). For example, an error can
occur due to memory allocation failures or module load-
ing errors. Note that some of these failures can be trig-
gered remotely by an attacker through denial-of-service
attacks. Thus, if the errors are not handled correctly, an
attacker can break the security guarantees of different
cryptographic primitives by making them use insecure
random numbers. We have received confirmation from
OpenSSL developers about these issues.

Incorrect cryptography implementations. Here, we ex-
hibit an example from OpenSSL demonstrating an error
handling bug that EPEX found in the implementation of
a cryptographic algorithm.

Insecure SRP keys. EPEX found that the function
SRP_Calc_server_key, which is part of the SRP
(Secure Remote Password) module in OpenSSL, con-
tains an error handling bug while calling BN_mod_exp,
as shown in the code below.

1 BIGNUM *SRP_Calc_server_key(BIGNUM *A,
BIGNUM *v,

2 BIGNUM *u, BIGNUM *b, BIGNUM *N)
3 {
4 BIGNUM *tmp = NULL, *S = NULL;
5 BN_CTX *bn_ctx;
6 ...
7 if ((bn_ctx = BN_CTX_new()) == NULL ||
8 (tmp = BN_new()) == NULL ||
9 (S = BN_new()) == NULL)

10 goto err;
11

12 if (!BN_mod_exp(tmp, v, u, N, bn_ctx))
13 goto err;
14 ...
15 err:
16 BN_CTX_free(bn_ctx);
17 BN_clear_free(tmp);
18 return S;
19 }

The BN_mod_exp function takes four big numbers
(arbitrary-precision integers) tmp, v, u, N, and a context

bn_ctx as input. It then computes v raised to the uth

power modulo N and stores it in tmp (i.e. tmp = vu%N).
However, BN_mod_exp can fail for different reasons
including memory allocation failures. It returns 0 to
indicate any such error. The call-site of BN_mod_exp
(line 12), in fact, correctly checks for such an error and
jumps to the error handling code at line 15. The error
handling code frees the resources and returns S (line 18).
However, S is guaranteed to be not NULL at this point
as it has been allocated by calling a BN_new function
at line 9. This leads SRP_Calc_server_key to
return an uninitialized big number S. Thus, the func-
tions upstream will not know about the error returned
by BN_mod_exp, as SRP_Calc_server_key is
supposed to return a NULL pointer in case of an error.
This leads to silent data corruption that can be leveraged
to break the security guarantees of the SRP protocol.

Incorrect X.509 certificate revocation. Here we cite
two examples from mbedTLS and GnuTLS respectively
showing different types of incorrect error handling bugs
in implementations of two different X509 certificate re-
vocation mechanisms: CRL (Certificate Revocation List)
and OCSP (Online Certificate Status Protocol).

CRL parsing discrepancy. In mbedTLS, EPEX found
that x509_crl_get_version, which retrieves the
version of a X509 certificate revocation list, has an error
handling bug while calling function asn1_get_int
(line 7 in the code below). Function asn1_get_int
reads an integer from an ASN1 file. It returns different
negative values to indicate different errors. In case of
a malformed CRL (Certificate Revocation List) file, it
returns POLARSSL_ERR_ASN1_UNEXPECTED_TAG
error value. In case of such an error, line 9-13 treats the
CRL version as 0 (version 1). Thus, mbedTLS parses a
malformed CRL file as version 1 certificate. However,
other SSL implementations (e.g., OpenSSL) treat these
errors differently and parse it as a version 2 certificate.
We are currently discussing the exploitability of this in-
consistency with the developers.

1 int x509_crl_get_version(unsigned char **p,
2 const unsigned char

*end,
3 int *ver)
4 {
5 int ret;
6

7 if((ret = asn1_get_int(p, end, ver))!= 0)
8 {
9 if(ret ==

POLARSSL_ERR_ASN1_UNEXPECTED_TAG)
10 {
11 *ver = 0;
12 return(0);
13 }
14 return(POLARSSL_ERR_X509_INVALID_VERSION +

ret);
15 }
16 return(0);}

10

USENIX Association 25th USENIX Security Symposium 355

Incorrect OCSP timestamps. GnuTLS function
gnutls_ocsp_resp_get_single is used to read
the timestamp of an Online Certificate Status Protocol
(OCSP) message along with other information. EPEX
found an error handling bug in it while calling function
asn1_read_value, as shown in line 5 in the follow-
ing code. asn1_read_value reads the value of an
ASN1 tag. It returns an error while failing to read the
tag correctly. gnutls_ocsp_resp_get_single
correctly checks for the error conditions (line 6), but
instead of returning an error value, simply sets the
this_update parameter to −1. However, further up-
stream, in check_ocsp_response, which calls the
function gnutls_ocsp_resp_get_single (line
16), the corresponding variable vtime is not checked
for an error value; only the return value is checked, but
that is a non-error value. Further down the function, at
line 22, vtime is used to check whether the message is
too old. However, in the error path, since vtime is set to
-1 from line 7, the left-hand side of the conditional check
will always be a positive number. Due to a large value of
the variable now (representing current time), the condi-
tional check will always be positive, and result in catego-
rizing all messages to be over the OCSP validity thresh-
old irrespective of their actual timestamp. Depending on
the configuration of GnuTLS, this may result in ignoring
new OCSP responses containing information on recently
revoked certificates.

1 int
2 gnutls_ocsp_resp_get_single (..., time_t *

this_update)
3 {
4 ...
5 ret = asn1_read_value(resp->basicresp,

name, ttime, &len);
6 if (ret != ASN1_SUCCESS) {
7 *this_update = (time_t) (-1);
8 }
9 ...

10 return GNUTLS_SUCCESS;
11 }
12

13 static int
14 check_ocsp_response(...)
15 { ...
16 ret = gnutls_ocsp_resp_get_single(...,&

vtime);
17

18 if (ret < 0) {
19 ...
20 }
21

22 if (now - vtime >
MAX_OCSP_VALIDITY_SECS) {

23 ...
24 }
25 ...
26 }

Incorrect protocol implementations. Here we show
two examples from OpenSSL where error handling bugs
occur in implementations of two different protocols: Se-
cure/Multipurpose Internet Mail Extensions (S/MIME)
and Datagram Transport Layer Security (DTLS).

Faulty parsing of X.509 certificates in S/MIME.

EPEX found that the OpenSSL function
cms_SignerIdentifier_cert_cmp does
not check the return value returned by function
X509_get_serialNumber, as shown in the code
below. This code is part of the OpenSSL code that han-
dles S/MIME v3.1 mail. Here, the error point (see line
6) is at the call site of X509_get_serialNumber,
which returns a pointer to the ASN_INTEGER object
that contains the serial number of the input x509 certifi-
cate. However, in case of a malformed certificate missing
the serial number, X509_get_serialNumber re-
turns NULL to indicate an error. In this case, the caller
function cms_SignerIdentifier_cert_cmp
does not check for an error and passes the return value
directly to ASN1_INTEGER_cmp. Thus, the second
argument of ASN1_INTEGER_cmp (y in line number
12) is set to NULL, in the case of an error. At line
16, ASN1_INTEGER_cmp tries to read y−> type and
causes a NULL pointer dereference and results in a
crash. This can be exploited by a remote attacker to
cause a denial of service attack by supplying malformed
X.509 certificates. This issue was confirmed by the
corresponding developers but they believe that that it
is up to the application programmer to ensure that the
input certificate is properly initialized.

1 int cms_SignerIdentifier_cert_cmp(
CMS_SignerIdentifier *sid, X509 *cert)

2 {
3 if (sid->type ==

CMS_SIGNERINFO_ISSUER_SERIAL) {
4 ...
5 return ASN1_INTEGER_cmp(serialNumber,
6 X509_get_serialNumber(cert));
7 }
8 ...
9 return -1;

10 }
11

12 int ASN1_INTEGER_cmp(const ASN1_INTEGER *x,
const ASN1_INTEGER *y)

13 {
14 int neg = x->type & V_ASN1_NEG;
15 /* Compare signs */
16 if (neg != (y->type & V_ASN1_NEG)) {
17 ...
18 }
19 ...
20 }

Faulty encoding of X.509 certificates in DTLS. EPEX
found that the function dtls1_add_cert_to_buf
that reads a certificate from DTLS 2 handshake message
contains an error handling bug while calling i2d_X509
(line 8 in the code below). Function i2d_X509 encodes
the input structure pointed to by x into DER format. It
returns a negative value to indicate an error, otherwise it
returns the length of the encoded data. Here, the caller
code (line 8) does not check for error cases, and thus
gives no indication of whether the read data was valid or
not. In case of an error, this will lead to incorrect results
and silent data corruption.

2Datagram Transport Layer Security: a protocol in SSL/TLS family

11

356 25th USENIX Security Symposium USENIX Association

1 static int dtls1_add_cert_to_buf(BUF_MEM *
buf, unsigned long *l, X509 *x)

2 {
3 int n;
4 unsigned char *p;
5 ...
6 p = (unsigned char *)&(buf->data[*l]);
7 l2n3(n, p);
8 i2d_X509(x, &p);
9 *l += n + 3;

10

11 return 1;
12 }

5.4 Bugs in applications

Beside libraries, we used EPEX to evaluate error han-
dling implementations in application software that use
SSL/TLS library APIs. We have performed tests on 5
programs that use the OpenSSL library: cURL 3, httpd 4,
Lynx 5, Mutt 6, and Wget 7. Our error specification in-
cluded 29 OpenSSL APIs that are used by at least one of
these applications. As the results show in Table 5, even
though EPEX is not as accurate for applications as for li-
braries, and we had to discard 2 alerts because the callers
did not follow the error protocol, it still found 12 real
bugs.

In case of applications, unlike libraries, Step-III of
EPEX was able to compare error behavior across multi-
ple applications and libraries that use the same API. This
allowed us to detect bugs in the cases where an applica-
tion developer has consistently made error handling mis-
takes for an API function as long as other applications
using the same API function are correctly handling the
errors.

In terms of security effects, the bugs that we found
range from causing serious security vulnerabilities to
denial-of-service attacks. We found 2 bugs in cURL ran-
dom number generation modules that can be exploited
to make cURL vulnerable to man-in-the-middle attacks.
We also found 4 bugs in httpd, Mutt, and Lynx that will
cause denial-of-service attacks. The other bugs that we
found mostly lead to resource leakage. We provide one
example of the cURL random number generation bug be-
low.

cURL ignores the return value of the Pseudorandom
number generator RAND_bytes. In case of an error,
RAND_bytes will return an output buffer with non-
random values. In that case cURL will use it for gen-
erating SSL session keys and other secrets. Note that
a failure in RAND_bytes can be induced by an attacker
by launching a denial of service attack and causing mem-
ory allocation failures, file descriptor exhaustion, etc.

3http://curl.haxx.se/
4https://httpd.apache.org/
5http://lynx.invisible-island.net/
6http://www.mutt.org/
7https://www.gnu.org/software/wget/wget.html

1 int Curl_ossl_random(struct SessionHandle *
data, unsigned char *entropy,

2 size_t length)
3 {
4 ...
5 RAND_bytes(entropy, curlx_uztosi(length));
6 return 0; /* 0 as in no error */
7 }

5.5 Checking for correct error propagation
Besides producing bugs, EPEX also confirms whether a
function call’s error handling code correctly takes care of
all possible errors. Note that EPEX only checks whether
error values are propagated upstream but does not check
whether other error handling tasks (e.g., freeing up all
acquired resources) have been implemented correctly.

The following example shows an instance where
EPEX confirmed that the error codes are correctly prop-
agated by the error handling code. This piece of code is
from GnuTLS 3.3.17.1 and contains the fix for the CVE-
2014-92 vulnerability that we described in the introduc-
tion (Listing 1). EPEX confirmed that the fix indeed cor-
rectly handles the error case.

Besides fixing the bug, the updated version of the
code has also been slightly refactored and reorganized
as shown below. Code in red highlights the bug,
while green shows the fix. The return type of function
check_if_ca has been updated to bool, where re-
turning false (0) indicates an error (see line 1 and 10).
The caller function verify_crt is correctly checking �= 1
(i.e. True) at line 17 to handle the error case.

1 int bool
2 check_if_ca(...)
3 { ...
4 if (ret < 0) {
5 gnutls_assert();
6 goto fail;
7 }
8

9 fail:
10 result = 0;
11 ...
12 return result;
13 }
14

15 bool verify_crt(...)
16 { ...
17 if (check_if_ca(...) ==0 != 1) {
18 result = 0;
19 goto cleanup;
20 }
21 ...
22 cleanup:
23 ...
24 return result;
25

26 }

We also used EPEX to successfully check the fixes for
other CVEs mentioned in Section 1 (CVE-2015-0208,
CVE-2015-0288, CVE-2015-0285, and CVE-
-2015-0292).

5.6 Imprecision in EPEX Analysis
The 130 potential bugs reported by EPEX includes 28
false positives and incorrectly excludes 20. In the li-

12

USENIX Association 25th USENIX Security Symposium 357

braries, most of the false positives appeared due to the
limitations of underlying Clang symbolic analysis en-
gine. The interprocedural analysis supported by Clang’s
symbolic analysis engine is currently limited to the
functions defined within an input source file or func-
tions included in the file through header files. There-
fore, the symbolic analyzer is not able to gather correct
path conditions and return values for the functions de-
fined in other source files. For example, in the code
below, EPEX reported error since the return value of
X509_get_serialNumber is not checked at line 5.
However, inside the callee, ASN1_STRING_dup, the
error condition is checked at line 17 and the NULL
value is returned. This return value (serial) is fur-
ther checked at line 6. Since, ASN1_STRING_dup is
implemented in a different file, EPEX could not infer
that the ASN1_STRING_dup call in line 5 will always
return NULL if X509_get_serialNumber returns
an error. Note that if the pattern of not checking error
for X509_get_serialNumber calls were consistent
across all call-sites, EPEX would not have reported this
false positive due to Step-III in Section 3).

1 AUTHORITY_KEYID *v2i_AUTHORITY_KEYID(...)
2 {
3 ...
4 serial = ASN1_INTEGER_dup(
5 X509_get_serialNumber(cert));
6 if (!isname || !serial) {
7 X509V3err(...);
8 goto err;
9 }

10 ...
11 }
12

13 ASN1_STRING *ASN1_STRING_dup(
14 const ASN1_STRING *str)
15 {
16 ASN1_STRING *ret;
17 if (!str)
18 return NULL;
19 ...
20 }

EPEX performed the worst in wolfSSL, mostly due to
confusion arising from compile-time configuration set-
tings affecting the function mp_init. EPEX raised 8
alerts for the function, but after contacting the develop-
ers, we learned that the corresponding functions can be
configured, at compilation time, to be either fallible or
infallible. All the reported call sites were only compiled
if the functions were configured to be infallible. There-
fore, our error specifications should not have marked
these functions as fallible. On the other hand, in the ap-
plications, the most frequent causes are 5 instances of
fallbacks, which are characteristic of applications. Still,
missed checks in external functions are the second most
frequent cause, at 3 cases. The remaining causes are al-
ternative error propagation channels, and deliberate dis-
regard for the error, due to either a conscious choice of
the programmer, or a configuration parameter, as men-
tioned in Section 5.2.

Given the false positives due to checks by external
functions, a natural solution would be to have all func-
tions validate their input. While this is a good prac-
tice for library programmers, application programmers
should not depend on functions, whose implementation
they often do not control, to follow this practice. For
debugging purposes, it would appear that the function
receiving the invalid return value is at fault. Moreover,
not all functions can cleanly handle invalid input. Com-
parison functions such as ASN1_INTEGER_cmp only
return non-error values, so the only safe response would
be to terminate the program, which is a drastic action that
can easily be averted by checking the parameters in the
first place.

5.7 Performance analysis
EPEX is integrated with the test project’s building proce-
dure through the Clang framework. We ran all our tests
on Linux servers with 4 Intel Xeon 2.67GHz processors
and 100 GB of memory, The following table shows the
performance numbers. EPEX’s execution time is compa-
rable to that of other built-in, simple checkers in Clang
(e.g., division-by-zero) as shown in the table below.

Regular Division-by-zero EPEX
build in-built checker checker

wolfSSL 0.05m 3.08m 2.68m
mbedTLS 0.67m 3.72m 2.83m
GnuTLS 1.85m 13.28m 12.82m
OpenSSL 8.25m 186.9m 132.33m

cURL 0.18m 13.96m 12.95m
httpd 0.04m 4.68m 4.51m
Lynx 0.55m 71.35m 71.73m
Mutt 0.10m 13.03m 13.12m
Wget 0.03m 5.63m 5.66m

6 Related work

6.1 Automated detection of error handling
bugs

Rubio-González et al. [45, 21] detected incorrect error
handling code in the Linux file system using a static
control and data-flow analysis. Their technique was de-
signed to detect bugs caused by faulty code that either
overwrite or ignore error values. In addition to these
two cases, we check whether appropriate error values are
propagated upstream as per global error protocol of the
analyzed program. We use module-specific error spec-
ifications as opposed to hard coded error values like -
EIO, -ENOMEM, etc. used by Rubio-González et al.
This helps us in reducing the number of false positives
significantly; for instance, unlike [45, 21], we do not re-
port a bug when an error value is over-written by another
error value that conforms to the global error protocol.
Our usage of symbolic analysis further minimizes false

13

358 25th USENIX Security Symposium USENIX Association

positives as symbolic analysis, unlike the data-flow anal-
ysis used in [45, 21], can distinguish between feasible
and infeasible paths.

Acharya et al. [1] automatically inferred error han-
dling specifications of APIs by mining static traces of
their run-time behaviors. Then, for a different subject
system, they found several bugs in error handling code
that do not obey the inferred specifications. The static
traces were generated by MOPS [11] that handles only
control dependencies and minimal data-dependencies.
As observed by Acharya et al., lack of extensive data-
dependency support (e.g., pointer analysis, aliasing, etc.)
introduced imprecision in their results. By contrast, our
symbolic execution engine with extensive memory mod-
eling support minimizes such issues. Further, to iden-
tify error handling code blocks corresponding to an API
function, Acharya et al. leveraged the presence of condi-
tional checks on the API function’s return value and/or
ERRNO flag. They assumed that if such a conditional
check leads to a return or exit call, then it is responsible
for handling the error case. Such assumption may lead to
false positives where conditional checks are performed
on non-error cases. Also, as noted by Acharya et al.,
for functions that can return multiple non-error values,
they cannot distinguish them from error cases. By con-
trast, we create our error specifications from the program
documentation and thus they do not suffer from such dis-
crepancies.

Lawall et al. [31] used Coccinelle, a program match-
ing and transformation engine, to find missing error
checks in OpenSSL. By contrast, we not only look for
error checks but also ensure that the error is indeed han-
dled correctly. This allows us to find a significantly larger
class of error handling problems. Also, unlike our ap-
proach, Lawall et al.’s method suffers from an extremely
high false positive rate.

Several other approaches to automatically detect er-
ror/exception handling bugs have been proposed for Java
programs [52, 53, 44, 8, 54]. However, since the er-
ror handling mechanism is quite different in Java than
C (e.g., the try-catch-final construct is not sup-
ported in C), these solutions are not directly applicable
to C code.

Static analysis has been used extensively in the past
to find missing checks on security critical objects [48,
57, 49]. However, none of these tools can detect miss-
ing/incorrect error handling checks. Complementary to
our work, and other static approaches, dynamic analy-
sis methods have been developed to discover the practi-
cal effects of error handling bugs, although they do so at
the cost of lower coverage of error paths, as well as un-
known failure modes. Fault injection frameworks such
as LFI bypass the problem of the unlikelihood of er-
rors by injecting failures directly into fallible functions.

LFI includes a module for automatically inferring er-
ror specifications, although it is not usable in our case,
since static analysis requires explicitly identifying error
and non-error values, and not just differentiate between
them [34].

6.2 Symbolic execution

The idea of symbolic execution was initially proposed by
King et al. [29]. Concolic execution is a recent variant of
symbolic execution where concrete inputs guide the ex-
ecution [19, 10, 47]. Such techniques have been used in
several recent projects for automatically finding security
bugs [27, 46, 22, 20].

KLEE [9], by Cadar et al., is a symbolic execution
engine that has been successfully used to find several
bugs in UNIX coreutils automatically. UC-KLEE [40],
which integrates KLEE and lazy initialization [26], ap-
plies more comprehensive symbolic execution over a
bounded exhaustive execution space to check for code
equivalence; UC-KLEE has also been effective in find-
ing bugs in different tools, including itself. Recently,
Ramos et al. applied UC-KLEE to find two denial-of-
service vulnerabilities in OpenSSL [41].

SAGE, by Godefroid et al. [20], uses a given set of
inputs as seeds, builds symbolic path conditions by mon-
itoring their execution paths, and systematically negates
these path conditions to explore their neighboring paths,
and generate input for fuzzing. SAGE has been success-
fully used to find several bugs (including security bugs)
in different Windows applications like media players and
image processors. SAGE also checks for error handling
bugs, but only errors from user inputs, and not environ-
mental failures, which are unlikely to appear when only
user input is fuzzed.

Ardilla, by Kiezun et al. [27], automates testing of
Web applications for SQL injection and cross-site script-
ing attacks by generating test inputs using dynamic taint
analysis that leverages concolic execution and mutates
the inputs using a library of attack patterns.

Existing symbolic execution tools are not well suited
for finding error handling bugs for two primary reasons:
(i) The existing symbolic execution tools depend on ob-
vious faulty behaviors like crashes, assertion failures,
etc. for detecting bugs. A large number of error han-
dling bugs are completely silent and do not exhibit any
such behavior. (ii) As the number of paths through any
reasonable sized program is very large, all symbolic ex-
ecution tools can only explore a fraction of those paths.
The effects of most non-silent error handling bugs show
up much further downstream from their source. An off-
the-shelf symbolic execution tool can only detect such
cases if it reaches that point. By contrast, our algorithm
for identifying and exploring error paths enables EPEX

14

USENIX Association 25th USENIX Security Symposium 359

to detect completely silent and non-silent error handling
bugs at their sources. This makes it easy for the develop-
ers to understand and fix these bugs.

6.3 Security of SSL/TLS implementations

Several security vulnerabilities have been found over the
years in both SSL/TLS implementations and protocol
specifications [15, 43, 2, 5, 7, 4, 3]. We briefly sum-
marize some of these issues below. A detailed survey of
SSL/TLS vulnerabilities can be found in [13].

Multiple vulnerabilities in certification validation im-
plementations, a key part of the SSL/TLS protocol, were
reported by Moxie Marlinspike [38, 37, 36, 35]. Similar
bugs have been recently discovered in the SSL imple-
mentation on Apple iOS [24]. Another certificate val-
idation bug (“goto fail”) was reported in Mac OS and
iOS [30] due to an extra goto statement in the implemen-
tation of the SSL/TLS handshake protocol. The affected
code did not ensure that the key used to sign the server’s
key exchange matches the key in the certificate presented
by the server. This flaw made the SSL/TLS implemen-
tations in MacOS and iOS vulnerable to active Man-In-
The-Middle (MITM) attackers. This bug was caused by
unintended overlapping of some parts of a non-error path
and an error path. However, this is not an error handling
bug like the ones we found in this paper.

Hash collisions [50] and certificate parsing discrep-
ancies between certificate authorities (CAs) and Web
browsers [25] can trick a CA into issuing a valid certifi-
cate with the wrong subject name or even a valid inter-
mediate CA certificate. This allows an attacker to launch
a successful MITM attack against any arbitrary SSL/TLS
connection.

Georgiev et al. [18] showed that incorrect usage of
SSL/TLS APIs results in a large number of certifi-
cate validation vulnerabilities in different applications.
Fahl et al. [17] analyzed incorrect SSL/TLS API us-
age for Android applications. Brubaker et al. [6] de-
signed Frankencerts, a mechanism for generating syn-
thetic X.509 certificates based on a set of publicly avail-
able seed certificates for testing the certificate valida-
tion component of SSL/TLS libraries. They performed
differential testing on multiple SSL/TLS libraries using
Frankencerts and found several new security vulnerabil-
ities. Chen et al. [12] improved the coverage and effi-
ciency of Brubaker et al.’s technique by diversifying the
seed certificate selection process using Markov Chain
Monte Carlo (MCMC) sampling. However, all these
techniques are black-box methods that only focus on the
certificate validation part of the SSL/TLS implementa-
tions. By contrast, our white-box analysis is tailored to
look for flawed error handling code in any sequential C
code.

Flawed pseudo-random number generation can pro-
duce insecure SSL/TLS keys that can be easily compro-
mised [32, 23]. We have also reported several bugs in-
volving pseudo-random number generator functions in
this paper, although their origins are completely differ-
ent, i.e., unlike [32, 23], they are caused by incorrect
error handling.

7 Future work

Automated inference of error specifications. One lim-
itation of our current implementation of EPEX is that it
requires the input error specifications to be created manu-
ally by the user. Automatically generating the error spec-
ifications will significantly improve EPEX’s usability.
One possible way to automatically infer the error speci-
fications is to identify and compare the path constraints
imposed along the error paths (i.e., the paths along which
a function can fail and return errors) across different call-
sites of the same function. However, in order to do so, the
error paths must first be automatically identified. This
leads to a chicken-and-egg problem as the current proto-
type of EPEX uses the input error specifications to iden-
tify the error paths.

To solve this problem, we plan to leverage different
path features that can distinguish the error paths from
non-error paths. For example, error paths are often more
likely to return constant values than non-error paths [33].
Error paths are also more likely to call functions like exit
(with a non-zero argument) than regular code for early
termination. Further, since errors invalidate the rest of
the computation, the lengths of the error paths (i.e., num-
ber of program statements) might be, on average, shorter
than the non-error paths. An interesting direction for fu-
ture research will be to train a supervised machine learn-
ing algorithm like Support Vector Machines (SVMs) [14]
for identifying error paths using such different path fea-
tures. The supervised machine learning algorithm can
be trained using a small set of error and non-error paths
identified through manually created error specifications.
The resulting machine learning model can then be used
to automatically identify different error paths and infer
error specifications by comparing the corresponding path
constraints.

Automatically generating bug fixes. As error-
handling code is often repetitive and cumbersome to
implement, it might be difficult for developers to keep
up with EPEX and fix all the reported bugs manually.
Moreover, manual fixes introduced by a developer might
also be buggy and thus may introduce new error han-
dling bugs. In order to avoid such issues, we plan to
automatically generate candidate patches to fix the er-
ror handling bugs reported by EPEX. Several recent
projects [55, 39, 28] have successfully generated patches

15

360 25th USENIX Security Symposium USENIX Association

for fixing different types of bugs. Their main approach
is dependent on existing test suites—they first generate
candidate patches by modifying existing code and then
validate the patches using existing test cases. While this
generic approach can be applied in our setting, we cannot
use the existing schemes as error handling bugs are, in
general, hard to detect through existing test cases. Also,
these approaches typically focus on bug fixes involving
only one or two lines of code changes. However, the
error handling bugs are not necessarily limited to such
small fixes. Solving these issues will be an interesting
direction for future work.

8 Conclusion

In this paper, we presented EPEX, a new algorithm and a
tool that automatically explores error paths and finds er-
ror handling bugs in sequential C code. We showed that
EPEX can efficiently find error handling bugs in differ-
ent open-source SSL/TLS libraries and applications with
few false positives; many of these detected bugs lead to
critical security vulnerabilities. We also demonstrate that
EPEX could also be useful to the developers for check-
ing error handling code.

9 Acknowledgments

We would like to thank Ben Livshits, the shepherd of
this paper, and the anonymous reviewers whose sugges-
tions have improved the presentation of our work. We
would also like to thank David Evans for his feedback
on an earlier draft of this paper. This work is spon-
sored in part by Air Force Office of Scientific Research
(AFOSR) grant FA9550-12-1-0162. The views and con-
clusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or im-
plied, of AFOSR.

References
[1] M. Acharya and T. Xie. Mining API Error-Handling Specifica-

tions from Source Code. In International Conference on Funda-
mental Approaches to Software Engineering (FASE), 2009.

[2] N. AlFardan and K. Paterson. Lucky thirteen: Breaking the TLS
and DTLS record protocols. In IEEE Symposium on Security and
Privacy (S&P), 2013.

[3] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Strub, and J. Zinzindohoue. A messy
state of the union: Taming the composite state machines of TLS.
IEEE Symposium on Security and Privacy (S&P), 2015.

[4] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and
P. Strub. Triple handshakes and cookie cutters: Breaking and
fixing authentication over TLS. In IEEE Symposium on Security
and Privacy (S&P), 2014.

[5] D. Bleichenbacher. Chosen ciphertext attacks against protocols
based on the RSA encryption standard PKCS #1. In International
Cryptology Conference (CRYPTO), 1996.

[6] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov. Us-
ing frankencerts for automated adversarial testing of certificate
validation in ssl/tls implementations. In IEEE Symposium on Se-
curity and Privacy (S&P), 2014.

[7] D. Brumley and D. Boneh. Remote timing attacks are practical.
In USENIX Security Symposium, 2003.

[8] R. Buse and W. Weimer. Automatic documentation inference for
exceptions. In International Symposium on Software Testing and
Analysis (ISSTA), 2008.

[9] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and au-
tomatic generation of high-coverage tests for complex systems
programs. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2008.

[10] C. Cadar and D. Engler. Execution generated test cases: How to
make systems code crash itself. In International SPIN Workshop
on Model Checking of Software (SPIN), 2005.

[11] H. Chen and D. Wagner. MOPS: an infrastructure for examining
security properties of software. In ACM Conference on Computer
and Communications Security (CCS), 2002.

[12] Y. Chen and Z. Su. Guided differential testing of certificate vali-
dation in SSL/TLS implementations. In ACM SIGSOFT Interna-
tional Symposium on the Foundations of Software (FSE), 2015.

[13] J. Clark and P. van Oorschot. SoK: SSL and HTTPS: Revisiting
past challenges and evaluating certificate trust model enhance-
ments. In IEEE Symposium on Security and Privacy (S&P), 2013.

[14] C. Cortes and V. Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[15] T. Duong and J. Rizzo. Here come the ⊕ ninjas.
http://nerdoholic.org/uploads/dergln/beast_
part2/ssl_jun21.pdf, 2011.

[16] D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs
as deviant behavior: A general approach to inferring errors in
systems code. In Symposium on Operating Systems Principles
(SOSP), 2001.

[17] S. Fahl, M. Harbach, T. Muders, and M. Smith. Why Eve and
Mallory love Android: An analysis of SSl (in)security on An-
droid. In ACM Conference on Computer and Communications
Security (CCS), 2012.

[18] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world: Validating
SSL certificates in non-browser software. In ACM Conference on
Computer and Communications Security (CCS), 2012.

[19] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed auto-
mated random testing. In ACM SIGPLAN conference on Pro-
gramming Language Design and Implementation (PLDI), 2005.

[20] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox
fuzz testing. In Network & Distributed System Security Sympo-
sium (NDSS), 2008.

[21] H. Gunawi, C. Rubio-González, A. Arpaci-Dusseau, R. Arpaci-
Dusseau, and B. Liblit. EIO: Error handling is occasionally cor-
rect. In USENIX Conference on File and Storage Technologies
(FAST), 2008.

[22] W. Halfond, S. Anand, and A. Orso. Precise interface identifi-
cation to improve testing and analysis of web applications. In
International Symposium on Software Testing and Analysis (IS-
STA), 2009.

[23] N. Heninger, Z. Durumeric, E. Wustrow, and A. Halderman. Min-
ing your Ps and Qs: Detection of widespread weak keys in net-
work devices. In USENIX Security Symposium, 2012.

[24] CVE-2011-0228. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2011-0228, 2011.

[25] D. Kaminsky, M. Patterson, and L. Sassaman. PKI layer cake:
New collision attacks against the global X.509 infrastructure. In

16

USENIX Association 25th USENIX Security Symposium 361

FC, 2010.
[26] S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic

execution for model checking and testing. In International Con-
ference on Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS), 2003.

[27] A. Kiezun, P. Guo, K. Jayaraman, and M. Ernst. Automatic cre-
ation of SQL injection and cross-site scripting attacks. In Inter-
national Conference on Software Engineering (ICSE), 2009.

[28] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. In International Conference
on Software Engineering (ICSE), 2013.

[29] J. King. Symbolic execution and program testing. Communica-
tions of the ACM, 19(7):385–394, 1976.

[30] A. Langley. Apple’s SSL/TLS bug. https://www.
imperialviolet.org/2014/02/22/applebug.
html, 2014.

[31] J. Lawall, B. Laurie, R. Hansen, N. Palix, and G. Muller. Find-
ing error handling bugs in openssl using coccinelle. In European
Dependable Computing Conference (EDCC), 2010.

[32] A. Lenstra, J. Hughes, M. Augier, J. Bos, T. Kleinjung, and
C. Wachter. Ron was wrong, Whit is right. http://eprint.
iacr.org/2012/064, 2012.

[33] P. Marinescu and G. Candea. Efficient testing of recovery code
using fault injection. ACM Transactions on Computer Systems
(TOCS), 29(4), 2011.

[34] P. D. Marinescu, R. Banabic, and G. Candea. An extensible tech-
nique for high-precision testing of recovery code. In USENIX
Annual Technical Conference, 2010.

[35] M. Marlinspike. IE SSL vulnerability. http://www.
thoughtcrime.org/ie-ssl-chain.txt, 2002.

[36] M. Marlinspike. More tricks for defeating SSL in practice. DEF-
CON, 2009.

[37] M. Marlinspike. New tricks for defeating SSL in practice. Black
Hat DC, 2009.

[38] M. Marlinspike. Null prefix attacks against SSL/TLS cer-
tificates. http://www.thoughtcrime.org/papers/
null-prefix-attacks.pdf, 2009.

[39] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch
plausibility and correctness for generate-and-validate patch gen-
eration systems. In International Symposium on Software Testing
and Analysis (ISSTA), 2015.

[40] D. Ramos and D. Engler. Practical, low-effort equivalence veri-
fication of real code. In International Conference on Computer-
Aided Verification (CAV), 2011.

[41] D. Ramos and D. Engler. Under-constrained symbolic execution:
correctness checking for real code. In USENIX Security Sympo-
sium, 2015.

[42] Checker developer manual. http://clang-analyzer.
llvm.org/checker_dev_manual.html.

[43] J. Rizzo and T. Duong. The CRIME attack. In Ekoparty, 2012.
[44] M. Robillard and G. Murphy. Analyzing exception flow in Java

programs. In ACM SIGSOFT International Symposium on the
Foundations of Software (FSE), 1999.

[45] C. Rubio-González, H. Gunawi, B. Liblit, R. Arpaci-Dusseau,
and A. Arpaci-Dusseau. Error propagation analysis for file sys-
tems. In ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI), 2009.

[46] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song. A symbolic execution framework for JavaScript. In
IEEE Symposium on Security and Privacy (S&P), 2010.

[47] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing
engine for C. In ACM SIGSOFT International Symposium on the
Foundations of Software (FSE), 2005.

[48] S. Son, K. McKinley, and V. Shmatikov. Rolecast: finding miss-
ing security checks when you do not know what checks are. In

International Conference on Object Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA), 2011.

[49] V. Srivastava, M. Bond, K. McKinley, and V. Shmatikov. A se-
curity policy oracle: Detecting security holes using multiple API
implementations. In ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI), 2011.

[50] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar,
D. Osvik, and B. Weger. Short chosen-prefix collisions for MD5
and the creation of a rogue CA certificate. In International Cryp-
tology Conference (CRYPTO), 2009.

[51] The Apache Software Foundation. Apache portable runtime: Er-
ror codes. Available at https://apr.apache.org/docs/
apr/1.4/group__apr__errno.html, 2011.

[52] W. Weimer and G. Necula. Finding and preventing run-time er-
ror handling mistakes. In International Conference on Object
Oriented Programming, Systems, Languages and Applications
(OOPSLA), 2004.

[53] W. Weimer and G. Necula. Mining Temporal Specifications for
Error Detection. In International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS),
2005.

[54] W. Weimer and G. Necula. Exceptional situations and program
reliability. ACM Transactions on Programming Languages and
Systems (TOPLAS), 2008.

[55] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automat-
ically finding patches using genetic programming. In Interna-
tional Conference on Software Engineering (ICSE), 2009.

[56] D. A. Wheeler. Sloccount. Available at http://www.
dwheeler.com/sloccount/, 2015.

[57] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck.
Chucky: exposing missing checks in source code for vulnera-
bility discovery. In ACM Conference on Computer and Commu-
nications Security (CCS), 2013.

A Appendix

Listing 3: Sample implementation of
RAND_pseudo_bytes in OpenSSL

1 /* crypto/engine/hw_aep.c */
2 int aep_rand(unsigned char *buf, int len)
3 {
4 ...
5 AEP_RV rv = AEP_R_OK;
6 AEP_CONNECTION_HNDL hConnection;
7
8 rv = aep_get_connection(&hConnection);
9 if (rv != AEP_R_OK) {

10 AEPHKerr(AEPHK_F_AEP_RAND,
AEPHK_R_GET_HANDLE_FAILED);

11 goto err_nounlock;
12 }
13
14 if (len > RAND_BLK_SIZE) {
15 rv = p_AEP_GenRandom(hConnection, len,

2, buf, NULL);
16 if (rv != AEP_R_OK) {
17 AEPHKerr(AEPHK_F_AEP_RAND,

AEPHK_R_GET_RANDOM_FAILED);
18 goto err_nounlock;
19 }
20 }
21 ...
22 return 1;
23 err_nounlock:
24 return 0;
25 }

17

362 25th USENIX Security Symposium USENIX Association

Table 6: Tested functions and bug counts

Function Bug False
Name Count Positives

OpenSSL

ASN1_INTEGER_set 4 0
BN_mod_exp 3 0
BN_sub 2 0
EC_KEY_up_ref 1 0
EC_POINT_cmp 1 0
PEM_read_bio_X509 2 0
RAND_pseudo_bytes 20 1
X509_get_serialNumber 3 1
i2a_ASN1_INTEGER 3 0
i2d_X509 9 0

Total 48 2

GnuTLS

asn1_read_value 4 0
asn1_write_value 3 0
gnutls_openpgp_crt_get_subkey_idx 1 0
gnutls_openpgp_privkey_get_subkey_idx 3 0
gnutls_privkey_get_pk_algorithm 3 1
gnutls_x509_crq_get_dn_by_oid 2 0
gnutls_x509_crq_get_extension_info 1 0
gnutls_x509_crq_get_pk_algorithm 2 0
gnutls_x509_crt_get_serial 1 0
gnutls_x509_privkey_import 0 1
gnutls_x509_privkey_import_pkcs8 1 0
record_overhead_rt 2 0

Total 23 2

mbedTLS

aes_setkey_enc 0 1
asn1_get_int 2 0
asn1_get_tag 8 0
md_hmac_starts 2 0
md_init_ctx 2 0
mpi_fill_random 5 0
ssl_handshake 0 1

Total 19 2

wolfSSL
wc_InitRsaKey 0 1
wc_ShaHash 0 1
mp_init 0 8

Total 0 10

cURL

RAND_bytes 2 0
SSL_get_peer_cert_chain 0 1
SSL_shutdown 0 1

Total 2 2

httpd

BIO_free 4 0
BIO_new 1 1
SSL_CTX_new 1 0
SSL_CTX_use_certificate_chain_file 1 0
SSL_get_peer_cert_chain 0 1
SSL_get_peer_certificate 0 1
SSL_get_verify_result 0 1
SSL_read 0 1
SSL_write 0 1

Total 7 6

Lynx
SSL_set_fd 1 0
SSL_CTX_new 0 2

Total 1 2

Mutt
SSL_CTX_new 0 1
BIO_new 1 0
SSL_shutdown 1 0

Total 2 1

Wget BIO_new 0 1

Total 0 1

Grand_Total 102 28

18

USENIX Association 25th USENIX Security Symposium 363

APISAN: Sanitizing API Usages through Semantic Cross-checking

Insu Yun Changwoo Min Xujie Si Yeongjin Jang Taesoo Kim Mayur Naik
Georgia Institute of Technology

Abstract
API misuse is a well-known source of bugs. Some of
them (e.g., incorrect use of SSL API, and integer overflow
of memory allocation size) can cause serious security
vulnerabilities (e.g., man-in-the-middle (MITM) attack,
and privilege escalation). Moreover, modern APIs, which
are large, complex, and fast evolving, are error-prone.
However, existing techniques to help finding bugs require
manual effort by developers (e.g., providing specification
or model) or are not scalable to large real-world software
comprising millions of lines of code.

In this paper, we present APISAN, a tool that automat-
ically infers correct API usages from source code without
manual effort. The key idea in APISAN is to extract
likely correct usage patterns in four different aspects (e.g.,
causal relation, and semantic relation on arguments) by
considering semantic constraints. APISAN is tailored
to check various properties with security implications.
We applied APISAN to 92 million lines of code, includ-
ing Linux Kernel, and OpenSSL, found 76 previously
unknown bugs, and provided patches for all the bugs.

1 Introduction

Today, large and complex software is built with many
components integrated using APIs. While APIs encap-
sulate the internal state of components, they also expose
rich semantic information, which renders them challeng-
ing to use correctly in practice. Misuse of APIs in turn
leads to incorrect results and more critically, can have
serious security implications. For example, a misuse of
OpenSSL API can result in man-in-the-middle (MITM)
attacks [22, 26], and seemingly benign incorrect error
handling in Linux (e.g., missing a check on kmalloc())
can allow DoS or even privilege escalation attacks [12].
This problem, in fact, is not limited to API usage, but
pervades the usage of all functions, which we generally
refer to as APIs in this paper.

Many different tools, techniques, and methodologies
have been proposed to address the problem of finding
or preventing API usage errors. Broadly, all existing
techniques either require (1) manual effort—API-specific
specifications (e.g., SSL in SSLint [26], setuid [10, 15]),
code annotations (e.g., lock operations in Sparse [41]),

correct models (e.g., file system in WOODPECKER [11]),
or (2) an accurate analysis of source code [6, 7], which
is hard to scale to complex, real-world system software
written in C/C++.

We present a fully automated system, called APISAN
for finding API usage errors. Unlike traditional ap-
proaches that require API-specific specifications or mod-
els, APISAN infers the correct usage of an API from
other uses of the API, regarding the majority usage pat-
tern as a semantic belief, i.e., the likely correct use. Also,
instead of relying on whole-program analysis, APISAN
represents correct API usage in a probabilistic manner,
which makes it scalable beyond tens of millions of lines of
low-level system code like the Linux kernel. In APISAN,
the higher the observed number of API uses, potentially
even from different programs, the stronger is the belief
in the inferred correct use. Once APISAN extracts such
semantic beliefs, it reports deviations from the beliefs as
potential errors together with a probabilistic ranking that
reflects their likelihood.

A hallmark of APISAN compared to existing ap-
proaches [1, 18, 28, 29] for finding bugs by detecting
contradictions in source code is that it achieves preci-
sion by considering semantic constraints in API usage
patterns. APISAN infers such constraints in the form of
symbolic contexts that it computes using a symbolic ex-
ecution based technique. The technique, called relaxed
symbolic execution, circumvents the path-explosion prob-
lem by limiting exploration to a bounded number of intra-
procedural paths that suffice in practice for the purpose
of inferring semantic beliefs.

APISAN computes a database of symbolic contexts
from the source code of different programs, and infers
semantic beliefs from the database by checking four key
aspects: implications of function return values, relations
between function arguments, causal relationships between
functions, and implicit pre- and post-conditions of func-
tions. These four aspects are specialized to incorporate
API-specific knowledge for more precise ranking and
deeper semantic analysis. We describe eight such cases in
APISAN that are tailored to check a variety of properties
with security implications, such as cryptographic proto-
col API misuses, integer overflow, improper locking, and
NULL dereference.

Our evaluation shows that APISAN’s approach is scal-

1

364 25th USENIX Security Symposium USENIX Association

// @apps/req.c:1332
// in OpenSSL v1.1.0-pre3-dev
EVP_PKEY_CTX *set_keygen_ctx() {
 gctx = EVP_PKEY_CTX_new();
 if (EVP_PKEY_keygen_init(gctx) <= 0) {
 BIO_puts(err, "Error...");
 ERR_print_errors(err);

 return NULL;
 }
}

APISan: Missing EVP_PKEY_CTX_free()
@FUNC: EVP_PKEY_keygen_init
@CONS: <= 0
@POST: EVP_PKEY_CTX_free

// @apps/genpkey.c:289
// in OpenSSL v1.1.0-pre3-dev
int init_gen_str() {
 if (EVP_PKEY_keygen_init(ctx) <= 0)
 goto err;
err:
 EVP_PKEY_CTX_free(ctx);
 return 0;
}

// @crypto/cms/cms_kari.c:302
// in OpenSSL v1.1.0-pre3-dev
int cms_kari_create_ephemeral_key() {
 rv = 0;
 if (EVP_PKEY_keygen_init(pctx) <= 0)
 goto err;
err:
 if (!rv)
 EVP_PKEY_CTX_free(pctx);
 return rv;
}(a) New bug in OpenSSL 1.1.0-pre3-dev (b) Collection of API uses

(%)

semantic
belief

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Figure 1: (a) A memory leak vulnerability found by APISAN in OpenSSL 1.1.0-pre3-dev. When a crypto key fails to initialize, the
allocated context (i.e., gctx) should be freed. Otherwise, a memory leak will occur. APISAN first infers correct semantic usage of
the API from (b) other uses of the API, and extracts a checkable rule, called a semantic belief, under the proper context (e.g., state:
EVP_PKEY_keygen_init()→ rv <= 0 && EVP_PKEY_CTX_free()). This newly found vulnerability has been reported and fixed in the
mainstream with the patch we provided. In the above report, @FUNC indicates a target API, @CONS is a return value constraint, and
@POST shows an expected post-action following the API.

able and effective in finding API misuses that result in
critical security problems such as code execution, system
hangs, or crashes. In total, we analyzed 92 million lines
of code (LoC) and found 76 previously unknown bugs in
Linux, OpenSSL, PHP, Python, and debian packages us-
ing OpenSSL (see Table 2). More importantly, we created
patches for all these bugs and sent them to the mainline
developers of each project. Of these, 69 bugs have been
confirmed, and most have already been applied to the
mainstream repositories. We are awaiting responses for
the remaining reported bugs.

In short, our paper makes the following contributions:

• New methodology. We develop a fully automated
way of finding API misuses that infers semantic be-
liefs from existing API uses and probabilistically
ranks deviant API usages as bugs. We also formalize
our approach thoroughly.

• Practical impact. APISAN found 76 new bugs
in system software and libraries, including Linux,
OpenSSL, PHP, and Python, which are 92 million
LoC in total. We created patches for all bugs and
most of them have already been fixed in the main-
stream repositories of each project.

• Open source tool. We will make the APISAN
framework and all its checkers publicly available
online for others to readily build custom checkers on
top of APISAN.

The rest of this paper is organized as follows. §2 pro-
vides an overview of APISAN. §3 describes APISAN’s
design. §4 presents various checkers of APISAN. §5 de-
scribes APISAN’s implementation. §6 explains the bugs
we found. §7 discusses APISAN’s limitations and poten-
tial future directions. §8 compares APISAN to previous
work and §9 concludes.

2 Overview

In this section, we present an overview of APISAN, our
system for finding API usage errors. These errors often
have security implications, although APISAN and the
principles underlying it apply to general-purpose APIs
and are not limited to finding security errors in them. To
find API usage errors, APISAN automatically infers se-
mantic correctness, called semantic beliefs, by analyzing
the source code of different uses of the API.

We motivate our approach by means of an example
that illustrates an API usage error. We outline the chal-
lenges faced by existing techniques in finding the error
and describe how APISAN addresses those challenges.

2.1 Running Example
Figure 1(a) shows an example of misusing the API of
OpenSSL. The allocated context of a public key algorithm
(gctx on Line 3) must be initialized for a key generation
operation (EVP_PKEY_keygen_init() on Line 4). If the
initialization fails, the allocated context should be freed
by calling EVP_PKEY_CTX_free(). Otherwise, it results in
a memory leak.

To find such errors automatically, a checker has to know
the correct usage of the API. Instead of manually encod-
ing semantic correctness, APISAN automatically infers
the correct usage of an API from other uses of the API, re-
garding the majority usage pattern as the likely correct use.
For example, considering the use of the OpenSSL API in
Figure 1(a) together with other uses of the API shown in
Figure 1(b), APISAN infers the majority pattern as free-
ing the allocated context after initialization failure (i.e.,
EVP_PKEY_keygen_init() <= 0), and thereby reports the
use in Figure 1(a) as an error.

2

USENIX Association 25th USENIX Security Symposium 365

2.2 Challenges

We describe three key challenges that hinder existing
approaches in finding the error in the above example.

1. Lack of specifications. A large body of work focuses
on checking semantic correctness, notably dataflow anal-
ysis and model checking approaches [3, 4, 14, 17, 21, 46].
A major obstacle to these approaches is that developers
should manually describe “what is correct,” and this ef-
fort is sometimes prohibitive in practice. To alleviate this
burden, many of the above approaches check lightweight
specifications, notably type-state properties [42]. These
specifications are not expressive enough to capture correct
API uses inferred by APISAN; for example, type-state
specifications can capture finite-state rules but not rules in-
volving a more complex state, such as the rule in the box
in Figure 1(a), which states that EVP_PKEY_CTX_free()
must be called if EVP_PKEY_CTX_init() <= 0. Moreover,
techniques for checking such rules must track the con-
text of the API use in order to be precise, which limits
their scalability. For instance, the second example in
Figure 1(b) has a constraint on !rv, whose tracking is
necessary for precision but complicated by the presence
of goto routines in the example.

2. Missing constraints. Engler et al. [18] find potential
bugs by detecting contradictions in software in the ab-
sence of correctness semantics specified by developers.
For instance, if most occurrences of a lock release oper-
ation are preceded by a lock acquire operation, then in-
stances where the lock is released without being acquired
are flagged as bugs. The premise of APISAN is similar
in that the majority occurrence of an API usage pattern is
regarded as likely the correct usage, and deviations are re-
ported as bugs. However, Engler et al.’s approach does not
consider semantic constraints, which can lead it to miss
bugs that occur under subtle constraints, such as the one in
Figure 1(a), which states that EVP_PKEY_CTX_free()must
be called only when EVP_PKEY_keygen_init() fails.

3. Complex constraints. KLEE [7] symbolically exe-
cutes all possible program paths to find bugs. While it
is capable of tracking semantic constraints, however, it
suffers from the notorious path-explosion problem; its
successor, UC-KLEE [37], performs under-constrained
symbolic execution that checks individual functions rather
than whole programs. However, functions such as
EVP_PKEY_keygen_init() in Figure 1 contain a function
pointer, which is hard to resolve in static analysis, and
cryptographic functions have extremely complex path
constraints that pose scalability challenges to symbolic
execution based approaches.

❶ Building
symbolic contexts

Source code

Reports
(ranked)

§ 3.1

❷ Inferring
semantic beliefs

§ 3.2

as a part of
building process

❸ Locating
API misuses

§ 3.3

Checkers
§ 4

$ apisan -- make $ apisan --db=dir1,dir2 --checker=cpair

e.g., a group of programs
using OpenSSL

...

DB

Figure 2: Overview of APISAN’s architecture and workflow.
APISAN first builds symbolic contexts from existing programs’
source code and creates a database (§3.1); then APISAN in-
fers correct usages of APIs, so-called semantic beliefs, in four
aspects (§3.2). The inferred beliefs are used to find and rank
potential API misuses to be reported as bugs (§3.3). Specific
checkers are built by using the inferred beliefs and symbolic
context database. If necessary, checkers incorporate domain-
specific knowledge to find and rank bugs more precisely (§4).

2.3 Our Approach
APISAN’s workflow consists of three basic steps as
shown in Figure 2. It first builds symbolic contexts us-
ing symbolic execution techniques on existing programs’
source code and creates a database of symbolic traces
(§3.1). Then, it statistically infers correct API usages,
called semantic beliefs, using the database (§3.2). Finally,
it locates API misuses in the programs’ source code us-
ing the inferred beliefs and domain-specific knowledge if
necessary (§3.3, §4).

We formalize our approach as a general framework,
shown in Figure 5, which can be tuned using two pa-
rameters: the context checking function, which enables
tailoring the checking of symbolic contexts to different
API usage aspects, and an optional hint ranking function,
which allows customizing the ranking of bug reports. As
we will discuss shortly, our framework provides several
built-in context checking functions, allowing common
developers to use APISAN without modification.

Below, we describe how APISAN tackles the chal-
lenges outlined in the previous section.
1. Complete automation. In large and complex pro-
grams, it is prohibitive to rely on manual effort to check
semantic correctness, such as manually provided spec-
ifications, models, or formal proofs. Instead, APISAN
follows a fully automated approach, inferring semantic
beliefs, i.e., correct API usages, from source code.
2. Building symbolic contexts. To precisely capture API
usages involving a complex state, APISAN infers seman-
tic beliefs from the results of symbolic execution. These
results, represented in the form of symbolic constraints,
on one hand contain precise semantic information about
each individual use of an API, and on the other hand are
abstract enough to compare across uses of the API even
in different programs.
3. Relaxed symbolic execution. To prevent the path

3

366 25th USENIX Security Symposium USENIX Association

explosion problem and achieve scalability, we perform
relaxed symbolic execution. Unlike previous approaches,
which try to explore as many paths as possible, APISAN
explores as few paths as possible so as to suffice for
the purpose of inferring semantic beliefs. In particular,
our relaxed symbolic execution does not perform inter-
procedural analysis, and unrolls loops.
4. Probabilistic ranking. To allow to prioritize de-
velopers’ inspection effort, APISAN ranks more likely
bug reports proportionately higher. More specifically,
APISAN’s ranking is probabilistic, denoting a confidence
in each potential API misuse that is derived from a pro-
portionate number of occurrences of the majority usage
pattern, which itself is decided based on a large number
of uses of the API in different programs. The ranking is
easily extensible with domain-specific ranking policies
for different API checkers.

3 Design of APISAN

The key insight behind our approach is that the “correct-
ness” of API usages can be probabilistically measured
from existing uses of APIs: that is, the more API pat-
terns developers use in similar contexts, the more con-
fidence we have about the correct API usage. APISAN
automatically infers correct API usage patterns from ex-
isting source code without any human intervention (e.g.,
manual annotation or providing an API list), and ranks
potential API misuses based on the extent to which they
deviate from the observed usage pattern. To process com-
plex, real-world software, APISAN’s underlying mech-
anisms for inferring, comparing, and contrasting API
usages should be scalable, yet without sacrificing accu-
racy. In this section, we elaborate on our static analysis
techniques based on relaxed symbolic execution (§3.1),
methodologies to infer semantically correct API usages
(§3.2), and a probabilistic method for ranking potential
API misuses (§3.3).

3.1 Building Symbolic Contexts
APISAN performs symbolic execution to build symbolic
contexts that capture rich semantic information for each
function call. The key challenge of building symbolic
contexts in large and complex programs is to overcome
the path-explosion problem in symbolic execution.

We made two important design decisions for our sym-
bolic execution to achieve scalability yet extract accu-
rate enough information about symbolic contexts. First,
APISAN localizes symbolic execution within a function
boundary. Second, APISAN unrolls each loop once so
that the results of symbolic execution can be efficiently
represented as a symbolic execution tree with no back-
ward edges. In this section, we provide justifications for

1 // @drivers/tty/synclink_gt.c:2363
2 // in Linux v4.5-rc4
3 static irqreturn_t slgt_interrupt(int dummy, void *dev_id) {
4 struct slgt_info *d = dev_id;
5 ...
6 for (i = 0; i < d->count; i++) {
7 if (d->ports[i] == NULL)
8 continue;
9 ⋆ spin_lock(&d->ports[i]->lock);

10 ...
11 ⋆ spin_unlock(&d->ports[i]->lock);
12 }
13 ...
14 return IRQ_HANDLED;
15 }

symbolic variables

return IRQ_HANDLED

d→count <= 0 0 < d→count

slgt_interrupt(..., dev_id)
...

d→ports[0] != NULLd→ports[0] == NULL

return IRQ_HANDLED spin_lock(&lock)

external call
symbolic constraints

spin_unlock(&lock)

...

return IRQ_HANDLED

...
simplifed path

Figure 3: A typical API usage inside a loop. This code snip-
pet comes from a tty device driver in the Linux v4.5-rc1.
spin_lock() and spin_unlock() are used in a pair inside the
loop. APISAN represents its symbolic context as a tree that
contains function calls and symbolic constraints by unrolling its
outer loop, as depicted at the bottom of the code snippet. Note
that we use lock for d->ports[0]->lock due to space limitation.

these two design decisions within the context of finding
API misuses, and provide a performance optimization that
memoizes the predominant symbolic states. Finally, we
precisely define the structure of symbolic execution traces
computed by APISAN.

Limiting inter-procedural analysis. In APISAN, we
perform symbolic execution intra-procedurally for each
function. We use a fresh symbolic variable to represent
each formal argument of the function, as well as the return
value of each function called in its body. The symbolic
constraints track C/C++ expressions over such symbolic
variables, as described below. In our experience with
APISAN, limiting inter-procedural analysis is reasonable
for accuracy and code coverage, since most API usages
can be captured within a caller function without knowing
API internals.

Unrolling a loop. APISAN unrolls each loop only once
to reduce the number of paths explored. While this can
limit the accuracy of our symbolic execution, it does
not noticeably affect the accuracy of APISAN. This is
because most API usages in practice do not tend to be
related to loop variables. Figure 3 (top) shows such an
example in a Linux device driver. Although the symbolic
context changes while executing the loop, API usages

4

USENIX Association 25th USENIX Security Symposium 367

(function) f ∈ F
(integer) n ∈ Z, (natural) i ∈ N

(symbolic variable) α ::= ⟨arg, i⟩ | ⟨ret, i⟩
(symbolic expression) e ::= n | α | uop e | e1 bop e2

(integer range) r ::= [n1,n2]
(event in trace) a ::= call f (ē) | assume(e, r̄)

(trace) t ::= ā
(database of traces) D ::= { t1, t2, · · · }

Figure 4: Abstract syntax of symbolic execution traces.

of spin_lock() and spin_unlock() can be precisely cap-
tured even by unrolling the loop once. While this may
not always be the case, however, we compensate for the
incurred accuracy loss by collecting a larger number of
API uses.
Memoizing predominant symbolic states. Another ad-
vantage of loop unrolling is that all symbolic execution
traces of a function can be efficiently represented as a tree,
namely, a symbolic execution tree, without having back-
ward edges. This helps scalability because APISAN can
deterministically explore the symbolic execution tree, and
all intermediate results can be cached in interior nodes;
most importantly, the cached results (i.e., predominant
symbolic contexts) can be safely re-used because there
is no control flow from a child to its ancestors. Figure 3
(bottom) shows the corresponding symbolic execution
tree for the function slgt_interrupt shown above it.
Structure of symbolic execution traces. Figure 4
formally describes the structure of traces computed by
APISAN using symbolic execution. Each trace t con-
sists of a sequence of events. We refer to the ith event
by t[i], where 1 ≤ i ≤ |t|. Each event a is either a call
to a function f with a sequence of symbolic expressions
ē as arguments, or an assume constraint, which is a pair
consisting of a symbolic expression e and its possible
value ranges r̄. A symbolic expression e can be a constant
n, a symbolic variable α , or the result of an unary (uop)
or binary (bop) operation on other symbolic expressions.
Each symbolic variable α is either the return result of
a function called at the ith event in the trace, denoted
⟨ret, i⟩, or the ith formal parameter of the function being
symbolically executed, denoted ⟨arg, i⟩.

The following three traces are computed by APISAN
for the code snippet in Figure 3 (ignoring unseen parts)1:

t1 : assume(d→count, [MIN,0])
t2 : assume(d→count, [1,MAX]);

assume(d→ports[0], [0,0])
t3 : assume(d→count, [1,MAX]);

assume(d→ports[0], [[MIN,−1], [1,MAX]]);
call spin_lock(&d→ports[0]→lock);
call spin_unlock(&d→ports[0]→lock)

1MIN and MAX stand for the minimum and maximum possible
values of a related type, respectively.

3.2 Inferring Semantic Beliefs

The key challenge is to infer (most likely) correct API
usages that are implicitly embedded in a large number of
existing implementations. We call the inferred API usages
“semantic beliefs,” not only because they are believed to
be correct by a dominant number of implementations, but
also because they are used in semantically similar contexts
(e.g., certain state or conditions). Therefore, the more fre-
quent the API usage patterns we observe, the stronger
is the semantic belief about the correctness of API us-
ages. APISAN infers semantic beliefs by analyzing the
surrounding symbolic contexts (§3.1) without developers’
manual annotations or providing an API list.

In particular, APISAN focuses on exploring four com-
mon API context patterns.
• Return value: Not only does a function return the

result of its computation, but it often implicates the
status of the computation through the return value;
for example, non-zero value in glibc and PTR_ERR()
in the Linux kernel.

• Argument: There are semantic relations among ar-
guments of an API; for example, the memory copy
size should be smaller or equal to the buffer size.

• Causality: Two APIs can be causally related; for
example, an acquired lock should be released at the
end of critical section.

• Conditions: API semantics can imply certain pre-
or post-conditions; for example, verifying a peer
certificate is valid only if the peer certificate exists.

We give a formal description of these four patterns in
Figure 6 and elaborate upon them in the rest of this section.
Since APISAN infers semantic beliefs, which are prob-
abilistic in nature, there could be false positives in bug
reports. APISAN addresses this problem by providing a
ranking scheme for developers to check the most probable
bug reports first. Figure 5 formalizes this computation
and §3.3 presents it in further detail.

3.2.1 Implication of Return Values

Return value is usually used to return the computation
result (e.g. pointer to an object) or execution status
(e.g., errno) of a function. Especially for system pro-
gramming in C, certain values are conventionally used
to represent execution status. In such cases, checking
the return value (execution status) properly before pro-
ceeding is critical to avoid security flaws. For instance,
if a program ignores checking the return value of mem-
ory allocation (e.g., malloc()), it might crash later due
to NULL pointer dereference. In the OpenSSL library,
since the result of establishing a secure connection is
passed by a return value, programs that fail to check the
return value properly are vulnerable to MITM attacks [22].

5

368 25th USENIX Security Symposium USENIX Association

SymbolicContexts(f) = { (t, i,C) | t ∈ D ∧ i ∈ [1..|t|] ∧ t[i]≡ call f (∗) ∧ C = CONTEXTS(t, i) }
Frequency(f ,c) = { (t, i) | ∃C : c ∈C ∧ (t, i,C) ∈ SymbolicContexts(f) }

Majority(f) = { c | |Frequency(f ,c)| / |SymbolicContexts(f)| ≥ θ }
BugReports(f) = { (t, i,C) | (t, i,C) ∈ SymbolicContexts(f) ∧ C ∩ Majority(f) = /0 }

BugReportScore(f) = 1−|BugReports(f)| / |SymbolicContexts(f)| + HINT(f)

Figure 5: The general framework of APISAN. Threshold ratio θ is used to decide whether a context c is a correct or buggy API
usage. Procedures CONTEXTS and HINT are abstract; Figure 6 shows concrete instances of these procedures implemented in APISAN.

returnValueContexts = λ (t, i). { r̄ | ∃ j : t[j]≡ assume(e, r̄) ∧ ⟨ret, i⟩ ∈ retvars(e) }
argRelationContexts = λ (t, i). { (u,v) | t[i]≡ call∗ (ē) ∧ argvars(ē[u], t) ∩ argvars(ē[v], t) ̸= /0 }
causalityContexts⟨r̄⟩ = λ (t, i). { g | ∃ j : t[j]≡ assume(e, r̄) ∧ ⟨ret, i⟩ ∈ retvars(e) ∧ ∃k > j : t[k]≡ callg(∗) }
conditionContexts⟨r̄⟩ = λ (t, i). { (g, r̄′) | ∃ j : t[j]≡ assume(e, r̄) ∧ ⟨ret, i⟩ ∈ retvars(e) ∧ ∃k > j : t[k]≡ callg(∗) ∧

∃l : t[l]≡ assume(e′, r̄′) ∧ ⟨ret,k⟩ ∈ retvars(e′) }
defaultHint = λ f . 0 nullDerefHint = λ f . if (f ’s name contains alloc) then 0.3 else 0

Figure 6: Concrete instances of the CONTEXTS and HINT procedures implemented in APISAN. Function retvars(e) returns all ⟨ret, i⟩
variables in e. Function argvars(e, t) returns all ⟨arg, i⟩ variables in e, consulting t to recursively replace each ⟨ret, i⟩ variable by its
associated function call symbolic expression. Both these functions are formally described in Appendix A.

Moreover, missing return value checks can lead to priv-
ilege escalation like CVE-2014-4113 [12]. Because of
such critical scenarios, gcc provides a special pragma,
__attribute__((warn_unused_result)), to enforce the
checking of return values. However, it does not guarantee
if a return value check is proper or not [24].

Properly checking return values seems trivial at the
outset, but it is not in reality; since each API uses return
values differently (e.g., 0 can be used to denote either
success or failure), it is error-prone. Figure 7 shows such
an example found by APISAN in Linux. In this case,
kthread_run() returns a new task_struct or a non-zero
error code, so the check against 0 is incorrect (Line 12).

Instead of analyzing API internals, APISAN analyzes
how return values are checked in different contexts to infer
proper checking of return values of an API. For an API
function f, APISAN extracts all symbolic constraints on
f’s return values from symbolic execution traces. After
extracting all such constraints, APISAN calculates the
probability of correct usage for each constraint based on
occurrence count. For example, APISAN extracts how
frequently the return value of kthread_run() is compared
with 0 or IS_ERR(p). APISAN reports such cases that the
probability of constraints is below a certain threshold as
potential bugs; the lower the probability of correctness,
the more likely those cases are to be bugs.

Our framework can be easily instantiated to capture
return value context by defining the context function
returnValueContexts(t, i), as shown in Figure 6, which ex-
tracts all checks on the return value of the function called
at t[i] (i.e., the ith event in trace t).

3.2.2 Relations on Arguments

In many APIs, arguments are semantically inter-related.
Typical examples are memory copy APIs, such as
strncpy(d,s,n) and memcpy(d,s,n); for correct opera-
tion without buffer overrun, the size of the destination

buffer d should be larger or equal to the copy length n.
APISAN uses a simple heuristic to capture possible

relations between arguments. APISAN decides that
two arguments are related at a function call if their
symbolic expressions share a common symbolic vari-
able. For example, the first and third arguments of
strncpy(malloc(n+1),s,n) are considered to be related.
After deciding whether a pair of arguments are related or
not at each call to a function, APISAN calculates the prob-
ability of the pair of arguments being related. APISAN
then classifies the calls where the probability is lower than
a certain threshold as potential bugs.

Another important type of relation on arguments is the
constraint on a single argument, e.g., an argument is ex-
pected to be a format string. When such constraints exist
on well-known APIs like printf(), they can be checked
by compilers. However, a compiler cannot check user-
defined functions that expect a format string argument.

To capture relations on arguments, we define the con-
text function argRelationContexts as shown in Figure 6. It
is also straightforward to handle the format string check
by extending the definition with a format check as a pair
relation, such as (−1, i), where -1 indicates that the pair
is a special check and i denotes the ith argument that is
under consideration for a format check.

3.2.3 Constrained Causal Relationships

Causal relationships, also known as the a-b pattern,
are common in API usage, such as lock/unlock and
malloc/free. Past research [18, 29] only focuses on find-
ing “direct” causal relationships, that is, no context con-
straint between two API calls. In practice, however, there
are many constrained causal relationships as well. The
conditional synchronization primitives shown in Figure 8
are one such example. In this case, there is a causal rela-
tionship between mutex_trylock() and mutex_unlock()
only when mutex_trylock() returns a non-zero value.

6

USENIX Association 25th USENIX Security Symposium 369

1 // @drivers/media/usb/pvrusb2/pvrusb2-context.c:194
2 // in Linux v4.5-rc4
3 int pvr2_context_global_init(void) {
4 pvr2_context_thread_ptr = \
5 kthread_run(pvr2_context_thread_func,
6 NULL,
7 "pvrusb2-context");
8 // APISan: Incorrect return value check
9 // @FUNC: kthread_run

10 // @CONS: >= (unsigned long)-4095
11 // < (unsigned long)-4095
12 ⋆ return (pvr2_context_thread_ptr ? 0 : -ENOMEM);
13 }

Figure 7: Incorrect handling of a return value in Linux found
by APISAN. kthread_run() returns a pointer to task_struct
upon success or returns an error code upon failure. Because of
incorrect handling of return values, this function always returns
0, i.e., success, even in the case of error.

Both direct and constrained causality relationships can
be effectively captured in the APISAN framework by
defining a parametric context function causalityContexts⟨r̄⟩
shown in Figure 6, which extracts all pairs of API calls
with r̄ as the context constraints between them. Concep-
tually, the parameter r̄ is obtained by enumerating all
constraints on return values from all symbolic execution
traces. In practice, however, we only check r̄ when neces-
sary, for example, we only check constraints on the return
value of f() after a call to f().

3.2.4 Implicit Pre- and Post-Conditions

In many cases, there are hidden assumptions before
or after calling APIs, namely, implicit pre- and post-
conditions. For example, the memory allocation APIs
assume that there is no integer overflow on the argu-
ment passed as allocation size, which implies that there
should be a proper check before the call. Similarly,
SSL_get_verify_result(), an OpenSSL API which ver-
ifies the certificate presented by the peer, is meaning-
ful only when SSL_get_peer_certificate() returns a
non-NULL certificate of a peer, though which could
happen either before or after SSL_get_verify_result().
So the validity check of a peer certificate returned by
SSL_get_peer_certificate() is an implicit pre- or post-
condition of SSL_get_verify_result().

Similar to the context checking of causal relationships,
we define a parametric context function conditionContexts⟨r̄⟩
shown in Figure 6, to capture implicit pre- and post-
conditions of an API call. Here, the parameter r̄ serves
as the pre-condition, and the post-condition is extracted
along with the called API.

3.3 Ranking Semantic Disbeliefs
After collecting the API usage patterns discussed above,
APISAN statistically infers the majority usage patterns
for each API function under each context. This com-
putation is described in detail in Figure 5. Intuitively,

1 // @kernel/workqueue.c:1977
2 // in Linux v4.5-rc4
3 static bool manage_workers(struct worker *worker)
4 {
5 struct worker_pool *pool = worker->pool;
6 if (!mutex_trylock(&pool->manager_arb))
7 return false;
8 pool->manager = worker;
9 maybe_create_worker(pool);

10 pool->manager = NULL;
11 mutex_unlock(&pool->manager_arb);
12 return true;
13 }

Figure 8: An example usage of conditional locking in Linux.
mutex_trylock() returns non-zero value when a lock is ac-
quired. So mutex_unlock() is necessary only in this case.

APISAN labels an API usage pattern as majority (i.e.,
likely correct usage) if its occurrence ratio is larger than
a threshold θ . In our experience, this simple approach is
quite effective, though more sophisticated statistical ap-
proaches could be further applied. Each call to a function
that deviates from its majority usage pattern is reported
as a potential bug.

Since our approach is probabilistic in nature, a bug re-
port found by APISAN might be a false alarm. APISAN
ranks bug reports in decreasing order of their likelihood of
being bugs, so that the most likely bugs have the highest
priority to be investigated. Based on the observation that
the more the majority patterns repeat, the more confident
we are that these majority patterns are correct specifica-
tions, APISAN uses the ratio of majority patterns over
“buggy” patterns as a measure of the likelihood. In addi-
tion, APISAN can also adjust the ranking with domain-
specific knowledge about APIs. For example, if an API
name contains a sub-string alloc, which indicates that it
is very likely to handle memory allocation, we can cus-
tomize APISAN to give more weight for its misuse in the
return value checking.

4 Checking API Misuses

In this section, we demonstrate how inferred semantic
beliefs described in the previous section can be used to
find API misuses. In particular, we introduce eight cases,
which use API-specific knowledge for more precise rank-
ing and deeper semantic analysis.

4.1 Checking SSL/TLS APIs
A recent study shows that SSL/TLS APIs are very error-
prone—especially, validating SSL certificates is “the most
dangerous code in the world” [22]. To detect their incor-
rect use, specialized checkers that rely on hand-coded
semantic correctness have been proposed [22, 26].

In APISAN, we easily created a SSL/TLS checker
based on the constraints of return values and implicit
pre- and post-conditions without manually coding seman-

7

370 25th USENIX Security Symposium USENIX Association

1 // @librabbitmq/amqp_openssl.c:180
2 // in librabbitmq v0.8
3 static int
4 amqp_ssl_socket_open(void *base, const char *host,
5 int port, struct timeval *timeout) {
6 // APISan: Missing implicit condition
7 // @FUNC : SSL_get_verify_result
8 // @CONS : == X509_V_OK
9 // @COND : SSL_get_peer_certificate != NULL

10 + cert = SSL_get_peer_certificate(self->ssl);
11 result = SSL_get_verify_result(self->ssl);
12 - if (X509_V_OK != result) {
13 + if (!cert || X509_V_OK != result) {
14 goto error_out3;
15 }
16 }

Figure 9: Incorrect use of OpenSSL API found in
librabbitmq, a message queuing protocol library, by
APISAN. SSL_get_verify_result() always returns
X509_V_OK if there is no certificate (i.e., !cert). So
SSL_get_peer_certificate() needs to be validated before or
after calling SSL_get_verify_result().

tic correctness. In practice, as we described in §3.2.4,
the sequence of API calls and relevant constraints to
validate SSL certificates can be captured by using im-
plicit pre- and post-conditions. For example, Figure 9
shows that APISAN successfully inferred valid usage of
SSL_get_verify_result() and discovered a bug.

4.2 Checking Integer Overflow
Integer overflows remain a very important threat despite
extensive research efforts for checking them. Checkers
have to deal with two problems: (1) whether there is a
potential integer overflow, and (2) whether such a po-
tential integer overflow is exploitable. KINT [45], the
state-of-the-art integer security checker, relies on scal-
able static analysis to find potential integer overflows. To
decide exploitability, KINT relies on users’ annotations
on untrusted data source and performs taint analysis to
decide whether untrusted sources are related to an integer
overflow. But if annotations are missing, KINT may miss
some bugs.

Instead of annotating untrusted sources, APISAN in-
fers untrusted sinks to decide that an integer overflow has
security implications. The background belief is “check-
ing sinks implies that such sinks are untrusted.” APISAN
considers APIs with arguments that are untrusted sinks as
integer overflow-sensitive APIs. To infer whether an API
is integer overflow-sensitive, the checker extracts all func-
tion calls whose arguments have arithmetic operations
that can result in integer overflow. The checker classi-
fies such function calls into three categories: (1) correct
check, (2) incorrect check, and (3) missing check. If an
argument has a constraint that prevents integer overflow,
then it is a correct check. Determining potential integer
overflow is straightforward because APISAN maintains
a numerical range for each symbolic variable. If such a
constraint cannot prevent integer overflow, then it is an

1 // @fs/ext4/resize.c:193
2 // in Linux v4.5-rc4
3 static struct ext4_new_flex_group_data
4 *alloc_flex_gd(unsigned long flexbg_size)
5 {
6 if (flexbg_size >=
7 UINT_MAX / sizeof(struct ext4_new_flex_group_data))
8 goto out2;
9 flex_gd->count = flexbg_size;

10 // APISan: Incorrect integer overflow check
11 // @CONS: flexbg_size < UINT_MAX / 20
12 // @EXPR: flexbg_size * 40
13 flex_gd->groups =
14 kmalloc(sizeof(struct ext4_new_group_data) *
15 flexbg_size, GFP_NOFS);
16 }

Figure 10: An integer overflow vulnerability found in Linux by
APISAN. Since struct ext4_new_group_data is larger than
struct ext4_new_flex_group_data, previous overflow check
can be bypassed. Interestingly, this bug was previously found
by KINT and already patched [8], but APISAN found the patch
is actually incorrect.

incorrect check. Finally, if there is no constraint, then it
is a missing check. The checker concludes that an API
is more integer overflow-sensitive if the ratio of correct
checks over total checks is higher. The checker gives
a higher rank to incorrect checks followed by missing
checks. For example, Figure 10 shows an integer over-
flow vulnerability found by APISAN.

4.3 Checking Memory Leak
A memory leak can be represented as a causal relation-
ship between memory allocation and free functions. As
Figure 1 shows, APISAN can infer a constrained causal
relation between such a pair of functions, which may not
be captured as a direct causal relation. When a function
that is presumed to be a free function is not called follow-
ing a function that is presumed to be the corresponding
allocation function, it is reported as a memory leak with
a higher rank. In this manner, APISAN effectively cap-
tures typical usage patterns of memory allocation and free
routines to report potential memory leaks.

4.4 Checking Lock and Unlock
Similar to checking memory leaks, lock checking is based
on a constrained causal relationship between lock and un-
lock functions inferred by APISAN. It gives a higher rank
to cases where there are missing unlock function calls in
some of the paths. For example, Figure 11 shows that
there is one missing clk_prepare_unlock() call among
two symbolic execution paths.

4.5 Checking NULL Dereference
NULL dereference can happen by accessing a pointer re-
turned by a memory allocation function, such as malloc()
and kmalloc(), without validation. Checking NULL

8

USENIX Association 25th USENIX Security Symposium 371

1 // @drivers/clk/clk.c:2672
2 // in Linux v4.5-rc4
3 void clk_unregister(struct clk *clk) {
4 clk_prepare_lock();
5 if (clk->core->ops == &clk_nodrv_ops) {
6 pr_err("%s: unregistered clock: %s\n", __func__,
7 clk->core->name);
8 // APISan: Missing clk_prepare_unlock()
9 // @FUNC: clk_prepare_lock

10 // @CONS: None
11 // @POST: clk_prepare_unlock
12 return;
13 }
14 clk_prepare_unlock();
15 }

Figure 11: A missing unlock bug in Linux found by APISAN.
It shows a common pattern of violating a causal relation.

dereference is based on the return value inference of
APISAN. It collects how frequently the return value of
a function is compared against NULL. Based on this in-
formation, it can find missing NULL checks. In addition,
it gives a higher rank to cases where the function name
contains common keywords for allocation such as alloc
or new.

4.6 Checking Return Value Validation
Checking a return value of a function properly is more
important than checking a return value itself. If the return
value is incorrectly checked, the caller is likely to believe
that the callee succeeded. Moreover, it is quite usual that
incorrect checks fail only in rare cases, so that finding
such incorrect checks is much more difficult than com-
pletely omitted checks. APISAN can find bugs of this
kind, such as the one shown in Figure 7, by comparing
constraints of return value checks.

4.7 Checking Broken Argument Relation
We can find potential bugs by inferring and finding broken
relations between arguments. However, detecting a bro-
ken relation does not mean that it is always a bug, because
there might be an implicit relation between two argu-
ments that cannot be captured by APISAN (e.g., complex
pointer aliasing of the buffer). This lack of information
is complemented by a ranking policy that incorporates
domain-specific knowledge, for example, a broken argu-
ment relation is ranked higher if either argument has a
sizeof() operator.

4.8 Checking Format String
Incorrect use of format strings is one frequent source of
security vulnerabilities [39]. Modern compilers (e.g., gcc)
give compile-time warnings for well-known APIs such
as printf(). However, in the case of programs that have
their own printf-like functions (e.g., PHP), compilers
cannot detect such errors.

To infer whether a function argument is a format string,
we use a simple heuristic: if the majority of symbolic ex-
pressions for an argument is a constant string and contains
well-known format codes (e.g, %s), then the argument is
considered as a format string. For the cases where a sym-
bolic variable is used as a format string argument, the
corresponding API calls will be considered as potential
bugs. Similarly, domain-specific knowledge can be ap-
plied as well. Bug reports of an API whose name contains
a sub-string print is ranked higher, since it indicates that
the API is very likely to take a format string as an argu-
ment.

5 Implementation

APISAN is implemented in 9K lines of code (LoC) as
shown in Table 1: 6K of C/C++ for generating symbolic
execution traces, which is based on Clang 3.6, and 3K of
Python for checkers and libraries. We empirically chose
a threshold value of 0.8 for deciding whether to label an
API usage pattern as majority. Since APISAN ranks all
reports in order of bug likelihood, however, the result is
not sensitive to the threshold value in that the ordering of
the top-ranked reports remains the same.

Component Lines of code

Symbolic database generator 6,256 lines of C/C++
APISAN Library 1,677 lines of Python
Checkers 1,047 lines of Python

Total 8,980 lines of code

Table 1: Components and lines of code of APISAN.

6 Evaluation

To evaluate APISAN, this section attempts to answer the
following questions:

• How effective is APISAN in finding previously un-
known API misuses? (§6.1)

• How easy is APISAN to use by end-users and
checker developers? (§6.2)

• How reasonable is APISAN’s relaxed symbolic exe-
cution in finding bugs? (§6.3)

• How effective is APISAN’s approach in ranking
bugs? (§6.4)

• How effective is APISAN’s approach compared to
manual checking? (§6.5)

6.1 New Bugs
We applied APISAN to Linux v4.5-rc4, OpenSSL 1.1.0-
pre3-dev, PHP 7.0, Python 3.6, and all 1,204 debian
packages using the OpenSSL library. APISAN gener-
ated 40,006 reports in total, and we analyzed the reports

9

372 25th USENIX Security Symposium USENIX Association

Program Module API misuse Impact Checker #bugs S.

Linux cifs/cifs_dfs_ref.c heap overflow code execution args 1 ✓
xenbus/xenbus_dev_frontend.c missing integer overflow check code execution intovfl 1 ✓
ext4/resize.c incorrect integer overflow check code execution intovfl 1 ✓
tipc/link.c missing tipc_bcast_unlock() deadlock cpair 1 ✓
clk/clk.c missing clk_prepare_unlock() deadlock cpair 1 ✓
hotplug/acpiphp_glue.c missing pci_unlock_rescan_remove() deadlock cpair 1 ✓
usbvision/usbvision-video.c missing mutex_unlock() deadlock cpair 1 ✓
drm/drm_dp_mst_topology.c missing drm_dp_put_port() DoS cpair 1 ✓
affs/file.c missing kunmap() DoS cpair 1 ✓
acpi/sysfs.c missing kobject_create_and_add() check system crash rvchk 1 ✓
cx231xx/cx231xx-417.c missing kmalloc() check system crash rvchk 1 ✓
qxl/qxl_kms.c missing kmalloc() check system crash rvchk 1 P
chips/cfi_cmdset_0001.c missing kmalloc() check system crash rvchk 1 ✓
ata/sata_sx4.c missing kzalloc() check system crash rvchk 1 ✓
hsi/hsi.c missing kzalloc() check system crash rvchk 2 ✓
mwifiex/sdio.c missing kzalloc() check system crash rvchk 2 ✓
usbtv/usbtv-video.c missing kzalloc() check system crash rvchk 1 ✓
cxgb4/clip_tbl.c missing t4_alloc_mem() check system crash rvchk 1 ✓
devfreq/devfreq.c missing devm_kzalloc() check system crash rvchk 2 ✓
i915/intel_dsi_panel_vbt.c missing devm_kzalloc() check system crash rvchk 1 ✓
gpio/gpio-mcp23s08.c missing devm_kzalloc() check system crash rvchk 1 ✓
drm/drm_crtc.c missing drm_property_create_range() check system crash rvchk 13 ✓
gma500/framebuffer.c missing drm_property_create_range() check system crash rvchk 1 ✓
emu10k1/emu10k1_main.c missing kthread_create() check system crash rvchk 1 ✓
m5602/m5602_s5k83a.c missing kthread_create() check system crash rvchk 1 ✓
hisax/isdnl2.c missing skb_clone() check system crash rvchk 1 ✓
qlcnic/qlcnic_ctx.c missing qlcnic_alloc_mbx_args() check system crash rvchk 1 ✓
xen-netback/xenbus.c missing vzalloc() check system crash rvchk 1 ✓
i2c/ch7006_drv.c missing drm_property_create_range() check system crash rvchk 1 ✓
fmc/fmc-fakedev.c missing kmemdup() check system crash rvchk 1 P
rc/igorplugusb.c missing rc_allocate_device() check system crash rvchk 1 ✓
s5p-mfc/s5p_mfc.c missing create_singlethread_workqueue() check system crash rvchk 1 P
fusion/mptbase.c missing create_singlethread_workqueue() check system crash rvchk 1 P
nes/nes_cm.c missing create_singlethread_workqueue() check system crash rvchk 1 ✓
dvb-usb-v2/mxl111sf.c missing mxl111sf_enable_usb_output() check malfunction rvchk 2 ✓
misc/xen-kbdfront.c missing xenbus_printf() check malfunction rvchk 1 ✓
pvrusb2/pvrusb2-context.c incorrect kthread_run() check malfunction rvchk 1 P
agere/et131x.c incorrect drm_alloc_coherent() check malfunction rvchk 1 ✓
drbd/drbd_receiver.c incorrect crypto_alloc_hash() check malfunction rvchk 1 ✓
mlx4/mr.c incorrect mlx4_alloc_cmd_mailbox() check maintanence rvchk 1 ✓
usnic/usnic_ib_qp_grp.c incorrect kzalloc() check maintanence rvchk 2 ✓
aoe/aoecmd.c incorrect kthread_run() check maintanence rvchk 1 ✓
ipv4/tcp.c incorrect crypto_alloc_hash() check maintanence rvchk 1 ✓
mfd/bcm590xx.c incorrect i2c_new_dummy() check maintanence rvchk 1 P
usnic/usnic_ib_main.c incorrect ib_alloc_device() check maintanence rvchk 1 ✓
usnic/usnic_ib_qp_grp.c incorrect usnic_fwd_dev_alloc() check maintanence rvchk 1 ✓

OpenSSL dsa/dsa_gen.c missing BN_CTX_end() DoS cpair 1 ✓
apps/req.c missing EVP_PKEY_CTX_free() DoS cpair 1 ✓
dh/dh_pmeth.c missing OPENSSL_memdup() check system crash rvchk 1 ✓

PHP standard/string.c missing integer overflow check code execution intovfl 3 ✓
phpdbg/phpdbg_prompt.c format string bug code execution args 1 ✓

Python Modules/zipimport.c missing integer overflow check code execution intovfl 1 ✓

rabbitmq librabbitmq/amqp_openssl.c incorrect SSL_get_verify_result() use MITM cond 1 ✓

hexchat common/server.c incorrect SSL_get_verify_result() use MITM cond 1 ✓

lprng auth/ssl_auth.c incorrect SSL_get_verify_result() use MITM cond 1 P

afflib lib/aftest.cpp missing BIO_new_file() check system crash rvchk 1 ✓
tools/aff_bom.cpp missing BIO_new_file() check system crash rvchk 1 ✓

Table 2: List of new bugs discovered by APISAN. We sent patches of all 76 new bugs; 69 bugs have been already confirmed and
applied by corresponding developers (marked ✓in the rightmost column); 7 bugs (marked P in the rightmost column) have not been
confirmed yet. APISAN analyzed 92 million LoC and found one bug per 1.2 million LoC.

10

USENIX Association 25th USENIX Security Symposium 373

according to ranks. As a result, APISAN found 76 pre-
viously unknown bugs: 64 in Linux, 3 in OpenSSL, 4 in
PHP, 1 in Python, and 5 in the debian packages (see Ta-
ble 2 for details). We created patches for all the bugs and
sent them to the mainline developers of each project. 69
bugs have been confirmed by the developers and most
have already been applied to the mainline repositories.
For remaining, 7 bugs, we are waiting for their response.
Security implications. All of the bugs we found have
serious security implications: e.g., code execution, sys-
tem crash, MITM, etc. For a few bugs including integer
overflows in Python(CVE-2016-5636 [13]) and PHP, we
could even successfully exploit them by chaining ROP
gadgets [2, 27]. In addition, we found that the vulnerable
Python module is in the whitelist of Google App Engine
and reported it to Google.

6.2 Usability

End-users. APISAN can be seamlessly integrated into
an existing build process. Users can generate symbolic
execution databases by simply invoking the existing build
command, e.g., make, with apisan.
1 # generate DB
2 $ apisan make

With the database, users can run various checkers, which
extract semantic beliefs from the database and locate po-
tential bugs in order of their likelihood. For eight types of
API misuses described at §4, we developed five checkers:
return value checker (rvchk), causality checker (cpair),
argument relation checker (args) implicit pre- and post-
condition checker (cond), and integer overflow checker
(intovfl).
1 # run a causality checker
2 $ apisan --checker=cpair
3 @FUNC: EVP_PKEY_keygen_init
4 @CONS: ((-2147483648, 0),)
5 @POST: EVP_PKEY_CTX_free
6 @CODE: {’req.c:1745’}
7 ...

APISAN can also be run against multiple databases
generated by different project code repositories. For ex-
ample, users can infer semantic beliefs from multiple
programs (e.g., all packages using libssl) and similarly
get a list of ranked, potential bugs. This is especially
useful for relatively young projects, which lack sufficient
API usages.
1 # check libssl misuses by using rabbitmq and hexchat repos
2 $ apisan --checker=cond --db=rabbitmq,hexchat

Checker developers. Developing specialized checkers
is easy; APISAN provides a simple interface to access
symbolic execution databases. Each of our checkers is
around 200 lines of Python code as shown in §5. Provid-
ing API-specific knowledge such as manual annotations
can be easily integrated in the Python script.

UC-KLEE APISAN

Approach
Loop best effort once
Inter-procedural yes no
Constraint SAT numerical range

Bugs
(OpenSSL)

Memory leak 5 7 (2⋆)
NULL dereference - 11
Uninitialized data 6 -

Table 3: Comparison between UC-KLEE and APISAN in ap-
proaches and bugs found in OpenSSL v1.0.2, which is used
in UC-KLEE’s evaluation [37]. APISAN found 7 memory leak
bugs and 11 NULL dereference vulnerabilities; two memory
leak bugs (marked ⋆) were previously unknown, and our two
patches have been applied to the mainline repository.

6.3 Effect of Relaxed Symbolic Execution
One of our key design decisions is to use relaxed sym-
bolic execution for scalability at the cost of accuracy. To
evaluate the effect of this design decision, we compare
APISAN against UC-KLEE, which performs best-effort
accurate symbolic execution including inter-procedural
analysis and best-effort loop unrolling. For compari-
son, we ran UC-KLEE and APISAN on OpenSSL v1.0.2,
which is the version used for UC-KLEE’s evaluation. Ta-
ble 3 shows a summary of the result.

APISAN found 11 NULL dereference bugs caused
by missing return value checks of OPENSSL_malloc(),
which are already fixed in the latest OpenSSL. Also,
APISAN found seven memory leak bugs related to var-
ious APIs, such as BN_CTX_new(), BN_CTX_start(), and
EVP_PKEY_CTX_new(), without any annotations. Two of
these bugs were previously unknown; we sent patches
which were confirmed and applied to the OpenSSL main-
line. UC-KLEE found five memory leak bugs related to
OPENSSL_malloc() with the help of users’ annotations.

Interestingly, there is no common bug between
UC-KLEE and APISAN. UC-KLEE cannot find the bugs
that APISAN found because of function pointers, which
are frequently used for polymorphism, and path explo-
sion in complex cryptographic operations. APISAN does
not discover the five memory bugs that UC-KLEE found
because of diverse usages of OpenSSL_malloc(). Also,
APISAN could not find any uninitialized memory bugs
since it does not track memory accesses.

6.4 Ranking Effectiveness
Another key design aspect of APISAN is its ranking
scheme. In this section, we investigate two aspects of
our ranking scheme: (1) where true-positives are located
in bug reports and (2) what are typical reasons of false
positives. To this end, we analyzed the results of the
return value checker (rvchk) on Linux v4.5-rc4.
True positives. If true-positive reports are highly ranked,
developers can save effort in investigating bug reports. An

11

374 25th USENIX Security Symposium USENIX Association

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

C
um

ul
at

iv
e

tr
ue

-p
os

iti
ve

bu
gs

Reports sorted by ranking

Figure 12: Cumulative true-positive bugs in Linux v4.5-rc4
reported by our return value checker (rvchk). We investigated
top 445 bug reports out of 2,876 reports in total. Most new bugs
are highly ranked.

author audited the top 445 reports out of 2,876 reports for
two days and found 54 new bugs. As shown in Figure 12,
most new bugs are highly ranked. This shows that our
ranking scheme is effective to save developers’ effort by
letting them investigate the highest-ranked reports first.
False positives. To understand what causes false posi-
tives, we manually investigated all false positive cases in
the top 445 reports, and found a few frequent reasons: di-
verse patterns of return value checking, wrapper functions
delegating return value checking to callers, and semanti-
cally correct, but rare patterns.

Some kernel APIs, such as snd_pcm_new() [40], return
zero on success or a negative error code on failure. In this
case, there are two valid ways to check for error: compari-
son against zero (i.e., == 0) or negative value (i.e., < 0). If
the majority of code follows one pattern (snd_pcm_new()
<0), APISAN flags the minor correct cases as bugs.

Some wrapper functions delegate return value checking
to their callers. APISAN treats these cases as if return
value checking is missing because APISAN does not per-
form inter-procedural analysis.

If a return value of a function can have multiple mean-
ings, APISAN can decide the rare cases as bugs. For ex-
ample, most functions use strcmp() to test if two strings
are equivalent (i.e., == 0). But for the rare cases, which
in fact use strcmp() to decide alphabetical order of two
strings (i.e., < 0), APISAN generates false alarms.

6.5 Comparison with Manual Auditing
The other extreme to automatic bug finding is manual
auditing by developers. Manual auditing would be the
most accurate but is not scalable in size and cost. We
compared APISAN with manual auditing to grasp how
accurate APISAN is compared to the ground truth.

To this end, we manually inspected memory allocation
and free functions in OpenSSL v1.1.0-pre3-dev because
OpenSSL faithfully follows naming conventions: alloca-
tion functions end with _new or alloc, and free functions
end with _free.

1 // @ext/standard/string.c:877
2 // in PHP v5.5.9-rc1
3 PHP_FUNCTION(wordwrap) {
4 if (linelength > 0) {
5 chk = (int)(textlen/linelength + 1);
6 // no integer overflow
7 newtext = safe_emalloc(chk, \
8 breakcharlen, textlen + 1);
9 alloced = textlen + chk * breakcharlen + 1;

10 }
11 }

1 // @ext/standard/string.c:946
2 // in PHP v7.0.0-rc1
3 PHP_FUNCTION(wordwrap) {
4 if (linelength > 0) {
5 chk = (size_t)(ZSTR_LEN(text)/linelength + 1);
6 // introduce a new integer overflow
7 ⋆ newtext = zend_string_alloc(\
8 ⋆ chk * breakchar_len + ZSTR_LEN(text), 0);
9 alloced = ZSTR_LEN(text) + chk * breakchar_len + 1;

10 }
11 }

Figure 13: An integer overflow bug introduced by changing
string allocation API in PHP. While the old string allocation
API, safe_emalloc(), internally checks integer overflow, the
new API, zend_string_alloc() has no such check.

To detemine how APISAN accurately infers the cor-
rect check of return value, we counted how many alloca-
tion functions are inferred to need NULL checking by
APISAN. Among 294 allocation functions, APISAN
successfully figured out that 164 allocation functions
require NULL checking. To assess the accuracy of
APISAN’s causal relation inference, we counted how
many allocation-free functions are inferred as causal re-
lations by APISAN. APISAN found 37 pairs out of 187
such causal relations.

The inaccuracy of APISAN mainly stems from a small
number of API usages and limited symbolic execution.
For example, if allocated memory is freed by a callback
function, APISAN fails to detect the causal relation.

6.6 Performance
Our experiments are conducted on a 32-core Xeon server
with 256GB RAM. Constructing a symbolic database for
Linux kernel, a one-time task for analysis, takes roughly
eight hours and generates 300 GB database. Each checker
takes approximately six hours. Thus, APISAN can ana-
lyze a large system in a reasonable time bound.

6.7 Our Experience with APISAN

While investigating the bug reports generated by
APISAN, we found several interesting bugs, which were
introduced while fixing bugs or refactoring code to re-
duce potential bugs. We believe that it shows that bug
fixing is the essential activity during the entire life cycle
of any software, and automatic bug finding tools such
as APISAN should be scalable enough for them to be
integrated into the daily software development process.

12

USENIX Association 25th USENIX Security Symposium 375

Incorrect bug fixes. Interestingly, APISAN found an
incorrect bug patch, which was found and patched by
KINT [45]. The bug was a missing integer overflow check
in ext4 file system, but the added condition was incor-
rect [8]. Also, the incorrect patch was present for almost
four years, showing the difficulty of finding such bugs that
can be reproduced only under subtle conditions. Since
APISAN gives a higher rank for incorrect condition check
for integer overflow, we easily found this bug.
Incorrect refactoring. While investigating PHP integer
overflow bugs in Figure 13, we found that the bug was
newly introduced when changing string allocation APIs;
the new string allocation API, zend_string_alloc(),
omits an internal integer overflow check, making its
callers vulnerable to integer overflow.

7 Discussion

In this section, we discuss the limitations of APISAN’s
approach and discuss potential future directions to miti-
gate the limitations.
Limitations. APISAN does not aim to be sound nor
complete. In fact, APISAN has false positives (§6.4) as
well as false negatives (§6.3, §6.5).
Replacing manual annotations. One practical way
to reduce false negatives is to run multiple checkers on
the same source code. In this case, APISAN’s inference
results can be used to provide missing manual annotations
required by other checkers. For example, APISAN can
provide inferred integer overflow-sensitive APIs to KINT
and inferred memory allocation APIs to UC-KLEE.
Interactive ranking and filtering. In our experience,
the false positive reports of APISAN are repetitive since
incorrect inference of an API can incur many false posi-
tive reports. Therefore, we expect that incorporating the
human feedback of investigation into APISAN’s infer-
ence and ranking will significantly reduce false positives
and developers’ investigation efforts.
Self regression. As we showed in §6.7, bug fixing and
refactoring can introduce new bugs. APISAN’s approach
is also a good fit for self-regression testing by comparing
two versions of bug reports and giving higher priorities to
changed results.

8 Related Work

In this section, we survey related work in bug finding,
API checking, and semantic inference.
Finding bugs. Meta compilation [3, 17, 25] per-
forms static analysis integrated with compilers to en-
force domain-specific rules. RacerX [16] proposed flow-
sensitive static analysis for finding deadlocks and race

conditions. LCLint [20] detects mismatches between
source code and user-provided specifications. Sparse [41]
is a static analysis tool to find certain types of bugs (e.g.,
mixing pointers to user and kernel address spaces, and
incorrect lock/unlock) in the Linux kernel based on devel-
opers’ annotations. Model checking has been applied to
various domains including file systems [24, 38, 48, 49],
device drivers [5], and network protocols [34]. A frequent
obstacle in applying these techniques is the need to spec-
ify semantic correctness, e.g., domain-specific rules and
models. In contrast, APISAN statistically infers seman-
tic correctness from source code; it is generic without
requiring models or annotations, but it could incur higher
false positives than techniques that use precise semantic
correctness information.

Checking API usages. SSLint [26] is a static analysis
tool to find misuses of SSL/TLS APIs based on prede-
fined rules. MOPS [9] checks source code against security
properties, i.e., rules of safe programming practices. Jo-
ern [46] models common vulnerabilities into graph traver-
sals in a code property graph. Unlike these solutions,
which are highly specialized for a certain domain (or an
API set) and rely on hand-coded rules, APISAN is gener-
ally applicable to any domain without manual effort.

Inferring semantics. Engler et al. [18] find deviations
from the results of static analysis. Juxta [32] finds devia-
tions by comparing multiple file systems, which follow
similar specifications. APISAN’s goal is to find devia-
tions in API usages under rich symbolic contexts. Dy-
naMine [30] and VCCFinder [36] automatically extract
bug patterns from source code repositories by analyz-
ing bug patches. These approaches would be useful in
APISAN as well.

Automatic generation of specifications has been ex-
plored by Kremenek et al. [28] for resource allocation, by
PRMiner [29] for causal relations, by APIMiner [1] for
partial ordering of APIs, by Daikon [19] from dynamic
execution traces, by Taghdiri et al. [43] for structural
properties, by PRIME [33] for temporal specifications, by
Nguyen et al. [35] for preconditions of APIs, by Gruska
et al. [23] for sequences of functions, by JIGSAW [44] for
resource accesses, by MERLIN [31] for information flow
specifications, and by Yamaguchi et al. [47] for taint-style
vulnerabilities. These approaches focus on extracting one
aspect of the specification. Also, some of them [1, 43] are
not scalable because of the complexity of the algorithms
used. On the other hand, APISAN focuses on extracting
four orthogonal aspects of API usages and using them in
combination to find complex bug patterns.

13

376 25th USENIX Security Symposium USENIX Association

9 Conclusion

We proposed APISAN, a fully automated system for find-
ing API usage bugs by inferring and contrasting semantic
beliefs about API usage from source code. We applied
APISAN to large, widely-used software, including the
Linux kernel, OpenSSL, PHP, and Python, composed
of 92 million lines of code. We found 76 previously
unknown bugs of which 69 bugs have already been con-
firmed. Our results show that APISAN’s approach is
effective in finding new bugs and is general enough to
extend easily to custom API checkers based on APISAN.

10 Acknowledgment

We thank the anonymous reviewers for their helpful
feedback. This work was supported by DARPA un-
der agreement #15-15-TC-FP-006, #HR0011-16-C-0059
and #FA8750-15-2-0009, NSF awards #CNS-1563848,
#DGE-1500084, #1253867 and #1526270, ONR N00014-
15-1-2162, ETRI MSIP/IITP[B0101-15-0644], and NRF
BSRP/MOE[2015R1A6A3A03019983]. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copy-
right thereon.

References
[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as

partial orders from source code: from usage scenarios to specifica-
tions. In Proceedings of the 6th joint meeting of European Software
Engineering Conference (ESEC) and the ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering (FSE), Dubrovnik,
Croatia, Sept. 2007.

[2] An integer overflow bug in php_str_to_str_ex() led arbitrary
code execution. https://bugs.php.net/bug.php?id=71450,
2016.

[3] K. Ashcraft and D. Engler. Using programmer-written compiler
extensions to catch security holes. In Proceedings of the 23rd IEEE
Symposium on Security and Privacy (Oakland), pages 143–160,
Oakland, CA, May 2002.

[4] T. Ball and S. Rajamani. The SLAM project: Debugging system
software via static analysis. In POPL, 2002.

[5] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. Mc-
Garvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough
static analysis of device drivers. In Proceedings of the ACM
EuroSys Conference, pages 73–85, Leuven, Belgium, Apr. 2006.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: automatically generating inputs of death. In Proceedings
of the 13th ACM Conference on Computer and Communications
Security, Alexandria, VA, Oct.–Nov. 2006.

[7] C. Cadar, D. Dunbar, D. R. Engler, et al. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation (OSDI), San Diego, CA, Dec.
2008.

[8] H. Chen. [PATCH] FS: ext4: fix integer overflow
in alloc_flex_gd(). http://lists.openwall.net/linux-
ext4/2012/02/20/42, 2012.

[9] H. Chen and D. Wagner. MOPS: an infrastructure for examin-
ing security properties of software. In Proceedings of the 9th
ACM Conference on Computer and Communications Security,
Washington, DC, Nov. 2002.

[10] H. Chen, D. Wagner, and D. Dean. Setuid demystified. In Pro-
ceedings of the 23rd IEEE Symposium on Security and Privacy
(Oakland), Oakland, CA, May 2002.

[11] H. Cui, G. Hu, J. Wu, and J. Yang. Verifying systems rules using
rule-directed symbolic execution. In Proceedings of the 18th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Houston, TX, Mar.
2013.

[12] CVE-2014-4113. http://www.cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-4113, 2014.

[13] CVE-2016-5636. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-5636, 2016.

[14] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program
verification in polynomial time. In PLDI’02, 2002.

[15] M. S. Dittmer and M. V. Tripunitara. The UNIX process identity
crisis: A standards-driven approach to setuid. In Proceedings
of the 21st ACM Conference on Computer and Communications
Security, Scottsdale, Arizona, Nov. 2014.

[16] D. Engler and K. Ashcraft. RacerX: effective, static detection
of race conditions and deadlocks. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP), Bolton
Landing, NY, Oct. 2003.

[17] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
rules using system-specific, programmer-written compiler exten-
sions. In Proceedings of the 4th Symposium on Operating Systems
Design and Implementation (OSDI), San Diego, CA, Oct. 2000.

[18] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems
code. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP), Chateau Lake Louise, Banff, Canada,
Oct. 2001.

[19] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynam-
ically discovering likely program invariants to support program
evolution. In Proceedings of the 21st International Conference on
Software Engineering (ICSE), Los Angeles, CA, USA, May 1999.

[20] D. Evans, J. Guttag, J. Horning, and Y. M. Tan. LCLint: A
tool for using specifications to check code. In Proceedings of
the 1994 ACM SIGSOFT Symposium on Foundations of Software
Engineering (FSE), New Orleans, Louisiana, USA, Dec. 1994.

[21] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
typestate verification in the presence of aliasing. ACM TOSEM,
17(2), 2008.

[22] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world: validating
SSL certificates in non-browser software. In Proceedings of the
19th ACM Conference on Computer and Communications Security,
Raleigh, North Carolina, Oct. 2012.

[23] N. Gruska, A. Wasylkowski, and A. Zeller. Learning from 6,000
projects: lightweight cross-project anomaly detection. In Proceed-
ings of the 2010 International Symposium on Software Testing and
Analysis (ISSTA), Trento, Italy, July 2010.

[24] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, and B. Liblit. EIO: Error handling is occasionally
correct. In Proceedings of the 6th Usenix Conference on File and
Storage Technologies (FAST), San Jose, California, USA, Feb.
2008.

[25] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language
for building system-specific, static analyses. In Proceedings of

14

USENIX Association 25th USENIX Security Symposium 377

the 2002 ACM SIGPLAN Conference on Programming Language
Design and Implementation, Berlin, Germany, June 2002.

[26] B. He, V. Rastogi, Y. Cao, Y. Chen, V. Venkatakrishnan, R. Yang,
and Z. Zhang. Vetting SSL usage in applications with SSLint. In
Proceedings of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2015.

[27] Heap overflow in zipimporter module. https://bugs.python.
org/issue26171, 2016.

[28] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler. From
uncertainty to belief: Inferring the specification within. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI), Seattle, WA, Nov. 2006.

[29] Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit
programming rules and detecting violations in large software code.
In Proceedings of the 10th European Software Engineering Con-
ference (ESEC) held jointly with 13th ACM SIGSOFT Symposium
on Foundations of Software Engineering (FSE), Lisbon, Portugal,
Sept. 2005.

[30] B. Livshits and T. Zimmermann. DynaMine: finding common er-
ror patterns by mining software revision histories. In Proceedings
of the 10th European Software Engineering Conference (ESEC)
held jointly with 13th ACM SIGSOFT Symposium on Foundations
of Software Engineering (FSE), Lisbon, Portugal, Sept. 2005.

[31] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee. Merlin:
Specification Inference for Explicit Information Flow Problems.
In Proceedings of the 2009 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, Dublin, Ireland,
June 2009.

[32] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-checking
semantic correctness: The case of finding file system bugs. In
Proceedings of the 25th ACM Symposium on Operating Systems
Principles (SOSP), Monterey, CA, Oct. 2015.

[33] A. Mishne, S. Shoham, and E. Yahav. Typestate-based semantic
code search over partial programs. In Proceedings of the 2012 An-
nual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Tucson, AZ, USA, Oct. 2012.

[34] M. S. Musuvathi, D. Park, D. Y. W. Park, A. Chou, D. R. Engler,
and D. L. Dill. CMC: A pragmatic approach to model checking
real code. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI), Boston, MA, Dec.
2002.

[35] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan. Mining pre-
conditions of APIs in large-scale code corpus. In Proceedings of
the 22nd ACM SIGSOFT Symposium on Foundations of Software
Engineering (FSE), Hong Kong, Sept. 2014.

[36] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck,
S. Fahl, and Y. Acar. VCCFinder: Finding potential vulnerabilities
in open-source projects to assist code audits. In Proceedings of
the 22nd ACM Conference on Computer and Communications

Security, Denver, Colorado, Oct. 2015.

[37] D. A. Ramos and D. Engler. Under-constrained symbolic exe-
cution: correctness checking for real code. In Proceedings of
the 24th Usenix Security Symposium (Security), Washington, DC,
Aug. 2015.

[38] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-
Dusseau, and A. C. Arpaci-Dusseau. Error propagation analysis
for file systems. In Proceedings of the 2009 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation,
pages 270–280, Dublin, Ireland, June 2009.

[39] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting
Format String Vulnerabilities with Type Qualifiers. In Proceedings
of the 10th Conference on USENIX Security Symposium - Volume
10, SSYM’01, Berkeley, CA, USA, 2001. USENIX Association.

[40] snd_pcm_new(). https://www.kernel.org/doc/htmldocs/
device-drivers/API-snd-pcm-new.html, 2016.

[41] Sparse - a Semantic Parser for C. https://sparse.wiki.
kernel.org/index.php/Main_Page, 2013.

[42] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Trans. Software
Eng., 12(1), 1986.

[43] M. Taghdiri and D. Jackson. Inferring specifications to detect
errors in code. In Proceedings of the 19th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE),
Linz, Austria, Sept. 2004.

[44] H. Vijayakumar, X. Ge, M. Payer, and T. Jaeger. JIGSAW: Pro-
tecting resource access by inferring programmer expectations. In
Proceedings of the 23rd Usenix Security Symposium (Security),
San Diego, CA, Aug. 2014.

[45] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek.
Improving integer security for systems with KINT. In Proceed-
ings of the 10th Symposium on Operating Systems Design and
Implementation (OSDI), Hollywood, CA, Oct. 2012.

[46] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and
discovering vulnerabilities with code property graphs. In Pro-
ceedings of the 35th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2014.

[47] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck. Automatic
inference of search patterns for taint-style vulnerabilities. In Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2015.

[48] J. Yang, P. Twohey, and Dawson. Using model checking to find
serious file system errors. In Proceedings of the 6th Symposium
on Operating Systems Design and Implementation (OSDI), pages
273–288, San Francisco, CA, Dec. 2004.

[49] J. Yang, C. Sar, and D. Engler. eXplode: A lightweight, general
system for finding serious storage system errors. In Proceedings
of the 7th Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 10–10, Seattle, WA, Nov. 2006.

15

378 25th USENIX Security Symposium USENIX Association

A Appendix
Function retvars(e) returns all ⟨ret, i⟩ variables in e, which is defined as
follows:

retvars(e) =

/0 if e ≡ n
/0 if e ≡ ⟨arg, i⟩
{⟨ret, i⟩} if e ≡ ⟨ret, i⟩
retvars(e′) if e ≡ uop e′

retvars(e1)∪ retvars(e2) if e ≡ e1 bop e2

Function argvars(e, t) returns all ⟨arg, i⟩ variables in e, consulting t to
recursively replace each ⟨ret, i⟩ variable by its associated function call
symbolic expression. It is defined as follows:

argvars(e, t)=

/0 if e ≡ n
{⟨arg, i⟩} if e ≡ ⟨arg, i⟩|ē′ |

j=1 argvars(ē′[j], t) if e ≡ ⟨ret, i⟩,where
t[i]≡ call∗ (ē′)

argvars(e′, t) if e ≡ uop e′

argvars(e1, t)∪argvars(e2, t) if e ≡ e1 bop e2

16

USENIX Association 25th USENIX Security Symposium 379

On omitting commits and committing omissions:
Preventing Git metadata tampering that (re)introduces software vulnerabilities

Santiago Torres-Arias† Anil Kumar Ammula‡, Reza Curtmola‡ , Justin Cappos†

santiago@nyu.edu aa654@njit.edu crix@njit.edu jcappos@nyu.edu

†New York University, Tandon School of Engineering
‡Department of Computer Science, New Jersey Institute of Technology

Abstract
Metadata manipulation attacks represent a new threat

class directed against Version Control Systems, such as
the popular Git. This type of attack provides inconsis-
tent views of a repository state to different developers,
and deceives them into performing unintended opera-
tions with often negative consequences. These include
omitting security patches, merging untested code into a
production branch, and even inadvertently installing soft-
ware containing known vulnerabilities. To make matters
worse, the attacks are subtle by nature and leave no trace
after being executed.

We propose a defense scheme that mitigates these at-
tacks by maintaining a cryptographically-signed log of
relevant developer actions. By documenting the state
of the repository at a particular time when an action is
taken, developers are given a shared history, so irregu-
larities are easily detected. Our prototype implementa-
tion of the scheme can be deployed immediately as it is
backwards compatible and preserves current workflows
and use cases for Git users. An evaluation shows that
the defense adds a modest overhead while offering sig-
nificantly stronger security. We performed responsible
disclosure of the attacks and are working with the Git
community to fix these issues in an upcoming version of
Git.

1 Introduction
A Version Control System (VCS) is a crucial compo-

nent of any large software development project, present-
ing to developers fundamental features that aid in the
improvement and maintenance of a project’s codebase.
These features include allowing multiple developers to
collaboratively create and modify software, the ability to
roll back to previous versions of the project if needed,
and a documentation of all actions, thus tying changes in
files to their authors. In this manner, the VCS maintains
a progressive history of a project and helps ensure the
integrity of the software.

Unfortunately, attackers often break into projects’
VCSs and modify the source code to compromise hosts
who install this software. When this happens, an at-
tacker can introduce vulnerable changes by adding (e.g.,
adding a backdoor), or removing certain elements from
a project’s history (e.g., a security patch) if he or she ac-
quires write access to the repository. By doing this, at-
tackers are usually able to compromise a large number
of hosts at once [42, 27, 13, 21, 15, 4, 45, 18, 44]. For
example, the Free Software Foundation’s repository was
controlled by hackers for more than two months, serv-
ing potentially backdoored versions of GNU software to
millions of users [16].

The existing security measures on VCSs, such as com-
mit signing and push certificates [19, 2], provide lim-
ited protection. While these mechanisms prevent an at-
tacker from tampering with the contents of a file, they do
not prevent an attacker from modifying the repository’s
metadata. Hence, these defenses fail to protect against
many impactful attacks.

In this work, we reveal several new types of attacks
against Git, a popular VCS. We collectively call these at-
tacks metadata manipulation attacks in which Git meta-
data is modified to provide inconsistent and incorrect
views of the state of a repository to developers. These
attacks can be thought of as reconcilable fork attacks be-
cause the attacker can cause a developer’s version of the
repository to be inconsistent just for a finite window of
time — only long enough to trick a developer into com-
miting the wrong action — and leave no trace of the at-
tack behind.

The impact of an attack of this nature can be substan-
tial. By modifying the right metadata, an attacker can
remove security patches, merge experimental code into a
production branch, withhold changes from certain users
before a release, or trick users and tools into installing
a different version than the one requested to the VCS.
To make matters worse, the attacker only requires a few
resources to achieve his or her malicious goals.

1

380 25th USENIX Security Symposium USENIX Association

We have submitted a vulnerability disclosure to CERT
and the GitHub security team describing the following
scenario: an attacker capable of performing a man-in-
the-middle attack between a GitHub [3] server and a de-
veloper using pip to install Django (a popular website
framework) can trick the developer into installing a vul-
nerable version simply by replacing one metadata file
with another. Even though Git verifies that the signature
in Git objects is correct, it has no mechanism to ensure
it has retrieved the correct object. This type of attack
enables a malicious party to strike any system that can
retrieve packages from Git repositories for installation,
including Node’s NPM [22], Python’s pip [11], Apache
Maven [34], Rust’s cargo [35], and OCaml’s OPAM [33].
As such, it could potentially affecting hundreds of thou-
sands of client devices.

To mitigate metadata manipulation attacks, we de-
signed and implemented a client-only, backwards-
compatible solution that introduces only minimal over-
head. By storing signed reference state and developer
information on the server, multiple developers are able
to verify and share the state of the repository at all times.
When our mechanism is in place, Git metadata manipula-
tion attacks are detected. We have presented these issues
to the Git developer community and prepared patches —
some of which are already integrated into Git — to fix
these issues in upcoming versions of Git.

In summary, we make the following contributions:

• We identify and describe metadata manipulation at-
tacks, a new class of attacks against Git. We show
these attacks can have a significant practical impact
on Git repositories.

• We design a defense scheme to combat metadata
manipulation attacks by having Git developers share
their perception of the repository state with their
peers through a signed log that captures their his-
tory of operations.

• We implement the defense scheme and study its effi-
ciency. An evaluation shows that it incurs a smaller
storage overhead than push certificates, one of Git’s
security mechanisms. If our solution is integrated
in Git, the network communication and end-to-end
delay overhead should be negligible. Our solution
does not require server side software changes and
can be used today with existing Git hosting solu-
tions, such as GitHub, GitLab, or Bitbucket.

2 Background and related work

2.1 Overview of Git
In order to understand how Git metadata manipulation

attacks take place, we must first define Git-specific termi-
nology, as well as some usage models of the tool itself.

Git is a distributed VCS that aids in the development
of software projects by giving each user a local copy
of the relevant development history, and by propagat-
ing changes made by developers (or their history) be-
tween such repositories. Essential to the version history
of code committed to a Git repository are commit ob-
jects, which contain metadata about who committed the
code, when it was committed, pointers to the previous
commit object, (the parent commit) and pointers to
the objects (e.g., a file) that contain the actual commit-
ted code.

Branches serve as “pointers” to specific commit ob-
jects, and to the development history that preceded each
commit. They are often used to provide conceptual sep-
aration of different histories. For example, a branch ti-
tled “update-hash-method” will only contain objects that
modify the hash method used in a project. When a de-
veloper adds a new commit to the commit chain pointed
to by a branch, the branch is moved forward.

Inside Git, branches are implemented using “refer-
ence” files, that only contain the SHA1 hash of a target
commit. The same format is used for Git tags, which are
meant to point to a static point in the project’s history.
Both tags and branches live in the .git/refs folder.

Git users commit changes to their local repositories,
and employ three main commands to propagate changes
between repositories: fetch, to retrieve commits by
other developers from a remote repository; merge, to
merge two changesets into a single history; and push,
to send local commits from a local repository to a re-
mote repository. Other common commands may consist
of two or more of these commands performed in conjunc-
tion (e.g., pull is both a fetch and a merge). Consider
the following example:

Alice is working on a popular software project and
is using Git to track and develop her application. Al-
ice will probably host a “blessed” copy of her repos-
itory in one provider (e.g., GitHub or Gitlab) for ev-
eryone to clone, and from which the application will
eventually be built. In her computer, she will keep a
clone (or copy) of the remote repository to work on a
new feature. To work on this feature, she will create
a new branch, #5-handle-unicode-filenames
that will diverge from the master branch from now on.
As she modifies files and updates the codebase, she com-
mits – locally – and the updates will be added to the new
branch in her local clone. Once Alice is done adding the
feature, she will push her local commits to the remote
server and request a colleague to review and merge her
changes into the master branch. When the changes are
merged, Alice’s commits will become part of the mas-
ter history and, on the next release cycle, they will be
shipped in the new version of the software.

2

USENIX Association 25th USENIX Security Symposium 381

2.1.1 Git security features
To ensure the integrity of the repository’s history, Git

incorporates several security features that provide a basic
defense layer:
• Each commit object contains a cryptographic hash of

its parent commit. In addition, the name of the file that
contains the commit object is the cryptographic hash of
the file’s contents. This creates a hash chain between
commits and ensures that the history of commits can-
not be altered arbitrarily without being detected.

• Users have the option to cryptographically sign a com-
mit (a digital signature is added to the commit object)
using a GPG key. This allows an auditor to unequiv-
ocally identify the user who committed code and pre-
vents users from repudiating their commits.

• A signed certificate of the references can be pushed to a
remote repository. This “push certificate” solution ad-
dresses man-in-the-middle attacks where the user and
a well-behaving server can vouch for the existence of
a push operation.

2.2 Related work
VCS Security. Wheeler [39] provides an overview of
security issues related to software configuration man-
agement (SCM) tools. He puts forth a set of secu-
rity requirements, presents several threat models (in-
cluding malicious developers and compromised reposi-
tories), and enumerates solutions to address these threats.
Gerwitz [17] provides a detailed description of creating
and verifying Git signed commits. Signing commits al-
lows the user to detect modifications of committed data.
Git incorporates protection mechanisms, such as commit
signing and commit hash chaining. Unfortunately, they
do not prevent the attacks we introduce in this work.

There have been proposals to protect sensitive data
from hostile servers by incorporating secrecy into both
centralized and distributed version control systems [1,
29]. Shirey et al. [32] analyzes the performance trade-
offs of two open source Git encryption implementations.
Secrecy from the server might be desirable in certain sce-
narios, but it is orthogonal to our goals in this work.

The “push certificate” mechanism, introduced in ver-
sion 2.2.0 of Git, allows a user to digitally sign the refer-
ence that points to a pushed object. However, push cer-
tificates do not protect against most of the attacks we de-
scribe in this work. Furthermore, push certificates were
designed for out-of-band auditing (i.e. they are not in-
tegrated into the usual workflow of Git and need to be
fetched and verified by a trusted third party using out-
of-band mechanisms). As a result, push certificates are
rarely used in practice.

Fork Consistency. A problem that could arise in remote
storage used for collaborative purposes is when the un-

trusted storage server hides updates performed by one
group of users from another. In other words, the server
equivocates and presents different views of the history of
operations to different groups of users. The fork consis-
tency property seeks to address this attack by forcing a
server that has forked two groups in this way to continue
this deception. Otherwise, the attack will be detected as
soon as one group sees an operation performed by the
other group after the moment the fork occurred.

SUNDR [26] provides fork consistency for a network
file system that stores data on untrusted servers. In
SUNDR, users sign statements about the complete state
of all the files and exchange these statements through the
untrusted server. SPORC [14] is a framework for build-
ing collaborative applications with untrusted servers that
achieves fork* consistency (i.e., a weaker variant of fork
consistency). Our solution seeks to achieve a similar
property and shares similarities with SUNDR in that Git
users leverage the actual Git repository to create and
share signed statements about the state of the repository.
However, the intricacies and usage model of a VCS sys-
tem like Git impose a different set of constraints.

Other work, such as Depot [28], focuses on recovering
from forks in an automatic fashion (i.e., not only detect-
ing forks, but also repairing after they are detected). Our
focus is on detecting the metadata manipulation attacks,
after which the affected users can perform a manual roll-
back procedure to a safe point.

Caelus [25] seeks to provide the same declared his-
tory of operations to all clients of a distributed key-value
cloud store. Caelus assumes that no external communi-
cation channel exists between clients, and requires them
to periodically attest to the order and timing of operations
by writing a signed statement to the cloud every few sec-
onds. The attestation schedule must be pre-defined and
must be known to all clients. Our setting is different,
since Git developers usually communicate through mul-
tiple channels; moreover, a typical team of Git develop-
ers cannot be expected to conform to such an attestation
policy in practice.

3 Threat model and security guarantees

We make the following assumptions about the threat
model our scheme is designed to protect against:

• Developers use the existing Git signing mechanisms
whenever performing an operation in Git to stop an
attacker from tampering with files.

• An attacker cannot compromise a developer’s key
or get other developers to accept that a key con-
trolled by an attacker belongs to a legitimate devel-
oper. Alternatively, should an attacker control such
a key (e.g., an insider attack), he or she may not

3

382 25th USENIX Security Symposium USENIX Association

want to have an attack attributed to him- or herself
and would thus be unwilling to sign data they have
tampered with using their key.

• The attacker can read and modify any files on
the repository, either directly (i.e. a compromised
repository or a malicious developer) or indirectly
(i.e., through MITM attacks and using Git’s inter-
face to trick honest users into doing it).

• The attacker does not want to alert developers that
an attack has occurred. This may lead to out-of-
band mechanisms to validate the attacked repository
[30].

This threat model covers a few common attack sce-
narios. First of all, an attacker could have compromised
a software repository, an unfortunately common occur-
rence [42, 27, 13, 21, 15, 4, 45, 18, 44, 16]. Even
if the repository is not compromised, an attacker could
act as a man-in-the-middle by intercepting traffic des-
tined for the repository (e.g., by forging SSL certifi-
cates [23, 31, 8, 37, 43, 7, 41, 6, 38]). However, an
attacker is not limited to these strategies. As we will
show later, a malicious developer can perform many of
the same attacks without using their signing key. This
means that it is feasible for a developer inside an organi-
zation to launch these attacks and not be detected.

Note that in all cases, the developers have known sign-
ing keys to commit, push, and verify information.

3.1 Security guarantees
Answering to this threat model, the goal of a success-

ful defensive system should be to enforce the following:

• Prevent modification of committed data: If a file
is committed, an attacker should not be able to mod-
ify the file’s contents without being detected.

• Ensure consistent repository state: All developers
using a repository should see the same state. The
repository should not be able to equivocate and pro-
vide different commits to different developers.

• Ensure repository state freshness: The repository
should provide the latest commits to each developer.

As we will show later, Git’s existing security mech-
anisms fail to handle the last two properties. The ex-
isting signing mechanism for Git does enable develop-
ers to detect modification of committed data, because
the changed data will not be correctly signed. However,
due to weaknesses in handling the other properties, an
attacker can omit security patches, merge experimental
features into production, or serve versions of software
with known vulnerabilities.

An attacker is successful if he or she is able to break
any of these properties without being detected by the de-
velopers. So, an attacker who controls the repository
could block a developer from pushing an update by pre-
tending the repository is offline. However, since the de-
veloper receives an error, it is obvious that an attack is
occurring and therefore is easy to detect. Similarly, this
also precludes irreconciliable fork attacks where two sets
of developers must be permanently segregated from that
point forward. Since developers typically communicate
through multiple channels, such as issue trackers, email,
and task management software, it will quickly become
apparent that fixes are not being merged into the master
branch. (Most projects have a tightly integrated team,
usually a single person, who integrates changes into the
master branch, which further ensures this attack will be
caught.) For these reasons, we do not focus on attacks
that involve a trivial denial of service or an irreconcilable
fork because they are easy to detect in practice.

4 Metadata manipulation attacks

Even when developers use Git commit signing, there is
still a substantial attack surface. We have identified a new
class of attacks that involve manipulation of Git meta-
data stored in the .git/refs directory of each repos-
itory. We emphasize that, unlike Git commits that can
be cryptographically signed, there are no mechanisms in
Git to protect this metadata. As such, the metadata can be
tampered with to cause developers to perceive different
states of the repository, which can coerce or trick them
into performing unintended operations in the repository.
We also note that a solution that simply requires users to
sign Git metadata has serious limitations (as described in
Sec. 5.2).

Unlike many systems where equivocation is likely
to be noticed immediately by participants, Git’s use of
branches hides different views of the repository from de-
velopers. In many development environments, develop-
ers only have copies of branches that they are working
on stored locally on their system, which makes it easy
for a malicious repository to equivocate and show differ-
ent views to different developers.

In Git, a branch is represented by a file that contains
the SHA1 checksum of a commit object (under benign
circumstances, this object is the latest commit on that
branch). We will refer to such files as branch refer-
ences. All the branch references are stored in the di-
rectory .git/refs/heads/, with the name of the
branch as the filename. For example, a branch “hotfix” is
represented by the file .git/refs/heads/hotfix.

We discovered that it is straightforward for an at-
tacker to manipulate information about branches by sim-
ply changing contents in a reference file to point to any

4

USENIX Association 25th USENIX Security Symposium 383

other commit object. Modifying the branch reference can
be easily performed with a text editor and requires no so-
phistication. Specifically, we show three approaches to
achieve this, all of them being captured by our adversar-
ial model. First, an attacker who has compromised a Git
repository and has write access to it, can directly mod-
ify the metadata files. Second, an attacker can perform
an MITM attack by temporarily redirecting a victim’s
traffic to a fake repository serving tampered metadata,
and then reestablishing traffic so the victim propagates
the vulnerable changes to the genuine repository (in Ap-
pendix A, we describe a proof-of-concept attack against
GitHub based on this approach). Third, a malicious de-
veloper can take advantage of the fact that Git metadata
is synchronized between local and remote repositories.
The developer manipulates the Git metadata in her local
repository, which is then propagated to the (main) remote
repository.

It is also possible to extend these attacks for Git tags.
Although a Git tag is technically a Git tag object that
can be signed the same way as a commit object, an at-
tacker can target the reference pointing to a tag. Tag ref-
erences are stored in the directory .git/refs/tags/
and work similarly to branch references, in that they are
primarily a file containing the SHA1 of a Git tag object
that points to a Git commit object. Although Git tags
are conceptually different — they only represent a fixed
point (e.g., a major release version) in the projects his-
tory — they can be exploited in the same way, because
Git has no mechanism to protect either branch or tag ref-
erences.

We have validated the attacks against a standard Git
server and also the GitHub, GitLab and other popular Git
hosting services.

Based on their effect on the state of the repository, we
identify three types of metadata manipulation attacks:

• Teleport Attacks: These attacks modify a Git refer-
ence so that it points to an arbitrary object, different
from the one originally intended. The reference can
be a branch reference or a tag reference.

• Rollback Attacks: These attacks modify a Git
branch reference so that it points to an older com-
mit object from the same branch, thus providing
clients with a view in which one or more of the lat-
est branch commits are missing.

• Deletion Attacks: These attacks remove branch or
tag references, which in turns leads to the complete
removal of an entire branch, or removal of an entire
release referred to by a tag.

We use the following setup to present the details of
these attacks. A Git server is hosting the main repository

and several developers who have their own local reposi-
tories have permission to fetch/push from/to any branch
of the main repository, including the master branch. For
commit objects, we use a naming convention that cap-
tures the temporal ordering of the commits. For example,
if a repository has commits C0, C1, C2, this means that
they were committed in the order C0, C1, C2.

4.1 Teleport attacks
We identified two teleport attacks: branch teleport and

tag teleport attacks.

Branch Teleport Attacks. These attacks modify the
branch reference so that it points to an arbitrary commit
object on a different branch. Although we illustrate the
attacks for the master branch, they are applicable to any
branch, since none of the branch reference metadata is
protected.

Fig. 1(a) shows the initial state of the main Git repos-
itory, which contains two branches, “master” and “fea-
ture.” The local repository of developer 1 is in the same
state as shown in Fig. 1(a). The “feature” branch im-
plements a new feature and contains one commit, C2.
The code in C2 corresponds to an unstable, potentially-
vulnerable version that needs to be tested more thor-
oughly before being integrated into the master branch.
Commit C1 is the head of the master branch. This
means that the file .git/refs/heads/master con-
tains the SHA1 hash of the C1 commit object.

After developer 2 pulls from the master branch of the
main repository (Fig. 1(b)), the attacker changes the mas-
ter branch to point to commit C2 (Fig. 1(c). The at-
tacker does this by simply changing the contents of the
file .git/refs/heads/master to the SHA1 hash
of the C2 commit. Any developer who clones the repos-
itory or fetches from the master branch at this point in
time will be provided with the incorrect repository state,
as shown in Fig. 1(c). For example, developer 2, who
committed C3 into his local repository (Fig. 1(d)), now
wants to push this change to the main repository. De-
veloper 2 is notified that there were changes on the mas-
ter branch since his last fetch, and needs to pull these
changes. As a result, a merge commit C4 occurs be-
tween C3 and C2 in the local repository of developer 2,
as shown in Fig. 1(e). The main repository looks like
Fig 1(e) after developer 2 pushes his changes. If devel-
oper 1 then pulls changes from the main repository, all
three repositories will appear like Fig 1(e).

Normally, the master branch should contain software
that was thoroughly tested and properly audited. How-
ever, in this incorrect history, the master branch incorpo-
rates commit C2, which was in a experimental feature
branch and may contain bugs. The attacker tricked a
developer into performing an action that was never in-

5

384 25th USENIX Security Symposium USENIX Association

Figure 1: The Branch Teleport attack

tended, and none of the two developers are aware that
the attack took place.

Tag Teleport Attacks. These attacks modify a tag ref-
erence so that it points to an arbitrary tag object. Sur-
prisingly, a tag reference can also be made to point to a
commit object, and Git commands will still work.

One can verify whether a tag is both signed and a valid
tag object by using the git tag --verify com-
mand. However, if an attacker were to modify a tag ref-
erence to point to an older tag (e.g., if the tag for release
1.1 is replaced by the tag for the vulnerable release 1.0),
the verification command is successful.

Modifying tag metadata could be especially impactful
for automated systems that rely on tags to build/test and
release versions of software [36, 20, 10, 12]. Further-
more, package managers such as Python’s pip, Ruby’s
RubyGEMS, and Node’s NPM, among many others sup-
port the installation of software from public Git reposi-
tories and tags. Finally, Git submodules are also vulner-
able, as they automatically track a tag (or branch). If a
build dependency is included in a project as a part of the
submodule, a package might be vulnerable via an under-
lying library.
4.2 Rollback attacks

These attacks modify a Git branch reference so that it
points to an older commit object from the same branch.
This gives clients a view in which one or more of the lat-
est branch commits are missing. The attacker can cause
commits to be missing on a permanent or on a temporary
basis.

Figure 2: The Branch Roll-
back attack

Figure 3: The Global Roll-
back attack

4.2.1 Permanent rollback attacks
Based on the nature of the commits removed, we sep-

arate permanent rollback attacks in two groups: Branch
Rollback attacks and Global Rollback attacks.

Branch Rollback Attacks. Consider the repository
shown in Fig. 2(a), in which the order of the commits
is C0, C1, C2, C3. Commits C0 and C3 are in the
master branch, and commits C1 and C2 are security
patches in a “patch” branch. The attacker rolls back
the patch branch by making the head of such branch
point to commit C1, as shown in Fig. 2(b). This can
be done by simply replacing the contents of the file
.git/refs/heads/patch with the SHA1 hash of
the C1 commit. As a result, all developers that pull from
the main repository after this attack will see the state
shown in Fig. 2(c), in which commit C2 (that contains
a security patch) has been omitted.

Note that the attack can also be used to omit commits
on any branch, including commits in the master branch.

Global Rollback Attacks. As opposed to a Branch Roll-
back attack, which removes commits that happened prior
to one that remains visible, in a Global Rollback attack,
no commits remain visible after the commits that are re-
moved. In other words, the attacker removes one or more
commits that were added last to the repository.

Consider the initial state of a Git repository as illus-
trated in Fig. 3(a), in which C2 is a commit that fixes
a security bug and has been merged into the master

6

USENIX Association 25th USENIX Security Symposium 385

Figure 4: The Effort Duplication attack

branch. The file .git/refs/heads/master con-
tains the SHA1 hash of the C3 commit object.

By simply changing the contents of the file
.git/refs/heads/master to the SHA1 hash of
the C1 commit, the attacker forges a state in which the
repository contains the history of commits depicted in
Fig. 3(b). This effectively removes commits C2 and
C3 from the project’s history, and a developer who now
clones the project will get a history of commits as shown
in Fig. 3(c). This incorrect history does not contain the
commit C2 that fixed the security bug.

Note that the Global Rollback attack removed the lat-
est two commits from the repository. This is different
than the effect of a Branch Rollback attack which re-
moves one or more commits that happened before a com-
mit that remains visible.

4.2.2 Temporary rollback attacks
Effort Duplication Attacks. The Effort Duplication
attack is a variation of the Global Rollback attack, in
which the attacker temporarily removes commits from
the repository. This might cause developers to unknow-
ingly duplicate coding efforts that exist in the removed
commits.

Consider a main Git repository with just a master
branch which contains only one commit C0. Two devel-
opers D1 and D2 have pulled from the main repository,
so their local repositories also contain C0. After the fol-
lowing sequence of actions by D1 and D2, the repository
should look as shown in Fig. 4(a):

1. D1 commits C1 to her local repository & pushes to
the main repository.

2. D2 pulls from the main repository.
3. D2 commits C2 to her local repository & pushes to

the main repository.

However, when D2 pulls in step 2, the attacker can
temporarily withhold commit C1, keeping D2 unaware
of the changes in C1. As a result, D2 works on changes
that already exist in C1. The following attack scenario
results in a repository shown in Fig. 4(b):

1. D1 commits C1 to her local repository & pushes to
the main repository.

2. D2 pulls from the main repository, but the attacker
withholds C1. Thus, D2 thinks there are no changes.

3. D2 makes changes on top of C0 and commits these
changes in her local repository as commit C2. C2
duplicates (some or all of) D1’s coding effort in C1.

4. D2 tries to push changes to the main repository. This
time, the attacker presents C1 to D2 (these are the
changes that were withheld in step 2). Thus, D2 has
to first pull changes before pushing.

5. D2 pulls changes from the main repository, and this
results in a merge commit C3 between C1 and C2.
As part of the merge, the developer has to solve any
merge conflicts that appear from the code duplication
between C1 and C2.

In this case, D2 re-did a lot of D1’s work because
D1’s commit C1 was withheld by the attacker. Note that
unlike a Global Rollback attack, in which commits are
removed permanently from the repository, in the Effort
Duplication attack commits are just removed temporar-
ily. This is a more subtle attack, since the final state of
the repository is the same for both the benign and at-
tack cases. The effect of applying commits C1 and C2
in Fig. 4(a) on the files in the repository is the same as
applying commits C1, C2, C3 in Fig. 4(b). However, D2
unknowingly (and unnecessarily) duplicated D1’s coding
effort, which may have negative economic consequences.
Adding to this, an attacker can slow down developers
of a specific project (e.g., a competitor’s project) by de-
livering previously-withheld changes to them when they
will cause merge conflicts and hamper their development
progress.

4.3 Reference deletion attacks
Since the branch metadata is not protected, the at-

tacker can hide an entire branch from the repository by
removing a branch reference. Similarly, since the tag
metadata is not protected, the attacker can remove a tag
reference in order to hide a release from the repository
history.

When an attacker performs a reference deletion attack,
only the users who previously held a copy of the refer-
ence will be able to know of its existence. If this is not the
case, a developer would be oblivious of the fact that other
developers have worked on the deleted branch (similar to
a fork attack), or be tricked into retrieving another ver-
sion if the target tag is not available. Furthermore, some
projects track work in progress by tying branch names
to numbers in their issue tracker [9], so two developers
could be tricked into working on the same issue by hid-
ing a branch (similar to an effort duplication attack).

4.4 Summary of attacks
Metadata manipulation attacks may lead to inconsis-

tent and incorrect views of the repository and also to cor-
ruption and loss of data. Ultimately, this will lead to
merge conflicts, omission of bug fixes, merging exper-
imental code into a production branch, or withholding
changes from certain users before a release. All of these
are problems that can impact the security and stability of

7

386 25th USENIX Security Symposium USENIX Association

the system as a whole. Table 1 summarizes the attacks
impact.

Attack Impact

Branch Teleport Buggy code inclusion
Branch Rollback Critical code omission
Global Rollback Critical code omission
Effort Duplication Coding effort duplicated
Tag Rollback Older version retrieved

Table 1: Impact of metadata manipulation attacks.

5 Defense framework

5.1 Design goals for a defense scheme
We designed our defense scheme against metadata ma-

nipulation attacks with the following goals in mind:

Design Goal 1 (DG1): Achieve the security goals stated
in Sec. 3.1. That is, prevent modification of commit-
ted data, ensure a consistent repository state, and ensure
repository state freshness.

Design Goal 2 (DG2): Preserve (as much as possible)
current workflows and actions that are commonly used
by developers, in order to facilitate a seamless adoption.

Design Goal 3 (DG3): Maintain compatibility with ex-
isting Git implementations. For example, Git has limited
functionality when dealing with concurrency issues in a
multi-user setting: it only allows atomic push of multiple
branches and tags after version 2.4. Following Git’s de-
sign philosophy, backwards compatibility is paramount;
a server running the latest Git version (i.e., 2.9.0) can be
cloned by a client with version 1.7.

5.2 Why binding references with Git ob-
jects is not enough

Adding reference information (i.e., branch and tag
names) inside the commit object might seem like a suf-
ficient defense against metadata manipulation attacks.
This would bind a commit to a reference and prevent an
attacker from claiming that a commit object referred to
in a reference belongs somewhere else.

Unfortunately, this simple approach has important
drawbacks. It does not meet our DG1 because it does
not defend against rollback and effort duplication at-
tacks. Furthermore, adding new reference information
in a commit object requires updating an existing commit
object. When this happens, the SHA-1 hash of the com-
mit object will change, and the change will propagate to
all new objects in the history. In other words, when a new
branch is created and bound to a commit far earlier in the
history, all commit objects need to be rewritten and, thus,
sent back to the remote repository, which could add sub-
stantial computational and network overhead.

5.3 Our defense scheme
The fundamental cause of metadata manipulation at-

tacks is that the server can respond to users’ fetches
with an incorrect state and history of the main reposi-
tory that they cannot verify. For example, the server can
falsely claim that a branch points to a commit that was
never on that branch or to a commit that was the location
of that branch in an earlier version. Or, the server can
falsely claim that the reference of a tag object points to
an older tag.

In order to stop the server from falsely claiming an
incorrect state of the repository, we propose that every
Git user must include additional information vouching
for their perceived repository state during a push or a
fetch operation. To achieve this, we include two pieces
of additional information on the repository:

• First, upon every push, users must append a push
entry to a Reference State Log (RSL) (Sec. 5.3.1).
By validating new entries in this log with each push
and fetch operation, we can prevent teleport, perma-
nent rollback, and deletion attacks.

• Second, when a Git user performs a fetch operation
and receives a new version of files from the repos-
itory, the user places a random value into a fetch
nonce bag (Sec. 5.3.2). If the Git user does not re-
ceive file updates when fetching, the user replaces
her value in the bag with a new one. The bag serves
to protect against temporary rollback attacks.

During our descriptions, we assume that a trusted key-
chain is distributed among all developers along with the
RSL. There are tools available to automate this pro-
cess [24, 5], and the RSL itself can also be used to dis-
tribute trust (we elaborate more on this in Sec 6.1).

5.3.1 The Reference State Log (RSL)
For a developer to prevent the server from equivocat-

ing on the location of the references, the developer will
sign a push entry, vouching for the location of the ref-
erences at the time of a push. To do this, she must exe-
cute the Secure push procedure, which has the following
steps:

First, the remote RSL is retrieved, validated, and
checked for the presence of new push entries (lines 3-
11). If the RSL is valid and no push entries were added, a
new RSL push entry is created (lines 13-14). The newly
created entry will contain: (1) the new location of the
reference being pushed; (2) the nonces from the fetch
nonce bag; (3) a hash of the previous push entry; and (4)
the developer’s signature over the newly created push en-
try. The newly created entry is then appended to the RSL
(line 16), and the nonce bag is cleared (line 15).

Once this is done, the remote RSL must be updated
and local changes must be pushed to the remote reposi-

8

USENIX Association 25th USENIX Security Symposium 387

PROCEDURE: Secure push
Input: LocalRSL; related commits; pushed reference X
Output: result: (success/fail/invalid)

1: repeat
2: result ← fail
3: (RemoteRSL, nonce bag) =

Retrieve RSL and nonce bag from remote repo
4: if (RSL Validate(RemoteRSL, nonce bag) == false)

then
5: // Retrieved RemoteRSL is invalid
6: // Must take necessary actions!
7: return invalid
8: if (new push entries for reference X in RemoteRSL) then
9: // Remote repository contains changes

10: // User must fetch changes and then retry
11: return fail
12: else
13: prev hash = hash last push entry(RemoteRSL)
14: new RSL Entry = create push Entry(prev hash,

nonce bag, X)
15: nonce bag.clear()
16: RemoteRSL.addEntry(new RSL entry)
17: result = Store in remote repo(RemoteRSL,

nonce bag)
18: if (result == success) then
19: // The remote RSL has no new entries
20: push related commits
21: LocalRSL = RemoteRSL
22: return success
23: until (result == success)

tory (lines 17-20). Notice that these steps are performed
under a loop, because other developers might be pushing,
which is not an atomic operation in older versions of Git
(this is required to meet DG3).

Depending on the result of the Secure push procedure,
a developer’s actions correspond to the following:

• success: the push is successful. No further ac-
tions are required from the user (line 22).

• fail: the push fails because there are changes
in the remote repository that must first be fetched
and merged locally before the user’s changes can be
pushed (line 11).

• invalid: the RSL validation has failed. The algo-
rithm detects a potential attack and notifies the user,
who must then take appropriate measures (line 7).

Note that these actions mirror a user’s actions in the
case of a regular Git push operation, as suggested by
DG2. By doing this, we effectively follow the existing
Git workflows while providing better security guarantees
at the same time.

5.3.2 The Nonce Bag
When retrieving the changes from a remote repository,

a developer must also record her perceived state of the
repository. Our scheme requires that all the user fetches
be recorded in the form of a fetch nonce bag, i.e., an
unordered list of nonces. Each nonce is a random num-
ber that corresponds to a fetch from the main repository.
Every time a user fetches from the main repository, she
updates the nonce bag. If the user has not fetched since
the last push, then she generates a new nonce and adds it
to the nonce bag; otherwise, the user replaces her nonce
in the nonce bag with a new nonce.

Each nonce in the nonce bag serves as a proof that a
user was presented a certain RSL, preventing the server
from executing an Effort Duplication attack and pro-
viding repository freshness as per DG1. To fetch the
changes from the remote repository, a developer must ex-
ecute the Secure fetch procedure.

The first steps of the Secure fetch procedure consist
of retrieving the remote RSL, performing a regular git
fetch, and ensuring that the latest push entry in the
RSL points to a valid object in the newly-fetched ref-
erence (lines 4-11). Note that this check is performed
inside a loop because push operations are not atomic in
older versions of Git (lines 2-12). A user only needs to
retrieve the entries which are new in the remote RSL and
are not present in the local version of the RSL.

If this check is successful, the nonce bag must be up-
dated and stored at the remote repository (lines 14-20).
Note that all these steps are also in a loop because other
developers might update the RSL or the nonce bag since
it was last retrieved (lines 1-21).

Finally, the RSL is further validated for consistency
(line 22), and the local RSL is updated. We chose to
validate the RSL at the end of Secure fetch and outside
of the loop in order to optimize for the most common
case. Once Secure fetch is successfully executed, a de-
veloper can be confident that the state of the repository
she fetched is consistent with her peers. Otherwise, the
user could be the victim of one of the attacks in Sec. 4.

5.3.3 RSL validation
The RSL Validate routine is used in Secure push and

Secure fetch to ensure the presented RSL is valid. The
aim of this routine is to check that push entries in a
given RSL are correctly linked to each other, that they
are signed by trusted developers, and that nonces corre-
sponding to a user’s fetches are correctly incorporated
into the RSL.

First, the procedure checks that the nonce correspond-
ing to the user’s last fetch appears either in the nonce bag
or was incorporated into the right push entry (i.e., the first
new push entry of the remote RSL) (lines 1-2). The algo-
rithm then checks if the new push RSL entries from the

9

388 25th USENIX Security Symposium USENIX Association

PROCEDURE: Secure fetch
Input: reference X to be fetched
Output: result: (success/invalid)

1: repeat
2: store success ← false
3: repeat
4: (RemoteRSL, nonce bag) =

Retrieve RSL and nonce bag from remote repo()
5: f etch success ← false
6: // This is a regular “Git fetch” command.
7: // Branch X’s reference is copied to FETCH HEAD
8: fetch reference X
9: C ← RemoteRSL.latestPush(X).refPointer

10: if (C == FETCH HEAD) then
11: f etch success ← true

12: until (f etch success == true)
13: // Update the nonce bag
14: if NONCE in nonce bag then
15: nonce bag.remove(NONCE)
16: save random nonce locally(NONCE)
17: nonce bag.add(NONCE)
18: // Storing the nonce bag at the remote repository
19: // might fail due to concurrency issues
20: store success = Store in remote repo(nonce bag)
21: until (store success == true)
22: if (RSL Validate(RemoteRSL, nonce bag) == false)

then
23: // Retrieved RemoteRSL is invalid
24: // Must take necessary actions!
25: return invalid
26: else
27: LocalRSL = RemoteRSL
28: return success

remote RSL are correctly linked to each other and that
the first new remote push entry is correctly linked to the
last push entry of the local RSL (the check is based on
the prev hash field) (lines 5-9). Finally, the signature on
the last RSL push entry is verified to ensure it was signed
by a trusted developer; since all RSL entries are correctly
linked, only the last entry signature needs to be verified.
How to handle misbehavior? If the RSL validation fails
due to a misbehaving server, the user should compare
the local RSL with the remote RSL retrieved from the
remote repository and determine a safe point up to which
the two are consistent. The users will then manually roll
back the local and remote repositories to that safe point,
and decide whether or not to continue trusting the remote
repository.

6 Discussion

6.1 Trust and revoke entries
Developers’ keys may be distributed using

trust/revoke RSL entries. To use these entries, the

PROCEDURE: RSL Validate
Input: LocalRSL (RSL in the local repository); RemoteRSL;
nonce bag
Output: true or false

1: if (NONCE not in nonce bag) and (NONCE not in Remot-
eRSL.push after(LocalRSL) then

2: return false
3: // Verify that the ensuing entries are valid
4: prev hash = hash last push entry(LocalRSL)
5: for new push entry in RemoteRSL do
6: if new push entry.prev hash != prev hash then
7: // The RSL entries are not linked correctly
8: return false
9: prev hash = hash(new push entry)

10: if verify signature(RemoteRSL.latest push) == false then
11: // this RSL is not signed by a trusted developer
12: return false
13: return true

repository is initialized with an authoritative root of trust
(usually a core developer) who will add further entries
of new developers in the group. Once developers’ public
keys are added to the RSL, they are allowed to add other
trust entries.

A trust entry contains information about the new de-
veloper (i.e., username and email), her public key, a hash
of the previous push entry and a signature of the entry by
a trusted developer. Revocation entries are similar in that
they contain the key-id of the untrusted developer, the
hash of the push entry, and the signature of the developer
revoking trust.

6.2 Security analysis
Our defense scheme fulfills the properties described in

Sec. 3.1 as follows:

• Prevent modification of committed data: The ex-
isting signing mechanism for Git handles this well.
Also, RSL entries are digitally signed and chained
with each other, so unauthorized modifications will
be detected.

• Ensure consistent repository state: The RSL pro-
vides a consistent view of the repository that is
shared by all developers.

• Ensure repository state freshness: The Nonce Bag
provides repository state freshness because an at-
tacker cannot replay nonces in the Nonce Bag.
Also, if no newer push entries are provided by the
repository, then the attack becomes a fork attack.

The attacks described in Section 4 are prevented be-
cause, after performing the attack, the server cannot pro-
vide a valid RSL that matches the current repository

10

USENIX Association 25th USENIX Security Symposium 389

Possible attacks Time window of attack Vulnerable commit objects
Commit signing all attacks Anytime Any object
RSL (full adoption) no attacks None No object
RSL (partial adoption) all attacks After the latest RSL entry and Objects added after

before the next RSL entry the latest RSL entry

Table 2: Security guarantees offered by different adoption levels of the defense scheme

state. Since she does not control any of the developers’
keys, she can not forge a signature for a spurious RSL en-
try. As a result, a user who fetches from the main repos-
itory after the attack will notice the discrepancy between
the RSL and the repository state that was presented to
her. Each metadata manipulation attack would be de-
tected as follows:

• Branch Teleport and Deletion Attacks: When this
attack is performed, there is no mention of this
branch pointing to such a commit, and the RSL val-
idation procedure will fail.

• Branch/Global Rollback and Tag Teleport Attacks:
These attacks can be detected because the latest en-
try in the RSL that corresponds to that branch points
to the commit removed and the RSL validation pro-
cedure will fail.

An attacker can attempt to remove the latest entries
on the RSL so that the attacks remain undetected.
However, after this moment, the server would need
to consistently provide an incorrect view of the RSL
to the target user, which would result in a fork at-
tack. Finally, the attacker cannot remove RSL en-
tries in between because these entries are chained
using the previous hash field. Thus, the signature
verification would fail if this field is modified.

• Effort Duplication Attack: This attack will result in
a fork attack because the RSL created by the user re-
questing the commit will contain a proof about this
request in the form of a nonce that has been incor-
porated into an RSL push entry or is still in the
Nonce Bag. Any ensuing RSL push entry that was
withheld from the user will not contain the user’s
nonce.

6.3 Partial adoption of defense scheme
It is possible that not all developers in a Git repository

use our solution. This can happen when, for example, a
user has not configured the Git client to sign and update
the RSL. When this is the case, the security properties of
the RSL change.

To study the properties of using the RSL when not ev-
eryone is using the defense, we will define a commit ob-
ject as a “secure commit” or an “insecure commit.” The
former will be commits made by users who employ our
defense, while the latter are made by users who do not

use our defense (i.e., they only use the Git commit sign-
ing mechanism). Consider that supporting partial adop-
tion requires changing the validation during fetches to
consider commits that are descendants of the latest se-
cure commit, for users might push to branches without
using the defense. For simplicity, we do not allow users
to reset branches if they are not using the defense.

Compared to commit signing only, when our scheme
is adopted by only some users, a user who writes an
RSL entry might unwittingly attest to the insecure com-
mits made by other users after the latest secure commit.
However, this situation still provides a valuable advan-
tage because the attacker’s window to execute Metadata
Manipulation attacks is limited in time. That is, when our
defense is not used at all, an attacker can execute Meta-
data Manipulation attacks on any commits in the repos-
itory, (e.g., the attacker can target a forgotten branch lo-
cated early in the history). This is not possible with our
scheme, where an attacker can only attack the commit
objects added after the latest RSL entry for that branch.
The differences between the three alternatives are sum-
marized in Table 2.

6.4 Comparison with other defenses
In Table 3, we examine the protections offered by

other defense schemes against metadata manipulation at-
tacks. Specifically, we studied how Git commit signing,
Git’s push certificate solution, and our solution (listed as
RSL) fare against the attacks presented in this paper, as
well as other usability aspects that may impact adoption.

Feature Commit Push RSL
signing certificate

Commit ✓ ✓ ✓
Tampering
Branch Teleport X ✓ ✓
Branch Rollback X X ✓
Global Rollback X X ✓
Effort X X ✓
Duplication
Tag Rollback X ✓ ✓
Minimum Git 1.7.9 2.2.0 1.7.9
Version
Distribution in-band (no default) or in-band
Mechanism Additional server

Table 3: Comparison of defense schemes against Git metadata ma-
nipulation attacks. A ✓indicates the attack is prevented.

As we can see, Git commit signing does not pro-
tect against the vast majority of attacks presented in

11

390 25th USENIX Security Symposium USENIX Association

this paper. Also, Git’s push certificate solution provides
a greater degree of protection, but still fails to protect
against all rollback and effort duplication attacks. This is
primarily because (1) a server could misbehave and not
provide the certificates (there is no default distribution
mechanism), and (2) a server can replay old push certifi-
cates along with an old history. Basically, this solution
assumes a well-behaving server hosting push certificates.

In contrast, our solution protects against all attacks
presented in Table 3. In addition to this, our solution
presents an in-band distribution mechanism that does not
rely on a trusted server in the same way that commit sign-
ing does. Lastly, we can see that our solution can be used
today, because it does not require newer versions of Git
on the client and requires no changes on the server, which
allows for deployment in popular Git hosting platforms
such as GitHub and Gitlab.

7 Implementation and evaluation

We have implemented a prototype for our defense
scheme. This section provides implementation details
and presents our experimental performance results.

7.1 Implementation
To implement our defense scheme, we leveraged Git

custom commands to replace the push and fetch com-
mands, and implemented the RSL as a separate branch
inside the repository itself. To start using the defense, a
user is only required to install two additional bash scripts
and use them in lieu of the regular fetch and push com-
mands. Our client scripts consist of less than a hundred
(86) lines of code, and there is no need to install anything
on the server.

RSL and Nonce Bag. We implemented the RSL in a
detached branch of the repository, named “RSL.” Each
RSL entry is stored as a Git commit object, with the en-
try’s information encoded in the commit message. We
store each entry in a separate commit object to leverage
Git’s pack protocol, which only sends objects if they are
missing in the local client. Encoding the Git commit ob-
jects is also convenient because computing the previous
hash field is done automatically.

We also represent the Nonce Bag as a Git commit ob-
ject at the head of the RSL branch. When a nonce is
added or updated, a new commit object with the nonces
replaces the previous nonce bag, and its parent is set to
the latest RSL entry. When a new RSL entry is added, the
commit containing the nonce bag is garbage collected by
Git because the RSL branch cannot reach it anymore.

When securepush is executed, the script first
fetches and verifies the remote RSL branch. If verifica-
tion is successful, it then creates an RSL entry by issuing
a new commit object with a NULL tree (i.e., no local

Field Description

Branch Target branch name
HEAD Branch location (target commit)
PREV HASH Hash over the previous RSL entry
Signature Digital signature over RSL entry

Table 4: RSL push entry fields.

files), and a message consisting of the fields described in
Table 4. After the new commit object with the RSL push
entry is created, the RSL branch is pushed to the remote
repository along with the target branch.

A securefetch invocation will fetch the RSL
branch to update or add the random nonce in the Nonce
Bag. If a nonce was already added to the commit object
(with a NULL tree also), it will be amended with the re-
placed nonce. In order to keep track of the nonce and the
commit object to which it belongs, two files are stored lo-
cally: NONCE HEAD, which contains the reference of
the Nonce Bag in the RSL branch, and NONCE, which
contains the value of the nonce stored in it.

Atomicity of Git operations. The securepush and
securefetch operations require fetching and/or pushing
of the RSL branch in addition to the pushing/fetching
to/from the target branch. Git does not support atomic
fetch of multiple branches, and only supports atomic
push of multiple branches after version 2.4.0 1.

In order to ensure backwards compatibility, we de-
signed our solution without considering the existence of
atomic operations. Unfortunately, the lack of atomic
push opens the possibility of a DoS attack that exploits
the ‘repeat’ loop in Secure fetch (lines 3-12), that makes
the algorithm loop endlessly. This could happen if a
user executes Secure push and is interrupted after push-
ing a new RSL entry, but before pushing the target branch
(e.g., caused by a network failure). Also, a malicious
user may provide an updated RSL, but an outdated his-
tory for that branch. However, this issue can be easily
solved if the loop is set to be repeated only a finite num-
ber of times before notifying the user of a potential DoS
attempt.

If atomic push for multiple branches is available, the
Secure push procedure can be simplified by replacing
lines 17-22 with a single push. Availability of atomic
push also eliminates the possibility of the endless loop
mentioned above.

7.2 Experimental evaluation
Experimental Setup. We conducted experiments using
a local Git client and the GitHub server that hosted the
main repository. The client was running on an Intel Core
i7 system with two CPUs and 8 GB RAM. The client
software consisted of OS X 10.11.2, with Git 2.6.2 and

1Note that both Git client and server must be at least version 2.4.0
in order to support atomic push.

12

USENIX Association 25th USENIX Security Symposium 391

the GnuPG 2.1.10 library for 1024-bit DSA signatures.
Our goal was to evaluate the overhead introduced by

our defense scheme. Specifically, we want to determine
the additional storage induced by the RSL, and the addi-
tional end-to-end delay induced by our securefetch
and secure push operations. For this, we used the
five most popular GitHub repositories 2: bootstrap, an-
gular.js, d3, jQuery, oh-my-zsh. We will refer to these
as R1, R2, R3, R4, and R5, respectively. In the exper-
iments, we only considered the commits in the master
branch of the these repositories. Table 5 provides details
about these repositories.

Repo. Number Number Repo. Repo. size with
of commits of pushes size signed commits

R1 11,666 1,345 73.04 78.85
R2 7,521 26 66.96 69.79
R3 3,510 255 32.91 34.65
R4 6,031 194 15.79 19.98
R5 3,841 1,170 3.52 4.01

Table 5: The repositories used for evaluation (sizes are in MBs).

We used the repositories with signed commits as the
baseline for the evaluation. We evaluated three defense
schemes:

• Our defense: This is our proposed defense scheme.

• Our defense (light): A light version of our defense
scheme, which does not use the nonce bag to keep
track of user fetches. This scheme sacrifices pro-
tection against Effort Duplication attacks in favor
of keeping the regular Git fetch operation un-
changed.

• Push certificates: Push certificates used upon push-
ing.

For our defense and our defense (light), the reposito-
ries were hosted on GitHub. Given that GitHub does not
support push certificates, we studied the network over-
head using a self-hosted server on an AWS instance, and
concluded that push certificates incur a negligible over-
head compared to the baseline. Thus, we only compare
our scheme with push certificates in regard to the storage
overhead.

Storage overhead. Table 6 shows the additional storage
induced by our defense, compared to push certificates.
In our defense, the RSL determines the size of the ad-
ditional storage. We can see that our defense requires
between 0.009%-6.5% of the repository size, whereas
push certificates require between 0.012%-10%. The rea-
son behind this is that push certificates contain 7 fields in
addition to the signature, whereas RSL push entries only
have 3 additional fields.

2Popularity is based on the “star” ranking used by GitHub, which
reflects users’ level of interest in a project (retrieved on Feb 14, 2016).

Repo. Our defense Push certificates
R1 301.93 461.27
R2 6.49 8.88
R3 58.91 86.05
R4 44.34 66.27
R5 261.3 402.19

Table 6: Repository storage overhead of defense schemes (in KBs).

Communication overhead. To evaluate the addi-
tional network communication cost introduced by our
securepush operation when compared to the regu-
lar push operation, we measured the cost of the last 10
pushes for the five considered repositories. To evaluate
the cost of securefetch, we measured the cost of a
fetch after each of the last 10 pushes.

Table 7 shows the cost incurred by push operations.
We can see that our defense incurs, on average, between
25.24 and 26.21 KB more than a regular push, whereas
our defense (light) only adds between 10.29 and 10.48
KB. This is because a securepush in our defense re-
trieves, updates and then stores the RSL in the remote
repository. In contrast, our defense (light) only requires
storing the RSL with the new push entry if there are no
conflicts. Table 8 shows the cost incurred by fetch op-
erations. A securefetch incurs on average between
25.1 and 25.55 KB more than a regular fetch, whereas
our defense (light) only adds between 14.34 and 10.91
KB.

The observed overhead is a consequence of the fact
that we implemented our defense scheme to respect de-
sign goal DG3, (i.e. no requirement to modify the
Git server software). Since we implemented the RSL
and the Nonce Bag as objects in a separate Git branch,
securepush and securefetch require additional
push/fetch commands to store/fetch these, and thus
they incur additional TCP connections. Most of the
communication overhead is caused by information that
is automatically included by Git and is unrelated to
our defense scheme. We found that Git adds to each
push and fetch operation about 8-9 KBs of supported
features and authentication parameters. If our defense
is integrated into the Git software, the securepush
and securefetch will only require one TCP ses-
sion dramatically reducing the communication overhead.
In fact, based on the size of an RSL entry (∼325
bytes), which is the only additional information sent by
a securepush/securefetch compared to a regular
push/fetch, we estimate that the communication over-
head of our defense will be less than 1KB per operation.

End-to-end delay. Table 9 shows the end-to-end delay
incurred by push operations. We can see that our de-
fense adds on average between 1.61 and 2.00 seconds
more than a regular push, whereas our defense (light)
only adds between 0.99 and 1.3 seconds. Table 10 shows

13

392 25th USENIX Security Symposium USENIX Association

Scheme used R1 R2 R3 R4 R5
Git w/ signed 17.80 3,925.35 38.32 59.14 11.96
commits
(baseline)
Our defense 44.01 3,950.87 63.56 84.71 37.65
Our defense 28.28 3,935.71 48.61 69.52 22.28
(light)

Table 7: Average communication cost per push for the last 10 push
operations, expressed in KBs.

Scheme used R1 R2 R3 R4 R5
Git w/ signed 20.68 3,896.98 40.93 65.85 13.67
commits
(baseline)
Our defense 46.18 3,922.40 66.48 91.27 38.77
Our defense 35.19 3,911.81 55.84 80.67 28.01
(light)

Table 8: Average communication cost per fetch for the last 10 fetch
operations, expressed in KBs.

Scheme used R1 R2 R3 R4 R5
Git w/ signed 1.29 3.27 1.17 1.31 1.51
commits (baseline)
Our defense 3.11 5.27 2.78 2.95 3.51
Our defense (light) 2.44 4.49 2.16 2.40 2.81

Table 9: Average end-to-end delay per push for the last 10 push op-
erations, expressed in seconds.

Scheme used R1 R2 R3 R4 R5
Git w/ signed 0.87 1.95 0.75 0.66 0.67
commits (baseline)
Our defense 2.93 3.86 2.52 2.40 2.75
Our defense (light) 1.60 2.75 1.52 1.31 1.30

Table 10: Average end-to-end delay per fetch for the last 10 fetch
operations, expressed in seconds.

the end-to-end delay incurred by fetch operations. We
can see that a securefetch incurs on average be-
tween 1.74 and 2.08 seconds more than a regular fetch,
whereas our defense (light) only adds between 0.65 and
0.8 seconds.

The time Git uses to do a fetch or push is dominated by
the network latency when talking with the remote reposi-
tory. Since our defense is designed to be backwards com-
patible, it uses multiple Git commands per push or fetch.
This explains the additional time incurred by our imple-
mentation. If our defense scheme is integrated into Git
so that additional commands (and hence network con-
nections) are not needed, we expect the additional delay
to be negligible.

8 Conclusions

In this work, we present a new class of attacks against
Git repositories. We show that, even when existing Git
protection mechanisms such as Git commit signing, are
used by developers, an attacker can still perform ex-
tremely impactful attacks, such as removing security
patches, moving experimental features into production
software, or causing a user to install a version of soft-

ware with known vulnerabilities.
To counter this new class of attacks, we devised a

backwards compatible solution that prevents metadata
manipulation attacks while not obstructing regular Git
usage scenarios. Our evaluation shows that our solution
incurs less than 1% storage overhead when applied to
popular Git repositories, such as the five most popular
repositories in GitHub.

We performed responsible disclosure of these issues to
the Git community. We have been working with them to
address these issues. Some of our patches have already
been accepted into Git version 2.9. We are continuing to
work with the Git community to fix these problems.

Acknowledgements
We would like to thank Junio C. Hamano, Jeff King,

Eric Sunshine, and the rest of the Git community for
their valuable feedback and insight regarding these at-
tacks and their solutions as well as their guidance when
exploring Git’s internals. Likewise, we thank Lois A.
DeLong, Vladimir Diaz, and the anonymous reviewers
for their feedback on the writing on this paper.

This research was supported by the Defense Ad-
vanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL) under Contract No.
A8650-15-C-7521, and by the National Science Foun-
dation (NSF) under Grants No. CNS 1054754, DGE
1565478, and DUE 1241976. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessar-
ily reflect the views of DARPA, AFRL, and NSF. The
United States Government is authorized to reproduce and
distribute reprints notwithstanding any copyright notice
herein.

References
[1] Apso: Secrecy for Version Control Systems. http://

aleph0.info/apso/.

[2] Git signed push. http://thread.gmane.org/
gmane.comp.version-control.git/255520.

[3] Github. https://github.com.

[4] Kernel.org Linux repository rooted in hack attack.
http://www.theregister.co.uk/2011/08/
31/linux_kernel_security_breach/.

[5] 365 Git. Adding a GPG key to a reposi-
tory. http://365git.tumblr.com/post/
2813251228/adding-a-gpg-public-key-
to-a-repository.

[6] Ars Technica. “flame malware was signed by rogue
ca certificate”. http://arstechnica.com/
security/2012/06/flame-malware-
was-signed-by-rogue-microsoft-
certificate/.

14

USENIX Association 25th USENIX Security Symposium 393

[7] Ars Technica. Lenovo pcs ship with man-in-
the-middle adware that breaks https connections.
http://arstechnica.com/security/2015/02/lenovo-pcs-
ship-with-man-in-the-middle-adware-that-breaks-https-
connections/.

[8] Beta News. Has SSL become pointless? Re-
searchers suspect state-sponsored CA forgery.
http://betanews.com/2010/03/25/has-
ssl-become-pointless-researchers-
suspect-state-sponsored-ca-forgery/.

[9] Briarproject. Development Workflow. https:
//code.briarproject.org/akwizgran/
briar/wikis/development-workflow.

[10] Bundler.io. Bundler: the best way to manage your appli-
cation’s GEMS. http://bundler.io/git.html.

[11] Code in the hole. Using pip and requirements.txt
to install from the head of a github branch. http:
//codeinthehole.com/writing/using-pip-
and-requirementstxt-to-install-from-
the-head-of-a-github-branch/.

[12] Delicious Brains. Install wordpress site with Git.
https://deliciousbrains.com/install-
wordpress-subdirectory-composer-git-
submodule/.

[13] Extreme Tech. GitHub Hacked, millions of projects
at risk of being modified or deleted. http:
//www.extremetech.com/computing/120981-
github-hacked-millions-of-projects-
at-risk-of-being-modified-or-deleted.

[14] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten. Sporc: Group collaboration using untrusted cloud
resources. In Proc. of the 9th USENIX Symposium on
Operating Systems Design & Implementation (OSDI ’10),
2010.

[15] gamasutra. Cloud source host Code Spaces hacked, de-
velopers lose code. http://www.gamasutra.com/
view/news/219462/Cloud_source_host_
Code_Spaces_hacked_developers_lose_
code.php.

[16] Geek.com. Major Open Source Code Repos-
itory Hacked for months, says FSF. http:
//www.geek.com/news/major-open-source-
code-repository-hacked-for-months-
says-fsf-551344/.

[17] M. Gerwitz. A Git Horror Story: Repository Integrity
With Signed Commits. http://mikegerwitz.com/
papers/git-horror-story.

[18] Gigaom. Adobe source code breach; it’s bad, real bad.
https://gigaom.com/2013/10/04/adobe-
source-code-breech-its-bad-real-bad/.

[19] Git SCM. Signing your work. https:
//git-scm.com/book/en/v2/Git-Tools-
Signing-Your-Work.

[20] M. Gunderloy. Easy Git External Depen-
dency Management with Giternal. http:

//www.rubyinside.com/giternal-easy-
git-external-dependency-management-
1322.html.

[21] E. Homakov. How I hacked GitHub again.
http://homakov.blogspot.com/2014/02/
how-i-hacked-github-again.html.

[22] How To Node. Managing module dependencies.
http://howtonode.org/managing-module-
dependencies.

[23] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson. An-
alyzing forged ssl certificates in the wild. In Proceedings
of the 2014 IEEE Symposium on Security and Privacy,
SP ’14, pages 83–97, Washington, DC, USA, 2014. IEEE
Computer Society.

[24] I2P. Setting trust evaluation hooks. https:
//geti2p.net/en/get-involved/guides/
monotone#setting-up-trust-evaluation-
hooks.

[25] B. H. Kim and D. Lie. Caelus: Verifying the consis-
tency of cloud services with battery-powered devices. In
Proc. of the 36th IEEE Symposium on Security and Pri-
vacy (S&P ’15), 2015.

[26] J. Li, M. Krohn, DMazières, and D. Shasha. Secure
untrusted data repository (sundr). In Proc. of the 6th
USENIX Symposium on Operating Systems Design & Im-
plementation (OSDI ’04), 2004.

[27] LWN. Linux kernel backdoor attempt. https://
lwn.net/Articles/57135/.

[28] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud storage with
minimal trust. ACM Trans. Comput. Syst., 29(4):12:1–
12:38, 2011.

[29] J. Pellegrini. Secrecy in concurrent version control sys-
tems. In Presented at the Brazilian Symposium on Infor-
mation and Computer Security (SBSeg 2006), 2006.

[30] RubyGems.org. Data verification. http:
//blog.rubygems.org/2013/01/31/data-
verification.html.

[31] Schneier on Security. Forging SSL Certificates.
https://www.schneier.com/blog/archives/
2008/12/forging_ssl_cer.html.

[32] R. Shirey, K. Hopkinson, K. Stewart, D. Hodson, and
B. Borghetti. Analysis of implementations to secure git
for use as an encrypted distributed version control sys-
tem. In 48th Hawaii International Conference on System
Sciences (HICSS ’15), pages 5310–5319, 2015.

[33] Stack Overflow. How to install from specific branch
with OPAM? https://stackoverflow.com/
questions/25277599/how-to-install-
from-a-specific-git-branch-with-opam.

[34] Stack Overflow. Loading Maven dependencies from
GitHub. https://stackoverflow.com/
questions/20161602/loading-maven-
dependencies-from-github.

15

394 25th USENIX Security Symposium USENIX Association

[35] Stack Overflow. Where does Cargo put the Git re-
quirements? https://stackoverflow.com/
questions/28069678/where-does-cargo-
put-the-git-requirements.

[36] The Art of Simplicity. TFS Build: Build from a tag.
http://bartwullems.blogspot.com/2014/
01/tfs-build-build-from-git-tag.html.

[37] ThreatPost. Certificates spoofing google,
facebook, godaddy could trick mobile users.
https://threatpost.com/certificates-
spoofing-google-facebook-godaddy-
could-trick-mobile-users/104259/.

[38] US-CERT. “SSL 3.0 Protocol Vulnerabilty and POODLE
attack”. http://arstechnica.com/security/
2012/06/flame-malware-was-signed-by-
rogue-microsoft-certificate/.

[39] D. A. Wheeler. Software Configuration Manage-
ment (SCM) Security. http://www.dwheeler.com/
essays/scm-security.html.

[40] D. A. Wheeler. “The Apple goto fail vulnerabil-
ity: lessons learned”. http://www.dwheeler.com/
essays/apple-goto-fail.html.

[41] Wired. Behind iphones critical security bug, a sin-
gle bad goto. http://www.wired.com/2014/02/
gotofail/.

[42] Wired. ’Google’ Hackers had ability to alter
source code’. https://www.wired.com/2010/03/
source-code-hacks/.

[43] ZDNet. Gogo in-flight wi-fi serving spoofed ssl certifi-
cates. http://www.zdnet.com/article/gogo-
in-flight-wi-fi-serving-spoofed-ssl-
certificates/.

[44] ZDNet. Open-source ProFTPD hacked, backdoor
planted in source code. http://www.zdnet.com/
article/open-source-proftpd-hacked-
backdoor-planted-in-source-code/#!

[45] ZDNet. Red Hat’s Ceph and Inktank code reposi-
tories were cracked. http://www.zdnet.com/
article/red-hats-ceph-and-inktank-
code-repositories-were-cracked/#!

A Man In The Middle Example

This appendix contains a proof of concept of a Git
metadata manipulation attack against a GitHub reposi-
tory with the intention of showing how an attack could
be carried out in practice.

To perform an attack of this nature, an attacker con-
trols a server, compromises a server, or acts as a man-
in-the-middle between a server and a developer. Hav-
ing done this, the attacker is able to provide erroneous
metadata to trick a developer into committing a tampered
repository state.

We simulated a repeated line scenario, in which a Git
merge accidentally results a repeated line. This can be
devastating as it can completely alter the flow of a pro-
gram — some researchers argue that the ”goto fail;” [41]
vulnerability that affected Apple devices [40] might have
been caused by a VCS mistakenly repeating the line
while merging.

A.1 Simulating the attack
To simulate the attack, we created a repository with

a minimal working sample that resembles Figure 5(c).
Also, we configured two Linux machines under the same
network: one functioned as the malicious server pro-
viding tampered metadata information, while the other
played the role of the victim’s client machine. The spe-
cific setup is described below.

Setup. To simulate the malicious server, we set up Git
server on port 443 with no authentication enabled. Then,
we created an SSL certificate and installed it in the victim
machine. Finally, we a bare clone (using the --bare
parameter) of the repository hosted on GitHub is created
and placed on the pertinent path.

In order to redirect the user to the new branch, we
modified the packed-refs file on the root of the repository
so that the commit hash in the master branch matches the
one for the experimental branch. Refer to Table 11 for an
example.

On the client side, a clone of the repository is cre-
ated before redirecting the traffic. After cloning, the at-
tacker’s IP address is added to the victim’s /etc/hosts file
as “github.com” to redirect the traffic.

As such, both the server and the developer are config-
ured to instigate the attack the next time the developer
pulls.

A.2 The attack
When the developer pulls, he or she is required to

either merge or rebase the vulnerable changes into the
working branch. These merged or rebased changes are
not easy to identify as malicious activity, as they just
resemble work performed by another developer on the

16

USENIX Association 25th USENIX Security Symposium 395

experimental

master

“Initial
Commit”

Repeated
goto

Adds auth

(a) Original repository state (as cloned
by the developer)

experimental
master

Initial
Commit

Repeated
goto

Adds auth

(b) The attacker changes the master
branch pointer

experimental

Initial
Commit

Repeated
goto

Adds auth Merge
master

master

(c) The developer pulled and, unknowingly, merged the
experimental commit

Figure 5: Maliciously merging vulnerable code

Original file
pack-refs with: peeled fully-peeled
00a5c1c2f52c25fe389558ea8117b7914ca2351e refs/heads/experimental
3a1db2295a5f842d0223088447bc7b005df86066 refs/heads/master

Tampered file
pack-refs with: peeled fully-peeled
00a5c1c2f52c25fe389558ea8117b7914ca2351e refs/heads/experimental
00a5c1c2f52c25fe389558ea8117b7914ca2351e refs/heads/master

Table 11: The edited packed-refs file

same branch. Due to this, the user is likely to merge and
sign the resulting merge commit.

Aftermath. Once the user successfully merges the vul-
nerable change, the attacker can stop re-routing the user’s
traffic to the malicious server. With the malicious piece
of code in the local repository, the developer is now ex-
pected to pollute the legitimate server the next time he or
she pushes. In this case, the attacker was able to merge a
vulnerable piece of code into production. Even worse,
there is no trace of this happening, for the target devel-
oper willingly signed the merge commit object.

Setting up an environment for this attack is straightfor-
ward; the metadata modification is easy to perform with
a text editor and requires no sophistication.

17

USENIX Association 25th USENIX Security Symposium 397

Defending against malicious peripherals with Cinch

Sebastian Angel,⋆† Riad S. Wahby,‡ Max Howald,§† Joshua B. Leners,∥

Michael Spilo,† Zhen Sun,† Andrew J. Blumberg,⋆ and Michael Walfish†

⋆The University of Texas at Austin †New York University ‡Stanford University §The Cooper Union ∥Two Sigma

Abstract

Malicious peripherals designed to attack their host com-
puters are a growing problem. Inexpensive and powerful
peripherals that attach to plug-and-play buses have made
such attacks easy to mount. Making matters worse, com-
modity operating systems lack coherent defenses, and
users are often unaware of the scope of the problem.
We present Cinch, a pragmatic response to this threat.
Cinch uses virtualization to attach peripheral devices to
a logically separate, untrusted machine, and includes an
interposition layer between the untrusted machine and
the protected one. This layer regulates interaction with
devices according to user-configured policies. Cinch in-
tegrates with existing OSes, enforces policies that thwart
real-world attacks, and has low overhead.

1 Introduction
Peripheral devices are now powerful, portable, and plenti-
ful. For example, the inexpensive “conference USB sticks”
that we have all received include not only the stored con-
ference proceedings but also a complete computer. Given
this trend, it is easy to create malicious peripheral de-
vices [43, 61, 88, 98]. And yet, it is difficult to defend
against them: commodity machines and operating systems
continue to be designed to trust connected peripherals.

Consider a user who is induced to insert a malicious
USB stick into his or her laptop [91, 135, 148]. There are
now many examples [16, 75, 89] of such devices injecting
malware (most infamously, Stuxnet [94]), by exploiting
vulnerabilities in the host’s drivers or system software.

Another alarming possibility is that, while following
the USB specifications, the malicious device can mas-
querade as a keyboard. The device can then use its
keystroke-producing ability to install a virus or exfiltrate
files [43, 61, 125, 150]. As a last example, a USB de-
vice can eavesdrop on the communication between an-
other device, such as the user’s true keyboard, and the
host [12, 17, 25, 72, 124].

These problems will get worse: on next-generation lap-
tops [5, 10], all ports, including the power port, are USB,
which means that any of the attacks above could be carried
out by a malicious charger. For that matter, your phone
might be compromised right now, if you borrowed a USB
charger from the wrong person.

On the one hand, the concepts needed to solve these
problems have long been understood. For example, in

Rushby’s separation kernel [129] (see also its modern de-
scendants [81, 122]), the operating system is architected
to make different resources of the computer interact with
each other as if they were members of a distributed sys-
tem. More generally, the rich literature on high-assurance
kernels offers isolation, confinement, access control, and
many other relevant ideas. On the other hand, applying
these works in full requires redesigning the operating
system and possibly also the hardware.

Solutions that target device security for today’s com-
modity systems are not adequate for the task, often be-
cause they were designed under different models (§8).
For example, work on device driver containment [80,
83, 93, 95, 96, 105, 112, 114, 127, 143–145, 152] and
reliability [108, 130–132] trusts devices or assumes
they are at worst buggy; the attacks mentioned ear-
lier are largely out of scope. Hotplug control frame-
works [13, 15, 18, 22, 33, 35, 37, 48, 50, 55], of which
a notable example is udev on Linux [56, 110], enable
users to express that certain devices should be denied
access. However, access is all-or-nothing, decisions are
based upon the device’s claimed identity rather than its
ongoing behavior, and a malicious device can disarm the
enforcement mechanism. Qubes [45] protects the OS and
applications from malicious USB devices, but achieves
its strong guarantees at the expense of functionality.

The fundamental issue is that the I/O subsystems in
commodity operating systems do not have an organizing
abstraction that could serve as a natural foundation for
security features. This paper attempts to fill that void.

Our point of departure is a simple suggestion: rather
than design a new framework, why not arrange for at-
tached peripheral devices on commodity operating sys-
tems to appear to the kernel as if they were untrusted
network endpoints? This would create an interposition
point that would allow users and administrators to defend
the rest of the computer, just as firewalls and other net-
work middleboxes defend hosts from untrusted remote
hosts. Our animating hope is that a system based on this
picture would eliminate large classes of vulnerabilities, be
easy to deploy, and enable new functionality. To explore
that vision, this paper describes the design, implemen-
tation, and experimental evaluation of a system called
Cinch. Cinch begins with the following requirements:

• Cinch should make peripheral buses look “remote,” de-
spite the physical coupling, by preventing direct inter-

398 25th USENIX Security Symposium USENIX Association

action with the rest of the computer (memory access,
interrupts, etc.).

• Under Cinch, traffic between the “remote” devices
and the rest of the computer should travel through a
narrow choke point. This choke point then becomes a
convenient location for deploying defenses that inspect
and mediate interactions with untrusted devices.

• Cinch should not require modifying bus standards,
motherboards, OSes, or driver stacks. Any of these
would be massive undertakings, would have to be done
for multiple platforms, and would jettison the immense
effort behind today’s installed base.

• Cinch should be portable, in the sense that Cinch itself
should not need to be re-designed or re-implemented
for different operating systems.

• Cinch should be flexible and extensible: users, opera-
tors, and administrators should be able to quickly de-
velop and deploy a wide range of defenses.

• Cinch should impose reasonable overhead in latency
and throughput.

Cinch responds to these requirements with the follow-
ing architecture, focused on USB as a target (§4). Under
Cinch, USB devices attach to an isolated and untrusted
module; this is enforced via hardware support for virtu-
alizing I/O [70, 71]. The untrusted module tunnels USB
traffic to the protected machine, and this tunnel serves as
a choke point for enforcing policy.

To showcase the architecture, we build several example
defenses (§5). These include detecting attacks by match-
ing against a database of attack signatures (§5.1); sani-
tizing inputs by ensuring that messages and device state
transitions comply with protocol and device specifica-
tions (§5.2); sandboxing device functions and enforcing
hotplug policies (§5.3); device authentication and traffic
encryption (§5.4); and logging and remote auditing (§5.5).

Our implementation of Cinch (§6) instantiates both the
untrusted module and the protected machine as separate
virtual machines. As a consequence, Cinch protects any
OS that runs atop the underlying hypervisor. In principle,
these virtualization layers can be reduced or eliminated,
at the cost of development effort and portability (§4.2).

To study Cinch’s effectiveness, we developed exploits
based on existing vulnerabilities [14], performed fuzzing,
and conducted an exercise with a red team whose mem-
bers were kept isolated from Cinch’s development (§7.1–
§7.3). Our conclusion is that Cinch can prevent many
attacks with relatively little operator intervention. We
also find that developing new defenses on Cinch is con-
venient (§7.4). Finally, Cinch’s impact on performance
is modest (§7.5): Cinch adds less than 3 milliseconds of
latency and can handle USB 3 transfers of up to 2.1 Gbps,
which is 38% less than the baseline of 3.4 Gbps.

Cinch is enabled—and inspired—by much prior work

in peripherals management, hardware-assisted virtualiza-
tion, privilege separation, and network security. We delve
into this work in Section 8. For now, we simply state
that although Cinch’s individual elements are mostly bor-
rowed, it is a novel synthesis. That is, its contributions
are not mechanical but architectural. These contributions
are: viewing peripherals as remote untrusted endpoints,
and the architecture that results from this perspective; the
instantiation of that architecture, which uses virtualiza-
tion techniques to target a natural choke point in device
driver stacks; a platform that allows defenses to existing
attacks to be deployed naturally on commodity hardware,
in contrast to the status quo; and the implementation and
evaluation of Cinch.

Cinch is not perfect. First, it shrinks the attack sur-
face that the protected machine exposes to devices, but
introduces new trusted code elsewhere (§4.2). Second,
although Cinch can reduce the universe of possible inputs
to the drivers and OS on the protected machine (by ruling
out noncompliant traffic), a malicious device might still
exploit bugs in how the code handles compliant traffic.
On the other hand, the user can decide which devices get
this opportunity; further, addressing buggy drivers and
system software is a complementary effort (§8). Third,
Cinch does not unilaterally defend against higher-level
threats (data exfiltration, malware, etc.); however, Cinch
creates a platform by which one can borrow and deploy
known responses from network security (§5). Finally,
some of Cinch’s defenses require changes within the
device ecosystem (§9). For example, defending against
masquerading attacks requires device (but not bus) modifi-
cations. However, these changes are limited: in our imple-
mentation, one person prototyped them in less than two
days (§6.3). Importantly, these changes can be used with
unmodified legacy devices via an inexpensive adapter.

Despite its shortcomings, Cinch is a substantial im-
provement over the status quo when considering the mis-
behavior that it rules out and the functionality that it en-
ables. Moreover, we hope that Cinch’s perspective on
device security will be useful in its own right.

2 Background: Universal Serial Bus (USB)
Commodity computing devices (phones, tablets, laptops,
workstations, etc.) have several peripheral buses for plug-
gable devices. These include USB [57, 58], Firewire [1],
and Thunderbolt [54]. Cinch focuses on USB as an initial
target; we make this choice because USB is ubiquitous
and complex, and because it has become a popular lo-
cus of hardware-based attacks. However, our approach
applies to other buses.

Figure 1 depicts the hardware and software architecture
of USB. USB is a family of specifications for connect-
ing and powering peripheral devices. Bandwidth ranges
from 1.5 Mb/s (USB 1.0) to 10 Gb/s (USB 3.1). Example

2

USENIX Association 25th USENIX Security Symposium 399

Software

Hardware

HID driver Mass storage driver

Power
management

Device
enumeration

USB Core

Host controller interface (HCI)

Host controller

Root hub

Printer driver

Hub

Class drivers

FIGURE 1—The hardware and software of a USB stack (§2).
Both physical devices and drivers are arranged hierarchically;
devices are rooted at the host controller, and drivers are rooted
at the host controller interface. Components in dashed boxes are
logically in the same layer of the USB stack.

devices include storage (e.g., memory sticks), keyboards,
sound cards, video cameras, Ethernet adapters, and smart
card readers. These devices connect to a host (for example,
a laptop or desktop). Some computers can act as either
a device or a host; for example, a smart phone or laptop
can appear as a storage device or power consumer to a
desktop, but as a host to a keyboard.

USB hardware. USB has a tree topology. Each device
has an upstream connection to a hub. Hubs multiplex
communication from one or more downstream devices,
and are themselves devices with an upstream connection
to another hub or to the root of the tree. The root is a host
controller, which connects to the host by, for example,
PCIe. The host controller acts as the bus master: it initiates
all transfers to and from devices, and devices are not
permitted to transmit except when polled by the host
controller. Also, the host controller issues interrupts to
the host and has direct access to host memory via DMA.

USB protocol. The USB specifications [57, 58] define a
protocol stack comprising three layers. The bottom layer
includes electrical specifications and a low-level packet
protocol. The middle layer of the stack includes address-
ing, power management primitives, and high-level com-
munication abstractions. USB devices, comprising one
or more functions, sit at the top of the stack. Functions
act as logically separate peripherals that are exposed by
a single physical device. For example, a phone might ex-

pose a camera function, a network adapter function, and
a storage function. Each of these functions is associated
with its own high-level driver software.

USB driver architecture. The USB specification de-
scribes three layers of software abstraction on the host.
The lowest level, the host controller interface or HCI,
configures and interacts with the host controller hardware
via a local bus (e.g., PCIe). An HCI driver is particular
to a host controller’s hardware interface but exposes a
hardware-independent abstraction to the next software
layer, called core. Core manages device addressing and
power management, and exposes an interface for high-
level drivers to communicate with devices. Core also enu-
merates devices when they are attached, which entails
identifying the device and activating its driver.

The uppermost layer, class drivers, are high-level
drivers that interact with functions (as described above).
These drivers provide an interface between USB devices
and the rest of the OS. For example, a keyboard’s class
driver interacts with the kernel’s input subsystem. Another
example is the mass storage class driver, which talks to
the kernel’s storage subsystem. The USB specification
defines a set of generic classes for a broad range of de-
vices, e.g., keyboards, mice, network interfaces, storage,
cameras, audio, and more. Operating systems generally
include support for a large subset of the generic classes,
allowing devices to leverage preexisting drivers.

3 Causes, threat model, and taxonomy
3.1 Why is USB so vulnerable?

The root of the problem is the implicit assumption that
hardware is inherently trustworthy, or at worst buggy
but non-malicious. As a consequence, neither USB nor
mainstream OSes are designed to be robust in the face of
malicious devices. One manifestation of this is the lack of
authentication or confidentiality guarantees at any layer
of the USB standard. As examples, devices self-report
their identity and capabilities without authentication; the
communication primitives at all layers of the protocol
stack (§2) are cleartext; and, prior to USB 3, host-to-
device messages are broadcast across the entire bus [124].

A related issue is that the USB protocol and common
driver stacks emphasize convenience above correctness
and security. For example, hotplugged devices are often
activated without user confirmation. Coupled with the lack
of device authentication, this means that the OS cannot
determine what device the user intended to connect, or
even that a hotplug event was generated by the user rather
than a malicious device [24, 75]. Moreover, malicious
device makers can rely on the near universal availability
of generic class drivers (e.g., for keyboards), since users
expect these devices to “just work.”

3

400 25th USENIX Security Symposium USENIX Association

The range and sophistication of USB-based threats
has escalated substantially in recent years. Whereas hard-
ware design costs were once a barrier to entry, creat-
ing custom USB devices is now cheap, both in dollars
and development time [43, 52, 61, 98, 100]; in fact, to-
day’s commodity USB devices are essentially software
defined [43, 75, 98].

The press plays a role too: demonstrating USB attacks
has become fashionable (e.g., recent media hype [6–8, 39,
53, 118] surrounding USB devices with reprogrammable
firmware [43, 84, 125]). A third factor is ease of trans-
mission: malicious USB devices can easily find their way
into the hands of victims [148]. This is partly due to vul-
nerabilities in the supply chain [38, 74, 101, 141], such
as adversarial manufacturers [102]. Intelligence agencies
have also been known to use their resources to intercept
and “enhance” shipments [27, 97], including conference
giveaways [20, 21].

3.2 Threat model

We assume that devices can deviate from the USB specifi-
cation arbitrarily. They may also violate the user’s expec-
tations, for example by masquerading as other devices or
passively intercepting bus traffic. Alternatively, devices
can present a higher-level threat; for example, a storage
device can contain an invalid filesystem that triggers a
bug in a filesystem driver. However, devices that cause
physical damage to the host, with high voltage [86] for
example, are out of scope.

We assume that the host’s OS and drivers can be buggy
but not malicious. We assume the same for the host’s
hardware besides the USB controller and USB devices.

3.3 A taxonomy of USB attacks

Attacks on USB drivers. USB drivers present an at-
tack surface to devices. For example, a driver with an
unchecked buffer access might allow a malicious device
to overwrite kernel memory via an overflow. The space
of possible misbehavior here is vast. For instance, de-
vices might try to deliver more data to the driver than
indicated by the device’s configuration [31]; claim impos-
sible configurations [28, 30]; exceed limits prescribed by
USB class specifications [4, 32, 42]; or produce otherwise
invalid or nonsensical reports [75, 87–89, 92, 137].

The prevalence of these attacks reflects a difficult soft-
ware engineering situation. Since a driver writer needs to
be prepared for an enormous range of undocumented be-
havior, drivers need lots of error checking code; such code
is often ill-exercised and creates complexity, leading to
more vulnerabilities. Indeed, more than half of the vulner-
abilities related to USB drivers in the CVE database [14]
are the result of improper handling of noncompliant USB
transfers; many more such vulnerabilities likely remain
undisclosed [87, 137].

Other attacks on the host via USB. USB can also ex-
pose the rest of the host system’s kernel or user software
to attacks by malicious devices. Recall that USB class
drivers provide an interface between devices and other
kernel subsystems (§2). Leveraging this interface, a USB
flash drive might be used to attack the kernel’s storage
or filesystem drivers [19, 44, 63, 64]. Or the drive might
carry a virus [94] or covertly steal data [140].

Of particular concern is the possibility of attacks in
which the USB host controller uses DMA (direct memory
access) to bypass the CPU and read or write arbitrarily
to RAM [26, 116, 139, 142]. A successful DMA attack
neutralizes essentially all software security measures, al-
lowing the attacker to steal sensitive data, modify running
software (including the kernel itself), and execute arbi-
trary code [128]. And the host controller does not need to
be malicious: misconfigured DMA-capable hardware is a
proven vector for such attacks [153, 154].

Privacy and authentication threats.
Device masquerading. When a device is plugged in, the

host asks the device for information about its capabilities.
The device can respond, disguised as another device or
even another class [29, 41, 43, 65, 85, 120, 125, 150]. For
example, Psychson [43] enables rewriting the firmware
on a cheap USB storage device so that it will act like
a keyboard; similarly, the commercially available “USB
Rubber Ducky” [61] is a programmable keystroke injector
in the guise of a flash drive. Likewise, a malicious hub
can masquerade as other devices [25]. These examples
are more than idle threats: penetration testers regularly
use such tools to breach security systems [3, 24].

Bus eavesdropping. In USB 2 and earlier versions, hubs
broadcast traffic from their upstream port to all down-
stream ports (§2), so any device on the bus can eavesdrop
on traffic from the host to any other device [124]. In all
protocol versions, malicious hubs can eavesdrop on up-
stream and downstream traffic [17, 72]. Furthermore, a
hub need not be malicious: if its firmware is buggy, it can
be exploited by a malicious device [25].

4 Architecture and rationale
The top-level goal of Cinch is to enforce security policies
that enable safe interactions between devices and the host
machine. This enforcement must be done in a way that
respects the requirements outlined in Section 1. In particu-
lar, we must answer two questions in the context of USB:
(1) Where and how can one create a logical separation
between the bus and the host, while arranging for an ex-
plicit communication channel that a policy enforcement
mechanism can interpose on? (2) How can one instantiate
this separation and channel with no modifications to bus
standards, OSes, or driver stacks?

4

USENIX Association 25th USENIX Security Symposium 401

Host controller

Root hub
Hub

IOMMU

Hypervisor

Blue machine

HID Storage

USB Core

HCI

Printer

GatewayRed machine

Tunnel

Trusted components

FIGURE 2—The architecture of Cinch. The trusted components
are surrounded by the dashed line. I/O virtualization separates
the USB host controller from the blue machine’s HCI, redirect-
ing DMA and interrupts to the red machine. The red machine
encapsulates and sends USB transfers through the Tunnel to the
Gateway. Once the Gateway has applied all security policies, it
redirects those transfers to the blue machine’s HCI.

We begin with the logical separation, which Cinch
enforces at the boundary between the host controller and
its driver (HCI), depicted in Figure 1. We choose this
separation point for two reasons: first, it results in a narrow
choke point where software can interpose. Second, the
host controller is “dangerous”—it issues interrupts and
accesses memory via DMA (§2, §3.3)—so there should be
a barrier between it and the rest of the system, including
the modules that administer policy decisions.

The architecture is depicted in Figure 2. After logically
separating the host controller, Cinch attaches it to a new
module, the red machine. The red machine is an endpoint
to a communication channel, the Tunnel. The other end-
point, the Gateway, is positioned at the entrance to the
host that Cinch protects, the blue machine. (These names
are inspired by Lampson’s red/green machine partition-
ing [111].) The Gateway mediates all transfers through
the Tunnel and enforces security policies (for example,
dropping or rewriting USB traffic, as described in §5) be-
fore those transfers reach the blue machine’s USB stack.

To connect the host controller to the red machine, Cinch
uses I/O virtualization hardware, which is widely avail-
able in modern CPUs [70, 71]. Specifically, an IOMMU
provides address translation and protection, which re-
stricts a physical device’s DMA transfers to a designated
memory region (in this case, that of the red machine); and
interrupt remapping provides analogous translation and
protection for interrupts.

4.1 Instantiation

In our current implementation, the lowest layer of
software—the one that manages the hardware resources
and configures the I/O virtualization hardware—is a com-
bination of hypervisor and OS, and is trusted. The red
machine runs on top of this hypervisor and is a full-
fledged virtual machine, with a normal OS that has a
stripped-down USB stack (§6.1). The blue machine is
also a full-fledged virtual machine atop the hypervisor,
and the Gateway is a separate process.

4.2 Discussion

With the instantiation described immediately above,
Cinch meets the requirements described in Section 1. It
isolates devices in the red machine, and its Gateway is
a narrow choke point. It limits overhead to reasonable
factors (§7.5), in part by leveraging hardware-assisted
processor and memory virtualization [68, 123] (as dis-
tinct from I/O virtualization). It works with existing USB
stacks; the main component needed is a driver in the hy-
pervisor, to receive transfers from the Gateway. It works
with a range of OSes because the blue machine runs un-
modified. For the remaining requirements, flexibility is
demonstrated in the next section (§5), and extensibility
arises from Cinch’s software structure (§6.2).

But a disadvantage is the size of the trusted computing
base (TCB) and attack surfaces. Specifically, the TCB
includes a full-featured hypervisor. The attack surface
includes the red machine, which is running a full OS
and which, if compromised, can attack the hypervisor
and the blue machine via the virtualization interface (by
attempting VM escapes, side channel inference, etc.).

There are a number of alternatives that, by tailoring the
hypervisor and red machine, reduce the TCB at the cost
of portability and additional development effort. As an
extreme example, the blue machine could run directly on
the host’s hardware (“bare metal”), with the red machine
running in an untrusted user-level process; the Gateway
would also run in user space. In this setup, there would be
no separate hypervisor; the blue machine would perform
the few required hypervisor-like functions, such as config-
uring the I/O virtualization hardware to connect the host
controller to the red machine process (see [77, 78, 126]).
Compared to Cinch’s instantiation, this one has a smaller
TCB; it also has lower overhead, owing to the absence
of virtual machines. However, it is less portable: each
new blue machine OS needs corresponding “hypervisor”
module and red machine implementations.

One can go further: the Gateway could entirely by-
pass the blue machine’s USB stack, sending device traffic
directly to the corresponding kernel subsystem (for exam-
ple, sending USB keyboard events to the input subsystem).
This would further reduce the TCB, at the cost of even
more development work and less portability.

5

402 25th USENIX Security Symposium USENIX Association

Another design point is a hardware-only solution: the
red machine and Gateway would run on a device placed
between USB devices and the blue machine, which would
run as a normal, unmodified host. Compared to Cinch,
this solution is potentially more portable, in that no soft-
ware modifications or reconfiguration are needed. Further,
this solution does not rely on I/O virtualization (which
is widespread but not universal), and it leaves the host’s
virtualization hardware available for other uses. The dis-
advantages are that a hardware solution is likely to be less
flexible, and that building hardware may be substantially
more effort than building Cinch.

A non-solution, in our view, is to implement the Gate-
way in the host’s USB stack, without a separate red ma-
chine. This setup does not have the separation discussed
earlier; it would leave the host and Gateway vulnerable to
DMA attacks by a compromised host controller.

5 Building defenses with Cinch
This section describes some of the defenses (which we
call Policies) that Cinch supports, and the threats (§3)
against which they defend. These Policies are not new;
we discuss previous implementations in Section 8. The
novelty is in providing a platform that makes a range of
Policies straightforward to develop and deploy.

5.1 Detecting attacks by signature

The first strategy is signature matching: dropping mes-
sages that match a known pattern. Defenses in this class
protect against attacks on drivers and user software (§3.3).
The same strategy is used in network security (intrusion
detection [47]) and desktop security (antivirus [11]) and
has been effective in practice, as a first-line defense. The
advantages and disadvantages hold in our context; we
review them briefly.

To begin with, signature generation is flexible and can
be done by victimized companies, individual users, and
designated experts, based on observations of past attacks
and reverse engineering of malicious devices. Further,
shared databases of observed attack signatures can im-
munize others. This strategy also enables rapid responses
to emerging threats: a signature of an attack is typically
available long before the vulnerability is patched.

The principal disadvantage, of course, is that signatures
generally provide protection only against previously ob-
served attacks. Furthermore, they suffer from both false
positives and false negatives: signatures that are too gen-
eral may disable benign devices, while signatures that are
too specialized can fail to catch all variants of an attack.

Cinch’s signature Policy. We implement a signature
matching module in Cinch that compares all USB traffic
from the red machine to a database of malicious payload
signatures. When a match occurs, Cinch disallows further
traffic between the offending device and the blue machine.

5.2 Sanitizing inputs

Another class of defensive strategies detects when devices
deviate from their specification; this is useful for defend-
ing against attacks on USB drivers (§3.3). Given a speci-
fication (say, provided by the manufacturer or converted
from a standards document), Cinch checks that messages
are properly formatted and that devices respond correctly
to commands. While drivers can (and in some cases, do)
implement such checks, moving enforcement to a dedi-
cated module can eliminate redundant code and reduce
driver complexity (§3.3, “Attacks on USB drivers”).

A related strategy in Cinch modifies apparent device
behavior, either forcing adherence to a strict subset of the
USB spec in order to match driver expectations, or else
relaxing the USB spec by recognizing and fixing device
“quirks”—behavior that is noncompliant but known to be
benign—so that drivers need not do so.1 This is closely
related to traffic normalization [103], in which a firewall
converts traffic to a canonical representation to aid analy-
sis and ensure that decisions are consistent with end-host
protocol implementations.

Cinch’s compliance Policy. This Policy enforces device
compliance with USB specifications. To build it, we man-
ually processed the USB 2 and 3 specifications [57, 58],
along with the specifications of five device classes (mass
storage, HID, printer, power, and debug) [59]. The result
is a module that monitors device states and transitions,
and enforces invariants on individual messages and entire
transactions. As a simple example, the compliance Policy
checks that device-supplied identification strings are well
formed—that is, that they comprise a valid UTF-16 string
of acceptable length—and rewrites noncompliant strings.
More complex state and transition checking is effected by
keeping persistent information about each device for the
duration of its connection.

Cinch’s compliance Policy is conservative in handling
noncompliance: if it cannot easily fix a device’s behav-
ior (for example, by rewriting identification strings as
described above), it assumes the device is malicious and
disables it.

Cinch’s assertion Policy. This Policy implements the
aforementioned relaxations and restrictions, by modifying
how Cinch’s compliance Policy regulates specific devices.
As examples, a user might specify that a particular de-
vice’s requests should be rewritten to work around buggy
firmware. Or Cinch can require that devices handled by
a certain driver must expose an interface that matches
a specified template, obviating bug-prone compatibility
checks in the driver’s code (§3.3).

1In practice, many non-malicious devices fail to comply with the specifi-
cation: the word “quirk” appears about once every 300 lines throughout
the 300 kLoC Linux USB stack (!), and nearly all the devices we tested
deviated from prescribed behavior in at least a small way.

6

USENIX Association 25th USENIX Security Symposium 403

5.3 Containing devices

This category includes querying a user for information
about a newly connected device, restricting a device to
a subset of its functionality, and isolating devices in pri-
vate protection domains. Such defenses, which are useful
against attacks on driver and user software and can foil
masquerading attacks (§3.3), are forms of hotplug control.
They decide—say, by asking the user—whether a newly
connected device should be allowed to communicate with
the blue machine, and if so, what functionality should be
allowed. For example, Cinch might ask the user, “I see
you just connected a keyboard. Is this right?”

In practice, such decisions can be much more complex.
Recall from Section 2 that devices can define multiple
functions, each of which is a logically separate peripheral.
A careful user wishing to tether his or her laptop to a
friend’s phone could be informed of available function-
ality upon device connection, and choose to disallow the
phone’s storage function as a precaution against viruses.

Alternatively, the user might choose to connect the
phone’s file storage function to a separate protection
domain—a sandbox—with limited capabilities and a nar-
row interface to the blue machine. In this case, the sand-
box could scan files for viruses, and could expose a high-
level interface (e.g., an HTTP or NFS server) to the blue
machine. This approach leverages existing software de-
signed for interacting with untrusted machines (in this
case, a web or file browser), and can bypass many layers
of software in the blue machine; on the other hand, it
changes the interface to the device.

Cinch’s containment Policy. We implement a “surgical”
hotplug Policy: individual device functions can be al-
lowed or disallowed, and the blue machine never interacts
with disallowed devices. Cinch’s Gateway can also sand-
box whole devices or individual functions by redirecting
selected USB traffic to separate protection domains that
expose functionality to the blue machine through narrow
interfaces, as described above.

5.4 Encryption and authentication

To handle devices that eavesdrop on the bus or masquer-
ade as other devices, Cinch adapts well-known responses—
authentication and encryption—to USB. For example, a
user can disallow all keyboards except those having a cer-
tificate signed by a particular manufacturer. This prevents
a malicious device without such a certificate from acting
as a keyboard.

In more detail, a device authenticates to the Gateway
by leveraging a trust relationship. As examples, manu-
factures sign certificates and install them on devices, and
users are required to use devices whose certificates are
signed by a trusted manufacturer; or users follow a pairing
procedure as in Bluetooth [67] or GoodUSB [146], obvi-

ating a trusted manufacturer but adding a setup step. After
completing a key exchange, the device and host share an
encryption key. The user can then prevent masquerading
and eavesdropping by installing a policy that disallows
unauthenticated, untrusted, or unencrypted devices.

This arrangement raises several potential concerns: de-
velopment overhead to build new devices, computational
overhead for cryptography, and deployment on legacy
devices. Below, we describe a proof-of-concept design
that addresses these concerns. At a high level, the con-
cerns are addressed by, respectively, abundant support for
rapid development of embedded cryptographic applica-
tions [34, 36, 66], the speed of modern embedded pro-
cessors, and a physical adapter that adds cryptographic
functionality to legacy devices.

Proof-of-concept USB crypto support. To support au-
thentication and encryption, we designed a cryptographic
overlay protocol. This mechanism allows compatible de-
vices to communicate with the Gateway via a TLS session
that encapsulates all of their USB transfers.

To evaluate the crypto overlay, we built a crypto
adapter, a physical device that sits between unmodified
legacy devices and a host system running Cinch. The
crypto adapter acts as a USB host for the legacy device,
encapsulating and decapsulating the device’s USB traffic
inside a TLS session. To communicate this TLS-encrypted
traffic to the host system, the crypto adapter also acts as
a USB device attached to the host system, as we detail
below. We refer to the crypto adapter’s USB connection
to the legacy device as the “inner” connection, and its
connection to the host as the “outer” connection.

Two issues arise in designing the crypto overlay and
adapter. First, a TLS session requires a full duplex stream
transport, while USB’s communication primitives are
based on host-initiated polling (§2). This means that the
outer USB connection cannot directly encapsulate a TLS
session. Second, the Gateway does not implement a USB
stack, meaning that, on its own, it cannot communicate
with the crypto adapter via the outer USB connection.

To solve the first issue, Cinch uses an existing USB
class that exposes a full-duplex Ethernet interface [59];
this Ethernet-over-USB traffic is carried by the outer USB
connection. Then Cinch uses TCP over this Ethernet con-
nection as the stream abstraction for TLS, yielding an
indirect encapsulation of TLS in the outer USB connec-
tion.2 To solve the second issue, we observe that, with
the foregoing encapsulation, the Gateway need not handle
the outer USB connection. Instead, the red machine treats
the outer USB connection as an Ethernet device (thereby
terminating the outer USB connection), and it forwards
all packets it receives from that device to the Gateway via
2An alternate approach with less overhead than TCP-over-IP-over-
Ethernet-over-USB is to create a custom USB class providing a full-
duplex stream abstraction with less generality than Ethernet.

7

404 25th USENIX Security Symposium USENIX Association

the Tunnel. Meanwhile, these packets are just the TCP
stream carrying the TLS session, and thus the Gateway
can talk TLS to the crypto adapter without a USB stack.

Note that this arrangement differs from the way that
Cinch handles other USB devices. For unencrypted de-
vices, the Gateway receives USB transfers captured by the
red machine; it inspects these transfers and then forwards
them to the blue machine’s HCI. But here, the Gateway re-
ceives packets (which the red machine decapsulated) that
contain a TLS session. The Gateway decrypts to recover
USB transfers, which it inspects and forwards.

Cinch’s crypto Policy. Given devices implementing the
crypto overlay, Cinch can enforce policies that rule out
eavesdropping and masquerading by requiring authenti-
cated and encrypted devices, as described at the outset of
this section.

5.5 Logging and auditing

Logging is part of many defensive strategies: auditing
logs can reveal anomalous behavior that might indicate a
new attack. Moreover, logs can be used to develop new
signature-based defenses (§5.1).

Cinch’s logging Policy. Cinch’s Gateway can be con-
figured to log some or all traffic to and from the blue
machine. Cinch can also replay logged data; we used
this functionality to help develop attack signatures for
our security evaluation (§7.3). Furthermore, Cinch can be
configured to log to a remote server. This feature could
allow real-time analysis of data from many different blue
machines, for example in a corporate environment.

5.6 Extensions

Cinch enables usage scenarios beyond the ones described
above. One example is data exfiltration prevention, which
is often employed at the network level to address the
threat of data theft [104, 115, 117, 133, 134], but is gen-
erally considered a more difficult problem in the con-
text of USB [140]. By combining real-time remote audit-
ing (§5.5) with signature detection (§5.1), Cinch allows
administrators to apply exfiltration prevention policies to
USB devices.

6 Implementation
We describe the components and the communication paths
in our implementation of Cinch (§6.1). We also discuss
the Policies implemented in Cinch, utilities that we use
to create and test new exploits, and our method for de-
riving payload signatures (§6.2). Finally, we describe the
proof-of-concept crypto adapter (§5.4) that we use to
transparently provide encryption and authentication for
existing USB devices (§6.3).

6.1 Components and communication paths

The hypervisor (§4.1) is Linux with KVM, meaning that
virtual machines run in QEMU processes that are accel-
erated with virtualization hardware [68, 123]. In partic-
ular, Cinch requires hardware support for I/O virtualiza-
tion [70, 71]. We tested with Intel hardware, but KVM
also supports equivalent functionality from AMD.

The red machine runs Linux. It is configured to load
only the HCI and core drivers (§2); higher-level USB
drivers are not needed to capture USB transfers from
devices. (An exception is the case of the crypto overlay,
which requires a USB network driver; §5.4). The blue
machine is another VM and, as stated in Section 4.2, can
be any OS supported by QEMU. The Gateway runs as a
user-level process on the Linux-KVM hypervisor.

The Tunnel between the red machine and the Gateway
appears to both entities as a network device. The appeal of
this approach is that the Tunnel connects to the untrusted
part of the system (Figure 2, §4), and meanwhile IP stacks
have been hardened over decades. Furthermore, this lets
us leverage existing software for remotely accessing USB
devices over a network [60, 73, 106]. Our implementation
uses usbredir [73], which (on the red machine), captures
USB transfers, listens on a network socket, and uses a
custom protocol to encapsulate USB transfers inside a
TCP stream.

As a usbredir client, the Gateway receives usbredir
packets, filters or modifies them, and then, playing the
role of a usbredir server, delivers them to the QEMU pro-
cess running the blue machine. A module in QEMU is
the corresponding client; it decapsulates the USB trans-
fers (using usbredir) and injects them into a virtual host
controller created by QEMU and exposed to the blue
machine. From the virtual host controller, the USB trans-
fers travel into the blue machine’s HCI, with no software
modifications on the blue machine.

Our implementation of Cinch supports USB versions
through USB 3.

6.2 Gateway details

The Gateway is implemented in Rust [46]; it comprises
about 8 kSLoC. Its major modules are parsers for usbredir
packets and USB transfers, and a library that provides
abstractions for creating new Policies. This library is in-
spired by the Click modular router [109] and provides
domain-specific abstractions for USB (as examples, de-
multiplexing usbredir packets into USB transfers and fil-
tering those transfers). As in Click, the user organizes
modules into chains where one module’s output is the
next module’s input. Several such chains can be config-
ured to operate in parallel. Users configure module chains
with files in JSON format.

8

USENIX Association 25th USENIX Security Symposium 405

OS exploit identifier exploit description prevention mechanism

Windows 8.1 01:01:00:C:4 Audio device with non-existent streaming interface Signature Policy⋆

01:01:00:C:5 Audio device with invalid streaming interface Signature Policy⋆

03:00:00:C:16 HID device with invalid report usage page Compliance Policy
03:00:00:C:17 HID device with invalid report usage page Compliance Policy
09:00:00:C:9 Hub with invalid number of ports Compliance Policy

Linux 4.2.0 CVE-2016-2184 Sound device with non-existent endpoint Assertion Policy
CVE-2016-2185 RF remote control device with invalid interface or endpoint Assertion Policy
CVE-2016-2186 Multimedia control device with invalid endpoint Assertion Policy
CVE-2016-2187 Digitizer tablet device with invalid endpoint Assertion Policy
CVE-2016-2188 I/O Warrior device with invalid endpoint Assertion Policy
CVE-2016-2384 Audio device with invalid USB descriptor Assertion Policy
CVE-2016-2782 Serial device with no bulk-in or interrupt-in endpoint Assertion Policy
CVE-2016-3136 Serial device without two interrupt-in endpoints Assertion Policy
CVE-2016-3137 Serial device without both in and out interrupt endpoints Assertion Policy
CVE-2016-3138 Communication device without both control and data endpoints Assertion Policy
CVE-2016-3139 Drawing tablet with invalid USB descriptor Assertion Policy
CVE-2016-3140 Serial converter device with invalid USB descriptor Assertion Policy
CVE-2016-3951 Communication device with invalid descriptor and payload Compliance Policy

⋆Exploit can be prevented with the compliance Policy, but we have not yet incorporated the necessary class specification (Audio) into Cinch.

FIGURE 3—Exploits for known-signature exercise (§7.1). Windows exploits were found by Boteanu and Fowler [79] with umap [88];
the reported identifier can be passed to umap using the “-s” flag to reproduce the exploit. We implemented the Linux exploits to
target all USB-related CVEs from January–June 2016. The last column describes which Policy (§5) of Cinch prevents the exploit.

6.3 Proof-of-concept USB crypto adapter

We implement the crypto adapter (§5.4) using a Beagle-
Bone Black [9] single-board computer that has a 1 GHz
ARM Cortex-A8 processor and 512 MB RAM. For au-
thentication, we generate a CA certificate and install it
on the Gateway and crypto adapter. We use that CA cer-
tificate to sign certificates for the Gateway and crypto
adapter, which mutually authenticate during the TLS
handshake. The crypto adapter runs a version of usbredir
that we augmented with support for TLS 1.2 [90] using
OpenSSL [40]; these changes comprise less than 200 lines
of code. The Gateway’s crypto module uses stunnel [49]
to listen for TLS connections.

7 Evaluation
Our evaluation of Cinch answers the following questions:
• How effectively does Cinch defend against attacks? We

subject Cinch to known exploits (§7.1), fuzzing (§7.2),
and a red team exercise (§7.3).

• Can new functionality be developed and deployed on
Cinch with ease? We answer this question qualitatively,
by relating our experiences (§7.4).

• What is Cinch’s performance overhead? We examine
latency and throughput (§7.5).

Experimental hardware and OSes. All of our exper-
iments run on a single machine with a 3.3 GHz Intel
i5-4590 and 16 GB of RAM. The hypervisor is Debian
Jessie running Linux 4.2.0 with KVM enabled. The red
machine’s OS is also Debian Jessie running Linux 4.2.0.
The blue machine’s OS depends on the experiment and is
either Windows 7 Ultimate SP1 (build 7601), Windows

8.1 Professional (build 9600), Debian Jessie with Linux
4.2.0, or Ubuntu 14.04 with a modified 4.2.0 kernel.

7.1 Known-signature attacks

We begin our evaluation of Cinch by subjecting it to syn-
thetic attacks, based on documented vulnerabilities. For
the attacks that succeed, we specify a “rematch” protocol,
in which the operator can install a signature (§5.1) and
then retry. This exercise is intended to address a coun-
terfactual hypothetical: if Cinch had been deployed at
the time of these vulnerabilities, would it have protected
against their exploitation? And, if not, would a subsequent
defensive reaction have been effective?

Method and experiment. We filter the CVE
database [14] to select all the USB-related vulner-
abilities reported from January to June of 2016. The
resulting 13 CVEs apply to Linux 4.5 and earlier. For
each CVE, we construct a payload that exploits it. We
also include five exploits, disclosed by Boteanu and
Fowler [79], that affect the most recent version of
Windows 8.1; the targeted vulnerabilities are not in the
CVE database.

Figure 3 summarizes the exploits. We confirm that
each exploit successfully compromises the blue machine
(Debian Jessie with Linux 4.2.0 or Windows 8.1) in the
absence of Cinch. Once Cinch is enabled, we consider
an attack successful if it compromises either the blue
machine’s kernel or the Gateway.

On the offensive side, we mount the attacks using a
Facedancer [98]—a custom USB microcontroller that can
masquerade as any USB device and issue arbitrary pay-
loads when connected to the target machine. We program

9

406 25th USENIX Security Symposium USENIX Association

exploits prevented

match phase rematch phase
Known exploits (§7.1)
Windows 8.1 3 / 5 5 / 5
Linux 4.2.0 13 / 13 13 / 13

vUSBf [136, 137] payloads (§7.2)
randomized devices 10,000 / 10,000 N/A
sample exploits 13 / 13 N/A

red team round 1 (§7.3)
Windows 7 2 / 2 2 / 2
Linux 4.2.0 3 / 5 5 / 5

red team round 2 (§7.3)
Windows 7 3 / 3 3 / 3
Linux 4.2.0 11 / 16 13 / 16

red team round 3 (§7.3)
Windows 7 3 / 3 3 / 3
Linux 4.2.0 15 / 20 16 / 20

FIGURE 4—Summary of Cinch’s security evaluation.

and control the Facedancer through a Python interface,
using the GoodFET [99] and umap [88] tools.

On the defensive side, we configure Cinch with the sig-
nature, assertion, compliance, and logging Policies (§5).
For the assertion Policy, we install 12 driver-specific con-
figuration restrictions; these fix buggy or nonexistent
checks, identified by the CVEs. For the signature Pol-
icy, we start with an empty signature database and check
whether each attack succeeds; if it does, we craft a signa-
ture based on the payload and associated metadata, then
conduct a rematch.

Results are summarized in Figure 4 (“Known exploits”);
for each exploit, the mechanism that prevented it is listed
in Figure 3. Cinch successfully detects and drops 16 of-
fending payloads with no additional configuration. Two
of the payloads were successful on their first try, but were
blocked in the rematch phase; these payloads targeted
vulnerabilities in the USB Audio class, which we have
not yet included in Cinch’s compliance Policy.

7.2 Fuzzing

Next, we assess the robustness of Cinch’s compliance
Policy (§5.2), via fuzz testing. We limit this exercise to
attacks that target device enumeration, as implemented in
the core and class drivers (§2). On the one hand, this is
not a comprehensive exercise. At the same time, device
enumeration is a common and well-studied source of
vulnerabilities [137], accounting for about half of all USB-
related entries in the CVE database.

In enumerating devices, USB core processes each de-
vice’s USB descriptors: records, generated by the device,
that identify its manufacturer, function, USB version, ca-
pabilities, etc. This process is complex because of the

wide range of possible device configurations. Further-
more, the attack surface includes class driver initialization
functions, since USB core passes descriptors to those func-
tions; Schumilo et al. [137] demonstrate that many OSes
and drivers do not handle device enumeration properly,
especially when the device information is inconsistent or
maliciously crafted.

Method and experiment. On the offensive side, we use
vUSBf [136], a fuzzing tool that generates a random set of
device descriptors and then emulates a device attach event.
We update vUSBf to work with the most recent version of
usbredir (v0.7.1), and we replace the red machine with an
instance of vUSBf (that is, vUSBf communicates directly
with the Gateway). In this setup, vUSBf can emulate
hundreds of randomized devices per minute.

We run two experiments. In the first, we use vUSBf to
emulate 10,000 randomly-generated devices. In the sec-
ond, we use vUSBf to emulate 13 specific configurations
identified by the vUSBf authors (after millions of trials)
that crash some (older) systems.

On the defensive side, we run Cinch, configured with
compliance (§5.2) and logging (§5.5) Policies. If Cinch
allows the emulated device to communicate with the blue
machine, we account this a failure.

We expect that the overwhelming majority of test cases
will not obey the USB specification, and that Cinch’s
compliance Policy will detect and prevent these cases. As
a baseline, we also present the same 10,000 inputs to a
system that is not running Cinch.

Results are summarized in Figure 4 (“vUSBf”). Cinch’s
compliance module prevents all emulated devices from
connecting to the blue machine. The three most commonly
detected violations are: (1) improperly formatted strings,
(2) invalid device classes, and (3) invalid or inconsistent
number of functions. On the one hand, these results could
be argued to be inconclusive because none of these inputs
were successful against the baseline setup without Cinch.
On the other hand, Cinch detected and blocked even the
13 configurations known to crash older systems.

7.3 Red team exercise

Our next set of exercises evaluates Cinch against attacks
that were not known to us a priori. This is intended to
assess Cinch’s effectiveness and to avoid some of the
bias that may arise when developers choose the attack
experiments (as above).

Specifically, we set up a red team that was charged with
developing new USB exploits to compromise blue ma-
chines; this activity included crafting new vulnerabilities
in the blue machine’s OS, which was meant to emulate
the ongoing process of discovering and patching bugs. In
our case, the red team comprised a subset of the authors
who were kept separate from the developers of Cinch and

10

USENIX Association 25th USENIX Security Symposium 407

Protocol There are three rounds, each of which has a setup, match and rematch phase.
Setup: Red team chooses an OS (which they can modify arbitrarily) and develops exploits that crash the OS.
Match: Cinch developers configure Cinch to run the OS provided by the red team as the blue machine; both teams
confirm that the exploits crash the OS when Cinch is not present. The Cinch developers deploy Cinch, and the red
team mounts its exploits. The Cinch developers collect traces, and both teams document the outcome of the exercise.
Rematch: Cinch developers get the traces, and are given the opportunity to analyze and react to them. Then the
match phase is rerun.

Attacker
knowledge

Round 1: The red team is given access to a technical report that documents an earlier version of Cinch. This models
an attacker with limited knowledge of Cinch.
Round 2: The red team is given access to a machine that is running Cinch. This models an attacker with black-box
access to Cinch, or an attacker that possesses Cinch’s binaries.
Round 3: The red team is given access to Cinch’s source code. This models an attacker with full knowledge of
Cinch’s logic (but not its configuration).

Developer
ability

Cinch developers freeze Cinch’s code prior to the match phase of round 1. After that, Cinch developers may apply
configuration-only changes: new signatures, etc.

FIGURE 5—Summary of the protocol for the red team exercise. This protocol was codified before the exercise began.

worked independently. Interactions between the red team
and the developers were tightly controlled, following an
evaluation protocol that was documented in advance. Fig-
ure 5 summarizes the protocol.

Summary of red team exploits. The red team devel-
oped 3 exploits for Windows and 20 exploits for Linux
across the three rounds of the protocol. Some exploits
shared the same attack vector but used different payloads.

The Windows exploits attacked a fresh copy of Win-
dows 7; the red team did not install updates because the
vulnerabilities their exploits targeted have been patched.
Since red team members did not have access or visibility
into the Windows USB stack, these exploits were found
primarily through fuzzing, guided by past CVEs.

For Linux, the red team installed a modified version
of kernel 4.2.0 on a fresh copy of Ubuntu 14.04. In par-
ticular, the red team modified a function within HCI that
processes USB request blocks (the data structure repre-
senting a message in the USB subsystem) to trigger a
kernel crash on certain device payloads; introduced a bug
in USB core that causes the kernel to crash whenever a
device with a certain configuration is connected; inserted
a bug in Linux’s HID input subsystem (drivers/input/
input.c) that leads to a null pointer dereference when
it receives a specific sequence of input events; and intro-
duced buggy drivers for a USB printer, camera, audio,
and HID device.

Finally, the red team noticed that the VFAT filesystem
driver in Linux 4.2 does not correctly validate the BIOS
Parameter Block (BPB). While they were unable to ex-
ploit this bug directly, it can result in an invalid filesystem
being mounted. To “enhance” this bug, the red team intro-
duced a null pointer dereference in the BPB handling rou-
tine (fs/fat/inode.c), triggered by a filesystem with
an invalid BPB.

Results are summarized in the last 3 sections of Figure 4.
First round. The red team developed 7 exploits for this

round (2 for Windows and 5 for Linux). In the match
phase, Cinch prevented both Windows exploits and 3
out of the 5 Linux exploits. The Windows exploits were
prevented by Cinch’s architecture rather than by any of its
Policies. Specifically, the red machine runs a Linux kernel;
that kernel is not vulnerable to either of the Windows
exploits and recognizes both connected devices as invalid.
As a result, Cinch does not export these devices in the
first place, protecting the Windows blue machine.

The two Linux exploits that Cinch was unable to pre-
vent occurred at layers that were outside of its semantic
knowledge (VFAT and the input subsystem). Using the
traces—collected with Cinch’s logging module (§5.5)—
the Cinch developers derived signatures. In the rematch
phase, these signatures prevented the exploits.

Second round. In the match phase, Cinch prevented 14
out of 19 attacks, including attacks from the first round.
The rematch phase again relied on signatures; of the re-
maining five exploits, signatures blocked two. The remain-
ing three succeeded because they are polymorphic: they
alter their payload to evade detection.

Third round. In the match phase, Cinch prevented 18
out of 23 attacks, including attacks from prior rounds for
which signatures were available. In the rematch phase,
Cinch was able to defend against an additional exploit
using a signature that prevents a particular sequence of
key presses from triggering a bug in the modified USB
HID driver. The remaining four exploits are polymorphic
and escaped evasion by signature and compliance checks.

These results, while preliminary, suggest that Cinch
is able to prevent several exploits—primarily those that
act as invalid USB devices—without prior configuration;
several more can be prevented after deriving signatures.
The remaining exploits might be prevented with more
intrusive approaches (e.g., sandboxing; §5.3)

11

408 25th USENIX Security Symposium USENIX Association

Tradeoff between security and availability. It is possi-
ble to develop more aggressive signatures to prevent poly-
morphic attacks (for example, using regular expressions);
however, this risks disabling benign devices. To ensure
that our signatures did not cause such false positives, we
established a representative set of benign devices: a USB
flash drive, printer, phone, SSD, keyboard, and mouse.
After each phase of the experiment, we checked that our
signatures did not keep these devices from working.

We found one failure: the signatures for the VFAT ex-
ploit prevented the blue machine from communicating
with any storage device with a VFAT filesystem. We re-
moved the offending signature and accounted that test a
failure (i.e., Cinch did not prevent the exploit), since such
a signature would not be deployable for most users.

7.4 Cinch’s flexibility and extensibility

There are two ways that Cinch can currently be extended:
through new signatures and configurations to enhance ex-
isting Policies (§5), and through new Policies that add new
functionality. We discuss our experience in both cases.

Deriving new signatures. We take a straightforward ap-
proach to deriving signatures for a given attack: we first
log malicious traces, and then replay them in a controlled
debugging environment. This allows us to analyze the
configuration and the attack. We use this information to
derive candidate signatures that are on the order of 10–
15 lines of JSON; deriving a signature for the exploits
in Section 7.3 took roughly 5 to 30 minutes, depending
on: (1) the amount of data the exploit sent, and (2) the
complexity of the subsystem the exploit targeted.

Creating new Policies. Adding a new Policy for Cinch
requires implementing an instance of a Rust trait [2]
(roughly analogous to a Java interface or a C++ abstract
class; this trait is defined in the Gateway library, §6.2)
that processes USB transfers, and adding the new Policy
to Cinch’s configuration file. Based on this configuration,
Cinch’s module subsystem automatically dispatches USB
transfers to configured chains (§6.2). To give an idea of
Policies’ complexity, Cinch’s largest—compliance—is
2500 SLoC while the rest average just 180 SLoC.

7.5 What are the costs of Cinch?

To understand the performance cost associated with us-
ing Cinch, we investigate two microbenchmarks, one for
latency and one for throughput. We use Debian Jessie
(Linux 4.2.0) as the blue machine’s OS.

Is Cinch’s added latency acceptable? To quantify the
delay introduced by the components of Cinch, we connect
the blue machine and another machine on a local network,
using an Ethernet-over-USB adapter. We record the round-
trip time between the two machines (using ping) as we

 0

 2

 4

Dire
ct

Arch
ite

ctu
re

Cinch

Cinch
 +

 T
LS

d
ev

ic
e

to
 t

ar
g
et

 p
in

g
 (

m
s)

FIGURE 6—Round-trip time between the blue machine and
USB device as components of Cinch are progressively added.
Results are averaged over 1000 pings and error bars represent
one standard deviation of the mean.

direct Cinch
USB 2 device (flash drive)
% of CPU cycles 1.8 % 8.1%
memory 9 MB 205 MB
I/O throughput 181.6 Mbps 145.6 Mbps
Encrypted I/O throughput – 35.4 Mbps

USB 3 device (SSD)
% of CPU cycles 5.6% 38.2%
memory 9 MB 207 MB
I/O throughput 3.4 Gbps 2.1 Gbps

FIGURE 7—Resource consumption of Cinch when transferring
a 1 GB file from storage devices to the blue machine. The
“direct” baseline is a setup where devices are connected directly
to the blue machine. Entries are the mean over 20 trials; standard
deviation is less than 5%. We do not report encrypted throughput
for the SSD because the crypto adapter does not support USB 3.

add components of Cinch. Figure 6 shows the results.
For our baseline, we connect the Ethernet-over-USB

adapter directly to a USB port on the host (Fig. 6, “Di-
rect”). We next attach the device to the red machine and
export it to the blue machine through the Tunnel with-
out the Gateway (i.e., the Tunnel runs directly to the
blue machine); this arrangement demonstrates the latency
cost of Cinch’s use of virtualization (Fig. 6, “Architec-
ture”). Next, we add the Gateway to the above configura-
tion, enabling all of Cinch’s Policies (§5), demonstrating
the overhead when the Gateway interposes on all USB
transfers (Fig. 6, “Cinch”). Finally, we place the crypto
adapter (§5.4) in between the Ethernet-over-USB device
and the Gateway (Fig. 6, “Cinch + TLS”).

Each component of Cinch adds moderate delay, with
the full setup (including the crypto adapter) resulting in a
round-trip time of less than 2.5 ms. We believe that this
delay is acceptable for latency-sensitive input devices; as
a comparison, high-performance mechanical keyboards
introduce delays on the order of 5 ms between successive
keystrokes (for debouncing [69, 107]).

12

USENIX Association 25th USENIX Security Symposium 409

What is Cinch’s impact on throughput and other re-
sources? We read 1 GB of data from a USB storage
device to the blue machine and measure the throughput,
memory consumption, and CPU load with and without
Cinch; we repeat these experiments 20 times. Storage
devices range in performance, so we experiment with two:
a USB 2 flash drive and a USB 3 SSD.

Figure 7 tabulates the results. For the flash drive, Cinch
achieves 0.8× the baseline’s throughput. There are two
main reasons for this: (1) Cinch copies USB transfers
at several stages in its architecture; and (2) USB 2 flash
drives use exclusively synchronous transfers, meaning
that Cinch’s added latency translates to lower throughput.
For the USB 3 SSD, Cinch achieves 0.6× the baseline’s
throughput. Unlike in USB 2, USB 3 storage devices
use asynchronous transfers and allow multiple in-flight
requests. The primary overhead is thus memory copies.

With regard to CPU and memory use, Cinch has modest
overhead. The memory Cinch consumes, which is primar-
ily allocated to running the red machine, is in line with
the cost of other security applications (e.g., antivirus).

7.6 Summary and critique

Our evaluation shows that Cinch can prevent previously
documented vulnerabilities, fuzzing attempts, and crafted
attacks, even without attack-specific configuration. Aug-
mented with a signature database, its success is even
higher, though none of its Policies are well suited to
defeating polymorphic attacks. In this respect, Cinch is
comparable to related tools in network security: it rules
out certain classes of vulnerabilities and can be adapted
to address specific issues, but it is not perfect. Cinch’s
extensibility also seems reasonable, though our metrics
here are subjective; and the performance impact, while
not negligible, may be a good trade-off.

While this evaluation suggests that Cinch is a step in
the right direction, it is far from definitive. First, we have
likely not explored the full attack space, especially with
regard to attacks on the non-USB portions of the kernel
and on user software. Second, the red team comprised au-
thors rather than disinterested parties, which may bias the
security evaluation. Third, most systems are considered
usable by their implementers; a neutral, non-expert op-
erator may have a different perspective. Finally, Cinch’s
performance impact may be acceptable for a wide range
of devices, but others (e.g., audio and video devices) have
more stringent latency requirements that Cinch might not
meet, especially when using the crypto adapter.

8 Related work
Cinch’s contribution is architectural: most of its mecha-
nisms are adapted from prior works and existing areas
of research. Nevertheless, we are not aware of any other

system that addresses the full space of attacks described
in Section 3.

USB security mechanisms (similar problem, different
mechanisms). One can purchase an adapter that prevents
data interchange on the USB bus, converting the bus into
power lines only [51]. A software version of this protec-
tion is a set of Linux kernel patches known as grsecu-
rity [23], which essentially disable hotplug. This “air gap
ethos”—provide defense by eliminating connectivity—
conflicts with Cinch’s aim of controlled interaction.

Qubes [45] is a distribution of Linux that makes ex-
tensive use of virtualization to create isolated privilege
domains for applications. Qubes can place USB devices
in their own virtual machines (USB VMs). A device’s
transfers are delivered to its USB VM, and hence appli-
cations accessing that device need to live on that VM,
wherein the threats enumerated in Section 3 are reprised.
An exception is that Qubes allows a user to safely share
USB storage devices from a USB VM with other VMs
on the system by exporting them as block devices. Qubes
also supports exporting keyboards and mice from a USB
VM, but its developers warn that doing so risks exposing
the system to attacks [62].

The udev user space daemon on Linux [56, 110] imple-
ments finer-grained policies than Qubes, akin to Cinch’s
containment Policy (§5.3). However, udev can itself be
attacked: udev requires the kernel to interact with every
device that connects, so the device has an opportunity to
attack the host machine before udev makes a policy de-
cision. There are many commercial offerings that enable
access control for USB devices [13, 15, 18, 22, 33, 35,
37, 48, 50, 55]; the issues with these are similar to udev.

USBFILTER [147] enables more precise and expressive
access control policies than udev. Furthermore, these poli-
cies are enforced throughout the lifetime of the interac-
tion rather than only at connection time. In particular, a
user can define rules to dictate which entities (processes
and drivers) can interact with a device (and vice versa).
This is similar to Cinch’s containment Policy (§5.3), but
USBFILTER’s rules support finer-grained statements, for
example, restricting interaction to particular processes.
The tradeoff is that it requires instrumenting the host’s
OS to trace USB transfers all the way to the requesting
processes and drivers. USBSec [149] brings a similar
tradeoff: it extends the USB protocol with mutual au-
thentication between the host and a compatible device
(providing a subset of Cinch’s crypto Policy functionality;
§5.4) but requires changes to the host’s USB stack.

GoodUSB [146] loads devices in a sandboxed environ-
ment and prompts the user to enable functions based on
a device’s claimed identity. This is similar to (but richer
than) Cinch’s containment Policy (§5.3), which could be
enhanced accordingly. GoodUSB’s mechanisms might

13

410 25th USENIX Security Symposium USENIX Association

also be used to bootstrap Cinch’s crypto overlay, as men-
tioned in Section 5.4.

Under UScramBle [124], devices provide a key to the
host that can be used to encrypt further messages; the
message goes upstream and thus is not broadcast across
the bus (§3.3). This prevents eavesdropping for USB 2
and earlier, but unlike Cinch’s crypto overlay (§5.4), it
cannot protect against malicious or compromised hubs
that see the key.

Of the foregoing, only USBFILTER, USBSec, and
GoodUSB address masquerading attacks (with the help of
the user; §5.3); eavesdropping (§3.3) is out of scope for
these systems. In contrast, UScramBle addresses eaves-
dropping but not masquerading.

Device driver isolation and reliability (complemen-
tary problem, overlapping mechanisms). There is a
vast literature on device driver containment and relia-
bility. We will go over some of it, but we can only scratch
the surface (a helpful survey appears in SUD [80]). We
note at the outset that Cinch borrows mechanisms from
many of these works: placing drivers in a separate vir-
tual machine [93, 95, 114], isolating a device with the
IOMMU [105], and leveraging hardware-assisted I/O vir-
tualization [105, 114, 145]. However, the threat and the
resulting architecture are different.

Specifically, work that isolates faulty device drivers [80,
83, 93, 95, 96, 105, 112, 114, 127, 143–145, 152] as-
sumes that hardware obeys its specification (and, with the
exception of SUD [80], that drivers may be buggy, but
not malicious). The same assumption about hardware is
made by work that validates the commands passed to de-
vices [152], eliminates bugs from drivers [130], and syn-
thesizes drivers that are correct by construction [131, 132].
There is work that aims at tolerating hardware faults [108],
but these faults are non-malicious and constrained (for
example, flipped bits) compared to the types of attacks
outlined in Section 3.

As a result of the assumption about faithful hardware,
masquerading and eavesdropping are out of scope; often,
devices that deviate from specification (§3.3) are, too. On
the other hand, Cinch does not provide comprehensive
protection against compromised drivers (though it can
sanitize drivers’ inputs, as outlined in §5.2). For this rea-
son, the works covered above are complementary to—and
in many cases composable with—Cinch.

Secure peripheral interaction (different problem,
overlapping mechanisms). Kells [82], USB Fingerprint-
ing [76, 113], and work by Wang and Stavrou [150] allow
a USB device to establish the identity of a host. The first
two works are defense mechanisms against the host: they
prevent compromised OSes from corrupting devices or
propagating malware; the latter is an attack primitive and

allows a malicious device to compromise hosts selectively.
Cinch’s crypto overlay (§5.4) also allows a device to iden-
tify a host (since connections can be mutually authenti-
cated; §6.3), but the goal is to prevent eavesdropping and
device masquerading.

SeRPEnT [151] and Bumpy [121] provide a safe path-
way from devices, through an untrusted host machine, to
a trusted, remote machine. SeRPEnT provides a similar
abstraction to Cinch’s crypto overlay (§5.4), and its mech-
anism is comparable to Cinch’s crypto adapter. Bumpy’s
goal, however, is remote attestation of user input rather
than prevention of masquerading attacks; its mechanisms
are based on trusted hardware. Both of these works target
wide area networking, while Cinch focuses on intra-host
communication.

Zhou et al. [155] allow trusted applications running
on top of untrusted OSes to securely communicate with
I/O devices. This is done via a trusted hypervisor that
mediates access to hardware by both the trusted and un-
trusted components. Cinch also interacts with peripheral
devices via an untrusted intermediary, but the architecture,
mechanisms, goals, and threat model are all different.

Separation kernels and network security (related
problems, related mechanisms). Two other research ar-
eas deserve special mention. The first is Rushby’s separa-
tion kernel [129], in which the operating system is archi-
tected to make a computer’s components interact as if they
were part of a distributed system (see [81] and [122] for
modern implementations). The foundational observation
of this work—that networks are a useful abstraction for
interposition—is one that we share. However, our goals
and scenario are different. The separation kernel was in-
tended to be a small kernel, with compartmentalized units
that could be formally verified, and it provided separation
through information flow control. In contrast, our scenario
is commodity operating systems, and we are seeking to
apply the conceptual framework of network security.

This brings us to network security itself. Cinch owes
a substantial debt to this field, borrowing as it does con-
cepts like firewalls, deep packet inspection, and virtual
private networks. Moreover, the recent trend toward Net-
work Function Virtualization (NFV) [119, 138] applies
I/O virtualization (as do Cinch and some of the works
cited earlier), but the point in NFV is to make middle-
boxes virtual, for reasons of configurability and cost.

9 Summary and conclusion
Cinch was motivated in large part by the observation
that hardware security is recapitulating the history of net-
work security. Originally, the Internet was a compara-
tively small number of mutually trusting organizations
and users. As a consequence, there was relatively little
focus on support for security within the network infras-

14

USENIX Association 25th USENIX Security Symposium 411

tructure. With the explosion of Internet users, spurred by
changing economics, security suddenly became a serious
problem. Similarly, commodity operating systems have
relatively few safeguards against misbehaving hardware,
reflecting a time when peripheral devices could be trusted.
But, with the rapid decline in the barriers to producing
plug and play peripherals, those days have come to an
end—and Cinch aims to be useful in the world ahead.

Although Cinch’s individual mechanisms have ample
precedent in the literature, the architecture and the syn-
thesis is novel, to the best of our knowledge. Moreover,
as the evaluation results make clear, the implementation
is pragmatic and surprisingly powerful. Looking at this
fact, we feel comfortable stating that we have identified a
good abstraction for the problem at hand.

To be clear, we are not saying that Cinch uniquely
enables any one piece of its functionality (§5); rather,
the abstraction makes it natural to develop and deploy
what would require far more work under alternative solu-
tions (§8).

We are also not saying that Cinch is comprehensive.
Indeed, besides the limitations covered earlier (§1, §4.2,
§7.6), some of Cinch’s solutions are effective only with
additional mechanisms. As a key example, providing au-
thentication and privacy with Cinch requires certificates
or pairing, and device modifications. However, certificates
are compatible with the chain of trust inherent in purchas-
ing hardware, pairing is similar to the permissions model
on mobile devices, and the required modifications are
not onerous, as our implementation of the adapter (§6.3)
indicates. As another example, Cinch’s compliance Pol-
icy (§5.2) would be strengthened by formal verification.

Despite the issues, Cinch appears to improve on the
status quo. Of course, it is possible that, if Cinch were
widely deployed, it would only escalate an arms race,
and drive attackers to find ever more esoteric vulnerabili-
ties. On the other hand, security is always about building
higher fences, and the considerations at the heart of our
work could guide the future design of peripheral buses
and drivers.

Acknowledgements

This paper was aided by conversations with Andrew Bau-
mann, Adam Belay, Sergio Benitez, Kevin Butler, Chris-
tian Huitema, Trammell Hudson, Ant Rowstron, Dennis
Shasha, Jeremy Stribling, Ymir Vigfusson, and Junfeng
Yang; and substantially improved by the detailed com-
ments of the SOSP and USENIX Security reviewers. This
work was supported by NSF grants CNS-1055057, CNS-
1423249, and CNS-1514422; AFOSR grant FA9550-15-
1-0302; and ONR grant N00014-14-1-0469.

References
[1] 1394-2008—IEEE standard for a high-performance serial bus.
http://standards.ieee.org/findstds/standard/
1394-2008.html.

[2] Abstraction without overhead: traits in Rust. http:
//blog.rust-lang.org/2015/05/11/traits.html.

[3] Advanced Teensy penetration testing payloads.
https://www.offensive-security.com/offsec/
advanced-teensy-penetration-testing-payloads/.

[4] AnywhereUSB/5 integer overflow.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2006-4459.

[5] Apple macbook tech specs.
http://www.apple.com/macbook/specs/.

[6] BadUSB—now with do-it-yourself instructions.
https://nakedsecurity.sophos.com/2014/10/06/
badusb-now-with-do-it-yourself-instructions/.

[7] BadUSB: Big, bad USB security problems ahead.
http://www.zdnet.com/article/badusb-big-bad-usb-
security-problems-ahead/.

[8] BadUSB: what you can do about undetectable malware on a
flash drive.
http://www.pcworld.com/article/2840905/badusb-
what-you-can-do-about-undetectable-malware-on-
a-flash-drive.html.

[9] BeagleBone Black. http://beagleboard.org/BLACK.
[10] Chromebook pixel.

http://www.google.com/chromebook/pixel/.
[11] ClamAV. http://www.clamav.net/.
[12] Close access SIGADS.

https://www.documentcloud.org/documents/807030-
ambassade.html#document/p1.

[13] CoCoSys Endpoint Protector.
http://www.endpointprotector.com/products/
endpoint_protector.

[14] Common vulnerabilities and exposures.
https://cve.mitre.org.

[15] Comodo Endpoint Security Manager. https:
//www.comodo.com/business-enterprise/endpoint-
protection/endpoint-security-manager.php.

[16] COTTONMOUTH-I. https://nsa.gov1.info/dni/nsa-
ant-catalog/usb/index.html#COTTONMOUTH-I.

[17] COTTONMOUTH-II. https://nsa.gov1.info/dni/nsa-
ant-catalog/usb/index.html#COTTONMOUTH-II.

[18] DeviceLock Data Loss Prevention Suite.
http://www.devicelock.com/products/.

[19] DLL planting remote code execution vulnerability.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-0096.

[20] Equation group: Questions and answers.
https://securelist.com/files/2015/02/Equation_
group_questions_and_answers.pdf.

[21] Equation: The Death Star of Malware Galaxy.
https://securelist.com/blog/research/68750/
equation-the-death-star-of-malware-galaxy/.

[22] GFI EndpointSecurity.
http://www.gfi.com/products-and-solutions/
network-security-solutions/gfi-endpointsecurity.

[23] grsecurity. https://grsecurity.net.
[24] Hackers pierce network with jerry-rigged mouse.

http://www.theregister.co.uk/2011/06/27/mission_
impossible_mouse_attack/.

[25] Hubs—BadUSB exposure. https:
//opensource.srlabs.de/projects/badusb/wiki/Hubs.

[26] Inception. https://github.com/carmaa/inception.
[27] Inside TAO: Documents reveal top NSA hacking unit.

http://www.spiegel.de/international/world/the-
nsa-uses-powerful-toolbox-in-effort-to-spy-on-

15

412 25th USENIX Security Symposium USENIX Association

global-networks-a-940969.html.
[28] Linux audio driver dereferences null pointer under invalid

device. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-2184.

[29] Linux default configuration does not warn user before enabling
HID over USB. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2011-0640.

[30] Linux serial driver dereferences null pointer under device with
no bulk-in or interrupt-in endpoints.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-2782.

[31] Linux hid-picolcd_core.c buffer overflow.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-3186.

[32] Linux report_fixup HID functions out-of-bounds write.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-3184.

[33] Lumension Device Control.
https://www.lumension.com/device-control-
software/usb-security-protection.aspx.

[34] MatrixSSL open source embedded SSL and TLS.
http://www.matrixssl.org.

[35] McAfee Complete Data Protection.
http://www.mcafee.com/us/products/complete-data-
protection.aspx.

[36] NanoSSL—an SSL library for embedded devices.
http://www.mocana.com/iot-security/nanossl.

[37] Novell ZENworks Endpoint Security Management.
https://www.novell.com/products/zenworks/
endpointsecuritymanagement/.

[38] NSA reportedly installing spyware on US-made hardware.
http://www.cnet.com/news/nsa-reportedly-
installing-spyware-on-us-made-hardware/.

[39] Only half of USB devices have an unpatchable flaw, but no one
knows which half.
http://www.wired.com/2014/11/badusb-only-
affects-half-of-usbs/.

[40] OpenSSL. https://www.openssl.org.
[41] OS X does not warn user before enabling HID over USB.

http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2011-0639.

[42] OS X USB hub descriptor memory corruption.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2012-3723.

[43] Phision 2251-03 (2303) custom firmware & existing firmware
patches (BadUSB).
https://github.com/adamcaudill/Psychson.

[44] QEMU usb_host_handle_control function buffer overflow.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2010-0297.

[45] Qubes OS project. https://www.qubes-os.org.
[46] The Rust programming language.

https://www.rust-lang.org/.
[47] Snort.Org. https://www.snort.org/.
[48] Sophos Endpoint Security and Control.

http://www.sophos.com/en-
us/support/documentation/endpoint-security-and-
control-for-windows.aspx.

[49] Stunnel. http://www.stunnel.org.
[50] Symantec Endpoint Protection.

http://www.symantec.com/endpoint-protection/.
[51] SyncStop. http://syncstop.com.
[52] Teensy USB development board.

https://www.pjrc.com/teensy.
[53] This thumbdrive hacks computers.

http://arstechnica.com/security/2014/07/this-
thumbdrive-hacks-computers-badusb-exploit-makes-
devices-turn-evil/.

[54] Thunderbolt technology.
http://www.intel.com/content/dam/doc/technology-
brief/thunderbolt-technology-brief.pdf.

[55] Trend Micro Enterprise Data Protection.
http://www.trendmicro.com/us/enterprise/data-
protection/endpoint/.

[56] udev. http://www.freedesktop.org/software/systemd/
man/udev.html.

[57] Universal Serial Bus revision 2.0 specification.
http://www.usb.org/developers/docs/usb20_docs/
usb_20_031815.zip.

[58] Universal Serial Bus revision 3.1 specification. http:
//www.usb.org/developers/docs/usb_31_031815.zip.

[59] USB device class specifications. http:
//www.usb.org/developers/docs/devclass_docs/.

[60] USB over network. http://www.usb-over-network.com.
[61] USB Rubber Ducky. http://usbrubberducky.com.
[62] Using and Managing USB devices. Qubes OS Project.

https://www.qubes-os.org/doc/usb/.
[63] Windows crafted .LNK or .PIF arbitrary code execution.

http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2010-2568.

[64] Windows disk partition driver elevation of privilege
vulnerability. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-4115.

[65] Windows does not warn user before enabling HID over USB.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2011-0638.

[66] wolfSSL. http://www.yassl.com.
[67] Bluetooth user interface flow diagrams for Bluetooth secure

simple pairing devices. Technical report, Bluetooth Usability
Expert Group, Sept. 2007.

[68] AMD-V nested paging. Technical report, AMD, July 2008.
[69] Cherry MX series keyswitch, 2014.

http://cherrycorp.com/product/mx-series/.
[70] Intel virtualization technology for directed I/O, Oct. 2014.

http://www.intel.com/content/www./us/en/embeded/
technology/virtualization/vt-directed-io-
spec.html.

[71] AMD I/O virtualization technology (IOMMU) specification,
Feb. 2015.
http://support.amd.com/TechDocs/48882_IOMMU.pdf.

[72] TURNIPSCHOOL - an open source reimagining of
COTTONMOUTH-I, 2015. https://github.com/
mossmann/cc11xx/tree/master/turnipschool.

[73] usbredir, 2015. https://github.com/SPICE/usbredir.
[74] C. Arthur. China’s Huawei and ZTE pose national security

threat, says US committee.
http://www.theguardian.com/technology/2012/oct/
08/china-huawei-zte-security-threat.

[75] D. Barrall and D. Dewey. “Plug and Root,” the USB key to the
kingdom. In Proceedings of the Black Hat USA Conference, July
2005.

[76] A. Bates, R. Leonard, H. Pruse, D. Lowd, and K. R. B. Butler.
Leveraging USB to establish host identity using commodity
devices. In Proceedings of the Network and Distributed System
Security Symposium (NDSS), Feb. 2014.

[77] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis. Dune: Safe, user–level access to privileged CPU
features. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Oct.
2012.

[78] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis,
and E. Bugnion. IX: A protected dataplane operating system for
high throughput and low latency. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), Oct. 2014.

[79] D. Boteanu and K. Fowler. Bypassing self-encrypting drives

16

USENIX Association 25th USENIX Security Symposium 413

(SED) in enterprise environments. In Proceedings of the Black
Hat Europe Conference, Nov. 2015.

[80] S. Boyd-Wickizer and N. Zeldovich. Tolerating malicious
device drivers in Linux. In Proceedings of the USENIX Annual
Technical Conference (ATC), June 2010.

[81] R. Buerki and A.-K. Rueegsegger. Muen–an x86/64 separation
kernel for high assurance. Technical report, University of
Applied Sciences Rapperswil (HSR), Switzerland, Aug. 2013.
http://muen.codelabs.ch/muen-report.pdf.

[82] K. R. B. Butler, S. E. McLaughlin, and P. D. McDaniel. Kells: A
protection framework for portable data. In Proceedings of the
Annual Computer Security Applications Conference (ACSAC),
Dec. 2010.

[83] S. Butt, V. Ganapathy, M. M. Swift, and C.-C. Chang. Protecting
commodity operating system kernels from vulnerable device
drivers. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC), Dec. 2009.

[84] A. Caudill. Making BadUSB work for you.
https://adamcaudill.com/2014/10/02/making-
badusb-work-for-you-derbycon/.

[85] A. Crenshaw. Plug and Prey: Malicious USB devices. In
Proceedings of ShmooCon, Jan. 2011.

[86] Dark Purple. USB killer.
http://kukuruku.co/hub/diy/usb-killer, 2015.

[87] A. Davis. Lessons learned from 50 bugs: Common USB driver
vulnerabilities. Technical report, NCC Group, Jan. 2013.

[88] A. Davis. umap: the USB host security assessment tool, 2014.
https://github.com/nccgroup/umap.

[89] A. Davis. USB attacks need physical access right? Not any
more. . . . In Proceedings of the Black Hat Asia Conference, Mar.
2014.

[90] T. Dierks and E. Rescorla. The transport layer security (TLS)
protocol version 1.2, Aug. 2008. RFC 5246.

[91] C. Doctorow. Dropped infected USB in the company parking lot
as a way of getting malware onto the company network.
http://boingboing.net/2012/07/10/dropped-
infected-usb-in-the-co.html.

[92] R. Dominguez Vega. USB attacks: Fun with Plug and 0wn. In
Proceedings of the DEF CON Hacking Conference, Aug. 2009.

[93] Ú. Erlingsson, T. Roeder, and T. Wobber. Virtual environments
for unreliable extensions. Technical Report MSR-TR-05-82,
Microsoft Resesearch, June 2005.

[94] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet dossier.
http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/
w32_stuxnet_dossier.pdf.

[95] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the Xen virtual
machine monitor. In Proceedings of the Workshop on Operating
System and Architectural Support for the On-Demand IT
Infrastructure, Oct. 2004.

[96] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift,
and S. Jha. The design and implementation of microdrivers. In
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), Mar. 2008.

[97] D. Goodin. Photos of an NSA “upgrade” factory show Cisco
router getting implant. http://arstechnica.com/tech-
policy/2014/05/photos-of-an-nsa-upgrade-factory-
show-cisco-router-getting-implant/.

[98] T. Goodspeed. Facedancer21. http:
//goodfet.sourceforge.net/hardware/facedancer21/.

[99] T. Goodspeed. GoodFET.
https://github.com/travisgoodspeed/goodfet.

[100] T. Goodspeed. Emulating USB devices with Python, July 2012.
http://travisgoodspeed.blogspot.com/2012/07/
emulating-usb-devices-with-python.html.

[101] G. Greenwald. How the NSA tampers with US-made internet

routers. http://www.theguardian.com/books/2014/may/
12/glenn-greenwald-nsa-tampers-us-internet-
routers-snowden.

[102] J. A. Halderman and E. W. Felten. Lessons from the Sony CD
DRM episode. In Proceedings of the USENIX Security
Symposium, Aug. 2006.

[103] M. Handley, V. Paxson, and C. Kreibich. Network intrusion
detection: Evasion, traffic normalization, and end-to-end
protocol semantics. In Proceedings of the USENIX Security
Symposium, Aug. 2001.

[104] F. Hao, M. Kodialam, T. V. Lakshman, and K. P. N. Puttaswamy.
Protecting cloud data using dynamic inline fingerprint checks.
In Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM), Apr. 2013.

[105] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Fault isolation for device drivers. In Proceedings of
the IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), June 2009.

[106] T. Hirofuchi, E. Kawai, K. Fujikawa, and H. Sunahara.
USB/IP—a peripheral bus extension for device sharing over IP
network. In Proceedings of the USENIX Annual Technical
Conference (ATC), Apr. 2005.

[107] P. Horowitz and W. Hill. The Art of Electronics, chapter 9,
Digital Meets Analog: Switch Bounce, pages 576–577.
Cambridge University Press, 2nd edition, 1989.

[108] A. Kadav, M. J. Renzelmann, and M. M. Swift. Tolerating
hardware device failures in software. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), Oct. 2009.

[109] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The Click modular router. ACM Transactions on Computer
Systems (TOCS), 18(3), Aug. 2000.

[110] G. Kroah-Hartman. udev – a userspace implementation of devfs.
In Proceedings of the Ottawa Linux Symposium, July 2003.

[111] B. Lampson. Accountability and freedom.
http://research.microsoft.com/en-
us/um/people/blampson/slides/
accountabilityandfreedomabstract.htm, 2005.

[112] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz, C. Gray,
L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and G. Heiser.
User-level device drivers: Achieved performance. Journal of
Computer Science and Technology, 20, 2005.

[113] L. Letaw, J. Pletcher, and K. Butler. Host identification via usb
fingerprinting. In Proceedings of the IEEE International
Workshop on Systematic Approaches to Digital Forensic
Engineering (SADFE), May 2011.

[114] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified
device driver reuse and improved system dependability via
virtual machines. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Dec.
2004.

[115] Y. Liu, C. Corbett, K. Chiang, R. Archibald, B. Mukherjee, and
D. Ghosal. SIDD: A framework for detecting sensitive data
exfiltration by an insider attack. In Proceedings of the Hawaii
International Conference on System Sciences, Jan. 2009.

[116] F. Lone Sang, V. Nicomette, and Y. Deswarte. I/O attacks in
Intel PC-based architectures and countermeasures. In
Proceedings of the SysSec Workshop, July 2011.

[117] K. S. Long. Catching the cyber spy: ARL’s interrogator.
Technical Report ADA432198, Army Research Laboratory, Dec.
2004.

[118] A. Mamiit. How bad is BadUSB? security experts say there is
no quick fix. http://www.techtimes.com/articles/
17078/20141004/how-bad-is-badusb-security-
experts-say-there-is-no-quick-fix.htm.

[119] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici. ClickOS and the art of network
function virtualization. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation

17

414 25th USENIX Security Symposium USENIX Association

(NSDI), Apr. 2014.
[120] J. Maskiewicz, B. Ellis, J. Mouradian, and H. Shacham. Mouse

trap: Exploiting firmware updates in USB peripherals. In
Proceedings of the USENIX Workshop on Offensive
Technologies, Aug. 2014.

[121] J. M. McCune, A. Perrig, and M. K. Reiter. Safe passage for
passwords and other sensitive data. In Proceedings of the
Network and Distributed System Security Symposium (NDSS),
Feb. 2009.

[122] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein. seL4: from general
purpose to a proof of information flow enforcement. In
Proceedings of the IEEE Symposium on Security and Privacy,
May 2013.

[123] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig. Intel
virtualization technology: Hardware support for efficient
processor virtualization. Intel Technology Journal, 10(3), 2006.

[124] M. Neugschwandtner, A. Beitler, and A. Kurmus. A transparent
defense against USB eavesdropping attacks. In Proceedings of
the European Workshop on System Security (EUROSEC), Apr.
2016.

[125] K. Nohl and J. Lell. BadUSB—on accessories that turn evil. In
Proceedings of the Black Hat USA Conference, Aug. 2014.

[126] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe. Arrakis: The
operating system is the control plane. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Oct. 2014.

[127] M. J. Renzelmann and M. M. Swift. Decaf: Moving device
drivers to a modern language. In Proceedings of the USENIX
Annual Technical Conference (ATC), June 2009.

[128] M. Rushanan and S. Checkoway. Run-DMA. In Proceedings of
the USENIX Workshop on Offensive Technologies, Aug. 2015.

[129] J. Rushby. The design and verification of secure systems. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), Dec. 1981.

[130] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Taming
device drivers. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), Mar. 2009.

[131] L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, and G. Heiser.
Automatic device driver synthesis with Termite. In Proceedings
of the ACM Symposium on Operating Systems Principles
(SOSP), Oct. 2009.

[132] L. Ryzhyk, A. Walker, J. Keys, A. Legg, A. Raghunath,
M. Stumm, and M. Vij. User-guided device driver synthesis. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Oct. 2014.

[133] K. Scarfone and P. Mell. Guide to intrusion detection and
prevention systems (IDPS). Technical report, NIST, Feb. 2007.

[134] N. Schear, C. Kintanna, Q. Zhang, and A. Vahdat. Glavlit:
Preventing exfiltration at wire speed. In Proceedings of the ACM
Workshop on Hot Topics in Networks (HotNets), Nov. 2006.

[135] B. Schneier. Yet another “people plug in strange USB sticks”
story. https://www.schneier.com/blog/archives/
2011/06/yet_another_peo.html.

[136] S. Schumilo. virtual USB fuzzer, 2015.
https://github.com/schumilo/vUSBf/.

[137] S. Schumilo, R. Spenneberg, and H. Schwartke. Don’t trust your
USB! How to find bugs in USB device drivers. In Proceedings
of the Black Hat Europe Conference, Oct. 2014.

[138] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design
and implementation of a consolidated middlebox architecture. In
Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), Apr. 2012.

[139] R. Sevinsky. Funderbolt: Adventures in Thunderbolt DMA
attacks. In Proceedings of the Black Hat USA Conference, July
2013.

[140] G. Silowash and T. Lewellen. Insider threat control: Using

universal serial bus (USB) device auditing to detect possible data
exfiltration by malicious insiders, 2013.
CMU/SEI-2013-TN-003,
http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=35427.

[141] S. Stecklow. U.S. nuclear lab removes Chinese tech over
security fears.
http://www.reuters.com/article/2013/01/07/us-
huawei-alamos-idUSBRE90608B20130107.

[142] P. Stewin and I. Bystrov. Understanding DMA malware. In
Proceedings of the Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), July 2012.

[143] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.
Recovering device drivers. ACM Transactions on Computer
Systems (TOCS), 24(4), 2006.

[144] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems. ACM Transactions
on Computer Systems (TOCS), 23(1), 2005.

[145] L. Tan, E. M. Chan, R. Farivar, N. Mallick, J. C. Carlyle, F. M.
David, and R. H. Campbell. iKernel: Isolating buggy and
malicious device drivers using hardware virtualization support.
In Proceedings of the IEEE International Symposium on
Dependable, Autonomic and Secure Computing (DASC), Sept.
2007.

[146] D. Tian, A. Bates, and K. Butler. Defending against malicious
USB firmware with GoodUSB. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC), Dec.
2015.

[147] J. Tian, N. Scaife, A. Bates, K. R. B. Butler, and P. Traynor.
Making USB great again with USBFILTER. In Proceedings of
the USENIX Security Symposium, Aug. 2016.

[148] M. Tischer, Z. Durumeric, S. Foster, S. Duan, A. Mori,
E. Bursztein, and M. Bailey. Users really do plug in USB drives
they find. In Proceedings of the IEEE Symposium on Security
and Privacy, May 2016.

[149] Z. Wang, R. Johnson, and A. Stavrou. Attestation &
authentication for USB communications. In Proceedings of the
IEEE International Conference on Software Security and
Reliability Companion, June 2012.

[150] Z. Wang and A. Stavrou. Exploiting smart-phone USB
connectivity for fun and profit. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC), Dec.
2010.

[151] D. Weinstein, X. Kovah, and S. Dyer. SeRPEnT: Secure remote
peripheral encryption tunnel. Technical Report MP120013, The
MITRE Corporation, 2012.

[152] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B.
Schneider. Device driver safety through a reference validation
mechanism. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Dec.
2008.

[153] R. Wojtczuk. Subverting the Xen hypervisor. In Proceedings of
the Black Hat USA Conference, Aug. 2008.

[154] B.-A. Yassour, M. Ben-Yehuda, and O. Wasserman. On the
DMA mapping problem in direct device assignment. In
Proceedings of the ACM International Systems and Storage
Conference (SYSTOR), May 2010.

[155] Z. Zhou, M. Yu, and V. D. Gligor. Dancing with giants: Wimpy
kernels for on-demand isolated I/O. In Proceedings of the IEEE
Symposium on Security and Privacy, May 2014.

18

USENIX Association 25th USENIX Security Symposium 415

Making USB Great Again with USBFILTER

Dave (Jing) Tian⋆, Nolen Scaife⋆, Adam Bates†, Kevin R. B. Butler⋆, and Patrick Traynor⋆
⋆ University of Florida, Gainesville, FL

† University of Illinois, Urbana-Champaign, IL
{daveti,scaife,adammbates,butler,traynor}@ufl.edu

Abstract
USB provides ubiquitous plug-and-play connectivity for
a wide range of devices. However, the complex na-
ture of USB obscures the true functionality of devices
from the user, and operating systems blindly trust any
physically-attached device. This has led to a number
of attacks, ranging from hidden keyboards to network
adapters, that rely on the user being unable to identify
all of the functions attached to the host. In this paper, we
present USBFILTER, which provides the first packet-level
access control for USB and can prevent unauthorized in-
terfaces from successfully connecting to the host operat-
ing system. USBFILTER can trace individual USB pack-
ets back to their respective processes and block unautho-
rized access to any device. By instrumenting the host’s
USB stack between the device drivers and the USB con-
troller, our system is able to filter packets at a granular-
ity that previous works cannot — at the lowest possible
level in the operating system. USBFILTER is not only able
to block or permit specific device interfaces; it can also
restrict interfaces to a particular application (e.g., only
Skype can access my webcam). Furthermore, our ex-
perimental analysis shows that USBFILTER introduces a
negligible (3-10µs) increase in latency while providing
mediation of all USB packets on the host. Our system
provides a level of granularity and extensibility that re-
duces the uncertainty of USB connectivity and ensures
unauthorized devices are unable to communicate with the
host.

1 Introduction

The Universal Serial Bus (USB) provides an easy-to-use,
hot-pluggable architecture for attaching external devices
ranging from cameras to network interfaces to a single
host computer. USB ports are pervasive; they can of-
ten be found on the front, back, and inside of a com-
mon desktop PC. Furthermore, a single USB connector
may connect multiple device classes. These composite

devices allow disparate hardware functions such as a mi-
crophone and speakers to appear on the same physical
connector (e.g., as provided by a headset). In the host
operating system, technologies such as USBIP [21] pro-
vide the capability to remotely connect USB devices to
a host over a network. The result is a complex combina-
tion of devices and functionalities that clouds the user’s
ability to reason about what is actually connected to the
host.

Attacks that exploit this uncertainty have become
more prevalent. Firmware attacks such as BadUSB [27]
modify benign devices to have malicious behavior (e.g.,
adding keyboard emulation to a storage device or per-
form automatic tethering to another network). Hardware
attacks [1] may inject malware into a host, provide RF
remote control capabilities, or include embedded proxy
hardware to inject and modify USB packets. Attack-
ers may also exfiltrate data from the host by leveraging
raw I/O (e.g., using libusb [14]) to communicate with
the USB device directly, or bypass the security mecha-
nism employed by the USB device controller by sending
specific USB packets to the device from the host USB
controller [4]. Unfortunately, the USB Implementers Fo-
rum considers defending against malicious devices to be
the responsibility of the user [44], who is unlikely to be
able to independently verify the functionality and intent
of every device simply by its external appearance, and
may just plug in USB devices to take a look [43].

Modern operating systems abstract USB authorization
to physical control, automatically authorizing devices
connected to the host, installing and activating drivers,
and enabling functionality. We believe that a finer-
grained control over USB is required to protect users. In
this paper, we make the following contributions:

• Design and develop a fine-grained USB ac-
cess control system: We introduce USBFILTER, a
packet-level firewall for USB. Our system is the first
to trace individual USB packets back to the source
or destination process and interface. USBFILTER

416 25th USENIX Security Symposium USENIX Association

rules can stop attacks on hosts by identifying and
dropping unwanted USB packets before they reach
their destination in the host operating system.

• Implement and characterize performance: We
demonstrate how USBFILTER imposes minimal
overhead on USB traffic. As a result, our system
is well-suited for protecting any USB workload.

• Demonstrate effectiveness in real-world scenar-
ios: We explore how USBFILTER can be used
to thwart attacks and provide security guarantees
for benign devices. USBFILTER can pin devices
(e.g., webcams) to approved programs (e.g., Skype,
Hangouts) to prevent malicious software on a host
from enabling or accessing protected devices.

USBFILTER is different from previous works in this
space because it enables the creation of rules that explic-
itly allow or deny functionality based on a wide range
of features. GoodUSB [41] relies on the user to explic-
itly allow or deny specific functionality based on what
the device reports, but cannot enforce that the behav-
ior of a device matches what it reports. SELinux [35]
policies and PinUP [13] provide mechanisms for pinning
processes to filesystem objects, but USBFILTER expands
this by allowing individual USB packets to be associated
with processes. This not only allows our system to per-
mit pinning devices to processes, but also individual in-
terfaces of composite devices.

Our policies can be applied to differentiate individual
devices by identifiers presented during device enumera-
tion. These identifiers, such as serial number, provide
a stronger measure of identification than simple prod-
uct and vendor codes. While not a strong authentication
mechanism, USBFILTER is able to perform filtering with-
out additional hardware. The granularity and extensibil-
ity of USBFILTER allows it to perform the functions of
existing filters [41] while permitting much stronger con-
trol over USB devices.

The remainder of this paper is structured as follows: In
Section 2, we provide background on the USB protocol
and explain why it is not great anymore; in Section 3,
we discuss the security goals, design and implementation
of our system; in Section 4, we discuss how USBFILTER
meets our required security guarantees; in Section 5, we
evaluate USBFILTER and discuss individual use cases; in
Section 6, we provide additional discussion; in Section 7,
we explore related work; and in Section 8, we conclude.

2 Background

A USB device refers to a USB transceiver, USB hub, host
controller, or peripheral device such as a human-interface

USB Device
Interface 0 Interface 1 Interface 2

In Out In InOut Out

EP 0 EP 0
EP 1 EP1

EP 0 EP 0 EP 0 EP 0
EP 1 EP 1 EP 1 EP 1
EP 2 EP 2EP 2 EP 2

EP n EP n

Figure 1: A detailed view of a generic USB device. Sim-
ilar to a typical USB headset, this device has three inter-
faces and multiple endpoints.

device (HID, e.g., keyboard and mouse), printer, or stor-
age. However, the device may have multiple functions
internally, known as interfaces. An example device with
three interfaces is shown in Figure 1. USB devices with
more than one interface are known as composite devices.
For example, USB headsets often have at least three in-
terfaces: the speaker, the microphone, and the volume
control functionalities. Each interface is treated as an in-
dependent entity by the host controller. The operating
system loads a separate device driver for each interface
on the device.

The USB protocol works in a master-slave fashion,
where the host USB controller is responsible to poll the
device both for requests and responses. When a USB
device is attached to a host machine, the host USB con-
troller queries the device to obtain the configurations of
the device, and activates a single configuration supported
by the device. For instance, when a smartphone is con-
nected with a host machine via USB, users can choose
it to be a storage or networking device. By parsing the
current active configuration, the host operating system
identifies all the interfaces contained in the configura-
tion, and loads the corresponding device drivers for each
interface. This whole procedure is called USB enumera-
tion [10]. Once a USB device driver starts, it first parses
the endpoints information embedded within this interface
as shown in Figure 1.

While the interface provides the basic information for
the host operating system to load the driver, the endpoint
is the communication unit when a driver talks with the
USB device hardware. Per specification, the endpoint 0
(EP0) should be supported by default, enabling Control
(packet) transfer from a host to a device to further probe
the device, prepare for data transmission, and check for
errors. All other endpoints can be optional though there
is usually at least EP1, providing Isochronous, Inter-
rupt, or Bulk (packet) transfers, which are used by au-
dio/video, keyboard/mouse, and storage/networking de-
vices respectively. All endpoints are grouped into either
In pipes, where transfers are from the device to the host,

2

USENIX Association 25th USENIX Security Symposium 417

or Out pipes, where transfers are from the host to the
device. This in/out pipe determines the transmission di-
rection of a USB packet. With all endpoints set up, the
driver is able to communicate with the device hardware
by submitting USB packets with different target end-
points, packet types, and directions. These packets are
delivered to the host controller, which calls the controller
hardware to encode USB packets into electrical signals
and send them to the device.

2.1 Why USB Was Great
Prior to USB’s introduction in the 1990s, personal com-
puters used a number of different and often platform-
specific connectors for peripherals. Serial and parallel
ports, PS/2, SCSI, ADB, and others were often not hot-
pluggable and required users to manually set configura-
tion options (such as the SCSI ID). The widespread in-
dustry adoption of USB fixed many of these issues by
providing a common specification for peripherals. Hard-
ware configuration is now handled exclusively by the
host, which is able to manage many devices on a sin-
gle port. The relative ease with which a USB peripheral
can be installed on a host is simultaneously its greatest
and most insecure property.

The USB subsystem has been expanded in software
as well, with Virtio [30] supporting I/O virtualization in
KVM, enabling virtual USB devices in VMs, and pass-
ing through the physical devices into VMs. USBIP [21]
transfers USB packets via IP, making remote USB de-
vice sharing possible. Wireless USB (WUSB) [19] and
Media Agnostic USB (MAUSB) [16] promote the avail-
ability of USB devices by leveraging different wireless
communication protocols, making the distinction among
local USB devices, virtual ones, and remote ones vanish.

Overall, the utility and complexity of USB has been
steadily increasing in both hardware and software. Ad-
vances in circuit and chip design now allow hidden func-
tionality to be placed inside the USB plug [1]. The ease-
of-use that made USB great now threatens users by ob-
scuring the individual interfaces in a USB device.

2.2 How USB Lost its Greatness
Attacks on USB prey on the fundamental misunderstand-
ing of how devices are constructed from interfaces. At-
tacks such as BadUSB [27] and TURNIPSCHOOL [1]
(itself designed on specifications from nation-state ac-
tors) use composite devices to present multiple interfaces
to a host. Often these include one benign or expected in-
terface and one or more malicious interfaces, including
keyboards [9, 27] and network interfaces [27, 1]. With-
out communicating with the host operating system, a
malicious USB device can only obtain power from the

host. While it may be possible to perform power anal-
ysis attacks without sending USB packets, we focus on
the problem of connecting malicious devices to the host’s
operating system. All of these attacks share a common
thread: they attach an unknown interface to a host with-
out the user’s knowledge. Since operating systems im-
plicitly trust any device attached, these hidden functions
are enumerated, their drivers are loaded, and they are
granted access to the host with no further impediment.

Data exfiltration from host machines may be the main
reason why USB storage is banned or restricted in enter-
prise and government environments. Current secure stor-
age solutions rely on access control provided by the host
operating system [23] or use network-based device au-
thentication [22]. While access controls can be bypassed
by raw I/O, which communicates to the device directly
from userspace (e.g., using libusb [14]), network-based
methods are vulnerable to network spoofing (e.g., ARP
spoofing [32] and DNS spoofing [36]). It is thus un-
clear whether data exfiltration has occurred or not until
the USB port is glued or locked [39]. The remainder of
this paper will show how a packet-level filter for USB
permits fine-grained access controls, eliminating the im-
plicit trust model while providing strong guarantees.

3 USB Access Control

The complex nature of the USB protocol and the variety
of devices that can be attached to it makes developing a
robust and efficient access control mechanism challeng-
ing. Layers in the operating system between the process
and the hardware device create difficulties when identi-
fying processes. Accordingly, developing a system such
as USBFILTER is not as simple as intercepting USB pack-
ets and dropping those that match rules. In this section,
we discuss our security goals, design considerations, and
implementation of USBFILTER while explaining the chal-
lenges of developing such a system.

3.1 Threat and Trust Models
We consider an adversary against our system who has
restricted external physical or full network access to a
given host. The adversary may launch physical attacks
such as attaching unauthorized USB devices to the host
system or tampering with the hardware of previously-
authorized devices to add additional functionality. The
physically-present adversary may not open the device or
tamper with the internal storage, firmware, or any other
hardware. This type of adversary might (for example) be
present in an data center or retail location, where devices
have exposed USB ports, but tampering with the chas-
sis of the device would raise suspicion or sound alarms.
The adversary may also launch network attacks in order

3

418 25th USENIX Security Symposium USENIX Association

Rule
DB

USBFILTER

App1 App2 App3

keyboard
storage

headset
cameramouse

wireless

Kernel Space

User Space I/O operation

USB packet

Figure 2: USBFILTER implements a USB-layer reference
monitor within the kernel, by filtering USB packets to
different USB devices to control the communications be-
tween applications and devices based on rules config-
ured.

to enable or access authorized devices from unauthorized
processes or devices. In either case, the adversary may
attempt to exfiltrate data from the host system via both
physical and virtual USB devices.

We consider the following actions by an adversary:

• Device Tampering: The adversary may attempt
to attach or tamper with a previously-authorized
device to add unauthorized functionality (e.g.,
BadUSB [27]).

• Unauthorized Devices: Unauthorized devices at-
tached to the system either physically or virtu-
ally [21] can be used to discreetly interact with the
host system or to provide data storage for future ex-
filtration.

• Unauthorized Access: The adversary may attempt
to enable or access authorized devices on a host
(e.g., webcam, microphone, etc.) via unauthorized
software to gain access to information or function-
ality that would otherwise inaccessible.

We assume that as a kernel component, the integrity of
USBFILTER depends on the integrity of the operating sys-
tem and the host hardware (except USB devices). Code
running in the kernel space has unrestricted access to the
kernel’s memory, including our code, and we assume that
the code running in the kernel will not tamper with USB-
FILTER. We discuss how we ensure runtime and platform
integrity in our experimental setup in Section 3.4.

3.2 Design Goals
Inspired by the Netfilter [40] framework in the Linux
kernel, we designed USBFILTER to enable administrator-

Rule
DB

USBFILTER

App1 App2 App3

Kernel Space

User Space

usbtables

Host Controller

USB Devices

Storage
Driver

Input
Driver

Video
Driver

USB packet

I/O
operation

URB

netlink

usbfilter
modules

Figure 3: The architecture of USBFILTER.

defined rule-based filtering for the USB protocol. To
achieve this, we first designed our system to satisfy the
concept of a reference monitor [2], shown in Figure 2.
While these goals are not required for full functionality
of USBFILTER, we chose to design for stronger security
guarantees to ensure that processes attempting to access
hardware USB devices directly would be unable to cir-
cumvent our system. We define the specific goals as fol-
lows:

G1 Complete Mediation. All physical or virtual USB
packets must pass through USBFILTER before deliv-
ery to the intended destination.

G2 Tamperproof. USBFILTER may not be bypassed or
disabled as long as the integrity of the operating sys-
tem is maintained.

G3 Verifiable. The user-defined rules input into the
system must be verifiably correct. These rules may
not conflict with each other.

While the above goals support the security guarantees
that we want USBFILTER to provide, we expand upon
these to provide additional functionality:

G4 Granular. Any mutable data in a USB packet
header must be accessible by a user-defined rule. If
the ultimate destination of a packet is a userspace
process, USBFILTER must permit the user to specify
the process in a rule.

G5 Modular. USBFILTER must be extensible and allow
users to provide submodules to support additional
types of analysis.

3.3 Design and Implementation
The core USBFILTER component is statically compiled
and linked into the Linux kernel image, which hooks the

4

USENIX Association 25th USENIX Security Symposium 419

flow of USB packets before they reach the USB host con-
troller which serves the USB device drivers, as shown in
Figure 3. Like Netfilter, this USB firewall checks a user-
defined rule database for each USB packet that passes
through it and takes the action defined in the first match-
ing rule. A user-space program, USBTABLES, provides
mediated read/write access to the rule database. Since
USBFILTER intercepts USB packets in the kernel, it can
control access to both physical and virtual devices.

3.3.1 Packet Filtering Rules

To access external USB devices, user-space applications
request I/O operations which are transformed into USB
request blocks (URBs) by the operating system. The
communication path involves the process, the device, and
the I/O request itself (USB packet). Similarly, a USBFIL-
TER rule can be described using the process information,
the device information, and the USB packet information.

A USBFILTER rule R can be expressed as a triple
(N,C ,A) where N is the name of the rule, C is a set of
conditions, and A∈{ALLOW,DROP} is the action that is
taken when all of the conditions are satisfied. As long as
the values in conditions, action, and name are valid, this
rule is valid, but may not be correct considering other ex-
isting rules. We discuss verifying the correctness of rules
in Section 4.

3.3.2 Traceback

USB packets do not carry attribution data that can be
used to determine the source or destination process of
a packet. We therefore need to perform traceback to
attribute packets to interfaces and processes.

Interfaces. As discussed in Section 2, a USB device can
have multiple interfaces, each with a discrete function-
ality served by a device driver in the operating system.
Once a driver is bound with an interface, it is able to
communicate with that interface using USB packets.

Determining the driver responsible for receiving or
sending a given USB packet is useful for precisely con-
trolling device behaviors. However, identifying the re-
sponsible driver is not possible at the packet level, since
the packets are already in transit and do not contain iden-
tifying information. While we could infer the respon-
sible driver for simple USB devices, such as a mouse,
this becomes unclear with composite USB devices with
multiple interfaces (some of which may be served by the
same driver).

To recover this important information from USB
packets without changing each driver and extending
the packet structure, we save the interface index into
the kernel endpoint structure during USB enumeration.

This reverse mapping of interface to driver needs to be
performed only once per device. The interface index
distinguishes interfaces belonging to the same physical
device and USB packets submitted by different driver
instances. Once the mapping has been completed, the
USB host controller is able to easily trace the originating
interface back to the USB packets.

Processes. Similarly, tracking the destination or source
process responsible for a USB packet is not trivial due
to the way modern operating systems abstract device ac-
cess from applications. For example, when communi-
cating with USB storage devices, the operating system
provides several abstractions between the application and
the raw device, including a filesystem, block layer, and
I/O scheduler. Furthermore, applications generally sub-
mit asynchronous I/O requests, causing the kernel to per-
form the communications task on a separate background
thread.

This problem also appears when inspecting USB net-
work device packets, including both wireline (e.g., Eth-
ernet) dongles and wireless (e.g., WiFi) adapters. It is
common for these USB device drivers to have their own
RX/TX queues to boost the system performance using
asynchronous I/O. In these cases, USB is an intermedi-
ate layer to encapsulate IP packets into USB packets for
processing by the USB networking hardware.

These cases are problematic for USBFILTER because
a naïve traceback approach will often only identify the
kernel thread as the origin of a USB packet. To recover
the process identifier (PID) of the true origin, we must
ensure that this information persists between all layers
within the operating system before the I/O request is
transformed into a USB packet.1

USBFILTER instruments the USB networking driver
(usbnet), the USB wireless driver (rt2x00usb), the USB
storage driver (usb-storage), as well as the block layer
and I/O schedulers. Changes to the I/O schedulers are
needed to avoid the potential merging of two block re-
quests from different processes. By querying the rule
database and USBFILTER modules, USBFILTER sets up a
filter for all USB packets right before being dispatched
to the devices.

3.3.3 Userspace Control

USBTABLES manages USBFILTER rules added in the ker-
nel and saves all active rules in a database. Using udev,
saved rules are flushed into the kernel automatically upon
reboot. USBTABLES is also responsible for verifying the
correctness of rules as we will discuss in Section 4. Once

1USBFILTER does not overlap with Netfilter or any other IP packet
filtering mechanisms which work along the TCP/IP stack.

5

420 25th USENIX Security Symposium USENIX Association

verified, new rules will be synchronized with the kernel
and saved locally.

If no user-defined rules are present, USBFILTER en-
forces default rules that are designed to prevent impact
on normal kernel activities (e.g., USB hot-plugs). These
rules can be overridden or augmented by the user as de-
sired.

3.4 Deployment

We now demonstrate how we use existing security tech-
niques in the deployment of USBFILTER. Attestation and
MAC policy are necessary for providing complete medi-
ation and tamperproof reference monitor guarantees, but
not for the functionality of the system. The technologies
we reference in this section are illustrative examples of
how these goals can be met.

3.4.1 Platform Integrity

We deployed USBFILTER on a physical machine with a
Trusted Platform Module (TPM). The TPM provides a
root of trust that allows for a measured boot of the system
and provides the basis for remote attestations to prove
that the host machine is in a known hardware and soft-
ware configuration. The BIOS’s core root of trust for
measurement (CRTM) bootstraps a series of code mea-
surements prior to the execution of each platform com-
ponent. Once booted, the kernel then measures the code
for user-space components (e.g., provenance recorder)
before launching them using the Linux Integrity Mea-
surement Architecture (IMA)[31]. The result is then ex-
tended into TPM PCRs, which forms a verifiable chain
of trust that shows the integrity of the system via a dig-
ital signature over the measurements. A remote verifier
can use this chain to determine the current state of the
system using TPM attestation. Together with TPM, we
also use Intel’s Trusted Boot (tboot)2

3.4.2 Runtime Integrity

After booting into the USBFILTER kernel, the runtime in-
tegrity of the TCB (defined in Section 3.1) must also be
assured. To protect the runtime integrity of the kernel,
we deploy a Mandatory Access Control (MAC) policy,
as implemented by Linux Security Modules. We enable
SELinux’s MLS policy, the security of which was for-
mally modeled by Hicks et al. [20]. We also ensure that
USBTABLES executes in a restricted environment and
that the access to the rules database saved on the disk
is protected by defining an SELinux Policy Module and
compiling it into the SELinux Policy.

2 See http://sf.net/projects/tboot

4 Security

In this section, we demonstrate that USBFILTER meets
the security goals outlined in Section 3 using the deploy-
ment and configurations described in that section.

Complete Mediation (G1). As we previously discussed,
USBFILTER must mediate all USB packets between de-
vices and applications on the host. In order to ensure
this, we have instrumented USBFILTER into the USB host
controller, which is the last hop for USB packets before
leaving the host machine and the first when entering it.
Devices cannot initiate USB packet transmission without
permission from the controller.

We also instrument the virtual USB host controller
(vhci) to cover virtual USB devices (e.g., USB/IP). To
support other non-traditional USB host controllers such
as Wireless USB [19] and Media Agnostic USB [16],
USBFILTER support is easily added via a simple kernel
API call and the inclusion of a header file.

Tamperproof (G2). USBFILTER is statically com-
piled and linked into the kernel image to avoid being
unloaded as a kernel module. The integrity of this
runtime, the associated database, and user-space tools
is assured through the SELinux policy as described in
Section 3.4.2. Tampering with the kernel or booting a
different kernel is the only way to bypass USBFILTER,
and platform integrity measures provide detection
capabilities for this scenario (Section 3.4.1).

Formal Verification (G3). The formal verification of
USBFILTER rules is implemented as a logic engine within
USBTABLES using GNU Prolog [11]. Instead of trying to
prove that an abstract model of rule semantics is correctly
implemented by the code, which is usually intractable for
the Linux kernel, we limit our focus on rule correctness
and consistency checking. Each time USBTABLES is in-
voked to add a new rule, the new rule and the existing
rules are loaded into the logic engine for formal verifica-
tion. This process only needs to be performed once when
adding a new rule and USBFILTER continues to run while
the verification takes place.

The verification checks for rules with the same con-
ditions but different actions. These rules are consid-
ered conflicting and USBTABLES will terminate with er-
ror when this occurs. We define the correctness of a rule:

is_correct(R,R)←
is_name_unique(R)∧
are_condition_values_in_range(R)∧
has_no_con f lict_with_existing_rules(R,R).

where R is a new USBFILTER rule and R for all other

6

USENIX Association 25th USENIX Security Symposium 421

existing rules maintained by USBFILTER. If the new rule
has a unique name, all the values of conditions are in
range, and it does not conflict with any existing rules, the
rule is correct.

While the name and the value checks are straightfor-
ward, there are different conflicting cases between the
conditions and the action, particularly when a rule does
not contain all conditions. For example, a rule can be
contradictory with, a sub rule of, or the same as another
existing rule. As such, we define the general conflict be-
tween two rules as follows:

general_con f lict(Ra,Rb)←
∀Ci � C :

(∃Ca
i � Ra ∧∃Cb

i � Rb ∧ value(Ca
i) �= value(Cb

i))∨
(∃Ca

i � Ra∧ � ∃Cb
i � Rb)∨

(� ∃Ca
i � Ra∧ � ∃Cb

i � Rb).

A rule Ra is generally conflicted with another rule Rb if
all conditions used by Ra are a subset of the ones spec-
ified in Rb. We consider a general conflict to occur if
the new rule and an existing rule would fire on the same
packet.

Based on the general conflict, we define weak conflict
and strong conflict as follows:

weak_con f lict(Ra,Rb)←
general_con f lict(Ra,Rb)∧action(Ra) = action(Rb).

strong_con f lict(Ra,Rb)←
general_con f lict(Ra,Rb)∧action(Ra) �= action(Rb).

While weak conflict shows that the new rule could be
a duplicate of an existing rule, strong conflict presents
that this new rule would not work. The weak conflict,
however, depending on the requirement and the imple-
mentation, may be allowed temporarily to shrink the
scope of an existing rule while avoiding the time gap
between the old rule removed and the new rule added.
For instance, rule A drops any USB packets writing
data into any external USB storage devices. Later on,
the user decides to block write operations only for
the Kingston thumb drive by writing rule B, which is
weak conflicted with rule A, since both rules have the
same destination and action. When the user wants to
unblock the Kingston storage by writing rule C, rule C
is strong conflicted with both rule A and B, since rule C
has a different action, and will never work as expected
because of rule A/B. By relying on the logic reasoning
of Prolog, we are able to guarantee that a rule before
added is formally verified no conflict with existing rules
3.

3Note that all rules are monotonic by design, which means rules to
be added cannot override existing ones. Future work will add general
rules, which can be overwritten by new rules.

-d|--debug enable debug mode
-c|--config path to configuration file (TBD)
-h|--help display this help message
-p|--dump dump all the rules
-a|--add add a new rule
-r|--remove remove an existing rule
-s|--sync synchronize rules with kernel
-e|--enable enable usbfilter
-q|--disable disable usbfilter
-b|--behave change the default behavior
-o|--proc process table rule
-v|--dev device table rule
-k|--pkt packet table rule
-l|--lum LUM table rule
-t|--act table rule action

proc: pid,ppid,pgid,uid,euid,gid,egid,comm
dev: busnum,devnum,portnum,ifnum,devpath,product,

manufacturer,serial
pkt: types,direction,endpoint,address
lum: name
behavior/action: allow|drop

Figure 4: The output of “usbtables -h”. The per-
mitted conditions are divided into 4 tables: the process
table, the device table, the packet table, and the Linux
USBFILTER Module (LUM) table.

Granular (G4). A USBFILTER rule can contain 21
different conditions, excluding the name and action
field. We further divide these conditions into 4 tables,
including the process, device, packet, and the Linux
USBFILTER Module (LUM) table, as shown in Figure 4.
The process table lists conditions specific to target
applications; the device table contains details of USB
devices in the system; the packet table includes impor-
tant information about USB packets; and the LUM table
determines the name of the LUM to be used if needed.
Note that all LUMs should be loaded into the kernel
before being used in USBFILTER rules.

Module Extension (G5). To support customized rule
construction and deep USB packet analysis, USBFILTER
allows system administrators to write Linux USBFIL-
TER Modules (LUMs), and load them into the kernel as
needed. To write a LUM, developers need only include
the <linux/usbfilter.h> header file in the kernel module,
implement the callback lum_filter_urb(), and register the
module using usbfilter_register_lum(). Once registered,
the LUM can be referenced by its name in the construc-
tion of a rule. When a LUM is encountered in a rule,
besides other condition checking, USBFILTER calls the
lum_filter_urb() callback within this LUM, passing the
USB packet as the sole parameter. The callback returns
1 if the packet matches the target of this LUM, 0 other-
wise. Note that the current implementation supports only
one LUM per rule.

7

422 25th USENIX Security Symposium USENIX Association

5 Evaluation

The USBFILTER host machine is a Dell Optiplex 7010
with an Intel Quad-core 3.20 GHz CPU with 8 GB mem-
ory and is running Ubuntu Linux 14.04 LTS with kernel
version 3.13. The machine has two USB 2.0 controllers
and one USB 3.0 controller, provided by the Intel 7 Se-
ries/C210 Series chipset. To demonstrate the power of
USBFILTER, we first examine different USB devices and
provide practical use cases which are non-trivial for tra-
ditional access control mechanisms. Finally we measure
the overhead introduced by USBFILTER.

The default behavior of USBFILTER in our host ma-
chine is to allow the USB packet if no rule matches the
packet. A more constrained setting is to change the de-
fault behavior to drop, requiring each permitted USB de-
vice to need an allow rule. In this setting, malicious de-
vices have to impersonate benign devices to allow com-
munications, which are still regulated by the rules, e.g.,
no HID traffic allowed for a legit USB storage device.
All tests use the same front-end USB 2.0 port on the ma-
chine.

5.1 Case Studies
Listen-only USB headset. The typical USB headset
is a composite device with multiple interfaces includ-
ing speakers, microphone, and volume control. Sen-
sitive working environments may ban the use of USB
headsets due to possible eavesdropping using the micro-
phone [17]. Physically disabling the headset microphone
is often the only mechanism for permanently removing
it, as there is no other way to guarantee the microphone
stays off. Users can mute or unmute the microphone
using the desktop audio controls at any time after lo-
gin. However, with USBFILTER, the system administra-
tor can guarantee that the headset’s microphone remains
disabled and cannot be enabled or accessed by users.

We use a Logitech H390 Headset to demonstrate how
to achieve this guarantee on the USBFILTER host ma-
chine:
usbtables -a logitech-headset -v ifnum=2,product=

"Logitech USB Headset",manufacturer=Logitech -k
direction=1 -t drop

This rule drops any incoming packets from the
Logitech USB headset’s microphone. By adding the
interface number (ifnum=2), we avoid breaking other
functionality in the headset.

Customizing devices. To further show how USBFIL-
TER can filter functionalities provided by USB devices,
we use Teensy 3.2 [29] to create a complex USB de-
vice with five interfaces including a keyboard, a mouse,
a joystick, and two serial ports. The keyboard contin-

ually types commands in the terminal, while the mouse
continually moves the cursor. We can write USBFILTER
rules to completely shutdown the keyboard and mouse
functionalities:
usbtables -a teensy1 -v ifnum=2,manufacturer=

Teensyduino,serial=1509380 -t drop
usbtables -a teensy2 -v ifnum=3,manufacturer=

Teensyduino,serial=1509380 -t drop

In these rules, we use condition “manufacturer” and “se-
rial” (serial number) to limit the Teensy’s functionality.
Different interface numbers represent the keyboard and
the mouse respectively. After these rules applied, both
the keyboard and the mouse return to normal.

Default-deny input devices. Next, we show how to de-
fend against HID-based BadUSB attacks using USBFIL-
TER. These types of devices are a type of trojan horse;
they appear to be one device, such as a storage device,
but secretly contain hidden input functionality (e.g., key-
board or mouse). When attached to a host, the device
can send keystrokes to the host and perform actions as
the current user.

First, we create a BadUSB storage device using a Rub-
ber Ducky [18], which looks like a USB thumb drive but
opens a terminal and injects keystrokes. Then we add
following rules into the host machine:
usbtables -a mymouse -v busnum=1,devnum=4,portnum=2,

devpath=1.2,product="USB Optical Mouse",
manufacturer=PixArt -k types=1 -t allow

usbtables -a mykeyboard -v busnum=1,devnum=3,
portnum=1,devpath=1.1,
product="Dell USB Entry Keyboard",
manufacturer=DELL -k types=1 -t allow

usbtables -a noducky -k types=1 -t drop

The first two rules whitelist the existing keyboard and
mouse on the host machine; the last rule drops any USB
packets from other HID devices. After these rules are
inserted into the kernel, reconnecting the malicious de-
vice does nothing. Attackers may try to impersonate the
keyboard or mouse on the host machine. However, we
have leveraged information about the physical interface
(busnum and portnum) to write the first two rules,
which would require the attacker to unplug the existing
devices, plug the malicious device in, and impersonate
the original devices including the device’s VID/PID
and serial number. We leave authenticating individual
USB devices to future work, however USBFILTER is
extensible so that authentication can be added and used
in rules.

Data exfiltration. To prevent data exfiltration from the
host machine to USB storage devices, we write a LUM
(Linux USBFILTER Module) to block the SCSI write
command from the host to the device, as shown in Fig-
ure 9 in the Appendix. The LUM then registers itself
with USBFILTER and can be referenced by its name in

8

USENIX Association 25th USENIX Security Symposium 423

rule constructions. In this case study, we use a Kingston
DT 101 II 2G USB flash drive, and insert the following
rule:

usbtables -a nodataexfil -v manufacturer=Kingston
-l name=block_scsi_write -t drop

This rule prevents modification of files on the stor-
age device. Interestingly, vim reports files on the de-
vice to be read-only, despite the filesystem reporting that
the files are read-write. Since USBFILTER is able to trace
packets back to the applications initiating I/O operations
at the Linux kernel block layer, we are able to write rules
blocking (or allowing) specific users or applications from
writing to flash drive:

usbtables -a nodataexfil2 -o uid=1001
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

usbtables -a nodataexfil3 -o comm=vim
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

The first rule prevents the user with uid=1001 from
writing anything to the USB storage; the second blocks
vim from writing to the storage. We can also block any
writes to USB storage devices:

usbtables -a nodataexfil4
-l name=block_scsi_write -t drop

USBFILTER logs dropped USB packets, and these logs
can easily be used in a centralized alerting system, noti-
fying administrators to unauthorized access attempts.
Webcam pinning. Webcams can easily be enabled and
accessed by attackers from exploiting vulnerable appli-
cations. Once access has been established, the attacker
can listen or watch the environment around the host com-
puter. In this case study, we show how to use USBFILTER
to restrict the use of a Logitech Webcam C310 to specific
users and applications.

usbtables -a skype -o uid=1001,comm=skype -v
serial=B4482A20 -t allow

usbtables -a nowebcam -v serial=B4482A20 -t drop

The serial number of the Logitech webcam is spec-
ified in the rules to differentiate any others that may
be attached to the system as well as to prevent other
webcams from being attached. The first rule allows
USB communication with the webcam only if the user is
uid=1001 and the application is Skype. The following
nowebcam rule drops other USB packets to the webcam
otherwise. As expected, the user can use the webcam
from his Skype but not from Pidgin, and other users
cannot start video calls even with Skype.

USB charge-only. Another form of BadUSB attacks is
DNS spoofing using smartphones. Once plugged into the
host machine, the malicious phone automatically enables
USB tethering, is recognized as a USB NIC by the host,

Prolog Engine Min Avg Med Max Dev

Time (20 rules) 128.0 239.8 288.0 329.0 73.2
Time (100 rules) 132.0 251.7 298.0 485.0 78.6

Table 1: Prolog reasoning time (µs) averaged by 100
runs.

then injects spoofed DNS replies into the host. The re-
sulting man-in-the-middle attack gives the attacker ac-
cess to the host’s network communications without the
authorization of the user. To prevent this attack, we use
USBFILTER to prevent all USB packets from a Google
Nexus 4 smartphone:
usbtables -a n4-charger -v product="Nexus 4" -t drop

This rule rule drops any USB packets to/from the
phone, which enforces the phone as a pure charging de-
vice without any USB functionality. The phone is unable
to be used for storage or tethering after the rule is applied.

We can construct a more specific charge-only rule:
usbtables -a charger -v busnum=1,portnum=4 -t drop

This rule specifies a specific physical port on the host
and this port can only be used for charging. This type
of rule is useful where USB ports may be exposed (e.g.,
on a point of sale terminal) and cannot be physically
removed. It is also vital to defend against malicious
devices whose firmware can be reprogrammed to forge
the VID/PID such as BadUSB, since this type of rule
only leverages the physical information on the host
machine. USBFILTER can partition all physical USB
ports and limit the USB traffic on each port.

5.2 Benchmarks
We first measure the performance of the user-space tool,
USBTABLES. We then measure the overhead imposed by
USBFILTER.

The measurement host is loaded with the rules men-
tioned in the case studies above before beginning bench-
marking. When coupled with the default rules provided
by USBFILTER, there are 20 total rules loaded in the ker-
nel. We chose 20 because we believe that a typical en-
terprise host’s USB devices (e.g., keyboard, mouse, re-
movable storage, webcam, etc.) will total less than 20.
Then we load 100 rules in the kernel to understand the
scalability of USBFILTER.

5.2.1 Microbenchmark

USBTABLES Performance. We measure the time used
by the Prolog engine to formally verify a rule before it is
added into the kernel. We loaded the kernel with 20 and

9

424 25th USENIX Security Symposium USENIX Association

Figure 5: Filebench throughput (MB/s) using
fileserver workload with different mean
file sizes.

Figure 6: Iperf bandwidth (MB/s) using TCP
with different time intervals.

Figure 7: Iperf bandwidth (MB/s) using UDP
with different time intervals.

Figure 8: Performance comparison of real-
world workloads.

Rule Adding Min Avg Med Max Dev

Time (20 rules) 5.1 5.9 6.1 6.6 0.3
Time (100 rules) 4.9 5.9 6.1 6.8 0.4

Table 2: Rule adding operation time (ms) averaged by
100 runs.

100 rules and measured the time to process the rules. For
each new rule, the Prolog engine needs to go through the
existing rules and check for conflicts.

We measured 100 trials of each test. The performance
of the Prolog engine is shown in Table 1. The average
time used by the Prolog engine is 239.8 µs with 20
rules and 251.7 µs with 100 rules. This fast speed is the
result of using GNU Prolog (gplc) compiler to compile
Prolog into assembly for acceleration. We also measure
the overhead for USBTABLES to add a new rule to the
kernel space. This includes loading existing rules into
the Prolog engine, checking for conflicts, saving the rule

USB Enumeration Min Avg Med Max Dev Cost

Stock Kernel 32.0 33.9 34.1 34.8 0.6 N/A
USBFILTER (20 rules) 33.2 34.4 34.3 35.8 0.7 1.5%

USBFILTER (100 rules) 33.9 34.8 34.6 36.0 0.5 2.7%

Table 3: USB enumeration time (ms) averaged by 20
runs.

locally, passing the rule to the kernel, and waiting for the
acknowledgment. As shown in Table 2, the average time
of adding a rule using USBTABLES stays at around 6 ms
in both cases, which is a negligible one-time cost.

USB Enumeration Overhead. For this test, we used
the Logitech H390 USB headset, which has 4 interfaces.
We manually plugged the headset into the host 20 times.
We then compare the results between the USBFILTER
kernel with varying numbers of rules loaded and the
stock Ubuntu kernel, where USBFILTER is fully disabled,

10

USENIX Association 25th USENIX Security Symposium 425

Packet Filtering Min Avg Med Max Dev

Time (20 rules) 2.0 2.6 3.0 5.0 0.5
Time (100 rules) 2.0 9.7 10.0 15.0 1.0

Table 4: Packet filtering time (µs) averaged by 1500
packets.

Configuration 1K 10K 100K 1M 10M 100M

Stock 97.6 98.1 99.2 105.5 741.7 5177.7
USBFILTER 97.7 98.2 99.6 106.3 851.5 6088.4
Overhead 0.1% 0.1% 0.4% 0.8% 14.8% 17.6%

Table 5: Latency (ms) of the fileserver workload
with different mean file sizes.

as shown in Table 3. The average USB enumeration
time is 33.9 ms for the stock kernel and 34.4 ms and
34.8 ms for the USBFILTER kernel with 20 and 100 rules
preloaded respectively. Comparing to the stock kernel,
USBFILTER only introduces 1.5% and 2.7% overheads,
or less than 1 ms even with 100 rules preloaded.

Packing Filtering Overhead. The overhead of USB
enumeration introduced by USBFILTER is the result
of packet filtering and processing performed on each
USB packet, since there may be hundreds of packets
during USB enumeration, depending on the number of
interface and endpoints of the device. To capture this
packet filtering overhead, we plug in a Logitech M105
USB Optical Mouse, and move it around to generate
enough USB packets. We then measure the time used
by USBFILTER to determine whether the packet should
be filtered/dropped or not for 1500 packets, as shown
in Table 4. The average cost per packet are 2.6 µs and
9.7 µs respectively, including the time to traverse all
the 20/100 rules in the kernel, and the time used by the
benchmark itself to get the timing and print the result.
The 100-rule case shows that the overhead of USBFILTER
is quadruped when the number of rule increases by one
order of magnitude. As we mentioned before, most
common USB usages could be covered within 20 rules.
We assume it is rare for a system to have 100 rules for
different USB devices. To search in hundreds of rules
efficiently, we can setup a hash table using e.g., USB
port numbers as keys to save rules instead of a linear
array (list) currently implemented.

5.2.2 Macrobenchmark

We use filebench [37] and iperf [42] to measure through-
puts and latencies of file operations, and bandwidths
of network activities, under the stock kernel and the
USBFILTER kernel, using different USB devices. The

USBFILTER kernel is loaded with 20 rules introduced in
the case studies before benchmarking.

Filebench. We choose the fileserver workload in
filebench, with the following settings: the number of files
in operation is 20; the number of working threads is 1;
the run time for each test case is 2 minutes; the mean
file size in operation ranges from 1 KB to 100 MB; all
other settings are default provided by filebench. These
settings emulate a typical usage of USB storage devices,
where users plug in flash drives to copy or edit some files.
All file operations happen in a SanDisk Cruzer Fit 16
GB flash drive. The throughputs under the stock kernel
and the USBFILTER kernel are demonstrated in Figure 5.
When the mean file size is less than 1 MB, the through-
put of USBFILTER is close to the one of the stock kernel.
Since there is at most 20×1 MB data involved in block
I/O operations, both the stock kernel and USBFILTER can
handle this data size smoothly. When the mean file size is
greater than 1 MB, USBFILTER shows lower throughputs
comparing to the stock kernel, as the result of rule match-
ing for each USB packet. Compared to the stock kernel,
USBFILTER imposes 14.7% and 18.4% overheads when
the mean file sizes are 10 MB and 100 MB respectively.
That is, when there is 20× 100 MB (2 GB) involved in
block I/O operations, the throughput decreases from 8.7
MB/s to 7.1 MB/s, when USBFILTER is enabled.

The corresponding latencies are shown in Table 5.
The latency of USBFILTER is higher than the stock
kernel. Following the throughput model, the latencies
between the two kernels are close when the mean file
size is less than 1 MB. The overhead introduced by
USBFILTER is less than 1.0%. When the mean file sizes
are 10 MB and 100 MB, USBFILTER imposed 14.8%
and 17.6% overheads in latency. comparing to the stock
kernel. That is, to deal with 20× 100 MB data, users
need one more second to finish all the operations with
USBFILTER enabled, which is acceptable for most users.

iperf. We use iperf to measure bandwidths of upstream
TCP and UDP communications, where the host machine
acts as a server, providing local network access via a
Ralink RT5372 300 Mbps USB wireless adapter. The
time interval for each transmission is 10 seconds, and
each test runs 5 minutes (30 intervals). For TCP, we use
the default TCP window size 64 KB; for UDP, we use
the default available UDP bandwidth size 10 MB. The
TCP bandwidths of the two kernels are shown in Fig-
ure 6, where we aggregate each two intervals into one,
reducing the number of sampling points from 30 to 15.
and the average bandwidths are also listed in dot lines.
Though having different transmission patterns, the aver-
age bandwidths of both are close, with the stock kernel at
2.75 Mbps and USBFILTER at 2.52 Mbps. Comparing to

11

426 25th USENIX Security Symposium USENIX Association

the stock kernel, USBFILTER introduces 8.4% overhead.
The UDP benchmarking result closely resembles

TCP, as shown in Figure 7. Regardless of transmission
patterns, average bandwidth of the two kernels is similar,
with the stock kernel at 3.48 Mbps and USBFILTER at
3.27 Mbps. Comparing to the TCP transmission, UDP
transmission is faster due to the simpler design/imple-
mentation of UDP, and USBFILTER introduces 6.0%
overhead. In both cases, USBFILTER has demonstrated a
low impact to the original networking component.

5.3 Real-world Workloads
To better understand the performance impact of USB-
FILTER, we generate a series of real-world workloads to
measure typical USB use cases. In the KVM [24] work-
load, we create and install a KVM virtual machine au-
tomatically from the Ubuntu 14.04 ISO image file (581
MB) saved on USB storage. In the Chrome workload,
we access the web browser benchmark site [5] via a USB
wireless adapter. In the ClamAV [25] workload, we scan
the unzipped Ubuntu 14.04 ISO image saved on the USB
storage for virus using ClamAV. In the wget workload,
we download the Linux kernel 4.4 (83 MB) via the USB
wireless adapter using wget. The USB storage is the San-
Disk 16 GB flash drive, and the USB wireless adapter
is the Ralink 300 Mbps wireless card. All time mea-
surements are in seconds except the Chrome workload,
where scores are given, and are divided by 10 to fit into
the figure. Figure 8 shows the comparison between the
two kernels when running these workloads. In all work-
loads, USBFILTER either performs slightly better than the
stock kernel, or imposes a small overhead compared to
the stock kernel in our test. It is clear that USBFILTER
approximates the original system performance.

5.4 Summary
In this section, we showed how USBFILTER can help
administrators prevent access to unauthorized (and un-
known) device interfaces, restrict access to authorized
devices using application pinning, and prevent data ex-
filtration. Our system introduces between 3 and 10 µs of
latency on USB packets while checking rules, introduc-
ing minimal overhead on the USB stack.

6 Discussion

6.1 Process Table
We have successfully traced each USB packet to its orig-
inating application for USB storage devices by passing
the PID information along the software stack from the

VFS layer, through the block layer, to the USB layer
within the kernel. However, it is not always possible to
find the PID for each USB packet received by the USB
host controller. One example is HID devices, such as
keyboards and mouses. Keystrokes and mouse move-
ments happen in the interrupt (IRQ) context, where the
current stopped process has nothing to do with this USB
packet. All these packets are delivered to the Xorg server
in the user space, which then dispatches the inputs to dif-
ferent applications registered for different events. USB-
FILTER is able to make sure that only Xorg can receive
inputs from the keyboard and mouse. To guarantee the
USB packet delivered to the desired application, we can
enhance the Xorg server to understand USBFILTER rules.

The other example comes from USB networking de-
vices. Though we have enhanced the general USB wire-
line driver usbnet to pass the PID information into
each USB packet, unlike USB storage devices sharing
the same usb-storage driver, many USB Ethernet
dongles have their own drivers instead of using the gen-
eral one. Even worse, there is no general USB wire-
less driver at all. Depending of the device type and
model, one may need to instrument the corresponding
driver to have the PID information, like what we did
for rt2800usb driver. Future work will introduce a
new USB networking driver framework to be shared by
specific drivers, providing a unified interface for passing
PID information into USB packets.

Another issue of using process table in USBFILTER
rules is TOCTTOU (time-of-check-to-time-of-use) at-
tacks. A malicious process can submit a USB packet
to the kernel and exit. When the packet is finally han-
dled by the host controller, USBFILTER is no longer able
to find the corresponding process given the PID. Fortu-
nately, these attacks does not impact rules without pro-
cess tables. When process information is crucial to the
system, we recommending using USBTABLES to change
the default behavior to “drop”, make sure that no packet
would get through without an explicit matching rule.

6.2 System Caching

USBFILTER is able to completely shut down any write op-
erations to external USB storage devices, preventing any
form of data exfiltration from the host machine. Sim-
ilarly, one can also write a “block_scsi_read” LUM to
stop read operations from storage devices. Nevertheless,
this LUM may not be desired or work as expected in re-
ality. To correctly mount the filesystem in the storage
device, the kernel has to read the metadata saved in the
storage. One solution would be to delay the read block-
ing till the filesystem is mounted. However, for perfor-
mance considerations, the Linux kernel also reads ahead
some data in the storage, and brings it into the system

12

USENIX Association 25th USENIX Security Symposium 427

cache (page cache). All following I/O operations will
happen in the memory rather than the storage. While
memory protection is out of scope for this paper, we rely
on the integrity of the kernel to enforce the MAC model
it applies. Write operations, even though in the memory,
will be flushed into the storage, where USBFILTER is able
to provide a strong and useful guarantee.

6.3 Packet Analysis From USB Devices

Because of the master-slave nature of the USB proto-
col, we do not setup USBFILTER in the response path,
which is from the device to the host, due to performance
considerations. However, enabling USBFILTER in the re-
sponse path provides new opportunities to defend against
malicious devices and users, since the response packet
could be inspected with the help of USBFILTER. For ex-
ample, one can write a LUM to limit the capability of
a HID device, such as allowing only three different key
actions from a headset’s volume control button, which
is implemented by GoodUSB as a customized keyboard
driver, or disabling sudo commands for unknown key-
boards. Another useful case is to filter the spoofing
DNS reply message embedded in the USB packet sent
by malicious smart phones or network adapters, to de-
fend against DNS cache poisoning. We are planning to
investigate these new case studies in future work.

6.4 Malicious USB Drivers and USB
Covert Channels

While BadUSB is the most prominent attack that exploits
the USB protocol, we observe that using USB communi-
cation as a side channel to steal data from host machines,
or to inject malicious code into hosts, is another tech-
nically mature and plausible threat. On the Linux plat-
form, with the development of libusb [14], more USB
drivers run within user space and can be delivered as bi-
naries. On Windows platform, PE has been a common
format of device drivers. To use these devices, users
have to run these binary files without knowing if these
drivers are doing something else in the meantime.4 For
instance, USB storage devices should use bulk packets
to transfer data per the USB spec. However, a malicious
storage driver may use control packets to stealthily ex-
filtrate data as long as the malicious storage is able to
decode the packet. This works because control transfers
are mainly used during the USB enumeration process.
With the help of USBFILTER, one can examine each USB
packet, and filter unrecognized ones without breaking the
normal functionality of the device.

4N.B. that there are ways to instrument DLL files on Windows plat-
form, though this does not appear to be commonly done with drivers.

6.5 Usability Issues

To write USBFILTER rules, one needs some knowl-
edge about the USB protocol in general, as well as
the target USB device. The lsusb command under
Linux provides a lot of useful information that can di-
rectly be mapped into rule construction. Another tool
usb-devices also helps users understand USB de-
vices. Windows has a GUI program USBView to vi-
sualize the hierarchy and configuration of USB devices
plugged into the host machine. While users can write
some simple rules, we expect that developers will pro-
vide useful LUMs, which may require deep understand-
ing of the USB protocol and domain specific knowledge
(e.g., SCSI, and will share these LUMs with the com-
munity. We wll also provide more useful LUMs in the
future.

7 Related Work

Modern operating systems implicitly approve all inter-
faces on any device that has been physically attached
to the host. Due to this, a wide range of attacks have
been built on USB including malware and data exfiltra-
tion on removable storage [15, 34, 46], tampered device
firmware [27, 7], and unauthorized devices [1]. These
attacks fall into two major categories: those that involve
data ingress and egress via removable storage and those
that involve the attachment of unknown USB interfaces.

Proposals for applying access control to USB storage
devices [12, 28, 38, 48] fall short because they cannot
guarantee that the USB write requests are blocked from
reaching the device. Likewise, defenses against unau-
thorized or malicious device interfaces [41, 33] and dis-
abling device drivers are coarse and cannot distinguish
between desired and undesired usage of a particular in-
terface. Another solution employed by the Windows Em-
bedded platform [26] binds USB port numbers with the
VID/PID/CID (device class ID) information of devices
to accept/reject the device plugged in. While CID helps
limit the usage of the device, this solution does not work
for composite devices equipped with multiple interfaces
(with different CIDs). Besides, users may have to update
the policy each time when different devices are plugged
into the same port. Given the increasing ubiquity of
USB, this is not a sustainable solution. Guardat demon-
strates a means of expressing a robust set of rules for
storage access but requires substantial new mechanisms
for operation within a host computer, such as implemen-
tation within a hybrid disk microcontroller [45].

Netfilter [40] has become the de facto network fire-
wall standard on Linux due to its ability to perform
fine-grained filtering on network packets between ap-
plications and the physical network interface. Netfilter

13

428 25th USENIX Security Symposium USENIX Association

can prevent compromise of a program by preventing un-
wanted packets from reaching the process. Similarly, our
system can defend processes by denying USB traffic be-
fore it reaches its destination.

Furthermore, fine-grained filtering has been applied to
the usage of filesystem objects by applications [13, 35],
however, these filters take place after the host and op-
erating system have enumerated the device and loaded
any device drivers. USBFILTER applies filtering at the
USB packet layer, preventing unauthorized access to in-
terfaces regardless of whether they have been approved
elsewhere. Since our system operates between the device
drivers and the USB host controller and traces packets
back to their source or destination application, USBFIL-
TER can uniquely filter access to any USB interface.

While USBFILTER working in the host operating sys-
tem directly, other USB security solutions make use of
virtualization. GoodUSB [41] leverages a QEMU-KVM
as a honeypot to analyze malicious USB devices, while
Cinch [3] separates the trusted USB host controller and
untrusted USB devices into two QEMU-KVMs, between
which a gateway is used to apply policies on USB pack-
ets. By mitigating the need for additional components
for standard operation, be believe that USBFILTER is bet-
ter suited for adoption within operating system kernels.

USBFILTER protects the host machine from malicious
USB devices, but there are solutions as well for exploring
the protection of devices from malicious hosts. USB fin-
gerprinting [6] establishes the host machine identity us-
ing USB devices, while Kells [8] protects the USB stor-
age device by attesting the host machine integrity.

Wang and Stavrou [47] suggest that a “USB firewall”
might protect against exploitation attacks but do not dis-
cuss the complexities of how such a mechanism could be
designed or implemented.

8 Conclusion

USB attacks rely on hosts automatically authorizing any
physically-attached device. Attackers can discreetly con-
nect unknown and unauthorized interfaces, causing de-
vice drivers to be automatically loaded and allowing ma-
licious devices access to the host. In this paper, we pre-
vent unauthorized devices from accessing a host with
USBFILTER, the first packet-level access control system
for USB. Through tracing each packet back to its associ-
ated process, our system can successfully block unautho-
rized interfaces and restrict access to devices by process.
With a default deny policy for new devices, administra-
tors can restrict connection of unknown devices using
granular identifiers such as serial number. Our experi-
ments test USBFILTER using a range of I/O benchmarks
and find that it introduces minimal overhead. The re-
sult is a host that is unresponsive to attacks that may try

to discreetly introduce unknown functionality via USB
while maintaining high performance.

Acknowledgements
This work is supported in part by the US National Sci-
ence Foundation under grant numbers CNS-1540217,
CNS-1540218 and CNS-1464088.

References
[1] TURNIPSCHOOL - NSA playset. http://www.

nsaplayset.org/turnipschool.

[2] J. P. Anderson. Computer Security Technology Planning Study.
Technical Report ESD-TR-73-51, Air Force Electronic Systems
Division, 1972.

[3] S. Angel, R. S. Wahby, M. Howald, J. B. Leners, M. Spilo,
Z. Sun, A. J. Blumberg, and M. Walfish. Defending against ma-
licious peripherals. arXiv preprint arXiv:1506.01449, 2015.

[4] J. Bang, B. Yoo, and S. Lee. Secure usb bypassing tool. digital
investigation, 7:S114–S120, 2010.

[5] Basemark, Inc. Basemark browsermark. http://web.
basemark.com/, 2015.

[6] A. Bates, R. Leonard, H. Pruse, K. R. B. Butler, and D. Lowd.
Leveraging USB to Establish Host Identity Using Commodity
Devices. In Proceedings of the 2014 Network and Distributed
System Security Symposium, NDSS ’14, February 2014.

[7] M. Brocker and S. Checkoway. iseeyou: Disabling the mac-
book webcam indicator led. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 337–352, 2014.

[8] K. R. B. Butler, S. E. McLaughlin, and P. D. McDaniel. Kells:
a protection framework for portable data. In Proceedings of the
26th Annual Computer Security Applications Conference, pages
231–240. ACM, 2010.

[9] A. Caudill and B. Wilson. Phison 2251-03 (2303) Custom
Firmware & Existing Firmware Patches (BadUSB). GitHub, 26,
Sept. 2014.

[10] Compaq, Hewlett-Packard, Intel, Microsoft, NEC, and Phillips.
Universal Serial Bus Specification, Revision 2.0, April 2000.

[11] D. Diaz et al. The GNU Prolog web site. http://gprolog.
org/.

[12] S. A. Diwan, S. Perumal, and A. J. Fatah. Complete security
package for USB thumb drive. Computer Engineering and Intel-
ligent Systems, 5(8):30–37, 2014.

[13] W. Enck, P. McDaniel, and T. Jaeger. PinUP: Pinning user
files to known applications. In Computer Security Applications
Conference, 2008. ACSAC 2008. Annual, pages 55–64. ieeex-
plore.ieee.org, Dec. 2008.

[14] J. Erdfelt and D. Drake. Libusb homepage. Online, http://www.
libusb. org.

[15] N. Falliere, L. O. Murchu, and E. Chien. W32. Stuxnet Dossier.
2011.

[16] U. I. Forum. Media Agnostic Universal Serial Bus Specification,
Release 1.0a, July 2015.

[17] D. Genkin, A. Shamir, and E. Tromer. RSA key extraction via
Low-Bandwidth acoustic cryptanalysis. In Advances in Cryptol-
ogy – CRYPTO 2014, Lecture Notes in Computer Science, pages
444–461. Springer Berlin Heidelberg, 17 Aug. 2014.

14

USENIX Association 25th USENIX Security Symposium 429

[18] Hak5. Episode 709: USB Rubber Ducky Part 1. http:
//hak5.org/episodes/episode-709, 2013.

[19] Hewlett-Packard, Intel, LSI, Microsoft, NEC, Samsung, and
ST-Ericsson. Wireless Universal Serial Bus Specification 1.1,
September 2010.

[20] B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, and P. McDaniel.
A Logical Specification and Analysis for SELinux MLS Policy.
ACM Trans. Inf. Syst. Secur., 13(3):26:1–26:31, July 2010.

[21] T. Hirofuchi, E. Kawai, K. Fujikawa, and H. Sunahara. USB/IP-
A peripheral bus extension for device sharing over IP network. In
Proceedings of the annual conference on USENIX Annual Tech-
nical Conference, pages 42–42, 2005.

[22] IronKey, Inc. Access Enterprise. http://www.ironkey.
com/en-US/access-enterprise/, 2015.

[23] Jeremy Moskowitz. Managing hardware restrictions via group
policy. https://technet.microsoft.com/en-us/
magazine/2007.06.grouppolicy.aspx, 2007.

[24] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm:
the linux virtual machine monitor. In Proceedings of the Linux
symposium, volume 1, pages 225–230, 2007.

[25] T. Kojm. Clamav, 2004.

[26] Microsoft Windows Embedded 8.1 Industry. Usb filter (in-
dustry 8.1). https://msdn.microsoft.com/en-us/
library/dn449350(v=winembedded.82).aspx,
2014.

[27] K. Nohl and J. Lell. BadUSB–On accessories that turn evil. Black
Hat USA, 2014.

[28] D. V. Pham, M. N. Halgamuge, A. Syed, and P. Mendis. Opti-
mizing Windows Security Features to Block Malware and Hack
Tools on USB Storage Devices. In Progress in Electromagnetics
Research Symposium, 2010.

[29] PJRC. Teensy 3.1. https://www.pjrc.com/teensy/
teensy31.html, 2013.

[30] R. Russell. virtio: towards a de-facto standard for virtual i/o de-
vices. ACM SIGOPS Operating Systems Review, 42(5):95–103,
2008.

[31] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
Implementation of a TCG-based Integrity Measurement Archi-
tecture. Proceedings of the 13th USENIX Security Symposium,
2004.

[32] SANS Institute. Real World ARP Spoofing. http:
//pen-testing.sans.org/resources/papers/
gcih/real-world-arp-spoofing-105411, 2003.

[33] S. Schumilo, R. Spenneberg, and H. Schwartke. Don’t trust your
USB! How to find bugs in USB device drivers. In Blackhat Eu-
rope, Oct. 2014.

[34] S. Shin and G. Gu. Conficker and Beyond: A Large-scale Em-
pirical Study. In Proceedings of the 26th Annual Computer Secu-
rity Applications Conference, ACSAC ’10, pages 151–160, New
York, NY, USA, 2010. ACM.

[35] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux
as a Linux security module. NAI Labs Report, 1:43, 2001.

[36] J. Stewart. Dns cache poisoning–the next generation, 2003.

[37] Sun Microsystems, Inc. and FSL at Stony Brook Univer-
sity. Filebench. http://filebench.sourceforge.
net/wiki/index.php/Main_Page, 2011.

[38] A. Tetmeyer and H. Saiedian. Security Threats and Mitigating
Risk for USB Devices. Technology and Society Magazine, IEEE,
29(4):44–49, winter 2010.

[39] The Information Assurance Mission at NSA. Defense against
Malware on Removable Media. https://www.nsa.gov/
ia/_files/factsheets/mitigation_monday_3.
pdf, 2007.

[40] The Netfilter Core Team. The Netfilter Project: Packet Mangling
for Linux 2.4. http://www.netfilter.org/, 1999.

[41] D. J. Tian, A. Bates, and K. Butler. Defending against malicious
USB firmware with GoodUSB. In Proceedings of the 31st An-
nual Computer Security Applications Conference, ACSAC 2015,
pages 261–270, New York, NY, USA, 2015. ACM.

[42] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. Iperf:
The tcp/udp bandwidth measurement tool. htt p://dast. nlanr.
net/Projects, 2005.

[43] M. Tischer, Z. Durumeric, S. Foster, S. Duan, A. Mori,
E. Bursztein, and M. Bailey. Users Really Do Plug in USB Drives
They Find. In Proceedings of the 37th IEEE Symposium on Se-
curity and Privacy (S&P ’16), San Jose, California, USA, May
2016.

[44] USB Implementers Forum. USB-IF statement regarding
USB security. http://www.usb.org/press/USB-IF_
Statement_on_USB_Security_FINAL.pdf.

[45] A. Vahldiek-Oberwagner, E. Elnikety, A. Mehta, D. Garg, P. Dr-
uschel, R. Rodrigues, J. Gehrke, and A. Post. Guardat: Enforcing
data policies at the storage layer. In Proceedings of the Tenth Eu-
ropean Conference on Computer Systems, page 13. ACM, 2015.

[46] J. Walter. "Flame Attacks": Briefing and Indicators of Compro-
mise. McAfee Labs Report, May 2012.

[47] Z. Wang and A. Stavrou. Exploiting Smart-phone USB Connec-
tivity for Fun and Profit. In Proceedings of the 26th Annual Com-
puter Security Applications Conference, ACSAC ’10, 2010.

[48] B. Yang, D. Feng, Y. Qin, Y. Zhang, and W. Wang. TMSUI:
A Trust Management Scheme of USB Storage Devices for In-
dustrial Control Systems. Cryptology ePrint Archive, Report
2015/022, 2015. http://eprint.iacr.org/.

15

430 25th USENIX Security Symposium USENIX Association

Appendix

1 /*
2 * lbsw - A LUM kernel module
3 * used to block SCSI write command within USB packets
4 */
5 #include <linux/module.h>
6 #include <linux/usbfilter.h>
7 #include <scsi/scsi.h>
8
9 #define LUM_NAME "block_scsi_write"

10 #define LUM_SCSI_CMD_IDX 15
11
12 static struct usbfilter_lum lbsw;
13 static int lum_registered;
14
15 /*
16 * Define the filter function
17 * Return 1 if this is the target packet
18 * Otherwise 0
19 */
20 int lbsw_filter_urb(struct urb *urb)
21 {
22 char opcode;
23
24 /* Has to be an OUT packet */
25 if (usb_pipein(urb->pipe))
26 return 0;
27
28 /* Make sure the packet is large enough */
29 if (urb->transfer_buffer_length <= LUM_SCSI_CMD_IDX)
30 return 0;
31
32 /* Make sure the packet is not empty */
33 if (!urb->transfer_buffer)
34 return 0;
35
36 /* Get the SCSI cmd opcode */
37 opcode = ((char *)urb->transfer_buffer)[LUM_SCSI_CMD_IDX];
38
39 /* Current only handle WRITE_10 for Kingston */
40 switch (opcode) {
41 case WRITE_10:
42 return 1;
43 default:
44 break;
45 }
46
47 return 0;
48 }
49
50 static int __init lbsw_init(void)
51 {
52 pr_info("lbsw: Entering: %s\n", __func__);
53 snprintf(lbsw.name, USBFILTER_LUM_NAME_LEN, "%s", LUM_NAME);
54 lbsw.lum_filter_urb = lbsw_filter_urb;
55
56 /* Register this lum */
57 if (usbfilter_register_lum(&lbsw))
58 pr_err("lbsw: registering lum failed\n");
59 else
60 lum_registered = 1;
61
62 return 0;
63 }
64
65 static void __exit lbsw_exit(void)
66 {
67 pr_info("exiting lbsw module\n");
68 if (lum_registered)
69 usbfilter_deregister_lum(&lbsw);
70 }
71
72 module_init(lbsw_init);
73 module_exit(lbsw_exit);
74
75 MODULE_LICENSE("GPL");
76 MODULE_DESCRIPTION("lbsw module");
77 MODULE_AUTHOR("dtrump");

Figure 9: An example Linux USBFILTER Module that blocks writes to USB removable storage.

16

USENIX Association 25th USENIX Security Symposium 431

Micro-Virtualization Memory Tracing
to Detect and Prevent Spraying Attacks

Stefano Cristalli
Università degli Studi di Milano

Mattia Pagnozzi
Università degli studi di Milano

Mariano Graziano
Cisco Systems Inc.

Andrea Lanzi
Universita’ degli Studi di Milano

Davide Balzarotti
Eurecom

Abstract
Spraying is a common payload delivery technique

used by attackers to execute arbitrary code in presence
of Address Space Layout Randomisation (ASLR). In
this paper we present Graffiti, an efficient hypervisor-
based memory analysis framework for the detection and
prevention of spraying attacks. Compared with previ-
ous solutions, our system is the first to offer an effi-
cient, complete, extensible, and OS independent protec-
tion against all spraying techniques known to date. We
developed a prototype open source framework based on
our approach, and we thoroughly evaluated it against all
known variations of spraying attacks on two operating
systems: Linux and Microsoft Windows. Our tool can
be applied out of the box to protect any application, and
its overhead can be tuned according to the application
behavior and to the desired level of protection.

1 Introduction

Memory corruption vulnerabilities are currently one of
the biggest threat to software and information security.
Education plays a very important role in this area, mak-
ing programmers aware of common threats and teach-
ing them how to avoid mistakes that may lead to ex-
ploitable bugs in their code. However, education alone
is not enough, and a good defense in depth approach re-
quires also to put in place multiple layers of mitigation,
detection, and exploit prevention mechanisms.

In this field, over the past decade we have witnessed a
constant arms race, with the system designers of compil-
ers and operating systems on one side, and the attackers
on the other. Over the years, the former have introduced
many new security features to increase the complexity
of exploiting memory corruption vulnerabilities [31, 6,
41, 9, 40]. This list includes stack canaries [13, 12], data
execution prevention (DEP) [2], Address Space Layout
Randomization (ASLR) [43, 7, 26, 8], Structured Ex-

ception Handling Overwrite Protection (SEHOP) [29],
and Control Flow Integrity [3]—just to name some of
the most popular solutions. Even though the combina-
tion of all these techniques have certainly increased the
security of modern operating systems, no matter how
high the bar was set, attackers have always found a way
to overcome it to take control of a vulnerable system.

ASLR is certainly one of the most common and suc-
cessful techniques adopted by modern operating sys-
tems. In fact, the objective of the majority of mem-
ory corruption exploits is to allow the attacker to exe-
cute arbitrary code in the context of a vulnerable pro-
cess. The code can be injected by the attacker herself,
or it can be constructed by reusing instructions already
present in memory (e.g., in the case of return-to-libc or
return oriented programming). Either way, the attacker
needs to know where such code is located in memory,
in order to divert the control flow of the application to
that precise address. And here is where ASLR plays its
role: by completely randomizing the layout of the pro-
cess memory, it makes much harder for the attacker to
predict where a certain buffer (or an existing code gad-
get) will be located at run-time. Unfortunately, attackers
found a very simple and effective solution to overcome
this protection: fill the memory with tens of thousands
of identical copies of the same malicious code, and then
jump to a random page1, hoping to land in one of the
pre-loaded areas. This makes this payload delivery tech-
nique, called spraying, one of the key elements used in
most of the recent memory corruption exploits.

Researchers have been looking for ways to mitigate
this technique. Unfortunately, the few solutions pro-
posed so far [36, 16, 21] were all tailored to defend 1)
a particular application (typically the JavaScript inter-
preter in Internet Explorer), 2) using a given memory al-
locator, 3) in a specific operating system, and 4) against

1Often a fixed address located on the process heap.

1

432 25th USENIX Security Symposium USENIX Association

a single form of heap spraying. This made these solu-
tions difficult to port to other environments, and unable
to cope with all possible variations of heap spraying at-
tacks. In fact, the original heap spraying attack is now
just the tip of the iceberg. The technique has rapidly
evolved in different directions, for example by taking
advantage of just in time compilers (JIT), by focusing
on the allocation of pools in the OS kernel, or by rely-
ing on stack pivoting to spray data instead of code. We
strongly believe that the increased adoption and sophis-
tication of heap spraying techniques clearly demonstrate
the need for a general and comprehensive solution to this
problem.

In this paper we present Graffiti, a hypervisor-based
solution for the detection and prevention of all known
variations of spraying attacks. We decided to implement
our solution at the hypervisor level to obtain the first OS-
independent, allocator-agnostic approach to track mem-
ory allocations that does not depend on the knowledge of
the protected process, or system. By leveraging a novel
micro-virtualization technique, Graffiti proposes an ef-
ficient and OS-agnostic framework to monitor memory
allocations of arbitrary applications. The system is mod-
ular, and relies on a set of plug-ins to detect suspicious
patterns in memory in realtime. For example, we devel-
oped a set of different detection modules based on statis-
tical inference, designed to precisely identify all known
spectrum of spraying attacks known to date. Moreover,
while all the previous techniques [36, 21] focused on the
defense of a particular application or memory allocator
against a single form of heap spraying, our system offers
the first general and portable solution to the problem.

Graffiti also offers a hot-plugging capability and there-
fore it can be installed on-the-fly without rebooting the
machine and without modifying the native operating
system. Our experiments, conducted both on Linux and
Microsoft Windows, show that Graffiti has no false neg-
atives and low false positives, with an overhead similar
to the one of previous, much more limited, solutions.

In summary, our work makes the following contribu-
tions:

• We present the principles, design, and implemen-
tation of an effective real-time memory analysis
framework. On top of our framework, we de-
veloped a set of heuristics to detect existing heap
spraying techniques. To the best of our knowledge,
we are the first to present a general, efficient, and
comprehensive framework that can be applied to all
modern operating systems and all existing applica-
tions.

• We propose a novel micro-virtualization technique
that allows Graffiti to monitor the entire system in

terms of both processes and kernel threads, with
low overhead.

• We have developed a prototype tool, and performed
an experimental evaluation on several existing real-
world spraying techniques. Our experiments show
that the system is able to detect all the classes of
spraying attacks we analyzed with low false posi-
tives and acceptable performance.

• We released the source code of the current Graf-

fiti prototype, which is available at the fol-
lowing link: https://github.com/graffiti-

hypervisor/graffiti-hypervisor

The rest of the paper is organized as follows. Sec-
tion 2 provides background information on spraying at-
tacks. Section 3 provides preliminary notions about In-
tel VT-x technology. Section 4, Section 5, Section 6 de-
scribe our solution from an architectural point of view.
Section 7 reports results on evaluating Graffiti. Section 8
discusses about the security evaluation of our system.
Section 9 compares our work with other relevant re-
search and Section 10 discusses future directions and
concludes the paper.

2 Spraying Attacks

Heap spraying is a payload delivery technique that
was publicly used for the first time in 2001 in the
telnetd remote root exploit [44] and in the eEye’s
ISS AD20010618 exploit [15]. The technique became
popular in 2004 as a way to circumvent Address Space
Layout Randomization (ASLR) in a number of exploits
against Internet Explorer [46, 47, 38].

Since 2004, spraying attacks have evolved and be-
came more reliable thanks to improvements proposed by
Sotirov [42] and Daniel [14] for a precise heap manipu-
lation. Spraying can now be classified in two main cat-
egories, based on the protection mechanisms in place in
the target machine: Code Spraying and Data Spraying.
If Data Execution Prevention [2] (DEP) is not enabled,
the attacker can perform the exploit by directly spray-
ing the malicious code (e.g., the shellcode) in the victim
process memory. On the other hand, when the system
uses the DEP protection, the attacker would not be able
to execute the injected code. To overcome this problem,
two main approaches have been proposed: (a) perform
the heap spraying by taking advantage of components
that are not subjected to DEP, such as Just in Time Com-
pilers (JITs), or (b) inject plain data that points to Return
Oriented Programming (ROP) gadgets. While the inter-
nal details between the three aforementioned approaches

2

USENIX Association 25th USENIX Security Symposium 433

Figure 1: Heap Spraying attack

Figure 2: Mimicry attack

may be quite different, what is important for our re-
search is that all these techniques share the same goal,
i.e., to control the target dynamic memory allocation in
order to obtain a memory layout that allows arbitrary
code execution in a reliable way.

It is important to note that spraying is still a valuable
technique also in x86_64-based operating systems. In
particular, this is the case for user-after-free vulnerabili-
ties – but spraying can also be used in conjunction with
vulnerabilities in the ASLR implementation [10], in par-
ticular types of vulnerabilities [20], or because of the
wide adoption of 32bit processes in 64bit operating sys-
tems (as recently shown by Skylined [39]).

2.1 Memory Footprint

The first characteristic of a heap spraying attack that
comes to mind is the large amount of memory that is
suddenly allocated by a process. Therefore we could er-
roneously believe that this unusual behavior alone (i.e.,
many pages allocated in a very short amount of time)
could be sufficient to implement a solution to detect
spraying attacks. For example, a simple approach could
measure the speed of memory allocation and the aver-
age amount of memory usually allocated by the applica-
tion under analysis. The first parameter would react to
a quick memory increase, a common aspect of most of
the existing attacks. The second parameter, once prop-
erly tuned for the application to protect, would act as
a threshold of memory allocation, beyond which the
behavior becomes suspicious and an alert is raised. It
seems reasonable to believe that, by checking these two
parameters, a detector could successfully prevent spray-
ing attacks.

One of the main motivation of our work is to prove
that the use of these two parameters is not sufficient for
designing an effective spraying detection system. To
prove our point, we designed a set of experiments to
show that an attacker can tune the memory allocation
behavior of an exploit to mimic the one of a normal ap-
plication.

In our tests we used as a case study a classic heap
spray attack against Internet Explorer 8 (described in
CVE-2011-1996) but it is possible to replicate similar
results with any applications where the memory alloca-
tion depends on input data. The first test we performed
aimed at measuring the memory allocation curve while
the user was visiting a small set of web sites. Fig-
ure 1 shows that the parallel execution of four common
web applications (using parallel browser’s tabs) boosts
the memory allocation of Internet Explorer to around
200MB. The same graph also shows the allocation curve
of the CVE-2011-1996 exploit launched by Metasploit.
In this case, the malicious behavior is easy to detect
since it produces a huge allocation of memory in a short
period of time – that then drops drastically after the suc-
cess of the exploit. The drop is due to the fact that
the shellcode spawns a process and releases the system
resources of the previous execution thread along with
its own memory. Other spraying attacks exhibit simi-
lar curves, a weakness that could be used to identify an
ongoing malicious activity.

In the second experiment we wanted to answer two
separate questions: i) how the total amount of memory
allocated by the exploit affects the reliability of a spray-
ing attack; and ii) whether it is possible for an attacker
to slow down the attack in order to mimic the slope of
the allocation curve observed on benign web pages. To

3

434 25th USENIX Security Symposium USENIX Association

this end, we first modified our exploit to decrease the
amount of sprayed memory. As we expected, reducing
the number of allocated pages also reduces the probabil-
ity of landing on one of them, thus making the exploit
less reliable. We measured this phenomenon by run-
ning each exploit configuration ten consecutive times,
counting in each case the number of successful attacks.
The results of our tests show that the memory used by
the original exploit can be largely reduced maintaining
an acceptable success rate. For instance, the attack was
still successful in 80% of the cases with a total memory
consumption of only 131 MB – that is considerably less
than what IE8 used in our benign scenario.

We then modified again the original exploit, this time
introducing a delay between each memory allocation to
mimic the behavior of a benign application. This change
had no impact on the success rate of the attack. Figure 2
shows the allocation curve of our modified exploit, com-
pared with a base line obtained by running Internet Ex-
plorer with six open tabs. From this experiment, it is
clear that neither the speed nor the amount of memory
can be used as the only criteria to detect a potential heap
spraying exploit. By setting the threshold too low, the
system would generate too many false alarms, and by
raising the threshold too high the system would be vul-
nerable to evasions.

This conclusion motivates our further investigation to
design a better memory monitoring and spraying attacks
detection technique.

3 Preliminary Notions on Intel VT-x

Before we discuss our solution, we need to briefly intro-
duce some virtualization concepts that we will use in the
rest of the paper. Intel VT-x is a technology available in
various Intel CPUs to support virtualization [23, 30].

VT-x defines two particular transitions: vmexit, to
move from the guest to the hypervisor, and vmentry,
to move in the opposite direction. As a result, the hy-
pervisor is executed only when particular events in the
guest trigger an exit transition. The set of events caus-
ing these transitions is extremely fine grained and can be
configured by the hypervisor itself. Such events include
exceptions, interrupts, I/O operations, and the execution
of privileged instructions (e.g., accesses to control reg-
isters). Exits can also be explicitly requested by in-guest
software, using the vmcall instruction. Because of its
similarity to system calls, this approach is commonly
called hypercall. Whenever an exit occurs, the hard-
ware saves the state of the CPU in a data structure called
Virtual Machine Control Structure (VMCS). The same
structure also holds the set of exit-triggering events that

are currently enabled, as well as other control informa-
tion of the hypervisor.

Another technology we need to introduce is the Ex-
tended Page Tables (EPT). This technology has been
introduced to support memory virtualization, which is
the main source of overhead when running a virtualized
system. If enabled, the standard virtual-to-physical ad-
dress translation is modified as follows. When a soft-
ware in the guest references a virtual address, the ad-
dress is translated into a physical address by the Mem-
ory Management Unit (MMU). However, the result of
this operation is not a real physical address, but a guest
physical address (gpa). The hardware then walks the
EPT paging structures to translate the gpa into a host
physical address, that corresponds to the actual physi-
cal address in the system memory. The EPT technology
also defines two new exit transitions: EPT Misconfigu-
ration and EPT Violation, respectively caused by wrong
settings in EPT paging entries and by a guest attempting
to access memory areas it is not allowed to. By alter-
ing the EPT entries, the hypervisor has full control of
how the guest accesses physical memory. For example,
it can remove write permissions from an entry, so that
any write-access by the guest triggers a violation.

Threat Model
Our threat model considers an attacker that is able to
exploit (either locally or remotely) an application run-
ning on the machine and to perform a spraying payload
delivery. The use of a hypervisor-based technology is
motivated by the goal of providing an OS-independent
detection system and a more secure reference monitor.

Since we leverage late-launching to deploy our solu-
tion on operating systems running on physical machines,
without requiring a reboot, we assume that the machine
to be protected is clean when Graffiti is loaded. Thus, we
consider the protection of already infected systems to be
out of the scope of this paper.

4 Architecture Overview

In order to considerably improve over the state of the
art, we set five main requirements for our detection sys-
tem. First, it should be completely independent from
the memory allocator used by the protected applications
(R1). Second, it has to operate system-wide, i.e., it
should be able to detect any memory allocation and de-
allocation that occurs in the system (R2) and it must be
able to recognize any memory page that gets executed
in the operating system (R3). Fourth, in order to op-
erate correctly, our system should not require any OS-

4

USENIX Association 25th USENIX Security Symposium 435

dependent information (R4). Finally, the overhead intro-
duced by the system should be reasonable, in line with
other system-wide protection mechanisms. In particular,
we consider a “reasonable” overhead, anything compa-
rable to the one introduced by other virtualization sys-
tems such as XEN or VMware (R5).

To satisfy these five requirements, our system was de-
signed to be easily extensible and configurable, and to
tune its behavior (and therefore its overhead) to match
the current level of risk of the monitored system. This is
achieved by using two separate modes of operation.

Our monitoring platform is based on a custom hyper-
visor that normally runs in what we call monitor mode.
In this mode, the hypervisor intercepts every new mem-
ory page that is allocated in the system, along with the
CR3 register associated to the process that is requesting
the memory. Whenever the total amount of memory re-
quested by a single process exceeds a certain threshold
(computed experimentally as described in Section 2.1)
the system switches to security mode and starts perform-
ing additional checks to detect the presence of a possible
attack for that particular application (while remaining in
monitor mode for the other applications). In Section 2.1
we proved that a fixed threshold is not able to properly
capture all the possible variations of spraying attacks.
For this reason, in our system we use a threshold not
for detection, but only to improve the performance of
the system by disabling expensive checks when the total
memory used by the process is too low for an attack to
be successful. It is important to stress that in our solu-
tion, lowering the threshold for a given application does
not introduce any false positives from the detection point
of view, but only increases the overhead for that particu-
lar application alone (and not for the rest of the running
system or for any other application).

When a process exceeds this minimum allocation
threshold, the hypervisor performs two main tasks.
First, using the EPT, it removes the execution permis-
sion from all the allocated pages, so that any attempt to
execute code will be intercepted by the system. Second,
it invokes the static analyzer component to check for the
presence of a potential spraying attack. The actual de-
tection is delegated to a configurable number of analysis
plugins.

Figure 3 provides an overview of the system archi-
tecture and shows the interactions among the different
components. The figure is divided in three parts, with
user space on top, kernel space in the middle, and our
custom hypervisor at the bottom. When an application
(in this case a web browser) requests new memory, the
kernel searches for a free page and it allocates it. At this
point, when the OS tries to update the page table, the op-
eration is intercepted by our hypervisor. If our system is

Kernel

#1023
...
...

#0

VulnBrowser
int interpreter()
{
...
malloc(...);
...
}

GET / HTTP/1.1

explo.js

h
t
t
p
:
/
/
e
v
i
l
.
c
o
m

m
a
l
l
o
cUser mode

Kernel mode

Non-root mode
Root mode

Trap!

Hypervisor

Memory
Tracer

Attack
Detector

Hardware

Figure 3: Architecture of the Memory Allocation Tracer.

running in monitor mode, the hypervisor only tracks the
new memory allocation and gives back control to the
operating system. If instead the application has already
requested enough memory to trigger the security mode,
our attack detection routines are executed to inspect the
memory and flag any heap spraying attempt.

System Deployment
The main component that enables the protections en-
forced by Graffiti needs to keep an accurate track of all
the allocation and deallocation operations that occur in
the system. The main motivation of using a hypervisor
is that, from a low level perspective, memory allocation
is strictly dependent only on the hardware architecture,
and not on the operating system itself. Thus, by working
below the operating system, Graffiti avoids all the intri-
cacies introduced by the various allocation engines, and
therefore it does not require to modify or instrument the
protected system (e.g., to place hooks inside OS compo-
nents). Graffiti leverages late-launching to load its pro-
tection mechanism while the target is running. This hot-
plug capability is achieved without rebooting the sys-
tem, so it is transparent to the native OS. Finally, it is
important to note that Graffiti is a very flexible system
and can be configured according to the target needs. For
instance, it can be deployed to monitor only a single sen-
sitive process (e.g., a browser, or a PDF viewer), a set of
thereof, or even the entire running system.

Our current prototype is implemented as an extension
of HyperDbg, an open-source hardware-assisted hyper-
visor framework [17]. In Sections 5 and 6 we present

5

436 25th USENIX Security Symposium USENIX Association

the design and implementation of the two main compo-
nents of the system: the Memory Tracer and the Attack
Detection Routines.

5 Memory Tracer

To implement our heap spraying protection technique,
we must first keep track of all the allocation and deallo-
cation operations that occur inside the system. Ideally,
the most obvious solution to track memory allocations
would be to modify the allocator itself, by extending the
operating system with a new tracking feature. By doing
so, however, our system would need to be customized
for a particular operating system, and we would need to
constantly update our tracker according to any OS up-
grade.

To avoid this problem, we decided to implement our
tracking approach at the hypervisor level (requirements
R1 and R4), i.e., below the operating system. Since our
approach is based on virtualization, from now on we will
refer to the protected system alternatively with the term
guest or target.

5.1 Tracer Design

Our system is designed to intercept every modification
that is made by the guest OS to paging structures, and
to recognize when the change corresponds to the cre-
ation or to the elimination of a page. To better illustrate
our tracing technique, we will often refer to the paging
structures that are used in the Intel architectures [23].

Whenever a process requires a new page, the kernel
walks the paging structures of the requesting process
looking for a usable Page Table Entry (PTE) in one of
the Page Tables of the process (i.e., the second level
structures). If none is found, it either allocates a new
Page Table, by altering an entry on the first level paging
structure (also known as the Page Directory), or it swaps
some of the pages of the process to disk to create some
empty slots. Once it has found or created a usable PTE,
the kernel modifies it to map the allocated physical page
to a virtual address, sets the lower 12 bits of the PTE
to match the attributes of the page (e.g., read/write,
user/supervisor), and returns the virtual address to
the requesting process.

Our defense mechanism needs to keep a fine-grained
view of every allocation to protect the system against
spraying attacks. In particular, according to the address
translation and new page allocation we need to intercept
six different events: (1) Creation (2) Modification and
(3) removal of a page. (4) Creation (5) Modification (6)
Removal of a page table.

Whenever one of these six events is triggered by the
kernel, our hypervisor intercepts the operation and acts
accordingly. The first triple of events is traced to keep
track of which pages a process allocates. The second
group, on the other hand, must be traced to ensure that
our system maintains a complete view of the allocated
pages and does not miss any event in the first category.

5.2 Page Table Monitoring
Since Graffiti operates at the hypervisor level, it lever-
ages the EPTs to write-protect all the page structures of
a process. By doing so, it can intercept all modifica-
tion attempts, as part of any of the six cases enumerated
above. At first, the hypervisor detects when a new pro-
cess is created by intercepting write operations to the
CR3 register. As soon as a it is spawned by the kernel, a
process will have just a limited number of paging struc-
tures, possibly inherited by its parent process (e.g., on
Linux this depends on the flags of the clone() syscall
that is used to spawn the process). To protect all its pag-
ing structures, Graffiti needs to traverse the page direc-
tory (pointed by the value of the CR3 register) and write-
protect all the page tables pointed by each PDE. Page
tables are scanned as well, to keep track of the physical
pages allocated to the process by the kernel. After this
setup phase is completed, each attempt to modify one of
the pages would cause a trap in our hypervisor system.

Implementing the approach we just described while
maintaining an acceptable overhead is a challenging
task. At first, we use the EPTs to write-protect every
paging structure of a target process. By doing so, when-
ever the OS kernel attempts to modify such structures
because the process requires it (1), an EPT violation
transfers the execution to the memory tracer component
of our hypervisor framework (2). The violation is han-
dled by removing the write protection and keeping a
copy of the value of the entry (PTE or PDE) being modi-
fied (3), and re-executing the faulting instruction by per-
forming an entry with the monitor trap flag (MTF [23])
raised (4). After the instruction has been executed, the
hypervisor obtains again the control thanks to the exit
caused by MTF (5), compares the new value stored in
the entry with the old one and uses this information to
infer which of the six kernel operations described pre-
viously has occurred (6). Eventually, the protection is
restored (7) and the control is given back to the guest
kernel (8).

To make the tracing mechanism clearer, consider the
following scenario: the hypervisor intercepts a write at-
tempt to the 2nd PTE of the 1st page table. This PTE
originally contains the value 0. After single-stepping
through the write instruction, we collect the new value
of the PTE: old:0x00000000 new:0xcaffe007.

6

USENIX Association 25th USENIX Security Symposium 437

This means that the guest kernel is mapping a physi-
cal page (at address 0xcaffe000) with a rw permission
and making it accessible to both user and kernel space.
In fact, the three lowest bits are set, making the entry
present, writable, and accessible to user mode processes.
For our framework, this operation corresponds to a cre-
ate page event. To intercept when a process is created,
we catch CR3 write operations in the guest. When the
CR3 value that is going to be written corresponds to the
one of a process we want to protect, we apply the pro-
tection to its paging structure, as explained above. It is
important to stress that our approach is completely OS
independent, as the only knowledge we rely on is the
meaning of the bits stored in the paging structures, and
those solely depend on the CPU architecture.

5.3 Graffiti Micro-Virtualization

The system described so far does not satisfy the require-
ment R2. In fact our solution should be able to monitor
the entire system, and not only a few processes at a time.
Unfortunately, by extending the previous approach to
the whole guest operating system (all user-space pro-
cesses and kernel threads), we observed a thrashing [4]
phenomenon that introduced a large overhead in the
memory allocation. This phenomenon creates a large
number of context switches between OS and hypervisor,
thus increasing the system overhead.

This phenomenon happens when a modification of a
memory page of the running process creates as a side
effect a modification of a memory page of another non-
running process. This is a consequence of the fact that
some memory pages are shared among processes, and
some kernel tasks perform operations on memory pages
of different processes. We refer to this problem as the
interference problem.

The impact of this interference can be measured by
running two simple tests. In the first, we computed the
overhead introduced by our system while protecting a
single process (Internet Explorer 10) and in the second
we protected other two processes (Acrobat and Firefox)
on top of Internet Explorer. The overhead on Internet
Explorer alone went from 22% in the first test to 63%
in the second, just as a side effect of monitoring two
additional applications. Unfortunately, the interference
of protecting more processes and the kernel itself would
quickly slow down the entire system to a point in which
it would not be usable anymore.

Ideally, we would like to design our system to
avoid the interference problem, so that the overhead
would not depend on the number of monitored pro-
cesses. To achieve this goal, we propose a novel micro-
virtualization technique, where each process runs inside

its own virtual memory sandbox and our tracking sys-
tem enables the memory protection of just the process
which is currently running. More in details, our micro-
virtualization technique bases its approach on the fact
that the VMCS contains a pointer to the EPT (EPTP)
currently used by the hypervisor (see Section 3). Since
we use the EPT to protect the processes (as explained
in Section 5), our idea is to create a different EPT for
each of the processes we protect, and change the EPTP
in the VMCS at every context switch. From a low level
perspective, this corresponds to intercepting every CR3

write operation (also easily trappable through VT [17])
and modifying the VMCS so that the EPTP points to
the EPT of the process that has been scheduled for ex-
ecution. Protected processes will have their own EPTs,
while un-protected ones will just use a common EPT.
To this end, every time a new process is created, the
system creates a new EPT and associates it to the new
process. It is important to note that the creation of this
new EPT is not very costly, since the page table at the
process creation is tiny and we only need to identify and
protect some of them. By using such a mechanism, the
hypervisor automatically disables the memory tracking
of the other unprotected processes and enables the trap-
ping only for the pages that are related to the currently
protected processes, thus avoiding the thrashing side ef-
fect. Since this solution requires only to change the
EPT pointer when a context switch occurs, it does not
increase the overhead of the system.

In order to validate our micro-virtualization mech-
anism we performed two main experiments by using
three applications: IE10, Acrobat Reader and Firefox.
During our first experiment we only protect one appli-
cation (IE10) and we compute the execution time and
the overhead obtained by surfing several web pages in
three main cases: (1) without hypervisor (2) with out
hypervisor but without micro-virtualization and (3) with
hypervisor and micro-virtualization enabled. From this
first experiment the micro-virtualization does not intro-
duce any additional overhead to the system when is used
to protect a single process (23% in both cases with and
without micro-virtualization). The only overhead intro-
duced by the micro-virtualization occurs during the first
loading of the new process. In this case the hypervisor
needs to build up the EPT table for the new process by
walking the process page tables. The overhead intro-
duced during the loading time is 8%.

In the second experiment we test the scalability of
our system with the new micro-virtualization mecha-
nism enabled. This time we protect all three applications
and we compute, like in the previous experiment, the ex-
ecution time and the overhead obtained by surfing sev-
eral web pages in the same three main cases: (1) with-

7

438 25th USENIX Security Symposium USENIX Association

out monitoring the application (no hypervisor enabled)
(2) with hypervisor but without micro-virtualization and
(3) with hypervisor and micro-virtualization enabled.
The overhead was 63% without micro-virtualization
and 23% with micro-virtualization, confirming that the
micro-virtualization is able to remove the overhead in-
troduced by the interference problem.

As a result of our novel micro-virtualization architec-
ture, our system is able to monitor an arbitrary num-
ber of different applications, without any increase in the
system overhead. More specifically the overhead only
applies to a particular protected application and it does
not propagate to the rest of the system. For instance, if
the user wants to protect only the browser and the PDF
viewer against heap spraying attacks, any other applica-
tion would not suffer any side effect or slowdown from
our tracking system.

6 Detection Components

Whenever the total memory dynamically allocated by a
process raises over a certain configurable threshold, the
tracer switches to security mode and triggers a config-
urable number of static analysis routines to verify if a
spraying attack is ongoing in the system.

Our current prototype includes three different com-
ponents, presented in details in the next sections. These
serve only as possible examples of the heuristics that
can be easily plugged into our platform, and they could
therefore be improved or extended with other tech-
niques.

Malicious Code Detector
The aim of this component is to detect the simplest form
of heap spraying. In this case, we assume the heap is
randomized but executable, and therefore the attacker
can spray the memory of the vulnerable target with mul-
tiple copies of a shellcode. Thus, the goal of this de-
tector is to identify the presence of shellcodes inside the
memory allocated by a process.

Our technique works as follows. First, the detector
scans a fraction n of the most recently allocated memory
pages and tries to disassemble them starting at twenty
randomly selected offsets. For simplicity, any sequence
of assembly instructions that terminates with a control
transfer instruction that invokes a library call or system
call is marked as a potential shellcode. To avoid cases
where an attacker tries to obfuscate its attack by using an
indirect control transfer instruction (iCTI), we consider
each iCTI as a potential shellcode terminator.

The scan process is repeated for each allocated page
and the detector finally reports the distribution of the

number of potential shellcode detected in each page. If
the average number is higher than a given value, it raises
an alarm. This approach derives from the observation
that in the normal operation of a benign program only a
small portion of the analyzed memory pages would con-
tain a relevant fraction of valid instructions sequences.
In an exploitation scenario, instead, most of the ana-
lyzed pages would contain close to 20 potential shell-
code sequences. It is important to note that when the
system starts disassembling from one page it continues
till it reaches a code pointer, that may as well be located
in a different page. If multiple pages are involved in
such analysis they are all considered and marked as a
shellcode container.

Self-unpacking Shellcode Detector

In this second scenario, we assume the same environ-
ment described before (ASLR enabled, DEP disabled),
but we now consider the case in which an attacker packs
her shellcode to make the detection more difficult. For
example, all Metasploit payloads in spraying-assisted
exploits are packed by default, e.g., by using the shikata-
ga-nai encoder. Packed shellcodes are typically made
up of a number of seemingly meaningless bytes, pre-
pended with a small unpacking routine. The routine and
the packed code are usually adjacent (i.e., they are lo-
cated in the same memory page), as splitting them would
lead to a waste of space and consequent loss of effective-
ness when mounting the spraying attack.

Our second detection plugin is designed to detect
packed shellcodes as soon as they start unpacking, and
is tightly binded to the memory tracer. The component
enforces what we call a dynamic W⊕X protection. As
soon as the memory tracer detects a new page allocation,
it modifies the EPT entry corresponding to the newly al-
located page so that a violation will be triggered when a
write access to that page is attempted (R-X). The detec-
tor intercepts these attempts and modifies the EPT entry
of the accessed page so that write accesses are enabled,
but not execution accesses (RW-). If this new protec-
tion triggers a violation, we have a write-then-execute
situation, which is fairly common in nowadays systems
(especially with JIT engines). However, this mecha-
nism allows to observe the more anomalous situation in
which code modifies the same memory page in which
it resides, that indicates the presence of self modify-
ing code, used by packed shellcodes as described above.
This technique is also effective when DEP is enabled on
the heap memory, and the attacker uses a JIT-spraying
attack. In fact, if the JIT-sprayed payload is packed, it
will need to unpack itself and thus will trigger our de-
tection heuristic.

8

USENIX Association 25th USENIX Security Symposium 439

Data Spraying Detector

When DEP is enabled, and JIT spraying is not a viable
solution (e.g., there is no JIT engine in the vulnerable
process), a possible exploit solution is to use return ori-
ented programming. In this case, the attacker no longer
sprays the heap with executable code but instead with
multiple copies of a ROP chain. To trigger the code, the
attacker then uses a pivoting sequence to move the stack
pointer into the heap and let execution slide down the
ROP chain, as we explained in Section 2.

To detect data spraying attacks, we designed a com-
ponent that samples the most recently allocated mem-
ory pages of a process, and it considers any word inside
them as a potential memory address. For each of these
candidate addresses, the data spraying detector checks
whether this address points to a valid executable page,
and, if so, marks it as a potential code pointer. In case
the total number of code pointers for each page is over a
threshold, the system raises an alarm.

Unfortunately, even though this policy may sound
reasonable at a first glance, we observed that in prac-
tice it suffers from a large amount of both false positives
and false negatives. The first problem is related to the
fact that modern operating systems use different tech-
niques to load pages, one of which is called Demand
Paging [4]. In this case the pages are only brought into
memory when the running-process demands them. This
optimization creates an issue for our detection method
because when the system extracts the potential code
pointers from the memory pages and checks if they point
to a valid code page, the page may not be present in the
page table (even if it is properly allocated). We observed
this behavior during our experiments, and the result is
that certain addresses would be discarded—thus poten-
tially creating false negatives by missing a page that is
part of a spraying attack.

To avoid this issue, we modified our hypervisor to
intercept page faults in the guest system when Graffiti

switches to security mode for a given process. When
the detector checks an address that points to a memory
page that is not mapped, the system does not discard it
but keeps it as a potential code pointer into the memory
structures of the hypervisor. Afterwards, when the pro-
cess gets access to the demanded page, the system loads
it and our detection system intercepts the page faults and
it checks if the potential code pointer points to this mem-
ory page. If true, the system marks all the memory pages
previously allocated that contain such address as suspi-
cious and then it re-applies again the previous technique
on the new set of pages.

The second problem of our original technique is the
high number of false positive we observed in the experi-
ments because benign memory pages also contain a sig-

nificant number of code pointers (e.g., in case of C++
classes or arrays). To reduce the false positives created
by those benign memory pages, we improved our de-
tector algorithm by replacing the pointers counter with
a more sophisticated pointers frequency analysis. The
idea is to compute the frequency of the code pointers
that every page of the entire set contains, instead of ana-
lyzing every page individually. While the absolute num-
ber of code pointers may be deceiving, we observed that
the distribution of those pointers in case of benign ap-
plications is really diverse, while in case of an attack the
distribution tends to be quite uniform.

7 Experimental Results

The goal of our experiments is to first measure the over-
head of the system in a realistic environment and then to
show how effective our heuristics are in distinguishing
spraying attacks from a normal allocation behavior.

Our code is composed by three main software com-
ponents: a core hypervisor framework based on Hy-
perDBG, the micro-virtualization implementation, and
the detector plugins. The core hypervisor framework
is written in a combination of C (17353 LoC) and as-
sembly (545 LoC). The micro-virtualization and detec-
tor components account for 1435 lines of C program-
ming language.

All tests presented in this section were performed on
two machines, equipped with an Intel Core i5-2500 @
3.3 GHz and 8GB of RAM, running respectively Win-
dows 7 Professional 32bit and Debian Wheezy 32bit
(kernel 3.2).

Activation Threshold and Overhead

Our system is designed to be adaptive. Consequently,
the only part that is always active is the Memory Tracer.
Our micro-virtualization solution confines the overhead
to a single process and allows our system to monitor an
arbitrary number of different applications without any
increase in the overhead of the rest of the system.

During normal operation, the tracker overhead is neg-
ligible, and it is only noticeable when the monitored ap-
plication allocates tens of megabytes of memory at a
time – typically at start up or when a large document
is open. To measure this worst case scenario, we used
the stress suite to simulate a program that intensively
allocates memory on a Windows 7 and on a Linux 3.2
hosts at a rate of 8MB every 2 seconds. The overhead
we observed during the allocation phase was of 24% on
Windows and 25% on Linux for a single process with-
out considering context switch. Again, it is important to

9

440 25th USENIX Security Symposium USENIX Association

Figure 4: Detection Overhead for Internet Explorer 8

note the experiments performed in these tests produced
a very intensive memory allocation activity and it is not
representative of the memory behavior of the entire life
of a process.

On top of this overhead, each application can observe
a different overhead when Graffiti switches to security
mode and enables the detection modules to scan the ap-
plication memory. The frequency at which this happens
depends on the value of the activation threshold. The
lower the threshold, the hardest it is for an attacker to
evade detection – but the higher the potential overhead
for the application. “Potential” in this context means
that the actual overhead also depends on the application:
some use so little memory during their normal operation
that the security mode would never be triggered - also
for very low values of the threshold. Moreover, most
of the applications only allocate large amount of mem-
ory when the user opens a document, but then the use of
memory becomes quite constant - and therefore Graffiti’s
negative impact tends to be concentrated only on the few
initial seconds, and becomes negligible after that.

To measure this trade-off we performed two exper-
iments. In the first, we asked some users to surf the
web by using Internet Explorer 8 on Windows 7 with
our detection system activated. We choose IE8 since
this application usually uses a large amount of memory
and it represents one of the main targets of spraying at-
tacks. To mimic a realistic behavior, the users kept a tab
open on GMail, and then alternately opened three other
tabs performing memory intensive activities: watching
videos on YouTube, browsing Facebook, and checking
hundreds of pictures on 9gag. In the second experiment,
we used Acrobat Reader for Linux to open 100 benign
PDF files including conference papers, books, Ph.D. dis-
sertations, and very large manuals (i.e., the Intel Manu-
als).

Following the approach used by Nozzle [36], we se-
lected a sampling rate of 10% (number of pages checked

by our detection module over the total number of pages
allocated). As a reference, with this value Nozzle in-
troduced an overhead of 20% to Internet Explorer. The
overhead obtained with our system is shown in Figure 4
for different values of threshold. Also in the worst case
with the activation threshold set to 150MB, the over-
head was only 12%. Moreover, the heuristic responsi-
ble for most of this overhead is the one that requires to
randomly disassemble the content of the memory pages.
Since this component is useless on any modern OS when
DEP is enabled, the detection overhead of Graffiti be-
comes barely noticeable.

Moreover, our experiments with Acrobat Reader
never reached the activation threshold, even when it was
set at the conservative value of 100MB. In this case, the
overhead of Graffiti on the normal use of the application
was constantly zero – showing that for some popular ap-
plications our framework can provide a very complete
protection against known and unknown attacks with no
additional overhead.

Detection Accuracy
To test the effectiveness of our system, we measured the
true and false positives rates for each individual detec-
tion technique that is currently included in the Graffiti

prototype. To test the detection rate we used several real
world exploits that cover all the different spraying tech-
niques and variations mentioned in this paper. It is im-
portant to note that the six attacks that we chose for our
experiments, summarized in Table 3, are representative
for the entire spectrum of the techniques used by the
spraying attacks described in Section 2. On top of this
qualitative test, we also performed a quantitative test us-
ing over 1000 different malicious PDF documents that
rely on heap spraying in the exploitation phase.

In the first test we show the effectiveness of our sys-
tem to detect exploits based on stack pivoting, by using
the attack described in CVE-2011-1996. The attack first
sprays the stack frames on the heap and then executes a
number of ROP gadgets in order to disable the DEP pro-
tection. During the spraying phase the attack allocates
on average 384MB.

In this case, the static analyzer applied the code point-
ers frequency analysis on the attack memory pages. The
component detected a high number of code pointers with
a variance close to 0 in all the allocated memory pages,
and thus it raised an alert successfully preventing the at-
tack. To evaluate the false positive of such technique,
we instructed our detector to track all the memory pages
allocated by Internet Explorer 8 while browsing the first
1000 top Alexa domains [1]. In this case, the frequency
of code pointers had a very high variance on all mem-
ory pages captured by the system, thus generating zero

10

USENIX Association 25th USENIX Security Symposium 441

Web Domain Average Variance

amazon.com 3 259.30
ask.com 7 867.90
baidu.com 8 559.57
blogspot.com 2 158.88
craiglist.org 6 391.15
delta-search.com 8 809.21
facebook.com 23 3521.68
google.co.jp 10 562.99
google.com.br 7 459.57
google.com 10 46.44
instagram.com 14 2763.22
microsoft.com 5 395.72
msn.com 16 2916.28
yahoo.com 14 1183.43

Table 1: Code Pointer Frequency Analysis Results.

Web Domain Shellcode per page Average Guess Offset

amazon.com 10/500 1/20
ask.com 2/500 1/20
baidu.com 48/500 4/20
blogspot.com 64/500 4/20
craiglist.org 10/500 2/20
delta-search.com 8/500 3/20
facebook.com 25/500 4/20
google.co.jp 162/500 3/20
google.com.br 69/500 3/20
google.com 74/500 3/20
instagram.com 224/500 5/20
microsoft.com 0/500 —
msn.com 5/500 1/20
yahoo.com 13/500 1/20

Table 2: Shellcode Frequency Analysis Results.

false alarms (Table 1 reports the results for the first 14
domains analyzed).

In the second set of experiments we tested the effec-
tiveness of the Malicious Code detection component. In
this case we used the exploit for CVE-2009-2477 af-
fecting the Javascript interpreter of Mozilla Firefox 3.5.
This attack exploits a memory corruption vulnerability
in the Firefox browser, in which the Javascript inter-
preter fails to preserve the return value of the escape()
function and results in the use of an uninitialized mem-
ory area. During the exploit, Graffiti reported that the av-
erage number of analyzed pages containing a potential
shellcode was 100% – thus raising an alarm and stop-
ping the attack. To test the false positive of the same
detection technique, we used the same browser to visit
the top 1000 Alexa domains. In this case, the average
number of potential shellcodes per page was always be-
low 50% and therefore no false alert were raised in the
test. In table 2 we reported results about the first 14
domains analyzed, the number of pages that present po-
tential shellcode and the average on shellcode found in
the first 500 allocated memory pages. As we can see
from the table, our malicious code detector component
does not present any false positive.

CVE Application Exploit Technique Detected

2010-0248 Adobe Flash player ROP + packed sc Yes
2011-0609 Adobe Reader JIT + packed sc Yes
2011-2462 Adobe Reader ROP + packed sc Yes
2010-2883 Adobe Reader Ret2Lib + packed sc Yes
2011-1996 IExplorer ROP Yes
2009-2477 Firefox Plain Shellcode Yes

Table 3: Exploitation Detection Results.

In our third experiment, we analyzed the Self-
unpacking Shellcode Detector component. In this case
we selected different CVEs and we used the metas-
ploit [35] tool to exploit them with packed payloads. In
particular, we used two packing methods: the shikata-
ga-nai packer and a simple xor algorithm. Our detection
system was always able to intercept the first execution
of the packed code and consequently detect the attacks
without any false negative. Also for this component, we
tested the false positive rate by browsing the top 1000
domains from the Alexa dataset. We did not observe any
false positive, even though several website included ob-
fuscated Javascript code. A further investigation on ob-
fuscated java-script shows that the de-obfuscation rou-
tine is implemented at the compiler level so it does not
present any problem or generate any false positive in our
system.

To conclude, Table 3 reports all the vulnerabilities we
used for our tests, along with the type of payload deliv-
ery and the detection results of Graffiti. Even though our
detectors had a very high precision in all our tests, an
attacker equipped with knowledge about the internals of
our detectors could try to mimic the behavior of a be-
nign application to evade detection. A further analysis
of such attacks is presented in Section 8.

Aggregated Experiments
So far, we tested each piece of our infrastructure in isola-
tion. In our final experiments, we put all pieces together.
In the first test, we used Graffiti to analyze three datasets:
a set of 1000 malicious PDF documents, a set contain-
ing 1000 benign web pages, and one containing 1000
benign PDFs. The first dataset was collected by a com-
pany working on malware analysis, while the other in-
cluded the top Alexa web pages and random documents
collected from various sources. All experiments were
conducted with a very conservative activation threshold
of 150MB and a sampling rate of 10%. Graffiti suc-
cessfully detected all malicious documents, with zero
false alarms. Moreover, the overhead on loading the
web pages was in average of 23% (a value in line with
previous OS-specific approaches that were only able to
protect the web browser).

11

442 25th USENIX Security Symposium USENIX Association

In the second experiment, we asked real users to use a
Graffiti-protected system during their everyday activities
for a total of 8-to-10 hours per day in a 7-days period.
Graffiti was installed on two Windows 7 machines, con-
figured to monitor Internet Explorer 8 with an activation
threshold of 150 MB. All three spraying attacks detec-
tors were enabled during the experiments (even though
the first was not necessary on this setup). Overall, the
real users visited a total of 492 distinct web pages and
the detectors were activated 55 times, with an average
of ≈8 times per day. On the same period, Graffiti raised
12 alerts on pages that seemed to be benign. A closer
inspection of the FPs showed the data spraying detector
(Section 6) to be the only responsible. This component
is in charge of detecting data spraying attacks and bases
its detection on the number of potential code pointers
present in memory.

It is important to stress the fact that the three detec-
tion plugins are not the main contribution of our work,
and our micro-virtualization framework allows other re-
searchers to easily improve, extend, and replaced them
with other techniques. For instance, a possibility to de-
crease the false positive rate of this component could
be to check not only if the code pointer points to a cor-
rect executable page, but also whether it points to a dan-
gerous machine instruction sequences (e.g., a gadget).
We manually inspected the websites that raised the false
alarms and we found that applying such simple method
would be able to prevent all the alerts. This check could
be activated only when the data spraying detector iden-
tifies a possible attack, to prevent a significant increase
of the overhead.

8 Security Evaluation

It is possible that an attacker, knowing the internals of
our three detectors, could mount a mimicry attack that
can successfully evade detection. For instance, an at-
tacker can elude the code pointers frequency analysis by
mimicking the variance of benign memory pages. Al-
though this technique can be successful, it has two re-
strictions. The first is related to the minimum number
of gadgets that the attacker needs to connect to perform
a useful attack. To be useful, an attack should execute
either an API call or a system call. Based on the number
of API call parameters, we estimate that a useful num-
ber of gadgets for a standard shellcode is around 20 (i.e.,
to call the VirtualProtect function, commonly used
in Windows shellcodes to remap a page as executable)
even though some previous works show that the length
of the gadgets for useful shellcode may vary from 8 to
12 [32]. The second restriction is related to the maxi-
mum number of gadgets that an attacker can include to

build a shellcode. Theoretically this number could be in-
finite. In case of spraying attacks, to increase the chance
of success, the size of the shellcode should be smaller
than the size of the NOP-sled, otherwise the probability
to divert the control-flow of the application to the ap-
propriate entry points decreases. In our experiments, for
benign applications the range of code pointers in mem-
ory varies between 0 and 1024, with the vast majority
of pages on the left end of the scale. These values are
hard to mimic in a real attack. It may be possible in
certain particular cases, but still our component would
have considerably raised the bar making the exploitation
much more difficult.

Another way an attacker can avoid detection is by
evading the shellcode frequency analysis. To this end,
the attacker can act on two parameters. She can decrease
the number of successful entry points for each page – but
this would drastically decrease the success rate of the at-
tack. A second, more subtle, technique would consist in
spraying the memory only with NOP instructions, and
inject only one copy of the shellcode in a second time,
when Graffiti already concluded its analysis. In this case
we could extend our component to postpone the analysis
when long nop sequences are identified. It is important
to note that the attacker cannot wait for a long time in
order to inject the shellcode, since any additional mem-
ory allocation done by the application would break the
continuity of the nop sled.

A current limitations of Graffiti is that it cannot han-
dle the case when an application allocates a big chunk
of memory at the beginning of the process and then uses
its own allocation functions to perform memory opera-
tions. However, since none of the applications that we
tested in our experiments exhibited such behavior, we
left this case for a future improvement.

To summarize, we believe that evading our three
heuristics is not easy but it is certainly possible. How-
ever, the contribution of this paper is not in the heuris-
tics per se, but in the underlying monitoring framework.
Graffiti offers the first comprehensive, multi-OS solu-
tion, and this is an important step forward compared
with existing defense solutions and compared with other
techniques presented in previous papers.

9 Related Work

Several solutions have been proposed so far to cope with
single instances of the spraying problem. In the follow-
ing we summarize the existing works that address heap,
JIT, and data spraying techniques.

12

USENIX Association 25th USENIX Security Symposium 443

Heap Spraying

Researchers have proposed several approaches for de-
tecting heap-spraying attacks [36, 16, 21]. For exam-
ple, Egele et al. [16] used x86 emulation techniques to
defend web browsers against drive-by download attacks
that use heap-spraying code injection. More in details,
the authors proposed to check for the presence of a shell-
code by monitoring all the strings that are allocated by
the JavaScript interpreter. Their goal is similar to that
of NOZZLE [36], which uses static analysis of the ob-
jects on the heap to detect heap-spraying attacks. In par-
ticular, NOZZLE scans memory objects looking for a
sequence of instructions that includes a NOP sled and
ends with a malicious shellcode. However, as the au-
thors point out, the tool presents several drawbacks. For
example, attackers can evade detection by avoid using
large NOP sleds. Moreover, NOZZLE is also specific
for the Java Script Engine Memory Allocator and it can-
not be applied to a generic application. Another work
to defend against heap spraying attack is BuBBLE [21].
In this case, the authors start from the assumption that
an attack needs to spray a large part of the Heap mem-
ory with homogeneous data (i.e. NOP sled). BuBBLE
breaks such an assumption by inserting special values
in a random position inside strings before storing them
in memory, and removing them when a string is used
by the application. Again this solution is specific for the
Javascript language and it cannot be easily ported for the
protection of other applications.

Our approach is different since it does not require to
know how the memory allocator of a particular inter-
preter engine works, and consequently it does not re-
quire access to source code and it is operating system
independent. Moreover, it can protect any system ap-
plication as well as kernel subsystems without any as-
sumption about internals of the protected component.

JIT Spraying

Bania [5] proposed a detection technique based on the
fact that in order to force the JIT compiler to generate
code, an attacker should use ActionScript arithmetic op-
erators. However, it is not mandatory for JIT spraying
attacks to use arithmetic operations.

Another JIT spraying defense has been proposed by
Hu et al. [22]. This solution consists of a kernel patch,
JITsec, that tests for several conditions when a system
call is invoked. In particular, the authors argue that an
application can maintain its security properties and exe-
cute code from the stack and heap by decoupling sen-
sitive from non-sensitive code and allowing the latter
to run from writable memory pages. As a result, such
detector only detects attacks that directly issue system

calls. Mimicry attack and ROP attacks are therefore not
covered by this model.

JITDefender [11] is another work based on hardware-
assisted technologies which aims at defeating JIT Spray-
ing attacks. The system protects the Virtual Machine dy-
namic memory pages created by the JIT-Compiler and
allows to execute only the pages requested by the VM.
This approach is strictly VM dependent, and it can only
detect JIT-spraying attack.

Our solution is orthogonal to the type of attack, and
therefore it can successfully detect JIT-spraying attacks
without any assumption about the instructions that are
used by the attacker.

Finally, Lobotomy [27] proposes to mitigate JIT
spraying attacks by applying the principle of least-
privilege to the Firefox JIT engine: by splitting the
compiler and executor modules of the engine, indeed, it
greatly reduces the amount of code that needs to access
writable and executable pages. The main drawbacks
of Lobotomy, with respect to Graffiti, are: 1) its over-
head, that is sensibly high if compared with ours, and
2) the need to re-design the JIT engine of the protected
process. The latter is particularly hindering because it
greatly limits the portability of Lobotomy to other JIT
engines. On the contrary, Graffiti can seamlessly protect
any program, without modifying any of its inner com-
ponents.

Data Spraying
Several defensive solutions have been proposed to avoid
pivoting-based techniques [28, 33, 34]. One of the most
deployed is part of EMET [28], a solution designed
by Microsoft. EMET is a utility that helps to prevent
vulnerabilities in software from being successfully ex-
ploited. Among other features, EMET also addresses
the problem of stack pivoting attacks by checking if the
stack pointer points outside of a process stack bound-
aries whenever a dangerous API is invoked. However,
several researchers proved that it is possible to bypass
the EMET technology in many ways [24, 18, 37] . The
impact of these studies show that technologies that oper-
ate at the same level of execution of the malicious code
need to be extensively tested and carefully designed to
offer the desired protection and avoid possible bypasses.
Consequently, these studies also shows the importance
of designing reference monitors that operate at a lower
level (e.g., at the hypervisor level) such as Graffiti to
avoid these trivial attacks.

Moreover, Microsoft recently introduced two new
countermeasures to hinder browser exploitation: iso-
lated heap and delayed free [25, 45]. Both these tech-
niques raise the bar for use-after-free attacks; as stated
by the Fortinet Labs researchers [19], they also make

13

444 25th USENIX Security Symposium USENIX Association

heap manipulation harder, but they are not a general so-
lution as they protect only the Internet Explorer browser.

10 Conclusion

In this paper we propose an efficient and comprehensive
solution to defeat spraying attacks by tracking the mem-
ory allocations of the system in an OS-independent way.

Overall, our paper makes several contributions: we
introduce the concept of micro-virtualization that allows
us to design an efficient and effective memory allocator
tracker. We presented Graffiti, a general and extensible
memory analysis framework that has good performance
and it is freely available and open source. On top of it,
we created three heuristics to detect and prevent spray-
ing attacks. However, we believe that in the future Graf-

fiti can also be extended and adopted in other domains,
such as malware analysis or memory forensics.

References

[1] Alexa top domains. http://www.alexa.com/

topsites/category/.

[2] Rop attack against data execution preven-
tion technology, 2009. http://www.h-

online.com/security/news/item/Exploit-

s-new-technology-trick-dodges-memory-

protection-959253.html.

[3] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and
Jay Ligatti. Control-flow integrity. In Proceed-
ings of the 12th ACM Conference on Computer and
Communications Security, CCS ’05, pages 340–
353, New York, NY, USA, 2005. ACM.

[4] Greg Gagne Avi Silberschatz, Peter Baer Galvin.
Operating system concepts. http://os-book.

com/.

[5] Piotr Bania. Jit spraying and mitigations. arXiv
preprint arXiv:1009.1038, 2010.

[6] Emery D. Berger and Benjamin G. Zorn. Diehard:
Probabilistic memory safety for unsafe languages.
SIGPLAN Not., 41(6):158–168, June 2006.

[7] Eep Bhatkar, Daniel C. Duvarney, and R. Sekar.
Address obfuscation: an efficient approach to
combat a broad range of memory error exploits. In
In Proceedings of the 12th USENIX Security Sym-
posium, pages 105–120, 2003.

[8] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVar-
ney. Efficient techniques for comprehensive pro-
tection from memory error exploits. In Proceed-
ings of the 14th Conference on USENIX Security
Symposium - Volume 14, SSYM’05, pages 17–17,
Berkeley, CA, USA, 2005. USENIX Association.

[9] Sang Kil Cha, Thanassis Avgerinos, Alexandre
Rebert, and David Brumley. Unleashing Mayhem
on binary code. In IEEE Symposium on Security
and Privacy, pages 380–394, May 2012.

[10] Liang Chen and Qidan He. Shooting the osx
el capitan kernel like a sniper, 2016. https:

//speakerdeck.com/flankerhqd/shooting-

the-osx-el-capitan-kernel-like-a-

sniper.

[11] Ping Chen, Yi Fang, Bing Mao, and Li Xie. Jitde-
fender: A defense against jit spraying attacks. In
Jan Camenisch, Simone Fischer-Hbner, Yuko Mu-
rayama, Armand Portmann, and Carlos Rieder, ed-
itors, SEC, volume 354 of IFIP Advances in Infor-
mation and Communication Technology. Springer,
2011.

[12] Crispin Cowan, Matt Barringer, Steve Beattie,
Greg Kroah-hartman, Mike Frantzen, and Jamie
Lokier. Formatguard: Automatic protection from
printf format string vulnerabilities. In In Pro-
ceedings of the 10th USENIX Security Symposium,
2001.

[13] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hinton, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, and Qian
Zhang. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In In
Proceedings of the 7th USENIX Security Sympo-
sium, pages 63–78, 1998.

[14] Mark Daniel, Jake Honoroff, and Charlie
Miller. Engineering heap overflow exploits with
javascript, 2008.

[15] eEye Research. Microsoft internet informa-
tion services remote buffer overflow (sys-
tem level access), 2001. https://web.

archive.org/web/20061026101830/http:

//research.eeye.com/html/advisories/

published/AD20010618.html.

[16] Manuel Egele, Peter Wurzinger, Christopher
Kruegel, and Engin Kirda. Defending browsers
against drive-by downloads: Mitigating heap-
spraying code injection attacks. In Proceedings of

14

USENIX Association 25th USENIX Security Symposium 445

the 6th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assess-
ment, DIMVA ’09, pages 88–106, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[17] Aristide Fattori, Roberto Paleari, Lorenzo Mar-
tignoni, and Mattia Monga. Dynamic and trans-
parent analysis of commodity production systems.
In Proceedings of the 25th International Confer-
ence on Automated Software Engineering (ASE),
Antwerp, Belgium, September 2010. https://

code.google.com/p/hyperdbg/.

[18] Fireeye. Using emet to disable emet.
https://www.fireeye.com/blog/threat-

research/2016/02/using_emet_to_disabl.

html.

[19] Fortinet Labs. Is use-after-free exploitation dead?
The new IE memory protector will tell you. http:
//blog.fortinet.com/.

[20] Ivan Fratric. Exploiting internet explorer
11 64-bit on windows 8.1 preview, 2013.
https://ifsec.blogspot.com/2013/11/exploiting-
internet-explorer-11-64-bit.html.

[21] Francesco Gadaleta, Yves Younan, and Wouter
Joosen. Bubble: a Javascript engine level counter-
measure against heap-spraying attacks. In Fabio
Massacci, Dan Wallach, and Nicola Zannone, ed-
itors, ESSoS, Pisa, 3-4 February 2010. Springer
Berlin / Heidelberg, January 2010.

[22] Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi,
Jack W. Davidson, David Evans, John C. Knight,
Anh Nguyen-Tuong, and Jonathan Rowanhill. Se-
cure and practical defense against code-injection
attacks using software dynamic translation. In Pro-
ceedings of the 2Nd International Conference on
Virtual Execution Environments, VEE ’06, pages
2–12, New York, NY, USA, 2006. ACM.

[23] Intel Corporation. Intel 64 and IA-32 Architec-
tures Software Developer’s Manual - Volume 3
(3A,3B,3C combined), March 2013.

[24] Bromium Labs. Bypassing emet 4.1.
http://bromiumlabs.files.wordpress.

com/2014/02/bypassing-emet-4-1.pdf.

[25] MWR Labs. Isolated heap & friends - object
allocation hardening in web browsers. https:

//labs.mwrinfosecurity.com/blog/2014/

06/20/isolated-heap-friends---object-

allocation-hardening-in-web-browsers/.

[26] Lixin Li, James E. Just, and R. Sekar. Address-
space randomization for windows systems. In
ACSAC, pages 329–338. IEEE Computer Society,
2006.

[27] Jauernig Martin, Neugschwandtner Matthias,
Milani-Comparetti Paolo, and Christian Platzer.
Lobotomy: An Architecture for JIT Spraying Mit-
igation. In Proceedings of the International Con-
ference on Availability, Reliability and Security
(ARES), September 2014.

[28] Microsoft. The enhanced mitigation experience
toolkit. http://support.microsoft.com/kb/

2458544.

[29] Microsoft. Structured exception handling over-
write protection (sehop). http://support.

microsoft.com/kb/956607.

[30] Gil Neiger, Amy Santoni, Felix Leung, Dion
Rodgers, and Rich Uhlig. Intel Virtualization
Technology: Hardware Support for Efficient Pro-
cessor Virtualization. Intel Technology Journal,
10(3):167–177, August 2006.

[31] Gene Novark, Emery D. Berger, and Benjamin G.
Zorn. Exterminator: automatically correcting
memory errors with high probability. In Jeanne
Ferrante and Kathryn S. McKinley, editors, PLDI,
pages 1–11. ACM, 2007.

[32] Michalis Polychronakis and Angelos D Keromytis.
Rop payload detection using speculative code ex-
ecution. In Malicious and Unwanted Software
(MALWARE), 2011 6th International Conference
on, pages 58–65. IEEE, 2011.

[33] Aravind Prakash and Heng Yin. Defeating rop
through denial of stack pivot. In Proceedings of the
31st Annual Computer Security Applications Con-
ference, ACSAC 2015, pages 111–120, New York,
NY, USA, 2015. ACM.

[34] Rui Qiao, Mingwei Zhang, and R. Sekar. A prin-
cipled approach for rop defense. In Proceedings
of the 31st Annual Computer Security Applications
Conference, ACSAC 2015, pages 101–110, New
York, NY, USA, 2015. ACM.

[35] Rapid 7. Metasploit penetration testing software.
http://www.metasploit.com.

[36] Paruj Ratanaworabhan, Benjamin Livshits, and
Benjamin Zorn. Nozzle: A defense against heap-
spraying code injection attacks. In Proceedings of
the Usenix Security Symposium, August 2009.

15

446 25th USENIX Security Symposium USENIX Association

[37] Duo Security. Wow64 and so can you
bypassing emet with a single instruction.
https://duo.com/assets/pdf/wow-64-

and-so-can-you.pdf.

[38] Skylined. Microsoft internet explorer 6 - (iframe
tag) buffer overflow exploit, 2004. https://www.
exploit-db.com/exploits/612/.

[39] Skylined. Heap spraying high addresses in 32-bit
chrome/firefox on 64-bit windows, 2016. http:

//blog.skylined.nl/20160622001.html.

[40] Kevin Snow, Srinivas Krishnan, Fabian Monrose,
and Niels Provos. Shellos: Enabling fast detection
and forensic analysis of code injection attacks. In
USENIX Security Symposium, 2011.

[41] Kevin Z. Snow, Fabian Monrose, Lucas Davi,
Alexandra Dmitrienko, Christopher Liebchen, and
Ahmad-Reza Sadeghi. Just-in-time code reuse: On
the effectiveness of fine-grained address space lay-
out randomization. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, SP
’13, pages 574–588, Washington, DC, USA, 2013.
IEEE Computer Society.

[42] Alexander Sotirov. Heap feng shui in javascript,
2007.

[43] The PaX Team. Pax address space layout
randomization. Technical report http://pax.

grsecurity.net/docs/aslr.txt.

[44] Team Teso. 7350854.c, 2001. https://www.

exploit-db.com/exploits/409/.

[45] Trendmicro Labs. Mitigating UAF Ex-
ploits with Delay Free for Internet Explorer.
http://blog.trendmicro.com/trendlabs-

security-intelligence/mitigating-

uaf-exploits-with-delay-free-for-

internet-explorer/.

[46] Vupen. Microsoft Internet Explorer javaprxy.dll
COM Object Vulnerability / Exploit (Security Ad-
visories). http://www.vupen.com/english/

advisories/2005/0935.

[47] Vupen. Microsoft Internet Explorer ”Msdds.dll”
Remote Code Execution / Exploit (Security Ad-
visories). http://www.vupen.com/english/

advisories/2005/1450.

16

USENIX Association 25th USENIX Security Symposium 447

Request and Conquer: Exposing Cross-Origin Resource Size

Tom Van Goethem, Mathy Vanhoef, Frank Piessens, Wouter Joosen
iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium

first.lastname@cs.kuleuven.be

Abstract

Numerous initiatives are encouraging website owners to
enable and enforce TLS encryption for the communica-
tion between the server and their users. Although this en-
cryption, when configured properly, completely prevents
adversaries from disclosing the content of the traffic, cer-
tain features are not concealed, most notably the size of
messages. As modern-day web applications tend to pro-
vide users with a view that is tailored to the information
they entrust these web services with, it is clear that know-
ing the size of specific resources, an adversary can easily
uncover personal and sensitive information.

In this paper, we explore various techniques that can
be employed to reveal the size of resources. As a re-
sult of this in-depth analysis, we discover several design
flaws in the storage mechanisms of browsers, which al-
lows an adversary to expose the exact size of any re-
source in mere seconds. Furthermore, we report on a
novel size-exposing technique against Wi-Fi networks.
We evaluate the severity of our attacks, and show their
worrying consequences in multiple real-world attack sce-
narios. Furthermore, we propose an improved design for
browser storage, and explore other viable solutions that
can thwart size-exposing attacks.

1 Introduction

In 1996, Wagner and Schneier performed an analysis of
the SSL 3.0 protocol [67]. In their research, the au-
thors make the observation that although the content is
encrypted, an observer can still obtain the size of the re-
quested URL as well as the corresponding response size.
The researchers further elaborate that because it is pos-
sible to make an inventory of all publicly available data
on a website, knowing the size of requests and responses
allows an attacker to determine which web page was vis-
ited. Although content is increasingly being served over
secure SSL/TLS channels [55], the length of requests

and responses remains visible to a man-in-the-middle at-
tacker. Consequently, the attack that was described by
Wagner and Schneier two decades ago remains univer-
sally applicable. However, due to the various transitions
the web underwent, the consequences of uncovering the
size of remote resources have shifted drastically.

With the advent of online social networks, the dy-
namic generation of web pages goes even further. When
browsing, each user is now presented with a personalized
version, tailored to their personal preferences and infor-
mation they, or members of their online environment,
(un)willingly shared with these online services. Conse-
quently, the resource that is returned when a user requests
a certain URL will often reflect the state of that user.

Two types of size-exposing attacks, namely traffic
analysis and timing attacks, have been widely studied.
In traffic analysis, an adversary passively observes the
network traffic that is generated by the victim’s brows-
ing behavior. Based on the observed size, sequence, and
timing of requests and responses, an attacker can learn
which website was visited by the victim [13, 25, 68], or
uncover which search queries the user entered [12, 40].
In contrast to traffic analysis, where the threat model is
typically defined as a passive network observer, launch-
ing a web-based timing attack requires the adversary to
trick the victim in making requests to certain endpoints,
which is typically achieved by running JavaScript code
in the victim’s browser. The attacker then measures
the time needed for the victim to download the spec-
ified resources, which, depending on the victim’s net-
work condition, allows him to approximate the resource
size, and ultimately obtain information on the state of the
user [19, 7, 14].

Motivated by the severe consequences on the online
privacy of a vast amount of users, we present a systematic
analysis of possible attack vectors that allow an adver-
sary to uncover the size of a resource. As a result of this
evaluation, we discover design flaws in various browser
features that allow an adversary to uncover the exact size

448 25th USENIX Security Symposium USENIX Association

of any resource. Furthermore, we demonstrate that by in-
tercepting and manipulating encrypted Wi-Fi traffic, an
adversary can uncover the exact size of an HTTP re-
sponse. By leveraging these techniques, we show that
when an attacker can make the victim send requests to
arbitrarily chosen endpoints, the potential consequences
of traffic monitoring become significantly more severe.
In contrast to prior attacks, where adversaries could typ-
ically only obtain a rough estimate of the resource size,
or were unable to attribute network traffic to specific re-
quests, our size-exposing attacks show that the capabili-
ties of an adversary are worryingly extensive, as we ex-
emplify by the means of several real-world attack sce-
narios. Finally, we explore the viability of several de-
fense mechanisms, leading to an improved browser de-
sign and a variety of possibilities for websites to thwart
size-exposing attacks.

Our main contributions are:

• We perform an in-depth analysis at the level of the
browser, network and operating system, and explore
techniques that can expose the size of resources ei-
ther directly or through a side-channel attack.

• We introduce several new attack vectors that can be
leveraged to uncover the exact response size of ar-
bitrarily chosen endpoints.

• By the means of several attack scenarios on high-
profile websites, we demonstrate that an adversary
can reveal the unique identity of an unwitting visitor
within mere seconds, and extract sensitive informa-
tion that the user shared with a trusted website.

• We propose an improvement to the specification of
the Storage API, and explore various existing solu-
tions that can be used to mitigate all variations of
size-exposing attacks.

The remainder of the paper is structured as follows: in
Section 2 we provide a high-level overview of the tech-
nical aspects related to recently introduced browser fea-
tures. In Section 3 we present an in-depth analysis on
potential size-exposing techniques, and elaborate on how
these can be used in various attack scenarios. In Sec-
tion 4, we discuss how adversaries can leverage these
techniques against a number of real-world services. Fur-
thermore, in Section 5 we propose and explore methods
that can thwart size-exposing attacks. Section 6 covers
related work, and Section 7 concludes this paper.

2 Background

One of the most important security concepts of modern
browsers, is the notion of Same-Origin Policy [64, 73].

Despite what its name may suggest, it is not strictly de-
fined as a policy, but rather represented as certain prin-
ciples that ensure websites are restricted in the way they
can interact with resources from a different origin. Al-
though it is possible to initiate a cross-origin request, the
Same-Origin Policy prevents reading out the content of
the associated response, which is obviously imperative
in order to provide online security. Naturally, the content
of resources is not the only part that should be shielded
off from other origins; the size of a resource should also
be considered sensitive, as evidenced by the several case
studies presented in Section 4 and prior work [7, 20, 60].
As such, it comes as no surprise that the browser APIs
that are responsible for making HTTP requests will only
report the length of a response when the associated re-
quest was to the same origin.

The Fetch API, which is currently implemented by
Google Chrome, Firefox and Opera, and is under devel-
opment by other browser vendors [39, 69], introduces a
set of new semantics that aim to unify the fetching pro-
cess in browsers. In short, the fetch() method is given
a Request object, and a second, optional parameter that
specifies additional options for the request. For instance,
when the credentials option is set to "include", the
user’s cookies will be sent along with the request, even
when it is cross-origin. The fetch() operation will re-
turn a Promise that yields a Response object as soon as
the response has been fetched. In case the request was
authenticated, cross-origin, and did not use the CORS
mechanism, i.e., the mode was set to its default value
"no-cors", the Response will be marked as "opaque",
which will mask all information (status code, response
headers, cache state, body and length) of the response to
prevent cross-origin information leakage. In the follow-
ing sections we will show how certain browser mecha-
nisms can be abused to uncover the length of cross-origin
responses.

Although the content of an opaque Response can not
be accessed, it is possible to force the browser to cache
that resource. The Cache API, which is part of the Ser-
vice Worker API [66], can be used to place Response
objects in the browser’s cache. For security purposes,
the cache that is accessed by the Cache API is com-
pletely isolated from the browser’s HTTP cache, and is
not shared across different origins. The cache is accessed
by opening a Cache object, which can then be used to
store Response objects with their associated Requests.
Note that any response can be stored, regardless of the
Cache-Control headers sent out by the web server. To
prevent a malicious entity from completely filling up the
user’s hard disk, certain quota rules apply. The details
of these rules will be explained in more detail in Sec-
tion 3.4.

USENIX Association 25th USENIX Security Symposium 449

3 Size-exposing Techniques

As demonstrated by prior research, the size of a website’s
resources is often related to the state of the user at that
website [7, 38, 60]. Consequently, knowing the size of
these resources allows an adversary to (partially) uncover
the state of the user, which often yields sensitive infor-
mation. In order to detect the presence of size-exposing
attack vectors, we performed an in-depth analysis on all
operations in which resources are involved. In this sec-
tion, we present the results of this analysis and discuss
the various techniques that can be used to infer the size of
cross-origin resources. Next to the size-exposing meth-
ods that were discovered in prior research, we also intro-
duce various novel techniques and re-evaluate methods
in the light of recent protocol evolutions.

Throughout this section, we consider different attacker
models based on the evaluated resource operation. As a
rule of thumb, for each resource operation we consid-
ered all the attacker models in which the adversary is
able to make observations about the operation. For in-
stance, when analysing the transfer of a resource over
the network, multiple attacker models were taken into
account: an eavesdropper might inspect the encrypted
network traffic directly, or Wi-Fi packets could be ex-
amined when the adversary is in physical proximity of
the victim, or the attacker might simply use JavaScript to
measure the time it took to complete the request.

Our evaluation mainly focuses on attacks in which the
adversary infers sensitive information from the size of
the resources that are returned to the victim when re-
questing specific endpoints. As such, we evaluate poten-
tial attack techniques under the assumption that an ad-
versary can trigger the victim’s browser to send authen-
ticated requests to arbitrarily chosen endpoints. This can
be easily achieved by a moderately motivated attacker
due to the plethora of methods that can be used to execute
arbitarary JavaScript code in a cross-origin context (with
regard to the target endpoint). For instance, an attacker
can trick the user in visiting his website using phishing
via e-mail or social networks [29], register a typosquat-
ting domain [41], launch an advertising campaign where
JavaScript code or an iframe containing the attacker’s
web page is included [54], register a stale domain from
which a JavaScript file is included [43], redirect insecure
HTTP requests [37], ... Note that recent attacks on TLS
also assume an attacker can execute JavaScript code in
the victim’s browser [16, 1, 62].

3.1 Operations Involving Resources

By looking at their typical “lifetime”, we identified six
different operations that involve resources, as shown in
Figure 1. In the first step, a resource is generated at the

3. Transfer

Operating System

Browser Web server

Web server host

1. Generate

4. Receive

5. Process
6. Store

2. Send

Figure 1: Overview of operations that involve resources.

side of the web server, as a result of the request initi-
ated by the browser. Here the web server will associate
the user’s state with the included cookie, produce the re-
quested content, and pour it into an HTML structure. Al-
though several attacks have been presented that can ex-
tract sensitive information from this generation process,
e.g., direct timing attacks [7], our research focuses on
methods that can expose the size of the generated con-
tent. Since the length of the response is only known after
it has been generated, attacks against the resource gener-
ation process are excluded from our evaluation.

Once a resource has been dynamically generated, the
machine where the web server is hosted on will send it
back to the user that requested it. This means that if an
adversary is able to observe the amount of traffic gener-
ated by the web server, he could use this information to
infer the size of the response. We discuss size-exposing
techniques in this context in more detail in Section 3.2.

When the resource leaves the web server, it is sent over
several networks before it reaches the client. In any of
these networks, an adversary capable of intercepting or
passively observing the network traffic could be present.
Because size-exposing attacks can be considered to be
superfluous when an adversary can inspect the contents
of a resource, we only consider encrypted traffic in our
evaluation. Prior work has shown that popular encryp-
tion schemes such as SSL and TLS do not conceal the
length of the original HTTP request and response, lead-
ing to various attacks [67, 12]. In our analysis, we ex-
tend this existing work by re-evaluating the feasibility of
size-exposing attack methods when the new HTTP ver-
sion (HTTP/2) is used. Furthermore, we explore possible
size-exposing attack techniques in the context of Wi-Fi
networks, where another layer of encryption is added,
and elaborate on our findings in Section 3.3.

As soon as the response reaches the client’s machine,
it is first received by the network interface, and then sent
to the browser, where it is processed and possibly cached.
Similar to the server-side, an adversary with a foothold
in the operating system, can leverage traffic statistics to
uncover the resource’s length. In Section 3.2, we investi-
gate these types of attack techniques under various threat
models, both for mobile devices as well as desktops.

450 25th USENIX Security Symposium USENIX Association

Table 1: An overview of size-exposing attack techniques
with their associated resource operations (as per Fig-
ure 1) and whether the techniques can be used to obtain
the exact size of a resource.

Size-exposing technique Resource
operation

Exact
size References

Cache timing attacks 2, 4 [48, 76, 72, 44]
Traffic statistics pseudo-files 2, 4 � [77], Section 3.2
SSL/TLS traffic analysis 3 � [67], Section 3.3
Wi-Fi traffic analysis 3 � Section 3.3
Cross-site timing attacks 3 [7, 20]
Browser-based timing attacks 5 [60]
Storage side-channel leaks 6 � Section 3.4

After receiving the response, the browser will first sig-
nal the completion of the request by firing an Event. In
the threat model we consider, the request is initiated by
the malicious JavaScript code, and thus, its completion is
signaled to the attacker. It is known that the time it takes
for a request to complete is correlated with its size, giving
rise to so-called timing attacks. However, these attacks
have several limitations, and can only be used to obtain a
rough estimate of a resource’s size. While a rough esti-
mate is sufficient to perform certain attacks [7, 20], most
of the real-world attacks we present in Section 4 require
knowing the exact size of resources.

In a recent study, Van Goethem et al. found that the
next step of a resource’s lifetime, i.e., parsing by the
browser, is susceptible to timing attacks as well [60]. In
contrast to classic timing attacks, these browser-based at-
tacks do not suffer from network irregularities, and thus
provide attackers with a more accurate and reliable esti-
mate. Nevertheless, the maximum accuracy that can be
achieved with these methods is still in the range of a few
kilobytes, which is insufficient for some of the novel at-
tacks presented in Section 4.

Finally, browsers may store resources in the cache, al-
lowing them to be retrieved much faster in future visits.
Motivated by the potentially nefarious consequences of
caching resources chosen by an adversary, we analyzed
the specification of the various APIs that are involved
in this process. Surprisingly, we found multiple design
flaws that allow an adversary to uncover the exact size
of any resource. In Section 3.4, we elaborate in detail
on these newly discovered vulnerabilities, and their pres-
ence in modern browsers.
An overview of all size-exposing techniques we discov-
ered during our evaluation is provided in Table 1.

3.2 OS-based Techniques

In this section, we elaborate on size-exposing techniques
that occur at the level of the operating system, on the
side of the web server and client. In our analysis, we

considered four types of hosting environments for the
web server, namely dedicated hosting, shared hosting,
and cloud-based solutions (VMs and PaaS). To be able
to observe the length of resources in the case of a ded-
icated hosting environment, an attacker would need to
have either physical access, or infect the machine with
a malicious binary. In both cases, we argue that the ca-
pabilities of the attacker far surpass what is required for
a size-exposing attack, thereby making other attack vec-
tors more appealing to the attacker.

The same argument applies to cloud-based hosting.
It has been shown that cache-based side-channels at-
tacks can extract sensitive information, including traf-
fic information, in a cross-tenant or cross-VM environ-
ment [48, 76, 72]. However, if an attacker would have
the capabilities to leverage a cache-based attack to ac-
curately determine the size of a requested resource, this
would mean that the attacker could also leverage the
cache-based attack to determine (part of) the execution
trace, which can be considered as significantly more se-
vere in most scenarios. Given the lack of incentive for
an attacker to uncover the resource size by launching a
cross-tenant or cross-VM attack, we do not consider this
in more detail.

In a shared hosting environment, web requests for sev-
eral customers are served by the same system. Next to
cross-process cache-based side-channel attacks, which
can be considered similar to the above-mentioned cross-
VM attacks, adversaries can typically also access the
system-wide network statistics. These network statistics
can be obtained by either running the ifconfig com-
mand, or by reading it directly from system pseudo-files
such as /proc/net/dev. As these network statistics re-
port the exact amount of bytes sent and received by a
network interface, an adversary could leverage this in-
formation to uncover the size of a response. The at-
tacker’s accuracy will of course depend on the amount
of background traffic, but the ability to coordinate with
the victim’s browser gives the adversary a strong advan-
tage. Because shared hosting environments are typically
used by less popular websites, we consider this type of
attack scenario to be unlikely, and thus do not explore
this issue further.

On the side of the client, we explored various size-
exposing techniques, but found that most techniques ei-
ther require too many privileges, e.g., infecting the sys-
tem with a malicious binary, or yield inaccurate re-
sults [44]. An interesting exception is the Android op-
erating system, which also keeps track of network statis-
tics. In addition to the global network statistics, Android
also exposes network statistics per user, which, surpris-
ingly, can be read out by any application without requir-

USENIX Association 25th USENIX Security Symposium 451

type ver. length nonce payload tag

5-byte header 8 bytes 16 bytesencrypted

Figure 2: TLS record layout when using AES-GCM.

ing permissions1. In their work, Zhou et al. showed that
by passively monitoring network statistics on Android,
an adversary can infer sensitive information from the re-
quests made by other applications. We make the obser-
vation that these attacks can be extended when consider-
ing an attacker model in which the adversary can actively
trigger specific requests in the victim’s mobile browser.
As a proof-of-concept application, we created an HTTP
service, which reports the number of bytes received by
the user associated with the com.android.chrome ap-
plication. Finally, our applications triggers the mobile
browser to open a web page, which first contacts the local
service, next downloads an external resource, and then
obtains the network statistics again, allowing us to deter-
mine the exact size of the external resource.

3.3 Network-based Techniques

We now show the size of a resource can be uncovered
by monitoring its transmission over a secure connection.
First we do this for TLS, and then we evaluate the case
where Wi-Fi encryption is used on top of TLS. Although
Wi-Fi hides individual connections, effectively offering
a secure channel similar to that of VPNs or SSH tunnels,
we show attacks remain possible. We also study the im-
pact of the new HTTP/2 protocol.

3.3.1 Transport Layer Security (SSL / TLS)

Web traffic can be protected by HTTPS, i.e., by sending
HTTP messages over TLS [47, 15]. Once the TLS hand-
shake is completed, TLS records of type application data
are used to send HTTP messages. The type and length
of a record is not encrypted, and padding may be added
if block ciphers are used. Since nowadays more than
half of all TLS connections use AES in Galois Counter
Mode (GCM) [27], we will assume this cipher is used
unless mentioned otherwise. The layout of a TLS record
using AES-GCM is shown in Fig. 2. Note that for this
cipher no padding is used. An HTTP message can be
spread out over multiple TLS records, and in turn a TLS
record can be spread out over several TCP packets. An
endpoint can freely decide in how many records to divide
the data being transmitted.

1These statistics can be read out from the pseudo-files
/proc/uid_stat/[uid]/tcp_rcv, or, since Android 4.3, can
be obtained from the getUidRxBytes() interface.

length type flags streamId payload

3 bytes 1 byte 1 byte 4 bytes variable

Figure 3: Simplified HTTP/2 frame layout.

To determine the length of a resource sent over TLS,
we first need to know when it is being transmitted. We
accomplish this by using JavaScript to make the victim’s
browser fetch a page on our server, signaling that the next
request will be to the targeted resource. We then moni-
tor any TLS connections to the server hosting this re-
source, which is possible because the TCP/IP headers of
a TLS connection are not encrypted. Once the resource
has been received, we again signal this to our server. This
enables us to identify the (single) TLS connection that
was used to transmit the resource. Finally we subtract
the overhead of the TLS records (see Figure 2) to deter-
mine the length of the HTTP response. If the connection
uses a cipher that does not require padding, this reveals
the precise length of the HTTP response. Otherwise only
a close estimate of the response length can be made. By
subtracting the length of the headers from this HTTP re-
sponse, whose value can be easily predicted, we learn the
length of the requested resource.

We tested this attack against two popular web servers:
Apache and nginx. Even when the victim was actively
browsing YouTube and downloading torrents, our attack
correctly determined the length of the resource. Inter-
estingly, we noticed that Apache puts the header of an
HTTP response in a single, separate, TLS record. This
makes it trivial to determine the length of the HTTP re-
sponse header sent by Apache: it corresponds exactly to
the first TLS record sent by the server.

We also studied the impact of the HTTP/2 protocol [4]
on our attacks. HTTP/2 does not change the seman-
tics of HTTP messages, but optimizes their transport.
In HTTP/2, each HTTP request and response pair is
sent in a unique stream, and multiple parallel streams
can be initiated in a single TCP connection. The ba-
sic transmission unit of a stream is a frame (see Fig-
ure 3). Each frame has a streamId field that identifies the
stream it belongs to. Several types of frames exist, with
the two most common being header and data frames.
Header frames encode and compress HTTP headers us-
ing HPACK [45], and data frames contain the body of
HTTP messages. Nearly all other frames are used for
management purposes, and we refer to them as control
frames. Most browsers only support HTTP/2 over TLS.
Usage of HTTP/2 is negotiated using the Application
Layer Protocol Negotiation (APLN) extension of TLS.
This extension is sent unencrypted, meaning we can eas-
ily detect if a connection uses HTTP/2.

452 25th USENIX Security Symposium USENIX Association

To determine the size of a resource transmitted using
HTTP/2 over TLS, we have to predict the total overhead
created by the 9-byte frame header (see Figure 3). More-
over, we need to be able to filter away control frames.
Both Apache and nginx send control frames in separate
TLS records, and these records can be detected by their
length and position in the TLS connection, allowing us
to recognize and filter these frames. To calculate the
overhead created by the 9-byte frame header, we need
to predict the number of HTTP/2 data frames that were
used to transmit the resource. For Apache this is easy
since it always sends data frames with a payload of 214

bytes, except for the last frame. For nginx, the num-
ber of data frames can be predicted based on the num-
ber of TLS records. This means that for both servers we
can predict the amount of overhead HTTP/2 introduces.
The size of the HTTP/2 header frame can be predicted
similar to the HTTP/1.1 case, with the addition that the
HPACK compression has to be taken into account. Fi-
nally, we found that multiple streams are active in one
TCP connection only when loading a page. By waiting
until the HTTP/2 connection is idle before letting the vic-
tim’s browser fetch the resource, the only active stream
will be the one downloading the resource. All combined,
these techniques allowed us to accurately predict the size
of resources sent using HTTP/2. Note that if the server
uses gzip, deflate, or similar, we learn the compressed
size of the resource. In Section 4, we show that this is
sufficient to perform attacks, and can even be used to ex-
tend an attacker’s capabilities.

3.3.2 Encrypted Wi-Fi Networks

Wireless networks are an attractive target for traffic mon-
itoring attacks. For instance, our attack against TLS can
be directly applied against open wireless networks. How-
ever, these days many wireless networks are protected
using WPA2 [71]. This means that all packets, includ-
ing their IP and TCP headers, are encrypted. Hence we
can no longer use these headers to isolate and inspect
TLS connections. Nevertheless, we show it is possible to
uncover the size of an HTTP message even when Wi-Fi
encryption is used on top of TLS.

In the Wi-Fi protocol, the sender first prepends a fixed-
length header to the packet being transmitted, and then
encrypts the resulting packet [28]. To encrypt and protect
a packet, the only available ciphers in a Wi-Fi network
are WEP, TKIP, or CCMP. Note that WPA1 and WPA2
are not ciphers, but certification programs by the Wi-Fi
Alliance, and these programs mandate support for either
TKIP or CCMP, respectively. Since both WEP and TKIP
use RC4, and CCMP uses AES in counter mode, padding
is never added when encrypting a packet. Therefore, no
matter which cipher is used, we can always determine the

precise length of the encrypted plaintext. Finally, Wi-Fi
encryption is self-synchronizing, meaning that a receiver
can decrypt packets even if previous ones were missed or
blocked.

Similar to our attack against TLS, we determine when
the resource is being transmitted by signaling our own
server before and after we fetch the targeted resource.
However, we can no longer easily determine which pack-
ets correspond to the requested resource as Wi-Fi en-
crypts the IP and TCP headers. Consequently, any back-
ground traffic will interfere with our attack. One option
is to execute the attack only if there is no background
traffic. Unfortunately, if the user is actively browsing
websites or streaming videos, periods without traffic are
generally too short. In other words, it is hard to predict
whether a period without traffic will be long enough to
fetch the complete resource. Our solution is to wait for a
small traffic pause, and extend this pause by blocking all
packets that are not part of the TCP connection that will
fetch the resource. Blocking packets in a secure Wi-Fi
network is possible by using a channel-based man-in-
the-middle (MitM) attack [61]. Essentially, the attacker
clones the Access Point (AP) on a different channel, and
forwards or blocks packets to, and from, the real AP. The
channel-based MitM also has another advantage: if the
adversary misses a packet sent by either a client or AP,
the sender will retransmit the packet. This is because the
cloned AP, and cloned clients, must explicitly acknowl-
edge packets. Hence our attack is immune to packet loss
at the Wi-Fi layer. Once we start measuring the size of
the resource, we only forward packets that could be part
of the connection fetching this resource. First, this means
allowing any packets with a size equal to a TCP SYN or
ACK. Second, we have to allow the initial TLS hand-
shake and the HTTP request that fetches the resource.
Since both can be detected based on the length of Wi-Fi
packets, it is possible to only forward packets that belong
to the first TLS handshake and HTTP request. By block-
ing other outgoing requests, servers will refrain from re-
plying with new traffic. Hence we can still fetch our tar-
geted resource, but all other traffic is temporarily halted.

In experiments the above technique proved highly suc-
cessful. Even when the victim was browsing websites or
streaming YouTube videos, it correctly isolated the TLS
connection fetching the resource. We also tested the at-
tack when the victim was constantly generating traffic by
sending ping requests of random sizes. Since the size of
these packets rarely matches that of a TCP ACK/SYN or
TLS handshake packet, all ping requests were blocked,
and the correct connection was still successfully isolated.

The next step is to subtract the overhead added by
Wi-Fi and TLS. Since none of the cipher suites in Wi-Fi
use padding, it is straightforward to remove padding
added by the Wi-Fi layer. However, we cannot count the

USENIX Association 25th USENIX Security Symposium 453

number of TLS records sent as their headers are now en-
crypted. Nevertheless, for both nginx and Apache with
HTTP/1.1, we found that a new TLS record is used for
every 214 bytes of plaintext. This allows us to predict
the number of TLS records that were used, and thereby
the overhead created by these records. We discovered
only one exception to this rule. If an Apache server uses
chunked content encoding, each chunk is sent in a sep-
arate TLS record. This means that the number of TLS
records become application-specific, and the attacker has
to fine-tune his prediction for every targeted resource.
We remark that this behavior of Apache is not recom-
mended, because it facilitates chunked-body-truncation
attacks against browsers [5].

When HTTP/2 is used, the situation becomes more te-
dious. Here we have to predict both the number of TLS
records, as well as the number, and types, of HTTP/2
frames. We found that these numbers are predictable for
the first HTTP/2 response in a TLS connection. Since
all browsers limit the number of open TCP connections,
we first close existing connections by requesting several
pages hosted on different domains. After doing this, a
new connection will be used to fetch the targeted re-
source, meaning we can predict the amount of overhead.
Apache always uses HTTP/2 data frames with a payload
of 16348 bytes, even when chunked content encoding is
used. Furthermore, the TLS records always have a pay-
load length of 1324, except for every 100th TLS record,
which has a length of 296. Finally, Apache always sends
the same three HTTP/2 control frames, spread over two
TLS records, before sending the resource itself.

For new TLS connections, nginx sends three ini-
tial HTTP/2 control frames in either one or two
TLS records, where most of the time only one
TLS record is used. Then it enters an initializa-
tion phase where the first 10 TLS records have a
predictable size, with each size taken from the set
{8279,8217,4121,4129}. After this initial phase, it
repeats the sequence [16408,16408,16408,16408,96],
with the exception that at relatively infrequent and ran-
dom times a TLS record of size 60 is used instead of 96.
However, as this is only a small difference, it generally
affects the number of TLS records by at most one. All
combined, if we assume the least number of TLS records
are used, we underestimate the actual number of TLS
records by at most two. In fact, most of the time no extra
records are used. Hence an attacker can make multiple
measurements, and pick the most common length as be-
ing the one without the extra (one or two) records.

3.4 Browser-based Techniques

Over the last few years, one of the most important evolu-
tions on the web is the increase of support for mobile

Algorithm 1 Uncover the size of resources by abusing
the per-site quota limit

response ← fetch(url)
fillStorage()
size ← 0
loop

freeByteFromCache()
size ← size+1
storageResult ← cache.put(response)
if storageResult == True then

return size
end if

end loop

devices. This advancement requires that all the char-
acteristics that are specific to mobile devices are prop-
erly accommodated. For instance, mobile devices travel
along with their users, which means that every now and
then the devices become disconnected, preventing the
user from accessing any web-based content. Recent ad-
vancements in browser design aim to tackle this problem
with a promising API named ServiceWorker [66]. The
core idea behind the SeviceWorker API is to allow web-
sites to gracefully handle offline situations for their users.
For example, a news website might download and tem-
porarily store news articles when users are connected,
allowing them to still access these while being discon-
nected. Note that although we mainly focus on the Ser-
viceWorker API, all attacks can also be applied by using
ApplicationCache [63], the caching mechanism that Ser-
vicerWorker aims to replace.

3.4.1 Per-site quota

For caching operations, the ServiceWorker API provides
a specific set of interfaces, named Cache API, which can
be used to store, retrieve and delete resources. A note-
worthy aspect of the Cache API is that it allows one
to cache any resource, including cross-origin responses.
Furthermore, to limit misuse cases where a malicious
player takes up all available space, the per-site2 storage
is restricted. This restriction is shared among a few other
browser features that allow persistent data storage, for in-
stance localStorage and IndexedDB. The way per-site
quota is applied, is decided by the browser vendor; for
the most popular browsers this is either a fixed value in
the range of 200MB to 2GB, or a percentage - typically
20% - of the global storage quota [22, 42, 32].

For the purpose of exposing the size of resources, hav-
ing full control over the cache, and the fact that this cache

2According to the current specification of the Storage API,
a site is defined as eTLD+1, meaning foo.example.org and
bar.example.org belong to the same site, whereas foo.host.com
belongs to a different site [70].

454 25th USENIX Security Symposium USENIX Association

is limited by a fixed quota, are two very interesting as-
pects. An adversary can directly leverage these two fea-
tures to expose the size of any resource by means of the
pseudo-code listed in Algorithm 1. In the attack, the re-
source is first downloaded using the Fetch API, which
will result in an "opaque" Response. Next, the adver-
sary makes sure that the site’s available storage is filled
up to the quota. In practice, we found that by storing
large data blobs using the IndexedDB API, the storage
speed approaches the maximum writing speed of the hard
disk, allowing the attacker to reach the quota in a few sec-
onds. In a final step, the adversary will free up one byte
from the cache and attempt to store the response. This
storage attempt will only succeed if sufficient quota is
available, otherwise more bytes should be freed. Even-
tually, the attacker learns the exact size of the resource
by the number of bytes that were freed until the resource
could be stored. Note that the resource only needs to be
downloaded once, resulting in a significant speed-up of
the attack. In our experimental setup, the initial attack
could be executed in less than 20 seconds, and subse-
quent size-exposing attempts were performed in less than
a second as the quota had already been reached.

3.4.2 Global quota

In addition to the storage restrictions of sites, browsers
also enforce a global storage quota to ensure normal sys-
tem operations are not affected. When this global quota
is exceeded, the storage operation will not be canceled,
but instead the storage of the least-recently used site will
be removed. As a result, the two features required to
expose the size of a resource, i.e., full control over the
cache and an indication when the quota is exceeded, are
present. In comparison to the size-exposing attack that
leverages the per-site quota, this vulnerability is consid-
erably harder to successfully exploit: the attacker needs
to reach the global quota limit, which needs to be spread
over multiple sites, and has to take into account that the
global quota can fluctuate as a result of unrelated system
operations. Nevertheless, for the purpose of creating an
improved design, it is important to consider all flaws of
the current system. Furthermore, on systems with a lim-
ited storage capacity, e.g., mobile devices, some of these
restrictions may not apply, increasing the feasibility of
an attack.

A simplified, unoptimized method that can be used to
expose the size of an arbitrary resource is provided in
Algorithm 2. Similar to the per-site quota attack, the
adversary first downloads the resource and temporarily
stores it in a variable. Next, a site is filled with a cer-
tain amount of bytes (storageAmount) which should be
larger than the size of the resource. In a following step,
the adversary will need to fill the complete quota. Since

Algorithm 2 Uncover the size of resources by abusing
the global quota limit

response ← fetch(url)
storageAmount ← 5MB
site0.addBytes(storageAmount)
i ← 1
while !isEvicted(site0) do

storageResult ← sitei.addBytes(1)
if storageResult ! = True then

i ← i+1
end if

end while
site0.cache.put(response)
remainingBytes ← 0
while !isEvicted(site1) do

site0.addBytes(1)
remainingBytes ← remainingBytes+1

end while
size ← storageAmount− remainingBytes

for most major browsers, the global quota is set to 50%
of the total available space on the device, and the per-site
quota is set to either a percentage of the global quota or
a fixed size, the adversary will need to divide this over
multiple domains. As soon as the eviction of the first site
is triggered, the adversary knows the exact amount of
freed space, namely storageAmount. Finally, the adver-
sary adds the resource to an empty site and fills it until the
global quota is reached again, which can be observed by
checking for the eviction of the next least-recently used
site, i.e., site1. The size of the resource can then be cal-
culated as the original size of the first site subtracted by
the number bytes required to reach the global quota again
(remainingBytes).

3.4.3 Quota Management API & Storage API

The last attack involving browser storage abuses the
Quota Management API [65], and the similar Storage
API [70]. These APIs aim to give web developers
more insight into their website’s storage properties, more
specifically the number of bytes that have been stored
and the space that is still available. At the time of writing,
the Storage API is still being designed, and will consoli-
date the storage behavior of all browsers into one agreed-
upon standard.

The functionality provided by the Quota Management
API is the direct source of a size-exposing vulnerabil-
ity that is worryingly trivial to exploit. An adversary
can simply request the current storage usage, add a re-
source to the cache, and retrieve the storage usage again.
Since the Quota Management API will return the us-
age in bytes, the exact resource size can be obtained by
subtracting the two usage values. Although the Quota

USENIX Association 25th USENIX Security Symposium 455

Management API has only been adopted by the Google
Chrome browser, this browser alone accounts for approx-
imately 48% of the market share [56], leaving hundreds
of millions of internet users vulnerable to this highly triv-
ial size-exposing attack vector. Despite our efforts of re-
porting these findings to the Chrome team, all up-to-date
versions of the Google Chrome browser remain allowing
this API to be used by any website, without the user’s
knowledge.

Because the per-site quota is related to the global
quota3, the Quota Management API can also be used to
infer the caching operations of a different website. For
instance, a malicious iframe that is embedded on a web-
site could observe changes in the available quota, and
infer the length of cached resources. This information
could in turn be used to either analyze the interactions of
the user on the website, or disclose private information
based on the length of the cached resources. A similar
attack scenario is discussed in more detail in Section 4.4.
Another interesting case occurs when making the obser-
vation that the per-site quota is also related to the total
free disk space. The byproduct of this behavior is that an
adversary can also observe the disk operations of other,
possibly security-sensitive, processes. As this issue is
unrelated to size-exposing techniques, we do not explore
this vulnerability in more detail.

The functionalities provided by the Quota Manage-
ment API are directly responsible for the vulnerabilities
discussed in this section. It is unclear why this API was
developed without taking into account potential security
and privacy implications. In essence, these findings serve
as a strong indicator that new browser features should
be thoroughly reviewed for security and privacy flaws.
Since the Storage API provides the same functionality as
the Quota Management API, the same issues arise there
as well. At the time of writing, the Storage Standard de-
viates from the Quota Management API in the sense that
it states that a “rough estimate” should be returned. Be-
cause the term “rough estimate” is not formally defined,
implementations of this specification are likely to still be
vulnerable to statistical attacks, as the quota limit can
easily be requested thousands of times. In Section 5.1
we propose a new API design that protects against all
browser-based size-exposing techniques we discussed in
this paper.

4 Real-world Consequences

In contrast to prior work on size-exposing techniques,
which is mainly focused on passive network observa-
tion, the attacks presented in this paper leverage the abil-

3The per-site quota is 20% of the global quota in Google Chrome;
for Firefox this is the case as well when the disk space is less than
20GB.

ity to request arbitrarily chosen resources in the victim’s
browser. To provide more insight into the consequences
and potential attack scenarios, we explore a selection of
real-world cases where one of the size-exposing tech-
niques can be used to extract private and sensitive in-
formation from the victim. The list of attacks that are
discussed, is by no means the exclusive list of possible
targets. Instead, we made a selection of attack scenarios
to provide a variety in methodology, type of disclosed
information, and category of web service.

Ethical Considerations To evaluate the severity and
impact of size-exposing techniques on internet users, it
cannot be avoided to evaluate these attacks on real-world
services. To prevent any nefarious consequences of this
evaluation, all attacks were manually tested, and were
performed exclusively against our own accounts. As a
result, from the perspective of the tested services our
analysis only generated a restricted amount of legitimate
traffic. Moreover, users of the analyzed websites were
not directly involved in our attacks. For the quantitative
case-studies, we only obtained publicly available infor-
mation, and present it in anonymized form. Given the
above-mentioned precautions, we believe our evaluation
of real-world services did not have any adverse effects
on the tested subjects.

4.1 User Identification
Virtually every online social network provides its users
with their own profile page. Depending on the user’s
privacy settings, these profile pages typically are com-
pletely or partially available to anyone. In the attack sce-
nario where the adversary is interested in learning the
identity of the victim, the adversary first collects the pub-
licly available data from (a subset of) the users of the
social network. Later, during the actual size-exposing at-
tack, he tries to associate the data obtained from the vic-
tim to a single entry from the public data, allowing him
to expose the victim’s identity. To evaluate the feasibil-
ity in a real-world environment, we exemplify the attack
scenario on Twitter, one of the largest social networks.

By default, the profile of each Twitter user is public,
and contains information on the latest tweets that were
created by the user, the list of followers and followees,
the tweets that were “liked” by the user, and the lists
he/she follows and is a member of. Except for the user’s
tweets, each type of information can be accessed by a
link that is shared by all Twitter users, e.g., the page
located at https://twitter.com/followers lists the
last 18 accounts that follow the user. For each follower,
the name, account name and short biography is shown.

The main assumption in this attack scenario is that
the combined length of all parts that constitute to the

456 25th USENIX Security Symposium USENIX Association

resource, i.e., the names, account names and bios of
the last 18 followers, is relatively unique. To validate
this assumption, we performed an experiment that re-
flects an adversary’s actions in an actual attack sce-
nario. For this experiment, we obtained publicly avail-
able information of 500,000 users, which were selected
at random from the directory of public profiles provided
by Twitter4. More specifically, we downloaded the re-
sources located at /following, /followers, /likes,
/lists and /memberships, and recorded the associated
resource size, both with and without gzip compression.

Next, we grouped together Twitter accounts that share
the same resource length, e.g., if the /following re-
source is 281026 bytes for only two users, these users
form a group of size 2. In Figure 4 we show the per-
centage of Twitter accounts for all group sizes, for the
compressed and uncompressed resource size. Note that
a logarithmic scale is used for the percentage of Twit-
ter accounts on the y-axis. This graph clearly shows that
when the size of multiple resources is combined, the ma-
jority of Twitter accounts can be uniquely identified. By
exposing the size of the uncompressed /following and
/followers resources, 89.66% of the 500,000 Twit-
ter accounts can be uniquely identified. When the size
of all five resources is known, the identity of 97.62%
of the Twitter accounts can immediately be uncovered.
The graph also clearly shows that when gzip compres-
sion is applied, the group sizes of individual resources
becomes larger, which is most likely due to the reduc-
tion in entropy of resource sizes. Nevertheless, when
the size of multiple compressed resources are combined,
a uniqueness comparable to the size of uncompressed
resources is achieved: 81.69% Twitter accounts can be
uniquely identified when the size of the /following
and /followers resources is combined; for all five re-
sources, this is 99.96%. The most likely explanation for
this is that in case a resource is virtually empty, i.e., the
account name is the only dynamic part of the resource,
not only the length but also the content of the account
name is reflected in the compressed resource size.

Although the viability of this attack was only evalu-
ated on a subset of all Twitter accounts5, this experi-
ment does suggest that adversaries can immensely nar-
row down the number of possible candidates for the
user’s identity by knowing the size of just five resources.
Furthermore, various techniques exist that can uniquely
identify a user among a limited set of accounts [33, 26],
making user-identification by exposing the size of re-
sources well within the reach of a moderately motivated
attacker.

4https://twitter.com/i/directory
5Twitter has approximately 320 million active accounts.

4.2 Revealing Private Information

Next to revealing the identity of a web user, adversaries
may also be interested in learning private information.
A particular type of information that, in general, is con-
sidered highly sensitive, is information concerning med-
ical conditions. To evaluate whether our novel size-
exposing techniques can be used to also disclose this type
of data, we explored the performance of such techniques
on WebMD, one of the leading health information ser-
vices websites. One of the features provided by WebMD
is “Health Record”, a web service that allows users to
organize their personal health records6. More precisely,
users can add, and keep track of, their medical condi-
tions, medications, allergies, etc. For each entry, the user
can choose among an exhaustive list of terms. For in-
stance, there are 4,105 different medical conditions that
can be selected.

At any point in time, users can download their own
medical report, either as automatically generated PDF or
in plain text format. It should be noted that the types
of medical records that are shown in this report is spec-
ified by the user (or attacker), and that the PDF is sent
without compression, whereas the textual report is served
with gzip compression. Although there is some variety
in the length of the possible terms, it is insufficient for
an adversary to determine which medical conditions the
user suffers from: on average, a certain length is shared
among 124.59 possible medical conditions. However,
if the adversary can obtain the resource size both with
and without compression, this can significantly improve
his attack: in this case, the group size can be limited to
35.50 on average. This can be achieved by various meth-
ods, e.g., by obtaining the length from two resources that
share the same content, where one is served with com-
pression and the other without, or by tricking the server
in sending the resource without compression7, or even by
combining the browser-based attacks with the network-
based attacks. In case the sensitive content is present on
multiple compressed resources (in this case, this can be
triggered by varying the types of medical records that are
reported), the group size can be reduced even further. In
the attack scenario against WebMD, a single iteration of
this technique, i.e., including the medical condition on a
compressed resource with other known content, reduces
the average group size to 18.73. By applying multiple
iterations, each with slighly different content, it becomes
possible to uniquely identify the user’s medical condition
in most cases.

6https://healthmanager.webmd.com/
7When a resource is included as a <video> element, the

Accept-Encoding header will be either absent or set to identity,
causing most web servers to send it without compression.

USENIX Association 25th USENIX Security Symposium 457

�

�

�

�

�

�

�
�

�

0.1

1.0

10.0

100.0

0 50 100
Group size

Pe
rc

en
ta

ge
 o

f a
cc

ou
nt

s
� all resources

follow{ing+ers}
followers
following
likes

No compression
�

�
�

0.1

1.0

10.0

100.0

0 100 200 300 400
Group size

Pe
rc

en
ta

ge
 o

f a
cc

ou
nt

s

� all resources
follow{ing+ers}
followers
following
likes

Gzip compression

Figure 4: Percentage of Twitter accounts that share the same resource length with a group of varying size.

4.3 Search-Oriented Information Leakage
Many web applications allow their users to search the
data they (in)directly entered. For instance, web-based e-
mail clients provide the functionality to search for certain
messages. In a recent study, Gelernter et al. show that
this functionality can be abused by attackers to disclose
sensitive information, such as the user’s identity and
credit-card numbers [20]. In their attacks, the researchers
leverage the fact that in certain cases query parameters
are reflected in the results. Consequently, when a search
query has several matches, the resulting resource size
will be considerably larger than with an empty result-
set, allowing an adversary to resort to timing attacks to
determine whether a certain search query yielded results.
Several service providers that were shown to be vulnera-
ble to these attacks implemented a mitigation by prevent-
ing query parameters to be reflected in the search results.
Although these measures effectively thwart the above-
mentioned attacks, the web services remain vulnerable to
the size-exposing attacks proposed in this paper, as these
disclose the size of a resource with 1-byte precision.

4.4 Cross-Origin Cache Operations
Telegram is a popular cloud-based instant messaging ser-
vice, particularly known for its security and encryption
features. Not surprisingly, these features have attracted
terrorist organizations to use the service as a secure com-
munication channel [53]. This, in turn, makes Telegram
a valuable target for intelligence agencies to find mem-
bers of terrorist groups. Since all exchanged messages
are encrypted using MTProto, which was shown to only
suffer from minor theoretical attacks, plaintext-recovery
is considered to be unlikely [30].

Next to the mobile and desktop versions of the Tele-
gram application, a web-based version is provided as
well8. An interesting feature of this web-based version
is that when a photo is shared in a group, the web appli-

8https://web.telegram.org

cation will use the File API [46] to cache two thumbnails
of the photo. Because the storage used by the File API
counts towards the global cache quota, it is possible to in-
fer whether a resource is being cached as per the attacks
discussed in Section 3.4.2 and Section 3.4.3.

In an attack scenario where the adversary tries to
determine group membership of the victim, the at-
tacker first lures the victim to his malicious web page.
On this web page, the adversary includes the page
of the target group in an iframe. Telegram does not
use the X-Frame-Options header, but instead makes
the content invisible by default through CSS, and uses
JavaScript to make it visible in case no framing is de-
tected (a popular Clickjacking defense proposed by Ryd-
stedt et al. [51]). As a result, the page’s content will be
loaded, but remains invisible, and impossible to interact
with9. If the user is member of the targeted group, the
Telegram website will download and cache thumbnails
of the latest media items that have been shared in the
group, resulting in a change of the available quota. Oth-
erwise, a message is shown stating that the user is not a
member of the group. As an additional verification step,
the adversary could post another photo in the group, and
witness a change in the available quota. By leveraging
our novel size-exposing techniques, we found it was triv-
ial to detect group membership. Because the MTProto
scheme only provides very limited padding, group mem-
bership can also easily be detected by analyzing the size
of HTTP responses.

5 Defense Mechanisms

In this section we discuss various mechanisms that can be
used to thwart size-exposing attacks. Due to space limi-
tations, we only focus on a limited set of defense mecha-
nisms, which were selected on the basis of completeness,
novelty, amount of overhead and ease of adoption.

9The <iframe> element should have a sandbox attribute set to
"allow-scripts allow-same-origin" to prevent top level navi-
gation, while ensuring the page is loaded properly.

458 25th USENIX Security Symposium USENIX Association

5.1 Hardening Browser Storage

As was shown in Section 3.4, several features related to
the storage operations in browsers can be abused to ex-
pose the size of cross-origin resources. At the time of
writing, there exists no universal specification that stan-
dardizes these operations. However, the Storage API
specification is being developed with the purpose of de-
signing a unified definition that will be adopted by all
browsers. In its current state, the Storage API consoli-
dates the current browsers behavior regarding the quota
limit per website. Furthermore, it incorporates the func-
tionalities offered by the Quota Management API.

We propose a countermeasure that extends the Storage
API. To make adoption by browsers feasible, we aim to
provide a usable solution, i.e., normal application behav-
ior should not be jeopardized. As a result of the feed-
back provided by the communication with specification
editors and browser vendors, we opted for an approach
where “virtual padding” is applied to resources. To pre-
vent an adversary from learning the size of a resource,
either by abusing the storage limit or by requesting the
available quota, this size should be masked with a ran-
dom value. However, it is a well-known fact that by
adding a random value, the mechanism becomes subject
to statistical attacks. Because resources can be added to
the cache extremely fast, an adversary is able to obtain
a large number of observations in a limited amount of
time, putting him in a very strong position.

Inspired by a mitigation for web-based timing side-
channels proposed by Schinzel [52], and by making the
observation that in contrast to caching operations, down-
loading a resource takes a considerable amount of time,
we propose the following defense. When a resource is
downloaded as the result of a fetch() operation, we as-
sociate a unique identifier, uid, with the Response ob-
ject. Next, we compute q = �size+hash(secret+uid)�∆,
where size is the size of the resource, hash() a uniformly
distributed hash function yielding integers in the range
[0, pmax], and secret a cryptographic random number that
is associated to a single browsing session10. The total
size q is then rounded up towards the nearest multiple
of ∆ to prevent an attacker from learning the bounds of
the added padding. When the Response is added to the
cache, the per-site and global quota will be increased
by q. This value should also be stored as part of the
Response object to ensure that for each cache opera-
tion the same value is either added or subtracted from the
quota. As a result, the only way for an adversary to ob-
tain a new observation is to download the same resource
again. It should be noted that the padding that is added
for each cache operation is virtual, in the sense that these

10To prevent an adversary from linking two browser sessions, secret
is changed whenever the browser session changes.

bytes are not actually written to the disk, but are just kept
as a type of bookkeeping.

It is clear that the overhead on the quota and the se-
curity guarantees provided by this defense method are
directly related to the values of pmax and ∆. In fact, this
provides a trade-off between security/privacy and usabil-
ity, for instance, the larger the value of pmax, the harder it
will be for an adversary to uncover the size of resources
(within certain boundaries), but on the other hand, a large
pmax will entail a smaller storage capacity due to the
amount of padding. We argue that with an analysis on
the typical use-cases of caching operations, these val-
ues could be defined to accommodate legitimate behavior
while preventing attacks. Furthermore, it could be taken
into account that this mechanism generates a virtual loss
in storage capacity, and therefore the quota could be in-
creased to account for this. In addition, it is possible
to apply a rate-limiting approach to limit the amount of
observations that can be made by an adversary. For in-
stance, if the reported quota is only updated once every
minute, statistical attacks can be largely mitigated, which
in turn allows for smaller values of pmax, and restricts the
(already virtual) overhead.

Given the generality of the defense, its strong security
guarantees, and the low overhead, we feel confident that
this approach, or a similar derivative thereof, will be in-
corporated into the HTML specification, and encourage
browser vendors to mitigate the attacks presented in Sec-
tion 3.4 in this manner.

5.2 Detecting Illicit Requests

In essence, the size-exposing techniques presented in this
paper require the ability to initiate authenticated cross-
origin requests, and rely on the targeted web service to
handle the request in the same way it would for legiti-
mate requests. This means that when either part is re-
moved, i.e., either authenticated cross-origin requests are
disabled, or the web server answers with a static error
message, the complete class of size-exposing techniques
will be mitigated. To accomplish this, it is possible to
resort to existing, and well-established techniques in re-
lated research fields. For instance, by blocking third-
party cookies, which is typically used to prevent track-
ing on the web [50], the cross-origin requests initiated
by the adversary will be sent without the cookie. As a
result, the website will handle the request as if the user
was not logged in, preventing the adversary from learn-
ing anything about the user’s state at the website. Mozilla
and the Tor Browser project are working on minimizing
the limitations imposed by blocking third-party cookies,
by implementing a feature name double-keyed cookies,
which binds cookies to the origin pair (first-party, third-
party), and aims to prevent the risks of breaking sites

USENIX Association 25th USENIX Security Symposium 459

caused by blocking cookies [9, 59]. Similarly, certain
browsers provide the ability to attach third-party cookies
only if these were set during top-level navigation, and
block these otherwise. While this technique can be used
to prevent tracking by unknown parties, it does not ade-
quately prevent the attacks presented in this paper as the
targeted third-party services are the ones that are actually
used by the victim.

On the side of the server, solutions similar to those
that prevent Cross-Site Request Forgery (CSRF) attacks
could be applied. A well-known method, as proposed by
Barth et al., to accomplish this, is to analyze the Origin
and/or Referer headers and only allow requests from
trusted origins [2].

5.3 Network-based Countermeasures

Padding can be used to hide the length of resources dur-
ing their transmission. Since general-purpose padding
schemes are already well-studied, we do not discuss
them further. Instead, we focus on countermeasures that
fit our use-case, where only the size of sensitive dynami-
cally generated resources must be protected. This allows
us to provide a countermeasure with low overhead and
high security guarantees, at the cost of requiring some
effort on the web administrator’s part.

Our idea is to add an amount of padding based on the
hash of the session cookie, the URL, and any parame-
ters that affect the generation of the resource. More for-
mally, padding = hash(cookie + url + params). If the
user is not logged in, no padding is added. For each re-
source, the parameters that influence the generation of
the resource must be manually specified. Other parame-
ters should not be included, otherwise an adversary can
add bogus parameters to obtain a new padding value for
the same resource. This construction assures that sensi-
tive resources, for any specific user, receive an amount
of padding that is unpredictable by an attacker. How-
ever, this padding remains identical over several requests,
meaning it even guarantees protection against statisti-
cal attacks. Information can only be leaked if the re-
source changes over time. This can happen when the
attacker was able to affect the generation of the resource
on the server, or simply because the information con-
tained in the resource has changed over time. In this sit-
uation an observer can learn the difference in resource
size. If the resource does not contain variable content,
such as dynamic advertisements, this attack can be miti-
gated by including the content of the resource in the hash
function. Similar to hardening the browser (see Sec-
tion 5.1), the security guarantees depend on the value
of pmax. Provided the hash function is uniformly dis-
tributed, this countermeasure introduces on average pmax

2
bytes of overhead.

For wireless networks, where we assume Wi-Fi en-
cryption is used on top of TLS, we can rely on the previ-
ously mentioned techniques to protect the TLS connec-
tion. Additionally, an identifier-free wireless protocol
can be used, making it more difficult for an attacker to
attribute Wi-Fi packets to specific clients [23, 18, 3, 8].

6 Related Work

Size-exposing techniques have surfaced in several re-
search areas, ranging from timing attacks, to network
traffic analysis, to browser-based and cross-VM side-
channel leaks. As part of an in-depth analysis, which
lead to the discovery of multiple novel attack methods,
we already touched upon a variety of related work, as
discussed in Section 3. In this section, we give a brief
overview of the most relevant work, and discuss it in the
context of our findings.

Prior research that analyses methods that can expose
the size of an attacker-specified resource, is mainly fo-
cused on leveraging timing as a side-channel informa-
tion leak [19, 7, 14, 20, 60]. Because timing attacks
measure the time required to download or process a re-
source, which is often influenced by various factors such
as network irregularities or background noise, these at-
tacks have certain limitations with regards to the accu-
racy of the uncovered resource size. In our research,
we presented novel techniques that leverage the browser-
imposed quota to reveal the exact size of any resource.

An interesting class of vulnerabilities where the size
of resources is exploited, are compression side-channel
attacks [31]. These attacks generally leverage the com-
pression rate that is achieved when compressing an un-
known value in a larger corpus of known values, allowing
an adversary to uncover information about the unknown
value from the resource size after compression. More re-
cently, researchers have shown how similar attacks can
be applied to various compression mechanisms used on
the web [49, 21].

In the context of privacy-violating cross-origin attacks,
Lee et al. have shown that the ApplicationCache mech-
anism can be used to uncover the status code that is
returned for cross-origin resources [34]. Their attack
exploits certain intricacies of ApplicationCache, which
exhibits a different behavior based on the returned sta-
tus code of referenced endpoints. The researchers did
not explore vulnerabilities originating from the imposed
quota and storage limits. Another type of attack that vio-
lates the principle of Same-Origin Policy is Cross-Site
Script Inclusion (XSSI), first introduced by Grossman
in 2006 [24], and recently analyzed on a wide scale by
Lekies et al. [35]. In XSSI attacks, a dynamically gen-
erated JavaScript (or CSV [58]) file from a vulnerable
website is included as a <script> element on the web

460 25th USENIX Security Symposium USENIX Association

page of the attacker. The often sensitive content that is
present in these files can then be obtained out by the ad-
versary as a result of the modifications the script makes
to the attacker-controlled DOM.

Compared to prior work on the analysis of web traf-
fic [57, 6, 12, 36, 11, 10, 17], our work is, to the best
of our knowledge, the first to combine traffic analysis
with the ability to execute code in the victim’s browser.
Similarly, traffic analysis works on Wi-Fi also assume a
passive, instead of an active, adversary [8, 23, 3, 75, 74].
That is, we believe our work is the first to actively block
specific Wi-Fi packets in order to measure the size of
HTTP messages.

7 Conclusion

The size of resources can be used to infer sensitive in-
formation from users at a large number of web services.
In our research, we performed an extensive analysis on
the various operations that are performed on resources.
As a result of this evaluation, we identified several new
techniques that can be used to uncover the size of any
resource. In particular, an attack that abuses the storage
quota imposed by browsers, as well as a novel technique
against Wi-Fi networks that can be used to disclose the
size of the response associated with an attacker-initiated
request. To provide more insight into how these attack
methods can be applied in real-world attack scenarios,
we elaborated on several use cases involving widely used
web services. Motivated by the severe consequences of
these size-exposing attacks, we proposed an enhanced
design for the browser storage, which is likely to be
adopted by browser vendors, and discussed a variety of
other options that could be employed to prevent adver-
saries from stealing sensitive information.

Acknowledgments

We thank the anonymous reviewers for their valuable
comments. This research is partially funded by the Re-
search Fund KU Leuven, and by the EU FP7 project
NESSoS. With the financial support from the Preven-
tion of and Fight against Crime Programme of the Eu-
ropean Union (B-CCENTRE). Mathy Vanhoef holds a
Ph. D. fellowship of the Research Foundation - Flan-
ders (FWO).

References
[1] AL FARDAN, N. J., AND PATERSON, K. G. Lucky thirteen:

Breaking the TLS and DTLS record protocols. In IEEE Sympo-
sium on Security and Privacy (2013).

[2] BARTH, A., JACKSON, C., AND MITCHELL, J. C. Robust
defenses for cross-site request forgery. In Proceedings of the

15th ACM conference on Computer and communications secu-
rity (2008), ACM, pp. 75–88.

[3] BAUER, K., MCCOY, D., GREENSTEIN, B., GRUNWALD, D.,
AND SICKER, D. Physical layer attacks on unlinkability in wire-
less lans. In Privacy Enhancing Technologies (2009).

[4] BELSHE, M., PEON, R., AND THOMSON, M. Hypertext transfer
protocol version 2 (HTTP/2). RFC 7540, 2015.

[5] BHARGAVAN, K., LAVAUD, A. D., FOURNET, C., PIRONTI,
A., AND STRUB, P. Y. Triple handshakes and cookie cutters:
Breaking and fixing authentication over TLS. In IEEE Security
and Privacy (SP) (2014).

[6] BISSIAS, G. D., LIBERATORE, M., JENSEN, D., AND LEVINE,
B. N. Privacy vulnerabilities in encrypted HTTP streams. Lec-
ture notes in computer science 3856 (2006), 1.

[7] BORTZ, A., AND BONEH, D. Exposing private information by
timing web applications. In Proceedings of the 16th international
conference on World Wide Web (2007), ACM, pp. 621–628.

[8] BRIK, V., BANERJEE, S., GRUTESER, M., AND OH, S. Wire-
less device identification with radiometric signatures. In Mobile
computing and networking (2008).

[9] BUGZILLA. Bug 565965 - (doublekey) key cookies on setting
domain * toplevel load domain. https://bugzilla.mozilla.
org/show_bug.cgi?id=565965, May 2010.

[10] CAI, X., ZHANG, X. C., JOSHI, B., AND JOHNSON, R. Touch-
ing from a distance: Website fingerprinting attacks and defenses.
In Proceedings of the 2012 ACM conference on Computer and
communications security (2012), ACM, pp. 605–616.

[11] CHAPMAN, P., AND EVANS, D. Automated black-box detection
of side-channel vulnerabilities in web applications. In Proceed-
ings of the 18th ACM conference on Computer and communica-
tions security (2011), ACM, pp. 263–274.

[12] CHEN, S., WANG, R., WANG, X., AND ZHANG, K. Side-
channel leaks in web applications: A reality today, a challenge
tomorrow. In Security and Privacy (SP), 2010 IEEE Symposium
on (2010), IEEE, pp. 191–206.

[13] CHENG, H., AND AVNUR, R. Traffic analysis of SSL encrypted
web browsing. URL citeseer. ist. psu. edu/656522. html (1998).

[14] CROSBY, S. A., WALLACH, D. S., AND RIEDI, R. H. Opportu-
nities and limits of remote timing attacks. ACM Transactions on
Information and System Security (TISSEC) 12, 3 (2009), 17.

[15] DIERKS, T., AND RESCORLA, E. The transport layer security
(TLS) protocol version 1.2. RFC 5246, 2008.

[16] DUONG, T., AND RIZZO, J. Here come the xor ninjas. In
Ekoparty Security Conference (2011).

[17] DYER, K. P., COULL, S. E., RISTENPART, T., AND SHRIMP-
TON, T. Peek-a-boo, I still see you: Why efficient traffic analysis
countermeasures fail. In IEEE Security and Privacy (SP) (2012).

[18] FAN, Y., LIN, B., JIANG, Y., AND SHEN, X. An efficient
privacy-preserving scheme for wireless link layer security. In
Global Telecommunications Conference, 2008. IEEE GLOBE-
COM 2008. IEEE (2008).

[19] FELTEN, E. W., AND SCHNEIDER, M. A. Timing attacks on
web privacy. In Proceedings of the 7th ACM conference on Com-
puter and communications security (2000), ACM, pp. 25–32.

[20] GELERNTER, N., AND HERZBERG, A. Cross-site search attacks.
In Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (2015), ACM, pp. 1394–
1405.

[21] GLUCK, Y., HARRIS, N., AND PRADO, A. BREACH: reviving
the CRIME attack. In Black Hat Briefings (2013).

USENIX Association 25th USENIX Security Symposium 461

[22] GOOGLE CHROME. Managing HTML5 offline storage. https:
//developer.chrome.com/apps/offline_storage,
February 2016.

[23] GREENSTEIN, B., MCCOY, D., PANG, J., KOHNO, T., SE-
SHAN, S., AND WETHERALL, D. Improving wireless privacy
with an identifier-free link layer protocol. In Mobile systems, ap-
plications, and services (2008).

[24] GROSSMAN, J. Advanced web attack techniques using GMail.
http://jeremiahgrossman.blogspot.com/2006/01/
advanced-web-attack-techniques-using.html, 2006.

[25] HINTZ, A. Fingerprinting websites using traffic analysis. In
Privacy Enhancing Technologies (2003), Springer, pp. 171–178.

[26] HOMAKOV, E. Using Content-Security-Policy for evil.
http://homakov.blogspot.com/2014/01/using-
content-security-policy-for-evil.html, January
2014.

[27] ICSI. The ICSI certificate notary. Retrieved 23 Jan. 2016, from
http://notary.icsi.berkeley.edu.

[28] IEEE STD 802.11-2012. Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, 2012.

[29] JAGATIC, T. N., JOHNSON, N. A., JAKOBSSON, M., AND
MENCZER, F. Social phishing. Communications of the ACM
50, 10 (2007), 94–100.

[30] JAKOBSEN, J. B., AND ORLANDI, C. A practical cryptanalysis
of the Telegram messaging protocol. PhD thesis, Master Thesis,
Aarhus University (Available on request), 2015.

[31] KELSEY, J. Compression and information leakage of plaintext.
In Fast Software Encryption (2002), Springer, pp. 263–276.

[32] KITAMURA, E. Working with quota on mobile browsers.
http://www.html5rocks.com/en/tutorials/offline/
quota-research/, January 2014.

[33] LANDAU, P. Deanonymizing Facebook users by CSP brute-
forcing. http://www.myseosolution.de/deanonymizing-
facebook-users-by-csp-bruteforcing/, August 2014.

[34] LEE, S., KIM, H., AND KIM, J. Identifying cross-origin re-
source status using application cache. In NDSS (2015).

[35] LEKIES, S., STOCK, B., WENTZEL, M., AND JOHNS, M. The
unexpected dangers of dynamic JavaScript. In 24th USENIX Se-
curity Symposium (USENIX Security 15) (2015), pp. 723–735.

[36] LUO, X., ZHOU, P., CHAN, E. W., LEE, W., CHANG, R. K.,
AND PERDISCI, R. HTTPOS: Sealing information leaks with
browser-side obfuscation of encrypted flows. In NDSS (2011).

[37] MARLINSPIKE, M. New tricks for defeating SSL in practice.
BlackHat DC, February (2009).

[38] MATHER, L., AND OSWALD, E. Pinpointing side-channel in-
formation leaks in web applications. Journal of Cryptographic
Engineering 2, 3 (2012), 161–177.

[39] MICROSOFT. Platform status. https://dev.windows.com/
en-us/microsoft-edge/platform/status/fetchapi,
February 2016.

[40] MILLER, B., HUANG, L., JOSEPH, A. D., AND TYGAR, J. D.
I know why you went to the clinic: Risks and realization of
HTTPS traffic analysis. In Privacy Enhancing Technologies
(2014), Springer, pp. 143–163.

[41] MOORE, T., AND EDELMAN, B. Measuring the perpetrators and
funders of typosquatting. In Financial Cryptography and Data
Security. Springer, 2010, pp. 175–191.

[42] MOZILLA DEVELOPER NETWORK. Browser storage limits and
eviction criteria. https://developer.mozilla.org/en-
US/docs/Web/API/IndexedDB_API/Browser_storage_
limits_and_eviction_criteria, October 2015.

[43] NIKIFORAKIS, N., INVERNIZZI, L., KAPRAVELOS, A.,
VAN ACKER, S., JOOSEN, W., KRUEGEL, C., PIESSENS, F.,
AND VIGNA, G. You are what you include: Large-scale eval-
uation of remote JavaScript inclusions. In Proceedings of the
2012 ACM conference on Computer and communications secu-
rity (2012), ACM, pp. 736–747.

[44] OREN, Y., KEMERLIS, V. P., SETHUMADHAVAN, S., AND
KEROMYTIS, A. D. The spy in the sandbox: Practical cache
attacks in JavaScript. arXiv preprint arXiv:1502.07373 (2015).

[45] PEON, R., AND RUELLAN, H. HPACK: Header compression for
HTTP/2. RFC 7541, 2015.

[46] RANGANATHAN, A., AND SICKING, J. File API. W3C Working
Draft (2012).

[47] RESCORLAN, E. HTTP over TLS. RFC 2818, 2000.

[48] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In Proceedings of the 16th ACM
conference on Computer and communications security (2009),
ACM, pp. 199–212.

[49] RIZZO, J., AND DUONG, T. The CRIME attack. In EKOparty
Security Conference (2012), vol. 2012.

[50] ROESNER, F., KOHNO, T., AND WETHERALL, D. Detect-
ing and defending against third-party tracking on the web. In
Proceedings of the 9th USENIX conference on Networked Sys-
tems Design and Implementation (2012), USENIX Association,
pp. 12–12.

[51] RYDSTEDT, G., BURSZTEIN, E., BONEH, D., AND JACKSON,
C. Busting frame busting: a study of clickjacking vulnerabilities
at popular sites. IEEE Oakland Web 2 (2010), 6.

[52] SCHINZEL, S. An efficient mitigation method for timing side
channels on the web. In 2nd International Workshop on Con-
structive Side-Channel Analysis and Secure Design (COSADE)
(2011).

[53] SEGALL, L. An app called Telegram is the ’hot new thing
among jihadists’. http://money.cnn.com/2015/11/17/
technology/isis-telegram/, November 2015.

[54] SOOD, A. K., AND ENBODY, R. J. Malvertising: Exploiting web
advertising. Computer Fraud & Security 2011, 4 (2011), 11–16.

[55] SSL PULSE. Survey of the SSL implementation of the most pop-
ular web sites. https://www.trustworthyinternet.org/
ssl-pulse/, February 2016.

[56] STATCOUNTER. GlobalStats. http://gs.statcounter.
com/#all-browser-ww-monthly-201501-201601, January
2016.

[57] SUN, Q., SIMON, D. R., WANG, Y.-M., RUSSELL, W., PAD-
MANABHAN, V. N., AND QIU, L. Statistical identification of
encrypted web browsing traffic. In Security and Privacy (2002).

[58] TERADA, T. Identifier based XSSI attacks. https://www.
mbsd.jp/Whitepaper/xssi.pdf, March 2015.

[59] TOR. Isolate HTTP cookies according to first and third party do-
main contexts. https://trac.torproject.org/projects/
tor/ticket/3246, May 2011.

[60] VAN GOETHEM, T., JOOSEN, W., AND NIKIFORAKIS, N. The
clock is still ticking: Timing attacks in the modern web. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 1382–1393.

[61] VANHOEF, M., AND PIESSENS, F. Advanced Wi-Fi attacks
using commodity hardware. In Proceedings of the 30th An-
nual Computer Security Applications Conference (2014), ACM,
pp. 256–265.

462 25th USENIX Security Symposium USENIX Association

[62] VANHOEF, M., AND PIESSENS, F. All your biases belong to
us: Breaking RC4 in WPA-TKIP and TLS. In USENIX Security
Symposium (2015).

[63] W3C. Offline web applications. https://www.w3.org/TR/
offline-webapps/, May 2008.

[64] W3C. Same-origin policy. https://www.w3.org/Security/
wiki/Same_Origin_Policy, January 2010.

[65] W3C. Quota management API. https://www.w3.org/TR/
quota-api/, December 2015.

[66] W3C. Service Workers. https://www.w3.org/TR/service-
workers/, June 2015.

[67] WAGNER, D., SCHNEIER, B., ET AL. Analysis of the SSL 3.0
protocol. In The Second USENIX Workshop on Electronic Com-
merce Proceedings (1996), pp. 29–40.

[68] WANG, T., AND GOLDBERG, I. Comparing web-
site fingerprinting attacks and defenses. Tech.
rep., Technical Report 2013-30, CACR, 2013.
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-30.pdf,
2014.

[69] WEBKIT. Implement fetch API. https://bugs.webkit.org/
show_bug.cgi?id=151937, December 2015.

[70] WHATWG. Storage. https://storage.spec.whatwg.
org/, August 2015.

[71] WIGLE. WiFi encryption over time. Retrieved 6 Feb. 2016 from
https://wigle.net/enc-large.html.

[72] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: A high
resolution, low noise, L3 cache side-channel attack: A high reso-
lution, low noise, L3 cache side-channel attack. In 23rd USENIX
Security Symposium (USENIX Security 14) (2014), pp. 719–732.

[73] ZALEWSKI, M. The tangled Web: A guide to securing modern
web applications. No Starch Press, 2012.

[74] ZHANG, F., HE, W., CHEN, Y., LI, Z., WANG, X., CHEN, S.,
AND LIU, X. Thwarting Wi-Fi side-channel analysis through
traffic demultiplexing. Wireless Communications, IEEE Transac-
tions on 13, 1 (2014), 86–98.

[75] ZHANG, F., HE, W., AND LIU, X. Defending against traffic
analysis in wireless networks through traffic reshaping. In Dis-
tributed Computing Systems (ICDCS) (2011).

[76] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T.
Cross-tenant side-channel attacks in PaaS clouds. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security (2014), ACM, pp. 990–1003.

[77] ZHOU, X., DEMETRIOU, S., HE, D., NAVEED, M., PAN, X.,
WANG, X., GUNTER, C. A., AND NAHRSTEDT, K. Identity,
location, disease and more: Inferring your secrets from Android
public resources. In Proceedings of the 2013 ACM SIGSAC con-
ference on Computer & communications security (2013), ACM,
pp. 1017–1028

.

USENIX Association 25th USENIX Security Symposium 463

Trusted browsers for uncertain times
David Kohlbrenner∗

UC San Diego
Hovav Shacham†

UC San Diego

Abstract
JavaScript in one origin can use timing channels in
browsers to learn sensitive information about a user’s in-
teraction with other origins, violating the browser’s com-
partmentalization guarantees. Browser vendors have at-
tempted to close timing channels by trying to rewrite sen-
sitive code to run in constant time and by reducing the
resolution of reference clocks.

We argue that these ad-hoc efforts are unlikely to suc-
ceed. We show techniques that increase the effective
resolution of degraded clocks by two orders of magni-
tude, and we present and evaluate multiple, new implicit
clocks: techniques by which JavaScript can time events
without consulting an explicit clock at all.

We show how “fuzzy time” ideas in the trusted operat-
ing systems literature can be adapted to building trusted
browsers, degrading all clocks and reducing the band-
width of all timing channels. We describe the design of
a next-generation browser, called Fermata, in which all
timing sources are completely mediated. As a proof of
feasibility, we present Fuzzyfox, a fork of the Firefox
browser that implements many of the Fermata principles
within the constraints of today’s browser architecture.
We show that Fuzzyfox achieves sufficient compatibil-
ity and performance for deployment today by privacy-
sensitive users.

In summary:

• We show how an attacker can measure durations in
web browsers without querying an explicit clock.

• We show how the concepts of “fuzzy time” can ap-
ply to web browsers to mitigate all clocks.

• We present a prototype demonstrating the impact of
some of these concepts.

1 Introduction
Web browsers download and run JavaScript code from
sites a user visits as well as third-party sites like ad net-
works, granting that code access to system resources
through the DOM. Keeping that untrusted code from tak-
ing control of the user’s system is the confinement prob-
lem. In addition, browsers must ensure that code run-
ning in one origin does not learn sensitive information

∗dkohlbre@cs.ucsd.edu
†hovav@cs.ucsd.edu

about the user’s interaction with another origin. This is
the compartmentalization problem.

A failure of confinement can lead to a failure of com-
partmentalization. But JavaScript can also learn sen-
sitive information without escaping from its sandbox,
in particular by exploiting timing side channels. A
timing channel is made possible when an attacker can
compare a modulated clock — one in which ticks ar-
rive faster or slower depending on a secret — to a ref-
erence clock — one in which ticks arrive at a consis-
tent rate. For example, browsers allow web pages to
apply SVG transformations to page elements, includ-
ing cross-origin frames, via CSS. Paul Stone showed
that a fast-path optimization in the feMorphology
filter created a timing attack that allowed attackers to
steal pixels or sniff a user’s browsing history, using
Window.requestAnimationFrame() as a modu-
lated clock [24]. More recently, Oren et al. showed that,
in the presence of a high-resolution reference clock like
performance.now, attackers could use JavaScript
TypedArrays to measure instantaneous load on the last-
level processor cache [19].

Browser vendors are aware of the danger that timing
channels pose compartmentalization and have made ef-
forts to address it.

First, they have attempted to eliminate modulated
clocks by making any code that manipulates secret
values run in constant time. In a hundred-message
Bugzilla thread, for example, Mozilla engineers decided
to address Stone’s pixel-stealing work by rewriting the
feMorphology filter implementation using constant-
time comparisons.1

Second, they have attempted to reduce the resolution
of reference clocks available to JavaScript code. In May,
2015, the Tor Browser developers reduced the resolu-
tion of the performance.now high-resolution timer
to 100 ms as an anti-fingerprinting measure.2 In late
2015, some major browsers (Chrome, Firefox) applied
similar patches (see Figure 1), reducing timer resolution
to 5 µs to defeat Oren et al.’s cache timing attack [19].

These efforts are unlikely to succeed, because they se-
riously underestimate the complexity of the problem.

First, eliminating every potential modulated clock
would require an audit of the entire code base, an ambi-
tious undertaking even for a much smaller, simpler sys-
tem such as a microkernel [3]. Indeed, the Mozilla fix
for feMorphology did not consider the possibility that

464 25th USENIX Security Symposium USENIX Association

floating-point instructions execute faster or slower de-
pending on their inputs, allowing pixel-stealing attacks
even in supposedly “constant-time” code [1].

Second, there are many ways by which JavaScript
code might synthesize a reference clock besides
naively querying performance.now. In this paper,
we show that clock-edge detection allows JavaScript
to increase the effective resolution of a degraded
performance.now clock by two orders of magni-
tude. We also present and evaluate multiple, new
implicit clocks: techniques by which JavaScript can
time events without consulting an explicit clock like
performance.now at all. For example, videos in an
HTML5 <video> tag are decoded in a separate thread.
JavaScript can play a simple video that changes color
with each frame and examine the current frame by ren-
dering it to a canvas. This immediately gives an implicit
clock with resolution 60 Hz, and the resolution can be
improved using our techniques.

In short, timing channels pose a serious danger to
compartmentalization in browsers; browser vendors are
aware of the problem and are attempting to address
it by eliminating or degrading clocks attackers would
rely on, but their ad-hoc efforts are unlikely to succeed.
Our thesis in this paper is that the problem of timing
channels in modern browsers is analogous to the prob-
lem of timing channels in trusted operating systems and
that ideas from the trusted systems literature can in-
form effective browser defenses. Indeed, our descrip-
tion of timing channels as the comparison of a reference
clock and a modulated clock is due to Wray [28], and
our fuzzy mitigation strategy technique is directly in-
spired by Hu [10] — both papers resulting from the VAX
VMM Security Kernel project, which targeted an A1 rat-
ing [12].

In this paper, we show that “fuzzy time” ideas due
to Hu [10] can be adapted to building trusted browsers.
Fuzzy time degrades all clocks, whether implicit or ex-
plicit, and it reduces the bandwidth of all timing chan-
nels. We describe the properties needed in a trusted
browser where all timing sources are completely medi-
ated. Today’s browsers tightly couple the JavaScript en-
gine and the DOM and would need extensive redesign
to completely mediate all timing sources. As a proof
of feasibility, we present Fuzzyfox, a fork of the Fire-
fox browser that works within the constraints of today’s
browser architecture to degrade timing sources using
fuzzy time. Fuzzyfox demonstrates a principled clock
fuzzing scheme that can be applied to both mainstream
browsers and Tor Browser using the same mechanics.
We evaluate the performance overhead and compatibil-
ity of Fuzzyfox, showing that all of its ideas are suitable
for deployment in products like Tor Browser and a milder
version are suitable for Firefox.

double PerformanceBase::clampTimeResolution
(double timeSeconds)

{
const double resolutionSeconds =

0.000005;
return floor(timeSeconds /

resolutionSeconds) *
resolutionSeconds;

}

Figure 1: Google Chrome performance.now round-
ing code

// Find minor ticks until major edge
function nextedge(){

start = performance.now();
stop = start;
count = 0;

while(start == stop){
stop = performance.now();
count++;

}

return [count,start,stop];
}

// run learning
nextedge();
[exp,pre,start] = nextedge();

// Run target function
attack();

// Find the next major edge
[remain,stop,post] = nextedge();

// Calculate the duration
duration = (stop-start)+((exp-remain)/exp)*

grain;

Figure 2: Clock-edge fine-grained timing attack in
JavaScript

2 Clock-edge attack
Web browser vendors have attempted to mitigate tim-
ing side channel attacks like [19] by rounding down the
explicit clocks available to JavaScript to some grain g.
For example, Google Chrome and Firefox have imple-
mented a 5µs grain. Figure 1 shows the C++ code
used for rounding a performance.now call in Google
Chrome. Tor Browser makes a different privacy and per-
formance tradeoff and has implemented an aggressive
100ms grain.

Unfortunately, rounding down does not the guarantee
that an attacker cannot accurately measure timing differ-
ences smaller than g. We present the clock-edge tech-
nique for improving the granularity of time measure-
ments in the context of JavaScript clocks. Experimen-

USENIX Association 25th USENIX Security Symposium 465

Figure 3: Clock-edge learning and timing

tally, this technique results in an increase in resolution of
at least two orders of magnitude to large grained clocks.
This technique can be generalized to any pair of clocks:
a major clock, which has a known large period, and a
a minor clock, which has a short unknown period. The
major clock is used to establish the period of the minor
clock, and together they can time events with more accu-
racy than alone.

Consider the case of a page wishing to time some
JavaScript function attack() with a granularity
smaller than some known performance.now grain
g. The major clock in this case is the degraded
performance.now, and we use a tight incrementing
for loop as the minor clock. Figures 2 and 3 show how
a page might execute this technique and a visual repre-
sentation of the process.

The page first learns the average number of loop iter-
ations (Lexp) between the major clock ticks Cl1 and Cl2.
After learning, the page then runs until a major clock
edge is detected (Cstart) and then executes attack().
When attack() returns at major clock time Cstop, the
page runs the minor clock (for Lremain ticks) until the next
major clock edge (Cpost) is detected. The page then cal-
culates the duration of attack() as (Cstop −Cstart)+
g∗(Lexp−Lremain)/(Lexp). In the case of g not remaining
constant, we scale the Lexp by (Cpost −Cstop)/(Cl2 −Cl1)
and set g =Cpost −Cstop.

Since (Lexp − Lremain)/(Lexp) represents a fractional
portion of g, the duration measurement can plausibly ob-
tain measurements as fine grained as g/Lexp. Thus, as
long as the attacker has access to a suitable minor clock,
the degradation of a major clock to g by rounding does
not ensure an attacker cannot measure at a grain less than
g.

Grain(ms) Minor Measured Durations(ms)

None – 0.003 0.030 0.298 3.033

0.001 2 0.002 0.029 0.299 3.103
0.005 94 0.004 0.032 0.304 3.031
0.01 192 0.003 0.030 0.298 2.998
0.08 1649 0.003 0.030 0.303 3.009
0.1 1965 0.011 0.027 0.299 3.006
1 20470 0.053 0.038 0.296 3.010
10 193151 0.112 0.208 0.332 3.159
100 1928283 0.436 0.469 0.560 3.330
500 9647265 1.045 1.076 1.294 3.437

Table 1: Results for running the clock-edge fine-grained
timing attack against various grain settings. Averages for
100 runs shown.

Table 1 shows the results of applying the clock-edge
technique on a degraded performance.now major
clock on 4 different targets at different grains. The code
in figure 2 is an abbreviated version of the testing code.
Each duration column represents a different number of
iterations in the attack() function, which is an empty
for loop. The minor ticks column indicates the number
of iterations the learning phase detected that each ma-
jor tick takes. The “None” row indicates the runtime of
attack with no rounding enabled, and other rows in-
dicate the durations measured at different grain settings
using the clock-edge technique. Measurements were per-
formed with a modified build of Firefox that enabled set-
ting arbitrary grains via JavaScript.

As table 1 shows, the clock-edge attack recovers du-
rations significantly smaller than the grain settings. No-
tably, grains in the millisecond and higher range still per-
mit the differentiation of events lasting only tens of µs!

Simply rounding down the available explicit clocks
only has a notable impact if the attacker is attempting
to differentiate between events each lasting less than a
microsecond, at which level the clock-edge attack often
provides no additional resolution to the rounded clock.

3 Measuring time in browsers without ex-
plicit clocks

In this section, we demonstrate different methods an
attacker can use measure the duration of events in
JavaScript. An attacker wishing to mount a timing at-
tack against a web browser is not restricted to the use
of performance.now for timing measurements, this
section will present a number of alternative methods
available. Browser features that enable these measure-
ments are implicit clocks. Depending on the how the tar-
get and the clock interact with the JavaScript runtime,
we define them as exiting or exitless. We do not present
an exhaustive list of implicit clocks. Rather, this section

466 25th USENIX Security Symposium USENIX Association

should be considered the tip of the iceberg for clock tech-
niques in browsers.

3.1 Measurement targets
Recall that the adversary’s goal in a timing attack is to
measure the duration of some event and differentiate be-
tween two or more possible executions. We assume our
adversary’s goal is to measure the duration of some piece
of JavaScript target() or to measure the time until
some event target fires a callback. There are many
potential targets, exemplified by two different timing at-
tacks on web browsers. We categorize targets and attacks
into exiting and exitless and describe a canonical exam-
ple for each.

3.1.1 Exiting targets: privacy breaches with
requestAnimationFrame

Previous work [1] [24] has shown several different ways
to achieve history sniffing or cross frame pixel reading
via timing the rendering of an SVG filter over secret data.
Andrysco et al [1] demonstrate a timing attack on privacy
that differentiates pixels based on how long rendering an
SVG convolution filter takes. This timing requires that
the attacking JavaScript know exactly when the SVG fil-
ter is applied to the target and when the SVG filter fin-
ishes rendering. This is accomplished by sampling a high
resolution time stamp (performance.now) when ap-
plying the CSS style containing the filter and when a
callback for requestAnimationFrame fires. In this
case, JavaScript must exit to allow some other computa-
tion to occur and then receives a notification via a call-
back that the event has completed. We refer to this type
of target as an exiting target, as it exits the JavaScript
runtime before completion.

3.1.2 Exitless targets: cache timing attacks from
JavaScript

Conversely, there are exitless targets, such as Oren et
al’s [19] cache timing attack. This attack does not need to
exit JavaScript for the target to run, instead they need
only perform some synchronous JavaScript function call,
and measure the duration of it. Any exitless target
can be scheduled in callbacks, thus making it an exiting
target, but an exiting target cannot be run in an
exitless manner.

3.2 Implicit clocks in browsers
Supposing that all explicit clocks were removed from the
browser, it is still possible that a motivated attacker can
measure fine-grained durations. Rather than query an ex-
plicit clock, the attacker can find some other feature of
the browser that has a known or definable execution time
and use that as an implicit clock.

We did not test any clocks that resolve durations at an
external observer, such as a cooperating server. For ex-

Description Clock type
Firefox Chrome Safari

Explicit clocks L L L
Video frames L L L
Video played X L L
WebSpeech API L + —
setTimeout X X X
CSS Animations X X X
WebVTT API X X X
Rate-limited server X X X

Table 2: Implicit clock type in different browsers
L Exitless , X Exiting , — Not implemented, + Buggy

ample, a piece of JavaScript could generate a network
request, run a target, and then generate another net-
work request. These clocks are mitigated by the defenses
discussed in section 4.

We observe that just as with exiting and exitless
targets, there are exiting and exitless implicit clocks.
We will refer to a clock or timing method that does not
need to leave JavaScript execution for the value reported
by the clock to change as exitless. Similarly, a timing
method that requires JavaScript execution to exit before
time moves forward is exiting.

All exitless clocks can work for both exiting and ex-
itless targets. However, an exitless target cannot func-
tion with an exiting clock, as the execution of the tar-
get will take control of the main thread, stopping regular
callbacks or events that the exiting clock needs from fir-
ing. There may be exotic exiting clocks that do not have
this restriction, but all of the ones detailed below do. An
exitless attack requires using both an exitless target and
clock (such as in the cache timing attack.)

Depending on the implementation of a browser fea-
ture, the clock technique may be exiting or exitless. A
good example is the updating of the played informa-
tion for an <audio> or <video> tag. This information
is updated asynchronously to the main browser thread
in Google Chrome but will not update during JavaScript
execution in Firefox. Thus, it can be used to construct
a exitless clock in Chrome but only an exiting clock in
Firefox.

See table 2 for how the following clocks manifest in
Chrome 48 (stable), Firefox3, and Safari 9.0.3.

3.2.1 Exitless clocks

Since JavaScript is single threaded and non-preemptable,
exitless clocks do not have to worry about the scheduling
of other JavaScript callbacks or any other events occur-
ring between the target and timing measurements. By the
semantics of JavaScript, an exitless clock is considered a
run-to-completion violation[18] and is a bug. Any time
JavaScript can observe changes caused externally during

USENIX Association 25th USENIX Security Symposium 467

a single callback qualifies as such a bug; it is only when
their timing is dependable that we can construct a clock.
Mozilla has explicitly stated their goal to make Spider-
Monkey (the Firefox JavaScript engine) free of run-to-
completion violations.

We found several exitless clocks available to
JavaScript in different browsers.

1. Explicit clock queries. While expected, explicit clock
queries are run-to-completion violations and expose
the most accurate timing data. performance.now
is the best source of explicit timing data in JavaScript.

2. Video frame data. By rendering a <video> to
<canvas>, JavaScript can recover the current video
frame. Since the video updates asynchronous to the
browser event loop, this can be used to get a fine
grained time-since-video-start value repeatedly.

On Firefox, video frame data updates at 60 FPS, giv-
ing a granularity of 17ms. We can load a video at
120FPS, which does not allow JavaScript access to
new frames faster, but the frames JavaScript gets are
a more accurate clock. We demonstrate this by gen-
erating a long-running video at 120FPS that changes
the color of the entire video every frame. Thus, by
sampling the current color via rendering the video to
<canvas>, the page can measure how much time
has elapsed since the video started. Video can be ren-
dered off-screen or otherwise invisible to the user and
will still update at 60FPS, making it an ideal choice
for an implicit clock. We have also found that using
multiple videos and averaging the reported time be-
tween them provides additional accuracy.

3. WebSpeech API. This can start/stop the speaking
of a phrase from JavaScript and will give a high-
resolution duration measurement when stopped.
The WebSpeech API allows JavaScript to define a
SpeechSynthesisUtterance, which contains
a phrase to speak. This process can be started
with speak() and then stopped at any time with
cancel(). The cancelation can fire a callback
whose event contains a high resolution duration of
how long the system was speaking for. Thus, the
attacker can start a phrase, run some target JavaScript
function, and then cancel the phrase to obtain a timing
target. Note that while the callback must fire to get
the duration value, the duration measurement stops
when window.speechSynthesis.cancel()
is called, not when the callback eventually fires. This
makes the WebSpeech API a pseudo-exitless clock in
Firefox, even though we must technically wait for a
callback to get back the duration measurement. Time
moved forward, we just couldn’t observe repeatedly.
Since we can only measure the clock by stopping it,

the clock-edge technique cannot be used to enhance
the accuracy of the clock.

The WebSpeech API is only supported in Firefox
44+, and on many systems will need to be man-
ually enabled in about:config. Additionally,
unless the OS has speech synthesis support, the
clock cannot be used as it will never start speak-
ing. Ubuntu can get this support by installing the
speech-dispatcher package.

4. SharedArrayBuffers. While we did not test these, as
the implementation is still ongoing, any sort of shared
memory between JavaScript instances constitutes an
exitless clock. As demonstrated in [23], this can be
used as a very precise clock in real attacks.

3.2.2 Exiting clocks

Exiting clocks are far more numerous but also signifi-
cantly less useful to an attacker, as their measurements
and target execution are unlikely to be continuous.

1. setTimeout. Set to fire every millisecond, these
then set a globally visible “time” variable when they
do. This is the most basic of the exiting clocks. We set
timeouts every millisecond as this is lowest resolution
that can be set.

2. CSS animations. Set to finish every millisecond, these
then set a globally visible “time” variable in their
completion callback. These behave almost identically
to setTimeouts and are measured in the same way.

3. WebVTT. This API can set subtitles for a <video>
with up to millisecond precision and check which
subtitles are currently displayed. The WebVTT in-
terface provides a way for <video> elements to
have subtitles or captions with the <track> element.
These captions are loaded from a specified VTT file,
which can specify arbitrary subtitles to appear for
unlimited duration with up to millisecond precision.
By setting a different subtitle to appear every mil-
lisecond, the page can determine how much time
has elapsed since the video started by checking the
track.activeCues attribute of the <track> el-
ement. This only updates when JavaScript is not exe-
cuting.

4. A rate limited download. Using a cooperating server
to send a file to the page at a known rate causes reg-
ular progress updates to be queued in callbacks. Us-
ing the onprogress event for XMLHTTPRequests
(XHRs), the page can get a consistent stream of call-
backs to a clock update function. Note that the rate
of these callbacks is related to the size of the file be-
ing retrieved, as well as the upload rate of the server.

468 25th USENIX Security Symposium USENIX Association

Figure 4: WebVTT error measurements with and without
clock-edge technique

In our experiments, we used a file 100mB in size,
with a server rate limited to 100kB/s using the Linux
utility trickle. The page then assumes that the
server is sending data at exactly 100kB/s and has an
initial learning period to determine the rate at which
the onprogress callbacks fire. After that is com-
plete, the page can continue running as usual, with
the assumption that it now has a regular callback fir-
ing at the calculated rate. Note that the onprogress
events can also be requested to fire during the loading
of <video> elements.

5. Video/audio tag played data. These contain the in-
tervals of the media object that have thus far been
played. By checking the furthest played point re-
peatedly, we can measure the duration of events. In
Firefox, this only updates after JavaScript exits, but
in Chrome, it updates asynchronously (making it an
exitless clock for Chrome).

6. Cooperating iframes/popups from same origin. By
creating a popup in the same origin, or by embedding
iframes from the origin, two pages can cooperate and
act on the same DOM elements. In our testing there
was no way to get exitless DOM element manipula-
tions updates in this situation. Thus, this case reduces
to the setTimeout case or another similar method.
We do not present any timing results for these clocks.
Critically, if a method of sharing DOM element up-
dates exitlessly were found this would become an ex-
itless clock.

3.3 Performance of implicit clocks
The granularity, precision, and accuracy of implicit
clocks varies widely by technique. We observe that

Figure 5: setTimeout error measurements with and
without clock-edge technique

Figure 6: Video frame error measurements with and
without clock-edge technique

most implicit clocks can be improved with the clock-
edge technique from section 2. By substituting the
performance.now major clock with the implicit
clock technique, and using a suitable minor clock, most
techniques showed notable improvements in accuracy. In
this case, we want to examine how easy it would be to
differentiate two different duration events. Thus, tight
error bounds that are consistent are ideal.

Applying the clock-edge technique to exitless
clocks only requires the replacement of the explicit
performance.now call to some other exitless clock;
no change to the minor clock is needed. Exiting
clocks require a new minor clock technique; instead
of a tight loop, the minor clock must schedule regular
timeouts that check the state of the implicit major clock.
Otherwise, the exiting major clock would not change

USENIX Association 25th USENIX Security Symposium 469

Figure 7: Throttled XMLHTTPRequest error measure-
ments with and without clock-edge technique

Figure 8: CSS animation error measurements with and
without clock-edge technique

state while the minor clock is running. While repeated
setTimeout calls would work, setTimeout of 0 is
actually a 4ms timeout per the HTML5 spec, making it
a major clock. Instead, we use repeated postMessage
calls to the current window. These execute at a much
higher rate, but the period is unknown. Thus the new
implicit major clock now has a fast, unknown period
minor clock, just as in the exitless case.

Measurements were done with the same Firefox as in
section 2. Error (y values) was calculated as the dif-
ference between the clock technique measurement and
the actual duration as reported by performance.now.
Target durations (x values) are the expected duration
(N milliseconds) of the target event, which may differ
slightly from actual duration due to system load or even
the implicit clocks themselves interfering in the case of

Figure 9: WebSpeech error measurements without clock-
edge technique

exiting clocks. Each target was measured 100 times, with
measured durations of 0 or less removed. While actual
durations varied slightly from expected, there was not
considerable noise.

The exitless target we measure is a loop that runs for
N milliseconds, as determined by performance.now.
Our exiting target is a setTimeout for N milliseconds.

Figures 4, 5, 6, 7, 8, and 9 show the clock technique er-
ror with and without clock-edge improvements for a vari-
ety of clock techniques described above. WebSpeech has
no clockedge data for the reasons detailed in 3.2.1. Note
that the y-axis differs per figure, to allow for easier com-
parison between clock-edge and non-clock-edge results.
As can be seen in WebVTT, throttled XHRs, and video
frame data, many clock techniques have a large native pe-
riod that they operate at. These large periods leave plenty
of space for clock-edge to improve accuracy. WebVTT
shows massive improvement in the clock-edge case due
to the precision of its major clock ticks; the more precise
the original technique, the more accurate clock-edge can
be.

Figures 11 and 10 show the comparison of the av-
eraged error for all techniques and all techniques with
clock-edge respectively. The closer a line is to 0 on
these graphs, the more accurate the averaged measure-
ments will be for that technique. Again, the exceptional
accuracy of WebVTT with clock-edge for long-duration
events is evident.

4 Fermata
In this section we describe Fermata, a theoretical
browser design that provably degrades all attacker visi-
ble clocks. Sections 5 and 6 describe our prototype im-
plementation, Fuzzyfox, and an evaluation. Fermata is

470 25th USENIX Security Symposium USENIX Association

Figure 10: Average error for all clock techniques with-
out clock-edge

Figure 11: Average error for all clock techniques with
clock-edge where available

an adaptation of the fuzzy time operating systems con-
cept detailed in [10] to web browsers.

Since browser vendors have expressed an interest
in degrading time sources available to JavaScript, we
present Fermata as a design ideal for a browser that will
provably degrade all clocks. Fermata’s goal is to pro-
vide the attacker with only time sources that update at
a rate such that all possible timing side channels have a
bounded maximum bandwidth. This includes the use of
all the implicit clocks described in section 3 as well as
any other such clock unknown to us.

4.1 Why Fermata?

We propose Fermata because we believe that attempting
to audit and secure all possible channels in a modern web
browser is infeasible. The evaluation of a provable se-
curity focused microkernel found several tricky timing
channels [3]. In that case, the microkernel was designed
to be audited and already had a number of concerns ac-
counted for; this is not true in the case of a modern web
browser. Rather than allow any unknown channel to leak
data arbitrarily until fixed, Fermata restricts all known
and unknown channels to leak at or below a target ac-
ceptable rate.

Fermata proposes a principled alternative to the “find
and mitigate all clocks” methodology that Tor Browser
has already begun. Rather than manually examine every
DOM manipulation, extension, or new feature, Fermata
requires minimal defined interfaces between all com-
ponents. By automatedly proving that all information
passes through these interfaces and that all such inter-
faces are subject to the fuzzying process, Fermata will
drastically reduce the burden of code that needs to be ex-
amined. This is analogous to other such approaches in

the programming languages and formal software com-
munity.

Limiting the channel bandwidth for an attacker leak-
ing information is not a complete solution to timing
attacks on browsers, but it is a realistic one. Previ-
ous attacks on history sniffing [1] [24] have consistently
cropped up. These privacy breaches are only as valuable
as the amount of data they can collect. Learning that
a user has visited 2-3 websites is not likely to create a
unique profile of them. Learning tens of thousands of
websites likely would [27]. History sniffing attacks are
therefore classified based on how fast they can extract the
visited status of a URL. By limiting the rate at which this
information can leak, Fermata can make history sniffing
impractical. As an example, [27] indicates that an at-
tacker may need to sniff in excess of 10,000 URLs to
create a reasonable fingerprint for a user. With an attack
like [24] the attacker can read 60 or more URLs per sec-
ond. Previous attacks not utilizing timing side channels
read in excess of 30,000 URLs per second.

We expect that Fermata would allow a channel band-
width of ≤ 50 bits per second in the general case, and
≤ 10 for security critical workflows. The protection is
even stronger than initially obvious, as attacks that rely
on small timing differences are entirely unusable. Only
attacks that can scale their detection thresholds up (for
example, Andrysco et al [1]) can still leak data. If the at-
tack relies on a small, inherent microarchitecture timing,
such as Oren et al’s [19] cache timing attack, which mea-
sured differences around 100ns, this timing difference
may no longer be perceptible at all. An additional ben-
efit is that many of these attacks require intensive learn-
ing phases, during which many measurements must be
taken to establish timing profiles. Fermata would force
this learning phase to take significantly longer, adding

USENIX Association 25th USENIX Security Symposium 471

to the time-per-bit of information extracted. From this
survey of previous attacks, we believe that a strong lim-
itation on channel bandwidth represents an powerful de-
fense against timing attacks in browsers.

4.2 Threat model
We define our attacker as the canonical web attacker who
legitimately controls some domain and server. They are
able to cause the victim to visit this page in Fermata
and run associated JavaScript. The attacker thus has two
viewpoints we must consider: any external server con-
trolled by the attacker and the JavaScript running in Fer-
mata.

The attacker in our case possesses a timing side-
channel vulnerability they wish to use on Fermata. The
specific form of the vulnerability does not matter, only
that it can be abstracted as a single JavaScript function
that is called either synchronously or asynchronously.
The attacker uses the duration of this function to derive
secret information about the victim, possibly repeatedly.

We do not present a solution for plugins like Adobe
Flash or Java applets. Significant changes to the runtime
of these plugins on-par with Fermata itself would need to
be made for them to be similarly resistant. Considering
the number of known vulnerabilities and privacy disclo-
sures in most of these plugins, we do not believe they
should be a part of a browser design focusing on secu-
rity and privacy. Alternatively, such plugins should be
disabled during sensitive work flows.

The attacker succeeds against Fermata if they are able
to extract bits using their side channel at a higher rate
than the maximum channel bandwidth.

4.3 Design goals and challenges for Fermata
Fermata must mediate the execution of JavaScript to re-
move all exitless clocks and degrade all exiting clocks.
This would include mediating and randomly delay-
ing all network I/O, local I/O, communication between
JavaScript instances (iframes, workers, etc), and commu-
nication to other processes (IPC). If Fermata were addi-
tionally able to make all DOM accesses by JavaScript
asynchronous and delay them in the same principled
fashion, this would accomplish our goals. The coupling
of JavaScript’s globally accessible variables to the DOM
represents the most significant challenge to such a de-
sign and presents a shared state problem not found in the
model for this work [10].

Given this shared state problem, Fermata has two op-
tions for JavaScript: redesign JavaScript execution to be
entirely asynchronous or degrade explicit clocks and me-
diate known APIs in a principled manner. The former
provides a formal guarantee but cannot be done in cur-
rent browser architectures. We explore options for the
latter later in this section and in Fuzzyfox.

4.4 Fermata guarantees
We believe that the analysis of Hu’s fuzzytime by Gray
in [5] applies to Fermata. The means that we can place
an upper bound on the leakage rate of Fermata at 1

g/2
symbols per second, assuming the median tick rate of g

2 .
As in [5], we assume that increasing the size of the al-

phabet used will provide negligible benefits. Thus, this
bound is an upper bound for the bits-per-second leakage
rate of Fermata. We view the vulnerable functionality
targeted by the attacker in the strongest possible way:
the attacker has complete control over when and how it
leaks timing information. This is effectively the high/low
privilege covert channel scenario the fuzzytime disk con-
tention channel is analyzed under. Similarly, in Fermata,
the leaking feature may have access to the same fuzzy
clock as the attacker. This allows them to synchronize in-
stantly from “low to high” privilege as in the fuzzytime
analysis. Thus, the side channel threat model Fermata
operates under is a subset of the fuzzy time model.

There is further analysis of the capacity of covert chan-
nels with fuzzy time defenses in [6]. The general case
problem of covert channel capacity under fuzzy time ap-
pears to be intractable but can be bounded under specific
circumstances.

4.4.1 Transmitted bits vs information learned

Fermata makes a guarantee about the actual transmitted
bitrate of some side channel. This has obvious benefits in
the case of leaking a CSRF token or a cryptographic key:
the bits the attacker needs to learn equals the number of
bits in the key or token. However, this becomes trickier
to quantify with a goal like history sniffing where the
details of the side channel can influence what the attacker
learns with each leaked bit.

Consider a timing side channel that can indicate if a
single URL has been visited by the victim one at a time.
Each time the channel is used one bit of information
(visit status of the URL) is leaked. If the attacker wishes
to learn the visit status of 10,000 URLs they must check
each individually.

If instead a timing side channel could indicate if any
URLs from an arbitrary set were visited, the attacker
could use this along with prior knowledge that almost all
URLs have not been visited to learn about more URLs in
less bits. Given some set of 10,000 URLs, the side chan-
nel indicates that at least one was visited and then, in a
divide-and-conquer approach, the first half indicates that
none were visited. How many bits were leaked? Two
bits were transmitted: that some URLs were visited in
the 10,000, and that no URLs in the first 5,000 were vis-
ited. However, we have learned the visit status of 5,000
URLs. This is only possible because the attacker can as-
sume the majority of URLs are not visited.

We believe that Fermata’s guarantees still constitute a

472 25th USENIX Security Symposium USENIX Association

valuable defense against using timing side channels for
history sniffing. First, not all history sniffing side chan-
nels have allowed checking the visit status of batches of
URLs. In these cases Fermata limits learning the visit
status of each URL individually. Second, if the attacker
wishes to learn specific URLs from the browsing history
(ex: to launch a targeted phishing attack), rather than just
learn a rough fingerprint, they will still need to examine
each individual URL regardless of how the side channel
can operate.

Fermata cannot provably prevent a timing side chan-
nel from operating; it can only constrain the rate of bits
transmitted across the channel. For any side channel it
is important to consider the attacker’s goals along with
how the side channel operates to understand what level
of mitigation Fermata will provide. There are multiple
reasons (compression, prior knowledge, etc.) that might
lead to a side channel exhibiting behavior like described
above. In all of these cases Fermata provides the same
guarantee about channel bandwidth.

4.5 Isolating JavaScript from the world
A potential solution for JavaScript is to remove all
run-to-completion violations, effectively ensuring that
JavaScript cannot observe any state changes to the DOM
or otherwise during a single execution. This necessarily
includes all realtime clock accesses, as well as any
other discovered exitless clocks. Since JavaScript will
always have access to a fine grained minor clock (the
for loop), it is critical that all exitless major clocks be
removed. In the case of performance.now, this will
result in the feature becoming an exiting clock, requiring
that JavaScript stop execution before the available clock
value changes.

The catch of the latter method is in how to remove all
potential exitless clocks. If the upcoming SharedArray-
Buffer API becomes available, this presents a highly ac-
curate exitless clock that Fermata cannot mitigate with-
out returning it to a message passing interface. Remov-
ing all of these potential exitless clocks requires an ex-
amination of all interfaces the JavaScript runtime has.

With all exitless clocks removed, the design need only
focus on degrading exiting clocks to meet the target max-
imum channel bandwidth.

4.6 Degrading explicit clocks
Explicit clocks (ex: performance.now, Date, etc.)
are degraded to some granularity g and update unpre-
dictably. As in Hu [10], we accomplish this by perform-
ing updates to the clock value (at the granularity g) at
randomized intervals. g is a multiple of the native OS
time grain gn (generally 1ns). Each randomized inter-
val is a “tick,” during which the available explicit clocks
do not change. At the beginning of each tick, we up-

date the Fermata clock to the rounded-down wallclock.
Since the tick duration is not the same as g, the Fermata
clocks will not always change in value every tick. This
design guarantees that the available explicit clocks are
only ever behind and are behind by a bounded amount of
time, g−gn+(g/2). Note that a clock’s granularity does
not alone define the accuracy to which it can be used to
time some event, as seen with section 2.

Tick duration is not constant but is instead drawn from
a uniform distribution with a mean of g/2. If intervals
were constant and thus clock updates occurred exactly
on the grain, the attacker could use the same clock-edge
technique as in section 2.

4.7 Delaying events

The randomized update intervals (ticks) are further di-
vided into alternating upticks and downticks for the pur-
poses of delaying events and I/O. This mimics their usage
in Hu [10]. Downticks cause outbound queued events to
be flushed, and upticks cause inbound events to be deliv-
ered.

4.8 Tuning Fermata

Since the defensive guarantee provided by Fermata is
only a maximum channel bandwidth, a few users may
want to change the tradeoff between responsiveness and
privacy. Fermata will provide this option via a tunable
privacy setting that allows setting the acceptable leaking
channel bandwidth. In turn, this will modify the aver-
age tick duration and the explicit time granularity, both
of which affect usability. We expect that only developers
(including of browser forks like Tor Browser) or users
with specific privacy needs would interact with these set-
tings.

5 Fuzzyfox prototype implementation

In this section we describe Fuzzyfox4, a prototype imple-
menting many of the principles of the Fermata design in
Mozilla Firefox. Fuzzyfox is not a complete Fermata so-
lution but does show that the removal of exitless clocks
and the delaying of events is a feasible design strategy
for a browser.

Fuzzyfox attempts to mitigate the clocks of sections 2
and 3 by using the ideas in Fermata. Web browsers have
an interest in degrading clocks available to JavaScript to
reduce the impact of both known and unknown timing
channel attacks. Fuzzyfox is a concrete demonstration
of techniques that will make a browser more resistant to
such timing attacks. As in Fermata, Fuzzyfox has a clock
grain setting (g) and an average tick duration (ta = g/2).
All explicit clocks in Fuzzyfox report multiples of g.

We will refer to Firefox when discussing default be-
havior and Fuzzyfox when discussing the changes made.

USENIX Association 25th USENIX Security Symposium 473

5.1 Why Fuzzyfox?

We built Fuzzyfox for three reasons:

1. Building a new web browser is a monumental task.
2. We did not know if a Fermata-style design would re-

sult in a usable experience. It was entirely possible
that the delays induced would render any Fermata-
style designs unusable.

3. We want to deploy the insights of channel bandwidth
mitigation to real systems like Tor Browser.

Fuzzyfox does not have the complete auditability ad-
vantages that Fermata would. However, we believe that
our insights about principled fuzzying of explicit clocks
can be directly applied to Tor Browser as an improve-
ment to their ongoing efforts.

5.2 PauseTask

The core of the Fuzzyfox implementation is the
PauseTask, a recurring event on the main thread event
queue. The PauseTask provides two primary func-
tions: it implicitly divides the execution of the event
queue into discrete intervals, and it serves as the arbiter
of uptick and downtick events.

Once Firefox has begun queuing events on the event
queue, Fuzzyfox ensures that the first PauseTask gets
added to the queue. From this point on, there will always
be exactly one PauseTask on the event queue.
PauseTask does the following on each execution:

determines remaining duration, generates retroactive
ticks, sleeps remaining duration, updates clocks, flushes
queues, and queues the next PauseTask.

Determine remaining duration

The PauseTask checks the current OS realtime clock
(T1) with microsecond accuracy using gettimeofday.
Comparing this against the expected time between ticks
(De) and the end of the last PauseTask (T2) gives the
actual duration (Da). If Da ≤ De, PauseTask skips di-
rectly to sleeping away the remaining duration, De −Da.

Optional: Retroactive ticks

Otherwise, PauseTask must retroactively generate the
upticks and downticks that should have occurred. This
ensures that even by being long running JavaScript can-
not force a 0 sleep duration PauseTask.

Sleep remaining duration

PauseTask finishes out the remaining duration via
usleep. usleep is not perfectly accurate, and has a
fixed overhead cost. In our testing, usleep error varies
based on the duration but is never enough to be an issue
for Fuzzyfox.

Update all system clocks and flush queues

PauseTask now generates the new canonical system
time. This is accomplished by taking the OS realtime
clock and rounding down to the Fuzzyfox clock grain
setting.

There are two underlying explicit time sources
available to JavaScript, Time and performance.
PauseTask directly updates the canonical TimeStamp
time, which is used by performance, and delivers a
message to the JavaScript runtimes to update Time’s
canonical time. Our review found that all of the other
time sources we knew of used TimeStamp.

In our prototype, the only I/O queue that needs to
be flushed is the DelayChannelQueue (see section 5.3.)
This only occurs if the currently executing PauseTask
is a downtick.

Queue next PauseTask event

Finally, PauseTask queues the next PauseTask on
the event queue. This sets the start time (T1), marks
the new PauseTask as either uptick or downtick, as
well as drawing a random duration from the uniformly
random distribution between 1 to 2× ta. PauseTasks
are queued exclusively on the main thread to ensure they
block JavaScript execution as well as all DOM manipu-
lation events.

5.3 Queuing
All events visible to JavaScript must be queued in Fuzzy-
fox. Unfortunately, there is not a singular place or even
explicit queues available for all events in Firefox. We
use PauseTask to create implicit queues for all main
thread events (including JavaScript callbacks, all DOM
manipulations, all animations, and others) and construct
our own queuing for network connections.

Timer events (including CSS animations,
setTimeout, etc.) do not need to be explicitly
modified from Firefox behavior, as they run in a separate
thread that checks when timers should fire based on
TimeStamp. As Fuzzyfox ensures all TimeStamps are
set to our canonical Fuzzyfox time, this is not a problem.

DelayChannelQueue

We implemented a simple arbitrary length
queue for outgoing network connections called
DelayChannelQueue. This queue contains any
channels that have started to open and stops them from
connecting to their external resource. In the Fuzzyfox
prototype, we only queue outgoing HTTP requests,
although it could easily be extended to more channel
types. Upon receiving a downtick notification from
PauseTask, the queue is locked and all currently
queued channel connections are completed and flushed
from the queue.

474 25th USENIX Security Symposium USENIX Association

6 Fuzzyfox evaluation
We evaluated our prototype Fuzzyfox in both effective-
ness (how it degrades clocks) and performance.

All evaluations are compared against a clean Firefox
build without the Fuzzyfox patches. Firefox trunk5 was
used as the basis and built with default build settings.
Fuzzyfox patches are then applied on top of this com-
mit and built with the same configuration. All tests were
performed on an updated Ubuntu 14.04 machine with an
Intel i5-4460 and 14GB of RAM. The only applications
running during testing were the XFCE window manager
and Fuzzyfox. Fuzzyfox and Firefox were both tested
using the experimental e10s Firefox architecture. NSPR
logging was enabled to capture data about Fuzzyfox in-
ternals.

6.1 Limitations
Fuzzyfox is not a complete Fermata implementation and
is unable to guarantee a maximum channel bandwidth.
Since we did not isolate the JavaScript engine from the
DOM or all I/O operations, we did not interpose on all
interfaces as would be required in a Fermata implemen-
tation. This is purely a practical decision, as accomplish-
ing this in Firefox would require manually auditing the
entire codebase. We do not, for example, interpose on
synchronous IPC calls from JavaScript. See section 6.2.3
for an example of how this can break the Fermata guar-
antees.

Unfortunately, since our PauseTasks can be delayed
by long running JavaScript on the main thread, we can
no longer bound the difference between the OS realtime
clock and the available explicit clocks. We do still guar-
antee that all explicit clocks are only ever behind real-
time.

While we experimented with a number of different
grain settings, the settings providing very high privacy
guarantees (100s of milliseconds) have severe usability
impact. We believe that a clean Fermata implementation
may not incur such a strong usability impact at similar
grain settings.

6.2 Effectiveness
Effectiveness is measured as the available resolution for
a given clock. In the ideal case, all clocks in Fuzzyfox
should be degraded provide a resolution no less than g.
We measure the observed properties of the clocks de-
scribed in section 3 between Firefox and Fuzzyfox. We
set the explicit time granularity (g) to 100ms and the av-
erage PauseTask interval (ta) to 50ms for these tests.
We chose g= 100ms because a large g value most clearly
illustrates the difference between Fuzzyfox and Firefox.
See section 6.3 for an evaluation of the impact of high g
values on performance.

The following figures show scatter plots for several

Figure 12: performance.now measurements with
clock-edge on Fuzzyfox (exiting) and Firefox (exitless,
100ms grain)

Figure 13: Frame data clock measurements on Firefox
and Fuzzyfox

clock techniques as they operate in Firefox and in Fuzzy-
fox. In each, a perfectly accurate clock would follow the
dashed grey line on x = y. Note that these figures show
actual duration and clock technique duration, rather than
target duration and error as in section 3.3. This is due
to Fuzzyfox being unable to dependably schedule targets
less than g (100ms) in duration. Thus, while the same
testing code was used in Fuzzyfox and in Firefox, the
actual durations of events are much longer in Fuzzyfox.
Finally, there are no exitless clocks that we know of in
Fuzzyfox to test, which would have been a closer com-
parison.

6.2.1 performance.now

Since time no longer moves forward during JavaScript
execution, performance.now is now an exiting

USENIX Association 25th USENIX Security Symposium 475

Figure 14: WebVTT clock measurements on Firefox and
Fuzzyfox

clock. Figure 12 shows the results of using the
clock-edge technique on performance.now for both
Fuzzyfox and Firefox with a grain set to 100ms. Notably,
clock-edge no longer improves the accuracy of the mea-
surements! This demonstrates that the Fuzzyfox model
successfully degrades explicit clocks.

6.2.2 Video frame data

Unexpectedly, Fuzzyfox transforms the video frame data
clock from exitless to exiting. This is probably because
the frame extracted for canvas is determined using the
current explicit clock values (TimeStamp.) Since time
does not move forward during JavaScript execution,
frame data is now an exiting clock. In general, we expect
that run-to-completion violations (and by extension
most exitless clocks) would not be properly degraded by
Fuzzyfox. Figure 13 shows the exiting frame data clock
on Fuzzyfox and Firefox.

6.2.3 WebSpeech API

Fuzzyfox degrades the WebSpeech API only because
the elapsedTime field is drawn using the explicit
clocks in Fuzzyfox. The starting and stopping of the
speech is still synchronous, so it is possible some
other piece of information passed back by the speech
synthesis provider could provide a more accurate clock.
WebSpeech should not be considered properly isolated
by Fuzzyfox. Only if the starting and stopping of speech
synthesis were queued like other events would Fuzzyfox
correctly handle WebSpeech.

6.2.4 setTimeout

As setTimeout events are fired from the timer thread
based on the degraded explicit clocks, they are no longer
able to fire more often than the explicit time grain g of
100ms.

Figure 15: Page load times with variable depth for all
Fuzzyfox configurations at a spread of 2

var njs=document.createElement(’script’)
njs.setAttribute(’type’,’text/javascript’)
njs.setAttribute(’src’,’layer2.js’)
document.getElementsByTagName(’head’)[0].

appendChild(njs)

Figure 16: Iterative page load JavaScript

6.2.5 CSS Animations

As with setTimeout, CSS animation events are fired
from the timer thread based on the degraded explicit
clocks. Thus, they too are not able to be used as a clock
of finer grain than the explicit time grain g.

6.2.6 XMLHTTPRequests

XMLHTTPRequests are properly degraded by Fuzzyfox.
Since the callbacks for onprogress are queued on the
main event queue and then gated by PauseTask, they
are no longer timely when processed.

6.2.7 WebVTT subtitles

We examined the WebVTT subtitle implicit exiting clock
in detail, as it performed among the best with the clock-
edge technique on vanilla Firefox. Figure 14 shows the
results for the same WebVTT clock techniques as de-
scribed in section 3.2.2 on both Fuzzyfox and Firefox.
Note that the clockedge code provided no benefits to the
Fuzzyfox case.

6.3 Performance
Performance impact is difficult to measure, as most per-
formance tools for browsers rely on accurate time mea-
surements via JavaScript.

We performed a series of page load time tests, which
show predictable results. We measure the impact of both
depth of page loads and the spread of initial requests.

476 25th USENIX Security Symposium USENIX Association

Figure 17: Page load times with variable spread and
depth for g = 100ms

Figure 18: Page load times with variable spread and
depth for g = 5ms

Our testing setup consisted of 20 test pages and 5 dif-
ferent fuzzyfox/Firefox configurations. The depth of
the test pages represents how many sequential requests
are made. Each request consists of inserting a script
file of the form in figure 16. Each one has the loaded
script be the next “layer” down, with layer 0 being an
empty script. Thus, a test page that is 3 deep makes
4 sequential requests: page.html, layer2.js,
layer1.js, layer0.js. Spread is achieved by the
base page.html performing several duplicate initial
requests to the top layer. Thus, a spread of 2 and a depth
of 2 results in requests for: page.html, layer1.js,
layer1.js, layer0.js, layer0.js. After the fi-
nal page load completes, the total time from initial page
navigation until completion is stored, and this process is
repeated 1000 times per page test. We generate 20 test
pages by combining up to 5 layers of depth with a spread
from 1 to 5. We served the test pages via a basic nginx
configuration running on the same host as the browser.

Figures 15 and 17 show two different views of some
of the results, with the 95th percentile of load times be-
ing shown for g = 100ms. As expected, increasing the
spread for a given depth (as shown in figure 17) results
in almost no change to load times. All other browser
configurations (see figure 18 for g = 5ms) had nearly
identical results, with differing y-intercepts based on g.
This occurs because outgoing HTTP requests in Fuzzy-
fox are batched, so queuing multiple requests at once
does not incur any g-scaled penalties. However, as figure
15 shows, increasing the depth incurs a linear overhead
with the slope and intercept scaled by the value of g. The
worst case for Fuzzyfox are pages that do large numbers
of sequential loads, each requiring JavaScript to run be-
fore the next load can be queued. Unfortunately, many
modern webpages end up performing repeated loads of

various libraries and partial content. One potential solu-
tion would be more widespread use of HTTP2’s Server
Push which would alleviate the repeated g scaled penal-
ties for resource requests.

JavaScript engine tests, such as JetStream, reported
identical scores of 181 for both Firefox and Fuzzyfox.6

Fuzzyfox predictably records a maximum FPS equal to
the average PauseTask fire rate or 20 FPS for g =
100ms, as compared to 60 FPS in the Firefox case.

6.3.1 Tor Browser

We also ran our page load tests on vanilla Tor Browser7.
Rather than access the pages over the localhost interface,
they are accessed over the Tor network. No other changes
to the test setup were made. Due to the major changes in
routing, the load times we observed are far more variable
than in the Firefox or Fuzzyfox case and show no signif-
icant trends on the whole. If we compare the range of
page load times between Fuzzyfox (g = 100ms) and Tor
Browser in figures 19 and 20, we see that Tor Browser
imposes a significantly higher overhead most of the time
in both initial page load and in page load completion.
Other spread levels show similar behavior. As in pre-
vious figures we show the 95th percentile load comple-
tion times but we additionally show the range from the
minimum completion (onload fires) time as a shaded
region.

6.3.2 Real world page loads

Table 3 shows a rough macro-benchmark of real-world
page load times for Firefox, Fuzzyfox (various grains),
and Tor Browser. In each case, the same Google search
results page was loaded. These tests were manually per-
formed and the reported page load time comes from the
Firefox developer tools. Each load requested between

USENIX Association 25th USENIX Security Symposium 477

Figure 19: Range of page load completion times with
variable depth at a spread of 0 for Tor Browser and
Fuzzyfox g = 100ms

Figure 20: Range of page load completion times with
variable depth at a spread of 4 for Tor Browser and
Fuzzyfox g = 100ms

Browser or Grain(ms) Reported load time(s)
Reload Force Reload

Firefox 0.82 0.86
0.5 0.84 0.79
1 0.85 0.85
5 0.94 0.94
10 1.03 1.04
50 2.09 1.71
100 2.86 2.60
Tor 3.78 7.18

Table 3: Average page load times for https://www.g
oogle.com/?gws_rd=ssl#q=test+search with
10 reloads and 10 force reloads (no caching) on Firefox,
Fuzzyfox, and Tor Browser

9 and 12 resources. The “force reload” column corre-
sponds to a cache-less reload of the page, whereas the
“reload” column indicates the load time with caching al-
lowed. Minor differences between the reload and force
reload results for a given browser are not statistically sig-
nificant as we only have 10 samples.

While a larger study of more real-world pages would
be valuable, such a study is larger in scope than this paper
can cover. To perform such a measurement, we would
need to individually determine a “load complete” point
for each test page and re-instrument Fuzzyfox to enable
measurements at these exact points. Google search re-
sults were chosen specifically because they do not con-
tinue to load resources indefinitely as many major web-
sites do. (Ex: nytimes.com, youtube.com, etc.) We
therefore leave a more detailed real-world page load time
and user experience impact study to future work.

These metrics are incomplete, as they do not measure

interactivity of the pages, which can suffer in the Fuzzy-
fox case more than in Tor Browser. We leave further
analysis of various performance impacts to future work.

While higher g settings cause significant page load
time increases, these overheads are acceptable to some
privacy conscious users and developers as demonstrated
by Tor Browser. We do not have metrics for the impact of
using both Tor Browser and our Fuzzyfox patch set, but
we expect the overheads to be additive in the worst case.
One option for integration with Tor Browser specifically
would be to tune the value of g based on the setting of
the “security slider” [20].

In light of these metrics, a g setting of g≤ 5ms is likely
tolerable for average use cases, while higher settings (up
to and including g = 100ms) would likely be tolerated
by users of Tor Browser. Ideally the clock fuzzing and
other features as appropriate will be deployed in Firefox,
and can be configured for a higher g in Tor Browser. If
a more complete version of Fermata is developed, it will
be worthwhile to run user studies before deploying g set-
tings.

7 Related work
Popek and Kline [21] were the first to observe that the
presence of clocks opens covert channels. They sug-
gested that virtual machines be presented only with vir-
tual clocks, not “a real time measure.” Lipner [16] re-
sponded that keeping virtual machines from correlating
virtual time to real time is a “difficult problem,” since
time is “the one system-wide resource [. . .] that can be
observed in at least a coarse way by every user and ev-
ery program.” Lipner suggested “randomizing the rela-
tion of virtual and real time” to add noise to the channel.
Lipner also reported private communication from Saltzer

478 25th USENIX Security Symposium USENIX Association

that timing channels had been demonstrated in Multics
by mid-1975.

Digital’s VAX VMM Security Kernel project(initiated
in 1981 and canceled in 1990 before its evaluation at the
A1 level could be completed [12]) was the first system to
attempt to randomize the relationship of virtual and real
time. The VAX VMM Security Kernel team published
three important papers describing their system. The first,
by Karger et al. [11, 12], gave an overview of the system.
The second, by Wray [28], presented a theory of time
(“[w]e view the passage of time as being characterized
by a sequence of events which can be distinguished one
from another by an observer") and of timing channels
and is the source for our view, in this paper, of timing
channels as arising from the comparison of a reference
clock with a modulated clock. Wray noted that a process
that increments a variable in a loop can be used as a
clock. The third, by Hu [9, 10], described the VAX
VMM’s fuzzy time system and is the inspiration for
our paper. (A 2012 retrospective [15], though not the
contemporaneous papers, reveals that the fuzzy time idea
was developed in collaboration with the National Secu-
rity Agency’s Robert Morris.) We describe many of the
details of the fuzzy time system elsewhere in the paper.
The 1992 journal version [9] of Hu’s paper gives a more
complete security analysis than does the 1991 conference
version [10]. In particular, it notes that fuzzy time would
be defeated if the VM could devote a processor thread to
incrementing a counter in memory shared with its other
processor threads. This attack did not affect the Vax
VMM Security Kernel, since it limited virtual machines
to a single processor and did not support shared mem-
ory; it would apply to browsers if the proposed Shared
Memory and Atomics specification [8] is implemented.

Several followup papers examined the security of
fuzzy time. Trostle [25] observed that if scheduler
time quanta coincide with upticks and if the scheduler
employs a simple FIFO policy, then the scheduler can be
used as a covert channel with 50 bps channel capacity.
To send a bit, a high process either takes its entire time
quantum or yields the processor; low processes try to
send messages to each other in each time quantum.
Which and how many messages arrived reveals the
high process’ bit. Gray showed attacks on fuzzy time
that exploit bus contention [7] and calculated a channel
capacity for shared buses under fuzzy time under the
assumption (satisfied in the case of the VAX VMM
Security Kernel) that a low receiver can immediately
notify the high sender when it receives an uptick [5]. A
later tech report combines both papers by Gray [6].

Martin et al. [17] translated fuzzy time to the mi-
croarchitectural setting, proposing and evaluating a new
microarchitecture in which execution is divided into
variable-length “epochs.” The rdtsc instruction delays

execution until the next epoch and returns a cycle count
randomly chosen from the last epoch. Because their fo-
cus is microarchitectural timing channels, Martin et al.
argue that other sources of time, such as interrupt deliv-
ery, are inherently too coarse grained to need fuzzing.
Martin et al. observe that simply rounding rdtsc to
some granularity would be susceptible to clock-edge ef-
fects.

The success of infrastructure-as-a-service cloud
computing brought with it the risk of cross-VM side
channels [22]. Aviram et al. [2] proposed to close timing
channels in cloud computing by enforcing deterministic
execution and experimented with compiling a Linux
kernel and userland not to use high-resolution timers
like rdtsc, observing a drop in throughput. Vattikonda
et al. [26] showed that it is possible to virtualize rdtsc
for Xen guests, reducing its resolution (but allowing
clock-edge attacks). Ford [4] proposed timing infor-
mation flow control, or TIFC, “an extension of DIFC
for reasoning about [. . .] the propagation of sensitive
information into, out of, or within a software system
via timing channels,” and proposed two mechanisms
for implementing TIFC: deterministic execution and
“pacing queues,” which are an extension of the VAX
VMM Security Kernel’s interrupt queue mechanism.

Li et al. [13, 14] describe StopWatch, a virtual ma-
chine manager designed to defeat timing side channel
attacks. In StopWatch, clocks are virtualized to “a de-
terministic function of the VM’s instructions executed so
far”; multiple replicas of each VM are run in lockstep,
and I/O timing for all of them is determined by the (vir-
tual) time observed by the median replica.

Finally, Wu et Al. [29] present Deterland, a hypervisor
that runs legacy operating systems deterministically. De-
terland splits time into ticks and allows I/O only on tick
boundaries. As in StopWatch, virtual time in Deterland
is a function of the number of instructions executed.

8 Conclusions and future work

Restricting or removing timing side channels is a com-
plex task. Simple degradation of available explicit clocks
is an insufficient solution, allowing clock-edge tech-
niques and implicit clocks to obtain additional timing in-
formation.

By drawing upon the lessons learned from trusted op-
erating systems literature, we believe that browsers can
be architected to mitigate all possible timing side chan-
nels. We propose Fermata as a design goal for such a
verifiably resistant browser. Our Fuzzyfox patches to
Firefox show that a Fermata-like design can intelligently
make tradeoffs between performance and security, while
not breaking the current interactions with JavaScript.
Fuzzyfox empirically degrades clocks in a way that is

USENIX Association 25th USENIX Security Symposium 479

not susceptible to clock-edge techniques, protecting tim-
ing information.

Fuzzyfox requires a number of engineering improve-
ments before it is ready to deploy to users, but it has
proved that the fuzzy time concept can be applied to
browsers. Notably, more experiments with setting chan-
nel bandwidth and exposing such settings to users need to
be performed. Additionally, Fuzzyfox does not hook in-
bound network events, which a cooperating server could
use to derive the duration of events in Fuzzyfox. Other
interfaces (WebSockets, WebAudio, other media APIs)
should be investigated for behavior that would break the
Fuzzyfox design. We expect that with these changes
Fuzzyfox could be adapted for use in projects like Tor
Browser and protect real users against timing attacks.

Acknowledgements
We thank Kyle Huey, Patrick McManus, Eric Rescorla,
and Martin Thomson at Mozilla for helpful discussions
about this work, and for sharing their insights with us
about Firefox internals. We are also grateful to Keaton
Mowery and Mike Perry for helpful discussions, and
to our anonymous reviewers and to David Wagner, our
shepherd, for their detailed comments.

We additionally thank Nina Chen for assistance with
editing and graph design.

This material is based upon work supported by
the National Science Foundation under Grants No.
1228967 and 1514435, and by a gift from Mozilla.

References
[1] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala,

S. Lerner, and H. Shacham, “On subnormal floating
point and abnormal timing,” in Proceedings of IEEE
Security and Privacy (“Oakland”) 2015, L. Bauer and
V. Shmatikov, Eds. IEEE Computer Society, May 2015.

[2] A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determi-
nating timing channels in compute clouds,” in Proceed-
ings of CCSW 2010, A. Perrig and R. Sion, Eds. ACM
Press, Oct. 2010.

[3] D. Cock, Q. Ge, T. Murray, and G. Heiser, “The last mile:
An empirical study of timing channels on seL4,” in Pro-
ceedings of CCS 2014, M. Yung and N. Li, Eds. ACM
Press, Nov. 2014, pp. 570–81.

[4] B. Ford, “Plugging side-channel leaks with timing infor-
mation flow control,” in Proceedings of HotCloud 2012,
R. Fonseca and D. Maltz, Eds. USENIX, Jun. 2012.

[5] J. W. Gray, “On analyzing the bus-contention channel un-
der fuzzy time,” in Proceedings of CSFW 1993, C. Mead-
ows, Ed. IEEE Computer Society, Jun. 1993, pp. 3–9.

[6] ——, “Countermeasures and tradeoffs for a class of
covert timing channels,” Hong Kong University of Sci-
ence and Technology, Tech. Rep. HKUST-CS94-18,
1994, online: http://hdl.handle.net/1783.1/25.

[7] ——, “On introducing noise into the bus-contention
channel,” in Proceedings of IEEE Security and Privacy
(“Oakland”) 1993, R. Kemmerer and J. Rushby, Eds.
IEEE Computer Society, May 1993, pp. 90–98.

[8] L. T. Hansen, “ECMAScript shared memory and atom-
ics,” Online: http://tc39.github.io/ecmascript_sharedm
em/shmem.html, Feb. 2016.

[9] W.-M. Hu, “Reducing timing channels with fuzzy time,”
J. Computer Security, vol. 1, no. 3-4, pp. 233–54, 1992.

[10] ——, “Reducing timing channels with fuzzy time,” in
Proceedings of IEEE Security and Privacy (“Oakland”)
1991, T. F. Lunt and J. McLean, Eds. IEEE Computer
Society, May 1991, pp. 8–20.

[11] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason,
and C. E. Kahn, “A VMM security kernel for the VAX ar-
chitecture,” in Proceedings of IEEE Security and Privacy
(“Oakland”) 1990, D. M. Cooper and T. F. Lunt, Eds.
IEEE Computer Society, May 1990, pp. 2–19.

[12] ——, “A retrospective on the VAX VMM security ker-
nel,” IEEE Trans. Software Engineering, vol. 17, no. 11,
pp. 1147–65, Nov. 1991.

[13] P. Li, D. Gao, and M. K. Reiter, “Mitigating access-driven
timing channels in clouds using StopWatch,” in Proceed-
ings of DSN 2013, G. Candea, Ed. IEEE/IFIP, Jun. 2013.

[14] ——, “StopWatch: A cloud architecture for timing chan-
nel mitigation,” ACM Trans. Info. & System Security,
vol. 17, no. 2, Nov. 2014.

[15] S. Lipner, T. Jaeger, and M. E. Zurko, “Lessons from
VAX/SVS for high-assurance VM systems,” IEEE Secu-
rity & Privacy, vol. 10, no. 6, pp. 26–35, Nov.–Dec. 2012.

[16] S. B. Lipner, “A comment on the confinement problem,”
ACM SIGOPS Operating Systems Review, vol. 9, no. 5,
pp. 192–96, Nov. 1975.

[17] R. Martin, J. Demme, and S. Sethumadhavan, “Time-
Warp: Rethinking timekeeping and performance moni-
toring mechanisms to mitigate side-channel attacks,” in
Proceedings of ISCA 2012, J. Torrellas, Ed. ACM Press,
Jun. 2012, pp. 118–29.

[18] Mozilla, “Javascript concurrency model and event loop,”
2016, online: https://developer.mozilla.org/en-US/docs/
Web/JavaScript/EventLoop#Run-to-completion.

[19] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis, “The spy in the sandbox: Practical cache at-
tacks in JavaScript and their implications,” in Proceed-
ings of CCS 2015, C. Kruegel and N. Li, Eds. ACM
Press, Oct. 2015.

[20] M. Perry, “Tor browser 4.5 is released,” Apr. 2015, online:
https://blog.torproject.org/blog/tor-browser-45-released.

480 25th USENIX Security Symposium USENIX Association

[21] G. J. Popek and C. S. Kline, “Verifiable secure operating
system software,” in Proceedings of the May 6-10, 1974,
National Computer Conference and Exposition. ACM,
May 1974, pp. 145–51.

[22] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, you, get off of my cloud! Exploring information
leakage in third-party compute clouds,” in Proceedings of
CCS 2009, S. Jha and A. Keromytis, Eds. ACM Press,
Nov. 2009, pp. 199–212.

[23] M. Seaborn, “Security: Chrome provides high-res timers
which allow cache side channel attacks,” 2015, on-
line: https://bugs.chromium.org/p/chromium/issues/deta
il?id=508166.

[24] P. Stone, “Pixel perfect timing attacks with HTML5,” Pre-
sented at Black Hat 2013, Jul. 2013, online: http://contex
tis.co.uk/documents/2/Browser_Timing_Attacks.pdf.

[25] J. T. Trostle, “Modelling a fuzzy time system,” in Pro-
ceedings of IEEE Security and Privacy (“Oakland”)
1993, R. Kemmerer and J. Rushby, Eds. IEEE Com-
puter Society, May 1993, pp. 82–89.

[26] B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating
fine grained timers in Xen (short paper),” in Proceedings
of CCSW 2011, T. Ristenpart and C. Cachin, Eds. ACM
Press, Oct. 2011.

[27] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A
practical attack to de-anonymize social network users,”
in Security and Privacy (SP), 2010 IEEE Symposium on.
IEEE, 2010, pp. 223–238.

[28] J. C. Wray, “An analysis of covert timing channels,” in
Proceedings of IEEE Security and Privacy (“Oakland”)

1991, T. F. Lunt and J. McLean, Eds. IEEE Computer
Society, May 1991, pp. 2–7.

[29] W. Wu, E. Zhai, D. I. Wolinsky, B. Ford, L. Gu, and
D. Jackowitz, “Warding off timing attacks in Deterland,”
in Proceedings of TRIOS 2015, L. Shrira, Ed. ACM
Press, Oct. 2015.

Notes

1https://bugzilla.mozilla.org/
show_bug.cgi?id=711043

2https://trac.torproject.org/projects/
tor/ticket/1517

3commit 0ec3174fe63d8139f842ce9eb6639349759ff4e5
4Fuzzyfox is available as a branch at https://gi
thub.com/dkohlbre/gecko-dev. It should be
treated as an engineering prototype.

5Firefox tests were done with commit
0ec3174fe63d8139f842ce9eb6639349759ff4e5
for clock tests, and
c4afaf3404986ccc1d221bc7f4f3f1dcf39b06fc for
the page load tests

6Fuzzyfox was modified to report valid
performance.now results for performance test-
ing

7Tor Browser git revision:
b60b8871fa08feaaca24bcf6dff43df0cd1c5f29 modi-
fied to report accurate performance.now values

USENIX Association 25th USENIX Security Symposium 481

Tracing Information Flows Between Ad Exchanges Using Retargeted Ads

Muhammad Ahmad Bashir
Northeastern University

ahmad@ccs.neu.edu

Sajjad Arshad
Northeastern University

arshad@ccs.neu.edu

William Robertson
Northeastern University

wkr@ccs.neu.edu

Christo Wilson
Northeastern University

cbw@ccs.neu.edu

Abstract
Numerous surveys have shown that Web users are con-
cerned about the loss of privacy associated with online
tracking. Alarmingly, these surveys also reveal that peo-
ple are also unaware of the amount of data sharing that
occurs between ad exchanges, and thus underestimate the
privacy risks associated with online tracking.

In reality, the modern ad ecosystem is fueled by a flow
of user data between trackers and ad exchanges. Al-
though recent work has shown that ad exchanges rou-
tinely perform cookie matching with other exchanges,
these studies are based on brittle heuristics that cannot
detect all forms of information sharing, especially under
adversarial conditions.

In this study, we develop a methodology that is able
to detect client- and server-side flows of information be-
tween arbitrary ad exchanges. Our key insight is to lever-
age retargeted ads as a tool for identifying information
flows. Intuitively, our methodology works because it re-
lies on the semantics of how exchanges serve ads, rather
than focusing on specific cookie matching mechanisms.
Using crawled data on 35,448 ad impressions, we show
that our methodology can successfully categorize four
different kinds of information sharing behavior between
ad exchanges, including cases where existing heuristic
methods fail.

We conclude with a discussion of how our findings
and methodologies can be leveraged to give users more
control over what kind of ads they see and how their in-
formation is shared between ad exchanges.

1 Introduction

People have complicated feelings with respect to online
behavioral advertising. While surveys have shown that
some users prefer relevant, targeted ads to random, un-
targeted ads [60, 14], this preference has caveats. For
example, users are uncomfortable with ads that are tar-

geted based on sensitive Personally Identifiable Informa-
tion (PII) [44, 4] or specific kinds of browsing history
(e.g., visiting medical websites) [41]. Furthermore, some
users are universally opposed to online tracking, regard-
less of circumstance [46, 60, 14].

One particular concern held by users is their “digi-
tal footprint” [33, 65, 58], i.e., which first- and third-
parties are able to track their browsing history? Large-
scale web crawls have repeatedly shown that trackers are
ubiquitous [24, 19], with DoubleClick alone being able
to observe visitors on 40% of websites in the Alexa Top-
100K [11]. These results paint a picture of a balkanized
web, where trackers divide up the space and compete for
the ability to collect data and serve targeted ads.

However, this picture of the privacy landscape is at
odds with the current reality of the ad ecosystem. Specif-
ically, ad exchanges routinely perform cookie matching
with each other, to synchronize unique identifiers and
share user data [2, 54, 21]. Cookie matching is a pre-
condition for ad exchanges to participate in Real Time
Bidding (RTB) auctions, which have become the domi-
nant mechanism for buying and selling advertising inven-
tory from publishers. Problematically, Hoofnagle et al.
report that users naïvely believe that privacy policies pre-
vent companies from sharing user data with third-parties,
which is not always the case [32].

Despite user concerns about their digital footprint, we
currently lack the tools to fully understand how informa-
tion is being shared between ad exchanges. Prior empiri-
cal work on cookie matching has relied on heuristics that
look for specific strings in HTTP messages to identify
flows between ad networks [2, 54, 21]. However, these
heuristics are brittle in the face of obfuscation: for exam-
ple, DoubleClick cryptographically hashes their cookies
before sending them to other ad networks [1]. More fun-
damentally, analysis of client-side HTTP messages are
insufficient to detect server-side information flows be-
tween ad networks.

1

482 25th USENIX Security Symposium USENIX Association

In this study, we develop a methodology that is able
to detect client- and server-side flows of information be-
tween arbitrary ad exchanges that serve retargeted ads.
Retargeted ads are the most specific form of behavioral
ads, where a user is targeted with ads related to the exact
products she has previously browsed (see § 2.2 for defi-
nition). For example, Bob visits nike.com and browses
for running shoes but decides not to purchase them. Bob
later visits cnn.com and sees an ad for the exact same
running shoes from Nike.

Our key insight is to leverage retargeted ads as a mech-
anism for identifying information flows. This is possi-
ble because the strict conditions that must be met for a
retarget to be served allow us to infer the precise flow
of tracking information that facilitated the serving of the
ad. Intuitively, our methodology works because it relies
on the semantics of how exchanges serve ads, rather than
focusing on specific cookie matching mechanisms.

To demonstrate the efficacy of our methodology, we
conduct extensive experiments on real data. We train 90
personas by visiting popular e-commerce sites, and then
crawl major publishers to gather retargeted ads [9, 12].
Our crawler is an instrumented version of Chromium that
records the inclusion chain for every resource it encoun-
ters [5], including 35,448 chains associated with 5,102
unique retargeted ads. We use carefully designed pattern
matching rules to categorize each of these chains, which
reveal 1) the pair of ad exchanges that shared informa-
tion in order to serve the retarget, and 2) the mechanism
used to share the data (e.g., cookie matching).

In summary, we make the following contributions:

• We present a novel methodology for identifying
information flows between ad networks that is
content- and ad exchange-agnostic. Our methodol-
ogy allows to identify four different categories of in-
formation sharing between ad exchanges, of which
cookie matching is one.

• Using crawled data, we show that the heuristic
methods used by prior work to analyze cookie
matching are unable to identify 31% of ad exchange
pairs that share data.

• Although it is known that Google’s privacy policy
allows it to share data between its services [26],
we provide the first empirical evidence that Google
uses this capability to serve retargeted ads.

• Using graph analysis, we show how our data can
be used to automatically infer the roles played
by different ad exchanges (e.g., Supply-Side and
Demand-Side Platforms). These results expand
upon prior work [25] and facilitate a more nuanced
understanding of the online ad ecosystem.

Ultimately, we view our methodology as a stepping
stone towards more balanced privacy protection tools for

users, that also enable publishers to earn revenue. Sur-
veys have shown that users are not necessarily opposed
to online ads: some users are just opposed to track-
ing [46, 60, 14], while others simply desire more nu-
anced control over their digital footprint [4, 41]. How-
ever, existing tools (e.g., browser extensions) cannot dis-
tinguish between targeted and untargeted ads, thus leav-
ing users with no alternative but to block all ads. Con-
versely, our results open up the possibility of building
in-browser tools that just block cookie matching, which
will effectively prevent most targeted ads from RTB auc-
tions, while still allowing untargeted ads to be served.

Open Source. As a service to the community, we
have open sourced all the data from this project. This
includes over 7K labeled behaviorally targeted and retar-
geted ads, as well as the inclusion chains and full HTTP
traces associated with these ads. The data is available at:

http://personalization.ccs.neu.edu/

2 Background and Definitions

In this section, we set the stage for our study by providing
background about the online display ad industry, as well
as defining key terminology. We focus on techniques and
terms related to Real Time Bidding and retargeted ads,
since they are the focus of our study.

2.1 Online Display Advertising
Online display advertising is fundamentally a matching
problem. On one side are publishers (e.g., news web-
sites, blogs, etc.) who produce content, and earn revenue
by displaying ads to users. On the other side are adver-
tisers who want to display ads to particular users (e.g.,
based on demographics or market segments). Unfortu-
nately, the online user population is fragmented across
hundreds of thousands of publishers, making it difficult
for advertisers to reach desired customers.

Ad networks bridge this gap by aggregating inventory
from publishers (i.e., space for displaying ads) and fill-
ing it with ads from advertisers. Ad networks make it
possible for advertisers to reach a broad swath of users,
while also guaranteeing a steady stream of revenue for
publishers. Inventory is typically sold using a Cost per
Mille (CPM) model, where advertisers purchase blocks
of 1000 impressions (views of ads), or a Cost per Click
(CPC) model, where the advertiser pays a small fee each
time their ad is clicked by a user.

Ad Exchanges and Auctions. Over time, ad net-
works are being supplanted by ad exchanges that rely
on an auction-based model. In Real-time Bidding (RTB)
exchanges, advertisers bid on individual impressions, in
real-time; the winner of the auction is permitted to serve

2

USENIX Association 25th USENIX Security Symposium 483

User Publisher SSP DSPs AdvertisersAd Exchange

Ads & $$$
2) RTB1) Impression

3) Ad

Figure 1: The display advertising ecosystem. Impressions and tracking data flow left-to-right, while revenue and ads
flow right-to-left.

an ad to the user. Google’s DoubleClick is the largest ad
exchange, and it supports RTB.

As shown in Figure 1, there is a distinction between
Supply-side Platforms (SSPs) and Demand-side Plat-
forms (DSPs) with respect to ad auctions. SSPs work
with publishers to manage their relationships with mul-
tiple ad exchanges, typically to maximize revenue. For
example, OpenX is an SSP. In contrast, DSPs work with
advertisers to assess the value of each impression and
optimize bid prices. MediaMath is an example of a DSP.
To make matters more complicated, many companies of-
fer products that cross categories; for example, Rubicon
Project offers SSP, ad exchange, and DSP products. We
direct interested readers to [45] for more discussion of
the modern online advertising ecosystem.

2.2 Targeted Advertising
Initially, the online display ad industry focused on
generic brand ads (e.g., “Enjoy Coca-Cola!”) or contex-
tual ads (e.g., an ad for Microsoft on StackOverflow).
However, the industry quickly evolved towards behav-
ioral targeted ads that are served to specific users based
on their browsing history, interests, and demographics.

Tracking. To serve targeted ads, ad exchanges and
advertisers must collect data about online users by track-
ing their actions. Publishers embed JavaScript or invis-
ible “tracking pixels” that are hosted by tracking com-
panies into their web pages, thus any user who visits
the publisher also receives third-party cookies from the
tracker (we discuss other tracking mechanisms in § 3).
Numerous studies have shown that trackers are perva-
sive across the Web [38, 36, 55, 11], which allows ad-

GET /pixel.jpg HTTP/1.1
Cookie: id=123456

HTTP/1.1 302 Found
Location: d.com/trackpixel?id=123456

GET /trackpixel?id=123456 HTTP/1.1
Cookie: id=ABCDEF

HTTP/1.1 200 OK

s.com

d.com

User

1)

2)

4)

3)

Figure 2: SSP s matches their cookie to DSP d using an
HTTP redirect.

vertisers to collect users’ browsing history. All major ad
exchanges, like DoubleClick and Rubicon, perform user
tracking, but there are also companies like BlueKai that
just specialize in tracking.

Cookie Matching. During an RTB ad auction, DSPs
submit bids on an impression. The amount that a DSP
bids on a given impression is intrinsically linked to the
amount of information they have about that user. For
example, a DSP is unlikely to bid highly for user u
whom they have never observed before, whereas a DSP
may bid heavily for user v who they have recently ob-
served browsing high-value websites (e.g., the baby site
TheBump.com).

However, the Same Origin Policy (SOP) hinders the
ability of DSPs to identify users in ad auctions. As shown
in Figure 1, requests are first sent to an SSP which for-
wards the impression to an exchange (or holds the auc-
tions itself). At this point, the SSP’s cookies are known,
but not the DSPs. This leads to a catch-22 situation: a
DSP cannot read its cookies until it contacts the user, but
it cannot contact the user without first bidding and win-
ning the auction.

To circumvent SOP restrictions, ad exchanges and ad-
vertisers engage in cookie matching (sometimes called
cookie syncing). Cookie matching is illustrated in Fig-
ure 2: the user’s browser first contacts ad exchange
s.com, which returns an HTTP redirect to its partner
d.com. s reads its own cookie, and includes it as a pa-
rameter in the redirect to d. d now has a mapping from
its cookie to s’s. In the future, if d participates in an auc-
tion held by s, it will be able to identify matched users
using s’s cookie. Note that some ad exchanges (includ-
ing DoubleClick) send cryptographically hashed cookies
to their partners, which prevents the ad network’s true
cookies from leaking to third-parties.

Retargeted Ads. In this study, we focus on retar-
geted ads, which are the most specific type of targeted
display ads. Two conditions must be met for a DSP
to serve a retargeted ad to a user u: 1) the DSP must
know that u browsed a specific product on a specific e-
commerce site, and 2) the DSP must be able to uniquely
identify u during an auction. If these conditions are met,
the DSP can serve u a highly personalized ad reminding
them to purchase the product from the retailer. Cookie

3

484 25th USENIX Security Symposium USENIX Association

matching is crucial for ad retargeting, since it enables
DSPs to meet requirement (2).

3 Related Work

Next, we briefly survey related work on online advertis-
ing. We begin by looking at more general studies of the
advertising and tracking ecosystem, and conclude with a
more focused examination of studies on cookie match-
ing and retargeting. Although existing studies on cookie
matching demonstrate that this practice is widespread
and that the privacy implications are alarming, these
works have significant methodological shortcomings that
motivate us to develop new techniques in this work.

3.1 Measuring the Ad Ecosystem

Numerous studies have measured and broadly character-
ized the online advertising ecosystem. Guha et al. were
the first to systematically measure online ads, and their
carefully controlled methodology has been very influen-
tial on subsequent studies (including this one) [27]. Bar-
ford et al. take a much broader look at the adscape to
determine who the major ad networks are, what fraction
of ads are targeted, and what user characteristics drive
targeting [9]. Carrascosa et al. take an even finer grained
look at targeted ads by training personas that embody
specific interest profiles (e.g., cooking, sports), and find
that advertisers routinely target users based on sensitive
attributes (e.g., religion) [12]. Rodriguez et al. measure
the ad ecosystem on mobile devices [61], while Zarras et
al. analyzed malicious ad campaigns and the ad networks
that serve them [66].

Note that none of these studies examine retargeted
ads; Carrascosa et al. specifically excluded retargets
from their analysis [12].

Trackers and Tracking Mechanisms. To facilitate
ad targeting, participants in the ad ecosystem must ex-
tensively track users. Krishnamurthy et al. have been
cataloging the spread of trackers and assessing the en-
suing privacy implications for years [38, 36, 37]. Roes-
ner et al. develop a comprehensive taxonomy of different
tracking mechanisms that store state in users’ browsers
(e.g., cookies, HTML5 LocalStorage, and Flash LSOs),
as well as strategies to block them [55]. Gill et al. use
large web browsing traces to model the revenue earned
by different trackers (or aggregators in their terminol-
ogy), and found that revenues are skewed towards the
largest trackers (primarily Google) [24]. More recently,
Cahn et al. performed a broad survey of cookie charac-
teristics across the Web, and found that less than 1% of
trackers can aggregate information across 75% of web-
sites in the Alexa Top-10K [11]. Falahrastegar et al. ex-

pand on these results by comparing trackers across geo-
graphic regions [20], while Li et al. show that most track-
ing cookies can be automatically detected using simple
machine learning methods [42].

Note that none of these studies examine cookie match-
ing, or information sharing between ad exchanges.

Although users can try to evade trackers by clear-
ing their cookies or using private/incognito browsing
modes, companies have fought back using techniques
like Evercookies and fingerprinting. Evercookies store
the tracker’s state in many places within the browser
(e.g., FlashLSOs, etags, etc.), thus facilitating regenera-
tion of tracking identifiers even if users delete their cook-
ies [34, 57, 6, 47]. Fingerprinting involves generating a
unique ID for a user based on the characteristics of their
browser [18, 48, 50], browsing history [53], and com-
puter (e.g., the HTML5 canvas [49]). Several studies
have found trackers in-the-wild that use fingerprinting
techniques [3, 52, 35]; Nikiforakis et al. propose to stop
fingerprinting by carefully and intentionally adding more
entropy to users’ browsers [51].

User Profiles. Several studies specifically focus on
tracking data collected by Google, since their trackers
are more pervasive than any others on the Web [24, 11].
Alarmingly, two studies have found that Google’s Ad
Preferences Manager, which is supposed to allow users
to see and adjust how they are being targeted for ads,
actually hides sensitive information from users [64, 16].
This finding is troubling given that several studies rely
on data from the Ad Preferences Manager as their source
of ground-truth [27, 13, 9]. To combat this lack of trans-
parency, Lecuyer et al. have built systems that rely on
controlled experiments and statistical analysis to infer
the profiles that Google constructs about users [39, 40].
Castelluccia et al. go further by showing that adversaries
can infer users’ profiles by passively observing the tar-
geted ads they are shown by Google [13].

3.2 Cookie Matching and Retargeting
Although ad exchanges have been transitioning to RTB
auctions since the mid-2000s, only three empirical stud-
ies have examined the cookie matching that enables these
services. Acar et al. found that hundreds of domains
passed unique identifiers to each other while crawling
websites in the Alexa Top-3K [2]. Olejnik et al. no-
ticed that ad auctions were leaking the winning bid prices
for impressions, thus enabling a fascinating behind-the-
scenes look at RTB auctions [54]. In addition to ex-
amining the monetary aspects of auctions, Olejnik et al.
found 125 ad exchanges using cookie matching. Finally,
Falahrastegar et al. examine the clusters of domains that
all share unique, matched cookies using crowdsourced
browsing data [21]. Additionally, Ghosh et al. use game

4

USENIX Association 25th USENIX Security Symposium 485

theory to model the incentives for ad exchanges to match
cookies with their competitors, but they provide no em-
pirical measurements of cookie matching [23].

Several studies examine retargeted ads, which are di-
rectly facilitated by cookie matching and RTB. Liu et
al. identify and measure retargeted ads served by Dou-
bleClick by relying on unique AdSense tags that are em-
bedded in ad URLs [43]. Olejnik et al. crawled specific
e-commerce sites in order to elicit retargeted ads from
those retailers, and observe that retargeted ads can cost
advertisers over $1 per impression (an enormous sum,
considering contextual ads sell for <$0.01) [54].

Limitations. The prior work on cookie matching
demonstrates that this practice is widespread. However,
these studies also have significant methodological limi-
tations, which prevent them from observing all forms of
information sharing between ad exchanges. Specifically:

1. All three studies identify cookie matching by locat-
ing unique user IDs that are transmitted to multi-
ple third-party domains [2, 54, 21]. Unfortunately,
this will miss cases where exchanges send permuted
or obfuscated IDs to their partners. Indeed, Dou-
bleClick is known to do this [1].

2. The two studies that have examined the behavior of
DoubleClick have done so by relying on specific
cookie keys and URL parameters to detect cookie
matching and retargeting [54, 43]. Again, these
methods are not robust to obfuscation or encryption
that hide the content of HTTP messages.

3. Existing studies cannot determine the precise infor-
mation flows between ad exchanges, i.e., which par-
ties are sending or receiving information [2]. This
limitation stems from analysis techniques that rely
entirely on analyzing HTTP headers. For example,
a script from t1.com embedded in pub.com may
share cookies with t2.com using dynamic AJAX,
but the referrer appears to be pub.com, thus poten-
tially hiding t1’s role as the source of the flow.

In general, these limitations stem from a reliance on ana-
lyzing specific mechanisms for cookie matching. In this
study, one of our primary goals is to develop a method-
ology for detecting cookie matching that is agnostic to
the underlying matching mechanism, and instead relies
on the fundamental semantics of ad exchanges.

4 Methodology

In this study, our primary goal is to develop a methodol-
ogy for detecting flows of user data between arbitrary ad
exchanges. This includes client-side flows (i.e., cookie
matching), as well as server-side flows.

In this section, we discuss the methods and data we use
to meet this goal. First, we briefly sketch our high-level
approach, and discuss key enabling insights. Second, we
introduce the instrumented version of Chromium that we
use during our crawls. Third, we explain how we de-
signed and trained shopper personas that view products
on the web, and finally we detail how we collected ads
using the trained personas.

4.1 Insights and Approach

Although prior work has examined information flow be-
tween ad exchanges, these studies are limited to specific
types of cookie matching that follow well-defined pat-
terns (see § 3.2). To study arbitrary information flows
in a mechanism-agnostic way, we need a fundamentally
different methodology.

We solve this problem by relying on a key insight: in
most cases, if a user is served a retargeted ad, this proves
that ad exchanges shared information about the user (see
§ 6.1.1). To understand this insight, consider that two
preconditions must be met for user u to be served a re-
target ad for shop by DSP d. First, either d directly ob-
served u visiting shop, or d must be told this information
by SSP s. If this condition is not met, then d would not
pay the premium price necessary to serve u a retarget.
Second, if the retarget was served from an ad auction,
SSP s and d must be sharing information about u. If this
condition is not met, then d would have no way of iden-
tifying u as the source of the impression (see § 2.2).

In this study, we leverage this observation to reliably
infer information flows between SSPs and DSPs, regard-
less of whether the flow occurs client- or server-side. The
high-level methodology is quite intuitive: have a clean
browser visit specific e-commerce sites, then crawl pub-
lishers and gather ads. If we observe retargeted ads, we
know that ad exchanges tracking the user on the shopper-
side are sharing information with exchanges serving ads
on the publisher-side. Specifically, our methodology
uses the following steps:

• § 4.2: We use an instrumented version of Chromium
to record inclusion chains for all resources encoun-
tered during our crawls [5]. These chains record
the precise origins of all resource requests, even
when the requests are generated dynamically by
JavaScript or Flash. We use these chains in § 6 to
categorize information flows between ad exchanges.

• § 4.3: To elicit retargeted ads from ad ex-
changes, we design personas (to borrow termi-
nology from [9] and [12]) that visit specific e-
commerce sites. These sites are carefully chosen
to cover different types of products, and include a
wide variety of common trackers.

5

486 25th USENIX Security Symposium USENIX Association

(a) (b)

Web Page: a.com/index.html

<html>
 <head></head>
 <body>

 <div>
 <script src=”animate.js”></script>

 </div>
 <script src=”b.com/adlib.js”></script>
 <iframe src=”c.net/adbox.html”>
 <html>
 <head></head>
 <body>
 <script src=”code.js”></script>
 <object data=”d.org/flash.swf”>
 </object>
 </body>
 </html>
 </iframe>
 </body>
</html>

a.com/index.html

a.com/img.png

a.com/animate.js

a.com/cats.gif

b.com/adlib.js

c.net/adbox.html

c.net/code.js

d.org/flash.swf

Figure 3: (a) DOM Tree, and (b) Inclusion Tree.

• § 4.4: To collect ads, our personas crawl 150 pub-
lishers from the Alexa Top-1K.

• § 5: We leverage well-known filtering techniques
and crowdsourcing to identify retargeted ads from
our corpus of 571,636 unique crawled images.

4.2 Instrumenting Chromium

Before we can begin crawling, we first need a browser
that is capable of recording detailed information about
the provenance of third-party resource inclusions in web-
pages. Recall that prior work on cookie matching was
unable to determine which ad exchanges were syncing
cookies in many cases because the analysis relied solely
on the contents of HTTP requests [2, 21] (see § 3.2).
The fundamental problem is that HTTP requests, and
even the DOM tree itself, do not reveal the true sources
of resource inclusions in the presence of dynamic code
(JavaScript, Flash, etc.) from third-parties.

To understand this problem, consider the example
DOM tree for a.com/index.html in Figure 3(a). Based
on the DOM, we might conclude that the chain a → c →
d captures the sequence of inclusions leading from the
root of the page to the Flash object from d.org.

However, direct use of a webpage’s DOM is mislead-
ing because the DOM does not reliably record the inclu-
sion relationships between resources in a page. This is
due to the ability of JavaScript to manipulate the DOM
at run-time, i.e., by adding new inclusions dynamically.
As such, while the DOM is a faithful syntactic descrip-
tion of a webpage at a given point in time, it cannot be
relied upon to extract relationships between included re-
sources. Furthermore, analysis of HTTP request headers
does not solve this problem, since the Referer is set to
the first-party domain even when inclusions are dynami-
cally added by third-party scripts.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250%
 O

v
e
rl
a
p
 w

it
h
 T

ra
c
k
e
rs

 f
ro

m
 A

le
x
a
 T

o
p
-5

K

Top x Trackers from Shopping Websites

Figure 4: Overlap between frequent trackers on e-
commerce sites and Alexa Top-5K sites.

To solve this issue, we make use of a heavily in-
strumented version of Chromium that produces inclu-
sion trees directly from Chromium’s resource loading
code [5]. Inclusion trees capture the semantic inclu-
sion structure of resources in a webpage (i.e., which
objects cause other objects to be loaded), unlike DOM
trees which only capture syntactic structures. Our in-
strumented Chromium accurately captures relationships
between elements, regardless of where they are located
(e.g., within a single page or across frames) or how the
relevant code executes (e.g., via an inline <script>,
eval(), or an event handler). We direct interested read-
ers to [5] for more detailed information about inclusion
trees, and the technical details of how the Chromium bi-
nary is instrumented.

Figure 3(b) shows the inclusion tree corresponding to
the DOM tree in Figure 3(a). From the inclusion tree,
we can see that the true inclusion chain leading to the
Flash object is a→ b→ c→ c→ d, since the IFrame and
the Flash are dynamically included by JavaScript from
b.com and c.net, respectively.

Using inclusion chains, we can precisely analyze the
provenance of third-party resources included in web-
pages. In § 6, we use this capability to distinguish client-
side flows of information between ad exchanges (i.e.,
cookie matching) from server-side flows.

4.3 Creating Shopper Personas

Now that we have a robust crawling tool, the next step
in our methodology is designing shopper personas. Each
persona visits products on specific e-commerce sites, in
hope of seeing retargeted ads when we crawl publishers.

Since we do not know a priori which e-commerce sites
are conducting retargeted ad campaigns, our personas
must cover a wide variety of sites. To facilitate this, we
leverage the hierarchical categorization of e-commerce
sites maintained by Alexa1. Although Alexa’s hierarchy

1http://www.alexa.com/topsites/category/Top/
Shopping

6

USENIX Association 25th USENIX Security Symposium 487

has 847 total categories, there is significant overlap be-
tween categories. We manually selected 90 categories to
use for our personas that have minimal overlap, as well
as cover major e-commerce sites (e.g., Amazon and Wal-
mart) and shopping categories (e.g., sports and jewelry).

For each persona, we included the top 10 e-commerce
sites in the corresponding Alexa category. In total, the
personas cover 738 unique websites. Furthermore, we
manually selected 10 product URLs on each of these
websites. Thus, each persona visits 100 products URLs.

Sanity Checking. The final step in designing our
personas is ensuring that the e-commerce sites are em-
bedded with a representative set of trackers. If they are
not, we will not be able to collect targeted ads.

Figure 4 plots the overlap between the trackers we ob-
serve on the Alexa Top-5K websites, compared to the
top x trackers (i.e., most frequent) we observe on the
e-commerce sites. We see that 84% of the top 100 e-
commerce trackers are also present in the trackers on
Alexa Top-5K sites2. These results demonstrate that our
shopping personas will be seen by the vast majority of
major trackers when they visit our 738 e-commerce sites.

4.4 Collecting Ads
In addition to selecting e-commerce sites for our per-
sonas, we must also select publishers to crawl for ads.
We manually select 150 publishers by examining the
Alexa Top-1K websites and filtering out those which do
not display ads, are non-English, are pornographic, or
require logging-in to view content (e.g., Facebook). We
randomly selected 15 URLs on each publisher to crawl.

At this point, we are ready to crawl ads. We ini-
tialized 91 copies of our instrumented Chromium bi-
nary: 90 corresponding to our shopper personas, and one
which serves as a control. During each round of crawl-
ing, the personas visit their associated e-commerce sites,
then visit the 2,250 publisher URLs (150 publishers ∗ 15
pages per publisher). The control only visits the pub-
lisher URLs, i.e., it does not browse e-commerce sites,
and therefore should never be served retargeted ads. The
crawlers are executed in tandem, so they visit the pub-
lishers URLs in the same order at the same times. We
hard-coded a 1 minute delay between subsequent page
loads to avoid overloading any servers, and to allow time
for the crawler to automatically scroll to the bottom of
each page. Each round takes 40 hours to complete.

We conducted nine rounds of crawling between De-
cember 4 to 19, 2015. We stopped after 9 rounds be-
cause we observed that we only gathered 4% new images
during the ninth round. The crawlers recorded inclusion

2We separately crawled the resources included by the Alexa Top-
5K websites in January 2015. For each website, we visited 6 pages and
recorded all the requested resources.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Overall
Images

EasyList
Filter

SizeFilter

MinusControl Ads

MinusFrequent

A
v
e
ra

g
e
 I

m
a
g
e
s

 p
e
r

P
e
rs

o
n
a

Figure 5: Average number of images per persona, with
standard deviation error bars.

trees, HTTP request and response headers, cookies, and
images from all pages. At no point did our crawlers click
on ads, since this can be construed as click-fraud (i.e., ad-
vertisers often have to pay each time their ads are clicked,
and thus automated clicks drain their advertising budget).
All crawls were done from Northeastern University’s IP
addresses in Boston.

5 Image Labeling

Using the methodology in § 4.4, we collected 571,636
unique images in total. However, only a small subset are
retargeted ads, which are our focus. In this section, we
discuss the steps we used to filter down our image set
and isolate retargeted ads, beginning with standard fil-
ters used by prior work [9, 42], and ending with crowd-
sourced image labeling.

5.1 Basic Filtering
Prior work has used a number of techniques to identify
ad images from crawled data. First, we leverage the Ea-
syList filter3 provided by AdBlockPlus to detect images
that are likely to be ads [9, 42]. In our case, we look at
the inclusion chain for each image, and filter out those
in which none of the URLs in the chain are a hit against
EasyList. This reduces the set to 93,726 unique images.

Next, we filter out all images with dimensions < 50×
50 pixels. These images are too small to be ads; most are
1×1 tracking pixels.

Our final filter relies on a unique property of retar-
geted ads: they should only appear to personas that visit
a specific e-commerce site. In other words, any ad that
was shown to our control account (which visits no e-
commerce sites) is either untargeted or contextually tar-
geted, and can be discarded. Furthermore, any ad shown
to >1 persona may be behaviorally targeted, but it cannot
be a retarget, and is therefor filtered out4.

3https://easylist-downloads.adblockplus.org/easylist.txt
4Several of our personas have retailers in common, which we ac-

count for when filtering ads.

7

488 25th USENIX Security Symposium USENIX Association

Figure 5 shows the average number of images remain-
ing per persona after applying each filter. After applying
all four filters, we are left with 31,850 ad images.

5.2 Identifying Targeted & Retargeted Ads
At this point, we do not know which of the ad images
are retargets. Prior work has identified retargets by look-
ing for specific URL parameters associated with them,
however this technique is only able to identify a subset
of retargets served by DoubleClick [43]. Since our goal
is to be mechanism and ad exchange agnostic, we must
use a more generalizable method to identify retargets.

Crowdsourcing. Given the large number of ads in
our corpus, we decided to crowdsource labels from work-
ers on Amazon Mechanical Turk (AMT). We constructed
Human Intelligence Tasks (HITs) that ask workers to la-
bel 30 ads, 27 of which are unlabeled, and 3 of which
are known to be retargeted ads and serve as controls (we
manually identified 1,016 retargets from our corpus of
31,850 to serve as these controls).

Figure 6(a) shows a screenshot of our HIT. On the
right is an ad image, and on the left we ask the worker
two questions:

1. Does the image belong to one of the following cate-
gories (with “None of the above” being one option)?

2. Does the image say it came from one of the follow-
ing websites (with “No” being one option)?

The purpose of question (1) is to isolate behavioral and
retargeted ads from contextual and untargeted ads (e.g.,
Figure 6(c), which was served to our Music persona).
The list for question (1) is populated with the shopping
categories associated with the persona that crawled the
ad. For example, as shown in Figure 6(a), the cate-
gory list includes “shopping_jewelry_diamonds” for ads
shown to our Diamond Jewelry persona. In most cases,
this list contains exactly one entry, although there are rare
cases where up to 3 categories are in the list.

If the worker does not select “None” for question (1),
then they are shown question (2). Question (2) is de-
signed to separate retargets from behavioral targeted ads.
The list of websites for question (2) is populated with
the e-commerce sites visited by the persona that crawled
the ad. For example, in Figure 6(a), the ad clearly says
“Adiamor”, and one of the sites visited by the persona is
adiamor.com; thus, this image is likely to be a retarget.

Quality Control. We apply four widely used tech-
niques to maintain and validate the quality of our crowd-
sourced image labels [63, 29, 56]. First, we restrict our
HITs to workers that have completed ≥50 HITs and have
an approval rating ≥95%. Second, we restrict our HITs
to workers living in the US, since our ads were collected

Figure 6: Screenshot of our AMT HIT, and examples of
different types of ads.

from US websites. Third, we reject a HIT if the worker
mislabels ≥2 of the control images (i.e., known retar-
geted ads); this prevents workers from being able to sim-
ply answer “None” to all questions. We resubmitted re-
jected HITs for completion by another worker. Overall,
the workers correctly labeled 87% of the control images.
Fourth and finally, we obtain two labels on each unla-
beled image by different workers. For 92.4% of images
both labels match, so we accept them. We manually la-
beled the divergent images ourselves to break the tie.

Finding More Retargets. The workers from AMT
successfully identified 1,359 retargeted ads. However, it
is possible that they failed to identify some retargets, i.e.,
there are false negatives. This may occur in cases like
Figure 6(b): it is not clear if this ad was served as a be-
havioral target based on the persona’s interest in jewelry,
or as a retarget for a specific jeweler.

To mitigate this issue, we manually examined all 7,563
images that were labeled as behavioral ads by the work-
ers. In addition to the images themselves, we also looked
at the inclusion chains for each image. In many cases,
the URLs reveal that specific e-commerce sites visited
by our personas hosted the images, indicating that the
ads are retargets. For example, Figure 6(b) is actually
part of a retargeted ad from fossil.com. Our manual
analysis uncovered an additional 3,743 retargeted ads.

These results suggest that the number of false nega-
tives from our crowdsourcing task could be dramatically
reduced by showing the URLs associated with each ad
image to the workers. However, note that adding this
information to the HIT will change the dynamics of the

8

USENIX Association 25th USENIX Security Symposium 489

task: false negatives may go down but the effort (and
therefore the cost) of each HIT will go up. This stems
from the additional time it will take each worker to re-
view the ad URLs for relevent keywords.

In § 6.2, we compare the datasets labeled by the work-
ers and by the authors. Interestingly, although our dataset
contains a greater magnitude of retargeted ads versus the
worker’s dataset, it does not improve diversity, i.e., the
smaller dataset identifies 96% of the top 25 most fre-
quent ad networks in the larger dataset. These networks
are responsible for the vast majority of retargeted ads and
inclusion chains in our dataset.

Final Results. Overall, we submitted 1,142 HITs to
AMT. We paid $0.18 per HIT, for a total of $415. We did
not collect any personal information from workers. In
total, we and workers from AMT labeled 31,850 images,
of which 7,563 are behavioral targeted ads and 5,102 are
retargeted ads. These retargets advertise 281 distinct e-
commerce websites (38% of all e-commerce sites).

5.3 Limitations

With any labeling task of this size and complexity, it is
possible that there are false positives and negatives. Un-
fortunately, we cannot bound these quantities, since we
do not have ground-truth information about known retar-
geted ad campaigns, nor is there a reliable mechanism
to automatically detect retargets (e.g., based on special
URL parameters, etc.).

In practice, the effect of false positives is that we will
erroneously classify pairs of ad exchanges as sharing in-
formation. We take measures to mitigate false positives
by running a control crawl and removing images which
appear in multiple personas (see § 5.1), but false posi-
tives can still occur. However, as we show in § 6, the
results of our classifier are extremely consistent, suggest-
ing that there are few false positives in our dataset.

False negatives have the opposite effect: we may miss
pairs of ad exchanges that are sharing information. For-
tunately, the practical impact of false negatives is low,
since we only need to correctly identify a single retar-
geted ad to infer that a given pair of ad exchanges are
sharing information.

6 Analysis

In this section, we use the 5,102 retargeted ads uncovered
in § 5, coupled with their associated inclusion chains (see
§ 4.2), to analyze the information flows between ad ex-
changes. Specifically, we seek to answer two fundamen-
tal questions: who is sharing user data, and how does the
sharing take place (e.g., client-side via cookie matching,
or server-side)?

^pub

^pub .*

^pub .*

^pub .*

Publisher-side

Case 1: Direct (Trivial) Matching

Case 2a: Forward Cookie Matching

Case 4: Latent Matching

Case 3: Indirect Matching

^shop

^*

d

.*

^shop

^shop [^sd]*$

s

.*$

Shopper-side

.* .*$

[^d]* [^d]*$

^shop d.* .*$
and

^* .* .*$

s d$

s d$

s d$

s d

d s
^pub .*

^shop d.* .*$
ands d$

Case 2b: Backward Cookie Matching

d$

Figure 7: Regex-like rules we use to identify different
types of ad exchange interactions. shop and pub refer
to chains that begin at an e-commerce site or publisher,
respectively. d is the DSP that serves a retarget; s is the
predecessor to d in the publisher-side chain, and is most
likely an SSP holding an auction. Dot star (.∗) matches
any domains zero or more times.

We begin by categorizing all of the retargeted ads and
their associated inclusion chains into one of four classes,
which correspond to different mechanisms for sharing
user data. Next, we examine specific pairs of ad ex-
changes that share data, and compare our detection ap-
proach to those used in prior work to identify cookie
matching [43, 2, 54, 21]. We find that prior work may
be missing 31% of collaborating exchanges. Finally, we
construct a graph that captures ad exchanges and the re-
lationships between them, and use it to reveal nuanced
characteristics about the roles that different exchanges
play in the ad ecosystem.

6.1 Information Flow Categorization

We begin our analysis by answering two basic questions:
for a given retargeted ad, was user information shared
between ad exchanges, and if so, how? To answer these
questions, we categorize the 35,448 publisher-side inclu-
sion chains corresponding to the 5,102 retargeted ads in
our data. Note that 1) we observe some retargeted ads
multiple times, resulting in multiple chains, and 2) the
chains for a given unique ad may not be identical.

We place publisher-side chains into one of four cate-
gories, each of which corresponds to a specific informa-
tion sharing mechanism (or lack thereof). To determine

9

490 25th USENIX Security Symposium USENIX Association

the category of a given chain, we match it against care-
fully designed, regular expression-like rules. Figure 7
shows the pattern matching rules that we use to identify
chains in each category. These rules are mutually exclu-
sive, i.e., a chain will match one or none of them.

Terminology. Before we explain each classification
in detail, we first introduce shared terminology that will
be used throughout this section. Each retargeted ad was
served to our persona via a publisher-side chain. pub is
the domain of the publisher at the root of the chain, while
d is the domain at the end of the chain that served the ad.
Typically, d is a DSP. If the retarget was served via an
auction, then an SSP s must immediately precede d in
the publisher-side chain.

Each retarget advertises a particular e-commerce site.
shop is the domain of the e-commerce site correspond-
ing to a particular retargeted ad. To categorize a given
publisher-side chain, we must also consider the corre-
sponding shopper-side chains rooted at shop.

6.1.1 Categorization Rules

Case 1: Direct Matches. The first chain type that
we define are direct matches. Direct matches are the
simplest type of chains that can be used to serve a re-
targeted ad. As shown in Figure 7, for us to categorize a
publisher-side chain as a direct match, it must be exactly
length two, with a direct resource inclusion request from
pub to d. d receives any cookies they have stored on the
persona inside this request, and thus it is trivial for d to
identify our persona.

On the shopper-side, the only requirement is that d ob-
served our persona browsing shop. If d does not observe
our persona at shop, then d would not serve the persona
a retargeted ad for shop. d is able to set a cookie on our
persona, allowing d to re-identify the persona in future.

We refer to direct matching chains as “trivial” because
it is obvious how d is able to track our persona and serve
a retargeted ad for shop. Furthermore, in these cases
no user information needs to be shared between ad ex-
changes, since there are no ad auctions being held on the
publisher-side.

Case 2: Cookie Matching. The second chain type
that we define are cookie matches. As the name implies,
chains in this category correspond to instance where an
auction is held on the publisher-side, and we observe
direct resource inclusion requests between the SSP and
DSP, implying that they are matching cookies.

As shown in Figure 7, for us to categorize a publisher-
side chain as cookie matching, s and d must be adjacent
at the end of the chain. On the shopper-side, d must ob-
serve the persona at shop. Lastly, we must observe a
request from s to d or from d to s in some chain before

the retargeted ad is served. These requests capture the
moment when the two ad exchanges match their cook-
ies. Note that s → d or d → s can occur in a publisher- or
shopper-side chain; in practice, it often occurs in a chain
rooted at shop, thus fulfilling both requirements at once.

For the purposes of our analysis, we distinguish be-
tween forward (s → d) and backward (d → s) cookie
matches. Figure 2 shows an example of a forward cookie
match. As we will see, many pairs of ad exchanges en-
gage in both forward and backward matching to maxi-
mize their opportunities for data sharing. To our knowl-
edge, no prior work examines the distinction between
forward and backward cookie matching.

Case 3: Indirect Matching. The third chain type
we define are indirect matches. Indirect matching occurs
when an SSP sends meta-data about a user to a DSP, to
help them determine if they should bid on an impression.
With respect to retargeted ads, the SSP tells the DSPs
about the browsing history of the user, thus enabling the
DSPs to serve retargets for specific retailers, even if the
DSP never directly observed the user browsing the re-
tailer (hence the name, indirect). Note that no cookie
matching is necessary in this case for DSPs to serve re-
targeted ads.

As shown in Figure 7, the crucial difference between
cookie matching chains and indirect chains is that d
never observes our persona at shop; only s observes
our persona at shop. Thus, by inductive reasoning, we
must conclude that s shares information about our per-
sona with d, otherwise d would never serve the persona
a retarget for shop.

Case 4: Latent Matching. The fourth and final chain
type that we define are latent matches. As shown in Fig-
ure 7, the defining characteristic of latent chains is that
neither s nor d observe our persona at shop. This begs the
question: how do s and d know to serve a retargeted ad
for shop if they never observe our persona at shop? The
most reasonable explanation is that some other ad ex-
change x that is present in the shopper-side chains shares
this information with d behind-the-scenes.

We hypothesize that the simplest way for ad exchanges
to implement latent matching is by having x and d share
the same unique identifiers for users. Although x and
d are different domains, and are thus prevented by the
SOP from reading each others’ cookies, both ad ex-
changes may use the same deterministic algorithm for
generating user IDs (e.g., by relying on IP addresses or
browser fingerprints). However, as we will show, these
synchronized identifiers are not necessarily visible from
the client-side (i.e., the values of cookies set by x and d
may be obfuscated), which prevents trivial identification
of latent cookie matching.

10

USENIX Association 25th USENIX Security Symposium 491

Unclustered Clustered
Type Chains % Chains %

Direct 1770 5% 8449 24%
Forward Cookie Match 24575 69% 25873 73%

Backward Cookie Match 19388 55% 24994 70%
Indirect Match 2492 7% 178 1%

Latent Match 5362 15% 343 1%
No Match 775 2% 183 1%

Table 1: Results of categorizing publisher-side chains,
before and after clustering domains.

Note: Although we do not expect to see cases 3 and
4, they can still occur. We explain in § 6.1.2 that in-
direct and latent matching is mostly performed by do-
mains belonging to the same company. The remaining
few instances of these cases are probably mislabeled be-
haviorally targeted ads.

6.1.2 Categorization Results

We applied the rules in Figure 7 to all 35,448 publisher-
side chains in our dataset twice. First, we categorized
the raw, unmodified chains; then we clustered domains
that belong to the same companies, and categorized the
chains again. For example, Google owns youtube.com,
doubleclick.com, and 2mdn.net; in the clustered ex-
periments, we replace all instances of these domains with
google.com. Appendix A.1 lists all clustered domains.

Table 1 presents the results of our categorization. The
first thing we observe is that cookie matching is the most
frequent classification by a large margin. This conforms
to our expectations, given that RTB is widespread in
today’s ad ecosystem, and major exchanges like Dou-
bleClick support it [17]. Note that, for a given (s, d)
pair in a publisher-side chain, we may observe s → d and
d → s requests in our data, i.e., the pair engages in for-
ward and backward cookie matching. This explains why
the percentages in Table 1 do not add up to 100%.

The next interesting feature that we observe in Table 1
is that indirect and latent matches are relatively rare (7%
and 15%, respectively). Again, this is expected, since
these types of matching are more exotic and require a
greater degree of collaboration between ad exchanges to
implement. Furthermore, the percentage of indirect and
latent matches drops to 1% when we cluster domains. To
understand why this occurs, consider the following real-
world example chains:

Publisher-side: pub → rubicon → googlesyndication

Shopper-side: shop → doubleclick

According to the rules in Figure 7, this appears to be a
latent match, since Rubicon and Google Syndication do
not observe our persona on the shopper-side. However,
after clustering the Google domains, this will be clas-

sified as cookie matching (assuming that there exists at
least one other request from Rubicon to Google).

The above example is extremely common in our
dataset: 731 indirect chains become cookie match-
ing chains after we cluster the Google domains alone.
Importantly, this finding provides strong evidence that
Google does in fact use latent matching to share user
tracking data between its various domains. Although this
is allowed in Google’s terms of service as of 2014 [26],
our results provide direct evidence of this data sharing
with respect to serving targeted ads. In the vast major-
ity of these cases, Google Syndication is the DSP, sug-
gesting that on the server-side, it ingests tracking data
and user identifiers from all other Google services (e.g.,
DoubleClick and Google Tag Manager).

Of the remaining 1% of chains that are still classified
as indirect or latent after clustering, the majority appear
to be false positives. In most of these cases, we observe
s and d doing cookie matching in other instances, and
it seems unlikely that s and d would also utilize indirect
and latent mechanisms. These ads are probably misla-
beled behaviorally targeted ads.

The final takeaway from Table 1 is that the number of
uncategorized chains that do not match any of our rules
is extremely low (1-2%). These publisher-side chains are
likely to be false positives, i.e., ads that are not actually
retargeted. These results suggest that our image labeling
approach is very robust, since the vast majority of chains
are properly classified as direct or cookie matches.

6.2 Cookie Matching

The results from the previous section confirm that cookie
matching is ubiquitous on today’s Web, and that this in-
formation sharing fuels highly targeted advertisements.
Furthermore, our classification results demonstrate that
we can detect cookie matching without relying on se-
mantic information about cookie matching mechanisms.

In this section, we take a closer look at the pairs of ad
exchanges that we observe matching cookies. We seek
to answer two questions: first, which pairs match most
frequently, and what is the directionality of these rela-
tionships? Second, what fraction of cookie matching re-
lationships will be missed by the heuristic detection ap-
proaches used by prior work [43, 2, 54, 21]?

Who Is Cookie Matching? Table 2 shows the top 25
most frequent pairs of domains that we observe match-
ing cookies. The arrows indicate the direction of match-
ing (forward, backward, or both). “Ads” is the number
of unique retargets served by the pair, while “Chains”
is the total number of associated publisher-side chains.
We present both quantities as observed in our complete
dataset (containing 5,102 retargets), as well as the subset

11

492 25th USENIX Security Symposium USENIX Association

All Data AMT Only
Participant 1 Participant 2 Chains Ads Chains Ads Heuristics

criteo ↔ googlesyndication 9090 1887 1629 370 ↔: US
criteo ↔ doubleclick 3610 1144 770 220 →: E, US ←: DC, US
criteo ↔ adnxs 3263 1066 511 174 ↔: E, US
criteo ↔ googleadservices 2184 1030 448 214 →: E, US ←: US
criteo ↔ rubiconproject 1586 749 240 113 ↔: E, US
criteo ↔ servedbyopenx 707 460 111 71 ↔: US

mythings ↔ mythingsmedia 478 52 53 1 →: E, US ←: US
criteo ↔ pubmatic 363 246 64 37 →: E, US ←: US

doubleclick ↔ steelhousemedia 362 27 151 16 →: US ←: E, US
mathtag ↔ mediaforge 360 124 63 13 ↔: E, US
netmng ↔ scene7 267 162 45 32 →: E ←: -

criteo ↔ casalemedia 200 119 54 31 →: E, US ←: US
doubleclick ↔ googlesyndication 195 81 101 62 ↔: US

criteo ↔ clickfuse 126 99 14 13 ↔: US
criteo ↔ bidswitch 112 78 25 15 →: E, US ←: US

googlesyndication ↔ adsrvr 107 29 102 24 ↔: US
rubiconproject ↔ steelhousemedia 86 30 43 19 ↔: E

amazon-adsystem ↔ ssl-images-amazon 98 33 33 7 -
googlesyndication ↔ steelhousemedia 47 22 36 16 -

adtechus → adacado 36 18 36 18 -
googlesyndication ↔ 2mdn 40 19 39 18 →: US ←: -

atwola → adacado 32 6 28 5 -
adroll ↔ adnxs 31 8 26 7 -

googlesyndication ↔ adlegend 31 22 29 20 -
adnxs ↔ esm1 46 1 0 0 →: US ←: -

Table 2: Top 25 cookie matching partners in our dataset. The arrow signifies whether we observe forward matches (→),
backward matches (←), or both (↔). The heuristics for detecting cookie matching are: DC (match using DoubleClick
URL parameters), E (string match for exact cookie values), US (URLs that include parameters like “usersync”), and -
(no identifiable mechanisms). Note that the HTTP request formats used for forward and backward matches between a
given pair of exchanges may vary.

that was identified solely by the AMT workers (contain-
ing 1,359 retargets).

We observe that cookie matching frequency is heav-
ily skewed towards several heavy-hitters. In aggregate,
Google’s domains are most common, which makes sense
given that Google is the largest ad exchange on the Web
today. The second most common is Criteo; this re-
sult also makes sense, given that Criteo specializes in
retargeted advertising [15]. These observations remain
broadly true across the AMT and complete datasets: al-
though the relative proportion of ads and chains from
less-frequent exchange pairs differs somewhat between
the two datasets, the heavy-hitters do not change. Fur-
thermore, we also see that the vast majority of exchange
pairs are identified in both datasets.

Interestingly, we observe a great deal of heterogene-
ity with respect to the directionality of cookie match-
ing. Some boutique exchanges, like Adacado, only in-
gest cookies from other exchanges. Others, like Criteo,
are omnivorous, sending or receiving data from any and
all willing partners. These results suggest that some par-
ticipants are more wary about releasing their user identi-
fiers to other exchanges.

Comparison to Prior Work. We observe many of
the same participants matching cookies as prior work, in-

cluding DoubleClick, Rubicon, AppNexus, OpenX, Me-
diaMath, and myThings [2, 54, 21]. Prior work identifies
some additional ad exchanges that we do not (e.g., Turn);
this is due to our exclusive focus on participants involved
in retargeted advertising.

However, we also observe participants (e.g., Ada-
cado and AdRoll) that prior work does not. This may
be because prior work identifies cookie matching us-
ing heuristics to pick out specific features in HTTP re-
quests [43, 2, 54, 21]. In contrast, our categorization ap-
proach is content and mechanism agnostic.

To investigate the efficacy of heuristic detection meth-
ods, we applied three of them to our dataset. Specifi-
cally, for each pair (s, d) of exchanges that we categorize
as cookie matching, we apply the following tests to the
HTTP headers of requests between s and d or vice-versa:

1. We look for specific keys that are known to be
used by DoubleClick and other Google domains for
cookie matching (e.g., “google_nid” [54]).

2. We look for cases where unique cookie values set
by one participant are included in requests sent to
the other participant5.

5To reduce false positives, we only consider cookie values that have
length >10 and <100.

12

USENIX Association 25th USENIX Security Symposium 493

Degree Position p in Chains (%) # of Shopper
Domain In Out In/Out Ratio p2 pn−1 pn Websites # of Ads

criteo 35 6 5.83 9.28 0.00 68.8 248 3,335
mediaplex 8 2 4.00 0.00 85.7 0.07 20 14

tellapart 6 1 6.00 25.0 100.0 0.18 33 9
mathtag 12 6 2.00 0.00 90.9 0.06 314 2

mythingsmedia 1 0 - 0.00 0.00 1.41 1 59
steelhousemedia 8 0 - 0.00 0.00 16.8 40 89

D
SP

s

mediaforge 5 0 - 0.00 0.00 1.28 29 143
pubmatic 5 9 0.56 3.17 74.2 0.01 362 4

rubiconproject 19 22 0.86 23.5 62.8 0.01 394 3
adnxs 18 20 0.90 94.2 91.9 0.16 476 12

casalemedia 9 10 0.90 1.30 90.0 0.00 298 0
atwola 4 19 0.21 84.6 18.2 0.01 62 2

advertising 4 4 1.00 0.00 75.0 0.10 337 17

A
O

L

adtechus 17 16 1.06 1.58 27.3 0.09 328 15
servedbyopenx 6 11 0.55 7.2 83.8 0.00 2 0

openx 10 9 1.11 0.95 9.83 0.00 390 0

SS
Ps

O
pe

nX

openxenterprise 4 4 1.00 40.0 20.0 0.00 1 0
googletagservices 44 2 22.00 93.7 0.00 0.00 65 0
googleadservices 4 17 0.24 2.94 33.5 0.00 485 0

2mdn 3 1 3.00 0.00 0.00 1.35 62 125
googlesyndication 90 35 2.57 70.1 62.7 19.8 84 638G

oo
gl

e

doubleclick 38 36 1.06 38.8 63.1 0.22 675 19

Table 3: Overall statistics about the connectivity, position, and frequency of ad domains in our dataset.

3. We look for keys with revealing names like “user-
sync” that frequently appear in requests between
participants in our data.

As shown in the “Heuristics” column in Table 2, in the
majority of cases, heuristics are able to identify cookie
matching between the participants. Interestingly, we
observe that the mechanisms used by some pairs (e.g.,
Criteo and DoubleClick) change depending on the direc-
tionality of the cookie match, revealing that the two sides
have different cookie matching APIs.

However, for 31% of our cookie matching partners,
the heuristics are unable to detect signs of cookie match-
ing. We hypothesize that this is due to obfuscation tech-
niques employed by specific ad exchanges. In total, there
are 4.1% cookie matching chains that would be com-
pletely missed by heuristic tests. This finding highlights
the limitations of prior work, and bolsters the case for
our mechanism-agnostic classification methodology.

6.3 The Retargeting Ecosystem
In this last section, we take a step back and examine the
broader ecosystem for retargeted ads that is revealed by
our dataset. To facilitate this analysis, we construct a
graph by taking the union of all of our publisher-side
chains. In this graph, each node is a domain (either a
publisher or an ad exchange), and edges correspond to re-
source inclusion relationships between the domains. Our
graph formulation differs from prior work in that edges
denote actual information flows, as opposed to simple
co-occurrences of trackers on a given domain [25].

Table 3 presents statistics on the top ad-related do-
mains in our dataset. The “Degree” column shows the
in- and out-degree of nodes, while “Position” looks at the
relative location of nodes within chains. p2 is the second
position in the chain, corresponding to the first ad net-
work after the publisher; pn is the DSP that serves the
retarget in a chain of length n; pn−1 is the second to last
position, corresponding to the final SSP before the DSP.
Note that a domain may appear in a chain multiple times,
so the sum of the pi percentages may be >100%. The last
two columns count the number of unique e-commerce
sites that embed resources from a given domain, and the
unique number of ads served by the domain.

Based on the data in Table 3, we can roughly cluster
the ad domains into two groups, corresponding to SSPs
and DSPs. DSPs have low or zero out-degree since they
often appear at position pn, i.e., they serve an ad and ter-
minate the chain. Criteo is the largest source of retar-
geted ads in our dataset by an order of magnitude. This
is not surprising, given that Criteo was identified as the
largest retargeter in the US and UK in 2014 [15].

In contrast, SSPs tend to have in/out degree ratios
closer to 1, since they facilitate the exchange of ads be-
tween multiple publishers, DSPs, and even other SSPs.
Some SSPs, like Atwola, work more closely with pub-
lishers and thus appear more frequently at p2, while oth-
ers, like Mathtag, cater to other SSPs and thus appear
almost exclusively at pn−1. Most of the SSPs we observe
also function as DSPs (i.e., they serve some retargeted
ads), but there are “pure” SSPs like Casale Media and
OpenX that do not serve ads. Lastly, Table 3 reveals that

13

494 25th USENIX Security Symposium USENIX Association

SSPs tend to do more user tracking than DSPs, by getting
embedded in more e-commerce sites (with Criteo being
the notable exception).

Google is an interesting case study because its
different domains have clearly delineated purposes.
googletagservices is Google’s in-house SSP, which
funnels impressions directly from publishers to Google’s
DSPs: 2mdn, googlesyndication, and doubleclick.
In contrast, googleadservices is also an SSP, but it
holds auctions with third-party participants (e.g., Criteo).
googlesyndication and doubleclick function as
both SSPs and DSPs, sometimes holding auctions, and
sometimes winning auctions held by others to serve ads.
Google Syndication is the second most frequent source
of retargeted ads in our dataset behind Criteo.

7 Concluding Discussion

In this study, we develop a novel, principled methodol-
ogy for detecting flows of tracking information between
ad exchanges. The key insight behind our approach is
that we re-purpose retargeted ads as a detection mech-
anism, since their presence reveals information flows
between ad exchanges. Our methodology is content-
agnostic, and thus we are able to identify flows even if
they occur on the server-side. This is a significant im-
provement over prior work, which relies on heuristics to
detect cookie matching [2, 54, 21]. As we show in § 6,
these heuristics fail to detect 31% of matching pairs to-
day, and they are likely to fail more in the future as ad
networks adopt content obfuscation techniques.

Implications for Users. Ultimately, our goal is not
just to measure information flows between ad exchanges,
but to facilitate the development of systems that balance
user privacy against the revenue needs of publishers.

Currently, users are faced with unsatisfactory choices
when deciding if and how to block ads and tracking.
Whitelisting approaches like NoScript are effective at
protecting privacy, but are too complicated for most
users, and deprive publishers of revenue. Blocking third-
party cookies is ineffective against first-party trackers
(e.g., Facebook). AdBlockPlus’ controversial “Accept-
able Ads” program is poorly governed and leaves users
vulnerable to unscrupulous ad networks [62]. DNT is
DOA [8]. Although researchers have proposed privacy
preserving ad exchanges, these systems have yet to see
widespread adoption [22, 28, 7].

We believe that data about information flows between
ad exchanges potentially opens up a new middle ground
in ad blocking. One possibility is to develop an auto-
mated system that uses the methodology developed in
this paper to continuously crawl ads, identify cookie
matching flows, and construct rules that match these

flows. Users could then install a browser extension that
blocks flows matching these rules. The advantage of this
extension is that it would offer improved privacy protec-
tion relative to existing systems (e.g., Ghostery and Dis-
connect), while also allowing advertising (as opposed to
traditional ad blockers). However, the open challenge
with this system design would be making it cost effec-
tive, since it would still rely crowdsourced labor.

Another possibility is using our data as ground-truth
for a sophisticated blocker that relies on client-side In-
formation Flow Control (IFC). There exist many promis-
ing, lightweight approaches to implementing JavaScript
IFC in the browser [30, 10, 59, 31]. However, IFC alone
is not enough to block cookie matching flows: as we
have shown, ad networks obfuscate data, making it im-
possible to separate benign from “leaky” flows in gen-
eral. Instead, we can use information gathered using our
methodology as ground-truth to mark data in specific in-
coming flows, and rely on IFC to enforce restrictions that
prevent outgoing flows from containing the marked data.

Acknowledgements

We thank our shepherd, Nektarios Leontiadis, and the
anonymous reviewers for their helpful comments. This
research was supported in part by NSF grants CNS-
1319019 and CHS-1408345. Any opinions, findings, and
conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect
the views of the NSF.

References
[1] Real-time bidding protocol, February 2016. https:

//developers.google.com/ad-exchange/rtb/cookie-
guide.

[2] ACAR, G., EUBANK, C., ENGLEHARDT, S., JUAREZ, M.,
NARAYANAN, A., AND DIAZ, C. The web never forgets: Per-
sistent tracking mechanisms in the wild. In Proc. of CCS (2014).

[3] ACAR, G., JUAREZ, M., NIKIFORAKIS, N., DIAZ, C.,
GÜRSES, S., PIESSENS, F., AND PRENEEL, B. Fpdetective:
Dusting the web for fingerprinters. In Proc. of CCS (2013).

[4] AGARWAL, L., SHRIVASTAVA, N., JAISWAL, S., AND PAN-
JWANI, S. Do not embarrass: Re-examining user concerns for
online tracking and advertising.

[5] ARSHAD, S., KHARRAZ, A., AND ROBERTSON, W. Include me
out: In-browser detection of malicious third-party content inclu-
sions. In Proc. of Intl. Conf. on Financial Cryptography (2016).

[6] AYENSON, M., WAMBACH, D. J., SOLTANI, A., GOOD, N.,
AND HOOFNAGLE, C. J. Flash cookies and privacy ii: Now with
html5 and etag respawning. Available at SSRN 1898390 (2011).

[7] BACKES, M., KATE, A., MAFFEI, M., AND PECINA, K.
Obliviad: Provably secure and practical online behavioral ad-
vertising. In Proc. of IEEE Symposium on Security and Privacy
(2012).

14

USENIX Association 25th USENIX Security Symposium 495

[8] BALEBAKO, R., LEON, P. G., SHAY, R., UR, B., WANG, Y.,
AND CRANOR, L. F. Measuring the effectiveness of privacy tools
for limiting behavioral advertising. In Proc. of W2SP (2012).

[9] BARFORD, P., CANADI, I., KRUSHEVSKAJA, D., MA, Q., AND
MUTHUKRISHNAN, S. Adscape: Harvesting and analyzing on-
line display ads. In Proc. of WWW (2014).

[10] BICHHAWAT, A., RAJANI, V., GARG, D., AND HAMMER, C.
Information flow control in webkit’s javascript bytecode. In Proc.
of Principles of Security and Trust (2014).

[11] CAHN, A., ALFELD, S., BARFORD, P., AND MUTHUKRISH-
NAN, S. An empirical study of web cookies. In Proc. of WWW
(2016).

[12] CARRASCOSA, J. M., MIKIANS, J., CUEVAS, R., ERRAMILLI,
V., AND LAOUTARIS, N. I always feel like somebody’s watching
me: Measuring online behavioural advertising. In Proc. of ACM
CoNEXT (2015).

[13] CASTELLUCCIA, C., KAAFAR, M.-A., AND TRAN, M.-D. Be-
trayed by your ads!: Reconstructing user profiles from targeted
ads. In Proc. of PETS (2012).

[14] CHANCHARY, F., AND CHIASSON, S. User perceptions of shar-
ing, advertising, and tracking.

[15] Criteo ranking by Econsultancy. http://www.criteo.com/
resources/e-consultancy-display-retargeting-
buyers-guide/.

[16] DATTA, A., TSCHANTZ, M. C., AND DATTA, A. Automated
experiments on ad privacy settings: A tale of opacity, choice, and
discrimination. In Proc. of PETS (2015).

[17] Double Click RTB explained. https://developers.google.
com/ad-exchange/rtb/.

[18] ECKERSLEY, P. How unique is your web browser? In Proc. of
PETS (2010).

[19] ENGLEHARDT, S., REISMAN, D., EUBANK, C., ZIMMERMAN,
P., MAYER, J., NARAYANAN, A., AND FELTEN, E. W. Cookies
that give you away: The surveillance implications of web track-
ing. In Proc. of WWW (2015).

[20] FALAHRASTEGAR, M., HADDADI, H., UHLIG, S., AND
MORTIER, R. The rise of panopticons: Examining region-
specific third-party web tracking. In Proc of. Traffic Monitoring
and Analysis (2014).

[21] FALAHRASTEGAR, M., HADDADI, H., UHLIG, S., AND
MORTIER, R. Tracking personal identifiers across the web. In
Proc. of PAM (2016).

[22] FREDRIKSON, M., AND LIVSHITS, B. Repriv: Re-imagining
content personalization and in-browser privacy. In Proc. of IEEE
Symposium on Security and Privacy (2011).

[23] GHOSH, A., MAHDIAN, M., MCAFEE, P., AND VASSILVIT-
SKII, S. To match or not to match: Economics of cookie match-
ing in online advertising. In Proc. of EC (2012).

[24] GILL, P., ERRAMILLI, V., CHAINTREAU, A., KRISHNA-
MURTHY, B., PAPAGIANNAKI, K., AND RODRIGUEZ, P. Follow
the money: Understanding economics of online aggregation and
advertising. In Proc. of IMC (2013).

[25] GOMER, R., RODRIGUES, E. M., MILIC-FRAYLING, N., AND
SCHRAEFEL, M. C. Network analysis of third party tracking:
User exposure to tracking cookies through search. In Proc. of
IEEE/WIC/ACM International Joint Conferences on Web Intelli-
gence (WI) and Intelligent Agent Technologies (IAT) (2013).

[26] GOODALE, G. Privacy concerns? what google now says it
can do with your data. Christian Science Monitor, April 2014.
http://www.csmonitor.com/USA/2014/0416/Privacy-
concerns-What-Google-now-says-it-can-do-with-
your-data-video.

[27] GUHA, S., CHENG, B., AND FRANCIS, P. Challenges in mea-
suring online advertising systems. In Proc. of IMC (2010).

[28] GUHA, S., CHENG, B., AND FRANCIS, P. Privad: Practical
privacy in online advertising. In Proc. of NSDI (2011).

[29] HANNAK, A., SAPIEŻYŃSKI, P., KAKHKI, A. M., KRISHNA-
MURTHY, B., LAZER, D., MISLOVE, A., AND WILSON, C.
Measuring Personalization of Web Search. In Proc. of WWW
(2013).

[30] HEDIN, D., BIRGISSON, A., BELLO, L., AND SABELFELD, A.
JSFlow: Tracking Information Flow in JavaScript and Its APIs.
In Proc. of Symposium on Applied Computing (2014).

[31] HEULE, S., STEFAN, D., YANG, E. Z., MITCHELL, J. C., AND
RUSSO, A. IFC inside: Retrofitting languages with dynamic in-
formation flow control. In Proc. of Principles of Security and
Trust (2015).

[32] HOOFNAGLE, C. J., AND URBAN, J. M. Alan westin’s privacy
homo economicus. 49 Wake Forest Law Review 261 (2014).

[33] HOWELL, D. How to protect your privacy and remove
data from online services. Tech Radar, January 2015.
http://www.techradar.com/news/internet/how-
to-protect-your-privacy-and-remove-data-from-
online-services-1291515.

[34] KAMKAR, S. Evercookie - virtually irrevocable persistent cook-
ies., September 2010. http://samy.pl/evercookie/.

[35] KOHNO, T., BROIDO, A., AND CLAFFY, K. Remote physical
device fingerprinting. IEEE Transactions on Dependable and Se-
cure Computing 2, 2 (2005), 93–108.

[36] KRISHNAMURTHY, B., NARYSHKIN, K., AND WILLS, C. Pri-
vacy diffusion on the web: A longitudinal perspective. In Proc.
of WWW (2009).

[37] KRISHNAMURTHY, B., AND WILLS, C. Privacy leakage vs.
protection measures: the growing disconnect. In Proc. of W2SP
(2011).

[38] KRISHNAMURTHY, B., AND WILLS, C. E. Generating a privacy
footprint on the internet. In Proc. of IMC (2006).

[39] LÉCUYER, M., DUCOFFE, G., LAN, F., PAPANCEA, A., PET-
SIOS, T., SPAHN, R., CHAINTREAU, A., AND GEAMBASU, R.
Xray: Enhancing the web’s transparency with differential corre-
lation. In Proc. of USENIX Security Symposium (2014).

[40] LECUYER, M., SPAHN, R., SPILIOPOLOUS, Y., CHAINTREAU,
A., GEAMBASU, R., AND HSU, D. Sunlight: Fine-grained tar-
geting detection at scale with statistical confidence. In Proc. of
CCS (2015).

[41] LEON, P. G., UR, B., WANG, Y., SLEEPER, M., BALEBAKO,
R., SHAY, R., BAUER, L., CHRISTODORESCU, M., AND CRA-
NOR, L. F. What matters to users?: Factors that affect users’
willingness to share information with online advertisers.

[42] LI, T.-C., HANG, H., FALOUTSOS, M., AND EFSTATHOPOU-
LOS, P. Trackadvisor: Taking back browsing privacy from third-
party trackers. In Proc. of PAM (2015).

[43] LIU, B., SHETH, A., WEINSBERG, U., CHANDRASHEKAR, J.,
AND GOVINDAN, R. Adreveal: Improving transparency into on-
line targeted advertising. In Proc. of HotNets (2013).

[44] MALHEIROS, M., JENNETT, C., PATEL, S., BROSTOFF, S.,
AND SASSE, M. A. Too close for comfort: A study of the effec-
tiveness and acceptability of rich-media personalized advertising.
In Proc. of CHI (2012).

[45] MAYER, J. R., AND MITCHELL, J. C. Third-party web tracking:
Policy and technology. In Proc. of IEEE Symposium on Security
and Privacy (2012).

15

496 25th USENIX Security Symposium USENIX Association

[46] MCDONALD, A. M., AND CRANOR, L. F. Americans’ attitudes
about internet behavioral advertising practices. In Proc. of WPES
(2010).

[47] MCDONALD, A. M., AND CRANOR, L. F. A survey of the use
of adobe flash local shared objects to respawn http cookies. ISJLP
7, 639 (2011).

[48] MOWERY, K., BOGENREIF, D., YILEK, S., AND SHACHAM,
H. Fingerprinting information in JavaScript implementations. In
Proc. of W2SP (2011).

[49] MOWERY, K., AND SHACHAM, H. Pixel perfect: Fingerprinting
canvas in html5. In Proc. of W2SP (2012).

[50] MULAZZANI, M., RESCHL, P., HUBER, M., LEITHNER, M.,
SCHRITTWIESER, S., AND WEIPPL, E. Fast and reliable
browser identification with JavaScript engine fingerprinting. In
Proc. of W2SP (2013).

[51] NIKIFORAKIS, N., JOOSEN, W., AND LIVSHITS, B. Privari-
cator: Deceiving fingerprinters with little white lies. In Proc. of
WWW (2015).

[52] NIKIFORAKIS, N., KAPRAVELOS, A., JOOSEN, W., KRUEGEL,
C., PIESSENS, F., AND VIGNA, G. Cookieless monster: Explor-
ing the ecosystem of web-based device fingerprinting. In Proc. of
IEEE Symposium on Security and Privacy (2013).

[53] OLEJNIK, L., CASTELLUCCIA, C., AND JANC, A. Why Johnny
Can’t Browse in Peace: On the Uniqueness of Web Browsing
History Patterns. In Proc. of HotPETs (2012).

[54] OLEJNIK, L., MINH-DUNG, T., AND CASTELLUCCIA, C. Sell-
ing off privacy at auction. In Proc of NDSS (2014).

[55] ROESNER, F., KOHNO, T., AND WETHERALL, D. Detecting
and defending against third-party tracking on the web. In Proc.
of NSDI (2012).

[56] SOELLER, G., KARAHALIOS, K., SANDVIG, C., AND WIL-
SON, C. Mapwatch: Detecting and monitoring international bor-
der personalization on online maps. In Proc. of WWW (2016).

[57] SOLTANI, A., CANTY, S., MAYO, Q., THOMAS, L., AND
HOOFNAGLE, C. J. Flash cookies and privacy. In AAAI
Spring Symposium: Intelligent Information Privacy Management
(2010).

[58] SPECTOR, L. Online privacy tips: 3 ways to con-
trol your digital footprint. PC World, January 2016.
http://www.pcworld.com/article/3020163/internet/
online-privacy-tips-3-ways-to-control-your-
digital-footprint.html.

[59] STEFAN, D., YANG, E. Z., MARCHENKO, P., RUSSO, A., HER-
MAN, D., KARP, B., AND MAZIÈRES, D. Protecting users by
confining JavaScript with COWL. In Proc. of OSDI (2014).

[60] UR, B., LEON, P. G., CRANOR, L. F., SHAY, R., AND WANG,
Y. Smart, useful, scary, creepy: Perceptions of online behavioral
advertising.

[61] VALLINA-RODRIGUEZ, N., SHAH, J., FINAMORE, A.,
GRUNENBERGER, Y., PAPAGIANNAKI, K., HADDADI, H., AND
CROWCROFT, J. Breaking for commercials: Characterizing mo-
bile advertising. In Proc. of IMC (2012).

[62] WALLS, R. J., KILMER, E. D., LAGEMAN, N., AND MC-
DANIEL, P. D. Measuring the impact and perception of accept-
able advertisements. In Proc. of IMC (2015).

[63] WANG, G., MOHANLAL, M., WILSON, C., WANG, X., MET-
ZGER, M., ZHENG, H., AND ZHAO, B. Y. Social turing tests:
Crowdsourcing sybil detection. In Proc. of NDSS (2013).

[64] WILLS, C. E., AND TATAR, C. Understanding what they do with
what they know. In Proc. of WPES (2012).

[65] WOLPIN, S. International privacy day: Protect
your digital footprint. The Huffington Post, January
2015. http://www.huffingtonpost.com/stewart-
wolpin/international-privacy-day_b_6551012.html.

[66] ZARRAS, A., KAPRAVELOS, A., STRINGHINI, G., HOLZ, T.,
KRUEGEL, C., AND VIGNA, G. The dark alleys of madison av-
enue: Understanding malicious advertisements. In Proc. of IMC
(2014).

A Appendix

A.1 Clustered Domains
We clustered the following domains together when clas-
sifying publisher-side chains in § 6.1.2.

Google: google-analytics, googleapis, google, dou-
bleclick, gstatic, googlesyndication, googleusercon-
tent, googleadservices, googletagmanager, googletagser-
vices, googlecommerce, youtube, ytimg, youtube-mp3,
googlevideo, 2mdn

OpenX: openxenterprise, openx, servedbyopenx

Affinity: affinitymatrix, affinity

Ebay: ebay, ebaystatic

Yahoo: yahoo, yimg

Mythings: mythingsmedia, mythings

Amazon: cloudfront, amazonaws, amazon-adsystem,
images-amazon

Tellapart: tellapart, tellaparts

16

USENIX Association 25th USENIX Security Symposium 497

Virtual U: Defeating Face Liveness Detection by Building Virtual Models
From Your Public Photos

Yi Xu, True Price, Jan-Michael Frahm, Fabian Monrose

Department of Computer Science, University of North Carolina at Chapel Hill

{yix, jtprice, jmf, fabian}@cs.unc.edu

Abstract
In this paper, we introduce a novel approach to bypass
modern face authentication systems. More specifically,
by leveraging a handful of pictures of the target user
taken from social media, we show how to create realistic,
textured, 3D facial models that undermine the security
of widely used face authentication solutions. Our frame-
work makes use of virtual reality (VR) systems, incor-
porating along the way the ability to perform animations
(e.g., raising an eyebrow or smiling) of the facial model,
in order to trick liveness detectors into believing that the
3D model is a real human face. The synthetic face of the
user is displayed on the screen of the VR device, and as
the device rotates and translates in the real world, the 3D
face moves accordingly. To an observing face authenti-
cation system, the depth and motion cues of the display
match what would be expected for a human face.

We argue that such VR-based spoofing attacks con-
stitute a fundamentally new class of attacks that point
to a serious weaknesses in camera-based authentication
systems: Unless they incorporate other sources of verifi-
able data, systems relying on color image data and cam-
era motion are prone to attacks via virtual realism. To
demonstrate the practical nature of this threat, we con-
duct thorough experiments using an end-to-end imple-
mentation of our approach and show how it undermines
the security of several face authentication solutions that
include both motion-based and liveness detectors.

1 Introduction

Over the past few years, face authentication systems have
become increasingly popular as an enhanced security
feature in both mobile devices and desktop computers.
As the underlying computer vision algorithms have ma-
tured, many application designers and nascent specialist
vendors have jumped in and started to offer solutions for
mobile devices with varying degrees of security and us-
ability. Other more well-known players, like Apple and

Google, are posed to enter the market with their own
solutions, having already acquired several facial recog-
nition software companies1. While the market is seg-
mented based on the type of technology offered (e.g.,
2D facial recognition, 3D recognition, and facial analyt-
ics/face biometric authentication), Gartner research esti-
mates that the overall market will grow to over $6.5 bil-
lion in 2018 (compared to roughly $2 billion today) [13].

With this push to market, improving the accuracy of
face recognition technologies remains an active area of
research in academia and industry. Google’s FaceNet
system, which achieved near-perfect accuracy on the La-
beled Faces in the Wild dataset [47], exemplifies one
such effort. Additionally, recent advances with deep
learning algorithms [38, 53] show much promise in
strengthening the robustness of the face identification
and authentication techniques used today. Indeed, state-
of-the-art face identification systems can now outper-
form their human counterparts [36], and this high accu-
racy is one of the driving factors behind the increased use
of face recognition systems.

However, even given the high accuracy of modern face
recognition technologies, their application in face au-
thentication systems has left much to be desired. For
instance, at the Black Hat security conference in 2009,
Duc and Minh [10] demonstrated the weaknesses of pop-
ular face authentication systems from commodity ven-
dors like Lenovo, Asus, and Toshiba. Amusingly, Duc
and Minh [10] were able to reliably bypass face-locked
computers simply by presenting the software with pho-
tographs and fake pictures of faces. Essentially, the secu-
rity of these systems rested solely on the problem of face
detection, rather than face authentication. This widely
publicized event led to subsequent integration of more
robust face authentication protocols. One prominent ex-
ample is Android OS, which augmented its face authen-

1See, for example, “Apple Acquires Face Recognition, Expression
Analysis firm, Emotient”, TechTimes, Jan, 2016; “Google Acquires
Facial Recognition Software Company PittPar,” WSJ, 2011.

498 25th USENIX Security Symposium USENIX Association

tication approach in 2012 to require users to blink while
authenticating (i.e., as a countermeasure to still-image
spoofing attacks). Unfortunately, this approach was also
shown to provide little protection, and can be easily by-
passed by presenting the system with two alternating im-
ages — one with the user’s eyes open, and one with her
eyes closed.2 These attacks underscore the fact that face
authentication systems require robust security features
beyond mere recognition in order to foil spoofing attacks.

Loosely speaking, three types of such spoofing attacks
have been used in the past, to varying degrees of success:
(i) still-image-based spoofing, (ii) video-based spoofing,
and (iii) 3D-mask-based spoofing. As the name suggests,
still-image-based spoofing attacks present one or more
still images of the user to the authentication camera; each
image is either printed on paper or shown with a digi-
tized display. Video-based spoofing, on the other hand,
presents a pre-recorded video of the victim’s moving face
in an attempt to trick the system into falsely recognizing
motion as an indication of liveness. The 3D-mask-based
approach, wherein 3D-printed facial masks are used, was
recently explored by Erdogmus and Marcel [11].

As is the typical case in the field of computer se-
curity, the cleverness of skilled, motivated adversaries
drove system designers to incorporate defensive tech-
niques in the biometric solutions they develop. This
cat-and-mouse game continues to play out in the realm
of face authentication systems, and the current recom-
mendation calls for the use of well-designed face live-
ness detection schemes (that attempt to distinguish a real
user from a spoofed one). Indeed, most modern systems
now require more active participation compared to sim-
ple blink detection, often asking the user to rotate her
head or raise an eyebrow during login. Motion-based
techniques that check, for example, that the input cap-
tured during login exhibits sufficient 3D behavior, are
also an active area of research in face authentication.

One such example is the recent work of Li et al. [34]
that appeared in CCS’2015. In that work, the use of
liveness detection was proposed as a solution to thwart-
ing video-based attacks by checking the consistency of
the recorded data with inertial sensors. Such a detection
scheme relies on the fact that as a camera moves relative
to a user’s stationary head, the facial features it detects
will also move in a predictable way. Thus, a 2D video
of the victim would have to be captured under the exact
same camera motion in order to fool the system.

As mentioned in [34], 3D-printed facial reconstruc-
tions offer one option for defeating motion-based live-
ness detection schemes. In our view, a more realizable
approach is to present the system with a 3D facial mesh
in a virtual reality (VR) environment. Here, the motion

2https://www.youtube.com/watch?v=zYxphDK6s3I

of the authenticating camera is tracked, and the VR sys-
tem internally rotates and translates the mesh to match.
In this fashion, the camera observes exactly the same
movement of facial features as it would for a real face,
fulfilling the requirements for liveness detection. Such
an attack defeats color-image- and motion-based face au-
thentication on a fundamental level because, with suffi-
cient effort, a VR system can display an environment that
is essentially indistinguishable from real-world input.

In this paper, we show that it is possible to undermine
modern face authentication systems using one such at-
tack. Moreover, we show that an accurate facial model
can be built using only a handful of publicly accessible
photos — collected, for example, from social network
websites — of the victim. From a pragmatic point of
view, we are confronted with two main challenges: i) the
number of photos of the target may be limited, and ii) for
each available photo, the illumination setting is unknown
and the user’s pose and expression are not constrained.
To overcome these challenges, we leverage robust, pub-
licly available 3D face reconstruction methods from the
field of computer vision, and adapt these techniques to fit
our needs. Once a credible synthetic model of a user is
obtained, we then employ entry-level virtual reality dis-
plays to defeat the state of the art in liveness detection.

The rest of the paper is laid out as follows: §2 provides
background and related work related to face authentica-
tion, exploitation of users’ online photos, and 3D facial
reconstruction. §3 outlines the steps we take to perform
our VR-based attack. In §4, we evaluate the performance
of our method on 5 commercial face authentication sys-
tems and, additionally, on a proposed state-of-the-art sys-
tem for liveness detection. We suggest steps that could
be taken to mitigate our attack in §5, and we address the
implications of our successful attack strategy in §6.

2 Background and Related Work

Before delving into the details of our approach, we first
present pertinent background information needed to un-
derstanding the remainder of this paper.

First, we note that given the three prominent classes of
spoofing attacks mentioned earlier, it should be clear that
while still-image-based attacks are the easiest to perform,
they can be easily countered by detecting the 3D struc-
ture of the face. Video-based spoofing is more difficult to
accomplish because facial videos of the target user may
be harder to come by; moreover, such attacks can also
be successfully defeated, for example, using the recently
suggested techniques of Li et al. [34] (which we discuss
in more detail later). 3D-mask-based approaches, on the
other hand, are harder to counter. That said, building
a 3D mask is arguably more time-consuming and also
requires specialized equipment. Nevertheless, because

USENIX Association 25th USENIX Security Symposium 499

of the threat this attack vector poses, much research has
gone into detecting the textures of 3D masks [11].

2.1 Modern Defenses Against Spoofing

Just as new types of spoofing attacks have been intro-
duced to fool face authentication systems, so too have
more advanced methods for countering these attacks
been developed. Nowadays, the most popular liveness
detection techniques can be categorized as either texture-
based approaches, motion-based approaches, or liveness
assessment approaches. We discuss each in turn.

Texture-based approaches [11, 25, 37, 40, 54, 60] at-
tempt to identify spoofing attacks based on the assump-
tion that a spoofed face will have a distinctly different
texture from a real face. Specifically, they assume that
due to properties of its generation, a spoofed face (irre-
spective of whether it is printed on paper, shown on a
display, or made as a 3D mask) will be different from
a real face in terms of shape, detail, micro-textures, res-
olution, blurring, gamma correction, and shading. That
is, these techniques rely on perceived limitations of im-
age displays and printing techniques. However, with the
advent of high-resolution displays (e.g., 5K), the differ-
ence in visual quality between a spoofed image and a
living face is hard to notice. Another limitation is that
these techniques often require training on every possible
spoofing material, which is not practical for real systems.

Motion-based approaches [3, 27, 29, 32, 57] detect
spoofing attacks by using motion of the user’s head to
infer 3D shape. Techniques such as optical flow and
focal-length analysis are typically used. The basic as-
sumption is that structures recovered from genuine faces
usually contain sufficient 3D information, whereas struc-
tures from fake faces (photos) are usually planar in depth.
For instance, the approach of Li et al. [34] checks the
consistency of movement between the mobile device’s
internal motion sensors and the observed change in head
pose computed from the recorded video taken while the
claimant attempts to authenticate herself to the device.
Such 3D reasoning provides a formidable defense against
both still-image and video-based attacks.

Lastly, liveness assessment techniques [19, 30, 31, 49]
require the user to perform certain tasks during the au-
thentication stage. For the systems we evaluated, the
user is typically asked to follow certain guidelines dur-
ing registration, and to perform a random series of ac-
tions (e.g., eye movement, lip movement, and blinking)
at login. The requested gestures help to defeat contem-
porary spoofing attacks.

Take-away: For real-world systems, liveness detec-
tion schemes are often combined with motion-based ap-
proaches to provide better security protection than either

can provide on their own. With these ensemble tech-
niques, traditional spoofing attacks can be reliably de-
tected. For that reason, the combination of motion-based
systems and liveness detectors has gained traction and
is now widely adopted in many commercial systems, in-
cluding popular face authentication systems offered by
companies like KeyLemon, Rohos, and Biomids. For the
remainder of this paper, we consider this combination as
the state of the art in defenses against spoofing attacks
for face authentication systems.

2.2 Online Photos and Face Authentication

It should come as no surprise that personal photos from
online social networks can compromise privacy. Major
social network sites advise users to set privacy settings
for the images they upload, but the vast majority of these
photos are often accessible to the public or set to ‘friend-
only’ viewing’ [14, 26, 35]. Users also do not have di-
rect control over the accessibility of photos of themselves
posted by other users, although they can remove (‘un-
tag’) the association of such photos with their account.

A notable use of social network photos for online se-
curity is Facebook’s social authentication (SA) system
[15], an extension of CAPTCHAs that seeks to bolster
identity verification by requiring the user to identify pho-
tos of their friends. While this method does require more
specific knowledge than general CAPTCHAs, Polakis
et al. [42] demonstrated that facial recognition could be
applied to a user’s public photos to discover their social
relationships and solve 22% of SA tests automatically.

Given that one’s online photo presence is not entirely
controlled by the user alone — but by their collective
social circles — many avenues exist for an attacker to
uncover the facial appearance of a user, even when the
user makes private their own personal photos. In an ef-
fort to curb such easy access, work by Ilia et al. [17] has
explored the automatic privatization of user data across
a social network. This method uses face detection and
photo tags to selectively blur the face of a user when the
viewing party does not have permission to see the photo.
In the future, such an approach may help decrease the
public accessibility of users’ personal photos, but it is
unlikely that an individual’s appearance can ever be com-
pletely obfuscated from attackers across all social media
sites and image stores on the Internet.

Clearly, the availability of online user photos is a boon
for an adversary tasked with the challenge of undermin-
ing face authentication systems. The most germane on
this front is the work of Li et al. [33]. There, the au-
thors proposed an attack that defeated commonly used
face authentication systems by using photos of the target
user gathered from online social networks. Li et al. [33]
reported that 77% of the users in their test set were vul-

500 25th USENIX Security Symposium USENIX Association

nerable to their proposed attack. However, their work
is targeted at face recognition systems that do not in-
corporate face liveness detection. As noted in §2, in
modern face authentication software, sophisticated live-
ness detection approaches are already in use, and these
techniques thwart still-image spoofing attacks of the kind
performed by Li et al. [33].

2.3 3D Facial Reconstruction

Constructing a 3D facial model from a small number
of personal photos involves the application of powerful
techniques from the field of computer vision. Fortu-
nately, there exists a variety of reconstruction approaches
that make this task less daunting than it may seem on first
blush, and many techniques have been introduced for fa-
cial reconstruction from single images [4, 23, 24, 43],
videos [20, 48, 51], and combinations of both [52]. For
pedagogical reasons, we briefly review concepts that
help the reader better understand our approach.

The most popular facial model reconstruction ap-
proaches can be categorized into three classes: shape
from shading (SFS), structure from motion (SFM) com-
bined with dense stereoscopic depth estimation, and sta-
tistical facial models. The SFS approach [24] uses a
model of scene illumination and reflectance to recover
face structure. Using this technique, a 3D facial model
can be reconstructed from only a single input photo. SFS
relies on the assumption that the brightness level and gra-
dient of the face image reveals the 3D structure of the
face. However, the constraints of the illumination model
used in SFS require a relatively simple illumination set-
ting and, therefore, cannot typically be applied to real-
world photo samples, where the configuration of the light
sources is unknown and often complicated.

As an alternative, the structure from motion approach
[12] makes use of multiple photos to triangulate spatial
positions of 3D points. It then leverages stereoscopic
techniques across the different viewpoints to recover the
complete 3D surface of the face. With this method, the
reconstruction of a dense and accurate model often re-
quires many consistent views of the surface from differ-
ent angles; moreover, non-rigid variations (e.g., facial ex-
pressions) in the images can easily cause SFM methods
to fail. In our scenario, these requirements make such an
approach less usable: for many individuals, only a lim-
ited number of images might be publicly available on-
line, and the dynamic nature of the face makes it difficult
to find multiple images having a consistent appearance
(i.e., the exact same facial expression).

Unlike SFS and SFM, statistical facial models [4, 43]
seek to perform facial reconstruction on an image using
a training set of existing facial models. The basis for this
type of facial reconstruction is the 3D morphable model

(3DMM) of Blanz and Vetter [6, 7], which learns the
principal variations of face shape and appearance that
occur within a population, then fits these properties to
images of a specific face. Training the morphable mod-
els can be performed either on a controlled set of im-
ages [8, 39] or from internet photo-collections [23]. The
underlying variations fall on a continuum and capture
both expression (e.g., a frowning-to-smiling spectrum)
and identity (e.g., a skinny-to-heavy or a male-to-female
spectrum). In 3DMM and its derivatives, both 3D shape
and texture information are cast into a high-dimensional
linear space, which can be analyzed with principal com-
ponent analysis (PCA) [22]. By optimizing over the
weights of different eigenvectors in PCA, any particu-
lar human face model can be approximated. Statistical
facial models have shown to be very robust and only re-
quire a few photos for high-precision reconstruction. For
instance, the approach of Baumberger et al. [4] achieves
good reconstruction quality using only two images.

To make the process fully automatic, recent 3D fa-
cial reconstruction approaches have relied on a few fa-
cial landmark points instead of operating on the whole
model. These landmarks can be accurately detected us-
ing the supervised descent method (SDM) [59] or deep
convolutional networks [50]. By first identifying these
2D features in an image and then mapping them to points
in 3D space, the entire 3D facial surface can be effi-
ciently reconstructed with high accuracy. In this process,
the main challenge is the localization of facial landmarks
within the images, especially contour landmarks (along
the cheekbones), which are half-occluded in non-frontal
views; we introduce a new method for solving this prob-
lem when multiple input images are available.

The end result of 3D reconstruction is a untextured
(i.e., lacking skin color, eye color, etc.) facial surface.
Texturing is then applied using source image(s), creating
a realistic final face model. We next detail our process for
building such a facial model from a user’s publicly avail-
able internet photos, and we outline how this model can
be leveraged for a VR-based face authentication attack.

3 Our Approach

A high-level overview of our approach for creating a syn-
thetic face model is shown in Figure 1. Given one or
more photos of the target user, we first automatically ex-
tract the landmarks of the user’s face (stage �). These
landmarks capture the pose, shape, and expression of the
user. Next, we estimate a 3D facial model for the user,
optimizing the geometry to match the observed 2D land-
marks (stage �). Once we have recovered the shape of
the user’s face, we use a single image to transfer texture
information to the 3D mesh. Transferring the texture is
non-trivial since parts of the face might be self-occluded

USENIX Association 25th USENIX Security Symposium 501

Figure 1: Overview of our proposed approach.

(e.g., when the photo is taken from the side). The tex-
ture of these occluded parts must be estimated in a man-
ner that does not introduce too many artifacts (stage �).
Once the texture is filled, we have a realistic 3D model
of the user’s face based on a single image.

However, despite its realism, the output of stage � is
still not able to fool modern face authentication systems.
The primary reason for this is that modern face authenti-
cation systems use the subject’s gaze direction as a strong
feature, requiring the user to look at the camera in order
to pass the system. Therefore, we must also automati-
cally correct the direction of the user’s gaze on the tex-
tured mesh (stage �). The adjusted model can then be de-
formed to produce animation for different facial expres-
sions, such as smiling, blinking, and raising the eyebrows
(stage �). These expressions are often used as liveness
clues in face authentication systems, and as such, we
need to be able to automatically reproduce them on our
3D model. Finally, we output the textured 3D model into
a virtual reality system (stage �).

Using this framework, an adversary can bypass both
the face recognition and liveness detection components
of modern face authentication systems. In what follows,
we discuss the approach we take to solve each of the var-
ious challenges that arise in our six-staged process.

3.1 Facial Landmark Extraction

Starting from multiple input photos of the user, our first
task is to perform facial landmark extraction. Follow-
ing the approach of Zhu et al. [63], we extract 68 2D
facial landmarks in each image using the supervised de-
scent method (SDM) [59]. SDM successfully identifies
facial landmarks under relatively large pose differences
(±45deg yaw, ±90deg roll, ±30deg pitch). We chose
the technique of Zhu et al. [63] because it achieves a me-

dian alignment error of 2.7 pixels on well-known datasets
[1] and outperforms other commonly used techniques
(e.g., [5]) for landmark extraction.

Figure 2: Examples of facial landmark extraction

For our needs, SDM works well on most online im-
ages, even those where the face is captured at a low res-
olution (e.g., 40× 50 pixels). It does, however, fail on
a handful of the online photos we collected (less than
5%) where the pose is beyond the tolerance level of the
algorithm. If this occurs, we simply discard the image.
In our experiments, the landmark extraction results are
manually checked for correctness, although an automatic
scoring system could potentially be devised for this task.
Example landmark extractions are shown in Figure 2.

3.2 3D Model Reconstruction
The 68 extracted 3D point landmarks from each of the
N input images provide us with a set of coordinates
si, j ∈ R2, with 1 ≤ i ≤ 68,1 ≤ j ≤ N. The projection of
the 3D points Si, j ∈ R3 on the face onto the image coor-
dinates si, j follows what is called the “weak perspective
projection” (WPP) model [16], computed as follows:

si, j = f jPR j (Si, j + t j) , (1)

where f j is a uniform scaling factor; P is the projection

matrix

(
1 0 0
0 1 0

)
; R j is a 3×3 rotation matrix defined by

502 25th USENIX Security Symposium USENIX Association

the pitch, yaw, and roll, respectively, of the face relative
to the camera; and t j ∈ R3 is the translation of the face
with respect to the camera. Among these parameters,
only si, j and P are known, and so we must estimate the
others.

Fortunately, a large body of work exists on the shape
statistics of human faces. Following Zhu et al. [63],
we capture face characteristics using the 3D Morphable
Model (3DMM) [39] with an expression extension pro-
posed by Chu et al. [9]. This method characterizes varia-
tions in face shape for a population using principal com-
ponent analysis (PCA), with each individual’s 68 3D
point landmarks being concatenated into a single feature
vector for the analysis. These variations can be split into
two categories: constant factors related to an individual’s
distinct appearance (identity), and non-constant factors
related to expression. The identity axes capture charac-
teristics such as face width, brow placement, or lip size,
while the expression axes capture variations like smiling
versus frowning. Example axes for variations in expres-
sion are shown in Figure 6.

More formally, for any given individual, the 3D coor-
dinates Si, j on the face can be modeled as

Si, j = S̄i +Aid
i α id +Aexp

i αexp
j , (2)

where S̄i is the statistical average of Si, j among the in-
dividuals in the population, Aid

i is the set of principal
axes of variation related to identity, and Aexp

i is the set
of principal axes related to expression. α id and αexp

j are
the identity and expression weight vectors, respectively,
that determine person-specific facial characteristics and
expression-specific facial appearance. We obtain S̄i and
Aid

i using the 3D Morphable Model [39] and Aexp
i from

Face Warehouse [8].

Figure 3: Illustration of identity axes (heavy-set to thin) and
expression axes (pursed lips to open smile).

When combining Eqs. (1) and (2), we inevitably run
into the so-called “correspondence problem.” That is,

given each identified facial landmark si, j in the input im-
age, we need to find the corresponding 3D point Si′, j
on the underlying face model. For landmarks such as
the corners of the eyes and mouth, this correspondence
is self-evident and consistent across images. However,
for contour landmarks marking the edge of the face in
an image, the associated 3D point on the user’s facial
model is pose-dependent: When the user is directly fac-
ing the camera, their jawline and cheekbones are fully in
view, and the observed 2D landmarks lie on the fiducial
boundary on the user’s 3D facial model. When the user
rotates their face left (or right), however, the previously
observed 2D contour landmarks on the left (resp. right)
side of the face shift out of view. As a result, the observed
2D landmarks on the edge of the face correspond to 3D
points closer to the center of the face. This 3D point dis-
placement must be taken into account when recovering
the underlying facial model.

Qu et al. [44] deal with contour landmarks using con-
straints on surface normal direction, based on the obser-
vation that points on the edge of the face in the image
will have surface normals perpendicular to the viewing
direction. However, this approach is less robust because
the normal direction cannot always be accurately esti-
mated and, as such, requires careful parameter tuning.
Zhu et al. [63] proposed a “landmark marching” scheme
that iteratively estimates 3D head pose and 2D contour
landmark position. While their approach is efficient and
robust against different face angles and surface shapes,
it can only handle a single image and cannot refine the
reconstruction result using additional images.

Our solution to the correspondence problem is to
model 3D point variance for each facial landmark using a
pre-trained Gaussian distribution (see Appendix A). Un-
like the approach of Zhu et al. [63] which is based on
single image input, we solve for pose, perspective, ex-
pression, and neutral-expression parameters over all im-
ages jointly. From this, we obtain a neutral-expression
model Si of the user’s face. A typical reconstruction, Si,
is presented in Figure 4.

Figure 4: 3D facial model (right) built from facial landmarks
extracted from 4 images (left).

USENIX Association 25th USENIX Security Symposium 503

3.3 Facial Texture Patching
Given the 3D facial model, the next step is to patch the
model with realistic textures that can be recognized by
the face authentication systems. Due to the appearance
variation across social media photos, we have to achieve
this by mapping the pixels in a single captured photo
onto the 3D facial model, which avoids the challenges
of mixing different illuminations of the face. However,
this still leaves many of the regions without texture, and
those untextured spots will be noticeable to modern face
authentication systems. To fill these missing regions, the
naïve approach is to utilize the vertical symmetry of the
face and fill the missing texture regions with their sym-
metrical complements. However, doing so would lead
to strong artifacts at the boundary of missing regions. A
realistic textured model should be free of these artifacts.

To lessen the presence of these artifacts, one approach
is to iteratively average the color of neighboring vertices
as a color trend and then mix this trend with texture de-
tails [45]. However, such an approach over-simplifies
the problem and fails to realistically model the illumina-
tion of facial surfaces. Instead, we follow the suggestion
of Zhu et al. [63] and estimate facial illumination using
spherical harmonics [61], then fill in texture details with
Poisson editing [41]. In this way, the output model will
appears to have a more natural illumination. Sadly, we
cannot use their approach directly as it reconstructs a pla-
nar normalized face, instead of a 3D facial model, and so
we must extend their technique to the 3D surface mesh.

The idea we implemented for improving our initial
textured 3D model was as follows: Starting from the
single photo chosen as the main texture source, we first
estimate and subsequently remove the illumination con-
ditions present in the photo. Next, we map the textured
facial model onto a plane via a conformal mapping, then
impute the unknown texture using 2D Poisson editing.
We further extend their approach to three dimensions and
perform Poisson editing directly on the surface of the fa-
cial model. Intuitively, the idea behind Poisson editing
is to keep the detailed texture in the editing region while
enforcing the texture’s smoothness across the boundary.
This process is defined mathematically as

∆ f = ∆g,s.t f |∂Ω = f 0|∂Ω, (3)

where Ω is the editing region, f is the editing result, f 0

is the known original texture value, and g is the texture
value in the editing region that is unknown and needs to
be patched with its reflection complement. On a 3D sur-
face mesh, every vertex is connected with 2 to 8 neigh-
bors. Transforming Eq. 3 into discrete form, we have

|Np| fp − ∑
q∈Np∩Ω

fq = ∑
q∈Np∩Ω

f 0
q +(∆g)p, (4)

where Np is the neighborhood of point p on the mesh.
Our enhancement is a natural extension of the Poisson
editing method suggested in the seminal work of Pérez
et al. [41], although no formulation was given for 3D.
By solving Eq. 4 instead of projecting the texture onto a
plane and solving Eq. 3, we obtain more realistic texture
on the facial model, as shown in Figure 5.

Figure 5: Naïve symmetrical patching (left); Planar Poisson
editing (middle); 3D Poisson editing (right).

3.4 Gaze Correction
We now have a realistic 3D facial model of the user.
Yet, we found that models at stage � were unable to
bypass most well-known face recognition systems. Dig-
ging deeper into the reasons why, we observed that most
recognition systems rely heavily on gaze direction during
authentication, i.e., they fail-close if the user is not look-
ing at the device. To address this, we introduce a simple,
but effective, approach to correct the gaze direction of
our synthetic model (Figure 1, Stage �).

The idea is as follows. Since we have already re-
constructed the texture of the facial model, we can syn-
thesize the texture data in the eye region. These data
contain the color information from the sclera, cornea,
and pupil and form a three-dimensional distribution in
the RGB color space. We estimate this color distri-
bution with a 3D Gaussian function whose three prin-
ciple components can be computed as (b1,b2,b3) with
weight (σ1,σ2,σ3),σ1 ≥ σ2 ≥ σ3 > 0. We perform the
same analysis for the eye region of the average face
model obtained from 3DMM [39], whose eye is look-
ing straight towards the camera, and we similarly obtain
principle color components (bstd

1 ,bstd
2 ,bstd

3) with weight
(σ std

1 ,σ std
2 ,σ std

3),σ std
1 ≥ σ std

2 ≥ σ std
3 > 0. Then, we con-

vert the eye texture from the average model into the eye
texture of the user. For a texture pixel c in the eye region
of average texture, we convert it to

cconvert =
3

∑
i=1

σi

σ std
i

(c′bstd
i)bi. (5)

In effect, we align the color distribution of the average
eye texture with the color distribution of the user’s eye
texture. By patching the eye region of the facial model
with this converted average texture, we realistically cap-
ture the user’s eye appearance with forward gaze.

504 25th USENIX Security Symposium USENIX Association

3.5 Adding Facial Animations

Some of the liveness detection methods that we test re-
quire that the user performs specific actions in order to
unlock the system. To mimic these actions, we can sim-
ply animate our facial model using a pre-defined set of
facial expressions (e.g., from FaceWarehouse [8]). Re-
call that in deriving in Eq. 2, we have already computed
the weight for the identity axis α id , which captures the
user-specific face structure in a neutral expression. We
can adjust the expression of the model by substituting a
specific, known expression weight vector αexp

std into Eq. 2.
By interpolating the model’s expression weight from 0 to
αexp

std , we are able to animate the 3D facial model to smile,
laugh, blink, and raise the eyebrows (see Figure 6).

Figure 6: Animated expressions. From left to right: smiling,
laughing, closing the eyes, and raising the eyebrows.

3.6 Leveraging Virtual Reality

While the previous steps were necessary to recover a re-
alistic, animated model of a targeted user’s face, our driv-
ing insight is that virtual reality systems can be lever-
aged to display this model as if it were a real, three-
dimensional face. This VR-based spoofing constitutes
a fundamentally new class of attacks that exploit weak-
nesses in camera-based authentication systems.

In the VR system, the synthetic 3D face of the user
is displayed on the screen of the VR device, and as the
device rotates and translates in the real world, the 3D
face moves accordingly. To an observing face authen-
tication system, the depth and motion cues of the dis-
play exactly match what would be expected for a hu-
man face. Our experimental VR setup consists of custom
3D-rendering software displayed on a Nexus 5X smart
phone. Given the ubiquity of smart phones in modern
society, our implementation is practical and comes at
no additional hardware cost to an attacker. In practice,
any device with similar rendering capabilities and iner-
tial sensors could be used.

On smart phones, accelerometers and gyroscopes
work in tandem to provide the device with a sense of
self-motion. An example use case is detecting when the
device is rotated from a portrait view to a landscape view,
and rotating the display, in response. However, these sen-
sors are not able to recover absolute translation — that
is, the device is unable to determine how its position has

changed in 3D space. This presents a challenge because
without knowledge of how the device has moved in 3D
space, we cannot move our 3D facial model in a realistic
fashion. As a result, the observed 3D facial motion will
not agree with the device’s inertial sensors, causing our
method to fail on methods like that of Li et al. [34] that
use such data for liveness detection.

Fortunately, it is possible to track the 3D position of
a moving smart phone using its outward-facing camera
with structure from motion (see §2.3). Using the cam-
era’s video stream as input, the method works by tracking
points in the surrounding environment (e.g., the corners
of tables) and then estimating their position in 3D space.
At the same time, the 3D position of the camera is re-
covered relative to the tracked points, thus inferring the
camera’s change in 3D position. Several computer vision
approaches have been recently introduced to solve this
problem accurately and in real time on mobile devices
[28, 46, 55, 56]. In our experiments, we make use of a
printed marker3 placed on a wall in front of the camera,
rather than tracking arbitrary objects in the surrounding
scene; however, the end result is the same. By incorpo-
rating this module into our proof of concept, the perspec-
tive of the viewed model due to camera translation can be
simulated with high consistency and low latency.4

An example setup for our attack is shown in Figure
7. The VR system consists of a Nexus 5X unit using
its outward-facing camera to track a printed marker in
the environment. On the Nexus 5X screen, the system
displays a 3D facial model whose perspective is always
consistent with the spatial position and orientation of the
authentication device. The authenticating camera views
the facial model on the VR display, and it is successfully
duped into believing it is viewing the real face of the user.

Figure 7: Example setup using virtual reality to mimic 3D
structure from motion. The authentication system observes a
virtual display of a user’s 3D facial model that rotates and trans-
lates and the device moves. To recover the 3D translation of the
VR device, an outward-facing camera is used to track a marker
in the surrounding environment.

3See Goggle Paper at http://gogglepaper.com/
4Specialized VR systems such as the Oculus Rift could be used to

further improve the precision and latency of camera tracking. Such ad-
vanced, yet easily obtainable, hardware has the potential to deliver even
more sophisticated VR attacks compared to what is presented here.

USENIX Association 25th USENIX Security Symposium 505

4 Evaluation

We now demonstrate that our proposed spoofing method
constitutes a significant security threat to modern face
authentication systems. Using real social media photos
from consenting users, we successfully broke five com-
mercial authentication systems with a practical, end-to-
end implementation of our approach. To better under-
stand the threat, we further systematically run lab exper-
iments to test the capabilities and limitations of our pro-
posed method. Moreover, we successfully test our pro-
posed approach with the latest motion-based liveness de-
tection approach by Li et al. [34], which is not yet avail-
able in commercial systems.

Participants

We recruited 20 volunteers for our tests of commercial
face authentication systems. The volunteers were re-
cruited by word of mouth and span graduate students and
faculty in two separate research labs. Consultation with
our IRB departmental liaison revealed that no applica-
tion was needed. There was no compensation for par-
ticipating in the lab study. The ages of the participants
range between 24 and 44 years, and the sample consists
of 6 females and 14 males. The participants come from
a variety of ethnic backgrounds (as stated by the volun-
teers): 6 are of Asian descent, 4 are Indian, 1 is African-
American, 1 is Hispanic, and 8 are Caucasian. With their
consent, we collected public photos from the users’ Face-
book and Google+ social media pages; we also collected
any photos we could find of the users on personal or com-
munity web pages, as well as via image search on the
web. The smallest number of photos we collected for an
individual was 3, and the largest number was 27. The
average number of photos was 15, with a standard de-
viation of approximately 6 photos. No private informa-
tion about the subjects was recorded beside storage of the
photographs they consented too. Any images of subjects
displayed in this paper was done with the consent of that
particular volunteer.

For our experiments, we manually extracted the region
around user’s face in each image. An adversary could
also perform this action automatically using tag infor-
mation on social media sites, when available. One in-
teresting aspect of social media photos is they may cap-
ture significant physical changes of users over time. For
instance, one of our participants lost 20 pounds in the
last 6 months, and our reconstruction had to utilize im-
ages from before and after this change. Two other users
had frequent changes in facial hair styles – beards, mous-
taches, and clean-shaven – all of which we used for our
reconstruction. Another user had only uploaded 2 pho-
tos to social media in the past 3 years. These varieties all

present challenges for our framework, both for initially
reconstructing the user’s face and for creating a likeness
that matches their current appearance.

Industry-leading Solutions
We tested our approach on five advanced commercial
face authentication systems: KeyLemon5, Mobius6, True
Key [18], BioID [21], and 1U App7. Table 1 summarizes
the training data required by each system when learning a
user’s facial appearance, as well as the approximate num-
ber of users for each system, when available. All systems
incorporate some degree of liveness detection into their
authentication protocol. KeyLemon and the 1U App re-
quire users to perform an action such as blinking, smil-
ing, rotating the head, and raising the eyebrows. In ad-
dition, the 1U App requests these actions in a random
fashion, making it more resilient to video-based attacks.
BioID, Mobius and True Key are motion-based systems
and detect 3D facial structure as the user turns their head.
It is also possible that these five systems employ other
advanced liveness detection approaches, such as texture-
based detection schemes, but such information has not
been made available to the public.

Methodology

System Training Method # Installs

KeyLemon3 Single video ∼100,000
Mobius2 10 still images 18 reviews
True Key1 Single video 50,000-100,000
BioID2 4 videos unknown
1U App1 1 still image 50-100

Table 1: Summary of the face authentication systems evaluated.
The second column lists how each system acquires training data
for learning a user’s face, and the third column shows the num-
ber approximate number of installations or reviews each sys-
tem has received according to (1) the Google Play Store, (2)
the iTunes store, or (3) softpedia.com. BioID is a relatively
new app and does not yet have customer reviews on iTunes.

All participants were registered with the 5 face authen-
tication systems under indoor illumination. The average
length of time spent by each of the volunteers to register
across all systems was 20 minutes. As a control, we first
verified that all systems were able to correctly identify
the users in the same environment. Next, before testing
our method using textures obtained via social media, we
evaluated whether our system could spoof the recogni-
tion systems using photos taken in this environment. We

5http://www.keylemon.com
6http://www.biomids.com
7http://www.1uapps.com

506 25th USENIX Security Symposium USENIX Association

thus captured one front-view photo for each user under
the same indoor illumination and then created their 3D
facial model with our proposed approach. We found that
these 3D facial models were able to spoof each of the
5 candidate systems with a 100% sucess rate, which is
shown in the second column of Table 2

Following this, we reconstructed each user’s 3D fa-
cial model using the images collected from public online
sources. As a reminder, any source image can be used as
the main image when texturing the model. Since not all
textures will successfully spoof the recognition systems,
we created textured reconstructions from all source im-
ages and iteratively presented them to the system (in or-
der of what we believed to be the best reconstruction, fol-
lowed by the second best, and so on) until either authen-
tication succeeded or all reconstructions had been tested.

Findings

We summarize the spoofing success rate for each system
in Table 2. Except for the 1U system, all facial recogni-
tion systems were successfully spoofed for the majority
of participants when using social media photos, and all
systems were spoofed using indoor, frontal view photos.
Out of our 20 participants, there were only 2 individu-
als for whom none of the systems was spoofed via the
social-media-based attack.

Looking into the social media photos we collected of
our participants, we observe a few trends among our re-
sults. First, we note that moderate- to high-resolution
photos lend substantial realism to the textured models.
In particular, photos taken by professional photographers
(e.g., wedding photos or family portaits) lead to high-
quality facial texturing. Such photos are prime targets
for facial reconstruction because they are often posted by
other users and made publicly available. Second, we note
that group photos provide consistent frontal views of in-
dividuals, albeit with lower resolution. In cases where
high-resolution photos are not available, such frontal
views can be used to accurately recover a user’s 3D fa-
cial structure. These photos are easily accessible via
friends of users, as well. Third, we note that the least
spoof-able users were not those who necessarily had a
low number of personal photos, but rather users who had
few forward-facing photos and/or no photos with suffi-
ciently high resolution. From this observation, it seems
that creating a realistic texture for user recognition is the
primary factor in determining whether a face authentica-
tion method will be fooled by our approach. Only a small
number of photos are necessary in order to defeat facial
recognition systems.

We found that our failure to spoof the 1U App, as well
as our lower performance on BioID, using social me-
dia photos was directly related to the poor usability of

Indoor Social Media
Spoof % Spoof % Avg. # Tries

KeyLemon 100% 85% 1.6
Mobius 100% 80% 1.5
True Key 100% 70% 1.3
BioID 100% 55% 1.7
1U App 100% 0% —

Table 2: Success rate for 5 face authentication systems using a
model built from (second column) an image of the user taken in
an indoor environment and (third and fourth columns) images
obtained on users’ social media accounts. The fourth column
shows the average number of attempts needed before success-
fully spoofing the target user.

those systems. Specifically, we found the systems have
a very high false rejection rate when live users attempt
to authenticate themselves in different illumination con-
ditions. To test this, we had 5 participants register their
faces indoors on the 4 mobile systems.8 We then had
each user attempt to log in to each system 10 times in-
doors and 10 times outdoors on a sunny day, and we
counted the number of accepted logins in each environ-
ment for each system. True Key and Mobius, which we
found were easier to defeat, correctly authenticated the
users 98% and 100% of the time for indoor logins, re-
spectively, and 96% and 100% of the time for outdoor
logins. Meanwhile, the indoor/outdoor login rates of
BioID and the 1U App were 50%/14% and 96%/48%,
respectively. The high false rejection rates under outdoor
illumination show that the two systems have substantial
difficulty with their authentication when the user’s envi-
ronment changes. Our impression is that 1U’s single-
image user registration simply lacks the training data
necessary to accommodate to different illumination set-
tings. BioID is very sensitive to a variety of factors in-
cluding head rotation and illumination, which leads to
many false rejections. (Possibly realizing this, the mak-
ers of BioID therefore grant the user 3 trials per login
attempt.) Even so, as evidenced by the second column
in Table 2, our method still handily defeats the liveness
detection modules of these systems given images of the
user in the original illumination conditions, which sug-
gests that all the systems we tested are vunerable to our
VR-based attack.

Our findings also suggest that our approach is able to
successfully handle significant changes in facial expres-
sion, illumination, and for the most part, physical charac-
teristics such as weight and facial hair. Moreover, the ap-
proach appears to generalize to users regardless of gen-
der or ethnicity. Given that it has shown to work on a var-
ied collection of real-world data, we believe that the at-

8As it is a desktop application, KeyLemon was excluded.

USENIX Association 25th USENIX Security Symposium 507

tack presented herein represents a realistic security threat
model that could be exploited in the present day.

Next, to gain a deeper understanding of the realism
of this threat, we take a closer look at what conditions
are necessary for our method to bypass the various face
authentication systems we tested. We also consider what
main factors contribute to the failure cases of our method.

4.1 Evaluating System Robustness
To further understand the limitations of the proposed
spoofing system, we test its robustness against resolu-
tion and viewing angle, which are two important factors
for the social media photos users upload. Specifically,
we answer the question: what is the minimum resolu-
tion and maximum head rotation allowed in an uploaded
photo before it becomes unusable for spoofing attacks
like ours? We further explore how low-resolution frontal
images can be used to improve our success rates when
high-resolution side-view images are not available.

4.1.1 Blurry, Grainy Pictures Still Say A Lot

To assess our ability to spoof face authentication systems
when provided only low-resolution images of a user’s
face, we texture the 3D facial models of our sample users
using an indoor, frontal view photo. This photo is then
downsampled at various resolutions such that the dis-
tance between the user’s chin and forehead ranges be-
tween 20 and 50 pixels. Then, we attempt to spoof
the True Key, BioId, and KeyLemon systems with fa-
cial models textured using the down-sampled photos.9 If
we are successful at a certain resolution, that implies that
that resolution leaks the user’s identity information to our
spoofing system. The spoofing success rate for various
image resolutions is shown in Figure 8.

The result indicates that our approach robustly spoofs
face authentication systems when the height of the face in
the image is at least 50 pixels. If the resolution of an up-
loaded photo is less than 30 pixels, the photo is likely of
too low-resolution to reliably encode useful features for
identifying the user. In our sample set, 88% of users had
more than 6 online photos with a chin-to-forehead dis-
tance greater than 100 pixels, which easily satisfies the
resolution requirement of our proposed spoofing system.

4.1.2 A Little to the Left, a Little to the Right

To identify the robustness of the proposed system against
head rotation, we first evaluate the maximum yaw angle
allowed for our system to spoof baseline systems using a

9We skip analysis of Mobius because its detection method is similar
to True Key, and our method did not perform as well on True Key. We
also do not investigate the robustness of our method in the 1U system
because of our inability to spoof this system using online photos.

Figure 8: Spoofing success rate with texture taken from photos
of different resolution.

single image. For all 20 sample users, we collect multi-
ple indoor photos with yaw angle varying from 5 degrees
(approximately frontal view) to 40 degrees (significantly
rotated view). We then perform 3D reconstruction for
each image, for each user, on the same three face au-
thentication systems. The spoofing success rate for a
single input image as a function of head rotation is il-
lustrated in Figure 9 (left). It can be seen that the pro-
posed method successfully spoofs all the baseline sys-
tems when the input image has a largely frontal view. As
yaw angle increases, it becomes more difficult to infer
the user’s frontal view from the image, leading to a de-
creased spoofing success rate.

4.1.3 For Want of a Selfie

The results of Figure 9 (left) indicate that our success rate
falls dramatically if given only a single image with a yaw
angle larger than 20 degrees. However, we argue that
these high-resolution side-angle views can serve as base
images for facial texturing if additional low-resolution
frontal views of the user are available. We test this hy-
pothesis by taking, for each user, the rotated images from
the previous section along with 1 or 2 low-resolution
frontal view photos (chin-to-forehead distance of 30 pix-
els). We then reconstruct each user’s facial model and
use it to spoof our baseline systems. Alone, the pro-
vided low-resolution images provide insufficient texture
for spoofing, and the higher-resolution side view does
not provide adequate facial structure. As shown in Fig-
ure 9 (right), by using the low-resolution front views to
guide 3D reconstruction and then using the side view for
texturing, the spoofing success rate for large-angle head
rotation increases substantially. From a practical stand-
point, low-resolution frontal views are relatively easy to
obtain, since they can often be found in publicly posted
group photos.

508 25th USENIX Security Symposium USENIX Association

Figure 9: Spoofing success rate with different yaw angles. Left: Using only a single image at the specified angle. Right: Supple-
menting the single image with low-resolution frontal views, which aid in 3D reconstruction.

4.2 Seeing Your Face Is Enough

Our approach not only defeats existing commercial sys-
tems having liveness detection — it fundamentally un-
dermines the process of liveness detection based on color
images, entirely. To illustrate this, we use our method
to attack the recently proposed authentication approach
of Li et al. [34], which obtains a high rate of success
in guarding against video-based spoofing attacks. This
system adds another layer to motion-based liveness de-
tection by requiring that the movement of the face in the
captured video be consistent with the data obtained from
the motion sensor of the device. Fortunately, as discussed
in §3, the data consistency requirement is automatically
satisfied with our virtual reality spoofing system because
the 3D model rotates in tandem with the camera motion.

Central to Li et al. [34]’s approach is to build a classi-
fier that evaluates the consistency of captured video and
motion sensor data. In turn, the learned classifier is used
to distinguish real faces from spoofed ones. Since their
code and training samples have not been made public,
we implemented our own version of Li et al. [34]’s live-
ness detection system and trained a classifier with our
own training data. We refer the reader to [34] for a full
overview of the method.

Following the methodology of [34], we capture video
samples (and inertial sensor data) of ∼4 seconds from
the front-facing camera of a mobile phone. In each sam-
ple, the phone is held at a distance of 40cm from the
subject and moved back-and-forth 20cm to the left and
right. We capture 40 samples of real subjects moving
the phone in front of their face, 40 samples where a pre-
recorded video of a user is presented to the camera, and
30 samples where the camera is presented with a 3D re-
construction of a user in our VR environment. For train-
ing, we use a binary logistic regression classifier trained
on 20 samples from each class, with the other samples
used for testing. Due to the relatively small size of our

training sets, we repeat our classification experiments 4
times, with random train/test splits in each trial, and we
report the average performance over all four trials.

Training Data Real Video VR
Real+Video 19.50 / 20 0.25 / 20 9.75 / 10
Real+Video+VR 14.00 / 20 0.00 / 20 5.00 / 10
Real+VR 14.75 / 20 — 5.00 / 10

Table 3: Number of testing samples classified as real users.
Values in the first column represent true positive rates, and the
second and third columns represent false positives. Each row
shows the classification results after training on the classes in
the first column. The results were averaged over four trials.

The results of our experiments are shown in Table 3.
For each class (real user data, video spoof data, and VR
data), we report the average number (over 4 trials) of test
samples classified as real user data. We experiment with
three different training configurations, which are listed in
the first column of the table. The first row shows the re-
sults when using real user data as positive samples and
video spoof data as negative samples. In this case, it
can easily be seen that the real-versus-video identifica-
tion is almost perfect, matching the results of [34]. How-
ever, our VR-based attack is able to spoof this training
configuration nearly 100% of the time. The second and
third rows of Table 3 show the classification performance
when VR spoof data is included in the training data. In
both cases, our approach defeats the liveness detector in
50% of trials, and the real user data is correctly identified
as such less than 75% of the time.

All three training configurations clearly point to the
fact that our VR system presents motion features that are
close to real user data. Even if the liveness detector of
[34] is specifically trained to look for our VR-based at-
tack, 1 out of every 2 attacks will still succeed, with the
false rejection rate also increasing. Any system using

USENIX Association 25th USENIX Security Symposium 509

this detector will need to require multiple log-in attempts
to account for the decreased recall rate; allowing multi-
ple log-in attempts, however, allows our method more
opportunties to succeed. Overall, the results indicate
that the proposed VR-based attack successfully spoofs
Li et al. [34]’s approach, which is to our knowledge the
state of the art in motion-based liveness detection.

5 Defense in Depth

While current facial authentication systems succumb to
our VR-based attack, several features could be added to
these systems to confound our approach. Here, we detail
three such features, namely random projection of light
patterns, detection of minor skin tone fluctuations related
to pulse, and the use of illuminated infrared (IR) sensors.
Of these, the first two could still be bypassed with addi-
tional adversary effort, while the third presents a signif-
icantly different hardware configuration that would re-
quire non-trivial alterations to our method.

Light Projection The principle of using light projec-
tion for liveness detection is simple: Using an outward-
facing light source (e.g., the flashlight commonly in-
cluded on camera-equipped mobile phones), flash light
on the user’s face at random intervals. If the observed
change in illumination does not match the random pat-
tern, then face authentication fails. The simplicity of this
approach makes it appealing and easily implementable;
however, an adversary could modify our proposed ap-
proach to detect the random flashes of light and, with
low latency, subsequently add rendered light to the VR
scene. Random projections of structured light [62], i.e.,
checkerboard patterns and lines, would increase the diffi-
culty of such an attack, as the 3D-rendering system must
be able to quickly and accurately render the projected
illumination patterns on a model. However, structured
light projection requires specialized hardware that typi-
cally is not found on smart phones and similar devices,
which decreases the feasibility of this mitigation.

Pulse Detection Recent computer vision research [2,
58] has explored the prospect of video magnification,
which transforms micro-scale fluctuations over time into
strong visual changes. One such application is the detec-
tion of human pulse from a standard video of a human
face. The method detects small, periodic color changes
related to pulse in the region of the face and then am-
plifies this effect such that the face appears to undergo
strong changes in brightness and hue. This amplification
could be used as an additional method for liveness detec-
tion by requiring that the observed face have a detectable
pulse. Similar ideas have been applied to fingerprint sys-
tems that check for blood flow using light emitted from

beneath a prism. Of course, an attacker using our pro-
posed approach could simply add subtle color variation
to the 3D model to approximate this effect. Nevertheless,
such a method would provide another layer of defense
against spoofed facial models.

Infrared Illumination Microsoft released Windows
Hello as a more personal way to sign into Windows 10
devices with just a look or a touch. The new interface
supports biometric authentication that includes face, iris,
or fingerprint authentication. The platform includes In-
tel’s RealSense IR-based, rather than a color-based, fa-
cial authentication method. In principle, their approach
works in the same way as contemporary face authentica-
tion methods, but instead uses an IR camera to capture
a video of the user’s face. The attack presented in this
paper would fail to bypass this approach because typi-
cal VR displays are not built to project IR light; how-
ever, specialized IR display hardware could potentially
be used to overcome this limitation.

One limiting factor that may make IR-based tech-
niques less common (especially on mobile devices) is
the requirement for additional hardware to support this
enhanced form of face authentication. Indeed, as of this
writing, only a handful of personal computers support
Windows Hello.10 Nevertheless, the use of infrared illu-
mination offers intriguing possibilities for the future.

Takeaway In our opinion, it is highly unlikely that ro-
bust facial authentication systems will be able to op-
erate using solely web/mobile camera input. Given
the widespread nature of high-resolution personal online
photos, today’s adversaries have a goldmine of informa-
tion at their disposal for synthetically creating fake face
data. Moreover, even if a system is able to robustly de-
tect a certain type of attack – be it using a paper printout,
a 3D-printed mask, or our proposed method – generaliz-
ing to all possible attacks will increase the possibility of
false rejections and therefore limit the overall usability of
the system. The strongest facial authentication systems
will need to incorporate non-public imagery of the user
that cannot be easily printed or reconstructed (e.g., a skin
heat map from special IR sensors).

6 Discussion

Our work outlines several important lessons for both the
present state and the future state of security, particularly
as it relates to face authentication systems. First, our ex-
ploitation of social media photos to perform facial re-
construction underscores the notion that online privacy
of one’s appearance is tantamount to online privacy of
other personal information, such as age and location.

10See “PC platforms that support Windows Hello” for more info.

510 25th USENIX Security Symposium USENIX Association

The ability of an adversary to recover an individual’s fa-
cial characteristics through online photos is an immedi-
ate and very serious threat, albeit one that clearly can-
not be completely neutralized in the age of social media.
Therefore, it is prudent that face recognition tools be-
come increasingly robust against such threats in order to
remain a viable security option in the future.

At a minimum, it is imperative that face authentica-
tion systems be able to reject synthetic faces with low-
resolution textures, as we show in our evaluations. Of
more concern, however, is the increasing threat of virtual
reality, as well as computer vision, as an adversarial tool.
It appears to us that the designers of face authentication
systems have assumed a rather weak adversarial model
wherein attackers may have limited technical skills and
be limited to inexpensive materials. This practice is
risky, at best. Unfortunately, VR itself is quickly becom-
ing commonplace, cheap, and easy-to-use. Moreover,
VR visualizations are increasingly convincing, making
it easier and easier to create realistic 3D environments
that can be used to fool visual security systems. As such,
it is our belief that authentication mechanisms of the fu-
ture must aggressively anticipate and adapt to the rapid
developments in the virtual and online realms.

Appendix

A Multi-Image Facial Model Estimation

In §3.2, we outline how to associate 2D facial landmarks
with corresponding 3D points on an underlying facial
model. Contour landmarks pose a substantial difficulty
for this 2D-to-3D correspondence problem because the
associated set of 3D points for these features is pose-
dependent. Zhu et al. [63] compensate for this phe-
nomenon by modeling contour landmarks with parallel
curved line segments and iteratively optimizing head ori-
entation and 2D-to-3D correspondence. For a specific
head orientation R j, the corresponding landmark points
on the 3D model are found using an explicit function
based on rotation angle:

si, j = f jPR j(Si′, j + t j)

Si′, j = S̄i′ +Aid
i′ α id +Aexp

i′ αexp
j

i′ = land(i,R j),

(6)

where land(i,R j) is the pre-calculated mapping func-
tion that computes the position of landmarks i on the 3D
model when the orientation is R j. Ideally, the first equa-
tion in Eq. (6) should hold for all the landmark points
in all the images. However, this is not the case due to
the alignment error introduced by landmark extraction.
Generally, contour landmarks introduce more error than

corner landmarks, and this approach actually leads to in-
ferior results when multiple input images are used.

Therefore, different from Zhu et al. [63], we com-
pute the 3D facial model with Maximum a Posteriori
(MAP) estimation. We assume the alignment error of
each 3D landmark independently follows a Gaussian dis-
tribution. Then, the most probable parameters θ :=
({ f j},{R j},{t j},{αexp

j },α id) can be estimated by mini-
mizing the cost function

θ = argmax
θ

{
68

∑
i=1

N

∑
j=1

1
(σ s

i)
2 ||si, j − f jPR j(Si′, j + t j)||2+

N

∑
j=1

(αexp
j)′Σ−1

expαexp
j +(α id)′Σ−1

id α id}.

(7)
Here, Si′, j is computed using Eq. (6). Σid and Σexp

are covariance matrices of α id and αexp
j , which can be

obtained from the pre-existing face model. (σ s
i)

2 is the
variance of alignment error of the i-th landmark and is
obtained from a separate training set consisting 20 im-
ages with hand-labeled landmarks. Eq. (7) can be com-
puted efficiently, leading to the estimated identity weight
α id , with which we can compute the neutral-expression
model Si(= S̄i′ +Aid

i′ α id).

References
[1] S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying

framework. International Journal of Computer Vision (IJCV), 56
(3):221–255, 2004.

[2] G. Balakrishnan, F. Durand, and J. Guttag. Detecting pulse from
head motions in video. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3430–3437,
2013.

[3] W. Bao, H. Li, N. Li, and W. Jiang. A liveness detection method
for face recognition based on optical flow field. In Image Analysis
and Signal Processing, International Conference on, pages 233–
236, 2009.

[4] C. Baumberger, M. Reyes, M. Constantinescu, R. Olariu,
E. De Aguiar, and T. Oliveira Santos. 3d face reconstruction
from video using 3d morphable model and silhouette. In Graph-
ics, Patterns and Images (SIBGRAPI), Conference on, pages 1–8,
2014.

[5] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar.
Localizing parts of faces using a consensus of exemplars. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on,
35(12):2930–2940, 2013.

[6] V. Blanz and T. Vetter. A morphable model for the synthesis
of 3d faces. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, pages 187–194.
ACM Press/Addison-Wesley Publishing Co., 1999.

[7] V. Blanz and T. Vetter. Face recognition based on fitting a 3d
morphable model. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 25(9):1063–1074, 2003.

USENIX Association 25th USENIX Security Symposium 511

[8] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou. Faceware-
house: A 3d facial expression database for visual computing. Vi-
sualization and Computer Graphics, IEEE Transactions on, 20
(3):413–425, 2014.

[9] B. Chu, S. Romdhani, and L. Chen. 3d-aided face recognition
robust to expression and pose variations. In Computer Vision and
Pattern Recognition (CVPR), Conference on, pages 1907–1914,
2014.

[10] N. Duc and B. Minh. Your face is not your password. In Black
Hat Conference, volume 1, 2009.

[11] N. Erdogmus and S. Marcel. Spoofing face recognition with 3d
masks. Information Forensics and Security, IEEE Transactions
on, 9(7):1084–1097, 2014.

[12] D. Fidaleo and G. Medioni. Model-assisted 3d face reconstruc-
tion from video. In Analysis and modeling of faces and gestures,
pages 124–138. Springer, 2007.

[13] Gartner. Gartner backs biometrics for enterprise mobile authen-
tication. Biometric Technology Today, Feb. 2014.

[14] S. Golder. Measuring social networks with digital photograph
collections. In Proceedings of the nineteenth ACM conference on
Hypertext and hypermedia, pages 43–48, 2008.

[15] M. Hicks. A continued commitment to security, 2011. URL
https://www.facebook.com/notes/facebook/
a-continued-commitment-to-security/
486790652130/.

[16] R. Horaud, F. Dornaika, and B. Lamiroy. Object pose: The link
between weak perspective, paraperspective, and full perspective.
International Journal of Computer Vision, 22(2):173–189, 1997.

[17] P. Ilia, I. Polakis, E. Athanasopoulos, F. Maggi, and S. Ioanni-
dis. Face/off: Preventing privacy leakage from photos in social
networks. In Proceedings of the 22nd ACM Conference on Com-
puter and Communications Security, pages 781–792, 2015.

[18] Intel Security. True KeyTM by Intel Security: Security white pa-
per 1.0, 2015. URL https://b.tkassets.com/shared/
TrueKey-SecurityWhitePaper-v1.0-EN.pdf.

[19] H.-K. Jee, S.-U. Jung, and J.-H. Yoo. Liveness detection for em-
bedded face recognition system. International Journal of Biolog-
ical and Medical Sciences, 1(4):235–238, 2006.

[20] L. A. Jeni, J. F. Cohn, and T. Kanade. Dense 3d face align-
ment from 2d videos in real-time. In Automatic Face and Gesture
Recognition (FG), 2015 11th IEEE International Conference and
Workshops on, volume 1, pages 1–8. IEEE, 2015.

[21] O. Jesorsky, K. J. Kirchberg, and R. W. Frischholz. Robust face
detection using the hausdorff distance. In Audio-and video-based
biometric person authentication, pages 90–95. Springer, 2001.

[22] I. Jolliffe. Principal component analysis. Wiley Online Library,
2002.

[23] I. Kemelmacher-Shlizerman. Internet based morphable model. In
Proceedings of the IEEE International Conference on Computer
Vision, pages 3256–3263, 2013.

[24] I. Kemelmacher-Shlizerman and R. Basri. 3D face reconstruction
from a single image using a single reference face shape. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 33(2):
394–405, 2011.

[25] G. Kim, S. Eum, J. K. Suhr, D. I. Kim, K. R. Park, and J. Kim.
Face liveness detection based on texture and frequency analy-
ses. In Biometrics (ICB), 5th IAPR International Conference on,
pages 67–72, 2012.

[26] H.-N. Kim, A. El Saddik, and J.-G. Jung. Leveraging personal
photos to inferring friendships in social network services. Expert
Systems with Applications, 39(8):6955–6966, 2012.

[27] S. Kim, S. Yu, K. Kim, Y. Ban, and S. Lee. Face liveness detec-
tion using variable focusing. In Biometrics (ICB), 2013 Interna-
tional Conference on, pages 1–6, 2013.

[28] K. Kolev, P. Tanskanen, P. Speciale, and M. Pollefeys. Turn-
ing mobile phones into 3d scanners. In Computer Vision and
Pattern Recognition (CVPR), IEEE Conference on, pages 3946–
3953, 2014.

[29] K. Kollreider, H. Fronthaler, and J. Bigun. Evaluating liveness by
face images and the structure tensor. In Automatic Identification
Advanced Technologies, Fourth IEEE Workshop on, pages 75–80.
IEEE, 2005.

[30] K. Kollreider, H. Fronthaler, M. I. Faraj, and J. Bigun. Real-time
face detection and motion analysis with application in liveness
assessment. Information Forensics and Security, IEEE Transac-
tions on, 2(3):548–558, 2007.

[31] K. Kollreider, H. Fronthaler, and J. Bigun. Verifying liveness by
multiple experts in face biometrics. In Computer Vision and Pat-
tern Recognition Workshops, IEEE Computer Society Conference
on, pages 1–6, 2008.

[32] A. Lagorio, M. Tistarelli, M. Cadoni, C. Fookes, and S. Sridha-
ran. Liveness detection based on 3d face shape analysis. In Bio-
metrics and Forensics (IWBF), International Workshop on, pages
1–4, 2013.

[33] Y. Li, K. Xu, Q. Yan, Y. Li, and R. H. Deng. Understanding
osn-based facial disclosure against face authentication systems.
In Proceedings of the ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS), pages 413–424.
ACM, 2014.

[34] Y. Li, Y. Li, Q. Yan, H. Kong, and R. H. Deng. Seeing your
face is not enough: An inertial sensor-based liveness detection for
face authentication. In Proceedings of the 22nd ACM Conference
on Computer and Communications Security, pages 1558–1569,
2015.

[35] Y. Liu, K. P. Gummadi, B. Krishnamurthy, and A. Mislove. Ana-
lyzing facebook privacy settings: user expectations vs. reality. In
Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference, pages 61–70. ACM, 2011.

[36] C. Lu and X. Tang. Surpassing human-level face verifica-
tion performance on LFW with GaussianFace. arXiv preprint
arXiv:1404.3840, 2014.

[37] J. Määttä, A. Hadid, and M. Pietikainen. Face spoofing detection
from single images using micro-texture analysis. In Biometrics
(IJCB), International Joint Conference on, pages 1–7, 2011.

[38] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recog-
nition. In Proceedings of the British Machine Vision Conference
(BMVC), 2015.

[39] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. A
3d face model for pose and illumination invariant face recogni-
tion. In Proceedings of the 6th IEEE International Conference
on Advanced Video and Signal based Surveillance (AVSS) for Se-
curity, Safety and Monitoring in Smart Environments, 2009.

512 25th USENIX Security Symposium USENIX Association

[40] B. Peixoto, C. Michelassi, and A. Rocha. Face liveness detection
under bad illumination conditions. In Image Processing (ICIP),
18th IEEE International Conference on, pages 3557–3560, 2011.

[41] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. ACM
Transactions on Graphics (TOG), 22(3):313–318, 2003.

[42] I. Polakis, M. Lancini, G. Kontaxis, F. Maggi, S. Ioannidis, A. D.
Keromytis, and S. Zanero. All your face are belong to us: Break-
ing facebook’s social authentication. In Proceedings of the 28th
Annual Computer Security Applications Conference, pages 399–
408, 2012.

[43] C. Qu, E. Monari, T. Schuchert, and J. Beyerer. Fast, robust
and automatic 3d face model reconstruction from videos. In Ad-
vanced Video and Signal Based Surveillance (AVSS), 11th IEEE
International Conference on, pages 113–118, 2014.

[44] C. Qu, E. Monari, T. Schuchert, and J. Beyerer. Adaptive con-
tour fitting for pose-invariant 3d face shape reconstruction. In
Proceedings of the British Machine Vision Conference (BMVC),
pages 1–12, 2015.

[45] C. Qu, E. Monari, T. Schuchert, and J. Beyerer. Realistic tex-
ture extraction for 3d face models robust to self-occlusion. In
IS&T/SPIE Electronic Imaging. International Society for Optics
and Photonics, 2015.

[46] T. Schops, T. Sattler, C. Hane, and M. Pollefeys. 3d modeling
on the go: Interactive 3d reconstruction of large-scale scenes on
mobile devices. In 3D Vision (3DV), International Conference
on, pages 291–299, 2015.

[47] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified
embedding for face recognition and clustering. arXiv preprint
arXiv:1503.03832, 2015.

[48] F. Shi, H.-T. Wu, X. Tong, and J. Chai. Automatic acquisition of
high-fidelity facial performances using monocular videos. ACM
Transactions on Graphics (TOG), 33(6):222, 2014.

[49] L. Sun, G. Pan, Z. Wu, and S. Lao. Blinking-based live face
detection using conditional random fields. In Advances in Bio-
metrics, pages 252–260. Springer, 2007.

[50] Y. Sun, X. Wang, and X. Tang. Deep convolutional network cas-
cade for facial point detection. In Computer Vision and Pattern
Recognition (CVPR), IEEE Conference on, pages 3476–3483,
2013.

[51] S. Suwajanakorn, I. Kemelmacher-Shlizerman, and S. M. Seitz.
Total moving face reconstruction. In Computer Vision–ECCV
2014, pages 796–812. Springer, 2014.

[52] S. Suwajanakorn, S. M. Seitz, and I. Kemelmacher-Shlizerman.
What makes tom hanks look like tom hanks. In Proceedings of
the IEEE International Conference on Computer Vision, pages
3952–3960, 2015.

[53] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Clos-
ing the gap to human-level performance in face verification. In
Computer Vision and Pattern Recognition (CVPR), IEEE Confer-
ence on, pages 1701–1708, 2014.

[54] X. Tan, Y. Li, J. Liu, and L. Jiang. Face liveness detection
from a single image with sparse low rank bilinear discriminative
model. In European Conference on Computer Vision (ECCV),
pages 504–517. 2010.

[55] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, and
M. Pollefeys. Live metric 3d reconstruction on mobile phones. In
Proceedings of the IEEE International Conference on Computer
Vision, pages 65–72, 2013.

[56] J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg. Global lo-
calization from monocular slam on a mobile phone. Visualization
and Computer Graphics, IEEE Transactions on, 20(4):531–539,
2014.

[57] T. Wang, J. Yang, Z. Lei, S. Liao, and S. Z. Li. Face liveness
detection using 3d structure recovered from a single camera. In
Biometrics (ICB), International Conference on, pages 1–6, 2013.

[58] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and
W. T. Freeman. Eulerian video magnification for revealing subtle
changes in the world. ACM Transactions on Graphics (TOG), 31
(4), 2012.

[59] X. Xiong and F. De la Torre. Supervised descent method and its
applications to face alignment. In Computer Vision and Pattern
Recognition (CVPR), IEEE Conference on, pages 532–539, 2013.

[60] J. Yang, Z. Lei, S. Liao, and S. Z. Li. Face liveness detection with
component dependent descriptor. In Biometrics (ICB), Interna-
tional Conference on, pages 1–6, 2013.

[61] L. Zhang and D. Samaras. Face recognition from a single training
image under arbitrary unknown lighting using spherical harmon-
ics. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 28(3):351–363, 2006.

[62] L. Zhang, B. Curless, and S. M. Seitz. Rapid shape acquisition us-
ing color structured light and multi-pass dynamic programming.
In 3D Data Processing Visualization and Transmission, First In-
ternational Symposium on, pages 24–36, 2002.

[63] X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. High-fidelity pose and
expression normalization for face recognition in the wild. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 787–796, 2015.

USENIX Association 25th USENIX Security Symposium 513

Hidden Voice Commands

Nicholas Carlini∗

University of California, Berkeley

Pratyush Mishra
University of California, Berkeley

Tavish Vaidya
Georgetown University

Yuankai Zhang
Georgetown University

Micah Sherr
Georgetown University

Clay Shields
Georgetown University

David Wagner
University of California, Berkeley

Wenchao Zhou
Georgetown University

Abstract

Voice interfaces are becoming more ubiquitous and are

now the primary input method for many devices. We ex-

plore in this paper how they can be attacked with hidden

voice commands that are unintelligible to human listen-

ers but which are interpreted as commands by devices.

We evaluate these attacks under two different threat

models. In the black-box model, an attacker uses the

speech recognition system as an opaque oracle. We show

that the adversary can produce difficult to understand

commands that are effective against existing systems in

the black-box model. Under the white-box model, the

attacker has full knowledge of the internals of the speech

recognition system and uses it to create attack commands

that we demonstrate through user testing are not under-

standable by humans.

We then evaluate several defenses, including notify-

ing the user when a voice command is accepted; a verbal

challenge-response protocol; and a machine learning ap-

proach that can detect our attacks with 99.8% accuracy.

1 Introduction

Voice interfaces to computer systems are becoming ubiq-

uitous, driven in part by their ease of use and in part by

decreases in the size of modern mobile and wearable de-

vices that make physical interaction difficult. Many de-

vices have adopted an always-on model in which they

continuously listen for possible voice input. While voice

interfaces allow for increased accessibility and poten-

tially easier human-computer interaction, they are at the

same time susceptible to attacks: Voice is a broadcast

channel open to any attacker that is able to create sound

within the vicinity of a device. This introduces an op-

portunity for attackers to try to issue unauthorized voice

commands to these devices.

An attacker may issue voice commands to any device

that is within speaker range. However, naı̈ve attacks will

be conspicuous: a device owner who overhears such a

∗Authors listed alphabetically, with student authors appearing be-

fore faculty authors.

command may recognize it as an unwanted command

and cancel it, or otherwise take action. This motivates

the question we study in this paper: can an attacker cre-

ate hidden voice commands, i.e., commands that will be

executed by the device but which won’t be understood

(or perhaps even noticed) by the human user?

The severity of a hidden voice command depends upon

what commands the targeted device will accept. De-

pending upon the device, attacks could lead to informa-

tion leakage (e.g., posting the user’s location on Twitter),

cause denial of service (e.g., activating airplane mode),

or serve as a stepping stone for further attacks (e.g.,

opening a web page hosting drive-by malware). Hid-

den voice commands may also be broadcast from a loud-

speaker at an event or embedded in a trending YouTube

video, compounding the reach of a single attack.

Vaidya et al. [41] showed that hidden voice commands

are possible—attackers can generate commands that are

recognized by mobile devices but are considered as noise

by humans. Building on their work, we show more pow-

erful attacks and then introduce and analyze a number of

candidate defenses.

The contributions of this paper include the following:

• We show that hidden voice commands can be con-

structed even with very little knowledge about the

speech recognition system. We provide a general

attack procedure for generating commands that are

likely to work with any modern voice recognition

system. We show that our attacks work against

Google Now’s speech recognition system and that

they improve significantly on previous work [41].

• We show that adversaries with significant knowl-

edge of the speech recognition system can construct

hidden voice commands that humans cannot under-

stand at all.

• Finally, we propose, analyze, and evaluate a suite

of detection and mitigation strategies that limit the

effects of the above attacks.

Audio files for the hidden voice commands and

a video demonstration of the attack are available at

http://hiddenvoicecommands.com.

1

514 25th USENIX Security Symposium USENIX Association

Figure 1: Overview of a typical speech recognition system.

2 Background and Related Work

To set the stage for the attacks that we present in §3 and

§4, we briefly review how speech recognition works.

Figure 1 presents a high-level overview of a typi-

cal speech recognition procedure, which consists of the

following four steps: pre-processing, feature extrac-

tion, model-based prediction, and post-processing. Pre-

processing performs initial speech/non-speech identifi-

cation by filtering out frequencies that are beyond the

range of a human voice and eliminating time periods

where the signal energy falls below a particular thresh-

old. This step only does rudimentary filtering, but still al-

lows non-speech signals to pass through the filter if they

pass the energy-level and frequency checks.

The second step, feature extraction, splits the filtered

audio signal into short (usually around 20 ms) frames and

extracts features from each frame. The feature extraction

algorithm used in speech recognition is almost always

the Mel-frequency cepstral (MFC) transform [20, 42].

We describe the MFC transform in detail in Appendix A,

but at a high level it can be thought of as a transformation

that extracts the dominant frequencies from the input.

The model-based prediction step takes as input the ex-

tracted features, and matches them against an existing

model built offline to generate text predictions. The tech-

nique used in this step can vary widely: some systems

use Hidden Markov Models, while many recent systems

have begun to use recurrent neural networks (RNNs).

Finally, a post-processing step ranks the text predic-

tions by employing additional sources of information,

such as grammar rules or locality of words.

Related work. Unauthorized voice commands have

been studied by Diao et al. [12] and Jang et al. [21] who

demonstrate that malicious apps can inject synthetic au-

dio or play commands to control smartphones. Unlike in

this paper, these attacks use non-hidden channels that are

understandable by a human listener.

Similar to our work, Kasmi and Lopes Esteves [23]

consider the problem of covert audio commands. There,

the authors inject voice commands by transmitting FM

signals that are received by a headset. In our work, we

do not require the device to have an FM antenna (which

is not often present) and we obfuscate the voice com-

mand so that it is not human-recognizable. Schlegel et al.

[36] show that malicious apps can eavesdrop and record

phone calls to extract sensitive information. Our work

differs in that it exploits targeted devices’ existing func-

tionality (i.e., speech recognition) and does not require

the installation of malicious apps.

Earlier work by Vaidya et al. [41] introduces obfus-

cated voice commands that are accepted by voice inter-

faces. Our work significantly extends their black-box

approach by (i) evaluating the effectiveness of their

attacks under realistic scenarios, (ii) introducing more

effective “white-box” attacks that leverage knowledge

of the speech recognition system to produce machine-

understandable speech that is almost never recognized by

humans, (iii) formalizing the method of creating hidden

voice commands, and (iv) proposing and evaluating de-

fenses.

Image recognition systems have been shown to be vul-

nerable to attacks where slight modifications to only a

few pixels can change the resulting classification dramat-

ically [17, 19, 25, 38]. Our work has two key differences.

First, feature extraction for speech recognition is signif-

icantly more complex than for images; this is one of the

main hurdles for our work. Second, attacks on image

recognition have focused on the case where the adversary

is allowed to directly modify the electronic image. In

contrast, our attacks work “over the air”; that is, we cre-

ate audio that when played and recorded is recognized as

speech. The analogous attack on image recognition sys-

tems would be to create a physical object which appears

benign, but when photographed, is classified incorrectly.

As far as we know, no one has demonstrated such an at-

tack on image recognition systems.

More generally, our attacks can be framed as an eva-

sion attack against machine learning classifiers: if f is

a classifier and A is a set of acceptable inputs, given a

desired class y, the goal is to find an input x ∈ A such

that f (x) = y. In our context, f is the speech recognition

system, A is a set of audio inputs that a human would not

recognize as speech, and y is the text of the desired com-

mand. Attacks on machine learning have been studied

extensively in other contexts [1, 4, 5, 10, 13, 22, 31, 40];

In particular, Fawzi et al. [14] develop a rigorous frame-

work to analyze the vulnerability of various types of clas-

sifiers to adversarial perturbation of inputs. They demon-

strate that a minimal set of adversarial changes to input

data is enough to fool most classifiers into misclassify-

ing the input. Our work is different in two key respects:

(i) the above caveats for image recognition systems still

apply, and moreover, (ii) their work does not necessarily

aim to create inputs that are misclassified into a partic-

ular category; but rather that it is just misclassified. On

the other hand, we aim to craft inputs that are recognized

as potentially sensitive commands.

2

USENIX Association 25th USENIX Security Symposium 515

Finally, Fredrikson et al. [15] attempt to invert ma-

chine learning models to learn private and potentially

sensitive data in the training corpus. They formulate their

task as an optimization problem, similar to our white-box

approach, but they (i) test their approach primarily on im-

age recognition models, which, as noted above, are easier

to fool, and (ii) do not aim to generate adversarial inputs,

but rather only extract information about individual data

points.

3 Black-box Attacks

We first show that under a weak set of assumptions an at-

tacker with no internal knowledge of a voice recognition

system can generate hidden voice commands that are dif-

ficult for human listeners to understand. We refer to these

as obfuscated commands, in contrast to unmodified and

understandable normal commands.

These attacks were first proposed by Vaidya et al. [41].

This section improves upon the efficacy and practicality

of their attacks and analysis by (i) carrying out and test-

ing the performance of the attacks under more practical

settings, (ii) considering the effects of background noise,

and (iii) running the experiments against Google’s im-

proved speech recognition service [34].

3.1 Threat model & attacker assumptions

In this black-box model the adversary does not know

the specific algorithms used by the speech recognition

system. We assume that the system extracts acoustic

information through some transform function such as

an MFC, perhaps after performing some pre-processing

such as identifying segments containing human speech

or removing noise. MFCs are commonly used in current-

generation speech recognition systems [20, 42], making

our results widely applicable, but not limited to such sys-

tems.

We treat the speech recognition system as an oracle to

which the adversary can pose transcription tasks. The ad-

versary can thus learn how a particular obfuscated audio

signal is interpreted. We do not assume that a particular

transcription is guaranteed to be consistent in the future.

This allows us to consider speech recognition systems

that apply randomized algorithms as well as to account

for transient effects such as background noise and envi-

ronmental interference.

Conceptually, this model allows the adversary to iter-

atively develop obfuscated commands that are increas-

ingly difficult for humans to recognize while ensuring,

with some probability, that they will be correctly inter-

preted by a machine. This trial-and-error process occurs

in advance of any attack and is invisible to the victim.

Feature
Extraction Inverse MFCC

Acoustic
features

Normal
command

Candidate
obfuscated command

Speech
recognition system

MFCC
parameters

Recognized
by machine?

Recognized
by human
attacker?

Attacker

yes

no
Obfuscated
command

1

2 3

4

5

6

yes
7

no8

Figure 2: Adversary’s workflow for producing an obfuscated

audio command from a normal command.

3.2 Overview of approach

We rerun the black-box attack proposed by Vaidya et

al. [41] as shown in Figure 2. The attacker’s goal is to

produce an obfuscated command that is accepted by the

victim’s speech recognition system but is indecipherable

by a human listener.

The attacker first produces a normal command that

it wants executed on the targeted device. To thwart

individual recognition the attacker may use a text-to-

speech engine, which we found is generally correctly

transcribed. This command is then provided as input

(Figure 2, step �) to an audio mangler, shown as the grey

box in the figure. The audio mangler performs an MFC

with a starting set of parameters on the input audio, and

then performs an inverse MFC (step �) that additionally

adds noise to the output. By performing the MFC and

then inverting the obtained acoustic features back into an

audio sample, the attacker is in essence attempting to re-

move all audio features that are not used in the speech

recognition system but which a human listener might use

for comprehension.

Since the attacker does not know the MFC features

used by the speech recognition system, experimentation

is required. First, the attacker provides the candidate

obfuscated audio that results from the MFC→inverse-

MFC process (step �) to the speech recognition system

(step �). If the command is not recognized then the at-

tacker must update the MFC parameters to ensure that

the result of the MFC→inverse-MFC transformation will

yield higher fidelity audio (step �).

If the candidate obfuscated audio is interpreted cor-

rectly (step �), then the human attacker tests if it is hu-

man understandable. This step is clearly subjective and,

worse, is subject to priming effects [28] since the at-

tacker already knows the correct transcription. The at-

tacker may solicit outside opinions by crowdsourcing.

If the obfuscated audio is too easily understood by hu-

mans the attacker discards the candidate and generates

new candidates by adjusting the MFC parameters to pro-

duce lower fidelity audio (step �). Otherwise, the can-

3

516 25th USENIX Security Symposium USENIX Association

Table 1: MFC parameters tuned to produce obfuscated audio.

Parameter Description

wintime time for which the signal is considered constant

hoptime time step between adjacent windows

numcep number of cepstral coefficients

nbands no. of warped spectral bands for aggregating energy levels

didate obfuscated audio command—which is recognized

by machines but not by humans—is used to conduct the

actual attack (step �).

3.3 Experimental setup

We obtained the audio mangling program used by

Vaidya et al. [41]. Conforming to their approach, we also

manually tune four MFC parameters to mangle and test

audio using the workflow described in §3.2 to determine

the ranges for human and machine perception of voice

commands. The list of modified MFC parameters is pre-

sented in Table 1.

Our voice commands consisted of the phrases “OK

google”, “call 911”, and “turn on airplane mode”. These

commands were chosen to represent a variety of po-

tential attacks against personal digital assistants. Voice

commands were played using Harmon Kardon speakers,

model number HK695–01,13, in a conference room mea-

suring approximately 12 by 6 meters, 2.5 meters tall.

Speakers were on a table approximately three meters

from the phones. The room contained office furniture

and projection equipment. We measured a background

noise level (Pnoise
dB) of approximately 53 dB.

We tested the commands against two smart phones, a

Samsung Galaxy S4 running Android 4.4.2 and Apple

iPhone 6 running iOS 9.1 with Google Now app ver-

sion 9.0.60246. Google’s recently updated [34] default

speech recognition system was used to interpret the com-

mands. In the absence of injected ambient background

noise, our sound level meter positioned next to the smart-

phones measured the median intensity of the voice com-

mands to be approximately 88 dB.

We also projected various background noise samples

collected from SoundBible [9], recorded from a casino,

classroom, shopping mall, and an event during which ap-

plause occurred. We varied the volume of these back-

ground noises—thus artificially adjusting the signal-to-

noise ratio—and played them through eight overhead

JBL in-ceiling speakers. We placed a Kinobo “Akiro”

table mic next to our test devices and recorded all audio

commands that we played to the devices for use in later

experiments, described below.

3.4 Evaluation

Attack range. We found that the phone’s speech

recognition system failed to identify speech when the

speaker was located more than 3.5 meters away or when

the perceived SNR was less than 5 dB. We conjecture

that the speech recognition system is designed to discard

far away noises, and that sound attenuation further limits

the attacker’s possible range. While the attacker’s local-

ity is clearly a limitation of this approach, there are many

attack vectors that allow the attacker to launch attacks

within a few meters of the targeted device, such as obfus-

cated audio commands embedded in streaming videos,

overhead speakers in offices, elevators, or other enclosed

spaces, and propagation from other nearby phones.

Machine understanding. Table 2 shows a side-by-

side comparison of human and machine understanding,

for both normal and obfuscated commands.

The “machine” columns indicate the percentage of

trials in which a command is correctly interpreted by

the phone, averaged over the various background noises.

Here, our sound meter measured the signal’s median au-

dio level at 88 dB and the background noise at 73 dB,

corresponding to a signal-to-noise ratio of 15 dB.

Across all three commands, the phones correctly inter-

preted the normal versions 85% of the time. This accu-

racy decreased to 60% for obfuscated commands.

We also evaluate how the amplitude of background

noise affects machine understanding of the commands.

Figure 3 shows the percentage of voice commands that

are correctly interpreted by the phones (“success rate”)

as a function of the SNR (in dB) using the Mall back-

ground noise. Note that a higher SNR denotes more

favorable conditions for speech recognition. Generally,

Google’s speech recognition engine correctly transcribes

the voice commands and activates the phone. The ac-

curacy is higher for normal commands than obfuscated

commands, with accuracy improving as SNR increases.

In all cases, the speech recognition system is able to per-

fectly understand and activate the phone functionality in

at least some configurations—that is, all of our obfus-

cated audio commands work at least some of the time.

With little background noise, the obfuscated commands

work extremely well and are often correctly transcribed

at least 80% of the time. Appendix B shows detailed re-

sults for additional background noises.

Human understanding. To test human understand-

ing of the obfuscated voice commands, we conducted a

study on Amazon Mechanical Turk1, a service that pays

1Note on ethics: Before conducting our Amazon Mechanical Turk

experiments, we submitted an online application to our institution’s

IRB. The IRB responded by stating that we were exempt from IRB.

Irrespective of our IRB, we believe our experiments fall well within the

4

USENIX Association 25th USENIX Security Symposium 517

Table 2: Black-box attack results. The “machine” columns report the percentage of commands that were correctly interpreted by

the tested smartphones. The percentage of commands that were correctly understood by humans (Amazon Turk workers) is shown

under the “human” columns. For the latter, the authors assessed whether the Turk workers correctly understood the commands.

Ok Google Turn on airplane mode Call 911

Machine Human Machine Human Machine Human

Normal 90% (36/40) 89% (356/400) 75% (30/40) 69% (315/456) 90% (36/40) 87% (283/324)

Obfuscated 95% (38/40) 22% (86/376) 45% (18/40) 24% (109/444) 40% (16/40) 94% (246/260)

Figure 3: Machine understanding of normal and obfuscated variants of “OK Google”, “Turn on Airplane Mode”, and “Call 911”

voice commands under Mall background noise. Each graph shows the measured average success rate (the fraction of correct

transcripts) on the y-axis as a function of the signal-to-noise ratio.

human workers to complete online tasks called Human

Intelligence Tasks (HITs). Each HIT asks a user to tran-

scribe several audio samples, and presents the following

instructions: “We are conducting an academic study that

explores the limits of how well humans can understand

obfuscated audio of human speech. The audio files for

this task may have been algorithmically modified and

may be difficult to understand. Please supply your best

guess to what is being said in the recordings.”

We constructed the online tasks to minimize priming

effects—no worker was presented with both the normal

and obfuscated variants of the same command. Due to

this structuring, the number of completed tasks varies

among the commands as reflected in Table 2 under the

“human” columns.

We additionally required that workers be over 18 years

of age, citizens of the United States, and non-employees

of our institution. Mechanical Turk workers were paid

$1.80 for completing a HIT, and awarded an additional

$0.20 for each correct transcription. We could not pre-

vent the workers from replaying the audio samples mul-

tiple times on their computers and the workers were in-

centivized to do so, thus our results could be considered

conservative: if the attacks were mounted in practice, de-

vice owners might only be able to hear an attack once.

basic principles of ethical research. With respect in particular to benef-

icence, the Mechanical Turk workers benefited from their involvement

(by being compensated). The costs/risks were extremely low: workers

were fully informed of their task and no subterfuge occurred. No per-

sonal information—either personally identifiable or otherwise—was

collected and the audio samples consisted solely of innocuous speech

that is very unlikely to offend (e.g., commands such as “OK Google”).

To assess how well the Turk workers understood nor-

mal and obfuscated commands, four of the authors com-

pared the workers’ transcriptions to the correct transcrip-

tions (e.g., “OK Google”) and evaluated whether both

had the same meaning. Our goal was not to assess

whether the workers correctly heard the obfuscated com-

mand, but more conservatively, whether their perception

conformed with the command’s meaning. For example,

the transcript “activate airplane functionality” indicates a

failed attack even though the transcription differs signif-

icantly from the baseline of “turn on airplane mode”.

Values shown under the “human” columns in Table 2

indicate the fraction of total transcriptions for which the

survey takers believed that the Turk worker understood

the command. Each pair of authors had an agreement

of over 95% in their responses, the discrepancies being

mainly due to about 5% of responses in which one survey

taker believed they matched but the others did not. The

survey takers were presented only with the actual phrase

and transcribed text, and were blind to whether or not the

phrase was an obfuscated command or not.

Turk workers were fairly adept (although not perfect)

at transcribing normal audio commands: across all com-

mands, we assessed 81% of the Turkers’ transcripts to

convey the same meaning as the actual command.

The workers’ ability to understand obfuscated audio

was considerably less: only about 41% of obfuscated

commands were labeled as having the same meaning

as the actual command. An interesting result is that

the black-box attack performed far better for some com-

mands than others. For the “Ok Google” command, we

5

518 25th USENIX Security Symposium USENIX Association

decreased human transcription accuracy fourfold without

any loss in machine understanding.

“Call 911” shows an anomaly: human understand-

ing increases for obfuscated commands. This is due to

a tricky part of the black-box attack workflow: the at-

tacker must manage priming effects when choosing an

obfuscated command. In this case, we believed the “call

911” candidate command to be unintelligible; these re-

sults show we were wrong. A better approach would

have been to repeat several rounds of crowdsourcing to

identify a candidate that was not understandable; any at-

tacker could do this. It is also possible that among our

US reviewers, “call 911” is a common phrase and that

they were primed to recognize it outside our study.

Objective measures of human understanding: The

analysis above is based on the authors’ assessment of

Turk workers’ transcripts. In Appendix C, we present

a more objective analysis using the Levenshtein edit dis-

tance between the true transcript and the Turkers’ tran-

scripts, with phonemes as the underlying alphabet.

We posit that our (admittedly subjective) assessment is

more conservative, as it directly addresses human under-

standing and considers attacks to fail if a human under-

stands the meaning of a command; in contrast, compar-

ing phonemes measures something slightly different—

whether a human is able to reconstruct the sounds of

an obfuscated command—and does not directly capture

understanding. Regardless, the phoneme-based results

from Appendix C largely agree with those presented

above.

4 White-box Attacks

We next consider an attacker who has knowledge of the

underlying voice recognition system. To demonstrate

this attack, we construct hidden voice commands that

are accepted by the open-source CMU Sphinx speech

recognition system [24]. CMU Sphinx is used for speech

recognition by a number of apps and platforms2, mak-

ing it likely that these whitebox attacks are also practical

against these applications.

4.1 Overview of CMU Sphinx

CMU Sphinx uses the Mel-Frequency Cepstrum (MFC)

transformation to reduce the audio input to a smaller di-

mensional space. It then uses a Gaussian Mixture Model

(GMM) to compute the probabilities that any given piece

of audio corresponds to a given phoneme. Finally, using

a Hidden Markov Model (HMM), Sphinx converts the

phoneme probabilities to words.

2Systems that use CMU Sphinx speech recognition include the

Jasper open-source personal digital assistant and Gnome Desktop voice

commands. The Sphinx Project maintains a list of software that uses

Sphinx at http://cmusphinx.sourceforge.net/wiki/sphinxinaction.

The purpose of the MFC transformation is to take a

high-dimensional input space—raw audio samples—and

reduce its dimensionality to something which a machine

learning algorithm can better handle. This is done in two

steps. First, the audio is split into overlapping frames.

Once the audio has been split into frames, we run the

MFC transformation on each frame. The Mel-Frequency

Cepstrum Coefficients (MFCC) are the 13-dimensional

values returned by the MFC transform.

After the MFC is computed, Sphinx performs two fur-

ther steps. First, Sphinx maintains a running average of

each of the 13 coordinates and subtracts off the mean

from the current terms. This normalizes for effects such

as changes in amplitude or shifts in pitch.

Second, Sphinx numerically estimates the first

and second derivatives of this sequence to create

a 39-dimensional vector containing the original 13-

dimensional vector, the 13-dimensional first-derivative

vector, and the 13-dimensional-second derivative vector.

Note on terminology: For ease of exposition and clar-

ity, in the remainder of this section, we call the output

of the MFCC function 13-vectors, and refer to the output

after taking derivatives as 39-vectors.

The Hidden Markov Model. The Sphinx HMM acts

on the sequence of 39-vectors from the MFCC. States in

the HMM correspond to phonemes, and each 39-vector

is assigned a probability of arising from a given phoneme

by a Gaussian model, described next. The Sphinx HMM

is, in practice, much more intricate: we give the complete

description in Appendix A.

The Gaussian Mixture Model. Each HMM state

yields some distribution on the 39-vectors that could be

emitted while in that state. Sphinx uses a GMM to repre-

sent this distribution. The GMMs in Sphinx are a mixture

of eight Gaussians, each over R39. Each Gaussian has a

mean and standard deviation over every dimension. The

probability of a 39-vector v is the sum of the probabili-

ties from each of the 8 Gaussians, divided by 8. For most

cases we can approximate the sum with a maximization,

as the Gaussians typically have little overlap.

4.2 Threat model

We assume the attacker has complete knowledge of the

algorithms used in the system and can interact with them

at will while creating an attack. We also assume the at-

tacker knows the parameters used in each algorithm. 3

We use knowledge of the coefficients for each Gaus-

sian in the GMM, including the mean and standard de-

viation for each dimension and the importance of each

3Papernot et al. [32] demonstrated that it is often possible to trans-

form a white-box attack into a black-box attack by using the black-box

as an oracle and reconstructing the model and using the reconstructed

paramaters.

6

USENIX Association 25th USENIX Security Symposium 519

Gaussian. We also use knowledge of the dictionary file

in order to turn words into phonemes. An attacker could

reconstruct this file without much effort.

4.3 Simple approach

Given this additional information, a first possible attack

would be to use the additional information about exactly

what the MFCC coefficients are to re-mount the the pre-

vious black-box attack.

Instead of using the MFCC inversion process de-

scribed in §3.2, this time we implement it using gradient

descent—a generic optimization approach for finding a

good solution over a given space—an approach which

can be generalized to arbitrary objective functions.

Gradient descent attempts to find the minimum (or

maximum) value of an objective function over a multi-

dimensional space by starting from an initial point and

traveling in the direction which reduces the objective

most quickly. Formally, given a smooth function f , gra-

dient descent picks an initial point x0 and then repeat-

edly improves on it by setting xi+1 = xi + ε ·∇ f (x0) (for

some small ε) until we have a solution which is “good

enough”.

We define the objective function f (x) = (MFCC(x)−
y)2 · z, where x is the input frame, y is the target MFCC

vector, and z is the relative importance of each dimen-

sion. Setting z = (1,1, . . . ,1) takes the L2 norm as the

objective.

Gradient descent is not guaranteed to find the global

optimal value. For many problems it finds only a local

optimum. Indeed, in our experiments we have found that

gradient descent only finds local optima, but this turns

out to be sufficient for our purposes.

We perform gradient descent search one frame at a

time, working our way from the first frame to the last.

For the first frame, we allow gradient descent to pick any

410 samples. For subsequent frames, we fix the first 250

samples as the last 250 of the preceding frame, and run

gradient descent to find the best 160 samples for the rest

of the frame.

As it turns out, when we implement this attack, our

results are no better than the previous black-box-only at-

tack. Below we describe our improvements to make at-

tacks completely unrecognizable.

4.4 Improved attack

To construct hidden voice commands that are more diffi-

cult for humans to understand, we introduce two refine-

ments. First, rather than targeting a specific sequence of

MFCC vectors, we start with the target phrase we wish

to produce, derive a sequence of phonemes and thus a se-

quence of HMM states, and attempt to find an input that

matches that sequence of HMM states. This provides

more freedom by allowing the attack to create an input

that yields the same sequence of phonemes but generates

a different sequence of MFCC vectors.

Second, to make the attacks difficult to understand,

we use as few frames per phoneme as possible. In nor-

mal human speech, each phoneme might last for a dozen

frames or so. We try to generate synthetic speech that

uses only four frames per phoneme (a minimum of three

is possible—one for each HMM state). The intuition is

that the HMM is relatively insensitive to the number of

times each HMM state is repeated, but humans are sen-

sitive to it. If Sphinx does not recognize the phrase at the

end of this process, we use more frames per phoneme.

For each target HMM state, we pick one Gaussian

from that state’s GMM. This gives us a sequence of target

Gaussians, each with a mean and standard deviation.

Recall that the MFC transformation as we defined it

returns a 13-dimensional vector. However, there is a sec-

ond step which takes sequential derivatives of 13-vectors

to produce 39-vectors. The second step of our attack is

to pick these 13-vectors so that after we take the deriva-

tives, we maximize the likelihood score the GMM as-

signs to the resulting 39-vector. Formally, we wish to

find a sequence yi of 39-dimensional vectors, and xi of

13-dimensional vectors, satisfying the derivative relation

yi = (xi,xi+2 − xi−2,(xi+3 − xi−1)− (xi+1 − xi−3))

and maximizing the likelihood score

∏
i

exp

{ 39

∑
j=1

α
j

i − (y j
i −μ

j
i)

2

σ
j

i

}

where μi, σi, and αi are the mean, standard deviation,

and importance vectors respectively.

We can solve this problem exactly by using the least-

squares method. We maximize the log-likelihood,

log∏
i

exp

{
∑

j

−α
j

i +(y j
i −μ

j
i)

2

σ
j

i

}
=∑

i
∑

j

−α
j

i +(y j
i −μ

j
i)

2

σ
j

i

The log-likelihood is a sum of squares, so maximizing it

is a least-squares problem: we have a linear relationship

between the x and y values, and the error is a squared

difference.

In practice we cannot solve the full least squares prob-

lem all at once. The Viterbi algorithm only keeps track

of the 100 best paths for each prefix of the input, so if the

global optimal path had a prefix that was the 101st most

likely path, it would be discarded. Therefore, we work

one frame at a time and use the least squares approach to

find the next best frame.

This gives us three benefits: First, it ensures that at

every point in time, the next frame is the best possible

given what we have done so far. Second, it allows us to

7

520 25th USENIX Security Symposium USENIX Association

try all eight possible Gaussians in the GMM to pick the

one which provides the highest score. Third, it makes our

approach more resilient to failures of gradient descent.

Sometimes gradient descent cannot hit the 13-vector sug-

gested by this method exactly. When this happens, the

error score for subsequent frames is based on the actual

13-vector obtained by gradient descent.

Complete description. We first define two sub-

routines to help specify our attack more precisely.

LSTDERIV(f , ḡ,g) accepts a sequence of 13-vectors f

that have already been reached by previous iterations of

search, the desired 39-vector sequence ḡ, and one new

39-vector g; it uses least squares to compute the next

13-vector which should be targeted along with the least-

squares error score. Specifically:

1. Define A as the 39k × 13(6+ k) dimensional matrix

which computes the derivative of a sequence of 6+ k

13-vectors and returns the k resulting 39-vectors.

2. Define b as the 39k dimensional vector corresponding

to the concatenation of the k− 1 39-vectors in ḡ and

the single 39-vector g.

3. Split A in two pieces, with AL being the left 13k

columns, and AR being the right 6×13 columns.

4. Define f̄ as the concatenation of the 13-vectors in f .

5. Define b̄ = b−AL · f̄ .

6. Using least squares, find the best approximate solu-

tion x̂ to the system of equations Ar · x̂ = b̄.

7. Return (|(Ar · x̂)− b̄|, x̂)
GRADDESC(s, t) accepts the previous frame s ∈R

410

and a target 13-vector t, and returns a frame ŝ ∈ R
410

such that ŝ matches s in the 250 entries where they over-

lap and MFCC(ŝ) is as close to t as possible. More pre-

cisely, it looks for a 160-dimensional vector x that min-

imizes f (x) = ||MFCC(s160...410||x)− s||2, where || is

concatenation, and returns s160...410||x. We use the New-

ton Conjugate-Gradient algorithm for gradient descent

and compute the derivative symbolically for efficiency.

Our full algorithm works as follows:

1. In the following, f will represent a sequence of cho-

sen 13-vectors (initially empty), ḡ a sequence of tar-

get 39-vectors, s the audio samples to return, and i

the iteration number (initially 0).

2. Given the target phrase, pick HMM states hi

such that each state corresponds to a portion of a

phoneme of a word in the phrase.

3. Let g
j
i be the 39-vector corresponding to the mean

of the jth Gaussian of the GMM for this HMM state.

One of these will be the target vector we will try to

invert.

4. For each j, solve the least squares prob-

lem (s j,d j) = LSTDERIV(f , ḡ,g j
i) and set ĵ =

argmin j s j and d̄ = d ĵ to obtain a sequence of 13-

vectors d̄0 to d̄i+6. Let d̄i be the “target 13-vector”

t. Append the 39-vector corresponding to t to ḡ.

5. Use gradient descent to get ŝ = GRADDESC(s, t).
Let s := ŝ. Append MFCC(s) to f .

6. Repeat for the next i from step 3 until all states are

completed.

4.5 Playing over the air

The previous attacks work well when we feed the audio

file directly into Sphinx. However, Sphinx could not cor-

rectly transcribe recordings made by playing the audio

using speakers. We developed three approaches to solve

this complication:

Make the audio easier to play over speaker. Gradi-

ent descent often generates audio with very large spikes.

It’s physically impossible for the speaker membrane

to move quickly enough to accurately reproduce these

spikes. We modified gradient descent to penalize wave-

forms that a speaker cannot reproduce. In particular, we

add a penalty for large second derivatives in the signal,

with the hope that gradient descent finds solutions that

do not include such large spikes.

Predict the MFCC of played audio. Even with this

penalty, the audio is still not perfectly playable over a

speaker. When we compared the waveform of the played

audio and recorded audio, they had significant differ-

ences. To address this, we built a model to predict

the MFCC when a file is played through a speaker and

recorded. Recall that the MFCC transformation essen-

tially computes the function C log(B �Ax�2).
By playing and recording many audio signals, we

learned new matrices Â, B̂, Ĉ so that for each played

frame x and recorded frame y, C log(B �Ay�2) is close

to Ĉ log(B̂ �Âx�2). We computed Â, B̂, Ĉ by solving a

least-squares problem. This was still not enough for cor-

rect audio recognition, but it did point us in a promising

direction.

Play the audio during gradient descent. The ideas

above are not enough for recognition of recorded audio.

To see what is going on here, we compare the MFCC of

the played audio (after recording it) and the initial audio

(before playing it). We found the correlation to be very

high (r = .97 for the important coefficients).

Based on this observation, we augment our algorithm

to include an outer iteration of gradient descent. Given a

target MFCC we first run our previous gradient descent

algorithm to find a sound sequence which (before playing

over the speaker) reaches the target MFCC. Then, we

play and record it over the speaker. We obtain from this

the actual MFCC. We then adjust the target MFCC by

the difference between what was received and what is

desired.

We implemented this approach. Figure 4 plots the L2

8

USENIX Association 25th USENIX Security Symposium 521

0 10 20 30 40 50 60

1
2

3
4

5
6

Iteration Number

E
rr

o
r

Figure 4: Incorporating actually playing the audio over the

speakers into the gradient descent significantly reduces the er-

ror. The plot is of the L2 norm of the error of from the target

feature vector to the actually recorded feature vector, over time.

error (the difference between the target MFCC and what

is actually recorded during each iteration of our algo-

rithm) over time. By repeating this procedure 50 times

and taking the frame with the minimum noise, we obtain

an audio file that is correctly recognized by Sphinx after

being played over the speaker.

Since we perform 50 iterations of the inner gradient

descent per frame, and each iteration takes 30 seconds,

our approach takes nearly 30 hours to find a valid attack

sample. In practice, sometimes this process can take even

longer; since we are recording audio, if the microphone

picks up too much background noise, we must discard

the recorded sample and try again. We have built in an

error-detection system to mitigate these effects.

This might seem like a high cost to generate one at-

tack sample. However, once generated, we can reuse the

obfuscated audio on that speaker forever. Even though

the setup cost is high, it must only be performed once;

thereafter the same audio file can be used repeatedly.

4.6 Evaluation

Machine comprehension. For the former, we ap-

ply the above techniques and generate three audio com-

mands: “okay google, take a picture”, “okay google, text

12345”, and “okay google, browse to evil.com”. The

speech recognition system is an instance of CMU Sphinx

version 4-1.0beta6.

We determined the minimum number of frames per

phoneme that is sufficient to allow Sphinx to recognize

the command. Some words are more difficult to create

correctly than others, and thus require more frames per

phoneme. Detailed results can be found in Appendix E.

When we modify the lengths of the phonemes to account

for this data, over 90% of generated phrases are correctly

recognized by Sphinx.

To evaluate our attack playing over a microphone, we

equipped our computer with an external Blue Snowball

Table 3: White-box attack results. Percentages show success-

ful comprehension of Normal and Obfuscated version of voice

commands for humans and machines. Our white-box attack

constructs the obfuscated attack without a starting normal at-

tack; we only evaluate the machine understanding of the obfus-

cated commands.

Human Machine

Understanding Understanding

Normal 74% (230/310) –

Obfuscated 0% (1/377) 82% (82/100)

microphone. Obfuscated audio commands are played

from an Altec Lansing ASC45.1 speaker located 0.5 me-

ters from the microphone. All of our evaluated phrases

were commands recorded from the microphone. We

trained our MFCC vector predictor with one minute (16

million samples) of audio played over this speaker in a

large room to minimize echoes. The room was isolated,

and thus we encountered nearly no background noise.

The attack took 32 hours to generate the command for

“okay google, take a picture”, but required no human

intervention, using the same number of frames chosen

from the previous attack for a total of 101 frames.

Once the file was generated, we played the command

over the speaker 100 times. Sphinx was able to recognize

it in 82 of the instances. This is to be expected—for a

given audio played multiple times, there is a very high

(99%+) correlation between the recorded MFCC values.

Human comprehension. As with our black-box at-

tack, we evaluate our obfuscated commands with the

same Amazon Mechanical Turk study. Workers were

blind to how the obfuscated audio was generated. As a

baseline, we asked workers to transcribe a phrase spoken

by a human naturally. The results show that our white-

box attack is significantly better than the black-box at-

tack. No worker was able to transcribe more than half

of the words in the phrase correctly, and 75% of work-

ers transcriptions shared no words in common with the

actual phrase.

Four of the authors independently evaluated 377 tran-

scriptions of attack commands generated by our white-

box attack and compared them with correct transcrip-

tions to answer whether both transcriptions had the same

meaning. The four authors agreed on over 95% of in-

stances. Table 3 contains the results, showing that nor-

mal commands were correctly transcribed by workers

74% of the time, but obfuscated commands were al-

most never transcribed correctly. A comparison using

phoneme-level edit distance yields similar results; see

Appendix C.2.

While these results indicate that obfuscated commands

generated using our white-box attack are very difficult to

understand, we conducted a second study to determine

9

522 25th USENIX Security Symposium USENIX Association

if users actually thought the audio was human speech

or just noise. Specifically, we created audio samples of

a human speaking a phrase, followed by an obfuscated

(different) phrase, and finally a human speaking a third

different phrase. In this study we were interested in see-

ing if the worker would try to transcribe the obfuscated

speech at all, or leave it out entirely.

Transcription accuracy was 80% for the first and last

commands given by a human speaking. Only 24% of

users attempted to transcribe the obfuscated speech. This

study clearly demonstrates that when given a choice

about what they viewed as speech and not-speech, the

majority of workers believed our audio was not speech.

5 Defenses

We are unaware of any device or system that currently

defends against obfuscated voice commands. In this sec-

tion, we explore potential defenses for hidden voice com-

mands across three dimensions: defenses that notify, de-

fenses that challenge, and defenses that detect and pro-

hibit. The defenses described below are not intended to

be exhaustive; they represent a first examination of po-

tential defenses against this new threat.

5.1 Defenses that notify

As a first-line of defense we consider defenses that alert

the user when the device interprets voice commands,

though these will only be effective when the device op-

erator is present and notification is useful (e.g., when it

is possible to undo any performed action).

The “Beep”, the “Buzz” and the “Lightshow”.

These defenses are very simple: when the device receives

a voice command, it notifies the user, e.g., by beeping.

The goal is to make the user aware a voice command

was accepted. There are two main potential issues with

“the Beep”: (i) attackers may be able to mask the beep,

or (ii) users may become accustomed to their device’s

beep and begin to ignore it. To mask the beep, the at-

tacker might play a loud noise concurrent with the beep.

This may not be physically possible depending on the

attacker’s speakers and may not be sufficiently stealthy

depending on the environment as the noise require can

be startling.

A more subtle attack technique is to attempt to mask

the beep via noise cancellation. If the beep were a single-

frequency sine wave an attacker might be able to cause

the user to hear nothing by playing an identical frequency

sine wave that is out of phase by exactly half a wave-

length. We evaluated the efficacy of this attack by con-

structing a mathematical model that dramatically over-

simplifies the attacker’s job and shows that even this

simplified “anti-beep” attack is nearly impossible. We

present a more detailed evaluation of beep cancelation in

Appendix D.

Some devices might inform the user when they inter-

pret voice commands by vibrating (“the buzz”) or by

flashing LED indicators (“the lightshow”). These noti-

fications also assume that the user will understand and

heed such warnings and will not grow accustomed to

them. To differentiate these alerts from other vibration

and LED alerts the device could employ different puls-

ing patterns for each message type. A benefit of such

notification techniques is that they have low overhead:

voice commands are relatively rare and hence generating

a momentary tone, vibration, or flashing light consumes

little power and is arguably non-intrusive.

Unfortunately, users notoriously ignore security warn-

ing messages, as is demonstrated by numerous studies

of the (in)effectiveness of warning messages in deployed

systems [35, 37, 44]. There is unfortunately little rea-

son to believe that most users would recognize and not

quickly become acclimated to voice command notifica-

tions. Still, given the low cost of deploying a notification

system, it may be worth considering in combination with

some of the other defenses described below.

5.2 Defenses that challenge

There are many ways in which a device may seek confir-

mation from the user before executing a voice command.

Devices with a screen might present a confirmation dia-

logue, though this limits the utility of the voice interface.

We therefore consider defenses in which the user must

vocally confirm interpreted voice commands. Present-

ing an audio challenge has the advantage of requiring the

user’s attention, and thus may prevent all hidden voice

commands from affected the device assuming the user

will not confirm an unintended command. A consistent

verbal confirmation command, however, offers little pro-

tection from hidden voice commands: the attacker also

provide the response in an obfuscated manner. If the at-

tacker can monitor any random challenge provided by

the device, it might also be spoofed. To be effective, the

confirmation must be easily produced by the human op-

erator and be difficult to forge by an adversary.

The Audio CAPTCHA. Such a confirmation system

already exists in the form of audio CAPTCHAs [26]

which is a challenge-response protocol in which the chal-

lenge consists of speech that is constructed to be difficult

for computers to recognize while being easily understood

by humans. The response portion of the protocol varies

by the type of CAPTCHA, but commonly requires the

human to transcribe the challenge.

Audio CAPTCHAs present an possible defense to hid-

den voice commands: before accepting a voice com-

mand, a device would require the user to correctly re-

10

USENIX Association 25th USENIX Security Symposium 523

spond to an audio CAPTCHA, something an attacker

using machine speech recognition would find difficult.

While it is clear that such a defense potentially has us-

ability issues, it may be worthwhile for commands that

are damaging or difficult to undo.

Audio CAPTCHAs are useful defenses against hidden

voice commands only if they are indeed secure. Previous

generations of audio CAPTCHAs have been shown to

be broken using automated techniques [6, 39]. As audio

CAPTCHAs have improved over time [11, 27], the ques-

tion arises if currently fielded audio CAPTCHAs have

kept pace with improvements in speech recognition tech-

nologies. In short, they have not.

We focus our examination on two popular audio

CAPTCHA systems: Google’s reCaptcha [33] offers au-

dio challenges initially consisting of five random dig-

its spread over approximately ten seconds; and NLP

Captcha [30] provides audio challenges of about three

seconds each composed of four or five alphanumeric

characters, with the addition of the word “and” before

the last character in some challenges.

We tested 50 challenges of reCaptcha and NLP

Captcha each by segmenting the audio challenges be-

fore transcribing them using Google’s speech recogni-

tion service. Figure 5 shows the results of transcription.

Here, we show the normalized edit distance, which is

the Levenshtein edit distance using characters as alpha-

bet symbols divided by the length of the challenge. More

than half and more than two-thirds of NLP Captchas and

reCaptchas, respectively, are perfectly transcribed using

automated techniques. Moreover, approximately 80% of

CAPTCHAs produced by either system have a normal-

ized edit distance of 0.3 or less, indicating a high fre-

quency of at least mostly correct interpretations. This

is relevant, since audio CAPTCHAs are unfortunately

not easily understood by humans; to increase usability,

reCaptcha provides some “leeway” and accepts almost-

correct answers.

Given the ease at which they can be solved using au-

tomated techniques, the current generation of deployed

audio CAPTCHA systems seems unsuitable for defend-

ing against hidden voice commands. Our results do not

indicate whether or not audio CAPTCHAs are necessar-

ily insecure. However, we remark that since computers

continue to get better at speech recognition developing

robust audio CAPTCHA puzzles is likely to become in-

creasingly more difficult.

5.3 Defenses that detect and prevent

Speaker recognition. Speaker recognition (some-

times called voice authentication) has been well-

explored as a biometric for authentication [7], with at

least Google recently including speaker recognition as

Figure 5: Accuracy of breaking audio CAPTCHA using ma-

chine based speech-to-text conversion. A normalized edit dis-

tance of zero signifies exact prediction.

an optional feature in its Android platform [18]. Apple

also introduced similar functionality in iOS [2].

However, it is unclear whether speaker verification

necessarily prevents the use of hidden voice commands,

especially in settings in which the adversary may be able

to acquire samples of the user’s voice. Existing work

has demonstrated that voices may be mimicked using

statistical properties4; for example, Aylett and Yamag-

ishi [3] are able to mimic President George W. Bush’s

voice with as little of 10 minutes of his speech. Hence,

it may be possible to construct an obfuscated voice com-

mand based on recordings of the user’s voice that will be

accepted both by the speaker recognition and the voice

recognition systems. This is an interesting technical

question which we defer to future work.

Importantly, speaker recognition presents three well-

understood usability issues. First, a non-negligible false

negative rate might limit authorized use, which provides

an incentive for users to deactivate speaker recognition.

Second, speaker recognition requires training, and likely

necessitates the collection of a large speech corpus in or-

der to ensure the level of accuracy necessary for reliable

authentication. This need is compounded for devices

such as Amazon Echo that are intended to be used by

multiple users. Users may be unwilling to perform such

training. Finally, speaker recognition is unsuited for ap-

plications that have no prior interactions with the user,

for example, in kiosks for the visually impaired. We ar-

gue that such usability issues motivate the need for less

intrusive defenses, such as the ones described next.

The “Filter”. This defense decreases the fidelity of

the input audio before applying speech recognition. This

4CereVoice offers an online service for “[creating] a computer ver-

sion of your own voice” [8].

11

524 25th USENIX Security Symposium USENIX Association

somewhat counterintuitive approach leverages the preci-

sion required by hidden voice commands: by slightly de-

grading the audio quality, normal commands are affected

only slightly while obfuscated inputs, already at the cusp

of being comprehensible by machine, are no longer rec-

ognized. The goal of the filter is thus to find a “sweet

spot” such that a slight decrease in fidelity will not too

adversely affect normal audio, but will eliminate hidden

voice commands.

Our filter implementation considers audio in the time

domain. For a filter rate f and an audio file consisting of

s samples, we preserve f · s samples chosen uniformly at

random and remove without replacement the remaining

(1− f)s samples.

We evaluate the efficacy of the filter defense using the

West Point Company English speech data corpus from

the University of Pennsylvania’s Linguistic Data Consor-

tium (LDC) [29]. The LDC corpus consists of Ameri-

can English-language speakers, 30 of them speaking the

same 50 sentences each, and another 109 speakers each

speaking a separate set of 185 sentences. For each sen-

tence in the corpus, we construct multiple obfuscated au-

dio files using the black-box techniques described in §3.

We do not introduce any background noise to either the

normal or obfuscated samples, and send all samples to

Google’s speech recognition system and evaluate the ac-

curacy of its transcriptions. We tested the filter against

16,440 normal commands and 27,589 obfuscated com-

mands, sampled uniformly at random without replace-

ment. The audio files were in WAV format with single

channel sampled at 22050 kHz with 32-bit bit depth in

float data type.

We define phoneme edit distance δ as the Levenshtein

edit distance between phoneme sequences of two tran-

scriptions, and L as the phoneme length of unfiltered sen-

tence. Finally we define relative phoneme edit distance

as δ/(δ +L), to reflect how close the two transcriptions

might sound to a human listener. Figure 6 plots the cu-

mulative distribution of the relative phoneme edit dis-

tances for our tested audio samples. Out of five tran-

scripts Google returned, we pick the transcript with the

smallest phoneme edit distance and calculate the rela-

tive phoneme edit distance.With an 80% filter (i.e., 80%

of the original audio is preserved), the hidden voice com-

mand is significantly perturbed—the fraction of correctly

transcribed sentences decreases from 41.74% to 7.49%

when the filter is applied. However, the filter also signif-

icantly degrades normal audio, decreasing accuracy by

14.35%, which is likely unacceptable for users who de-

pend on voice functionality. Through manual tuning, we

find that a 92% filter offers an attractive sweet spot, caus-

ing the fraction of correctly transcribed obfuscated files

to fall from 41.74% to 26.60%, while negligibly affect-

ing normal files, whose accuracy drops only 1.06%.

Figure 6: The cumulative distribution of relative phoneme edit

distances for normal and obfuscated commands, for filtering

rates of 80% and 92%.

The “Classifier”. As a final defense we examine

whether automated techniques can detect our hidden

voice commands—that is, can a computer classify inter-

preted speech as being generated by a human or a ma-

chine? In practice, a speech recognition system could in-

corporate a machine learning classifier as a final process-

ing step, dropping voice commands that are determined

to be machine-generated.

We construct a hidden voice command detector using

logistic regression. Our classifier uses mid-term features

(mean and standard deviation) derived from short term

features shown in Appendix F, extracted using the pyAu-

dioAnalysis library [16] from the original audio signal.

We use the same LDC speech corpus as used in our

filter experiments, and label each sample from the cor-

pus as normal. Using the black-box procedure described

in §3, we produce obfuscated hidden voice commands,

which we label as obfuscated. We overlay the back-

ground noise samples described in §3.3 to mimic a noisy

environment to both the normal and obfuscated samples.

We apply tenfold cross validation and report averages

across the ten runs. The confusion matrix that results

from classification is reported in Table 4. 99.8% of ob-

fuscated audio were detected as such, while only incur-

ring a 0.2% false positive rate, meaning that the classi-

fier would incorrectly discard two out of 1000 valid com-

mands.

To better gauge the classifier’s accuracy when pre-

sented with diverse inputs, we performed additional clas-

sification tests against 51 commands generated using the

white-box technique from §4 and audio from the Accent

GMU dataset [43]. The Accent GMU dataset is com-

prised of 569 audio samples of English text spoken by

different individuals with different regional accents. Nei-

ther the GMU or white-box samples were used to con-

12

USENIX Association 25th USENIX Security Symposium 525

Table 4: Confusion matrix of our classifier.

Normal Obfuscated

Normal 49.9% 0.1%

Obfuscated 0.1% 49.9%

Table 5: Confusion matrix of our classifier, when classifying

audio from outside corpora.

Normal Attack

White-box Attack 30.7% 69.3%

Accent GMU 99.2% 0.8%

struct the classifier. That is, our results show the efficacy

of a classifier constructed with only normal and black-

box obfuscated command samples as training data. Im-

portantly, the GMU dataset consists of all normal (non-

obfuscated) samples, while the white-box dataset con-

tains only attack commands. The confusion matrix for

this classification task is presented in Table 5. For the

GMU dataset, our classifier performs well, incurring less

than a 1% false positive rate. The performance is worse

for the white-box attack. Still, even against this strong

attack which requires complete knowledge of the back-

end speech recognition system, the classifier is able to

flag nearly 70% of the hidden voice commands as being

malicious.

5.4 Summary of defenses

We present the first examination of defenses against hid-

den voice commands. Our analysis of notification de-

fenses (§5.1) shows that security alerts are difficult to

mask, but may be ignored by users. Still, given their

ease of deployment and small footprint, such defenses

are worth considering. Active defenses, such as au-

dio CAPTCHAs (§5.2) have the advantage that they re-

quire users to affirm voice commands before they be-

come effected. Unfortunately, active defenses also in-

cur large usability costs, and the current generation of

audio-based reverse Turing tests seem easily defeatable.

Most promising are prevention and detection defenses

(§5.3). Our findings show that filters which slightly

degrade audio quality can be tuned to permit normal

audio while effectively eliminating hidden voice com-

mands. Likewise, our initial exploration of machine

learning-based defenses shows that simple classification

techniques yield high accuracy in distinguishing between

user- and computer-generated voice commands.

6 Limitations and Discussion

While the results of our defenses are encouraging, a limi-

tation of this paper is that the defenses do not offer proofs

of security. In particular, an adversary may be able to

construct hidden voice commands that are engineered to

withstand filtering and defeat classifiers.

The random sampling used by our filter complicates

the task of designing a “filter-resistant” hidden voice

command since the adversary has no advanced knowl-

edge of what components of his audio command will be

discarded. The adversary is similarly constrained by the

classifier, since the attacks we describe in §3 and §4 sig-

nificantly affect the features used in classification. Of

course, there might be other ways to conceal voice com-

mands that are more resistant to information loss yet re-

tain many characteristics of normal speech, which would

likely defeat our existing detection techniques. Design-

ing such attacks is left as a future research direction.

The attacks and accompanying evaluations in §3 and

§4 demonstrate that hidden voice commands are effec-

tive against modern voice recognition systems. There

is clearly room for another security arms race between

more clever hidden voice commands and more robust de-

fenses. We posit that, unfortunately, the adversary will

likely always maintain an advantage so long as humans

and machines process speech dissimilarly. That is, there

will likely always be some room in this asymmetry for

“speaking directly” to a computational speech recogni-

tion system in a manner that is not human parseable.

Future work. CMU Sphinx is a “traditional” ap-

proach to speech recognition which uses a hidden

Markov model. More sophisticated techniques have re-

cently begun to use neural networks. One natural ex-

tension of this work is to extend our white-box attack

techniques to apply to RNNs.

Additional work can potentially make the audio even

more difficult for an human to detect. Currently, the

white-box hidden voice commands sound similar to

white noise. An open question is if it might be possi-

ble to construct working attacks that sound like music or

other benign noise.

7 Conclusion

While ubiquitous voice-recognition brings many benefits

its security implications are not well studied. We inves-

tigate hidden voice commands which allow attackers to

issue commands to devices which are otherwise unintel-

ligible to users.

Our attacks demonstrate that these attacks are possi-

ble against currently-deployed systems, and that when

knowledge of the speech recognition model is assumed

more sophisticated attacks are possible which become

much more difficult for humans to understand. (Au-

dio files corresponding to our attacks are available at

http://hiddenvoicecommands.com.)

These attacks can be mitigated through a number of

different defenses. Passive defenses that notify the user

13

526 25th USENIX Security Symposium USENIX Association

an action has been taken are easy to deploy and hard to

stop but users may miss or ignore them. Active defenses

may challenge the user to verify it is the owner who is-

sued the command but reduce the ease of use of the sys-

tem. Finally, speech recognition may be augmented to

detect the differences between real human speech and

synthesized obfuscated speech.

We believe this is an important new direction for future

research, and hope that others will extend our analysis of

potential defenses to create sound defenses which allow

for devices to securely use voice-commands.

Acknowledgments. We thank the anonymous re-

viewers for their insightful comments. This paper

is partially funded from National Science Foundation

grants CNS-1445967, CNS-1514457, CNS-1149832,

CNS-1453392, CNS-1513734, and CNS-1527401. This

research was additionally supported by Intel through the

ISTC for Secure Computing, and by the AFOSR under

MURI award FA9550-12-1-0040. The findings and opin-

ions expressed in this paper are those of the authors and

do not necessarily reflect the views of the funding agen-

cies.

References

[1] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, and C. D. Spyropoulos.
An Experimental Comparison of Naive Bayesian and Keyword-based Anti-
spam Filtering with Personal e-Mail Messages. In ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR), 2000.
[2] Apple. Use Siri on your iPhone, iPad, or iPod touch. Support article.

Available at https://support.apple.com/en-us/HT204389.
[3] M. P. Aylett and J. Yamagishi. Combining Statistical Parameteric Speech

Synthesis and Unit-Selection for Automatic Voice Cloning. In LangTech,
2008.

[4] M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar. The security of machine
learning. Machine Learning, 81(2):121–148, 2010.

[5] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giac-
into, and F. Roli. Evasion Attacks against Machine Learning at Test Time.
In Machine Learning and Knowledge Discovery in Databases, 2013.

[6] E. Bursztein and S. Bethard. Decaptcha: Breaking 75% of eBay Audio
CAPTCHAs. In USENIX Workshop on Offensive Technologies (WOOT),
2009.

[7] J. Campbell, J.P. Speaker Recognition: A Tutorial. Proceedings of the

IEEE, 85(9):1437–1462, 1997.
[8] CereVoice Me Voice Cloning Service.

https://www.cereproc.com/en/products/cerevoiceme.
[9] Crowd Sounds — Free Sounds at SoundBible. http://soundbible.com/tags-

crowd.html.
[10] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial

Classification. In ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), 2004.
[11] M. Darnstadt, H. Meutzner, and D. Kolossa. Reducing the Cost of Breaking

Audio CAPTCHAs by Active and Semi-supervised Learning. In Interna-

tional Conference on Machine Learning and Applications (ICMLA), 2014.
[12] W. Diao, X. Liu, Z. Zhou, and K. Zhang. Your Voice Assistant is Mine:

How to Abuse Speakers to Steal Information and Control Your Phone. In
ACM Workshop on Security and Privacy in Smartphones & Mobile Devices

(SPSM), 2014.
[13] H. Drucker, S. Wu, and V. Vapnik. Support vector machines for spam

categorization. IEEE Transactions on Neural Networks, 10(5), Sep 1999.
[14] A. Fawzi, O. Fawzi, and P. Frossard. Analysis of classifiers’ robustness to

adversarial perturbations. arXiv preprint arXiv:1502.02590, 2015.
[15] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that ex-

ploit confidence information and basic countermeasures. In Proceedings

of the 22nd ACM Conference on Computer and Communications Security,
2015.

[16] T. Giannakopoulos. Python Audio Analysis Library: Fea-
ture Extraction, Classification, Segmentation and Applications.
https://github.com/tyiannak/pyAudioAnalysis.

[17] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[18] Google. Turn on “Ok Google” on your Android. Support article. Available
at https://support.google.com/websearch/answer/6031948.

[19] Deep Neural Networks are Easily Fooled: High Confidence Predictions for

Unrecognizable Images, 2015. IEEE.
[20] C. Ittichaichareon, S. Suksri, and T. Yingthawornsuk. Speech recognition

using MFCC. In International Conference on Computer Graphics, Simula-

tion and Modeling (ICGSM), 2012.
[21] Y. Jang, C. Song, S. P. Chung, T. Wang, and W. Lee. A11y Attacks: Exploit-

ing Accessibility in Operating Systems. In ACM Conference on Computer

and Communications Security (CCS), November 2014.
[22] A. Kantchelian, S. Afroz, L. Huang, A. C. Islam, B. Miller, M. C. Tschantz,

R. Greenstadt, A. D. Joseph, and J. D. Tygar. Approaches to Adversarial
Drift. In ACM Workshop on Artificial Intelligence and Security, 2013.

[23] C. Kasmi and J. Lopes Esteves. Iemi threats for information security: Re-
mote command injection on modern smartphones. IEEE Transactions on

Electromagnetic Compatibility, PP(99):1–4, 2015.
[24] P. Lamere, P. Kwok, W. Walker, E. Gouvea, R. Singh, B. Raj, and P. Wolf.

Design of the CMU Sphinx-4 Decoder. In Eighth European Conference on

Speech Communication and Technology, 2003.
[25] A. Mahendran and A. Vedaldi. Understanding deep image representations

by inverting them. In Conference on Computer Vision and Pattern Recog-

nition (CVPR) 2015, 2015.
[26] M. May. Inaccessibility of CAPTCHA: Alternatives to Visual Turing Tests

on the Web. Technical report, W3C Working Group Note, 2005. Available
at http://www.w3.org/TR/turingtest/.

[27] H. Meutzner, S. Gupta, and D. Kolossa. Constructing Secure Audio
CAPTCHAs by Exploiting Differences Between Humans and Machines. In
Annual ACM Conference on Human Factors in Computing Systems (CHI),
2015.

[28] D. E. Meyer and R. W. Schvaneveldt. Facilitation in Recognizing Pairs of
Words: Evidence of a Dependence between Retrieval Operations. Journal

of Experimental Psychology, 90(2):227, 1971.
[29] J. Morgan, S. LaRocca, S. Bellinger, and C. C. Ruscelli. West

Point Company G3 American English Speech. Linguistic Data Con-
sortium, item LDC2005S30. University of Pennsylvania. Available at
https://catalog.ldc.upenn.edu/LDC2005S30, 2005.

[30] NLP Captcha. http://nlpcaptcha.in/.
[31] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and

A. Swami. The limitations of deep learning in adversarial settings. arXiv

preprint arXiv:1511.07528, 2015.
[32] N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in machine

learning: from phenomena to black-box attacks using adversarial samples.
arXiv preprint arXiv:1605.07277, 2016.

[33] reCAPTCHA. http://google.com/recaptcha.
[34] H. Sak, A. Senior, K. Rao, F. Beaufays, and J. Schalkwyk. Google

Voice Search: Faster and More Accurate, 2015. Google Research Blog
post. Available at http://googleresearch.blogspot.com/2015/09/google-
voice-search-faster-and-more.html.

[35] S. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The Emperor’s New
Security Indicators: An Evaluation of Website Authentication and the Ef-
fect of Role Playing on Usability Studies. In IEEE Symposium on Security

and Privacy (Oakland), 2007.
[36] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and X. Wang.

Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smart-
phones. In Network and Distributed System Security Symposium (NDSS),
2011.

[37] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor. Cry-
ing Wolf: An Empirical Study of SSL Warning Effectiveness. In USENIX

Security Symposium (USENIX), 2009.
[38] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus. Intriguing Properties of Neural Networks. arXiv preprint

arXiv:1312.6199, 2013.
[39] J. Tam, J. Simsa, S. Hyde, and L. V. Ahn. Breaking Audio CAPTCHAs. In

Advances in Neural Information Processing Systems (NIPS), 2008.
[40] J. Tygar. Adversarial Machine Learning. IEEE Internet Computing, 15(5):

4–6, 2011.
[41] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields. Cocaine Noodles: Exploit-

ing the Gap between Human and Machine Speech Recognition. In USENIX

Workshop on Offensive Technologies (WOOT), August 2015.
[42] O. Viikki and K. Laurila. Cepstral Domain Segmental Feature Vector Nor-

malization for Noise Robust Speech Recognition. Speech Communication,
25(13):133–147, 1998.

[43] S. H. Weinberger. Speech Accent Archive. George Mason University, 2015.
Available at http://accent.gmu.edu.

[44] M. Wu, R. C. Miller, and S. L. Garfinkel. Do Security Toolbars Actually
Prevent Phishing Attacks? In SIGCHI Conference on Human Factors in

Computing Systems (CHI), 2006.

14

USENIX Association 25th USENIX Security Symposium 527

A Additional Background on Sphinx

As mentioned in §4, the first transform taken by Sphinx

is to split the audio in to overlapping frames, as shown

in Figure 7. In Sphinx, frames are 26ms (410 samples)

long, and a new frame begins every 10ms (160 samples).

Original audio stream
Frame 0

Frame 1

Frame 2

Frame offset Frame size

Figure 7: The audio file is split into overlapping frames.

MFC transform. Once Sphinx creates frames, it runs

the MFC algorithm. Sphinx’s MFC implementation in-

volves five steps:

1. Pre-emphasizer: Applies a high-pass filter that re-

duces the amplitude of low-frequencies.

2. Cosine windower: Weights the samples of the

frame so the earlier and later samples have lower

amplitude.

3. FFT: Computes the first 257 terms of the (complex-

valued) Fast Fourier Transform of the signal and re-

turns the squared norm of each.

4. Mel filter: Reduces the dimensionality further by

splitting the 257 FFT terms into 40 buckets, sum-

ming the values in each bucket, then returning the

log of each sum.

5. DCT: Computes the first 13 terms of the Discrete

Cosine Transform (DCT) of the 40 bucketed val-

ues.5

Despite the many steps involved in the MFC pipeline,

the entire process (except the running average and deriva-

tives steps) can be simplified into a single equation:

MFCC(x) =C log(B �Ax�2)

where the norm, squaring and log are done component-

wise to each element of the vector. A is a 410 × 257

matrix which contains the computation performed by the

pre-emphasizer, cosine windower, and FFT. B is a 257×
40 matrix which computes the Mel filter, and C is a 40×
13 matrix which computes the DCT.

Sphinx is configured with a dictionary file, which lists

all valid words and maps each word to its phonemes,

5While it may seem strange to take the DCT of the frequency-

domain data, this second FFT is able to extract higher-level features

about which frequencies are common, and is more tolerant to a change

in pitch.

T-1 T-3T-2U-1 U-3U-2T-1 T-3T-2

Figure 8: The HMM used by Sphinx encoding the word “two”.

Each phoneme is split into three HMM states (which may re-

peat). These HMM states must occur in sequence to complete a

phoneme. The innermost boxes are the phoneme HMM states;

the two dashed boxes represent the phoneme, and the outer

dashed box the word “two”.

and a grammar file, which specifies a BNF-style formal

grammar of what constitutes a valid sequence of words.

In our experiments we omit the grammar file and assume

any word can follow any other with equal probability.

(This makes our job as an attacker more difficult.)

The HMM states can be thought of as phonemes, with

an edge between two phonemes that can occur consecu-

tively in some word. Sphinx’s model imposes additional

restrictions: its HMM is constructed so that all paths in

the HMM correspond to a valid sequence of words in the

dictionary. Because of this, any valid path through the

HMM corresponds to a valid sequence of words. For ex-

ample, since the phoneme “g” never follows itself, the

HMM only allows one “g” to follow another if they are

the start and end of words, respectively.

The above description is slightly incomplete. In real-

ity, each phoneme is split into three HMM states, which

must occur in a specific order, as shown in Figure 8. Each

state corresponds to the beginning, middle, or end of a

phoneme. A beginning-state has an edge to the middle-

state, and the middle-state has an edge to the end-state.

The end-phoneme HMM state connects to beginning-

phoneme HMM states of other phonemes. Each state

also has a self-loop that allows the state to be repeated.

Given a sequence of 39-vectors, Sphinx uses the

Viterbi algorithm to try to find the 100 most likely paths

through the HMM model (or an approximation thereto).

B Detailed Machine Comprehension of

Black-box Attack

The detailed results of machine comprehension of black-

box attacks are presented in Figure 9.

We note that Figure 9 contains an oddity: in a few

instances, the transcription success rate decreases as the

SNR increases. We suspect that this is due to our use

of median SNR, since the background samples contain

non-uniform noise and transient spikes in ambient noise

levels may adversely affect recognition. Overall, how-

ever, we observe a clear (and expected) trend in which

transcription accuracy improves as SNR increases.

15

528 25th USENIX Security Symposium USENIX Association

Figure 9: Machine understanding of normal and obfuscated variants of “OK Google”, “Turn on Airplane Mode”, and “Call 911”

voice commands (column-wise) under different background noises (row-wise). Each graph shows the measured average success

rate (the fraction of correct transcripts) on the y-axis as a function of the signal-to-noise ratio.

C Analysis of Transcriptions using

Phoneme-Based Edit Distance Met-

rics

C.1 Black-box attack

To verify the results of the white-box survey and to bet-

ter understand the results of Amazon Mechanical Turk

Study, we first performed a simple binary classification

of transcription responses provided by Turk workers.

We define phoneme edit distance δ as the Levenshtein

edit distance between phonemes of two transcriptions.

We define φ as δ/L, where L is the phoneme length of

normal command sentence. The use of φ reflects how

close the transcriptions might sound to a human listener.

φ < 0.5 indicates that the human listener successfully

comprehended at least 50% of the underlying voice com-

mand. We consider this as successful comprehension by

human, implying attack failure; otherwise, we consider

it a success for the attacker. Table 6 shows the results of

our binary classification. The difference in success rates

of normal and obfuscated commands is similar to that of

human listeners in Table 2, validating the survey results.

We used relative phoneme edit distance to show the

gap between transcriptions of normal and obfuscated

commands submitted by turk workers. The relative

phoneme edit distance is calculated as δ/(δ + L), L

is again the phoneme length of normal command sen-

tence. The relative phoneme edit distance has a range

of [0,1), where 0 indicates exact match and larger rel-

ative phoneme edit distances mean the evaluator’s tran-

scription further deviates from the ground truth. By this

definition, a value of 0.5 is achievable by transcribing si-

lence. Values above 0.5 indicate no relationship between

the transcription and correct audio.

Figure 10 shows the CDF of the relative phoneme edit

distance for the (left) “OK Google”, (center) “Turn on

Airplane Mode” and (right) “Call 911” voice commands.

These graphs show similar results as reported in Table 2:

Turk workers were adept at correctly transcribing normal

commands even in presence of background noise; over

90% of workers made perfect transcriptions with an edit

distance of 0. However, the workers were far less able to

correctly comprehend obfuscated commands: less than

30% were able to achieve a relative edit distance less than

0.2 for “OK Google” and “Turn on Airplane Mode”.

16

USENIX Association 25th USENIX Security Symposium 529

Table 6: Black-box attack. Percentages show the fraction of human listeners who were able to comprehend at least 50% of voice

commands.

OK Google Turn On Airplane Mode Call 911

Normal 97% (97/100) 89% (102/114) 92% (75/81)

Obfuscated 24% (23/94) 47% (52/111) 95% (62/65)

Figure 10: Cumulative distribution of relative phoneme edit distances of Amazon Mechanical Turk workers’ transcriptions for

(left) “OK Google”, (center) “Turn on Airplane Mode” and (right) “Call 911” voice commands, with casino and shopping mall

background noises. The attack is successful for the first two commands, but fails for the third.

Table 7: White-box attack. Percentages show the fraction of

human listeners who were able to comprehend at least 50% of

phonemes in a command.

Command

Normal 97% (297/310)

Obfuscated 10% (37/377)

C.2 White-box attack

To verify the results of our authors review of the Turk

study, we computed the edit distance of transcribed com-

mands with actual commands. Table 7 says a command

is a match if at least 50% of phonemes were transcribed

correctly, to eliminate potential author bias. This metric

is less strict both for normal commands and obfuscated

commands, but the drop in quality is nearly as strong.

D Canceling out the Beep

Even when constrained to simplistic and conservative

mathematical models, it is difficult to cancel out a beep

played by a mobile device.

D.1 Two ears difficulties

Setup: The victim has two ears located at points E

and F , and a device at point P. The attacker has complete

control over a speaker at point A.

Threat model: The attacker has complete knowledge

of the setup, including what the beep sounds like, when

the beep will begin playing, and the location of all four

points E,F,P and A. We assume for simplicity that sound

amplitude does not decrease with distance.

The attacker loses the game if the victim hears a sound

in either ear. Our question, then, is: can the attacker can-

cel out the sound of the beep in both ears simultaneously?

Since sound amplitude does not attenuate with distance,

the attacker can focus solely on phase matching: to can-

cel out a sound, the attacker has to play a signal that is

exactly π radians out of phase with the beep. This means

the attacker has to know the phase of the signal to a good

degree of accuracy.

In our model, canceling out sound at one ear (say E)

is easy for the attacker. The attacker knows the dis-

tance dPE , and so knows tPE , the time it will take for

the sound to propagate from P to E. Similarly, the at-

tacker knows tAE . This is enough to determine the delay

that he needs to introduce: he should start playing his

signal
(dPE−dAE) (mod λ)

c
(where λ is the wavelength) sec-

onds after the start of the beep (where c is the speed of

sound), and the signal he should play from his speaker is

the inverse of the beep (an “anti-beep”).

However, people have two ears, and so there will still

be some remnant of the beep at the other ear F : the beep

will arrive at that ear dPF
c

seconds after being played,

while the anti-beep will arrive dAF
c

seconds after the

anti-beep starts, i.e., dPE−dAE+dAF
c

seconds after the beep

starts. This means that the anti-beep will be delayed by
dPE−dAE+dAF−dPF

c
seconds compared to the beep.

Therefore, the attacker must be sure that they are

placed exactly correctly so that the cancellation occurs

at just the right time for both ears. This is the set of

points where (dPE − dAE + dAF − dPF) = 0. That is, the

attacker can be standing anywhere along half of a hyper-

bola around the user.

17

530 25th USENIX Security Symposium USENIX Association

50 60 70 80 90 100

6
0

6
5

7
0

7
5

Distance from speaker 1 (cm)

V
o
lu

m
e
 R

e
c
o
rd

e
d
 (

d
B

)

Figure 11: Plot of the amplitude of attempted noise cancellation

of a tone at 440Hz

Finally, there is one more issue: any device which can

perform voice recognition must have a microphone, and

so can therefore listen actively for an attack. This then

requires not only that the attacker be able to produce ex-

actly the inverse signal at both ears, but also zero total

volume at the device’s location. This then fixes the at-

tacker’s location to only one potential point in space.

D.2 Real-world difficulties

In the above setup we assumed a highly idealized model

of the real world. For instance, we assumed that the at-

tacker knows all distances involved very precisely. This

is of course difficult to achieve in practice (especially if

the victim moves his head). Our calculations show that

canceling over 90% of the beep requires an error of at

most 3% in the phase. Putting this into perspective, for a

1Khz beep, to eliminate 90% of the noise, the adversary

needs to be accurate to within 3 inches.

In practice, the attack is even more difficult than de-

scribed above. The adversary may have to contend

with multiple observers, and has to consider background

noise, amplitude attenuation with distance, and so on.

Even so, to investigate the ability of an attacker to can-

cel sound in near-ideal conditions, we conducted an ex-

periment to show how sound amplitude varies as a func-

tion of the phase difference in ideal conditions. The setup

is as follows: two speakers are placed facing each other,

separated by a distance d. Both speakers play the same

pure tone at the same amplitude. We placed a micro-

phone in between, and measured the sound amplitude at

various points on the line segment joining the two. For

our experiment, d = 1.5m and the frequency of the tone

is f = 440Hz. The results are plotted in Figure 11.

As can be seen, the total cancellation does follow a

sine wave as would be expected, however there is noise

due to real-world difficulties. This only makes the at-

tacker’s job more difficult.

E Machine Interpretation of Obfuscated

Command

Table 8: For each of the three phrases generated in our white-

box attack, the phrase that Sphinx recognized. This data is used

to alter the lengths of each phoneme to reach words more ac-

curately. Some words such as “for” and “four” are pronounced

exactly the same: Sphinx has no language model and so makes

errors here.

Phrases as recognized by CMU Sphinx

Count Phrase

3 okay google browse evil dot com
1 okay google browse evil that come
1 okay google browse evil them com
1 okay google browse for evil dot com
6 okay google browse two evil dot com
2 okay google browse two evil that com
1 okay google browse who evil not com
1 okay google browse who evil that com
1 okay up browse evil dot com

5 okay google picture
2 okay google take a picture
1 okay google take of
1 okay google take of picture
6 okay google take picture

10 okay google text one three for five
1 okay google text one two three for five
2 okay google text one who three for five
3 okay google text want three for five

F Short-Term Features used by Classifier

Defense

Table 9: Short term features used for extracting mid-term fea-

tures.

Feature Description

Zero Crossing Rate The rate of sign-changes of the signal during the du-
ration of a particular frame.

Energy The sum of squares of the signal values, normalized
by the respective frame length.

Entropy of Energy The entropy of sub-frames’ normalized energies.

Spectral Centroid The center of gravity of the spectrum.

Spectral Spread The second central moment of the spectrum.

Spectral Entropy Entropy of the normalized spectral energies for a set
of sub-frames.

Spectral Flux The squared difference between the normalized
magnitudes of the spectra of the two successive
frames.

Spectral Rolloff The frequency below which 90% of the magnitude
distribution of the spectrum is concentrated.

MFCCs Mel Frequency Cepstral Coefficients

Chroma Vector A 12-element representation of the spectral energy

Chroma Deviation The standard deviation of the 12 chroma coeffi-
cients.

18

USENIX Association 25th USENIX Security Symposium 531

FlowFence: Practical Data Protection for
Emerging IoT Application Frameworks

Earlence Fernandes1, Justin Paupore1, Amir Rahmati1, Daniel Simionato2

Mauro Conti2, Atul Prakash1

1University of Michigan 2University of Padova

Abstract
Emerging IoT programming frameworks enable build-

ing apps that compute on sensitive data produced by
smart homes and wearables. However, these frameworks
only support permission-based access control on sensi-
tive data, which is ineffective at controlling how apps
use data once they gain access. To address this limita-
tion, we present FlowFence, a system that requires con-
sumers of sensitive data to declare their intended data
flow patterns, which it enforces with low overhead, while
blocking all other undeclared flows. FlowFence achieves
this by explicitly embedding data flows and the related
control flows within app structure. Developers use Flow-
Fence support to split their apps into two components:
(1) A set of Quarantined Modules that operate on sensi-
tive data in sandboxes, and (2) Code that does not operate
on sensitive data but orchestrates execution by chaining
Quarantined Modules together via taint-tracked opaque
handles—references to data that can only be derefer-
enced inside sandboxes. We studied three existing IoT
frameworks to derive key functionality goals for Flow-
Fence, and we then ported three existing IoT apps. Se-
curing these apps using FlowFence resulted in an aver-
age increase in size from 232 lines to 332 lines of source
code. Performance results on ported apps indicate that
FlowFence is practical: A face-recognition based door-
controller app incurred a 4.9% latency overhead to rec-
ognize a face and unlock a door.

1 Introduction

The Internet of Things (IoT) consists of several data-
producing devices (e.g., activity trackers, presence de-
tectors, door state sensors), and data-consuming apps
that optionally actuate physical devices. Much of this
data is privacy sensitive, such as heart rates and home
occupancy patterns. More importantly, we are see-
ing an emergence of application frameworks that en-
able third party developers to build apps that compute

on such data—Samsung SmartThings [55], Google Bril-
lo/Weave [30], Vera [5], and Apple HomeKit [8] are a
few examples.

Consider a smart home app that allows unlocking a
door via face recognition using a camera at the door.
Home owners may also want to check the state of the
door from a secure Internet site (thus, the app requires
Internet access). Additionally, the user also wants to en-
sure that the app does not leak camera data to the Inter-
net. Although this app is useful, it also has the potential
to steal camera data. Therefore, enabling apps to com-
pute on sensitive data the IoT generates, while preventing
data abuse, is an important problem that we address.

Current approaches to data security in emerging
IoT frameworks are modeled after existing smartphone
frameworks (§2). In particular, IoT frameworks use
permission-based access control for data sources and
sinks, but they do not control flows between the autho-
rized sources and sinks. This method has already proved
to be inadequate, as is evident from the growing re-
ports of data-stealing malware in the smartphone [73]
and browser extension spaces [36, 14]. The fundamen-
tal problem is that users have no choice but to take it on
faith that an app will not abuse its permissions. Instead,
we need a solution that forces apps to make their data use
patterns explicit, and then enforce the declared informa-
tion flows, while preventing all other flows.

Techniques like the recognizer OS abstraction [39]
could enable privacy-respecting apps by reducing the fi-
delity of data released to apps so that non-essential but
privacy violating data is removed. However, these tech-
niques fundamentally depend on the characteristics of a
particular class of applications (§7). For example, image
processing apps may not need HD camera streams and,
thus, removing detail from those streams to improve pri-
vacy is feasible. However, this may not be an option in
the general case for apps operating on other types of sen-
sitive data.

Dynamic or static taint analysis has been suggested

532 25th USENIX Security Symposium USENIX Association

as a method to address the limitations of the above
permission-based systems [60, 53]. Unfortunately, cur-
rent dynamic taint analysis techniques have difficulty in
dealing with implicit flows and concurrency [59], may
require specialized hardware [70, 54, 65], or tend to
have significant overhead [48]. Static taint analysis tech-
niques [9, 21, 66, 45] alleviate run-time performance
overhead issues, but they still have difficulty in han-
dling implicit flows. Furthermore, some flow-control
techniques require developers to use special-purpose lan-
guages, for example, JFlow [45].

We present FlowFence, a system that enables ro-
bust and efficient flow control between sources and
sinks in IoT applications. FlowFence addresses several
challenges including not requiring the use of special-
purpose languages, avoiding implicit flows, not requir-
ing instruction-level information flow control, support-
ing flow policy rules for IoT apps, as well as IoT-specific
challenges like supporting diverse app flows involving a
variety of device data sources.

A key idea behind FlowFence is its new information
flow model, that we refer to as Opacified Computation.
A data-publishing app (or sensitive source) tags its data
with a taint label. Developers write data-consuming apps
so that sensitive data is only processed within designated
functions that run in FlowFence-provided sandboxes for
which taints are automatically tracked. Therefore, an app
consists of a set of designated functions that compute on
sensitive data, and code that does not compute on sensi-
tive data. FlowFence only makes sensitive data available
to apps via functions that they submit for execution in
FlowFence-provided sandboxes.

When such a function completes execution, Flow-
Fence converts the function’s return data into an opaque
handle before returning control to the non-sensitive code
of the app. An opaque handle has a hidden reference to
raw sensitive data, is associated with a taint set that rep-
resents the taint labels corresponding to sensitive data ac-
cessed in generating the handle, and can only be derefer-
enced within a sandbox. Outside a sandbox, the opaque
handle does not reveal any information about the data
type, size, taint label, any uncaught exception in the func-
tion, or contents. When a opaque handle is passed as
a parameter into another function to be executed in a
sandbox, the opaque handle is dereferenced before ex-
ecuting the function, and its taint set added to that sand-
box. When a function wants to declassify data to a sink,
it makes use of FlowFence-provided Trusted APIs that
check <source, sink> flow policies before declassifying
data. The functions operating on sensitive data can com-
municate with other functions, and developers can chain
functions together to achieve useful computations but
only through well-defined FlowFence-controlled chan-
nels and only through the use of opaque handles.

Therefore, at a high level, FlowFence creates a data
flow graph at runtime, whose nodes are functions, and
whose edges are either raw data inputs or data flows
formed by passing opaque handles between functions.
Since FlowFence explicitly controls the channels to
share handles as well as declassification of handles (via
Trusted API), it is in a position to act as a secure and
powerful reference monitor on data flows. Since the han-
dles are opaque, untrusted code cannot predicate on the
handles outside a sandbox to create implicit flows. Apps
can predicate on handles within a sandbox, but the return
value of a function will always be tainted with the taint
labels of any data consumed, preventing apps from strip-
ping taint. An app can access multiple sources and sinks,
and it can support multiple flows among them, subject to
a stated flow policy.

Since sensitive data is accessible only to functions ex-
ecuting within sandboxes, developers must identify such
functions to FlowFence—they encapsulate functions op-
erating on sensitive data in Java classes and then reg-
ister those classes with FlowFence infrastructure. Fur-
thermore, FlowFence treats a function in a sandbox as a
blackbox, scrutinizing only communications into and out
of it, making taint-tracking efficient.

FlowFence builds on concepts from systems for en-
forcing flow policies at the component level, for exam-
ple, COWL for JavaScript [63] and Hails for web frame-
works [28, 52]. FlowFence is specifically tailored for
supporting IoT application development. Specifically,
motivated by our study of three existing IoT application
frameworks, FlowFence includes a flexible Key-Value
store and event mechanism that supports common IoT
app programming paradigms. It also supports the notion
of a discretionary flow policy for consumer apps that en-
ables apps to declare their flow policies in their manifest
(and thus the policy is visible prior to an app’s deploy-
ment). FlowFence ensures that the IoT app is restricted
to its stated flow policy.

Our work focuses on tailoring FlowFence to IoT do-
mains because they are still emerging, giving us the op-
portunity to build a flow control primitive directly into
application structure. Flow-based protections could, in
principle, be applied to other domains, but challenges
are often domain-specific. This work solves IoT-specific
challenges. We discuss the applicability of Opacified
Computation to other domains in §6.
Our Contributions:

• We conduct a study of three major existing IoT frame-
works that span the domains of smart homes, and
wearables (i.e. Samsung SmartThings, Google Fit,
and Android Sensor API) to analyze IoT-specific chal-
lenges and security design issues, and to inform the
functionality goals for an IoT application framework
(§2).

USENIX Association 25th USENIX Security Symposium 533

• Based on our findings we design the Opacified Com-
putation model, which enables robust and efficient
source to sink flow control (§3).

• We realize the Opacified Computation model through
the design of FlowFence for IoT platforms. Our pro-
totype runs on a Nexus 4 with Android that acts as
our “IoT Hub” (§4). FlowFence only requires pro-
cess isolation and IPC services from the underlying
OS, thus minimizing the requirements placed on the
hardware/OS.

• We perform a thorough evaluation of FlowFence
framework (§5). We find that each sandbox requires
2.7MB of memory on average. Average latency for
calls to functions across a sandbox boundary in our
tests was 92ms or less. To understand the impact
of these overheads on end-to-end performance, we
ported three existing IoT apps to FlowFence (§5.2).
Adapting these apps to use FlowFence resulted in av-
erage size of apps going up from 232 lines to 332
lines of source code. A single developer with no prior
knowledge of the FlowFence API took five days to-
tal to port all these apps. Macro-benchmarks on these
apps (latency and throughput) indicate that FlowFence
performance overhead is acceptable: we found a 4.9%
increase in latency for an app that performs face recog-
nition, and we found a negligible reduction in through-
put for a wearable heart beat calculator app. In terms
of security, we found that the flow policies correctly
enforce flow control over these three apps (§5.2).
Based on this evaluation, we find FlowFence to be a
practical, secure, and efficient framework for IoT ap-
plications.

2 IoT Framework Study:
Platforms and Threats

We performed an analysis of existing IoT application
programming frameworks, apps, and their security mod-
els to inform FlowFence design, distill key function-
ality requirements, and discover security design short-
comings. Our study involved analyzing three popular
programming frameworks covering three classes of IoT
apps: (1) Samsung SmartThings for the smart home, (2)
Google Fit for wearables, and (3) Android Sensor API
for quantified-self apps.1 We manually inspected API
documentation, and mapped it to design patterns. We
found that across the three frameworks, access to IoT
sensor data falls in one of the following design patterns:
(1) The polling pattern involving apps polling an IoT de-
vice’s current state; and (2) The callback pattern involv-

1Quantified Self refers to data acquisition and processing on aspects
of a person’s daily life, e.g., calories consumed.

ing apps registering callback functions that are invoked
whenever an IoT device’s state changes.2

We also found that it is desirable for publishers and
consumers to operate in a device-agnostic way, without
being explicitly connected to each other, e.g., a heart rate
monitor may go offline when a wearable is out of Blue-
tooth range; the consumer should not have to listen to
lifecycle events of the heart rate monitor—it only needs
the heart beat data whenever that is available. Ideally, the
consumer should only need to specify the type of data it
requires, and the IoT framework should provide this data,
while abstracting away the details. Furthermore, this is
desirable because there are many types of individual de-
vices that ultimately provide the same kind of data, e.g.,
there are many kinds of heart rate monitors eventually
providing heart rate data.

A practical IoT programming framework should sup-
port the two data sharing patterns described above in a
device-agnostic manner. In terms of security, we found
that all three frameworks offer permission-based access
control, but they do not provide any methods to control
data use once apps gain access to a resource. We provide
brief detail on each of these frameworks below.
1) Samsung SmartThings. SmartThings is a smart
home app programming framework [4] with support for
132 device types ranging from wall plugs to ZWave door
locks. SmartThings provides two types of APIs to ac-
cess device data: subscribe and poll. The subscribe
API is the callback design pattern. For instance, to ob-
tain a ZWave door lock’s current state, an app would
issue a call of the form subscribe(lockDevice,

"lock.state", callback). The subscribe API ab-
stracts away details of retrieving data from a device, and
directly presents the data to consumers, allowing them
to operate in a disconnected manner. The poll API
is the polling pattern. For example, an app can invoke
lockDevice.currentState to retrieve the state of the
lock at that point in time.

For permission control, the end-user is prompted to
authorize an app’s access request to a device [57], based
on a matching of SmartThings capabilities (a set of oper-
ations) that the app wishes to perform, and the set of ca-
pabilities that a device supports. Once an app is granted
access to a device, it can access all of its data and fea-
tures. SmartThings does not offer any data flow control
primitives.
2) Google Fit. Google Fit enables apps to interface with
wearables like smartwatches [32]. The core abstraction
in Google Fit is the Fitness Data Type, which provides a

2We also found an orthogonal virtual sensor design pattern: An in-
termediate app computing on sensor data and re-publishing the derived
data as a separate virtual sensor. For instance, an app reads in heart rate
at beats-per-minute, derives beats-per-hour, and re-publishes this data
as a separate sensor.

534 25th USENIX Security Symposium USENIX Association

device-agnostic abstraction for apps to access them in ei-
ther instantaneous or aggregated form. The API provides
raw access to both data types using only the callback pat-
tern; the polling pattern is not supported. For instance, to
obtain expended calories, an app registers a data point
listener for the com.google.calories.expended in-
stantaneous fitness type. A noteworthy aspect is that apps
using the Fit API can pre-process data and publish sec-
ondary data sources, essentially providing a virtual sen-
sor.

Google Fit API defines scopes that govern access
to fitness data. For instance, the FITNESS BODY READ

scope controls access to heart rate. Apps must request
read or write access to a particular scope, and the user
must approve or deny the request. Once an app gains ac-
cess to a scope, it can access all fitness related data in
that scope. Google Fit does not offer any data flow con-
trol primitives.
3) Android Sensor API. Android provides API access to
three categories of smartphone sensor data: Motion, En-
vironment, and Position. Apps must register a class im-
plementing the SensorEventListener interface to re-
ceive callbacks that provide realtime sensor state. There
is no API to poll sensor state, except for the Location
API. Android treats the Location API differently but, for
our purposes, we consider it to be within the general
umbrella of the sensor API. The Location API supports
both the polling and callback design patterns. The call-
back pattern supports consumers operating in a device-
agnostic manner since the consumer only specifies the
type of data it is interested in.

Surprisingly, the Android sensor API does not provide
any access control mechanism protecting sensor data.
Any app can register a callback and receive sensor data.
The Location API and heart rate sensor API, however,
do use Android permissions [22, 31]. Similar to the pre-
vious two frameworks, Android does not offer any data
flow control primitives.
IoT Architectures. We observe two categories of IoT
software architectures: (1) Hub, and (2) Cloud. The hub
model is centralized and executes the majority of soft-
ware on a hub that exists in proximity to various phys-
ical devices, which connect to it. The hub has signif-
icantly more computational power than individual IoT
devices, has access to a power supply, provides network
connectivity to physical devices, and executes IoT apps.
In contrast, a cloud architecture executes apps in remote
servers and may use a minimal hub that only serves
as a proxy for relaying commands to physical devices.
The hub model is less prone to reliability issues, such
as functionality degradation due to network connectivity
losses that plague cloud architectures [58]. Furthermore,
we observe a general trend toward adoption of the hub
model by industry in systems such as Android Auto [1]

and Wear [2], Samsung SmartThings [55]3, and Logitech
Harmony [3]. Our work targets the popular hub model,
making it widely applicable to these hub-based IoT sys-
tems.
Threat Model. IoT apps are exposed to a slew of sensi-
tive data from sensors, devices connected to the hub, and
other hub-based apps. This opens up the possibility of
sensitive data leaks leading to privacy invasion. For in-
stance, Denning et al. outlined emergent threats to smart
homes, including misuse of sensitive data for extortion
and for blackmail [17]. Fernandes et al. recently demon-
strated that such threats exist in real apps on an existing
IoT platform [26] where they were able to steal and mis-
use door lock pincodes.

We assume that the adversary controls IoT apps run-
ning on a hub whose platform software is trusted. The
adversary can program the apps to attempt to leak sen-
sitive data. Our security goal is to force apps to declare
their intended data use patterns, and then enforce those
flows, while preventing all other flows. This enables the
design of more privacy-respecting apps. For instance, if
an app on FlowFence declares it will sink camera data
to a door lock, then the system will ensure that the app
cannot leak that data to the Internet. We assume that side
channels and covert channels are outside the scope of this
work. We discuss implications of side channels, and pos-
sible defense strategies in §6.

3 Opacified Computation Model

Consider the example smart home app from §1, where it
unlocks the front door based on people’s faces. It uses
the bitmap to extract features, checks the current state of
the door, unlocks the door, and sends a notification to the
home owner using the Internet. This app uses sensitive
camera data, and accesses the Internet for the notification
(in addition to ads and crash reporting). An end user
wishes to reap the benefits of such a scenario but also
wants to ensure that the door control app does not leak
camera data to the Internet.

FlowFence supports such scenarios through the use
of Opacified Computation, which consists of two main
components: (1) Quarantined Modules (“functions”),
and (2) opaque handles. A Quarantined Module (QM) is
a developer-written code module that computes on sen-
sitive data (which is assigned a taint label at the data
source), and runs in a system-provided sandbox. A de-
veloper is free to write many such Quarantined Modules.
Therefore, each app on FlowFence is split into two parts:
(1) some non-sensitive code that does not compute on
sensitive data, and (2) a set of QMs that compute on sen-
sitive data. Developers can chain multiple QMs together

3Recent v2 hubs have local processing.

USENIX Association 25th USENIX Security Symposium 535

to achieve useful work, with the unit of transfer between
QMs being opaque handles—immutable, labeled opaque
references to data that can only be dereferenced by QMs
when running inside a sandbox. QMs and opaque han-
dles are associated with a taint set, i.e., a set of taint la-
bels that indicates the provenance of data and helps track
information flows (we explain label design later in this
section).

An opaque handle does not reveal any information
about the data value, data type, data size, taint set,
or exceptions that may have occurred to non-sensitive
code. Although such opaqueness can make debugging
potentially difficult, our implementation does support a
development-time debugging flag that lifts these opaque-
ness restrictions (§4).

Listings 1 and 2 shows pseudo-code of example smart
home apps. The CamPub app defines QM bmp that pub-
lishes the bitmap data. FlowFence ensures that whenever
a QM returns to the caller, its results are converted to an
opaque handle.

Line 10 of Listing 1 shows the publisher app calling
the QM (a blocking call), supplying the function name
and a taint label. FlowFence allocates a clean sandbox,
and runs the QM. The result of QM bmp running is the
opaque handle hCam, which refers to the return data, and
is associated with the taint label Taint CAMERA. hCam is
immutable—it will always refer to the data that was used
while creating it (immutability helps us reduce overtaint-
ing; we discuss it later in this section). Line 11 shows
CamPub sending the resultant handle to a consumer.

We also have a second publisher of data QM status

that publishes the door state (Line 16 of Listing 1), along
with a door identifier, and provides an IPC function for
consumers to call (Line 20).

The DoorCon app defines QM recog, which expects a
bitmap, and door state (Lines 6-9 of Listing 2). It com-
putes feature vectors from the bitmap, checks if the face
is authorized, checks the door state, and unlocks the door.
Lines 18, 19 of Listing 2 show this consumer app receiv-
ing opaque handles from the publishers. As discussed,
non-sensitive code only sees opaque handles. In this
case, hCam refers to camera-tainted data, and hStatus

refers to door-state-tainted data, but the consumer app
cannot read the data unless it passes the data to a QM.
Moreover, for this same reason, non-sensitive code can-
not test the value of a handle to create an implicit flow.

Line 20 calls a QM, passing the handles as parameters.
FlowFence automatically and transparently dereferences
opaque handle arguments into raw data before invoking a
QM. Transparent dereferencing of opaque handles offers
developers the ability to write QMs normally with stan-
dard types even though some parameters may be passed
as opaque handles. During this process, FlowFence allo-
cates a clean sandbox for the QM to run, and propagates

the taint labels of the opaque handles to that sandbox.
Finally, QM recog receives the raw data and opens the
door.

The consumer app uses QM report to send out the
state of the door to a remote monitoring website. It also
attempts to use QM mal to leak the bitmap data. Flow-
Fence prevents such a leak by enforcing flow policies,
which we discuss next.
Flow Policy. A publisher app, which is associated with
a sensor (or sensors), can add taint labels to its data that
are tuples of the form (appID,name), where appID is
the identifier of the publisher app and name is the name
of the taint label. This name denotes a standardized type
that publishers and consumers can agree upon, for ex-
ample, Taint CAMERA. We require labels to be statically
declared in the app’s manifest. appID is unique to an
app and is used to avoid name collisions across apps.4

Additionally, in its manifest, the publisher can specify
a set of flow rules for each of its taint labels, with the
set of flow rules constituting the publisher policy. The
publisher policy defines the permissible flows that gov-
ern the publisher’s data. A flow rule is of the form
TaintLabel → Sink, where a sink can be a user in-
terface, actuators, Internet, etc. CamPub’s flow policy is
described on Line 3 of Listing 1. The policy states that
consumer apps can sink camera data to the sink labeled
UI (which is a standard label corresponding to a user’s
display at the hub).

Since other possible sinks for camera data are not nec-
essarily known to the publisher, new flow policies are
added as follows. A consumer app must request approval
for flow policies if it wants to access sensitive data. Con-
sumer flow policies can be more restrictive than pub-
lisher policies, supporting the least privilege principle.
They can also request new flows, in which case the hub
user must approve them. DoorCon’s policy requests are
described in Lines 2-4 of Listing 2. It requests the flows:
Taint CAMERA → Door.Open, Taint DOORSTATE →
Door.Open, Taint DOORSTATE → Internet. At app
install time, a consumer app will be bound to a publisher
that provides data sources with labels Taint CAMERA,
Taint DOORSTATE.

To compute the final policy for a given consumer app
FlowFence performs two steps. First, it computes the in-
tersection between the publisher policy and the consumer
policy flow rules. In our example, the intersection is the
null set. If it were not null, FlowFence would authorize
the intersecting flows for the consumer app in question.
Second, it computes the set difference between the con-
sumer policy and publisher policy. This difference re-
flects the flows the consumer has requested but the pub-
lisher policy has not covered. At this point, FlowFence

4An app cannot forge its ID since our implementation uses Android
package name as the ID. See §4 for details.

536 25th USENIX Security Symposium USENIX Association

delegates approval to the IoT hub owner to make the fi-
nal decision about whether to approve the flows or not. If
the hub owner decides to approve a flow that a publisher
policy does not cover, that exception is added for subse-
quent runs of that consumer app. Such a approval does
not apply to other apps that may also use the data.

If a QM were to attempt to declassify the camera data
to the Internet (e.g., QM mal) directly without requesting
a flow policy, the attempt would be denied as none of
the flow policies allow it. An exception is thrown to
the calling QM whenever it tries to perform an unautho-
rized declassification. Similar to exception processing
in languages like Java, if a QM does not catch an ex-
ception, any output handle of this QM is moved into the
exception state. Non-QM code cannot view this excep-
tion state. If an app uses such a handle in a subsequent
QM as a parameter, then that QM will silently fail, with
all of its output handles also in the exception state. App
developers can avoid this by ensuring that a QM handles
all possible exceptions before returning and, if necessary,
encodes any errors into the return object, which can then
be examined in a subsequent QM that receives the re-
turned handle.

FlowFence is in a position to make security decisions
because the publisher assigns taint labels while creating
the handles, and when DoorCon reads in the handles, it
results in the taint labels propagating to the sandbox run-
ning QM mal. FlowFence simply reads the taint labels of
the sandbox at the time of declassification.

All declassification of sensitive data can only occur
through well-known trusted APIs that FlowFence de-
fines. Although our prototype provides a fixed set of
trusted APIs that execute in a separate trusted process,
we envision a plug-in architecture that supports commu-
nity built and vetted APIs (§4). FlowFence sets up sand-
box isolation such that attempts at declassifying data us-
ing non-trusted APIs, such as arbitrary OS system calls,
are denied.

Table 1 summarizes the taint logic. When a clean
sandbox loads a QM, it has no taint. A taint label, be-
longing to the app, may be added to a handle at creation,
or to a sandbox at any time, allowing data providers to la-
bel themselves as needed. A call from QM executing in
S0 to another QM that is launched in sandbox S1 results
in the taint labels of S0 being copied to S1. When a called
QM returns, FlowFence copies the taint of the sandbox
into the automatically created opaque handle. At that
point, the QM no longer exists. The caller is not tainted
by the returned handle, unless the caller (which must be
a QM) dereferences the handle. These taint arithmetic
rules, combined with QMs, opaque handles, and sand-
boxes conceptually correspond to a directed data flow
graph from sources to sinks, as we illustrate with the ex-
ample below.

1 a p p l i c a t i o n CamPub

2 taint_label Taint_CAMERA;

3 a l l o w { Taint_CAMERA -> UI }

4

5 Bitmap QM_bmp ():

6 Bitmap face = camDevice.snapshot ();

7 r e t u r n face;

8

9 i f (motion at FrontDoor)

10 hCam = QM. c a l l (QM_bmp , Taint_CAMERA);

11 send hCam t o DoorCon;

12 ---

13 a p p l i c a t i o n DoorStatePub

14 taint_label Taint_DOORSTATE;

15

16 Status QM_status ():

17 r e t u r n (door [0]. state (), 0); //state ,idx

18

19 /* IPC */ Handle getDoorState ():

20 r e t u r n QM. c a l l (QM_status ,
Taint_DOORSTATE);

Listing 1: Pseudocode for two publishers—camera data,
and door state. Quarantined Modules are shown in light
gray.

1 a p p l i c a t i o n DoorCon

2 r e q u e s t { Taint_CAMERA -> Door.Open ,

3 Taint_DOORSTATE -> Door.Open ,

4 Taint_DOORSTATE -> Internet }

5

6 v o i d QM_recog(faceBmp , status):

7 Features f = extractFeatures(faceBmp);

8 i f (status != unlocked AND isAuth(f))

9 TrustedAPI.door [0]. open();

10

11 v o i d QM_report(status):

12 TrustedAPI.network. send (status);

13

14 v o i d QM_mal(faceBmp):

15 /* this is denied */

16 TrustedAPI.network. send (faceBmp);

17

18 r e c e i v e hCam from CamPub;

19 Handle hStatus =

DoorStatePub.getDoorState ();

20 QM. c a l l (QM_recog , hCam , hStatus);

21 QM. c a l l (QM_mal , hCam);

22 QM. c a l l (QM_report , hStatus);

Listing 2: Consumer app pseudocode that reads camera
and door state data, and controls a door. Quarantined
Modules are shown in light gray.

FlowFence Data Flow Graph. We now discuss the taint
flow logic of FlowFence in more detail, and show how it
creates and tracks, at runtime, a directed data flow graph
that enables it to make security decisions on flows. Fig-
ure 1 shows two publishers of sensitive data that gener-
ate OHT1(d1)—an opaque handle that refers to camera
bitmap data d1, and OHT2(d2)—an opaque handle that
refers to door state data d2, using QMbmp and QMstatus

USENIX Association 25th USENIX Security Symposium 537

Operation Taint Action
Sandbox S loads a QM T [S] :=∅

QM inside S reads opaque handle d =
OH−1(h)

T [S] += T [h]

QM inside S returns h = OH(d) T [h] := T [S]

QM manually adds taints {t} to its sandbox T [S] += {t}

QM0 inside S0 calls QM1 inside S1 T [S1] = T [S0]

Table 1: Taint Arithmetic in FlowFence. T [S] denotes
taint labels of a sandbox running a QM. T [h] denotes
taint label of a handle h.

Camera Door
Status

T1

QMbmp

Sandbox T2

QMstatus

Sandbox

DoorStatePubCamPub

DoorCon

QMmal

Sandbox
QMrecog

Sandbox

Trusted API

DoorLock

OHT1(d1) OHT2(d2)

(d1,T1) (d2,T2)

OHT1(d1) OHT2(d2)

OHT1(d1)

G(d1) , {T1} F(d1,d2) , {T1 U T2}

F(d1,d2)Policy Violation

OHT1(d1),OHT2(d2)

T1 U T2T1

Internet

QMreport

Sandbox

H(d2) , {T2}

T2

OHT2(d2)

Internet

H(d2)

Figure 1: Data flow graph for our face recognition ex-
ample. FlowFence tracks taint labels as they propagate
from sources, to handles, to QMs, to sinks. The dot-
ted lines represent a declassification attempt. The trusted
API uses labels on the sandboxes to match a flow policy.

respectively. T1 and T2 are taint labels for data d1 and d2.
The user wants to ensure that camera data does not flow
to the internet.

The consumer app (DoorCon) consists of non-
sensitive code that reads the above opaque handles from
the publishers, and invokes three QMs. QMrecog operates
on both OHT1(d1) and OHT2(d2). When the non-sensitive
code requests execution of QMrecog, FlowFence will al-
locate a clean sandbox, dereference the handles into raw
values, and invoke the module. The sandbox inherits
the taint label T1 ∪ T2. Later on, when QMrecog tries to
declassify its results by invoking the trusted API, Flow-
Fence will read the taint labels (dotted line in Figure 1)—
T1 ∪T2. That is, FlowFence taint arithmetic defines that
the taint label of the result is the combination of input

data taint labels. In our example, declassifying camera
and door state tainted data to the door lock is permitted,
since the user authorized the flow earlier.

If the consumer app tries to declassify sensitive data d1
by invoking a trusted API using QMmal , the API reads the
taint labels on the handle being declassified, determines
that there is no policy that allows d1 → Internet, and
denies the declassification.

Immutable opaque handles are key to realizing this di-
rected data flow graph. Consider Figure 1. If handles
were mutable, and if QMmal read in some data with taint
label T3, then we would have to assume that OHT1(d1) is
tainted with T3, leading to overtainting. Later on, when
QMrecog executes, its sandbox would inherit the taint la-
bel T3 due to the overtainting. If there was a policy that
prevented T3 from flowing to the door lock, FlowFence
would prevent QMrecog from executing the declassifica-
tion. FlowFence avoids these overtainting issues by hav-
ing immutable handles, which enable better precision
when reasoning about flows. There are other sources
of overtainting related to how a programmer structures
the computation and IoT-specific mechanisms that Flow-
Fence introduces. We discuss their implications and how
to manage them in §4 and §6.

As discussed above, taint flows transitively from data
sources, to opaque handles, to sandboxes, back to opaque
handles, and eventually to sinks via the trusted API,
where FlowFence can enforce security policies. This
design allows taint flow to be observed in a black-box
manner, simply by tracking the inputs and outputs. This
allows QMs to internally use any language, without the
overhead of native taint tracking, only by using sandbox
processes to enforce isolation as described in §4.

FlowFence Security Guarantees. FlowFence uses its
taint arithmetic rules to maintain the invariant that the
taint set of a QM executing in a sandbox at any time rep-
resents the union of the taints of sensitive data used by
the QM through opaque handles or through calls from
another QM. Furthermore, FlowFence avoids propagat-
ing taint on QM returns with the help of opaque han-
dles. Since these handles are opaque outside a QM, non-
sensitive code must pass them into QMs to dereference
them, allowing FlowFence to track taints. If the non-
sensitive code of a consumer app transmits an opaque
handle to another app via an OS-provided IPC mecha-
nism, FlowFence still tracks that flow since the receiving
app also has to use a QM to make use of the handle.

To prevent flow policy violations, a sandbox must be
designed such that writes from a QM to a sink go through
a trusted API that enforces specified flow policies. We
discuss how we achieve this sandbox design in §4.

538 25th USENIX Security Symposium USENIX Association

4 FlowFence Architecture

FlowFence supports executing untrusted IoT apps using
two major components (Figure 2): (1) A series of sand-
boxes that execute untrusted, app-provided QMs in an
isolated environment that prevents unwanted communi-
cation, and (2) A Trusted Service that maintains handles
and the data they represent; converting data to opaque
handles and dereferencing opaque handles back; mediat-
ing data flow between sources, QMs, and sinks, includ-
ing taint propagation and policy enforcement; and cre-
ating, destroying, scheduling, and managing lifetime of
sandboxes.

We discuss the design of these components in the con-
text of an IoT hub with Android OS running on top. We
selected Android because of the availability of source
code. Google’s recently announced IoT-specific OS—
Brillo [29], is also an Android variant.5 Furthermore,
with the introduction of Google Weave [30], we expect
to see Android apps adding IoT capabilities in the future.
Untrusted IoT Apps & QMs. Developers write apps for
FlowFence in Java and can optionally load native code
into QMs. As shown in Figure 2, each app consists of
code that does not use sensitive data inputs, and a set of
QMs that use sensitive data inputs. Although abstractly,
QMs are functions, we designed them as methods oper-
ating on serializable objects. Each method takes some
number of parameters, each of which can either be (1)
raw, serialized data, or (2) opaque handles returned from
previous method calls on this or another QM. A devel-
oper can write a method to return raw data, but returning
raw data would allow leakage. Thus, FlowFence con-
verts that raw data to an opaque handle prior to returning
to the untrusted app.6

Trusted Service & APIs. This service manages all sen-
sitive data flowing to and from QMs that are executing
in sandboxes. It schedules QMs for execution inside
sandboxes, dereferencing any opaque handle parameters,
and assigning the appropriate taint labels to the sand-
boxes. The Trusted Service also ensures that a sand-
box is correctly tainted whenever a QM reads in sensi-
tive data (Tainter component of Figure 2), as per the taint
arithmetic rules in FlowFence (Table 1). Once it taints a
sandbox, the Trusted Service maintains the current taint
labels securely in its process memory.

FlowFence does not track or update taints for variables
inside a QM. Instead, it treats a QM as a blackbox for the

5Brillo OS is only a limited release at the time of writing. Therefore,
we selected the more mature codebase for design, since core services
are the same on Android and Brillo.

6A QM can theoretically leak sensitive data through side channels
(e.g., by varying the execution time of the method prior to returning).
We assume side channels to be out of scope of our system and thus we
do not address them in our current threat model. If such leaks were to
be a concern, we discuss potential defense strategies in §6.

Consumer
QM 1

Other codes

Resources
QM 2

QM 1

Sandbox 1

Ta
in

te
r

QM 2

Sandbox 2

Trusted API

Trusted Service

Opaque Handle Table

Publisher

Publisher
QMOther codes

Publisher QM

Sandbox 3

Ta
in

te
r

Tainted Data

Opaque Handle

Policy

… … …

TaintDataHandle

… ……

TaintValueKey

Key-Value Store

Ta
in

te
r

Figure 2: FlowFence Architecture. Developers split
apps into Quarantined Modules, that run in sandbox pro-
cesses. Data leaving a sandbox is converted to an opaque
handle tainted with the sandbox taint set.

purpose of taint analysis and it only needs to examine
sensitive inputs being accessed or handles provided to
a method as inputs. We expect QMs to be limited to the
subset of code that actually processes sensitive data, with
non-sensitive code running without change. Although
this does reduce performance overhead and avoids im-
plicit flow leaks by forcing apps to only use controlled
and well-defined data transfer mechanisms, it does re-
quire programmers to properly split their app into least-
privilege QMs, which if done incorrectly, could lead to
overtainting.

When a QM Q running inside a sandbox S returns,
the Trusted Service creates a new opaque handle h cor-
responding to the return data d, and then creates an entry
< h,< d,T [S]>> in its opaque handle Table (Figure 2),
and returns h to the caller.

The Trusted Service provides APIs for QMs allow-
ing them to access various sinks. Our current proto-
type has well-known APIs for access to network, ZWave
switches, ZWave locks, camera streams, camera pictures,
and location. As an example of bridging FlowFence with
such cyber-physical devices, we built an API for Sam-
sung SmartThings. This API makes remote calls to a
web services SmartThings app that proxies device com-
mands from FlowFence to devices like ZWave locks. The
Trusted API also serves as a policy enforcement point,
and makes decisions whether to allow or deny flows
based on the specific policy set for the consumer app.

We envision a plug-in architecture that enables
community-built and vetted Trusted APIs to integrate
with our framework. The plugin API should ideally be
in a separate address space. The Trusted Service will
send already declassified data to this plugin API via se-
cure IPC. This limits risk by separating the handle table
from external code.

USENIX Association 25th USENIX Security Symposium 539

Sandboxes. The Trusted Service uses operating sys-
tem support to create sandbox processes that FlowFence
uses to execute QMs. When a QM arrives for execution,
FlowFence reserves a sandbox for exclusive use by that
QM, until execution completes. Once a QM finishes ex-
ecuting, FlowFence sanitizes sandboxes to prevent data
leaks. It does this by destroying and recreating the pro-
cess.

For efficiency reasons, the Trusted Service maintains
a pool of clean spare sandboxes, and will sanitize idle
sandboxes in the background to keep that pool full. In ad-
dition, the Trusted Service can reassign sandboxes with-
out needing to sanitize them, if the starting taint (based
on the input parameters) of the new QM is a superset of
or equal to the ending taint of the previous occupant of
that sandbox. This is true in many common cases, in-
cluding passing the return value of one QM directly into
another QM. In practice, sandbox restarts only happen
on a small minority of calls.

FlowFence creates the sandboxes with the
isolatedProcess flag set, which causes Android
to activate a combination of restrictive user IDs, IPC
limitations, and strict SELinux policies. These re-
strictions have the net effect of preventing the isolated
process from communicating with the outside world,
except via an IPC interface connected to the Trusted
Service.

As shown in Figure 2, this IPC interface belongs to the
Trusted API discussed earlier. When the sandboxes com-
municate with the Trusted Service over an IPC interface,
the IPC request is matched to the sandbox it originated
from as well as to the QM that initiated the call. As dis-
cussed, the Trusted Service maintains information about
each sandbox, including its taint labels and running QM,
in a lookup table in its own memory, safely out of reach
of, possibly malicious, QMs.
Debugging. Code outside QMs cannot dereference
opaque handles to inspect corresponding data or excep-
tions, complicating debugging during development. To
alleviate this, FlowFence supports a development time
debugging option that allows code outside a QM to deref-
erence handles and inspect their data and any exception
traces. However, a deployment of FlowFence has this
debugging flag removed. Also, as discussed previously,
use of a opaque handle in exception state as a parameter
to a QM results in the QM returning a new opaque han-
dle that is also in the exception state. Providing a mecha-
nism for exception handling in the called QM without in-
creasing programmer burden is challenging and a work-
in-progress. Currently, we use the idiom of a QM han-
dling all exceptions it can and encoding any error as part
of the returned value. This allows any subsequent QM
that is called with the handle as a parameter to examine
the value and handle the error.

Key-Value Store. This is one of the primary data-
sharing mechanisms in FlowFence between publishers
of tainted sensitive data and consumer apps that use the
data. This design was inspired by our framework study
in §2, and it supports publishers and consumers operating
in a device-agnostic manner, with consumers only having
to know the type of data (taint label) they are interested
in processing. Each app receives its own KV store (Fig-
ure 2) into which it can update the value associated with
a key by storing a < key,sensitive value, taint label >
while executing a QM. For instance, a camera im-
age publisher may create a key such as CAM BITMAP,
with an image byte array as the value, and a taint
label Taint CAMERA to denote the type of published
data (declared in the app manifest). A key is public
information—non-sensitive code outside a QM must cre-
ate a key before it can write a corresponding value. This
ensures that a publisher cannot use creation of keys as
a signaling mechanism. An app on FlowFence can only
write to its own KV store. Taints propagate as usual when
a consumer app keys from the KV store. Finally, the pub-
lishing QM associated with a sensor usually would not
read other sensitive information sources, and thus would
not have any additional taint. In the case this QM has
read other sources of information, then the existing taint
is applied to any published data automatically.

If a QM reads a key’s value, the value’s taint label will
be added to that QM’s sandbox. All key accesses are
pass-by-value, and any subsequent change in a value’s
taint label does not affect the taint labels of QMs that
accessed that value in prior executions. Consider an ex-
ample value V with taint label T1. Assuming a QM Q1
accessed this value, it would inherit the taint. Later on,
if the publisher changes the taint label of V to T1 ∪ T2,
this would not affect the taint label of Q1, until it reads V
again.

The polling design pattern is easy to implement using
a Key-Value Store. A consumer app’s QM can periodi-
cally access the value of a given key until it finds a new
value or a non-null value. Publicly accessible keys sim-
plify making sensitive data available to third-party apps,
subject to flow policies.
Event Channels. This is the second data-sharing mecha-
nism in FlowFence; it supports the design pattern of reg-
istering callbacks for IoT device state changes (e.g., new
data being available). The channel mechanism supports
all primitive and serializable data types. An app creates
channels statically by declaring them in a manifest file
at development time (non-sensitive code outside QMs
could also create it), making it the owner for all declared
channels. Once an app is installed, its channels are avail-
able for use—there are no operations to explicitly open
or close channels. Other app’s QMs can then register
to such channels for updates. When a channel-owner’s

540 25th USENIX Security Symposium USENIX Association

QM puts data on the channel, FlowFence invokes all reg-
istered QMs with that data as a parameter. FlowFence
automatically assigns the current set of taint labels of the
channel-owner to any data it puts on the channel, so that
all QMs that receive the callback will be automatically
tainted correctly. If a QM is executed as a callback for
a channel update, it does not return any data to the non-
sensitive code of the app.

Although the publishers and consumers can share
opaque handles using OS-provided sharing mechanisms,
we designed the Key-Value store, and Event channels ex-
plicitly so that publishers and consumers can operate in
a device-agnostic manner by specifying the types of data
they are interested in, ignoring lower level details.

As described here, both inter-app communication
mechanisms, the KV store and event channels, can po-
tentially lead to poison-pill attacks [37] where a compro-
mised or malicious publisher adds arbitrary taint labels,
with the goal of overtainting consumers and preventing
them from writing to sinks. See the discussion of over-
tainting in §6 for a defense strategy.
FlowFence Policies and User Experience. In our proto-
type, users install the app binary package with associated
policies. FlowFence prompts users to approve consumer
flow policies that are not covered by publisher policies at
install time. This install-time prompting behavior is sim-
ilar to the existing Android model. FlowFence models its
flow request UI after the existing Android runtime per-
mission request screens, in an effort to remain close to
existing permission-granting paradigms and to leverage
existing user training with permission screens. However,
unlike Android, FlowFence users are requested to autho-
rize flows rather than permissions, ensuring their control
over how apps use data. If a user approves a set of flows,
FlowFence guarantees that only those flows can occur.

Past work has shown that users often do not compre-
hend or ignore prompts [25], however, existing research
does point out interesting directions for future work in
improving such systems. Felt et al. discuss techniques to
better design prompting mechanisms [23], and Roesner
et al. discuss contextual prompting [50, 51] as possible
improvements.

5 Evaluation

We evaluated FlowFence from multiple perspectives.
First, we ran a series of microbenchmarks to study call
latency, serialization overhead, and memory overhead
of FlowFence. We found that FlowFence adds mod-
est computational and memory costs. Running a sand-
box takes 2.7MB RAM on average, and running multiple
such sandboxes will fit easily within current hardware

for IoT hubs.7 We observed a 92ms QM call latency
with 4 spare sandboxes, which is comparable to the la-
tency of common network calls in IoT apps. FlowFence
supports a maximum bandwidth of 31.5MB/s for trans-
ferring data into sandboxes, which is large enough to ac-
commodate typical IoT apps. Second, we ported three
IoT apps to FlowFence to examine developer effort, se-
curity, and impact of FlowFence on macro-performance
factors. Our results show that developers can use Flow-
Fence with modest changes to their apps and with ac-
ceptable performance impact, making FlowFence practi-
cal for building secure IoT apps. Porting the three apps
required adding 99 lines of code on average per app. We
observed a 4.9% latency increase to perform face recog-
nition in a door controller app. More details follow.

5.1 Microbenchmarks
We performed our microbenchmarks on an LG Nexus 4
running FlowFence on Android 5.0. The Nexus 4 serves
as our “IoT hub” that runs QMs and enforces flow poli-
cies. In our experiments, we evaluated three factors that
can affect apps running on FlowFence.
Memory overhead. We evaluated memory overhead of
FlowFence using the MemoryInfo API. We ran Flow-
Fence with 0 − 15 empty sandboxes and recorded the
memory consumption. Our results show that the Flow-
Fence core requires 6.35MB of memory while each sand-
box requires 2.7MB of memory on average. To put this
in perspective, LG Nexus 4 has 2GB memory and load-
ing a blank page on the Chrome browser on it used 98MB
of memory, while loading FlowFence with 16 sandboxes
used 49.5MB. Therefore, we argue that the memory
overhead of FlowFence is within acceptable limits for the
platform.
QM Call Latency. We measured QM call latency for
non-tainted and tainted parameters (30 trials each with
100 QM call-reply sequences) to assess performance in
scenarios that allowed reuse of a sandbox without san-
itizing and those that required sanitizing. For tainted
calls, each QM takes a single boolean parameter that is
tainted. We also varied the number of clean spare sand-
boxes that are available for immediate QM scheduling
initially before each trial. Regardless of the number of
spare sandboxes, untainted calls (which did not taint the
sandboxes and thus could reuse them without sanitiz-
ing) showed a consistent latency of 2.1ms (SD=0.4ms).
The tainted calls were made so as to always require
a previously-tainted sandbox to be sanitized. Figure 3
shows average latency of tainted calls across 30 trials for
different number of spare sandboxes. As the number of
spare sandboxes increases from 0 to 4, the average call

7For example, Samsung SmartThings hub has 512MB RAM [56],
and Apple TV hub has 1GB RAM [7].

USENIX Association 25th USENIX Security Symposium 541

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14

A
v
er

ag
e

C
al

l
L

at
en

cy
 (

m
s)

Number of Spare Sandboxes

Figure 3: QM Call latency of FlowFence given vari-
ous number of spare sandboxes, for calls that require
previously-used sandboxes to be sanitized before a call.
Calls that can reuse sandboxes without sanitizing (un-
tainted calls in our tests) show a consistent latency of
2.1ms, which is not shown in this graph.

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

2
26

2
0

2
5

2
10

2
15

2
20

2
25

2
30

B
an

d
w

id
th

 (
B

y
te

/S
)

Data Size (Byte)

Figure 4: Serialization bandwidth for different data sizes.
Bandwidth caps off at 31.5MB/s.

latency decreases from 328ms to 92ms. Further increase
in the number of spare sandboxes does not improve la-
tency of QM calls. At 4 spares, the call latency is less
than 100ms, making it comparable to latencies seen in
controlling many IoT devices (e.g., Nest, SmartThings
locks) over a wide-area network. This makes QMs espe-
cially suitable to run existing IoT apps that already accept
latencies in this range.
Serialization Overhead. To understand FlowFence
overhead for non-trivial data types, we computed seri-
alization bandwidth for calls on QMs that cross sand-
box boundaries with varying parameter sizes. Figure 4
presents the results for data ranging from 4B to 16MB.
The bandwidth increases as data size increases and caps
off at 31.5MB/s. This is large enough to support typical
IoT apps—for example, the Nest camera uses a maxi-
mum bandwidth of 1.2Mbps under high activity [33]. A
single camera frame used by one of our ported apps (see
below), is 37kB, requiring transferring data at 820kB/s
to a QM.

5.2 Ported IoT Applications

We ported three existing IoT apps to FlowFence to mea-
sure its impact on security, developer effort, end-to-end
latency, and throughput on operations relevant to the
apps (Table 2). SmartLights is a common smart home
app (e.g., available in SmartThings) that computes a
predicate based on a location value from a beacon such
as a smartphone, or car [47]. If the location value inside
the home’s geofence, the app turns on lights (and adjusts
other devices like thermostats) around the home. When
the location value is outside the home’s geofence, the app
takes the reverse action.

FaceDoor performs face recognition and unlocks a
door, if a detected face is authorized [34]. The app uses
the camera to take an image of a person at the door,
and runs the Qualcomm face recognition SDK (chipset-
specific native code, available only as a binary).

HeartRateMonitor accesses a camera to compute heart
rate using photoplethysmography [67]. The app uses im-
age processing code on streamed camera frames.

FlowFence provides trusted API to access switches,
locks, and camera frames. These three existing apps
cover the popular IoT areas of smart homes and quan-
tified self. Furthermore, face recognition and camera-
frame-streaming apps are among the more computation-
ally expensive types of IoT apps, and stress test Flow-
Fence performance. We ran all our experiments on An-
droid 5.0 (Nexus 4).
Security. We discuss data security risks that each of the
three IoT apps pose when run on existing platforms, and
find that FlowFence eliminates those risks successfully
under leakage tests.
1) SmartLights: It has the potential to leak location infor-
mation to attackers via the Internet. The app has Internet
access for ads, and crash reporting. On FlowFence, the
developer separates code that computes on location in a
QM which isolates the flow: loc → switch, while al-
lowing other code to use the Internet freely.
2) FaceDoor: This app can leak camera data to the In-
ternet. We note that this app requires Internet access
for core functionality—it sends a notification to the user
whenever the door state changes. Therefore, under cur-
rent IoT frameworks it is very easy for this app to leak
camera data. FlowFence isolates the flow of camera
and door state data to door locks from the flow of door
state data to the Internet using two QMs, eliminating
any possibility of cross-flows between the camera and
the Internet. This app uses the flows: cam → lock,
doorstate→ lock, doorstate→ Internet.
3) HeartRateMonitor: The app can leak images of peo-
ple, plus heart rate information derived from the camera
stream. However, similar to previous apps, the developer
of this app too will use FlowFence support to isolate the

542 25th USENIX Security Symposium USENIX Association

Name Description Data Security Risk
without FlowFence

LoC
original

LoC
FlowFence Flow Request

SmartLights [47]

Reads a location beacon
and if the beacon is inside a
geofence around the home,
automatically turn on the
lights

App can leak user
location information

118 193 loc→ switch

FaceDoor [34]

Uses a camera to recognize
a face; If the face is
authorized, unlock a
doorlock

App can leak images of
people

322 456
cam→ lock,

doorstate→ lock,
doorstate→ net

HeartRateMonitor [67]
Uses a camera to measure
heart rate and display on UI

App can leak images of
people, and heart rate
information

257 346 cam→ ui

Table 2: Features of the three IoT apps ported to FlowFence. Implementing FlowFence adds 99 lines of code on
average to each app (less than 140 lines per app).

flow: cam→ ui into a QM. We note that in all apps, the
QMs can return opaque handles to the pieces of code not
dealing with sensitive information, where the handle can
be leaked, but this is of no value to the attacker since a
handle is not sensitive data.
Developer Effort. Porting apps to FlowFence requires
converting pieces of code operating on sensitive data
to QMs. On average, 99 lines of code were added to
each app (Table 2). We note that typical IoT apps today
are relatively small in size compared to, say, Android
apps. The average size across 499 apps for which we
have source code for SmartThings platform is 162 line of
source code. Most are event-driven, receiving data from
various publishers that they are authorized to at install
time and then publish to various sinks, including devices
or Internet. Much of the extra code deals with resolving
the appropriate QMs, and creating services to communi-
cate with FlowFence. It took a developer with no prior
knowledge of the FlowFence API to port the first two
apps in two 8-hour (approx.) days each, and the last app
in a single day. We envision that with appropriate devel-
oper tool support, many boiler plate tasks, including QM
resolution, can be automated. We note that the increase
in LoC is not co-related to the original LoC of the app.
Instead, there is an increase in LoC only for pieces of the
original app that deals with sensitive data. Furthermore,
it is our experience that refactoring an existing app re-
quires copying logic as-is, and building QMs around it.
For instance, we did not have source-code access to the
Qualcomm Face Recognition SDK, but we were able to
successfully port the app to FlowFence.
Porting FaceDoor. Here, we give an example of the
steps involved in porting an app. First, we removed
all code from the app related to camera access, because
FlowFence provides a camera API that allows QMs to

take pictures, and access the corresponding bitmaps.
Next, we split out face recognition operations into its
own Quarantined Module—QMrecog, that loads the na-
tive code face recognition SDK. We modified QMrecog
to use the Trusted API to access a camera image, an
operation that causes it to be tainted with camera data.
We modified the pieces of code related to manipulating
a ZWave lock to instead use FlowFence-provided API
for accessing door locks. We also created QMreport that
reads the door state source and then sends a notification
to the user using the Internet. These two QMs isolate
the flow from camera and door state to door lock, and
the flow from door state to the Internet, effectively pre-
venting any privacy violating flow of camera data to the
Internet, which would otherwise be possible with current
IoT frameworks.
End-to-End Latency. We quantified the impact of Flow-
Fence on latency for various operations in the apps that
are crucial to their functionality. We measured latency as
the time it takes for an app to perform one entire com-
putational cycle. In the case of SmartLights, one cycle
is the time when the beacon reports a location value,
till the time the app issues an operation to manipulate
a switch. We observed a latency of 160ms (SD=69.9)
for SmartLights in the baseline case, and a latency of
270ms (SD=96.1) in the FlowFence case. The reason
for increased latency is due to QM load time, and cross-
process transfers of the location predicate value.

FaceDoor has two operations where latency matters.
First, the enroll latency is the time it takes the app to ex-
tract features from a provided bitmap of a person’s face.
Second, recognition latency is the time it takes the app to
match a given bitmap of a person’s face to an item in the
app’s database of features. We used images of our team
members (6), measuring 612x816 pixels with an average

USENIX Association 25th USENIX Security Symposium 543

 0

 200

 400

 600

 800

 1000

0 1 2 3 4 5

Re
co

g.
 L

at
en

cy
 (m

s)

Recog. DB Size (num. of images)

Baseline FlowFence

Figure 5: FaceDoor Recognition Latency (ms) on vary-
ing DB sizes for Baseline and FlowFence. Using Flow-
Fence causes 5% increase in average latency.

HeartRateMonitor Metric (fps) Baseline
Avg
(SD)

FlowFence
Avg
(SD)

Throughput with no Image Processing 23.0
(0.7)

22.9
(0.7)

Throughput with Image Processing 22.9
(0.7)

22.7
(0.7)

Table 3: Throughput for HeartRateMonitor on Baseline
(Stock Android) and FlowFence. FlowFence imposes lit-
tle overhead on the app.

size of 290.3kB (SD=15.2).
We observed an enroll latency of 811ms (SD=37.1) in

the baseline case, and 937ms (SD=60.4) for FlowFence,
averaged over 50 trials. The increase in latency (15.5%)
is due to QM load time, and marshaling costs for trans-
ferring bitmaps over process boundaries. While the in-
crease in latency is well within bounds of network varia-
tions, and undetectable by user in both previous cases; it
is important to recognize that most of this increase is re-
sulted from setup time and the effect on actual processing
time is much more modest. Figure 5 shows latency for
face recognition, averaged over 10 trials, for Baseline,
and FlowFence. We varied the recognition database size
from 1 to 5 images. In each test, the last image enrolled
in the database is a specific person’s face that we desig-
nated as the test face. While invoking the recognition op-
eration, we used another image of the same test person’s
face. We observe a modest, and expected increase in la-
tency when FaceDoor runs on FlowFence. For instance,
it took 882ms to successfully recognize a face in a DB of
5 images and unlock the door on FlowFence, compared
to 841ms on baseline—a 4.9% increase. This latency is
smaller than 100ms and thus small enough to not cause
user-noticeable delays in unlocking a door once a face is
recognized [13].
Throughput. Table 3 summarizes the throughput in

frames per second (fps) for HeartRateMonitor. We ob-
served a throughput of 23.0 f ps on Stock Android for
an app that read frames at maximum rate from a camera
over a period of 120 seconds. We repeated the same ex-
periment with the image processing load of heart rate de-
tection, and observed no change in throughput. These re-
sults matched our expectations, given that the additional
serialization and call latency is too low to impact the
throughput of reading from the camera (camera was the
bottleneck). Thus, we observed no change in the app’s
abilities to derive heart rate.

6 Discussion and Limitations

Overtainting. Overtainting is difficult to avoid in taint
propagation systems. FlowFence limits overtainting in
two ways: (1) by not propagating taint labels from a QM
to its caller—an opaque handle returned as a result of a
call to a QM has an associated taint but does not cause
the caller to become tainted (unless the caller is a QM
that dereferences the handle), limiting the taints to QMs;
and (2) a QM (and associated sandbox) is ephemeral.
Since FlowFence sanitizes sandboxes if a new occupant’s
taints differ from the previous occupant, reusing sand-
boxes does not cause overtainting. Nevertheless, Flow-
Fence does not prevent overtainting due to poor applica-
tion decomposition into QMs.

A malicious publisher can potentially overtaint a con-
sumer by publishing overtainted data that the consumer
subscribes to, leading to poison-pill attacks [37]. A plau-
sible defense strategy is to allow a consumer to inspect
an item’s taint and not proceed with a read if the item is
overtainted [63]. However, this risks introducing a sig-
naling mechanism from a high producer to a low con-
sumer via changes to the item’s taint set. To address
the attack in the context of our system. We first observe
that most publishers will publish their sensor data un-
der a known, fixed taint. The key idea is to simply re-
quire publishers to define a taint bound T Mc, whenever
a channel c is created.8 If the publisher writes data with
a taint set T that is not a subset of T Mc to the channel c,
the write operation is denied and results in an exception;
else the write is allowed. The consumer, to avoid get-
ting overtainted, can inspect this channel’s taint bound
(but not the item’s taint) before deciding to read an item
from the channel. The taint bound cannot be modified,
once defined, avoiding the signaling problem. A simi-
lar defense mechanism was proposed in label-based IFC
systems [63, 62].
Applicability of Opacified Computation to other do-
mains. In this work we only discussed Opacified Com-

8Same idea applies when creating keys, with a taint bound defined
at that time for any future value associated with the key.

544 25th USENIX Security Symposium USENIX Association

putation in the context of IoT frameworks (e.g., Flow-
Fence Key-Value Store and Event Channels are inspired
by our IoT framework study). The basic Opacified Com-
putation model is broadly applicable. For example, there
is nothing fundamental preventing our hub from being
a mobile smartphone and the app running on it being a
mobile app. But, applying FlowFence to existing mo-
bile apps is challenging because of the need to refactor
apps and the libraries they use (many of the libraries ac-
cess sensitive data as well as sinks). As another design
point, there is no fundamental limitation that requires
IoT hub software to run in a user’s home; it could well
be cloud-hosted and provided as a trusted cloud-based
service for supporting computations on sensitive data.
Use of a cloud-based service for executing apps is not
unusual—SmartThings runs all apps on its cloud, using
a hub to primarily serve as a gateway for connecting de-
vices to the cloud-based apps.
Usability of Flow Prompts. FlowFence suffers from
the same limitation as all systems where users need to
make security decisions, in that we cannot prevent users
from approving flows that they should not. FlowFence
does offer additional information during prompts since it
presents flow requests with sources and sinks indicating
how the app intends to use data, possibly leading to more
informed decision-making. Flow prompts to request
user permissions could be avoided if publisher policies
always overrode consumer policies, with no user over-
ride allowed. But that just shifts the burden to specifying
publisher policies correctly, which still may require user
involvement. User education on flow policies and further
user studies are likely going to be required to examine
usability of flow prompts. In some IoT environments,
the right to configure policies or grant overrides could be
assigned to specially-trained administrators who manage
flow policies on behalf of users and install apps and de-
vices for them.
Measuring flows. Almuhimedi et al. performed a user
study that suggests that providing metrics on frequency
of use of a previously granted permission can nudge
users to patch their privacy policy [6]. For example, if
a user is told that an app read their location 5,398 times
over a day, they may be more inclined to prevent that app
from getting full access to the location. Adding support
for measuring flows (both permitted and denied) to assist
users in evaluating past flow permissions is part of future
work.
Side Channels. A limitation of our current design is that
attackers can encode sensitive data values in the time it
takes for QMs to return. Such side channel techniques
are primarily applicable to leaking low-bandwidth data.
Nevertheless, we are investigating techniques to restrict
this particular channel by making QMs return immedi-
ately, and have them execute asynchronously, thus elim-

inating the availability of fine-grain timing information
in the opaque handles (as in LIO [61]). This would in-
volve creating opaque handle dependency graphs that de-
termine how to schedule QMs for later execution. Fur-
thermore, timing channel leakages can be bounded using
predictive techniques [72].

7 Related Work

IoT Security. Current research focuses around analyz-
ing the security of devices [35, 27], protocols [44, 11],
or platforms [26, 12]. For example, Fernandes et al.
showed how malicious apps can steal pincodes [26]. Cur-
rent IoT frameworks only offer access control but not
data-flow control primitives (§2). In contrast, our work
introduces, to the best of our knowledge, the first security
model targeted at controlling data flows in IoT apps.
Permission Models. We observe that IoT framework
permissions are modeled after smartphone permissions.
There has been a large research effort at analyzing, and
improving access control in smartphone frameworks [20,
49, 22, 24, 51, 50, 10, 16, 43, 68]. For instance, Enck et
al. introduced the idea that dangerous permission combi-
nations are indicative of possibly malicious activity [20].
Roesner et al. introduced User-Driven Access control
where apps prompt for permissions only when they need
it [51, 50]. However, permissions are fundamentally only
gate-keepers. The PlaceRaider sensory malware abuses
granted permissions and uses smartphone sensors (e.g.,
camera) to reconstruct the 3D environment of the user for
reconnaissance [64]. This malware exploits the inability
of permission systems to control data usage once access
in granted. The IoT fundamentally has a lot more sensi-
tive data than a single smartphone camera, motivating the
need for a security model that is capable of strictly con-
trolling data use once apps obtain access. PiBox does
offer privacy guarantees using differential-privacy algo-
rithms after apps gain permissions, but it is primarily
applicable to apps that gather aggregate statistics [43].
In contrast, FlowFence controls data flows between arbi-
trary types of publishers and consumers.
Label-based Information Flow Control. FlowFence
builds on substantial prior work on information flow con-
trol that use labeling architectures [52, 42, 18, 71, 63,
28, 62, 41, 15, 38, 46]. For example, Flume [42] en-
forces flow control at the level of processes while re-
taining existing OS abstractions, Hails [28] presents a
web framework that uses MAC to confine untrusted web
apps, and COWL [63] introduces labeled compartments
for JavaScript code in web apps. Although FlowFence
is closely related to such systems, it also makes design
choices tailored to meet the needs specific to the IoT do-
main. In terms of similarities, FlowFence shares the de-
sign principles of making information flow explicit, con-

USENIX Association 25th USENIX Security Symposium 545

trolling information flow at a higher granularity than the
instruction-level, and supporting declassification. How-
ever, these systems only support producer (source) de-
fined policies whereas FlowFence supports policies de-
fined by both producing and consuming apps. This fea-
ture allows for more versatility in environments such as
IoT, where a variety of consuming apps could request for
a diverse set of flows. Our evaluation shows hows such a
mix of flow policies supports real IoT apps (§5.2).
Computation on Opacified Data. Jana et al. built the
recognizer OS abstraction and Darkly [39, 40]—systems
that enable apps to compute on perceptual data while
protecting the user’s privacy. These systems also use
opaque handles, but they only support trusted functions
operating on the raw data that handles refer to. In con-
trast, FlowFence supports untrusted third-party functions
executing over raw data while providing flow control
guarantees. Furthermore, these systems leverage char-
acteristics of the data they are trying to protect to achieve
security guarantees. For example, Darkly depends on
camera streams being amenable to privacy transforms,
allowing it to substitute low-fidelity data for high-fidelity
data, and it depends on apps being able to tolerate the
differences. However, in the general case, neither IoT
data nor their apps may be amenable to such transforms.
FlowFence is explicitly designed to support computation
over sensitive IoT data in the general case.
Taint Tracking. Taint tracking systems [69, 19] are
popular techniques for enforcing flow control that mon-
itor data flows through programs [60]. Beyond perfor-
mance issues [48], such techniques suffer from an in-
ability to effectively handle implicit flows, and concur-
rency [59]. Although there are techniques to reduce com-
putational burden [54, 65], they often require specialized
hardware, not necessarily available in IoT environments.
These techniques are also difficult to apply to situations
where taint labels are not known a priori (e.g., man-
age tainted data that is generated by apps, rather than
known sources). Compared to these techniques, Flow-
Fence adds little performance overhead. Furthermore,
FlowFence does not require specialized hardware, and
does not suffer from implicit flow attacks.
Static Analysis. Another class of systems such as Flow-
Droid [9], and Amandroid [66] use static taint tracking
to enforce flow control. While these techniques do not
suffer from performance issues associated with dynamic
systems, they still suffer from same shortcomings asso-
ciated with concurrency and implicit flows [9]. Besides
static analysis techniques, there are also language-based
techniques, such as JFlow [45], that require the devel-
oper to learn and use a single security-typed language.
In contrast, FlowFence supports building apps using un-
modified existing languages and development tools, en-
abling developers to quickly port their apps.

8 Conclusions

Emerging IoT programming frameworks only support
permission based access control on sensitive data, mak-
ing it possible for malicious apps to abuse permissions
and leak data. In this work, we introduce the Opaci-
fied Computation model, and its concrete instantiation,
FlowFence, which requires consumers of sensitive data
to explicitly declare intended data flows. It enforces the
declared flows and prevents all other flows, including
implicit flows, efficiently. To achieve this, FlowFence
requires developers to split their apps into: (1) A set
of communicating Quarantined Modules with the unit
of communication being opaque handles—taint tracked,
opaque references to data that can only be dereferenced
inside sandboxes; (2) Non-sensitive code that does not
compute on sensitive data, but it still orchestrates execu-
tion of Quarantined Modules that compute on sensitive
data. We ported three IoT apps to FlowFence, each re-
quiring less than 140 additional lines of code. Latency
and throughput measurements of crucial operations of
the ported apps indicate that FlowFence adds little over-
head. For instance, we observed a 4.9% latency increase
to recognize a face in a door controller app.

Acknowledgements

We thank the anonymous reviewers and our shepherd,
Deian Stefan, for their insightful feedback on our work.
We thank Kevin Borders, Kevin Eykholt, and Jaeyeon
Jung for providing feedback on earlier drafts. This re-
search is supported in part by NSF grant CNS-1318722
and by a generous gift from General Motors. Mauro
Conti is supported by a Marie Curie Fellowship funded
by the European Commission (agreement PCIG11-GA-
2012-321980). His work is also partially supported by
the EU TagItSmart! Project (agreement H2020-ICT30-
2015-688061), the EU-India REACH Project (agreement
ICI+/2014/342-896), the Italian MIUR-PRIN TENACE
Project (agreement 20103P34XC), and by the projects
“Tackling Mobile Malware with Innovative Machine
Learning Techniques,” “Physical-Layer Security for
Wireless Communication,” and “Content Centric Net-
working: Security and Privacy Issues” funded by the
University of Padua. Any opinions, findings, conclu-
sions, and recommendations expressed in this paper are
those of the authors and do not necessarily reflect the
views of the sponsors.

References
[1] Android auto. https://www.android.com/auto/. Accessed:

May 2016.
[2] Android wear. https://www.android.com/wear/. Accessed:

May 2016.

546 25th USENIX Security Symposium USENIX Association

[3] Logitech harmony hub. http://www.logitech.com/en-us/

product/harmony-hub. Accessed: May 2016.

[4] Samsung SmartThings Home Automation. http://www.

smartthings.com/. Accessed: Oct 2015.

[5] Vera Smart Home Controller. http://getvera.com/

controllers/vera3/. Accessed: Oct 2015.

[6] ALMUHIMEDI, H., SCHAUB, F., SADEH, N., ADJERID, I., AC-
QUISTI, A., GLUCK, J., CRANOR, L. F., AND AGARWAL, Y.
Your Location Has Been Shared 5,398 Times!: A Field Study on
Mobile App Privacy Nudging. In ACM Conference on Human
Factors in Computing Systems (CHI) (2015).

[7] APPLE. Apple TV Memory Specifications. https://

developer.apple.com/library/tvos/documentation/

General/Conceptual/AppleTV_PG/index.html#//

apple_ref/doc/uid/TP40015241-CH12-SW1. Accessed:
June 2016.

[8] APPLE. HomeKit. http://www.apple.com/ios/homekit/.
Accessed: Oct 2015.

[9] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL,
A., KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL,
P. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In ACM sym-
posium on Programming Language Design and Implementation
(PLDI) (2014).

[10] BACKES, M., BUGIEL, S., AND GERLING, S. Scippa: System-
centric ipc provenance on android. In Proceedings of the 30th
Annual Computer Security Applications Conference (2014).

[11] BEHRANG FOULADI AND SAHAND GHANOUN. Honey, I’m
Home!!, Hacking ZWave Home Automation Systems. Black Hat
USA, 2013.

[12] BUSOLD, C., HEUSER, S., RIOS, J., SADEGHI, A.-R., AND
ASOKAN, N. Smart and secure cross-device apps for the internet
of advanced things. In Financial Cryptography and Data Security
(FC) (2015).

[13] CARD, S. K., ROBERTSON, G. G., AND MACKINLAY, J. D.
The information visualizer, an information workspace. In
SIGCHI Conference on Human factors in computing systems
(1991).

[14] CARLINI, N., FELT, A. P., AND WAGNER, D. An evaluation of
the google chrome extension security architecture. In Presented
as part of the 21st USENIX Security Symposium (USENIX Secu-
rity 12) (2012).

[15] CHENG, W., PORTS, D. R., SCHULTZ, D., POPIC, V.,
BLANKSTEIN, A., COWLING, J., CURTIS, D., SHRIRA, L.,
AND LISKOV, B. Abstractions for usable information flow con-
trol in aeolus. In USENIX ATC (2012).

[16] CONTI, M., CRISPO, B., FERNANDES, E., AND ZHAU-
NIAROVICH, Y. Crêpe: A system for enforcing fine-grained
context-related policies on android. TIFS (2012).

[17] DENNING, T., KOHNO, T., AND LEVY, H. M. Computer secu-
rity and the modern home. Communications of ACM (2013).

[18] EFSTATHOPOULOS, P., KROHN, M., VANDEBOGART, S.,
FREY, C., ZIEGLER, D., KOHLER, E., MAZIÈRES, D.,
KAASHOEK, F., AND MORRIS, R. Labels and event processes
in the asbestos operating system. In SOSP (2005).

[19] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. N. Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. In OSDI (2010).

[20] ENCK, W., ONGTANG, M., AND MCDANIEL, P. On lightweight
mobile phone application certification. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS) (2009).

[21] ERNST, M. D., JUST, R., MILLSTEIN, S., DIETL, W., PERN-
STEINER, S., ROESNER, F., KOSCHER, K., BARROS, P. B.,
BHORASKAR, R., HAN, S., VINES, P., AND WU, E. X. Col-
laborative verification of information flow for a high-assurance
app store. In ACM SIGSAC Conference on Computer and Com-
munications Security (CCS) (2014).

[22] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAGNER,
D. Android permissions demystified. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS) (2011).

[23] FELT, A. P., EGELMAN, S., FINIFTER, M., AKHAWE, D., AND
WAGNER, D. How to ask for permission. In USENIX Conference
on Hot Topics in Security (HotSec) (2012).

[24] FELT, A. P., EGELMAN, S., AND WAGNER, D. I’ve got 99 prob-
lems, but vibration ain’t one: A survey of smartphone users’ con-
cerns. In Proceedings of the Second ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices (2012).

[25] FELT, A. P., HA, E., EGELMAN, S., HANEY, A., CHIN, E.,
AND WAGNER, D. Android permissions: User attention, com-
prehension, and behavior. In Proceedings of the Eighth Sympo-
sium on Usable Privacy and Security (2012), Symposium On Us-
able Privacy and Security (SOUPS).

[26] FERNANDES, E., JUNG, J., AND PRAKASH, A. Security analy-
sis of emerging smart home applications. In IEEE Symposium on
Security and Privacy (S&P) (2016).

[27] FISHER, D. Pair of Bugs Open Honeywell Home Controllers
Up to Easy Hacks. https://threatpost.com/pair-

of-bugs-open-honeywell-home-controllers-up-to-

easy-hacks/113965/. Accessed: Oct 2015.

[28] GIFFIN, D. B., LEVY, A., STEFAN, D., TEREI, D., MAZIÈRES,
D., MITCHELL, J. C., AND RUSSO, A. Hails: Protecting data
privacy in untrusted web applications. In OSDI (2012).

[29] GOOGLE. Project Brillo. https://developers.google.

com/brillo/. Accessed: Oct 2015.

[30] GOOGLE. Project Weave. https://developers.google.

com/weave/. Accessed: Oct 2015.

[31] GOOGLE ANDROID. Requesting Permissions at Run-
time. http://developer.android.com/training/

permissions/requesting.html. Accessed: Feb 2016.

[32] GOOGLE DEVELOPERS. Google Fit Developer Documenta-
tion. https://developers.google.com/fit/. Accessed:
Feb 2016.

[33] GOOGLE NEST. How much bandwidth will Nest cam
use? https://nest.com/support/article/How-much-

bandwidth-will-Nest-Cam-use. Accessed: June 2016.

[34] HACHMAN, M. Want to unlock your door with your
face? Windows 10 for IoT Core promises to do just that.
http://www.pcworld.com/article/2962330/internet-

of-things/want-to-unlock-your-door-with-your-

face-windows-10-for-iot-core-promises-to-do-

just-that.html. Accessed: Feb 2016.

[35] HESSELDAHL, A. A Hacker’s-Eye View of the Internet
of Things. http://recode.net/2015/04/07/a-hackers-

eye-view-of-the-internet-of-things/. Accessed: Oct
2015.

[36] HEULE, S., RIFKIN, D., RUSSO, A., AND STEFAN, D. The
most dangerous code in the browser. In 15th Workshop on
Hot Topics in Operating Systems (HotOS XV) (Kartause Ittingen,
Switzerland, May 2015), USENIX Association.

[37] HRITCU, C., GREENBERG, M., KAREL, B., PIERCE, B. C.,
AND MORRISETT, G. All your ifcexception are belong to us. In
Proceedings of the 2013 IEEE Symposium on Security and Pri-
vacy (2013), SP ’13.

USENIX Association 25th USENIX Security Symposium 547

[38] HRITCU, C., GREENBERG, M., KAREL, B., PIERCE, B. C.,
AND MORRISETT, G. All your ifcexception are belong to us.
In Security and Privacy (SP), 2013 IEEE Symposium on (2013),
IEEE.

[39] JANA, S., MOLNAR, D., MOSHCHUK, A., DUNN, A.,
LIVSHITS, B., WANG, H. J., AND OFEK, E. Enabling fine-
grained permissions for augmented reality applications with rec-
ognizers. In USENIX Security Symposium (2013).

[40] JANA, S., NARAYANAN, A., AND SHMATIKOV, V. A Scanner
Darkly: Protecting User Privacy from Perceptual Applications.
In IEEE Symposium on Security and Privacy (S&P) (2013).

[41] JIA, L., ALJURAIDAN, J., FRAGKAKI, E., BAUER, L.,
STROUCKEN, M., FUKUSHIMA, K., KIYOMOTO, S., AND
MIYAKE, Y. Run-time enforcement of information-flow prop-
erties on android. In European Symposium on Research in Com-
puter Security (2013).

[42] KROHN, M., YIP, A., BRODSKY, M., CLIFFER, N.,
KAASHOEK, M. F., KOHLER, E., AND MORRIS, R. Informa-
tion flow control for standard os abstractions. In SOSP (2007).

[43] LEE, S., WONG, E. L., GOEL, D., DAHLIN, M., AND
SHMATIKOV, V. box: A platform for privacy-preserving apps.
In NSDI (2013).

[44] LOMAS, N. Critical Flaw identified In ZigBee Smart Home De-
vices. http://techcrunch.com/2015/08/07/critical-

flaw-ided-in-zigbee-smart-home-devices/. Accessed:
Oct 2015.

[45] MYERS, A. C. Jflow: Practical mostly-static information flow
control. In SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL) (1999).

[46] NADKARNI, A., AND ENCK, W. Preventing accidental data dis-
closure in modern operating systems. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications secu-
rity (2013), ACM.

[47] PANSARASA, J. Lights-After-Dark SmartThings App.
https://github.com/jpansarasa/SmartThings/blob/

master/smartapps/elasticdev/lights-after-dark.

src/lights-after-dark.groovy. Accessed: Feb 2016.

[48] PAUPORE, J., FERNANDES, E., PRAKASH, A., ROY, S., AND
OU, X. Practical always-on taint tracking on mobile devices. In
USENIX Workshop on Hot Topics in Operating Systems (HotOS)
(2015).

[49] RAHMATI, A., AND MADHYASTHA, H. V. Context-specific ac-
cess control: Conforming permissions with user expectations. In
ACM Workshop on Security and Privacy in Smartphones & Mo-
bile Devices (SPSM) (2015).

[50] ROESNER, F., AND KOHNO, T. Securing embedded user in-
terfaces: Android and beyond. In USENIX Security Symposium
(2013).

[51] ROESNER, F., KOHNO, T., MOSHCHUK, A., PARNO, B.,
WANG, H. J., AND COWAN, C. User-driven access control: Re-
thinking permission granting in modern operating systems. In
IEEE S&P (2012).

[52] ROY, I., PORTER, D. E., BOND, M. D., MCKINLEY, K. S.,
AND WITCHEL, E. Laminar: Practical fine-grained decentralized
information flow control. In PLDI (2009).

[53] RUSSELLO, G., CONTI, M., CRISPO, B., AND FERNANDES, E.
Moses: Supporting operation modes on smartphones. In ACM
Symposium on Access Control Models and Technologies (SAC-
MAT) (2012).

[54] RUWASE, O., GIBBONS, P. B., MOWRY, T. C., RAMACHAN-
DRAN, V., CHEN, S., KOZUCH, M., AND RYAN, M. Paralleliz-
ing dynamic information flow tracking. In Proceedings of the
Twentieth Annual Symposium on Parallelism in Algorithms and
Architectures (2008).

[55] SAMSUNG. SmartThings. http://www.smartthings.com/.
Accessed: Nov 2015.

[56] SAMSUNG SMARTTHINGS. Samsung SmartThings Memory
Specifications. https://community.smartthings.com/

t/the-next-generation-of-smartthings-is-here/

21521. Accessed: June 2016.

[57] SAMSUNG SMARTTHINGS. SmartThings Capabilities Ref-
erence. http://docs.smartthings.com/en/latest/

capabilities-reference.html. Accessed: Feb 2016.

[58] SAMSUNG SMARTTHINGS. What happens if the power
goes out or I lose my internet connection? https:

//support.smartthings.com/hc/en-us/articles/

205956960-What-happens-if-the-power-goes-out-

or-I-lose-my-internet-connection-. Accessed: May
2016.

[59] SARWAR, G., MEHANI, O., BORELI, R., AND KAAFAR, M. A.
On the effectiveness of dynamic taint analysis for protecting
against private information leaks on android-based devices. In
International Conference on Security and Cryptography (SE-
CRYPT) (2013).

[60] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All you
ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In IEEE
Symposium on Security and Privacy (S&P) (2010).

[61] STEFAN, D., RUSSO, A., BUIRAS, P., LEVY, A., MITCHELL,
J. C., AND MAZIÉRES, D. Addressing covert termination and
timing channels in concurrent information flow systems. In ACM
SIGPLAN Notices (2012).

[62] STEFAN, D., RUSSO, A., MITCHELL, J. C., AND MAZIÈRES,
D. Flexible dynamic information flow control in Haskell. In
Haskell Symposium (September 2011), ACM SIGPLAN.

[63] STEFAN, D., YANG, E. Z., MARCHENKO, P., RUSSO, A., HER-
MAN, D., KARP, B., AND MAZIÈRES, D. Protecting users by
confining javascript with cowl. In OSDI (2014).

[64] TEMPLEMAN, R., RAHMAN, Z., CRANDALL, D., AND KAPA-
DIA, A. PlaceRaider: Virtual theft in physical spaces with smart-
phones. In ISOC Network and Distributed System Security Sym-
posium (NDSS) (2013).

[65] VACHHARAJANI, N., BRIDGES, M. J., CHANG, J., RANGAN,
R., OTTONI, G., BLOME, J. A., REIS, G. A., VACHHARAJANI,
M., AND AUGUST, D. I. Rifle: An architectural framework
for user-centric information-flow security. In Microarchitecture,
2004. MICRO-37 2004. 37th International Symposium on (2004).

[66] WEI, F., ROY, S., OU, X., AND ROBBY. Amandroid: A pre-
cise and general inter-component data flow analysis framework
for security vetting of android apps. In ACM SIGSAC Conference
on Computer and Communications Security (CCS) (2014).

[67] WETHERELL, J. Android Heart Rate Monitor App.
https://github.com/phishman3579/android-heart-

rate-monitor. Accessed: Feb 2016.

[68] XU, Y., HUNT, T., KWON, Y., GEORGIEV, M., SHMATIKOV,
V., AND WITCHEL, E. Earp: Principled storage, sharing, and
protection for mobile apps. In NSDI (2016).

[69] XU, Y., AND WITCHEL, E. Maxoid: Transparently confining
mobile applications with custom views of state. In Proceedings
of the Tenth European Conference on Computer Systems (2015),
ACM.

[70] YOON, M.-K., SALAJEGHEH, N., CHEN, Y., AND
CHRISTODORESCU, M. Pift: Predictive information flow
tracking. In 21st International Conference on Architectural
Support for Programming Languages and Operating Systems
(2016).

548 25th USENIX Security Symposium USENIX Association

[71] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIÈRES, D. Making information flow explicit in histar. In
OSDI (2006).

[72] ZHANG, D., ASKAROV, A., AND MYERS, A. C. Predictive
mitigation of timing channels in interactive systems. In ACM
SIGSAC Conference on Computer and Communications Security
(CCS) (2011).

[73] ZHOU, Y., AND JIANG, X. Dissecting android malware: Char-
acterization and evolution. In IEEE S&P (2012).

QM-management Data Types and API Semantics
Handle An opaque handle. Data is stored in the Trusted Service, with its

taint labels.

QM <T> A reference to a QM of type T, on which developers can issue
method calls.

QM <T> ctor = resolveCtor(T) Resolve the constructor for QM T, and return a reference to it.

QM <T> m = resolveM(retType, T, methStr,
[paramTypes])

Resolve an instance/static method of a QM, loading the QM into
a sandbox if necessary.

Handle ret = QM <T>.call([argList]) Call a method on a loaded QM, and return an opaque handle as
the result.

subscribeEventChannel(appID, channelName,
QM <T>)

Subscribe to a channel for updates, and register a QM to be exe-
cuted automatically whenever new data is placed on the channel.

Within-QM Data Types and API Semantics
KVStore Provides methods to interact with the Key-Value Store.

KVStore kvs = getKVStore(appID, name) Get a reference to a named KVStore.

kvs.put<T>(key, value, taint label) Put a (key, value) pair into the KVStore along with a taint label,
where T can be a basic type such as Int, Float, or a serializable
type. Any existing taint of the calling QM will be automatically
associated with the value’s final set of taint labels.

T value = kvs.get<T>(key) Get the value of type T corresponding to specified key, and taint
the QM with the appropriate set of taint labels.

getTrustedAPI(apiName).invoke([params]) Call a Trusted API method to declassify sensitive data.

getChannel(chanName).fireEvent(taint label,
[params])

Fire an event with parameters, specifying taint label. Any existing
taint labels of the calling QM will be added automatically.

Table 4: FlowFence API Summary. QM-management data types and API is only available to the untrusted portion of
an app that does not operate with sensitive data. The Within-QM data types and API is available only to QMs.

Appendix A: FlowFence API

We summarize the object-oriented FlowFence API for
developers in Table 4. There are two kinds of API:
QM-management, and Within-QM. Developers use the
QM-management API to request loading QMs into sand-
boxes, making QM calls, and receiving opaque handles
as return values. The primary data types are: QM <T>,
and Handle. The former data type represents a refer-
ence to a loaded QM. The latter data type represents an
opaque handle, that FlowFence creates as a return value
of a QM. Developers use resolveCtor, or resolveM to
load a specific QM into a sandbox (FlowFence automati-
cally manages sandboxes), and receive a reference to the
loaded QM. Then, developers specify the string name of
a QM method to execute.

The Within-QM API is available to QMs while they
are executing within a sandbox. Currently, FlowFence
has two data types available for QMs. KVStore offers
ways to get and put values in the Key-Value store. The
Trusted API offers facilities like network communica-
tion, logging, and smart home control (our prototype has
a bridge to SmartThings).

USENIX Association 25th USENIX Security Symposium 549

ARMageddon: Cache Attacks on Mobile Devices

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan Mangard
Graz University of Technology, Austria

Abstract
In the last 10 years, cache attacks on Intel x86 CPUs have
gained increasing attention among the scientific com-
munity and powerful techniques to exploit cache side
channels have been developed. However, modern smart-
phones use one or more multi-core ARM CPUs that have
a different cache organization and instruction set than
Intel x86 CPUs. So far, no cross-core cache attacks have
been demonstrated on non-rooted Android smartphones.
In this work, we demonstrate how to solve key chal-
lenges to perform the most powerful cross-core cache at-
tacks Prime+Probe, Flush+Reload, Evict+Reload, and
Flush+Flush on non-rooted ARM-based devices without
any privileges. Based on our techniques, we demonstrate
covert channels that outperform state-of-the-art covert
channels on Android by several orders of magnitude.
Moreover, we present attacks to monitor tap and swipe
events as well as keystrokes, and even derive the lengths
of words entered on the touchscreen. Eventually, we are
the first to attack cryptographic primitives implemented
in Java. Our attacks work across CPUs and can even
monitor cache activity in the ARM TrustZone from the
normal world. The techniques we present can be used to
attack hundreds of millions of Android devices.

1 Introduction

Cache attacks represent a powerful means of exploit-
ing the different access times within the memory hi-
erarchy of modern system architectures. Until re-
cently, these attacks explicitly targeted cryptographic
implementations, for instance, by means of cache tim-
ing attacks [9] or the well-known Evict+Time and
Prime+Probe techniques [43]. The seminal paper
by Yarom and Falkner [60] introduced the so-called
Flush+Reload attack, which allows an attacker to infer
which specific parts of a binary are accessed by a vic-
tim program with an unprecedented accuracy and prob-
ing frequency. Recently, Gruss et al. [19] demonstrated

the possibility to use Flush+Reload to automatically ex-
ploit cache-based side channels via cache template at-
tacks on Intel platforms. Flush+Reload does not only al-
low for efficient attacks against cryptographic implemen-
tations [8,26,56], but also to infer keystroke information
and even to build keyloggers on Intel platforms [19]. In
contrast to attacks on cryptographic algorithms, which
are typically triggered multiple times, these attacks re-
quire a significantly higher accuracy as an attacker has
only one single chance to observe a user input event.

Although a few publications about cache attacks on
AES T-table implementations on mobile devices ex-
ist [10, 50–52, 57], the more efficient cross-core attack
techniques Prime+Probe, Flush+Reload, Evict+Reload,
and Flush+Flush [18] have not been applied on smart-
phones. In fact, there was reasonable doubt [60] whether
these cross-core attacks can be mounted on ARM-based
devices at all. In this work, we demonstrate that these
attack techniques are applicable on ARM-based devices
by solving the following key challenges systematically:

1. Last-level caches are not inclusive on ARM and thus
cross-core attacks cannot rely on this property. In-
deed, existing cross-core attacks exploit the inclu-
siveness of shared last-level caches [18, 19, 22, 24,
35, 37, 38, 42, 60] and, thus, no cross-core attacks
have been demonstrated on ARM so far. We present
an approach that exploits coherence protocols and
L1-to-L2 transfers to make these attacks applicable
on mobile devices with non-inclusive shared last-
level caches, irrespective of the cache organization.1

2. Most modern smartphones have multiple CPUs that
do not share a cache. However, cache coherence
protocols allow CPUs to fetch cache lines from re-
mote cores faster than from the main memory. We
utilize this property to mount both cross-core and
cross-CPU attacks.

1Simultaneously to our work on ARM, Irazoqui et al. [25] devel-
oped a technique to exploit cache coherence protocols on AMD x86
CPUs and mounted the first cross-CPU cache attack.

1

550 25th USENIX Security Symposium USENIX Association

3. Except ARMv8-A CPUs, ARM processors do not
support a flush instruction. In these cases, a fast
eviction strategy must be applied for high-frequency
measurements. As existing eviction strategies are
too slow, we analyze more than 4 200 eviction
strategies for our test devices, based on Rowham-
mer attack techniques [17].

4. ARM CPUs use a pseudo-random replacement pol-
icy to decide which cache line to replace within a
cache set. This introduces additional noise even for
robust time-driven cache attacks [50, 52]. For the
same reason, Prime+Probe has been an open chal-
lenge [51] on ARM, as an attacker needs to predict
which cache line will be replaced first and wrong
predictions destroy measurements. We design re-
access loops that interlock with a cache eviction
strategy to reduce the effect of wrong predictions.

5. Cycle-accurate timings require root access on
ARM [3] and alternatives have not been evaluated so
far. We evaluate different timing sources and show
that cache attacks can be mounted in any case.

Based on these building blocks, we demonstrate prac-
tical and highly efficient cache attacks on ARM.2 We
do not restrict our investigations to cryptographic im-
plementations but also consider cache attacks as a
means to infer other sensitive information—such as
inter-keystroke timings or the length of a swipe action—
requiring a significantly higher measurement accuracy.
Besides these generic attacks, we also demonstrate that
cache attacks can be used to monitor cache activity
caused within the ARM TrustZone from the normal
world. Nevertheless, we do not aim to exhaustively list
possible exploits or find new attack vectors on crypto-
graphic algorithms. Instead, we aim to demonstrate the
immense attack potential of the presented cross-core and
cross-CPU attacks on ARM-based mobile devices based
on well-studied attack vectors. Our work allows to ap-
ply existing attacks to millions of off-the-shelf Android
devices without any privileges. Furthermore, our investi-
gations show that Android still employs vulnerable AES
T-table implementations.

Contributions. The contributions of this work are:
• We demonstrate the applicability of highly efficient

cache attacks like Prime+Probe, Flush+Reload,
Evict+Reload, and Flush+Flush on ARM.

• Our attacks work irrespective of the actual cache or-
ganization and, thus, are the first last-level cache
attacks that can be applied cross-core and also
cross-CPU on off-the-shelf ARM-based devices.
More specifically, our attacks work against last-

2Source code for ARMageddon attack examples can be found at
https://github.com/IAIK/armageddon.

level caches that are instruction-inclusive and data-
non-inclusive as well as caches that are instruction-
non-inclusive and data-inclusive.

• Our cache-based covert channel outperforms all ex-
isting covert channels on Android by several orders
of magnitude.

• We demonstrate the power of these attacks
by attacking cryptographic implementations and
by inferring more fine-grained information like
keystrokes and swipe actions on the touchscreen.

Outline. The remainder of this paper is structured as
follows. In Section 2, we provide information on back-
ground and related work. Section 3 describes the tech-
niques that are the building blocks for our attacks. In
Section 4, we demonstrate and evaluate fast cross-core
and cross-CPU covert channels on Android. In Sec-
tion 5, we demonstrate cache template attacks on user
input events. In Section 6, we present attacks on crypto-
graphic implementations used in practice as well the pos-
sibility to observe cache activity of cryptographic com-
putations within the TrustZone. We discuss countermea-
sures in Section 7 and conclude this work in Section 8.

2 Background and Related Work

In this section, we provide the required preliminaries and
discuss related work in the context of cache attacks.

2.1 CPU Caches

Today’s CPU performance is influenced not only by the
clock frequency but also by the latency of instructions,
operand fetches, and other interactions with internal and
external devices. In order to overcome the latency of
system memory accesses, CPUs employ caches to buffer
frequently used data in small and fast internal memories.

Modern caches organize cache lines in multiple sets,
which is also known as set-associative caches. Each
memory address maps to one of these cache sets and ad-
dresses that map to the same cache set are considered
congruent. Congruent addresses compete for cache lines
within the same set and a predefined replacement policy
determines which cache line is replaced. For instance,
the last generations of Intel CPUs employ an undocu-
mented variant of least-recently used (LRU) replacement
policy [17]. ARM processors use a pseudo-LRU replace-
ment policy for the L1 cache and they support two dif-
ferent cache replacement policies for L2 caches, namely
round-robin and pseudo-random replacement policy. In
practice, however, only the pseudo-random replacement
policy is used due to performance reasons. Switching
the cache replacement policy is only possible in privi-

2

USENIX Association 25th USENIX Security Symposium 551

leged mode. The implementation details for the pseudo-
random policy are not documented.

CPU caches can either be virtually indexed or phys-
ically indexed, which determines whether the index is
derived from the virtual or physical address. A so-called
tag uniquely identifies the address that is cached within
a specific cache line. Although this tag can also be based
on the virtual or physical address, most modern caches
use physical tags because they can be computed simul-
taneously while locating the cache set. ARM typically
uses physically indexed, physically tagged L2 caches.

CPUs have multiple cache levels, with the lower lev-
els being faster and smaller than the higher levels. ARM
processors typically have two levels of cache. If all cache
lines from lower levels are also stored in a higher-level
cache, the higher-level cache is called inclusive. If a
cache line can only reside in one of the cache levels at
any point in time, the caches are called exclusive. If the
cache is neither inclusive nor exclusive, it is called non-
inclusive. The last-level cache is often shared among
all cores to enhance the performance upon transitioning
threads between cores and to simplify cross-core cache
lookups. However, with shared last-level caches, one
core can (intentionally) influence the cache content of all
other cores. This represents the basis for cache attacks
like Flush+Reload [60].

In order to keep caches of multiple CPU cores or CPUs
in a coherent state, so-called coherence protocols are em-
ployed. However, coherence protocols also introduce
exploitable timing effects, which has recently been ex-
ploited by Irazoqui et al. [25] on x86 CPUs.

In this paper, we demonstrate attacks on three smart-
phones as listed in Table 1. The Krait 400 is an ARMv7-
A CPU, the other two processors are ARMv8-A CPUs.
However, the stock Android of the Alcatel One Touch
Pop 2 is compiled for an ARMv7-A instruction set and
thus ARMv8-A instructions are not used. We generically
refer to ARMv7-A and ARMv8-A as “ARM architec-
ture” throughout this paper. All devices have a shared L2
cache. On the Samsung Galaxy S6, the flush instruction
is unlocked by default, which means that it is available
in userspace. Furthermore, all devices employ a cache
coherence protocol between cores and on the Samsung
Galaxy S6 even between the two CPUs [6].

2.2 Shared Memory

Read-only shared memory can be used as a means of
memory usage optimization. In case of shared libraries it
reduces the memory footprint and enhances the speed by
lowering cache contention. The operating system imple-
ments this behavior by mapping the same physical mem-
ory into the address space of each process. As this mem-
ory sharing mechanism is independent of how a file was

opened or accessed, an attacker can map a binary to have
read-only shared memory with a victim program. A sim-
ilar effect is caused by content-based page deduplication
where physical pages with identical content are merged.

Android applications are usually written in Java and,
thus, contain self-modifying code or just-in-time com-
piled code. This code would typically not be shared.
Since Android version 4.4 the Dalvik VM was gradu-
ally replaced by the Android Runtime (ART). With ART,
Java byte code is compiled to native code binaries [1] and
thus can be shared too.

2.3 Cache Attacks
Initially, cache timing attacks were performed on cryp-
tographic algorithms [9, 30, 31, 40, 41, 44, 55]. For ex-
ample, Bernstein [9] exploited the total execution time
of AES T-table implementations. More fine-grained
exploitations of memory accesses to the CPU cache
have been proposed by Percival [45] and Osvik et al.
[43]. More specifically, Osvik et al. formalized two con-
cepts, namely Evict+Time and Prime+Probe, to deter-
mine which specific cache sets were accessed by a victim
program. Both approaches consist of three basic steps.
Evict+Time:

1. Measure execution time of victim program.
2. Evict a specific cache set.
3. Measure execution time of victim program again.

Prime+Probe:
1. Occupy specific cache sets.
2. Victim program is scheduled.
3. Determine which cache sets are still occupied.
Both approaches allow an adversary to determine

which cache sets are used during the victim’s compu-
tations and have been exploited to attack cryptographic
implementations [24, 35, 43, 54] and to build cross-VM
covert channels [37]. Yarom and Falkner [60] proposed
Flush+Reload, a significantly more fine-grained attack
that exploits three fundamental concepts of modern sys-
tem architectures. First, the availability of shared mem-
ory between the victim process and the adversary. Sec-
ond, last-level caches are typically shared among all
cores. Third, Intel platforms use inclusive last-level
caches, meaning that the eviction of information from the
last-level cache leads to the eviction of this data from all
lower-level caches of other cores, which allows any pro-
gram to evict data from other programs on other cores.
While the basic idea of this attack has been proposed by
Gullasch et al. [21], Yarom and Falkner extended this
idea to shared last-level caches, allowing cross-core at-
tacks. Flush+Reload works as follows.
Flush+Reload:

1. Map binary (e.g., shared object) into address space.
2. Flush a cache line (code or data) from the cache.

3

552 25th USENIX Security Symposium USENIX Association

Table 1: Test devices used in this paper.

Device SoC CPU (cores) L1 caches L2 cache Inclusiveness

OnePlus
One

Qualcomm
Snapdragon 801

Krait 400 (2)
2.5 GHz

2× 16 KB,
4-way, 64 sets

2 048 KB,
8-way, 2 048 sets

non-inclusive

Alcatel One
Touch Pop 2

Qualcomm
Snapdragon 410

Cortex-A53 (4)
1.2 GHz

4× 32 KB,
4-way, 128 sets

512 KB,
16-way, 512 sets

instruction-inclusive,
data-non-inclusive

Cortex-A53 (4) 4× 32 KB, 256 KB, instruction-inclusive,
Samsung Samsung Exynos 1.5 GHz 4-way, 128 sets 16-way, 256 sets data-non-inclusive
Galaxy S6 7 Octa 7420 Cortex-A57 (4) 4× 32 KB, 2 048 KB, instruction-non-inclusive,

2.1 GHz 2-way, 256 sets 16-way, 2 048 sets data-inclusive

3. Schedule the victim program.
4. Check if the corresponding line from step 2 has

been loaded by the victim program.
Thereby, Flush+Reload allows an attacker to deter-

mine which specific instructions are executed and also
which specific data is accessed by the victim program.
Thus, rather fine-grained attacks are possible and have
already been demonstrated against cryptographic im-
plementations [22, 27, 28]. Furthermore, Gruss et al.
[19] demonstrated the possibility to automatically ex-
ploit cache-based side-channel information based on
the Flush+Reload approach. Besides attacking crypto-
graphic implementations like AES T-table implementa-
tions, they showed how to infer keystroke information
and even how to build a keylogger by exploiting the
cache side channel. Similarly, Oren et al. [42] demon-
strated the possibility to exploit cache attacks on Intel
platforms from JavaScript and showed how to infer vis-
ited websites and how to track the user’s mouse activity.

Gruss et al. [19] proposed the Evict+Reload technique
that replaces the flush instruction in Flush+Reload by
eviction. While it has no practical application on x86
CPUs, we show that it can be used on ARM CPUs. Re-
cently, Flush+Flush [18] has been proposed. Unlike
other techniques, it does not perform any memory ac-
cess but relies on the timing of the flush instruction to
determine whether a line has been loaded by a victim.
We show that the execution time of the ARMv8-A flush
instruction also depends on whether or not data is cached
and, thus, can be used to implement this attack.

While the attacks discussed above have been proposed
and investigated for Intel processors, the same attacks
were considered not applicable to modern smartphones
due to differences in the instruction set, the cache or-
ganization [60], and in the multi-core and multi-CPU
architecture. Thus, only same-core cache attacks have
been demonstrated on smartphones so far. For instance,
Weiß et al. [57] investigated Bernstein’s cache-timing at-
tack [9] on a Beagleboard employing an ARM Cortex-
A8 processor. Later on, Weiß et al. [58] investigated this
timing attack in a multi-core setting on a development

board. As Weiß et al. [57] claimed that noise makes
the attack difficult, Spreitzer and Plos [52] investigated
the applicability of Bernstein’s cache-timing attack on
different ARM Cortex-A8 and ARM Cortex-A9 smart-
phones running Android. Both investigations [52, 57]
confirmed that timing information is leaking, but the at-
tack takes several hours due to the high number of mea-
surement samples that are required, i.e., about 230 AES
encryptions. Later on, Spreitzer and Gérard [50] im-
proved upon these results and managed to reduce the key
space to a complexity which is practically relevant.

Besides Bernstein’s attack, another attack against AES
T-table implementations has been proposed by Bog-
danov et al. [10], who exploited so-called wide collisions
on an ARM9 microprocessor. In addition, power analysis
attacks [13] and electromagnetic emanations [14] have
been used to visualize cache accesses during AES com-
putations on ARM microprocessors. Furthermore, Spre-
itzer and Plos [51] implemented Evict+Time [43] in or-
der to attack an AES T-table implementation on Android-
based smartphones. However, so far only cache attacks
against AES T-table implementations have been consid-
ered on smartphone platforms and none of the recent ad-
vances have been demonstrated on mobile devices.

3 ARMageddon Attack Techniques

We consider a scenario where an adversary attacks a
smartphone user by means of a malicious application.
This application does not require any permission and,
most importantly, it can be executed in unprivileged
userspace and does not require a rooted device. As our
attack techniques do not exploit specific vulnerabilities
of Android versions, they work on stock Android ROMs
as well as customized ROMs in use today.

3.1 Defeating the Cache Organization
In this section, we tackle the aforementioned challenges
1 and 2, i.e., the last-level cache is not inclusive and mul-
tiple processors do not necessarily share a cache level.

4

USENIX Association 25th USENIX Security Symposium 553

Core 0

L1I

Se
ts

L1D

Core 1

L1I L1D

L2 Unified Cache
Se

ts

(1) (2)

(3)

Figure 1: Cross-core instruction cache eviction through
data accesses.

When it comes to caches, ARM CPUs are very hetero-
geneous compared to Intel CPUs. For example, whether
or not a CPU has a second-level cache can be decided by
the manufacturer. Nevertheless, the last-level cache on
ARM devices is usually shared among all cores and it can
have different inclusiveness properties for instructions
and data. Due to cache coherence, shared memory is
kept in a coherent state across cores and CPUs. This is of
importance when measuring timing differences between
cache accesses and memory accesses (cache misses), as
fast remote-cache accesses are performed instead of slow
memory accesses [6]. In case of a non-coherent cache, a
cross-core attack is not possible but an attacker can run
the spy process on all cores simultaneously and thus fall
back to a same-core attack. However, we observed that
caches are coherent on all our test devices.

To perform a cross-core attack we load enough data
into the cache to fully evict the corresponding last-level
cache set. Thereby, we exploit that we can fill the last-
level cache directly or indirectly depending on the cache
organization. On the Alcatel One Touch Pop 2, the last-
level cache is instruction-inclusive and thus we can evict
instructions from the local caches of the other core. Fig-
ure 1 illustrates such an eviction. In step 1, an instruc-
tion is allocated to the last-level cache and the instruc-
tion cache of one core. In step 2, a process fills its core’s
data cache, thereby evicting cache lines into the last-level
cache. In step 3, the process has filled the last-level cache
set using only data accesses and thereby evicts the in-
structions from instruction caches of other cores as well.

We access cache lines multiple times to perform trans-
fers between L1 and L2 cache. Thus, more and more
addresses used for eviction are cached in either L1 or L2.
As ARM CPUs typically have L1 caches with a very low
associativity, the probability of eviction to L2 through
other system activity is high. Using an eviction strategy
that performs frequent transfers between L1 and L2 in-
creases this probability further. Thus, this approach also
works for other cache organizations to perform cross-
core and cross-CPU cache attacks. Due to the cache co-
herence protocol between the CPU cores [6,33], remote-
core fetches are faster than memory accesses and thus
can be distinguished from cache misses. For instance,

0 200 400 600 800 1,000
0

1

2

3
·104

Measured access time in CPU cycles

N
um

be
ro

fa
cc

es
se

s

Hit (same core) Hit (cross-core)
Miss (same core) Miss (cross-core)

Figure 2: Histograms of cache hits and cache misses
measured same-core and cross-core on the OnePlus One.

Figure 2 shows the cache hit and miss histogram on the
OnePlus One. The cross-core access introduces a latency
of 40 CPU cycles on average. However, cache misses
take more than 500 CPU cycles on average. Thus, cache
hits and misses are clearly distinguishable based on a sin-
gle threshold value.

3.2 Fast Cache Eviction

In this section, we tackle the aforementioned challenges
3 and 4, i.e., not all ARM processors support a flush in-
struction, and the replacement policy is pseudo-random.

There are two options to evict cache lines: (1) the
flush instruction or (2) evict data with memory accesses
to congruent addresses, i.e., addresses that map to the
same cache set. As the flush instruction is only available
on the Samsung Galaxy S6, we need to rely on eviction
strategies for the other devices and, therefore, to defeat
the replacement policy. The L1 cache in Cortex-A53 and
Cortex-A57 has a very small number of ways and em-
ploys a least-recently used (LRU) replacement policy [5].
However, for a full cache eviction, we also have to evict
cache lines from the L2 cache, which uses a pseudo-
random replacement policy.

Eviction strategies. Previous approaches to evict data
on Intel x86 platforms either have too much over-
head [23] or are only applicable to caches implement-
ing an LRU replacement policy [35, 37, 42]. Spreitzer
and Plos [51] proposed an eviction strategy for ARMv7-
A CPUs that requires to access more addresses than
there are cache lines per cache set, due to the pseudo-
random replacement policy. Recently, Gruss et al. [17]
demonstrated how to automatically find fast eviction
strategies on Intel x86 architectures. We show that
their algorithm is applicable to ARM CPUs as well.
Thereby, we establish eviction strategies in an automated
way and significantly reduce the overhead compared to
[51]. We evaluated more than 4 200 access patterns on
our smartphones and identified the best eviction strate-
gies. Even though the cache employs a random replace-

5

554 25th USENIX Security Symposium USENIX Association

Table 2: Different eviction strategies on the Krait 400.

N A D Cycles Eviction rate

- - - 549 100.00%
11 2 2 1 578 100.00%
12 1 3 2 094 100.00%
13 1 5 2 213 100.00%
16 1 1 3 026 100.00%
24 1 1 4 371 100.00%
13 1 2 2 372 99.58%
11 1 3 1 608 80.94%
11 4 1 1 948 58.93%
10 2 2 1 275 51.12%

ment policy, average eviction rate and average execu-
tion time are reproducible. Eviction sets are computed
based on physical addresses, which can be retrieved via
/proc/self/pagemap as current Android versions al-
low access to these mappings to any unprivileged app
without any permissions. Thus, eviction patterns and
eviction sets can be efficiently computed.

We applied the algorithm of Gruss et al. [17] to a set
of physically congruent addresses. Table 2 summarizes
different eviction strategies, i.e., loop parameters, for the
Krait 400. N denotes the total eviction set size (length of
the loop), A denotes the shift offset (loop increment) to
be applied after each round, and D denotes the number of
memory accesses in each iteration (loop body). The col-
umn cycles states the average execution time in CPU cy-
cles over 1 million evictions and the last column denotes
the average eviction rate. The first line in Table 2 shows
the average execution time and the average eviction rate
for the privileged flush instruction, which gives the best
result in terms of average execution time (549 CPU cy-
cles). We evaluated 1863 different strategies and our best
identified eviction strategy (N = 11, A = 2, D = 2) also
achieves an average eviction rate of 100% but takes 1578
CPU cycles. Although a strategy accessing every address
in the eviction set only once (A = 1, D = 1, also called
LRU eviction) performs significantly fewer memory ac-
cesses, it consumes more CPU cycles. For an average
eviction rate of 100%, LRU eviction requires an eviction
set size of at least 16. The average execution time then
is 3026 CPU cycles. Considering the eviction strategy
used in [51] that takes 4371 CPU cycles, clearly demon-
strates the advantage of our optimized eviction strategy
that takes only 1578 CPU cycles.

We performed the same evaluation with 2295 different
strategies on the ARM Cortex-A53 in our Alcatel One
Touch Pop 2 test system and summarize them in Table 3.
For the best strategy we found (N = 21, A= 1, D= 6), we
measured an average eviction rate of 99.93% and an av-
erage execution time of 4275 CPU cycles. We observed
that LRU eviction (A = 1, D = 1) on the ARM Cortex-

Table 3: Different eviction strategies on the Cortex-A53.

N A D Cycles Eviction rate

- - - 767 100.00%
23 2 5 6 209 100.00%
23 4 6 16 912 100.00%
22 1 6 5 101 99.99%
21 1 6 4 275 99.93%
20 4 6 13 265 99.44%

800 1 1 142 876 99.10%
200 1 1 33 110 96.04%
100 1 1 15 493 89.77%

48 1 1 6 517 70.78%

0 100 200 300 400 500 600
0

1

2

3
·104

Measured execution time in CPU cycles
N

um
be

ro
fc

as
es

Flush (address cached)
Flush (address not cached)

Figure 3: Histograms of the execution time of the flush
operation on cached and not cached addresses measured
on the Samsung Galaxy S6.

A53 would take 28 times more CPU cycles to achieve an
average eviction rate of only 99.10%, thus it is not suit-
able for attacks on the last-level cache as used in previous
work [51]. The reason for this is that data can only be al-
located to L2 cache by evicting it from the L1 cache on
the ARM Cortex-A53. Therefore, it is better to reaccess
the data that is already in the L2 cache and gradually add
new addresses to the set of cached addresses instead of
accessing more different addresses.

On the ARM Cortex-A57 the userspace flush in-
struction was significantly faster in any case. Thus,
for Flush+Reload we use the flush instruction and for
Prime+Probe the eviction strategy. Falling back to
Evict+Reload is not necessary on the Cortex-A57. Sim-
ilarly to recent Intel x86 CPUs, the execution time of the
flush instruction on ARM depends on whether or not the
value is cached, as shown in Figure 3. The execution
time is higher if the address is cached and lower if the
address is not cached. This observation allows us to dis-
tinguish between cache hits and cache misses depending
on the timing behavior of the flush instruction, and there-
fore to perform a Flush+Flush attack. Thus, in case of
shared memory between the victim and the attacker, it is
not even required to evict and reload an address in order
to exploit the cache side channel.

6

USENIX Association 25th USENIX Security Symposium 555

A note on Prime+Probe. Finding a fast eviction strat-
egy for Prime+Probe on architectures with a random
replacement policy is not as straightforward as on In-
tel x86. Even in case of x86 platforms, the problem of
cache trashing has been discussed by Tromer et al. [54].
Cache trashing occurs when reloading (probing) an ad-
dress evicts one of the addresses that are to be accessed
next. While Tromer et al. were able to overcome this
problem by using a doubly-linked list that is accessed
forward during the prime step and backwards during the
probe step, the random replacement policy on ARM also
contributes to the negative effect of cache trashing.

We analyzed the behavior of the cache and designed
a prime step and a probe step that work with a smaller
set size to avoid set thrashing. Thus, we set the evic-
tion set size to 15 on the Alcatel One Touch Pop 2. As
we run the Prime+Probe attack in a loop, exactly 1 way
in the L2 cache will not be occupied after a few attack
rounds. We might miss a victim access in 1

16 of the cases,
which however is necessary as otherwise we would not
be able to get reproducible measurements at all due to set
thrashing. If the victim replaces one of the 15 ways occu-
pied by the attacker, there is still one free way to reload
the address that was evicted. This reduces the chance of
set thrashing significantly and allows us to successfully
perform Prime+Probe on caches with a random replace-
ment policy.

3.3 Accurate Unprivileged Timing

In this section, we tackle the aforementioned challenge 5,
i.e., cycle-accurate timings require root access on ARM.

In order to distinguish cache hits and cache misses,
timing sources or dedicated performance counters can be
used. We focus on timing sources, as cache misses have
a significantly higher access latency and timing sources
are well studied on Intel x86 CPUs. Cache attacks on
x86 CPUs employ the unprivileged rdtsc instruction
to obtain a sub-nanosecond resolution timestamp. The
ARMv7-A architecture does not provide an instruction
for this purpose. Instead, the ARMv7-A architecture
has a performance monitoring unit that allows to mon-
itor CPU activity. One of these performance counters—
denoted as cycle count register (PMCCNTR)—can be
used to distinguish cache hits and cache misses by re-
lying on the number of CPU cycles that passed during
a memory access. However, these performance counters
are not accessible from userspace by default and an at-
tacker would need root privileges.

We broaden the attack surface by exploiting timing
sources that are accessible without any privileges or per-
missions. We identified three possible alternatives for
timing measurements.

0 20 40 60 80 100 120 140 160 180 200
0

2

4

·104

Measured access time (scaled)

N
um

be
ro

fa
cc

es
se

s

Hit (PMCCNTR) Hit (clock gettime×.15)
Miss (PMCCNTR) Miss (clock gettime×.15)
Hit (syscall×.25) Hit (counter thread×.05)

Miss (syscall×.25) Miss (counter thread×.05)

Figure 4: Histogram of cross-core cache hits/misses on
the Alcatel One Touch Pop 2 using different methods.
X-values are scaled for visual representation.

Unprivileged syscall. The perf_event_open

syscall is an abstract layer to access perfor-
mance information through the kernel indepen-
dently of the underlying hardware. For instance,
PERF_COUNT_HW_CPU_CYCLES returns an accurate
cycle count including a minor overhead due to the
syscall. The availability of this feature depends on the
Android kernel configuration, e.g., the stock kernel on
the Alcatel One Touch Pop 2 as well as the OnePlus
One provide this feature by default. Thus, in contrast
to previous work [51], the attacker does not have to
load a kernel module to access this information as the
perf_event_open syscall can be accessed without
any privileges or permissions.

POSIX function. Another alternative to obtain suf-
ficiently accurate timing information is the POSIX
function clock_gettime(), with an accuracy
in the range of microseconds to nanoseconds.
Similar information can also be obtained from
/proc/timer_list.

Dedicated thread timer. If no interface with sufficient
accuracy is available, an attacker can run a thread
that increments a global variable in a loop, provid-
ing a fair approximation of a cycle counter. Our ex-
periments show that this approach works reliably on
smartphones as well as recent x86 CPUs. The resolu-
tion of this threaded timing information is as high as
with the other methods.

In Figure 4 we show the cache hit and miss histogram
based on the four different methods, including the cycle
count register, on a Alcatel One Touch Pop 2. Despite the
latency and noise, cache hits and cache misses are clearly
distinguishable with all approaches. Thus, all methods
can be used to implement cache attacks. Determining
the best timing method on the device under attack can be
done in a few seconds during an online attack.

7

556 25th USENIX Security Symposium USENIX Association

4 High Performance Covert Channels

To evaluate the performance of our attacks, we measure
the capacity of cross-core and cross-CPU cache covert
channels. A covert channel enables two unprivileged ap-
plications on a system to communicate with each other
without using any data transfer mechanisms provided by
the operating system. This communication evades the
sandboxing concept and the permission system (cf. col-
lusion attacks [36]). Both applications were running in
the background while the phone was mostly idle and an
unrelated app was running as the foreground application.

Our covert channel is established on addresses of a
shared library that is used by both the sender and the re-
ceiver. While both processes have read-only access to the
shared library, they can transmit information by loading
addresses from the shared library into the cache or evict-
ing (flushing) it from the cache, respectively.

The covert channel transmits packets of n-bit data, an
s-bit sequence number, and a c-bit checksum that is com-
puted over data and sequence number. The sequence
number is used to distinguish consecutive packets and
the checksum is used to check the integrity of the packet.
The receiver acknowledges valid packets by responding
with an s-bit sequence number and an x-bit checksum.
By adjusting the sizes of checksums and sequence num-
bers the error rate of the covert channel can be controlled.

Each bit is represented by one address in the shared
library, whereas no two addresses are chosen that map
to the same cache set. To transmit a bit value of 1, the
sender accesses the corresponding address in the library.
To transmit a bit value of 0, the sender does not access
the corresponding address, resulting in a cache miss on
the receiver’s side. Thus, the receiving process observes
a cache hit or a cache miss depending on the memory ac-
cess performed by the sender. The same method is used
for the acknowledgements sent by the receiving process.

We implemented this covert channel using
Evict+Reload, Flush+Reload, and Flush+Flush on
our smartphones. The results are summarized in Table 4.
On the Samsung Galaxy S6, we achieve a cross-core
transmission rate of 1 140 650 bps at an error rate of
1.10%. This is 265 times faster than any existing covert
channel on smartphones. In a cross-CPU transmission
we achieve a transmission rate of 257 509 bps at an error
rate of 1.83%. We achieve a cross-core transition rate of
178 292 bps at an error rate of 0.48% using Flush+Flush
on the Samsung Galaxy S6. On the Alcatel One Touch
Pop 2 we achieve a cross-core transmission rate of
13 618 bps at an error rate of 3.79% using Evict+Reload.
This is still 3 times faster than previous covert channels
on smartphones. The covert channel is significantly
slower on the Alcatel One Touch Pop 2 than on the
Samsung Galaxy S6 because the hardware is much

slower, Evict+Reload is slower than Flush+Reload, and
retransmission might be necessary in 0.14% of the cases
where eviction is not successful (cf. Section 3.2). On the
older OnePlus One we achieve a cross-core transmission
rate of 12 537 bps at an error rate of 5.00%, 3 times faster
than previous covert channels on smartphones. The
reason for the higher error rate is the additional timing
noise due to the cache coherence protocol performing a
high number of remote-core fetches.

5 Attacking User Input on Smartphones

In this section we demonstrate cache side-channel at-
tacks on Android smartphones. We implement cache
template attacks [19] to create and exploit accu-
rate cache-usage profiles using the Evict+Reload or
Flush+Reload attack. Cache template attacks have a pro-
filing phase and an exploitation phase. In the profiling
phase, a template matrix is computed that represents how
many cache hits occur on a specific address when trig-
gering a specific event. The exploitation phase uses this
matrix to infer events from cache hits.

To perform cache template attacks, an attacker has
to map shared binaries or shared libraries as read-only
shared memory into its own address space. By us-
ing shared libraries, the attacker bypasses any potential
countermeasures taken by the operating system, such as
restricted access to runtime data of other apps or address
space layout randomization (ASLR). The attack can even
be performed online on the device under attack if the
event can be simulated.

Triggering the actual event that an attacker wants to
spy on might require either (1) an offline phase or (2)
privileged access. For instance, in case of a keylogger,
the attacker can gather a cache template matrix offline
for a specific version of a library, or the attacker relies on
privileged access of the application (or a dedicated per-
mission) in order to be able to simulate events for gath-
ering the cache template matrix. However, the actual ex-
ploitation of the cache template matrix to infer events
neither requires privileged access nor any permission.

5.1 Attacking a Shared Library

Just as Linux, Android uses a large number of shared li-
braries, each with a size of up to several megabytes. We
inspected all available libraries on the system by man-
ually scanning the names and identified libraries that
might be responsible for handling user input, e.g., the
libinput.so library. Without loss of generality, we re-
stricted the set of attacked libraries since testing all li-
braries would have taken a significant amount of time.
Yet, an adversary could exhaustively probe all libraries.

8

USENIX Association 25th USENIX Security Symposium 557

Table 4: Comparison of covert channels on Android.

Work Type Bandwidth [bps] Error rate

Ours (Samsung Galaxy S6) Flush+Reload, cross-core 1 140 650 1.10%
Ours (Samsung Galaxy S6) Flush+Reload, cross-CPU 257 509 1.83%
Ours (Samsung Galaxy S6) Flush+Flush, cross-core 178 292 0.48%
Ours (Alcatel One Touch Pop 2) Evict+Reload, cross-core 13 618 3.79%
Ours (OnePlus One) Evict+Reload, cross-core 12 537 5.00%
Marforio et al. [36] Type of Intents 4 300 –
Marforio et al. [36] UNIX socket discovery 2 600 –
Schlegel et al. [48] File locks 685 –
Schlegel et al. [48] Volume settings 150 –
Schlegel et al. [48] Vibration settings 87 –

We automated the search for addresses in these shared
libraries and after identifying addresses, we monitored
them in order to infer user input events. For in-
stance, in the profiling phase on libinput.so, we sim-
ulated events via the android-debug bridge (adb shell)
with two different methods. The first method uses
the input command line tool to simulate user input
events. The second method is writing event messages
to /dev/input/event*. Both methods can run entirely
on the device for instance in idle periods while the user is
not actively using the device. As the second method only
requires a write() statement it is significantly faster, but
it is also more device specific. Therefore, we used the
input command line except when profiling differences
between different letter keys. While simulating these
events, we simultaneously probed all addresses within
the libinput.so library, i.e., we measured the number
of cache hits that occurred on each address when trig-
gering a specific event. As already mentioned above, the
simulation of some events might require either an offline
phase or specific privileges in case of online attacks.

Figure 5 shows part of the cache template matrix
for libinput.so. We triggered the following events:
key events including the power button (key), long touch
events (longpress), swipe events, touch events (tap), and
text input events (text) via the input tool as often as pos-
sible and measured each address and event for one sec-
ond. The cache template matrix clearly reveals addresses
with high cache-hit rates for specific events. Darker col-
ors represent addresses with higher cache-hit rates for a
specific event and lighter colors represent addresses with
lower cache-hit rates. Hence, we can distinguish differ-
ent events based on cache hits on these addresses.

We verified our results by monitoring the identified
addresses while operating the smartphone manually, i.e.,
we touched the screen and our attack application reliably
reported cache hits on the monitored addresses. For in-
stance, address 0x11040 of libinput.so can be used to
distinguish tap actions and swipe actions on the screen of
the Alcatel One Touch Pop 2. Tap actions cause a smaller

0x
84

0
0x

88
0

0x
32

80
0x

77
00

0x
80

80
0x

81
00

0x
81

40
0x

88
40

0x
88

80
0x

89
00

0x
89

40
0x

89
80

0x
11

00
0

0x
11

04
0

0x
11

08
0

Addresses

text
tap

swipe
longpress

key

E
ve

nt
Figure 5: Cache template matrix for libinput.so.

0 5 10 15

50

100

150

200

Tap Tap Tap Swipe Swipe Swipe Tap Tap Tap Swipe Swipe

Time in seconds

A
cc

es
s

tim
e

Figure 6: Monitoring address 0x11040 of libinput.so
on the Alcatel One Touch Pop 2 reveals taps and swipes.

number of cache hits than swipe actions. Swipe actions
cause cache hits in a high frequency as long as the screen
is touched. Figure 6 shows a sequence of 3 tap events,
3 swipe events, 3 tap events, and 2 swipe events. These
events can be clearly distinguished due to the fast access
times. The gaps mark periods of time where our program
was not scheduled on the CPU. Events occurring in those
periods can be missed by our attack.

Swipe input allows to enter words by swiping over
the soft-keyboard and thereby connecting single charac-
ters to form a word. Since we are able to determine the
length of swipe movements, we can correlate the length
of the swipe movement with the actual word length in
any Android application or system interface that uses
swipe input without any privileges. Furthermore, we can
determine the actual length of the unlock pattern for the
pattern-unlock mechanism.

9

558 25th USENIX Security Symposium USENIX Association

Figure 7 shows a user input sequence consisting of 3
tap events and 3 swipe events on the Samsung Galaxy
S6. The attack was conducted using Flush+Reload.
An attacker can monitor every single event. Taps and
swipes can be distinguished based on the length of the
cache hit phase. The length of a swipe movement can
be determined from the same information. Figure 8
shows the same experiment on the OnePlus One using
Evict+Reload. Thus, our attack techniques work on co-
herent non-inclusive last-level caches.

0 2 4 6 8

200

400

Tap Tap Tap Swipe Swipe Swipe

Time in seconds

A
cc

es
s

tim
e

Figure 7: Monitoring address 0xDC5C of libinput.so
on the Samsung Galaxy S6 reveals tap and swipe events.

0 2 4 6

200

400

600

800

1,000

Tap Tap Tap Swipe Swipe Swipe

Time in seconds

A
cc

es
s

tim
e

Figure 8: Monitoring address 0xBFF4 of libinput.so
on the OnePlus One reveals tap and swipe events.

5.2 Attacking ART Binaries
Instead of attacking shared libraries, it is also possible
to apply this attack to ART (Android Runtime) executa-
bles [1] that are compiled ahead of time. We used this
attack on the default AOSP keyboard and evaluated the
number of accesses to every address in the optimized ex-
ecutable that responds to an input of a letter on the key-
board. It is possible to find addresses that correspond to
a key press and more importantly to distinguish between
taps and key presses. Figure 9 shows the correspond-
ing cache template matrix. We summarize the letter keys
in one line (alphabet) as they did not vary significantly.
These addresses can be used to monitor key presses on
the keyboard. We identified an address that corresponds
only to letters on the keyboard and hardly on the space
bar or the return button. With this information it is pos-

0x
45

14
0

0x
56

94
0

0x
57

28
0

0x
58

48
0

0x
60

28
0

0x
60

34
0

0x
60

58
0

0x
66

34
0

0x
66

38
0

Addresses

backspace

space

enter

alphabet

In
pu

t

Figure 9: Cache template matrix for the default AOSP
keyboard.

0 1 2 3 4 5 6 7

100

200

300

t h i s Space i s Space a Space m e s s a g e

Time in seconds

A
cc

es
s

tim
e

Key
Space

Figure 10: Evict+Reload on 2 addresses in custpack@

app@withoutlibs@LatinIME.apk@classes.dex on
the Alcatel One Touch Pop 2 while entering the sentence
“this is a message”.

sible to precisely determine the length of single words
entered using the default AOSP keyboard.

We illustrate the capability of detecting word lengths
in Figure 10. The blue line shows the timing measure-
ments for the address identified for keys in general, the
red dots represent measurements of the address for the
space key. The plot shows that we can clearly determine
the length of entered words and monitor user input accu-
rately over time.

5.3 Discussion and Impact

Our proof-of-concept attacks exploit shared libraries and
binaries from Android apk files to infer key strokes. The
cache template attack technique we used for these attacks
is generic and can also be used to attack any other li-
brary. For instance, there are various libraries that han-
dle different hardware modules and software events on
the device, such as GPS, Bluetooth, camera, NFC, vi-
brator, audio and video decoding, web and PDF viewers.
Each of these libraries contains code that is executed and
data that is accessed when the device is in use. Thus,
an attacker can perform a cache template attack on any
of these libraries and spy on the corresponding device
events. For instance, our attack can be used to monitor
activity of the GPS sensor, bluetooth, or the camera. An
attacker can record such user activities over time to learn
more about the user.

10

USENIX Association 25th USENIX Security Symposium 559

We can establish inter-keystroke timings at an ac-
curacy as high as the accuracy of cache side-channel
attacks on keystrokes on x86 systems with a physi-
cal keyboard. Thus, the inter-keystroke timings can
be used to infer entered words, as has been shown by
Zhang et al. [61]. Our attack even has a higher res-
olution than [61], i.e., it is sub-microsecond accurate.
Furthermore, we can distinguish between keystrokes on
the soft-keyboard and generic touch actions outside the
soft-keyboard. This information can be used to enhance
sensor-based keyloggers that infer user input on mobile
devices by exploiting, e.g., the accelerometer and the gy-
roscope [7,11,12,39,59] or the ambient-light sensor [49].
However, these attacks suffer from a lack of knowledge
when exactly a user touches the screen. Based on our at-
tack, these sensor-based keyloggers can be improved as
our attack allows to infer (1) the exact time when the user
touches the screen, and (2) whether the user touches the
soft-keyboard or any other region of the display.

Our attacks only require the user to install a malicious
app on the smartphone. However, as shown by Oren et al.
[42], Prime+Probe attacks can even be performed from
within browser sandboxes through remote websites using
JavaScript on Intel platforms. Gruss et al. [16] showed
that JavaScript timing measurements in web browsers
on ARM-based smartphones achieve a comparable ac-
curacy as on Intel platforms. Thus, it seems likely that
Prime+Probe through a website works on ARM-based
smartphones as well. We expect that such attacks will be
demonstrated in future work. The possibility of attack-
ing millions of users shifts the focus of cache attacks to
a new range of potential malicious applications.

In our experiments with the predecessor of ART, the
Dalvik VM, we found that the just-in-time compilation
effectively prevents Evict+Reload and Flush+Reload at-
tacks. The just-in-time compiled code is not shared and
thus the requirements for these two attacks are not met.
However, Prime+Probe attacks work on ART binaries
and just-in-time compiled Dalvik VM code likewise.

6 Attack on Cryptographic Algorithms

In this section we show how Flush+Reload,
Evict+Reload, and Prime+Probe can be used to
attack AES T-table implementations that are still in use
on Android devices. Furthermore, we demonstrate the
possibility to infer activities within the ARM TrustZone
by observing the cache activity using Prime+Probe. We
perform all attacks cross-core and in a synchronized
setting, i.e., the attacker triggers the execution of cryp-
tographic algorithms by the victim process. Although
more sophisticated attacks are possible, our goal is
to demonstrate that our work enables practical cache
attacks on smartphones.

6.1 AES T-Table Attacks

Many cache attacks against AES T-table implementa-
tions have been demonstrated and appropriate counter-
measures have already been proposed. Among these
countermeasures are, e.g., so-called bit-sliced implemen-
tations [29, 32, 46]. Furthermore, Intel addressed the
problem by adding dedicated instructions for AES [20]
and ARM also follows the same direction with the
ARMv8 instruction set [4]. However, our investiga-
tions showed that Bouncy Castle, a crypto library widely
used in Android apps such as the WhatsApp messen-
ger [2], still uses a T-table implementation. Moreover,
the OpenSSL library, which is the default crypto provider
on recent Android versions, uses T-table implementa-
tions until version 1.0.1.3 This version is still officially
supported and commonly used on Android devices, e.g.,
the Alcatel One Touch Pop 2. T-tables contain the pre-
computed AES round transformations, allowing to per-
form encryptions and decryptions by simple XOR oper-
ations. For instance, let pi denote the plaintext bytes,
ki the initial key bytes, and si = pi ⊕ ki the initial state
bytes. The initial state bytes are used to retrieve pre-
computed T-table elements for the next round. If an at-
tacker knows a plaintext byte pi and the accessed ele-
ment of the T-table, it is possible to recover the key bytes
ki = si ⊕ pi. However, it is only possible to derive the
upper 4 bits of ki through our cache attack on a device
with a cache line size of 64 bytes. This way, the attacker
can learn 64 key bits. In second-round and last-round at-
tacks the key space can be reduced further. For details
about the basic attack strategy we refer to the work of
Osvik et al. [43, 54]. Although we successfully mounted
an Evict+Reload attack on the Alcatel One Touch Pop
2 against the OpenSSL AES implementation, we do not
provide further insights as we are more interested to per-
form the first cache attack on a Java implementation.

Attack on Bouncy Castle. Bouncy Castle is imple-
mented in Java and provides various cryptographic prim-
itives including AES. As Bouncy Castle 1.5 still employs
AES T-table implementations by default, all Android de-
vices that use this version are vulnerable to our presented
attack. To the best of our knowledge, we are the first to
show an attack on a Java implementation.

During the initialization of Bouncy Castle, the T-tables
are copied to a local private memory area. Therefore,
these copies are not shared among different processes.
Nevertheless, we demonstrate that Flush+Reload and
Evict+Reload are efficient attacks on such an implemen-

3Later versions use a bit-sliced implementation if ARM NEON is
available or dedicated AES instructions if ARMv8-A instructions are
available. Otherwise, a T-table implementation is used. This is also the
case for Google’s BoringSSL library.

11

560 25th USENIX Security Symposium USENIX Association

0x
00

0x
10

0x
20

0x
30

0x
40

0x
50

0x
60

0x
70

0x
80

0x
90

0x
A

0
0x

B
0

0x
C

0
0x

D
0

0x
E

0
0x

F
0

Plaintext byte values

A
dd

re
ss

0x
00

0x
10

0x
20

0x
30

0x
40

0x
50

0x
60

0x
70

0x
80

0x
90

0x
A

0
0x

B
0

0x
C

0
0x

D
0

0x
E

0
0x

F
0

Plaintext byte values

A
dd

re
ss

Figure 11: Attack on Bouncy Castle’s AES using
Evict+Reload on the Alcatel One Touch Pop 2 (left) and
Flush+Reload on the Samsung Galaxy S6 (right).

tation if shared memory is available. Further, we demon-
strate a cross-core Prime+Probe attack without shared
memory that is applicable in a real-world scenario.

Figure 11 shows a template matrix of the first T-table
for all 256 values for plaintext byte p0 and a key that
is fixed to 0 while the remaining plaintext bytes are
random. These plots reveal the upper 4 key bits of
k0 [43, 51]. Thus, in our case the key space is reduced
to 64 bits after 256–512 encryptions. We consider a first-
round attack only, because we aim to demonstrate the
applicability of these attacks on ARM-based mobile de-
vices. However, full-key recovery is possible with the
same techniques by considering more sophisticated at-
tacks targeting different rounds [47, 54], even for asyn-
chronous attackers [22, 26].

We can exploit the fact that the T-tables are placed on
a different boundary every time the process is started. By
restarting the victim application we can obtain arbitrary
disalignments of T-tables. Disaligned T-tables allow to
reduce the key space to 20 bits on average and for spe-
cific disalignments even full-key recovery without a sin-
gle brute-force computation is possible [51, 53]. We ob-
served not a single case where the T-tables were aligned.
Based on the first-round attack matrix in Figure 11, the
expected number of encryptions until a key byte is iden-
tified is 1.81 · 128. Thus, full key recovery is possible
after 1.81 ·128 ·16 = 3707 encryptions by monitoring a
single address during each encryption.

Real-world cross-core attack on Bouncy Castle. If
the attacker has no way to share a targeted mem-
ory region with the victim, Prime+Probe instead of
Evict+Reload or Flush+Reload can be used. This is the
case for dynamically generated data or private memory
of another process. Figure 12 shows the Prime+Probe
histogram for cache hits and cache misses. We observe a
higher execution time if the victim accesses a congruent
memory location. Thus, Prime+Probe can be used for
a real-world cross-core attack on Bouncy Castle and also
allows to exploit disaligned T-tables as mentioned above.

1,500 2,000 2,500 3,000 3,500
0

2,000

4,000

6,000

Execution time in CPU cycles

N
um

be
ro

fc
as

es Victim access
No victim access

Figure 12: Histogram of Prime+Probe timings depend-
ing on whether the victim accesses congruent memory
on the ARM Cortex-A53.

0x
00

0x
10

0x
20

0x
30

0x
40

0x
50

0x
60

0x
70

0x
80

0x
90

0x
A

0
0x

B
0

0x
C

0
0x

D
0

0x
E

0
0x

F
0

Plaintext byte values

0x3C0
0x380
0x340
0x300
0x2C0
0x280
0x240

O
ff

se
t

Figure 13: Excerpt of the attack on Bouncy Castle’s AES
using Prime+Probe.

In a preprocessing step, the attacker identifies the
cache sets to be attacked by performing random encryp-
tions and searching for active cache sets. Recall that the
cache set (index) is derived directly from the physical ad-
dress on ARM, i.e., the lowest n bits determine the offset
within a 2n-byte cache line and the next s bits determine
one of the 2s cache sets. Thus, we only have to find a
few cache sets where a T-table maps to in order to iden-
tify all cache sets required for the attack. On x86 the
replacement policy facilitates this attack and allows even
to deduce the number of ways that have been replaced in
a specific cache set [43]. On ARM the random replace-
ment policy makes Prime+Probe more difficult as cache
lines are replaced in a less predictable way. To launch a
Prime+Probe attack, we apply the eviction strategy and
the crafted reaccess patterns we described in Section 3.2.

Figure 13 shows an excerpt of the cache template ma-
trix resulting from a Prime+Probe attack on one T-table.
For each combination of plaintext byte and offset we per-
formed 100000 encryptions for illustration purposes. We
only need to monitor a single address to obtain the upper
4 bits of si and, thus, the upper 4 bits of ki = si ⊕ pi.
Compared to the Evict+Reload attack from the previous
section, Prime+Probe requires 3 times as many measure-
ments to achieve the same accuracy. Nevertheless, our
results show that an attacker can run Prime+Probe at-
tacks on ARM CPUs just as on Intel CPUs.

12

USENIX Association 25th USENIX Security Symposium 561

6.2 Spy on TrustZone Code Execution

The ARM TrustZone is a hardware-based security tech-
nology built into ARM CPUs to provide a secure exe-
cution environment [4]. This trusted execution environ-
ment is isolated from the normal world using hardware
support. The TrustZone is used, e.g., as a hardware-
backed credential store, to emulate secure elements for
payment applications, digital rights management as well
as verified boot and kernel integrity measurements. The
services are provided by so-called trustlets, i.e., applica-
tions that run in the secure world.

Since the secure monitor can only be called from the
supervisor context, the kernel provides an interface for
the userspace to interact with the TrustZone. On the
Alcatel One Touch Pop 2, the TrustZone is accessible
through a device driver called QSEECOM (Qualcomm
Secure Execution Environment Communication) and a
library libQSEEComAPI.so. The key master trustlet on
the Alcatel One Touch Pop 2 provides an interface to
generate hardware-backed RSA keys, which can then be
used inside the TrustZone to sign and verify signatures.

Our observations showed that a Prime+Probe at-
tack on the TrustZone is not much different from a
Prime+Probe attack on any application in the normal
world. However, as we do not have access to the source
code of the TrustZone OS or any trustlet, we only con-
duct simple attacks.4 We show that Prime+Probe can be
used to distinguish whether a provided key is valid or not.
While this might also be observable through the overall
execution time, we demonstrate that the TrustZone isola-
tion does not protect against cache attacks from the nor-
mal world and any trustlet can be attacked.

We evaluated cache profiles for multiple valid as well
as invalid keys. Figure 14 shows the mean squared er-
ror over two runs for different valid keys and one in-
valid key compared to the average of valid keys. We
performed Prime+Probe before and after the invocation
of the corresponding trustlet, i.e., prime before the invo-
cation and probe afterwards. We clearly see a difference
in some sets (cache sets 250–320) that are used during
the signature generation using a valid key. These cache
profiles are reproducible and can be used to distinguish
whether a valid or an invalid key has been used in the
TrustZone. Thus, the secure world leaks information to
the non-secure world.

On the Samsung Galaxy S6, the TrustZone flushes the
cache when entering or leaving the trusted world. How-
ever, by performing a Prime+Probe attack in parallel,
i.e., multiple times while the trustlet performs the corre-
sponding computations, the same attack can be mounted.

4More sophisticated attacks would be possible by reverse engineer-
ing these trustlets.

260 280 300 320 340
0

0.5

1

1.5
·106

Set number

Pr
ob

in
g

tim
e

in
C

PU
cy

cl
es

Valid key 1
Valid key 2
Valid key 3
Invalid key

Figure 14: Mean squared error between the average
Prime+Probe timings of valid keys and invalid keys on
the Alcatel One Touch Pop 2.

7 Countermeasures

Although our attacks exploit hardware weaknesses,
software-based countermeasures could impede such at-
tacks. Indeed, we use unprotected access to system in-
formation that is available on all Android versions.

As we have shown, the operating system cannot pre-
vent access to timing information. However, other in-
formation supplied by the operating system that facil-
itates these attacks could be restricted. For instance,
we use /proc/pid/ to retrieve information about any
other process on the device, e.g., /proc/pid/pagemap
is used to resolve virtual addresses to physical ad-
dresses. Even though access to /proc/pid/pagemap

and /proc/self/pagemap has been restricted in Linux
in early 2015, the Android kernel still allows access to
these resources. Given the immediately applicable at-
tacks we presented, we stress the urgency to merge the
corresponding patches into the Android kernel. Further-
more, we use /proc/pid/maps to determine shared ob-
jects that are mapped into the address space of a victim.
Restricting access to procfs to specific privileges or per-
missions would make attacks harder. We recommend this
for both the Linux kernel as well as Android.

We also exploit the fact that access to shared li-
braries as well as dex and art optimized program bi-
naries is only partially restricted on the file system
level. While we cannot retrieve a directory listing of
/data/dalvik-cache/, all files are readable for any
process or Android application. We recommend to allow
read access to these files to their respective owner ex-
clusively to prevent Evict+Reload, Flush+Reload, and
Flush+Flush attacks through these shared files.

In order to prevent cache attacks against AES T-tables,
hardware instructions should be used. If this is not an op-
tion, a software-only bit-sliced implementation must be
employed, especially when disalignment is possible, as it
is the case in Java. Since OpenSSL 1.0.2 a bit-sliced im-
plementation is available for devices capable of the ARM

13

562 25th USENIX Security Symposium USENIX Association

NEON instruction set and dedicated AES instructions are
used on ARMv8-A devices. Cryptographic algorithms
can also be protected using cache partitioning [34]. How-
ever, cache partitioning comes with a performance im-
pact and it can not prevent all attacks, as the number of
cache partitions is limited.

We responsibly disclosed our attacks and the pro-
posed countermeasures to Google and other development
groups prior to the publication of our attacks. Google
has applied upstream patches preventing access to
/proc/pid/pagemap in early 2016 and recommended
installing the security update in March 2016 [15].

8 Conclusion

In this work we demonstrated the most powerful
cross-core cache attacks Prime+Probe, Flush+Reload,
Evict+Reload, and Flush+Flush on default configured
unmodified Android smartphones. Furthermore, these
attacks do not require any permission or privileges. In
order to enable these attacks in real-world scenarios,
we have systematically solved all challenges that pre-
vented highly accurate cache attacks on ARM so far.
Our attacks are the first cross-core and cross-CPU at-
tacks on ARM CPUs. Furthermore, our attack tech-
niques provide a high resolution and a high accuracy,
which allows monitoring singular events such as touch
and swipe actions on the screen, touch actions on the
soft-keyboard, and inter-keystroke timings. In addition,
we show that efficient state-of-the-art key-recovery at-
tacks can be mounted against the default AES imple-
mentation that is part of the Java Bouncy Castle crypto
provider and that cache activity in the ARM TrustZone
can be monitored from the normal world.

The presented example attacks are by no means ex-
haustive and launching our proposed attack against other
libraries and apps will reveal numerous further ex-
ploitable information leaks. Our attacks are applicable
to hundreds of millions of today’s off-the-shelf smart-
phones as they all have very similar if not identical hard-
ware. This is especially daunting since smartphones have
become the most important personal computing devices
and our techniques significantly broaden the scope and
impact of cache attacks.

Acknowledgment

We would like to thank our anonymous reviewers for
their valuable comments and suggestions.

Supported by the EU Horizon 2020 pro-
gramme under GA No. 644052 (HEC-
TOR), the EU FP7 programme under GA
No. 610436 (MATTHEW), and the Aus-

trian Research Promotion Agency (FFG) under grant
number 845579 (MEMSEC).

References
[1] ANDROID OPEN SOURCE PROJECT. Configuring ART.

https://source.android.com/devices/tech/dalvik/

configure.html, Nov. 2015. Retrieved on November 10,
2015.

[2] APPTORNADO. AppBrain - Android library statistics - Spongy
Castle - Bouncy Castle for Android. http://www.appbrain.

com/stats/libraries/details/spongycastle/spongy-

castle-bouncy-castle-for-android, June 2016. Re-
trieved on June 6, 2016.

[3] ARM LIMITED. ARM Architecture Reference Manual. ARMv7-A
and ARMv7-R edition. ARM Limited, 2012.

[4] ARM LIMITED. ARM Architecture Reference Manual ARMv8.
ARM Limited, 2013.

[5] ARM LIMITED. ARM Cortex-A57 MPCore Processor Technical
Reference Manual r1p0. ARM Limited, 2013.

[6] ARM LIMITED. ARM Cortex-A53 MPCore Processor Technical
Reference Manual r0p3. ARM Limited, 2014.

[7] AVIV, A. J., SAPP, B., BLAZE, M., AND SMITH, J. M. Prac-
ticality of Accelerometer Side Channels on Smartphones. In
Annual Computer Security Applications Conference – ACSAC
(2012), ACM, pp. 41–50.

[8] BENGER, N., VAN DE POL, J., SMART, N. P., AND YAROM, Y.
”Ooh Aah... Just a Little Bit” : A Small Amount of Side Channel
Can Go a Long Way. In Cryptographic Hardware and Embedded
Systems – CHES (2014), vol. 8731 of LNCS, Springer, pp. 75–92.

[9] BERNSTEIN, D. J. Cache-Timing Attacks on AES, 2004. URL:
http://cr.yp.to/papers.html#cachetiming.

[10] BOGDANOV, A., EISENBARTH, T., PAAR, C., AND WIENECKE,
M. Differential Cache-Collision Timing Attacks on AES with
Applications to Embedded CPUs. In Topics in Cryptology – CT-
RSA (2010), vol. 5985 of LNCS, Springer, pp. 235–251.

[11] CAI, L., AND CHEN, H. TouchLogger: Inferring Keystrokes on
Touch Screen from Smartphone Motion. In USENIX Workshop
on Hot Topics in Security – HotSec (2011), USENIX Association.

[12] CAI, L., AND CHEN, H. On the Practicality of Motion Based
Keystroke Inference Attack. In Trust and Trustworthy Computing
– TRUST (2012), vol. 7344 of LNCS, Springer, pp. 273–290.

[13] GALLAIS, J., KIZHVATOV, I., AND TUNSTALL, M. Improved
Trace-Driven Cache-Collision Attacks against Embedded AES
Implementations. In Workshop on Information Security Applica-
tions – WISA (2010), vol. 6513 of LNCS, Springer, pp. 243–257.

[14] GALLAIS, J.-F., AND KIZHVATOV, I. Error-Tolerance in Trace-
Driven Cache Collision Attacks. In COSADE (2011), pp. 222–
232.

[15] GOOGLE INC. Nexus Security Bulletin - March 2016. https:

//source.android.com/security/bulletin/2016-03-

01.html, Mar. 2016. Retrieved on June 6, 2016.

[16] GRUSS, D., BIDNER, D., AND MANGARD, S. Practical Mem-
ory Deduplication Attacks in Sandboxed Javascript. In European
Symposium on Research – ESORICS (2015), vol. 9326 of LNCS,
Springer, pp. 108–122.

14

USENIX Association 25th USENIX Security Symposium 563

[17] GRUSS, D., MAURICE, C., AND MANGARD, S. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript.
In DIMVA’16 (2016).

[18] GRUSS, D., MAURICE, C., WAGNER, K., AND MANGARD, S.
Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA’16
(2016).

[19] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches. In USENIX Security Symposium (2015), USENIX Asso-
ciation, pp. 897–912.

[20] GUERON, S. White Paper: Intel Advanced Encryption Stan-
dard (AES) Instructions Set, 2010. URL: https://software.
intel.com/file/24917.

[21] GULLASCH, D., BANGERTER, E., AND KRENN, S. Cache
Games – Bringing Access-Based Cache Attacks on AES to Prac-
tice. In IEEE Symposium on Security and Privacy – S&P (2011),
IEEE Computer Society, pp. 490–505.

[22] GÜLMEZOGLU, B., INCI, M. S., APECECHEA, G. I., EISEN-
BARTH, T., AND SUNAR, B. A Faster and More Realistic
Flush+Reload Attack on AES. In Constructive Side-Channel
Analysis and Secure Design – COSADE (2015), vol. 9064 of
LNCS, Springer, pp. 111–126.

[23] HUND, R., WILLEMS, C., AND HOLZ, T. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In IEEE Sympo-
sium on Security and Privacy – S&P (2013), IEEE, pp. 191–205.

[24] IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. S$A: A
Shared Cache Attack that Works Across Cores and Defies VM
Sandboxing – and its Application to AES. In IEEE Symposium
on Security and Privacy – S&P (2015), IEEE Computer Society.

[25] IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. Cross Pro-
cessor Cache Attacks. In ACM Computer and Communications
Security – ASIACCS (2016), ACM, pp. 353–364.

[26] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR, B.
Wait a Minute! A fast, Cross-VM Attack on AES. In Research
in Attacks, Intrusions and Defenses Symposium – RAID (2014),
vol. 8688 of LNCS, Springer, pp. 299–319.

[27] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR,
B. Know Thy Neighbor: Crypto Library Detection in Cloud.
Privacy Enhancing Technologies 1, 1 (2015), 25–40.

[28] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR, B.
Lucky 13 Strikes Back. In ACM Computer and Communications
Security – ASIACCS (2015), ACM, pp. 85–96.

[29] KÄSPER, E., AND SCHWABE, P. Faster and Timing-Attack Re-
sistant AES-GCM. In Cryptographic Hardware and Embedded
Systems – CHES (2009), vol. 5747 of LNCS, Springer, pp. 1–17.

[30] KELSEY, J., SCHNEIER, B., WAGNER, D., AND HALL, C. Side
Channel Cryptanalysis of Product Ciphers. Journal of Computer
Security 8, 2/3 (2000), 141–158.

[31] KOCHER, P. C. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In Advances in Cryp-
tology – CRYPTO (1996), vol. 1109 of LNCS, Springer, pp. 104–
113.

[32] KÖNIGHOFER, R. A Fast and Cache-Timing Resistant Imple-
mentation of the AES. In Topics in Cryptology – CT-RSA (2008),
vol. 4964 of LNCS, Springer, pp. 187–202.

[33] LAL SHIMPI, ANANDTECH. Answered by the Experts:
ARM’s Cortex A53 Lead Architect, Peter Greenhalgh.
http://www.anandtech.com/show/7591/answered-

by-the-experts-arms-cortex-a53-lead-architect-

peter-greenhalgh, Dec. 2013. Retrieved on November 10,
2015.

[34] LIU, F., GE, Q., YAROM, Y., MCKEEN, F., ROZAS, C. V.,
HEISER, G., AND LEE, R. B. CATalyst: Defeating Last-Level
Cache Side Channel Attacks in Cloud Computing. In IEEE In-
ternational Symposium on High Performance Computer Archi-
tecture – HPCA (2016), IEEE Computer Society, pp. 406–418.

[35] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.
Last-Level Cache Side-Channel Attacks are Practical. In IEEE
Symposium on Security and Privacy – SP (2015), IEEE Computer
Society, pp. 605–622.

[36] MARFORIO, C., RITZDORF, H., FRANCILLON, A., AND CAP-
KUN, S. Analysis of the Communication Between Colluding Ap-
plications on Modern Smartphones. In Annual Computer Security
Applications Conference – ACSAC (2012), ACM, pp. 51–60.

[37] MAURICE, C., NEUMANN, C., HEEN, O., AND FRANCILLON,
A. C5: Cross-Cores Cache Covert Channel. In Detection of
Intrusions and Malware, and Vulnerability Assessment – DIMVA
(2015), vol. 9148 of LNCS, Springer, pp. 46–64.

[38] MAURICE, C., SCOUARNEC, N. L., NEUMANN, C., HEEN, O.,
AND FRANCILLON, A. Reverse Engineering Intel Last-Level
Cache Complex Addressing Using Performance Counters. In
Research in Attacks, Intrusions, and Defenses – RAID (2015),
vol. 9404 of LNCS, Springer, pp. 48–65.

[39] MILUZZO, E., VARSHAVSKY, A., BALAKRISHNAN, S., AND
CHOUDHURY, R. R. Tapprints: Your Finger Taps Have Finger-
prints. In Mobile Systems, Applications, and Services – MobiSys
(2012), ACM, pp. 323–336.

[40] NEVE, M. Cache-based Vulnerabilities and SPAM Analysis. PhD
thesis, UCL, 2006.

[41] NEVE, M., SEIFERT, J., AND WANG, Z. A Refined Look at
Bernstein’s AES Side-Channel Analysis. In ACM Computer and
Communications Security – ASIACCS (2006), ACM, p. 369.

[42] OREN, Y., KEMERLIS, V. P., SETHUMADHAVAN, S., AND
KEROMYTIS, A. D. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications. In Conference on
Computer and Communications Security – CCS (2015), ACM,
pp. 1406–1418.

[43] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache Attacks
and Countermeasures: The Case of AES. In Topics in Cryptology
– CT-RSA (2006), vol. 3860 of LNCS, Springer, pp. 1–20.

[44] PAGE, D. Theoretical Use of Cache Memory as a Cryptanalytic
Side-Channel. IACR Cryptology ePrint Archive 2002/169.

[45] PERCIVAL, C. Cache Missing for Fun and Profit,
2005. URL: http://daemonology.net/hyperthreading-
considered-harmful/.

[46] REBEIRO, C., SELVAKUMAR, A. D., AND DEVI, A. S. L. Bit-
slice Implementation of AES. In Cryptology and Network Secu-
rity – CANS (2006), vol. 4301 of LNCS, Springer, pp. 203–212.

[47] SAVAS, E., AND YILMAZ, C. A Generic Method for the Analysis
of a Class of Cache Attacks: A Case Study for AES. Comput. J.
58, 10 (2015), 2716–2737.

[48] SCHLEGEL, R., ZHANG, K., ZHOU, X., INTWALA, M., KA-
PADIA, A., AND WANG, X. Soundcomber: A Stealthy and
Context-Aware Sound Trojan for Smartphones. In Network and
Distributed System Security Symposium – NDSS (2011), The In-
ternet Society.

[49] SPREITZER, R. PIN Skimming: Exploiting the Ambient-Light
Sensor in Mobile Devices. In Security and Privacy in Smart-
phones & Mobile Devices – SPSM@CCS (2014), ACM, pp. 51–
62.

[50] SPREITZER, R., AND GÉRARD, B. Towards More Practical
Time-Driven Cache Attacks. In Information Security Theory and
Practice – WISTP (2014), vol. 8501 of LNCS, Springer, pp. 24–
39.

15

564 25th USENIX Security Symposium USENIX Association

[51] SPREITZER, R., AND PLOS, T. Cache-Access Pattern Attack on
Disaligned AES T-Tables. In Constructive Side-Channel Anal-
ysis and Secure Design – COSADE (2013), vol. 7864 of LNCS,
Springer, pp. 200–214.

[52] SPREITZER, R., AND PLOS, T. On the Applicability of Time-
Driven Cache Attacks on Mobile Devices. In Network and System
Security – NSS (2013), vol. 7873 of LNCS, Springer, pp. 656–662.

[53] TAKAHASHI, J., FUKUNAGA, T., AOKI, K., AND FUJI, H.
Highly Accurate Key Extraction Method for Access-Driven
Cache Attacks Using Correlation Coefficient. In Australasian
Conference Information Security and Privacy – ACISP (2013),
vol. 7959 of LNCS, Springer, pp. 286–301.

[54] TROMER, E., OSVIK, D. A., AND SHAMIR, A. Efficient Cache
Attacks on AES, and Countermeasures. Journal Cryptology 23,
1 (2010), 37–71.

[55] TSUNOO, Y., SAITO, T., SUZAKI, T., SHIGERI, M., AND
MIYAUCHI, H. Cryptanalysis of DES Implemented on Com-
puters with Cache. In Cryptographic Hardware and Embedded
Systems – CHES (2003), vol. 2779 of LNCS, Springer, pp. 62–76.

[56] VAN DE POL, J., SMART, N. P., AND YAROM, Y. Just a Little
Bit More. In Topics in Cryptology – CT-RSA (2015), vol. 9048 of
LNCS, Springer, pp. 3–21.

[57] WEISS, M., HEINZ, B., AND STUMPF, F. A Cache Timing At-
tack on AES in Virtualization Environments. In Financial Cryp-
tography and Data Security – FC (2012), vol. 7397 of LNCS,
Springer, pp. 314–328.

[58] WEISS, M., WEGGENMANN, B., AUGUST, M., AND SIGL, G.
On Cache Timing Attacks Considering Multi-core Aspects in Vir-
tualized Embedded Systems. In Trusted Systems – INTRUST
(2014), vol. 9473 of LNCS, Springer, pp. 151–167.

[59] XU, Z., BAI, K., AND ZHU, S. TapLogger: Inferring User In-
puts on Smartphone Touchscreens Using On-board Motion Sen-
sors. In Security and Privacy in Wireless and Mobile Networks –
WISEC (2012), ACM, pp. 113–124.

[60] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack. In
USENIX Security Symposium (2014), USENIX Association,
pp. 719–732.

[61] ZHANG, K., AND WANG, X. Peeping Tom in the Neighborhood:
Keystroke Eavesdropping on Multi-User Systems. In USENIX

Security Symposium (2009), USENIX Association, pp. 17–32.

16

USENIX Association 25th USENIX Security Symposium 565

DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz and Stefan Mangard
Graz University of Technology, Austria

Abstract
In cloud computing environments, multiple tenants are

often co-located on the same multi-processor system.
Thus, preventing information leakage between tenants is
crucial. While the hypervisor enforces software isola-
tion, shared hardware, such as the CPU cache or mem-
ory bus, can leak sensitive information. For security rea-
sons, shared memory between tenants is typically dis-
abled. Furthermore, tenants often do not share a physical
CPU. In this setting, cache attacks do not work and only
a slow cross-CPU covert channel over the memory bus is
known. In contrast, we demonstrate a high-speed covert
channel as well as the first side-channel attack working
across processors and without any shared memory. To
build these attacks, we use the undocumented DRAM
address mappings.

We present two methods to reverse engineer the map-
ping of memory addresses to DRAM channels, ranks,
and banks. One uses physical probing of the memory
bus, the other runs entirely in software and is fully au-
tomated. Using this mapping, we introduce DRAMA at-
tacks, a novel class of attacks that exploit the DRAM row
buffer that is shared, even in multi-processor systems.
Thus, our attacks work in the most restrictive environ-
ments. First, we build a covert channel with a capacity
of up to 2 Mbps, which is three to four orders of mag-
nitude faster than memory-bus-based channels. Second,
we build a side-channel template attack that can automat-
ically locate and monitor memory accesses. Third, we
show how using the DRAM mappings improves existing
attacks and in particular enables practical Rowhammer
attacks on DDR4.

1 Introduction

Due to the popularity of cloud services, multiple tenants
sharing the same physical server through different vir-
tual machines (VMs) is now a common situation. In

such settings, a major requirement is that no sensitive
information is leaked between tenants, therefore proper
isolation mechanisms are crucial to the security of these
environments. While software isolation is enforced by
hypervisors, shared hardware presents risks of informa-
tion leakage between tenants. Previous research shows
that microarchitectural attacks can leak secret informa-
tion of victim processes, e.g., by clever analysis of data-
dependent timing differences. Such side-channel mea-
surements allow the extraction of secret information like
cryptographic keys or enable communication over isola-
tion boundaries via covert channels.

Cloud providers can deploy different hardware config-
urations, however multi-processor systems are becoming
ubiquitous due to their numerous advantages. They offer
high peak performance for parallelized tasks while en-
abling sharing of other hardware resources such as the
DRAM. They also simplify load balancing while still
keeping the area and cost footprint low. Additionally,
cloud providers now commonly disable memory dedu-
plication between VMs for security reasons.

To attack such configurations, successful and practical
attacks must comply with the following requirements:

1. Work across processors: As these configurations
are now ubiquitous, an attack that does not work
across processors is severely limited and can be triv-
ially mitigated by exclusively assigning processors
to tenants or via the scheduler.

2. Work without any shared memory: With memory
deduplication disabled, shared memory is not avail-
able between VMs. All attacks that require shared
memory are thus completely mitigated in cross-VM
settings with such configurations.

In the last years, the most prominent and well-studied
example of shared-hardware exploits is cache attacks.
They use the processor-integrated cache and were shown
to be effective in a multitude of settings, such as cross-
VM key-recovery attacks [9, 12, 20, 30], including at-
tacks across cores [5, 14, 16, 28]. However, due to the

1

566 25th USENIX Security Symposium USENIX Association

cache being local to the processor, these attacks do not
work across processors and thus violate requirement 1.
Note that in a recent concurrent work, Irazoqui et al.
[11] presented a cross-CPU cache attack which exploits
cache coherency mechanisms in multi-processor sys-
tems. However, their approach requires shared mem-
ory and thus violates requirement 2. The whole class
of cache attacks is therefore not applicable in multi-
processor systems without any shared memory.

Other attacks leverage the main memory that is
a shared resource even in multi-processor systems.
Xiao et al. [26] presented a covert channel that exploits
memory deduplication. This covert channel has a low
capacity and requires the availability of shared memory,
thus violating requirement 2. Wu et al. [25] presented a
covert channel exploiting the locking mechanism of the
memory bus. While this attack works across processors,
the capacity of the covert channel is orders of magnitude
lower than that of current cache covert channels.

Therefore, only a low capacity covert channel and no
side-channel have been showed with the two aforemen-
tioned requirements so far. In contrast, we demonstrate
two attacks that do not use shared memory and work
across processors: a high-speed covert channel as well
as the first side-channel attack.

Contributions. Our attacks require knowledge of the un-
documented mapping of memory addresses to DRAM
channels, ranks, and banks. We therefore present two
methods to reverse engineer this mapping. The first
method retrieves the correct addressing functions by per-
forming physical probing of the memory bus. The sec-
ond method is entirely software-based, fully automatic,
and relies only on timing differences.1 Thus, it can be
executed remotely and enables finding DRAM address
mappings even in VMs in the cloud. We reverse en-
gineered the addressing functions on a variety of pro-
cessors and memory configurations. Besides consumer-
grade PCs, we also analyzed a dual-CPU server system
– similar to those found in cloud setups – and multiple
recent smartphones.

Using this reverse-engineered mapping, we present
DRAMA attacks, a novel class of attacks that exploit
the DRAM Addressing. In particular, they leverage
DRAM row buffers that are a shared component in multi-
processor systems. Our attacks require that at least one
memory module is shared between the attacker and the
victim, which is the case even in the most restrictive set-
tings. In these settings, attacker and victim cannot ac-
cess the same memory cells, i.e., we do not circumvent
system-level memory isolation. We do not make any as-
sumptions on the cache, nor on the location of executing

1The source code of this reverse-engineering tool and exem-
plary DRAMA attacks can be found at https://github.com/IAIK/
drama.

cores, nor on the availability of shared memory such as
cross-VM memory deduplication.

First, we build a covert channel that achieves transmis-
sion rates of up to 2 Mbps, which is three to four orders
of magnitude faster than previously presented memory-
bus based channels. Second, we build a side channel that
allows to automatically locate and monitor memory ac-
cesses, e.g., user input or server requests, by perform-
ing template attacks. Third, we show how the reverse-
engineered mapping can be used to improve existing at-
tacks. Existing Flush+Reload cache attacks use an in-
correct cache-miss threshold, introducing noise and re-
ducing the spatial accuracy. Knowledge of the DRAM
address mapping also enables practical Rowhammer at-
tacks on DDR4.

Outline. The remainder of the paper is organized as fol-
lows. In Section 2, we provide background information
on side channels on shared hardware, on DRAM, and
on the Rowhammer attack. In Section 3, we provide
definitions that we use throughout the paper. In Sec-
tion 4, we describe our two approaches to reverse engi-
neer the DRAM addressing and we provide the reverse-
engineered functions. In Section 5, we build a high-
speed cross-CPU DRAMA covert channel. In Section 6,
we build a highly accurate cross-CPU DRAMA side
channel attack. In Section 7, we show how the knowl-
edge of the DRAM addressing improves cache attacks
like Flush+Reload and we show how it makes Rowham-
mer attacks practical on DDR4 and more efficient on
DDR3. We discuss countermeasures against our attack
in Section 8. We conclude in Section 9.

2 Background and related work

In this section, we discuss existing covert and side chan-
nels and give an introduction to DRAM. Furthermore, we
briefly explain the Rowhammer bug and its implications.

2.1 Hardware covert and side channels
Attacks exploiting hardware sharing can be grouped into
two categories. In side-channel attacks, an attacker spies
on a victim and extracts sensitive information such as
cryptographic keys. In covert channels however, sender
and receiver are actively cooperating to exchange infor-
mation in a setting where they are not allowed to, e.g.,
across isolation boundaries.

Cache attacks. Covert and side channels using the CPU
cache exploit the fact that cache hits are faster than
cache misses. The methods Prime+Probe [14,16,19] and
Flush+Reload [2, 12, 28] have been presented to either
build covert or side channels. These two methods work
at a different granularity: Prime+Probe can spy on cache

2

USENIX Association 25th USENIX Security Symposium 567

sets, while Flush+Reload has the finer granularity of a
cache line but requires shared memory, such as shared
libraries or memory deduplication.

Attacks targeting the last-level cache are cross-core,
but require the sender and receiver to run on the same
physical CPU. Gruss et al. [5] implemented cross-core
covert channels using Prime+Probe and Flush+Reload
as well as a new one, Flush+Flush, with the same
protocol to normalize the results. The covert channel
using Prime+Probe achieves 536 Kbps, Flush+Reload
2.3 Mbps, and Flush+Flush 3.8 Mbps. The most recent
cache attack by Irazoqui et al. [11] exploits cache co-
herency mechanisms and work across processors. It
however requires shared memory.

An undocumented function maps physical addresses
to the slices of the last-level cache. However, this func-
tion has been reverse engineered in previous work [9,15,
29], enhancing existing attacks and enabling attacks in
new environments.

Memory and memory bus. Xiao et al. [26] presented
a covert channel that exploits memory deduplication. In
order to save memory, the hypervisor searches for identi-
cal pages in physical memory and merges them across
VMs to a single read-only physical page. Writing to
this page triggers a copy-on-write page fault, incurring
a significantly higher latency than a regular write access.
The authors built a covert channel that achieves up to
90 bps, and 40 bps on a system under memory pressure.
Wu et al. [25] proposed a bus-contention-based covert
channel, that uses atomic memory operations locking the
memory bus. This covert channel achieves a raw band-
width of 38 Kbps between two VMs, with an effective
capacity of 747 bps with error correction.

2.2 DRAM organization
Modern DRAM is organized in a hierarchy of channels,
DIMMs, ranks, and banks. A system can have one or
more channels, which are physical links between the
DRAM modules and the memory controller. Channels
are independent and can be accessed in parallel. This
allows distribution of the memory traffic, increasing the
bandwidth, and reducing the latency in many cases. Mul-
tiple Dual Inline Memory Modules (DIMMs), which are
the physical memory modules attached to the mainboard,
can be connected to each channel. A DIMM typically has
one or two ranks, which often correspond to the front
and back of the physical module. Each rank is com-
posed of banks, typically 8 on DDR3 DRAM and 16 on
DDR4 DRAM. In the case of DDR4, banks are addition-
ally grouped into bank groups, e.g., 4 bank groups with
4 banks each. Banks finally contain the actual memory
arrays which are organized in rows (typically 214 to 217)
and columns (often 210). On PCs, the DRAM word size

and bus width is 64 bits, resulting in a typical row size of
8 KB. As channel, rank and bank form a hierarchy, two
addresses can only be physically adjacent in the DRAM
chip if they are in the same channel, DIMM, rank and
bank. In this case we just use the term same bank.

The memory controller, which is integrated into mod-
ern processors, translates physical addresses to channels,
DIMMs, ranks, and banks. AMD publicly documents the
addressing function used by its products (see, e.g., [1, p.
345]), however to the best of our knowledge Intel does
not. The mapping for one Intel Sandy Bridge machine in
one memory configuration has been reverse engineered
by Seaborn [23]. However, Intel has changed the map-
ping used in its more recent microarchitectures. Also,
the mapping necessarily differs when using other mem-
ory configurations, e.g., a different number of DIMMs.

The row buffer. Apart from the memory array, each
bank also features a row buffer between the DRAM cells
and the memory bus. From a high-level perspective, it
behaves like a directly-mapped cache and stores an entire
DRAM row. Requests to addresses in the currently active
row are served directly from this buffer. If a different row
needs to be accessed, then the currently active row is first
closed (with a pre-charge command) and then the new
row is fetched (with a row-activate command). We call
such an event a row conflict. Naturally, such a conflict
leads to significantly higher access times compared to re-
quests to the active row. This timing difference will later
serve as the basis for our attacks and for the software-
based reverse-engineering method. Note that after each
refresh operation, a bank is already in the pre-charged
state. In this case, no row is currently activated.

Independently of our work, Hassan et al. [7] also pro-
posed algorithms to reverse engineer DRAM functions
based on timing differences. However, their approach
requires customized hardware performance-monitoring
units. Thus, they tested their approach only in a simu-
lated environment and not on real systems. Concurrently
to our work, Xiao et al. [27] proposed a method to re-
verse engineer DRAM functions based on the timing dif-
ferences caused by row conflicts. Although their method
is similar to ours, their focus is different, as they used
the functions to then perform Rowhammer attacks across
VMs.

DRAM organization for multi-CPU systems. In mod-
ern multi-CPU server systems, each CPU features a ded-
icated memory controller and attached memory. The
DRAM is still organized in one single address space and
is accessible by all processors. Requests for memory at-
tached to other CPUs are sent over the CPU interconnect,
e.g., Intel’s QuickPath Interconnect (QPI). This memory
design is called Non-Uniform Memory Access (NUMA),
as the access time depends on the memory location.

3

568 25th USENIX Security Symposium USENIX Association

On our dual Haswell-EP setup, the organization of this
single address space can be configured for the expected
workload. In interleaved mode, the memory is split into
small slices which are spliced together in an alternating
fashion. In non-interleaved mode, each CPUs memory
is kept in one contiguous physical-address block. For
instance, the lower half of the address space is mapped to
the first CPUs memory, whereas the upper half is mapped
to the second CPUs memory.

2.3 The Rowhammer bug
The increasing DRAM density has led to physically
smaller cells, which can thus store smaller charges. As a
result, the cells have a lower noise margin and the level
of parasitic electrical interaction is potentially higher, re-
sulting in the so-called Rowhammer bug [8, 13, 18].

This bug results in corruption of data, not in rows that
are directly accessed, but rather in adjacent ones. When
performing random memory accesses, the probability for
such faults is virtually zero. However, it rises drastically
when performing accesses in a certain pattern. Namely,
flips can be caused by frequent activation (hammering) of
adjacent rows. As data needs to be served from DRAM
and not the cache, an attack needs to either flush data
from the cache using the clflush instruction in native
environments [13], or using cache eviction in other more
restrictive environments, e.g., JavaScript [4].

Seaborn [22] implemented two attacks that exploit the
Rowhammer bug, showing the severity of faulting single
bits for security. The first exploit is a kernel privilege es-
calation on a Linux system, caused by a bit flip in a page
table entry. The second one is an escape of Native Client
sandbox caused by a bit flip in an instruction sequence
for indirect jumps.

3 Definitions

In this section we provide definitions for the terms row
hit and row conflict. These definitions provide the basis
for our reverse engineering as well as the covert and side
channel attacks.

Every physical memory location maps to one out of
many rows in one out of several banks in the DRAM.
Considering a single access to a row i in a bank there are
two major possible cases:

1. The row i is already opened in the row buffer. We
call this case a row hit.

2. A different row j �= i in the same bank is opened.
We call this case a row conflict.

Considering frequent alternating accesses to two (or
more) addresses we distinguish three cases:

1. The addresses map to different banks. In this case
the accesses are independent and whether the ad-

dresses have the same row indices has no influence
on the timing. Row hits are likely to occur for the
accesses, i.e., access times are low.

2. The addresses map to the same row i in the same
bank. The probability that the row stays open in
between accesses is high, i.e., access times are low.

3. The addresses map to the different rows i �= j in the
same bank. Each access to an address in row i will
close row j and vice versa. Thus, row conflicts oc-
cur for the accesses, i.e., access times are high.

To measure the timing differences of row hits and row
conflicts, data has to be flushed from the cache. Fig-
ure 1 shows a comparison of standard histograms of ac-
cess times for cache hits and cache misses. Cache misses
are further divided into row hits and row conflicts. For
this purpose an unrelated address in the same row was ac-
cessed to cause a row hit and an unrelated address in the
same bank but in a different row was accessed to cause a
row conflict. We see that from 180 to 216 cycles row hits
occur, but no row conflicts (cf. highlighted area in Fig-
ure 1). In the remainder, we build different attacks that
are based on this timing difference between row hits and
row conflicts.

4 Reverse engineering DRAM addressing

In this section, we present our reverse engineering of the
DRAM address mapping. We discuss two approaches,
the first one is based on physical probing, whereas the
second one is entirely software-based and fully auto-
mated. Finally, we present the outcome of our analy-
sis, i.e., the reverse-engineered mapping functions. In
the remainder of this paper, we denote with a a physical
memory address. ai denotes the i-th bit of an address.

4.1 Linearity of functions
The DRAM addressing functions are reverse engineered
in two phases. First, a measuring phase and second, a
subsequent solving phase. Our solving approaches re-
quire that the addressing functions are linear, i.e., they
are XORs of physical-address bits.

In fact, Intel used such functions in earlier microar-
chitectures. For instance, Seaborn [23] reports that on
his Sandy Bridge setup the bank address is computed by
XORing the bits a14..a16 with the lower bits of the row
number (a18..a20) (cf. Figure 4a). This is done in order to
minimize the number of row conflicts during runtime. In-
tel also uses linear functions for CPU-cache addressing.
Maurice et al. [15] showed that the complex addressing
function, which is used to select cache slices, is an XOR
of many physical-address bits.

As it turns out, linearity holds on all our tested config-
urations. However, there are setups in which it might be

4

USENIX Association 25th USENIX Security Symposium 569

72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288

101

103

105

107

Access time [CPU cycles]

N
um

be
ro

fc
as

es

Cache hit Cache miss, row hit Cache miss, row conflict

Figure 1: Histogram for cache hits and cache misses divided into row hits and row conflicts on the Ivy Bridge i5 test
system. Measurements were performed after a short idle period to simulate non-overlapping accesses by victim and
spy. From 180 to 216 cycles row hits occur, but no row conflicts.

violated, such as triple-channel configurations. We did
not test such systems and leave a reverse engineering to
future work.

4.2 Reverse engineering using physical
probing

Our first approach to reverse engineer the DRAM map-
ping is to physically probe the memory bus and to di-
rectly read the control signals. As shown in Figure 2,
we use a standard passive probe to establish contact with
the pin at the DIMM slot. We then repeatedly accessed
a selected physical address2 and used a high-bandwidth
oscilloscope to measure the voltage and subsequently de-
duce the logic value of the contacted pin. Note that due
to the repeated access to a single address, neither a timely
location of specific memory requests nor distinguishing
accesses to the chosen address from other random ones
is required.

We repeated this experiment for many selected ad-
dresses and for all pins of interest, namely the bank-
address bits (BA0, BA1, BA2 for DDR3 and BG0, BG1,
BA0, BA1 for DDR4) for one DIMM and the chip select
CS for half the DIMMs.

For the solving phase we use the following approach.
Starting from the top-layer (channel or CPU addressing)
and drilling down, for each DRAM addressing function
we create an over-defined system of linear equations in
the physical address bits. The left-hand-side of this sys-
tem is made up of the relevant tested physical addresses.
For instance, for determining the bank functions we only
use addresses that map to the contacted DIMMs chan-
nel. The right-hand-side of the system of equations are
the previously measured logic values for the respective

2Resolving virtual to physical addresses requires root privileges in
Linux. Given that we need physical access to the internals of the sys-
tem, this is a very mild prerequisite.

Figure 2: Physical probing of the DIMM slot.

address and the searched-for function. The logic values
for CPU and channel addressing are computed by simply
ORing all respective values for the chip-select pins. We
then solve this system using linear algebra. The solution
is the corresponding DRAM addressing function.

Obviously, this reverse-engineering approach has
some drawbacks. First, expensive measurement equip-
ment is needed. Second, it requires physical access to
the internals of the tested machine. However, it has the
big advantage that the address mapping can be recon-
structed for each control signal individually and exactly.
Thus, we can determine the exact individual functions
for the bus pins. Furthermore, every platform only needs
to be measured only once in order to learn the addressing
functions. Thus, an attacker does not need physical ac-
cess to the concrete attacked system if the measurements
are performed on a similar machine.

5

570 25th USENIX Security Symposium USENIX Association

160 180 200 220 240 260 280
0

0.1

0.2

Access time [CPU cycles]

Pr
op

or
tio

n
of

ca
se

s

Figure 3: Histogram of average memory access times
for random address pairs on our Haswell test system. A
clear gap separates the majority of address pairs causing
no row conflict (lower access times), because they map
to different banks, from the few address pairs causing a
row conflict (higher access times), because they map to
different rows in the same bank.

4.3 Fully automated reverse engineering
For our second approach to reverse engineer the DRAM
mapping we exploit the fact that row conflicts lead to
higher memory access times. We use the resulting timing
differences to find sets of addresses that map to the same
bank but to a different row. Subsequently, we determine
the addressing functions based on these sets. The entire
process is fully automated and runs in unprivileged and
possibly restricted environments.

Timing analysis. In the first step, we aim to find same-
bank addresses in a large array mapped into the attackers’
address space. For this purpose, we perform repeated al-
ternating access to two addresses and measure the aver-
age access time. We use clflush to ensure that each ac-
cess is served from DRAM and not from the CPU cache.
As shown in Figure 3, for some address pairs the access
time is significantly higher than for most others. These
pairs belong to the same bank but to different rows. The
alternating access causes frequent row conflicts and con-
sequently the high latency.

The tested pairs are drawn from an address pool,
which is built by selecting random addresses from a large
array. A small subset of addresses in this pool is tested
against all others in the pool. The addresses are sub-
sequently grouped into sets having the same channel,
DIMM, rank, and bank. We try to identify as many such
sets as possible in order to reconstruct the addressing
functions.

Function reconstruction. In the second phase, we use
the identified address sets to reconstruct the addressing
functions. This reconstruction requires (at least partial)
resolution of the tested virtual addresses to physical ones.
Similar as later in Section 5.1, one can use either the
availability of 2 MB pages, 1 GB pages, or privileged in-
formation such as the virtual-to-physical address transla-

tion that can be obtained through /proc/pid/pagemap

in Linux systems.
In the case of 2 MB pages we can recover all partial

functions up to bit a20, as the lowest 21 bit of virtual
and physical address are identical. On many systems the
DRAM addressing functions do not use bits above a20
or only few of them, providing sufficient information to
mount covert and side-channel attacks later on. In the
case of 1 GB pages we can recover all partial functions
up to bit a30. This is sufficient to recover the full DRAM
addressing functions on all our test systems. If we have
full access to physical address information we will still
ignore bits a30 and upwards. These bits are typically only
used for DRAM row addressing and they are very un-
likely to play any role in bank addressing. Additionally,
we ignore bits (a0..a5) as they are used for addressing
within a cache line.

The search space is then small enough to perform a
brute-force search of linear functions within seconds.
For this, we generate all linear functions that use exactly
n bits as coefficients and then apply them to all addresses
in one randomly selected set. We start with n = 1 and
increment n subsequently to find all functions. Only if
the function has the same result for all addresses in a set,
we test this potential function on all other sets. How-
ever, in this case we only pick one address per set and
test whether the function is constant over all sets. If so,
the function is discarded. We obtain a list of possible ad-
dressing functions that also contains linear combinations
of the actual DRAM addressing functions. We prioritize
functions with a lower number of coefficients, i.e., we
remove higher-order functions which are linear combi-
nations of lower-order ones. Depending on the random
address selection, we now have a complete set of correct
addressing functions. We verify the correctness either by
comparing it to the results from the physical probing, or
by performing a software-based test, i.e., verifying the
timing differences on a larger set of addresses, or veri-
fying that usage of the addressing functions in Rowham-
mer tests increases the number of bit flips per second by
a factor that is the number of sets we found.

Compared to the probing approach, this purely
software-based method has significant advantages. It
does not require any additional measurement equipment
and can be executed on a remote system. We can identify
the functions even from within VMs or sandboxed pro-
cesses if 2 MB or 1 GB pages are available. Furthermore,
even with only 4 KB pages we can group addresses into
sets that can be directly used for covert or side channel at-
tacks. This software-based approach also allows reverse
engineering in settings where probing is not easily possi-
ble anymore, such as on mobile devices with hard-wired
ball-grid packages. Thus, it allowed us to reverse engi-
neer the mapping on current ARM processors.

6

USENIX Association 25th USENIX Security Symposium 571

Table 1: Experimental setups.

CPU / SoC Microarch. Mem.

i5-2540M Sandy Bridge DDR3
i5-3230M Ivy Bridge DDR3

i7-3630QM Ivy Bridge DDR3
i7-4790 Haswell DDR3

i7-6700K Skylake DDR4
2x Xeon E5-2630 v3 Haswell-EP DDR4

Qualcomm Snapdragon S4 Pro ARMv7 LPDDR2
Samsung Exynos 5 Dual ARMv7 LDDDR3

Qualcomm Snapdragon 800 ARMv7 LPDDR3
Qualcomm Snapdragon 820 ARMv8-A LPDDR3

Samsung Exynos 7420 ARMv8-A LPDDR4

One downside of the software-based approach is that
it cannot recover the exact labels (BG0, BA0, ...) of the
functions. Thus, we can only guess whether the recon-
structed function computes a bank address bit, rank bit,
or channel bit. Note that assigning the correct labels to
functions is not required for any of our attacks.

4.4 Results

We now present the reverse-engineered mappings for all
our experimental setups. We analyzed a variety of sys-
tems (Table 1), including a dual-CPU Xeon system, that
can often be found in cloud systems, and multiple current
smartphones. Where possible, we used both presented
reverse-engineering methods and cross-validated the re-
sults.

We found that the basic scheme is always as follows.
On PCs, the memory bus is 64 bits wide, yet the small-
est addressable unit is a byte. Thus, the three lower bits
(a0..a2) of the physical address are used as byte index
into a 64-bit (8-byte) memory word and they are never
transmitted on the memory bus. Then, the next bits are
used for column selection. One bit in between is used for
channel addressing. The following bits are responsible
for bank, rank, and DIMM addressing. The remaining
upper bits are used for row selection.

The detailed mapping, however, differs for each setup.
To give a quick overview of the main differences, we
show the mapping of one selected memory configuration
for multiple Intel microarchitectures and ARM-based
SoCs in Figure 4. Here we chose a configuration with
two equally sized DIMMs in dual-channel configuration,
as it is found in many off-the-shelf consumer PCs. All
our setups use dual-rank DIMMs and use 10 bits for
column addressing. Figure 4a shows the mapping on
the Sandy Bridge platform, as reported by Seaborn [23].
Here, only a6 is used to select the memory channel, a17 is
used for rank selection. The bank-address bits are com-

puted by XORing bits a14..a16 with the lower bits of the
row index (a18..a20).

...678911 1012131416171819202122...

BA0
BA1
BA2

Ch.

15

Rank

(a) Sandy Bridge – DDR3 [23].

...678911 1012131416171819202122...

BA0
BA1

Rank

Ch.

15

BA2

(b) Ivy Bridge / Haswell – DDR3.

...678911 1012131416171819202122...

BG0
BG1

Rank
BA0

Ch.

15

BA1

(c) Skylake – DDR4.

...678911 1012131416171819202122...

Rank

BG0

BG1
BA0

Ch.

15

BA1

23242526

CPU

(d) Dual Haswell-EP (Interleaved Mode) – DDR4.

...678911 1012131416171819202122...

Rank
BA0
BA1

Ch.

15

BA2

(e) Samsung Exynos 7420 – LPDDR4.

Figure 4: Reverse engineered dual channel mapping (1
DIMM per channel) for different architectures.

The channel selection function changed with later mi-
croarchitectures, such as Ivy Bridge and Haswell. As
shown in Figure 4b, the channel-selection bit is now
computed by XORing seven bits of the physical address.
Further analysis showed that bit a7 is used exclusively,
i.e., it is not used as part of the row- or column address.

7

572 25th USENIX Security Symposium USENIX Association

Additionally, rank selection is now similar to bank ad-
dressing and also uses XORs.

Our Skylake test system uses DDR4 instead of DDR3.
Due to DDR4’s introduction of bank grouping and the
doubling of the available banks (now 16), the addressing
function necessarily changed again. As shown in Fig-
ure 4c, a7 is not used for channel selection anymore, but
for bank addressing instead.

Figure 4d depicts the memory mapping of a dual-
CPU Haswell-EP system equipped with DDR4 mem-
ory. It uses 2 modules in dual-channel configuration
per CPU (4 DIMMs in total). In interleaved mode (cf.
Section 2.2), the chosen CPU is determined as a7 ⊕ a17.
Apart from the different channel function, there is also a
difference in the bank addressing, i.e., bank addressing
bits are shifted. The range of bits used for row indexing
is now split into address bits (a17..a19) and a23 upwards.

The mapping used on one of our mobile platforms,
a Samsung Galaxy S6 with an Exynos 7420 ARMv8-
A SoC and LPDDR4 memory, is much simpler (cf. Fig-
ure 4e). Here physical address bits are mapped directly to
bank address bits. Rank and channel are computed with
XORs of only two bits each. The bus width of LPDDR4
is 32 bits, so only the two lowest bits are used for byte
indexing in a memory word.

Table 2 shows a comprehensive overview of all plat-
forms and memory configurations we analyzed. As all
found functions are linear, we simply list the index of
the physical address bits that are XORed together. With
the example of the Haswell microarchitecture, one can
clearly see that the indices are shifted to accommodate
for the different memory setups. For instance, in single-
channel configurations a7 is used for column instead of
channel selection, which is why bank addressing starts
with a13 instead of a14.

5 A high-speed cross-CPU covert channel

In this section, we present a first DRAMA attack, namely
a high-speed cross-CPU covert channel that does not
require shared memory. Our channel exploits the row
buffer, which behaves like a directly-mapped cache. Un-
like cache attacks, the only prerequisite is that two com-
municating processes have access to the same memory
module.

5.1 Basic concept
Our covert channel exploits timing differences caused by
row conflicts. Sender and receiver occupy different rows
in the same bank as illustrated in Figure 5. The receiver
process continuously accesses a chosen physical address
in the DRAM and measures the average access time over
a few accesses. If the sender process now continuously

Row Buffer

Receiver Receiver
Receiver Receiver
Sender Sender

SenderSender

Figure 5: The sender occupies rows in a bank to trigger
row conflicts. The receiver occupies rows in the same
bank to observe these row conflicts.

200 300 400 500 600
0

0.1

0.2

0.3

Access time [CPU cycles]
Fr

eq
ue

nc
y

(a) Sender inactive on bank: sending a 0.

200 300 400 500 600
0

0.1

0.2

Access time [CPU cycles]

Fr
eq

ue
nc

y

(b) Sender active on bank: sending a 1.

Figure 6: Timing differences between active and non-
active sender (on one bank), measured on the Haswell i7
test system.

accesses a different address in the same bank but in a
different row, a row conflict occurs. This leads to higher
average access times in the receiver process. Bits can be
transmitted by switching the activity of the sender pro-
cess in the targeted bank on and off. This timing differ-
ence is illustrated in Figure 6, an exemplary transmission
is shown in Figure 7. The receiver process distinguishes
the two values based on the mean access time. We assign
a logic value of 0 to low access times (the sender is inac-
tive) and a value of 1 to high access times (the sender is
active).

Each (CPU, channel, DIMM, rank, bank) tuple can
be used as a separate transmission channel. However,
a high number of parallel channels leads to increased
noise. Also, there is a strict limit on the usable bank par-

8

USENIX Association 25th USENIX Security Symposium 573

Table 2: Reverse engineered DRAM mapping on all platforms and configurations we analyzed via physical probing
or via software analysis. These tables list the bits of the physical address that are XORed. For instance, for the entry
(13, 17) we have a13 ⊕a17.

(a) DDR3

CPU Ch. DIMM/Ch. BA0 BA1 BA2 Rank DIMM Channel

Sandy Bridge 1 1 13, 17 14, 18 15, 19 16 - -
Sandy Bridge [23] 2 1 14, 18 15, 19 16, 20 17 - 6

Ivy Bridge/Haswell

1 1 13, 17 14, 18 16, 20 15, 19 - -
1 2 13, 18 14, 19 17, 21 16, 20 15 -
2 1 14, 18 15, 19 17, 21 16, 20 - 7, 8, 9, 12, 13, 18, 19
2 2 14, 19 15, 20 18, 22 17, 21 16 7, 8, 9, 12, 13, 18, 19

(b) DDR4

CPU Ch. DIMM/Ch. BG0 BG1 BA0 BA1 Rank CPU Channel

Skylake† 2 1 7, 14 15, 19 17, 21 18, 22 16, 20 - 8, 9, 12, 13, 18, 19
2x Haswell-EP 1 1 6, 22 19, 23 20, 24 21, 25 14 7, 17 -
(interleaved) 2 1 6, 23 20, 24 21, 25 22, 26 15 7, 17 8, 12, 14, 16, 18, 20, 22, 24, 26

2x Haswell-EP 1 1 6, 21 18, 22 19, 23 20, 24 13 - -
(non-interleaved) 2 1 6, 22 19, 23, 20, 24 21, 25 14 - 7, 12, 14, 16, 18, 20, 22, 24, 26

(c) LPDDR2,3,4

CPU Ch. BA0 BA1 BA2 Rank Channel

Qualcomm Snapdragon S4 Pro† 1 13 14 15 10 -
Samsung Exynos 5 Dual† 1 13 14 15 7 -

Qualcomm Snapdragon 800/820† 1 13 14 15 10 -
Samsung Exynos 7420† 2 14 15 16 8, 13 7, 12

† Software analysis only. Labeling of functions is based on results of other platforms.

0 500 1,000 1,500 2,000
300

320

340

360

Time [µs]

A
cc

es
s

tim
e

Figure 7: Covert channel transmission on one bank,
cross-CPU and cross-VM on a Haswell-EP server. The
time frame for one bit is 50µs.

allelism. Thus, optimal performance is achieved when
using only a subset of available tuples. Transmission
channels are unidirectional, but the direction can be cho-
sen for each one independently. Thus, two-way commu-
nication is possible.

To evaluate the performance of this new covert chan-
nel, we created a proof-of-concept implementation. We
restrict ourselves to unidirectional communication, i.e.,
there is one dedicated sender and one dedicated receiver.

The memory access time is measured using rdtsc.
The memory accesses are performed using volatile

pointers. In order to cause a DRAM access for each
request, data has to be flushed from the cache using
clflush.

Determining channel, rank, and bank address. In an
agreement phase, all parties need to agree on the set
of (channel, DIMM, rank, bank) tuples that are used
for communication. This set needs to be chosen only
once, all subsequent communication can use the same
set. Next, both sender and receiver need to find at least
one address in their respective address space for each
tuple. Note that some operating systems allow unpriv-
ileged resolution of virtual to physical addresses. In this
case, finding correct addresses is trivial.

However, on Linux, which we used on our testing
setup, unprivileged address resolution is not possible.
Thus, we use the following approach. As observed in
previous work [3, 4], system libraries and the operating
system assign 2 MB pages for arrays which are signifi-
cantly larger than 2 MB. On these pages, the 21 lowest
bits of the virtual address and the physical address are

9

574 25th USENIX Security Symposium USENIX Association

identical. Depending on the hardware setup, these bits
can already be sufficient to fully determine bank, rank
and channel address. For this purpose, both processes
request a large array. The start of this array is not neces-
sarily aligned with a 2 MB border. Memory before such
a border is allocated using 4 KB pages. We skip to the
next 2 MB page border by choosing the next virtual ad-
dress having the 21 lowest bits set to zero.

On systems that also use higher bits, an attacker can
use the following approach, which we explain on the ex-
ample of the mapping shown in Figure 4b. There an at-
tacker cannot determine the BA2 bit by just using 2 MB
pages. Thus, the receiving process selects addresses with
chosen BA0, BA1, rank, and channel, but unknown BA2
bit. The sender now accesses addresses for both possibil-
ities of BA2, e.g., by toggling a17 between consecutive
reads. Thus, only each second access in the sending pro-
cess targets the correct bank. Yet, due to bank parallelism
this does not cause a notable performance decrease. Note
however that this approach might not work if the number
of unknown bank-address bits is too high.

In a virtualized environment, even a privileged at-
tacker is able to retrieve only the guest physical ad-
dress, which is further translated into the real physical
address by the memory management unit. However, if
the host system uses 1 GB pages for the second-level ad-
dress translation (to improve efficiency), then the lowest
30 bits of the guest physical address are identical to the
real physical address. Knowledge of these bits is suffi-
cient on all systems we analyzed to use the full DRAM
addressing functions.

Finally, the covert channel could also be built with-
out actually reconstructing the DRAM addressing func-
tions. Instead of determining the exact bank address, it
can rely solely on the same-bank sets retrieved in Sec-
tion 4.3. In an initialization phase, both sender and re-
ceiver perform the timing analysis and use it to build sets
of same-bank addresses. Subsequently, the communicat-
ing parties need to synchronize their sets, i.e., they need
to agree on which of them is used for transmission. This
is done by sending predefined patterns over the channel.
After that, the channel is ready for transmission. Thus,
it can be established without having any information on
the mapping function nor on the physical addresses.

Synchronization. In our proof-of-concept implementa-
tion, one set of bits (a data block) is transmitted for
a fixed time span which is agreed upon before starting
communication. Decreasing this period increases the raw
bitrate, but it also increases the error rate, as shown in
Figure 8.

For synchronizing the start of these blocks we em-
ploy two different mechanisms. If sender and receiver
run natively, we use the wall clock as means of synchro-
nization. Here blocks start at fixed points in time. If,

however, sender and receiver run in two different VMs,
then a common (or perfectly synchronized) wall clock is
typically not available. In this case, the sender uses one
of the transmission channels to transmit a clock signal
which toggles at the beginning of each block. The re-
ceiver then recovers this clock and can thus synchronize
with the sender.

We employ multiple threads for both the sender and re-
ceiver processes to achieve optimal usage of the memory
bus. Thus, memory accesses are performed in parallel,
increasing the performance of the covert channel.

5.2 Evaluation

We evaluated the performance of our covert-channel im-
plementation on two systems. First, we performed tests
on a standard desktop PC featuring an Intel i7-4790 CPU
with Haswell microarchitecture. It was equipped with 2
Kingston DDR3 KVR16N11/8 dual-rank 8 GB DIMMs
in dual-channel configuration. The system was mostly
idle during the tests, i.e., there were no other tasks caus-
ing significant load on the system. The DRAM clock was
set to its default of 800 MHz (DDR3-1600).

Furthermore, we also tested the capability of cross-
CPU transmission on a server system. Our setup has
two Intel Xeon E5-2630 v3 (Haswell-EP microarchi-
tecture). It was equipped with a total of 4 Samsung
M393A2G40DB0-CPB DDR4 registered ECC DIMMs.
Each CPU was connected to two DIMMs in dual-channel
configuration and NUMA was set to interleaved mode.
The DRAM frequency was set to its maximum supported
value (DDR4-1866).

For both systems, we evaluated the performance in
both a native scenario, i.e., both processes run natively,
and in a cross-VM scenario. We transmit 8 bits per block
(use 8 (CPU, channel, DIMM, rank, bank) tuples) in the
covert channel and run 2 threads in both the sender and
the receiver process. Every thread is scheduled to run on
different CPU cores, and in the case of the Xeon system,
sender and receiver run on different physical CPUs.

We tested our implementation with a large range of
measurement intervals. For each one, we measure the
raw channel capacity and the bit error probability. While
the raw channel capacity increases proportionally to the
reduction of the measurement time, the bit error rate in-
creases significantly if the measurement time is too short.
In order to find the best transmission rate, we use the
channel capacity as metric. When using the binary sym-
metric channel model, this metric is computed by multi-
plying the raw bitrate with 1−H(e), with e the bit error
probability and H(e) =−e · log2(e)−(1−e) · log2(1−e)
the binary entropy function.

Figure 8 shows the error rate varying depending on
the raw bitrate for the case that both sender and receiver

10

USENIX Association 25th USENIX Security Symposium 575

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

Raw bitrate [Mbps]

B
it

er
ro

rp
ro

ba
bi

lit
y Bit error probability Capacity

0

1

2

C
ap

ac
ity

[M
bp

s]

(a) Desktop setup (Haswell)

0.5 1 1.5 2 2.5 3
0

0.2

0.4

Raw bitrate [Mbps]

B
it

er
ro

rp
ro

ba
bi

lit
y Bit error probability Capacity

0

0.5

1

1.5

C
ap

ac
ity

[M
bp

s]

(b) Server setup, cross-CPU (Haswell-EP)

Figure 8: Performance of our covert channel implemen-
tation (native).

run natively. On our desktop setup (Figure 8a), the error
probability stays below 1% for bitrates of up to 2 Mbps.
The channel capacity reaches up to 2.1 Mbps (raw bitrate
of 2.4 Mbps, error probability of 1.8%). Beyond this
peak, the increasing error probability causes a decrease
in the effective capacity. On our server setup (Figure 8b)
the cross-CPU communication achieves 1.2 Mbps with a
1% error rate. The maximum capacity is 1.6 Mbps (raw
2.6 Mbps, 8.7% error probability).

For the cross-core cross-VM scenario, we deployed
two VMs which were configured to use 1 GB pages for
second-stage address translation. We reach a maximum
capacity of 309 kbps (raw 411 kbps, 4.1% error probabil-
ity) on our desktop system. The server setup (cross-CPU
cross-VM) performs much better, we achieved a bitrate
of 596 kbps with an error probability of just 0.4%.

5.3 Comparison with state of the art

We compare the bitrate of our DRAM covert chan-
nel with the normalized implementation of three cache
covert channels by Gruss et al. [5]. For an error rate that
is less than 1%, the covert channel using Prime+Probe
obtains 536 Kbps, the one using Flush+Reload 2.3 Mbps
and the one using Flush+Flush 3.8 Mbps. With a ca-
pacity of up to 2 Mbps, our covert channel is within the
same order of magnitude of current cache-based chan-
nels. However, unlike Flush+Reload and Flush+Flush, it

does not require shared memory. Moreover, in contrast
to our attack, these cache covert channels do not allow
cross-CPU communication.

The work of Irazoqui et al. [11] focuses on cross-CPU
cache-based side-channel attacks. They did not imple-
ment a covert channel, thus we cannot compare our per-
formance with their cache attack. However, their ap-
proach also requires shared memory and thus it would
not work in our attack setting.

The covert channel by Xiao et al. [26] using memory
deduplication achieves up to 90 bps. However, due to
security concerns, memory deduplication has been dis-
abled in many cloud environments. The covert channel
of Wu et al. [25] using the memory bus achieves 746 bps
with error correction. Our covert channel is therefore
three to four orders of magnitude faster than state-of-the-
art memory-based covert channels.

6 A low-noise cross-CPU side channel

In this section, we present a second DRAMA attack,
a highly accurate side-channel attack using DRAM ad-
dressing information. We again exploit the row buffer
and its behavior similar to a directly-mapped cache. In
this attack, the spy and the victim can run on sepa-
rate CPUs and do not share memory, i.e., no access
to shared libraries and no page deduplication between
VMs. We mainly consider a local attack scenario where
Flush+Reload cache attacks are not applicable due to
the lack of shared memory. However, our side-channel
attacks can also be applied in a cloud scenario where
multiple users on a server and one malicious user spies
on other users through this side channel. The side
channel achieves a timing accuracy that is compara-
ble to Flush+Reload and a higher spatial accuracy than
Prime+Probe. Thus, it can be used as a highly accurate
alternative to Prime+Probe cache attacks in cross-core
scenarios without shared memory.

6.1 Basic concept
In case of the covert channel, an active sender caused
row conflicts. In the side-channel attack, we infer the
activity of a victim process by detecting row hits and row
conflicts following our definitions from Section 3. For
the attack to succeed, spy and victim need to have access
to the same row in a bank, as illustrated in Figure 9. This
is possible without shared memory due to the DRAM
addressing functions.

Depending on the addressing functions, a single 4 KB
page can map to multiple DRAM rows. As illustrated
in Figure 10, in our Haswell-EP system the contents
of a page are split over 8 DRAM rows (with the same
row index, but different bank address). Conversely, a

11

576 25th USENIX Security Symposium USENIX Association

Row Buffer

Victim Victim
Victim Victim
Victim Spy

SpySpy

Figure 9: Victim and spy have memory allocated in the
same DRAM row. By accessing this memory, the spy
can determine whether the victim just accessed it.

DRAM row contains content of at least two 4 KB pages,
as the typical row size is 8 KB. More specifically, in our
Haswell-EP setup a single row stores content for 16 dif-
ferent 4 KB pages, as again shown in Figure 10. The
amount of memory mapping from one page to one spe-
cific row, e.g., 512 bytes in the previous case, is the
achievable spatial accuracy of our attack. If none of
the DRAM addressing functions uses low address bits
(a0 − a11), the spatial accuracy is 4 KB, which is the
worst case. However, if DRAM addressing functions
(channel, BG0, CPU, etc.) use low address bits, a better
accuracy can be achieved, such as the 512 B for the server
setup. On systems where 6 or more low address bits are
used, the spatial accuracy of the attack is 64 B and thus
as accurate as a Flush+Reload cache side-channel attack.

Assuming that an attacker occupies at least one other
4 KB page that maps (in part) to the same bank and row,
the attacker has established a situation as illustrated in
Figure 9.

To run the side-channel attack on a private memory ad-
dress t in a victim process, the attacker allocates a mem-
ory address p that maps to the same bank and the same
row as the target address t. As shown in Figure 10, al-
though t and p map to the same DRAM row, they belong
to different 4 KB pages (i.e., no shared memory). The
attacker also allocates a row conflict address p̄ that maps
to the same bank but to a different row.

The side-channel attack then works in three steps:
1. Access the row conflict address p̄
2. Wait for the victim to compute
3. Measure the access time on the targeted address p

If the measured timing is below a row-hit threshold (cf.
the highlighted “row hit” region in Figure 1), the victim
has just accessed t or another address in the target row.
Thus, we can accurately determine when a specific non-
shared memory location is accessed by a process running
on another core or CPU. As p and p̄ are on separate pri-
vate 4 KB pages, they will not be prefetched and we can
measure row hits without any false positives. By allocat-

Page A

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

64·64
bytes

(4
K

B
page)

AAAAAAAABBBBBBBBCCCCNNNNOOOOOOOOPPPPPPPP

128 ·64 bytes (8 KB DRAM row)

Row in bank 0

AAAAAAAABBBBBBBBCCCCNNNNOOOOOOOOPPPPPPPP

Row in bank 1

AAAAAAAABBBBBBBBCCCCNNNNOOOOOOOOPPPPPPPP

Row in bank 2

AAAAAAAABBBBBBBBCCCCNNNNOOOOOOOOPPPPPPPP

Row in bank 3

AAAAAAAABBBBBBBBCCCCNNNNOOOOOOOOPPPPPPPP

Row in bank 4

Figure 10: Mapping between a 4 KB page and an 8 KB
DRAM row in the Haswell-EP setup. Banks are num-
bered 0− 7, pages are numbered A− P. Every eighth
64-byte region of a 4 KB page maps to the same bank
in DRAM. In total 8 out of 64 regions (= 512B) map to
the same bank. Thus, the memory of each row is divided
among 16 different pages (A−P) that use memory from
the same row. Occupying one of the pages B−P is suffi-
cient to spy on the eight 64-byte regions of page A in the
same bank.

ing all but one of the pages that map to a row, the attacker
maximizes the spatial accuracy.

Based on this attack principle, we build a fully auto-
mated template attack [6] that triggers an event in the
victim process running on the other core or CPU (e.g.,
by sending requests to a web interface or triggering user-
interface events). For this attack we do not need to re-
construct the full addressing functions nor determine the
exact bank address. Instead, we exploit the timing dif-
ference between row hits and row conflicts as shown in
Figure 1.

To perform a DRAMA template attack, the attacker al-
locates a large fraction of memory, ideally in 4 KB pages.
This ensures that some of the allocated pages are placed
in a row together with pages used by the victim. The
attacker then profiles the entire allocated memory and
records the row-hit ratio for each address.

False positive detections are eliminated by running the
profiling phase with different events. If an address has a
high row-hit ratio for a single event, it can be used to
monitor that event in the exploitation phase. After such
an address has been found, all other remaining mem-

12

USENIX Association 25th USENIX Security Symposium 577

ory pages will be released and the exploitation phase is
started.

6.2 Evaluation

We evaluated the performance of our side-channel attack
in several tests. These tests were performed on a dual-
core laptop with an Ivy Bridge Intel i5-3230M CPU with
2 Samsung DDR3-1600 dual-rank 4 GB DIMMs in dual-
channel configuration.

The first test was a DRAMA template attack. The at-
tack ran without any shared memory in an unprivileged
user program. In this template attack we profiled ac-
cess times on a private memory buffer while triggering
keystrokes in the Firefox address bar. Figure 11 shows
the template attack profile with and without keystrokes
being triggered. While scanning a total of 7 GB of al-
located memory, we found 1195 addresses that showed
at least one row hit during the tests. 59 of these ad-
dresses had row hits independent of the event (false pos-
itives), i.e., these 59 addresses cannot be used to monitor
keystroke events. For the remaining 1136 addresses we
only had row hits after triggering a keystroke in the Fire-
fox address bar. Out of these addresses, 360 addresses
had more than 20 row hits. Any of these 360 addresses
can be used to monitor keystrokes reliably. The time to
find an exploitable address varies between a few seconds
and multiple minutes. Sometimes the profiling phase
does not find any exploitable address, for instance if there
is no memory in one row with victim memory. In this
case the attacker has to restart the profiling phase.

After automatically switching to the exploitation
phase we are able to monitor the exact timestamp of ev-
ery keystroke in the address bar. We verified empirically
that row hits can be measured on the found addresses
after keystrokes by triggering keystrokes by hand. Fig-
ure 12 shows an access time trace for an address found in
a DRAMA template attack, while typing in the Firefox
address bar. For every key the user presses, a low access
time is measured. We found this address after less than
2 seconds. Over 80 seconds we measured no false posi-
tive row hits and when pressing 40 keys we measured no
false negatives. During this test the system was entirely
idle apart from the attack and the user typing in Firefox.
In a real attack, noise would introduce false negatives.

Comparison with cache template attacks. To compare
DRAMA template attacks with cache template attacks,
we performed two attacks on gedit. The first uses the re-
sult from a cache template attack in a DRAMA exploita-
tion phase. The second is a modified cache template at-
tack that uses the DRAMA side channel. Both attacks
use shared memory to be able to compare them with
cache template attacks. However, the DRAMA side-

0 200 400 600 800 1,000 1,200
0

100

200

300

Set (Bank,Row)

N
um

be
ro

fc
as

es

Keystroke False positive

Figure 11: A DRAM template of the system memory
with and without triggering keystrokes in the Firefox ad-
dress bar. 1136 sets had row hits after a keystroke, 59 sets
had false positive row hits (row hits without a keystroke),
measured on our Ivy Bridge i5 test system.

0 5 10 15

200

250

300

w w w. f a c e b o o k . co m

Time in seconds

A
cc

es
s

tim
e

Figure 12: Exploitation phase on non-shared memory
in a DRAMA template attack on our Ivy Bridge i5 test
system. A low access time is measured when the user
presses a key in the Firefox address bar. The typing gaps
illustrate the low noise level.

channel attack takes no advantage of shared memory in
any attack.

In the first attack on gedit, we target tab open and
tab close events. In an experiment over 120 seconds we
opened a new tab and closed the new tab, each 50 times.
The exploitable address in the shared library was found
in a cache template attack. We computed the physical
address and thus bank and row of the exploitable address
using privileged operating services. Then we allocated
large arrays to obtain memory that maps to the same row
(and bank). This allows us to perform an attack that has
only minimal differences to a Flush+Reload attack.

During this attack, our spy tool detected 1 false pos-
itive row hit and 1 false negative row hit. Running
stress -m 1 in parallel, which allocates and accesses
large memory buffers, causes a high number of cache
misses, but did not introduce a significant amount of
noise. In this experiment the spy tool detected no false
positive row hits and 4 false negative row hits. Running
stress -m 2 in parallel (i.e., the attacker’s core is un-
der stress) made any measurements impossible. While
no false positive detections occurred, only 9 events were

13

578 25th USENIX Security Symposium USENIX Association

1 2 3 4 5

·105

0

20

40

60

Address

N
um

be
ro

fc
as

es
Row hits Cache hits

Figure 13: Comparison of a cache hits and row hits over
the virtual memory where the gedit binary is mapped,
measured on our Ivy Bridge i5 test system.

correctly detected. Thus, our attack is susceptible to
noise especially if the attacker only gets a fraction of
CPU time on its core.

In the second attack we compared the cache side chan-
nel and the DRAM side channel in a template attack
on keystrokes in gedit. Figure 13 shows the number of
cache hits and row hits over the virtual memory where
the gedit binary is mapped. Row hits occur in spatial
proximity to the cache hits and at shifted offsets due to
the DRAM address mappings.

6.3 Comparison with state of the art

We now compare DRAMA side-channel attacks with
same-CPU cache attacks such as Flush+Reload and
Prime+Probe, as well as with cross-CPU cache at-
tacks [11]. Our attack is the first to enable monitoring
non-shared memory cross-CPU with a reasonably high
spatial accuracy and a timing accuracy that is comparable
to Flush+Reload. This allows the development of new at-
tacks on programs using dynamically allocated or private
memory.

The spatial accuracy of the DRAMA side-channel at-
tack is significantly higher than that of a Prime+Probe
attack, which also does not necessitate shared memory,
and only slightly lower than that of a Flush+Reload at-
tack in most cases. Our Ivy Bridge i5 system has 8 GB
DRAM and a 3 MB L3 cache that is organized in 2 cache
slices with each 2048 cache sets. Thus, in a Prime+Probe
attack 32768 memory lines map to the same cache set,
whereas in our DRAMA side-channel attack, on the
same system, only 32 memory lines map to the same
row. The spatial accuracy strongly depends on the sys-
tem. On our Haswell-EP system only 8 memory lines
map to the same row whereas still 32768 memory lines
map to the same cache set. Thus, on the Haswell-EP sys-
tem the advantage of DRAMA side-channel attacks over
Prime+Probe is even more significant.

To allocate memory lines that are in the same row as
victim memory lines, it is necessary to allocate signifi-
cantly larger memory buffers than in a cache attack like
Prime+Probe. This is a clear disadvantage of DRAMA
side-channel attacks. However, DRAMA side-channel
attacks have a very low probability of false positive row
hit detections, whereas Prime+Probe is highly suscep-
tible to noise. Due to this noise, monitoring singular
events using Prime+Probe is extremely difficult.

Irazoqui et al. [11] presented cache-based cross-CPU
side-channel attacks. However, their work requires
shared memory. Our approach works without shared
memory. Not only does this allow cross-CPU attacks in
highly restricted environments, it also allows to perform
a new kind of cross-core attack within one system.

7 Improving attacks

In this section, we describe how the DRAM addressing
functions can be used to improve the accuracy, efficiency,
and success rate of existing attacks.

Flush+Reload. The first step when performing
Flush+Reload attacks is to compute a cache-hit thresh-
old, based on a histogram of cache hits and cache misses
(memory accesses). However, as we have shown (cf.
Figure 1) row hits have a slightly lower access time
than row conflicts. To get the best performance in a
Flush+Reload attack it is necessary to take row hits and
conflicts into account. Otherwise, if a process accesses
any memory location in the same row, a row hit will be
misclassified as a cache hit. This introduces a significant
amount of noise as the spatial accuracy of a cache hit
is 64 bytes and the one of a row hit can be as low as
8 KB, depending on how actively the corresponding
pages of the row are used. We found that even after a
call to sched yield a row hit is still observed in 2%
of the cases on a Linux system that is mostly idle. In a
Flush+Reload attack the victim computes in parallel and
thus the probability then is even higher than 2%. This
introduces a significant amount of noise especially for
Flush+Reload attacks on low-frequency events. Thus,
the accuracy of Flush+Reload attacks can be improved
significantly taking row hits into account for the cache
hit threshold computation.

Rowhammer. In a Rowhammer attack, an adversary
tries to trigger bit flips in DRAM by provoking a high
number of row switches. The success rate and efficiency
of this attack benefit greatly from knowing the DRAM
mapping, as we now demonstrate.

In order to cause row conflicts, one must alternately
access addresses belonging to the same bank, but differ-
ent row. The probability that 2 random addresses ful-
fill this criterion is 2−B, where B is the total number of

14

USENIX Association 25th USENIX Security Symposium 579

bank-addressing bits (this includes all bits for channel,
rank, etc.). For instance, with the dual-channel DDR4
configuration shown in Figure 4c this probability is only
2−6 = 1/64. By hammering a larger set of addresses,
the probability of having at least two targeting the same
bank increases. However, so does the time in between
row switches, thus the success rate decreases.

The most efficient way of performing the Rowham-
mer attack is double-sided hammering. Here, one tries
to cause bit flips in row n by alternatingly accessing the
adjacent rows n−1 and n+1, which are most likely also
adjacent in physical memory. The most commonly ref-
erenced implementation of the Rowhammer attack, by
Seaborn and Dullien [24], performs double-sided ham-
mering by making assumptions on, e.g., the position of
the row-index bits. If these are not met, then their imple-
mentation does not find any bit flips. Also, it needs to test
multiple address combinations as it does not use knowl-
edge of the DRAM addressing functions. We tested
their implementation on a Skylake machine featuring
G.SKILL F4-3200C16D-16GTZB DDR4 memory at the
highest possible refresh interval, yet even after 4 days of
nonstop hammering, we did not detect any bit flips.

By using the DRAM addressing functions we can
immediately determine whether two addresses map to
the same bank. Also, we can very efficiently search
for pairs allowing double-sided hammering. After tak-
ing the reverse-engineered addressing functions into ac-
count, we successfully caused bit flips on the same Sky-
lake setup within minutes. Running the same attack on a
Crucial DDR4-2133 memory module running at the de-
fault refresh interval, we observed the first bit flip af-
ter 16 seconds and subsequently observed on average
one bit flip every 12 seconds. Although the LPDDR4
standard includes target row refresh (TRR) as an op-
tional countermeasure against the Rowhammer attack,
the DDR4 standard does not. Still, some manufactur-
ers include it in their products as a non-standard feature.
For both DDR4 and LPDDR4, both the memory con-
troller and the DRAM must support this feature in order
to provide any protection. To the best of our knowledge,
both our Haswell-EP test system and the Crucial DDR4-
2133 memory module, with Micron DRAM chips, sup-
port TRR [10, 17]. However, we are still able to repro-
ducibly trigger bit flips in this configuration.

8 Countermeasures

Defending against row buffer attacks is a difficult task.
Making the corresponding DRAM operations constant
time would introduce unacceptable performance degra-
dation. However, as long as the timing difference exists
and can be measured, the side channel cannot be closed.

Our attack implementations use the unprivileged
clflush instruction in order to cause a DRAM access
with every memory request. Thus, one countermeasure
might be to restrict said operation. However, this requires
architectural changes and an attacker can still use evic-
tion as a replacement. The additional memory accesses
caused by eviction could make our row-buffer covert
channel impractical. However, other attacks such as the
fully automated reverse engineering or our row-hit side-
channel attack are still possible. Restricting the rdtsc

instruction would also not prevent an attack as other tim-
ing sources can be used as replacement.

To prevent cross-VM attacks on multi-CPU cloud sys-
tems, the cloud provider could schedule each VM on a
dedicated physical CPU and only allow access to CPU-
local DRAM. This can be achieved by using a non-
interleaved NUMA configuration and assigning pages
to VMs carefully. This approach essentially splits a
multi-CPU machine into independent single-CPU sys-
tems, which leads to a loss of many of its advantages.

Saltaformaggio et al. [21] presented a countermeasure
to the memory bus-based covert channel of Wu et al..
It intercepts atomic instructions that are responsible for
this covert channel, so that only cores belonging to the
attacker’s VM are locked, instead of the whole machine.
This countermeasure is not effective against our attacks
as they do not rely on atomic instructions.

Finally, our attack could be detected due to the
high number of cache misses. However, it is unclear
whether it is possible to distinguish our attacks from non-
malicious applications.

9 Conclusion

In this paper, we presented two methods to reverse en-
gineer the mapping of physical memory addresses to
DRAM channels, ranks, and banks. One uses physical
probing of the memory bus, the other runs entirely in
software and is fully automated. We ran our method on
a wide range of architectures, including desktop, server,
and mobile platforms.

Based on the reverse-engineered functions, we demon-
strated DRAMA (DRAM addressing) attacks. This novel
class of attacks exploits the DRAM row buffer that is a
shared resource in single and multi-processor systems.
This allows our attacks to work in the most restrictive
environments, i.e., across processors and without any
shared memory. We built a covert channel with a ca-
pacity of 2 Mbps, which is three to four orders of mag-
nitude faster than memory-bus-based channels in the
same setting. We demonstrated a side-channel template
attack automatically locating and monitoring memory
accesses, e.g., user input, server requests. This side-
channel attack is as accurate as recent cache attacks like

15

580 25th USENIX Security Symposium USENIX Association

Flush+Reload, while requiring no shared memory be-
tween the victim and the spy. Finally, we show how to
use the reverse-engineered DRAM addressing functions
to improve existing attacks, such as Flush+Reload and
Rowhammer. Our work enables practical Rowhammer
attacks on DDR4.

We emphasize the importance of reverse engineering
microarchitectural components for security reasons. Be-
fore we reverse engineered the DRAM address mapping,
the DRAM row buffer was transparent to operating sys-
tem and software. Only by reverse engineering we made
this shared resource visible and were able to identify it
as a powerful side channel.

Acknowledgments

We would like to thank our anonymous reviewers as well
as Anders Fogh, Moritz Lipp, and Mark Lanteigne for
their valuable comments and suggestions.

Supported by the EU FP7 programme under GA No.
610436 (MATTHEW) and the Austrian Research Promo-
tion Agency (FFG) under grant number 845579 (MEM-
SEC).

References
[1] ADVANCED MICRO DEVICES. BIOS and Kernel Developer’s

Guide (BKDG) for AMD Family 15h Models 00h-0Fh Pro-
cessors, 2013. URL: http://support.amd.com/TechDocs/
42301_15h_Mod_00h-0Fh_BKDG.pdf.

[2] BENGER, N., VAN DE POOL, J., SMART, N. P., AND YAROM,
Y. “Ooh Aah... Just a Little Bit” : A small amount of side channel
can go a long way. In Proceedings of the 16th Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES’14) (2014),
pp. 75–92.

[3] GRUSS, D., BIDNER, D., AND MANGARD, S. Practical Mem-
ory Deduplication Attacks in Sandboxed JavaScript. In Proceed-
ings of the 20th European Symposium on Research in Computer
Security (ESORICS’15) (2015).

[4] GRUSS, D., MAURICE, C., AND MANGARD, S. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript.
In DIMVA’16 (2016).

[5] GRUSS, D., MAURICE, C., WAGNER, K., AND MANGARD, S.
Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA’16
(2016).

[6] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches. In 24th USENIX Security Symposium (USENIX Security
15) (2015), USENIX Association.

[7] HASSAN, M., KAUSHIK, A. M., AND PATEL, H. Reverse-
engineering embedded memory controllers through latency-
based analysis. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2015 IEEE (2015), IEEE,
pp. 297–306.

[8] HUANG, R.-F., YANG, H.-Y., CHAO, M. C.-T., AND LIN, S.-
C. Alternate hammering test for application-specific DRAMs and
an industrial case study. In Proceedings of the 49th Annual De-
sign Automation Conference (DAC’12) (2012), pp. 1012–1017.

[9] INCI, M. S., GULMEZOGLU, B., IRAZOQUI, G., EISENBARTH,
T., AND SUNAR, B. Seriously, get off my cloud! Cross-VM
RSA Key Recovery in a Public Cloud. Cryptology ePrint Archive,
Report 2015/898 (2015), 1–15.

[10] INTEL CORPORATION. Intel R© Xeon R© Processor E5 v3 Product
Family – Processor Specification Update. No. 330785-009US.
Aug. 2015.

[11] IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. Cross pro-
cessor cache attacks. In Proceedings of the 11th ACM Symposium
on Information, Computer and Communications Security (2016),
ASIA CCS ’16, ACM.

[12] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR, B.
Wait a minute! A fast, Cross-VM attack on AES. In Proceed-
ings of the 17th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID’14) (2014).

[13] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H., LEE,
D., WILKERSON, C., LAI, K., AND MUTLU, O. Flipping bits
in memory without accessing them: An experimental study of
DRAM disturbance errors. In International Symposium on Com-
puter Architecture – ISCA (2014), pp. 361–372.

[14] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.
Last-Level Cache Side-Channel Attacks are Practical. In Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy
(S&P’15) (2015).

[15] MAURICE, C., LE SCOUARNEC, N., NEUMANN, C., HEEN,
O., AND FRANCILLON, A. Reverse Engineering Intel Last-
Level Cache Complex Addressing Using Performance Counters.
In Proceedings of the 18th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID’15) (2015).

[16] MAURICE, C., NEUMANN, C., HEEN, O., AND FRANCILLON,
A. C5: Cross-Cores Cache Covert Channel. In Proceedings of
the 12th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA’15) (July 2015).

[17] MICRON. DDR4 SDRAM. https://www.micron.com/~/

media/documents/products/data-sheet/dram/ddr4/

4gb_ddr4_sdram.pdf, 2014. Retrieved on February 17, 2016.

[18] PARK, K., BAEG, S., WEN, S., AND WONG, R. Active-
Precharge Hammering on a Row Induced Failure in DDR3
SDRAMs under 3x nm Technology. In Proceedings of the 2014
IEEE International Integrated Reliability Workshop Final Report
(IIRW’14) (2014), pp. 82–85.

[19] PERCIVAL, C. Cache Missing for Fun and Profit,
2005. URL: http://daemonology.net/hyperthreading-
considered-harmful/.

[20] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, You, Get Off of My Cloud: Exploring Information Leak-
age in Third-Party Compute Clouds. In ACM Conference on
Computer and Communications Security – CCS (2009), ACM,
pp. 199–212.

[21] SALTAFORMAGGIO, B., XU, D., AND ZHANG, X. BusMonitor:
A Hypervisor-Based Solution for Memory Bus Covert Channels.
In Proceedings of the 6th European Workshop on Systems Secu-
rity (EuroSec’13) (2013).

[22] SEABORN, M. Exploiting the DRAM rowhammer bug to gain
kernel privileges. http://googleprojectzero.blogspot.

com/2015/03/exploiting-dram-rowhammer-bug-to-

gain.html, March 2015. Retrieved on June 26, 2015.

[23] SEABORN, M. How physical addresses map to rows and banks
in DRAM. http://lackingrhoticity.blogspot.com/

2015/05/how-physical-addresses-map-to-rows-and-

banks.html, May 2015. Retrieved on July 20, 2015.

16

USENIX Association 25th USENIX Security Symposium 581

[24] SEABORN, M., AND DULLIEN, T. Test DRAM for bit flips
caused by the rowhammer problem. https://github.com/

google/rowhammer-test, 2015. Retrieved on July 27, 2015.

[25] WU, Z., XU, Z., AND WANG, H. Whispers in the Hyper-space:
High-bandwidth and Reliable Covert Channel Attacks inside the
Cloud. IEEE/ACM Transactions on Networking (2014).

[26] XIAO, J., XU, Z., HUANG, H., AND WANG, H. Security im-
plications of memory deduplication in a virtualized environment.
In Proceedings of the 43rd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN’13) (June
2013), Ieee, pp. 1–12.

[27] XIAO, Y., ZHANG, X., ZHANG, Y., AND TEODORESCU, M.-
R. One bit flips, one cloud flops: Cross-vm row hammer attacks

and privilege escalation. In 25th USENIX Security Symposium
(2016).

[28] YAROM, Y., AND FALKNER, K. Flush+Reload: a High Resolu-
tion, Low Noise, L3 Cache Side-Channel Attack. In Proceedings
of the 23th USENIX Security Symposium (2014).

[29] YAROM, Y., GE, Q., LIU, F., LEE, R. B., AND HEISER, G.
Mapping the Intel Last-Level Cache. Cryptology ePrint Archive,
Report 2015/905 (2015), 1–12.

[30] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART,
T. Cross-VM side channels and their use to extract private keys.
In Proceedings of the 19th ACM conference on Computer and

Communications Security (CCS’12) (2012).

17

USENIX Association 25th USENIX Security Symposium 583

An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries

Dennis Andriesse†§, Xi Chen†§, Victor van der Veen†§, Asia Slowinska‡, and Herbert Bos†§

†{d.a.andriesse,x.chen,v.vander.veen,h.j.bos}@vu.nl

Computer Science Institute, Vrije Universiteit Amsterdam
§Amsterdam Department of Informatics

‡asia@lastline.com

Lastline, Inc.

Abstract
It is well-known that static disassembly is an unsolved

problem, but how much of a problem is it in real software—

for instance, for binary protection schemes? This work

studies the accuracy of nine state-of-the-art disassemblers

on 981 real-world compiler-generated binaries with a

wide variety of properties. In contrast, prior work focuses

on isolated corner cases; we show that this has led to a

widespread and overly pessimistic view on the prevalence

of complex constructs like inline data and overlapping

code, leading reviewers and researchers to underestimate

the potential of binary-based research. On the other hand,

some constructs, such as function boundaries, are much

harder to recover accurately than is reflected in the litera-

ture, which rarely discusses much needed error handling

for these primitives. We study 30 papers recently pub-

lished in six major security venues, and reveal a mismatch

between expectations in the literature, and the actual ca-

pabilities of modern disassemblers. Our findings help

improve future research by eliminating this mismatch.

1 Introduction

The capabilities and limitations of disassembly are not

always clearly defined or understood, making it difficult

for researchers and reviewers to judge the practical fea-

sibility of techniques based on it. At the same time, dis-

assembly is the backbone of research in static binary

instrumentation [5, 19, 32], binary code lifting to LLVM

IR (for reoptimization or analysis) [38], binary-level vul-

nerability search [27], and binary-level anti-exploitation

systems [1, 8, 29, 46]. Disassembly is thus crucial for

analyzing or securing untrusted or proprietary binaries,

where source code is simply not available.

The accuracy of disassembly strongly depends on the

type of binary under analysis. In the most general case,

the disassembler can make very few assumptions on the

structure of a binary—high-level concepts like functions

and loops have no real significance at the binary level [3].

Moreover, the binary may contain complex constructs,

such as overlapping or self-modifying code, or inline

data in executable regions. This is especially true for ob-

fuscated binaries, making disassembly of such binaries

extremely challenging. Disassembly in general is unde-

cidable [43]. On the other hand, one might expect that

compilers emit code with more predictable properties,

containing a limited set of patterns that the disassembler

may try to identify.

Whether this is true is not well recognized, leading

to a wide range of views on disassembly. These vary

from the stance that disassembly of benign binaries is

a solved problem [48], to the stance that complex cases

are rampant [23]. It is unclear which view is justified in

a given situation. The aim of our work is thus to study

binary disassembly in a realistic setting, and more clearly

delineate the capabilities of modern disassemblers.

It is clear from prior work that obfuscated code may

complicate disassembly in a myriad of ways [18, 21].

We therefore limit our study to non-obfuscated binaries

compiled on modern x86 and x64 platforms (the most

common in binary analysis and security research). Specif-

ically, we focus on binaries generated with the popular

gcc, clang and Visual Studio compilers. We explore a

wide variety of 981 realistic binaries, including stripped,

optimized, statically linked, and link-time optimized bi-

naries, as well as library code that includes handcrafted

assembly. We disassemble these binaries using nine state-

of-the-art research and industry disassemblers, studying

their ability to recover all disassembly primitives com-

monly used in the literature: instructions, function start ad-

dresses, function signatures, Control Flow Graphs (CFG)

and callgraphs. In contrast, prior studies focus strongly

on complex corner cases in isolation [23, 25]. Our results

show that such cases are exceedingly rare, even in opti-

mized code, and that focusing on them leads to an overly

pessimistic view on disassembly.

We show that many disassembly primitives can be re-

covered with better accuracy than previously thought. For

1

584 25th USENIX Security Symposium USENIX Association

instance, instruction accuracy often approaches 100%,

even using linear disassembly. On the other hand, we

also identify some primitives which are more difficult to

recover—most notably, function start information.

To facilitate a better match between the capabilities of

disassemblers and the expectations in the literature, we

comprehensively study all binary-based papers published

in six major security conferences in the last three years.

Ironically, this study shows a focus in the literature on

rare complex constructs, while little attention is devoted

to error handling for primitives that really are prone to in-

accuracies. For instance, only 25% of Windows-targeted

papers that rely on function information discuss potential

inaccuracies, even though the accuracy of function detec-

tion regularly drops to 80% or less. Moreover, less than

half of all papers implement mechanisms to deal with

inaccuracies, even though in most cases errors can lead to

malignant failures like crashes.

Contributions & Outline

The contributions of our work are threefold.

(1) We study disassembly on 981 full-scale compiler-

generated binaries, to clearly define the true capa-

bilities of modern disassemblers (Section 3) and the

implications on binary-based research (Section 4).

(2) Our results allow researchers and reviewers to ac-

curately judge future binary-based research—a task

currently complicated by the myriad of differing opin-

ions on the subject. To this end, we release all our raw

results and ground truth for use in future evaluations

of binary-based research1.

(3) We analyze the quality of all recent binary-based

work published in six major security venues by com-

paring our results to the requirements and assump-

tions of this work (Section 5). This shows where

disassembler capabilities and the literature are mis-

matched, and how this mismatch can be resolved

moving forward (Section 6).

2 Evaluating Real-World Disassembly

This section outlines our disassembly evaluation approach.

We discuss our results, and the implications on binary-

based research, in Sections 3–4. Sections 5–6 discuss how

closely expectations in the literature match our results.

2.1 Binary Test Suite

We focus our analysis on non-obfuscated x86 and x64 bi-

naries generated with modern compilers. Our experiments

are based on Linux (ELF) and Windows (PE) binaries,

generated with the popular gcc v5.1.1, clang v3.7.0 and

1https://www.vusec.net/projects/disassembly/

Visual Studio 2015 compilers—the most recent versions

at the time of writing. The x86/x64 instruction set is

the most common target in binary-based research. More-

over, x86/x64 is a variable-length instruction set, allowing

unique constructs such as overlapping and “misaligned”

instructions which can be difficult to disassemble. We

exclude obfuscated binaries, as there is no doubt that they

can wreak havoc on disassembler performance and we

hardly need confirm this in our experiments.

We base our disassembly experiments on a test suite

composed of the SPEC CPU2006 C and C++ benchmarks,

the widely used and highly optimized glibc-2.22 li-

brary, and a set of popular server applications consisting

of nginx v1.8.0, lighttpd v1.4.39, opensshd v7.1p2,

vsftpd v3.0.3 and exim v4.86. This test suite has several

properties which make it representative: (1) It contains a

wide variety of realistic C and C++ binaries, ranging from

very small to large; (2) These correspond to binaries used

in evaluations of other work, making it easier to relate

our results to the literature; (3) The tests include highly

optimized library code, containing handwritten assembly

and complex corner cases which regular applications do

not; (4) SPEC CPU2006 compiles on both Linux and

Windows, allowing a fair comparison of results between

gcc, clang, and Visual Studio.

To study the impact of compiler options on disassembly,

we compile the SPEC CPU2006 part of our test suite

multiple times with a variety of popular configurations.

Specifically: (1) Optimization levels O0, O1, O2 and O3

for gcc, clang and Visual Studio; (2) Optimization for

size (Os) on gcc and clang; (3) Static linking and link-

time optimization (-flto) on 64-bit gcc; (4) Stripped

binaries, as well as binaries with symbols. We compile the

servers for both x86 and x64 with gcc and clang, leaving

all remaining settings at the Makefile defaults. Finally,

we compile glibc-2.22 with 64-bit gcc, to which it is

specifically tailored. In total, our test suite contains 981

binaries and shared objects.

2.2 Disassembly Primitives

We test all five common disassembly primitives used in

the literature (see Section 5). Some of these go well

beyond basic instruction recovery, and are only supported

by a subset of the disassemblers we test.

(1) Instructions: The pure assembly-level instructions.

(2) Function starts: Start addresses of the functions

originally defined in the source code.

(3) Function signatures: Parameter lists for functions

found by the disassembler.

(4) Control Flow Graph (CFG) accuracy: The sound-

ness and completeness of the CFG digraphs Gc f g =
(Vbb,Ec f), which describe how control flow edges Ec f ⊆
Vbb ×Vbb connect the basic blocks Vbb. In practice, dis-

2

USENIX Association 25th USENIX Security Symposium 585

assemblers deviate from the traditional CFG; typically

by omitting indirect edges, and sometimes by defining

a global CFG rather than per-function CFGs. Therefore,

we define the Interprocedural CFG (ICFG): the union of

all function-level CFGs, connected through interprocedu-

ral call and jump edges. This allows us to abstract from

the disassemblers’ varying CFG definitions, by focusing

our measurement on the coverage of basic blocks in the

ICFG. We pay special attention to hard-to-resolve basic

blocks, such as the heads of address-taken functions and

switch/case blocks reached via jump tables.

(5) Callgraph accuracy: The correctness of the digraph

G = (Vcs ∪Vf ,Ecall) linking the set Vcs of call sites to

the function starts Vf through call edges Ecall ⊆Vcs ×Vf .

Similarly to the CFG, disassemblers deviate from the

traditional callgraph definition by including only direct

call edges. In our experiments, we therefore measure the

completeness of this direct callgraph, considering indirect

calls and tailcalls separately in our complex case analysis.

2.3 Complex Constructs

We also study the prevalence in real-world binaries of

complex corner cases which are often cited as particularly

harmful to disassembly [5, 23, 34].

(1) Overlapping/shared basic blocks: Basic blocks may

be shared between different functions, hindering disas-

semblers from properly separating these functions.

(2) Overlapping instructions: Since x86/x64 uses

variable-length instructions without any enforced memory

alignment, jumps can target any offset within a multi-byte

instruction. This allows the same code bytes to be in-

terpreted as multiple overlapping instructions, some of

which may be missed by disassemblers.

(3) Inline data and jump tables: Data bytes may be

mixed in with instructions in a code section. Examples of

potential inline data include jump tables or local constants.

Such data can cause false positive instructions, and can

desynchronize the instruction stream if the last few data

bytes are mistakenly interpreted as the start of a multi-

byte instruction. Disassembly then continues parsing this

instruction into the actual code bytes, losing track of the

instruction stream alignment.

(4) Switches/case blocks: Switches are a challenge for

basic block discovery, because the switch case blocks are

typically indirect jump targets (encoded in jump tables).

(5) Alignment bytes: Some code (i.e., nop) or data

bytes may have no semantic meaning, serving only to

align other code for optimization of memory accesses.

Alignment bytes may cause desynchronization if they do

not encode valid instructions.

(6) Multi-entry functions: Functions may have multiple

basic blocks used as entry points, which can complicate

function start recognition.

<BB0>
 cmp ecx, edx
 jl <BB2>
 jmp <BB1>

<BB1>
 mov eax,[fptr+ecx]
 call eax

<BB2>
 mov eax,[fptr+edx]
 call eax

<f1>

<f2>

<f0>

<inline data>

<BB0>
 cmp ecx, edx
 jl <BB2>
 jmp <BB1>

<BB1>
 mov eax,[fptr+ecx]
 call eax

<BB2>
 mov eax,[fptr+edx]
 call eax

<f1>

<f2>

<f0>

<inline data>

Recursive Linear

Figure 1: Disassembly methods. Arrows show disassem-

bly flow. Gray blocks show missed or corrupted code.

(7) Tail calls: In this common optimization, a function

ends not with a return, but with a jump to another function.

This makes it more difficult for disassemblers to detect

where the optimized function ends.

2.4 Disassembly & Testing Environment

We conducted all disassembly experiments on an Intel

Core i5 4300U machine with 8GB of RAM, running

Ubuntu 15.04 with kernel 3.19.0-47. We compiled our

gcc and clang test cases on this same machine. The

Visual Studio binaries were compiled on an Intel Core i7

3770 machine with 8GB of RAM, running Windows 10.

We tested nine popular industry and research dis-

assemblers: IDA Pro v6.7, Hopper v3.11.5, Dyninst

v9.1.0 [5], BAP v0.9.9 [7], ByteWeight v0.9.9 [4], Jakstab

v0.8.4 [17], angr v4.6.1.4 [36], PSI v1.1 [47] (the suc-

cessor of BinCFI [48]), and objdump v2.22. ByteWeight

yields only function starts, while Dyninst and PSI sup-

port only ELF binaries (for Dyninst, this is due to our

Linux testing environment). Jakstab supports only x86

PE binaries. We omit angr results for x86, as angr is opti-

mized for x64. PSI is based on objdump, with added error

correction. Section 3 shows that PSI (and all linear dis-

assemblers) perform equivalently to objdump; therefore,

we group these under the name linear disassembly.

All others are recursive descent disassemblers, illus-

trated in Figure 1. These follow control flow to avoid

desynchronization by inline data, and to discover com-

plex cases like overlapping instructions. In contrast, linear

disassemblers like objdump simply decode all code bytes

consecutively, and may be confused by inline data, possi-

bly causing garbled code like BB1 in the figure. Recursive

disassemblers avoid this problem, but may miss indirect

control flow targets, such as f1 and f2 in the figure.

3

586 25th USENIX Security Symposium USENIX Association

2.5 Ground Truth

Our disassembly experiments require precise ground truth

on instructions, basic blocks and function starts, call sites,

function signatures and switch/case addresses. This in-

formation is normally only available at the source level.

Clearly, we cannot obtain our ground truth from any dis-

assembler, as this would bias our experiments.

We base our ELF ground truth on information collected

by an LLVM analysis pass, and on DWARF v3 debug-

ging information. Specifically, we use LLVM to collect

source-level information, such as the source lines belong-

ing to functions and switch statements. We then compile

our test binaries with DWARF information, and link the

source-level line numbers to the binary-level addresses us-

ing the DWARF line number table. We also use DWARF

information on function parameters for our function sig-

nature analysis. We strip the DWARF information from

the binaries before our disassembly experiments.

The line number table provides a full mapping of source

lines to binary, but not all instructions correspond directly

to a source line. To find these instructions, we use Cap-

stone v3.0.4 to start a conservative linear disassembly

sweep from each known instruction address, stopping

at control flow instructions unless we can guarantee the

validity of their destination and fall-through addresses.

For instance, the target of a direct unconditional jump

instruction can be guaranteed, while its fall-through block

cannot (as it might contain inline data).

This approach yields ground truth for over 98% of

code bytes in the tested binaries. We manually analyze

the remaining bytes, which are typically alignment code

unreachable by control flow. The result is a ground truth

file for each binary test case, that specifies the type of

each code byte, as well as instruction and function starts,

switch/case addresses, and function signatures.

We use a similar method for the Windows PE tests,

but based on information from PDB (Program Database)

files produced by Visual Studio instead of DWARF. This

produces files analogous to our ELF ground truth format.

We release all our ground truth files and our test suite,

to aid in future evaluations of binary-based research and

disassembly.

3 Disassembly Results

This section describes the results of our disassembly ex-

periments, using the methodology outlined in Section 2.

We first discuss application binaries (SPEC and servers),

followed by a separate discussion on highly optimized

libraries. Finally, we discuss the impact of static linking

and link-time optimization. We release all our raw results,

and present aggregated results here for space reasons.

3.1 Application Binaries

This section presents disassembly results for application

code. We discuss accuracy results for all primitives, and

also analyze the prevalence of complex cases.

3.1.1 SPEC CPU2006 Results

Figures 2a–2e show the accuracy for the SPEC CPU2006

C and C++ benchmarks of the recovered instructions,

function starts, function signatures, CFGs and callgraphs,

respectively. We show the percentage of correctly recov-

ered (true positive) primitives for each tested compiler

at optimization levels O0–O3. Note that the legend in

Figure 2a applies to Figures 2a–2e. All lines are geo-

metric mean results (simply referred to as “mean” from

this point); arithmetic means and standard deviations are

discussed in the text where they differ significantly. We

show separate results for the C and C++ benchmarks, to

expose variations in disassembly accuracy that may result

from different code patterns.

Some disassemblers support only a subset of the tested

primitives. For instance, linear disassembly provides only

instructions, and IDA Pro is the only tested disassembler

that provides function signatures. Moreover, some disas-

semblers only support a subset of the tested binary types,

and are therefore only shown in the plots where they are

applicable. For clarity, the graphs only show results for

stripped binaries; our tests with standard symbols (not

DWARF information) are discussed in the text.

3.1.1.1 Instruction boundaries

Figure 2a shows the percentage of correctly recovered

instructions. Interestingly, linear disassembly consistently

outperforms all other disassemblers, finding 100% of the

instructions for gcc and clang binaries (without false

positives), and 99.92% in the worst case for Visual Studio.

Linear disassembly. The perfect accuracy for linear

disassembly with gcc and clang owes to the fact that

these compilers never produce inline data, not even for

jump tables. Instead, jump tables and other data are placed

in the .rodata section.

Visual Studio does produce inline data, typically jump

tables. This leads to some false positives with linear disas-

sembly (data treated as code), amounting to a worst-case

mean of 989 false positive instructions (0.56% of the dis-

assembled code) for the x86 C++ tests at O3. The number

of missed instructions (false negatives, due to desynchro-

nization) is much lower, at a worst-case mean of 0.09%.

This is because x86/x64 disassembly automatically resyn-

chronizes within two or three instructions [21].

4

USENIX Association 25th USENIX Security Symposium 587

Figure 2: Disassembly results. The legend in Figure 2a applies to Figures 2a–2e. Section 2.4 describes which platforms

are supported by each tested disassembler.

 20

 30

 40

 50

 60

 70

 80

 90

 100

O0 O1 O2 O3

%
 c

o
rr

e
c

t
(g

e
o

m
e

tr
ic

 m
e

a
n

)

gcc-5.1.1 x86

angr 4.6.1.4

BAP 0.9.9

ByteWeight 0.9.9

Dyninst 9.1.0

Hopper 3.11.5

IDA Pro 6.7

Jakstab 0.8.4

Linear

SPEC (C)

SPEC (C++)

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

(a) Correctly disassembled instructions.

 0

 20

 40

 60

 80

 100

O0 O1 O2 O3

%
 c

o
rr

e
c

t
(g

e
o

m
e

tr
ic

 m
e

a
n

)

gcc-5.1.1 x86

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

(b) Correctly detected function start addresses.

 0

 20

 40

 60

 80

 100

O0 O1 O2 O3

%
 c

o
rr

e
c

t
(g

e
o

m
e

tr
ic

 m
e

a
n

)

gcc-5.1.1 x86

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

(c) Correctly detected non-empty function argument lists (IDA Pro only).

5

588 25th USENIX Security Symposium USENIX Association

 0

 20

 40

 60

 80

 100

O0 O1 O2 O3

%
 c

o
rr

e
c

t
(g

e
o

m
e

tr
ic

 m
e

a
n

)
gcc-5.1.1 x86

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

(d) Correct and complete basic blocks for the ICFG.

 20

 30

 40

 50

 60

 70

 80

 90

 100

O0 O1 O2 O3

%
 c

o
rr

e
c

t
(g

e
o

m
e

tr
ic

 m
e

a
n

)

gcc-5.1.1 x86

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

(e) Correctly resolved direct function calls (indirect calls discussed separately).

Recursive disassembly. The most accurate recursive

disassembler in terms of instruction recovery is IDA Pro

6.7, which closely follows linear disassembly with an

instruction coverage exceeding 99% at optimization lev-

els O0 and O1, dropping to a worst case mean of 96%

for higher optimization levels. The majority of missed in-

structions at higher optimization levels are alignment code

for functions and basic blocks, which is quite common in

optimized binaries. It consists of various (long) nop in-

structions for gcc and clang, and of int 3 instructions

for Visual Studio, and accounts for up to 3% of all code

at O2 and O3. Missing these instructions is not harmful

to common binary analysis operations, such as binary

instrumentation, manual analysis or decompilation.

False positives in IDA Pro are less prevalent than in lin-

ear disassembly. On gcc and clang, they are extremely

rare, amounting to 14 false positives in the worst test

case, with a mean of 0. Visual Studio binaries produce

more false positives, peaking at 0.16% of all recovered in-

structions. Overall, linear disassembly provides the most

complete instruction listing, but at a relatively high false

positive rate for Visual Studio. IDA Pro finds only slightly

fewer instructions, with significantly fewer false positives.

These numbers were no better for binaries with symbols.

Dyninst and Hopper achieve best case accuracy com-

parable to IDA, but not quite as consistently. Some disas-

semblers, notably BAP, appear to be optimized for gcc,

and show large performance drops when used on clang.

The BAP authors informed us that BAP’s results depend

strongly on the disassembly starting points (i.e., function

starts), provided by ByteWeight. We used the default ELF

and PE signature files shipped with ByteWeight v0.9.9.

Our angr results are based on the CFGFast analysis rec-

ommended to us by the angr authors.

Overall, IDA Pro, Hopper, Dyninst and linear disas-

sembly show arithmetic mean results which are extremely

close to the geometric means, exhibiting standard devia-

tions below 1%. Other disassemblers have larger standard

deviations, typically around 15%, with outliers up to 36%

(for BAP on clang x86, as visible in Figure 2a).

6

USENIX Association 25th USENIX Security Symposium 589

6caf10 <ix86 fp compare mode>:
6caf10: mov 0x3f0dde(%rip),%eax
6caf16: and $0x10,%eax
6caf19: cmp $0x1,%eax
6caf1c: sbb %eax,%eax
6caf1e: add $0x3a,%eax
6caf21: retq

Listing 1: False negative indirectly called function for

IDA Pro in gcc, compiled with gcc at O3 for x64 ELF.

480970 <autohelperowl defendpat156>:
480970: push %rbp
480971: push %r15
480973: push %r14
480975: push %rbx
480976: push %rax

Listing 2: False positive function (shaded) for Dyninst,

due to misapplied prologue signature, gobmk compiled

with clang at O1 for x64 ELF.

C versus C++. Accuracy between C and C++ differs

most in the lower scoring disassemblers, but the difference

largely disappears in the best performing disassemblers.

The largest relative difference appears for clang.

3.1.1.2 Function starts

The results for function start detection are far more diffuse

than those for instruction recovery. Consider Figure 2b,

which shows the mean percentage of correctly recovered

function start addresses. No one disassembler consistently

dominates these results, though Hopper is at the upper

end of the spectrum for most compiler configurations

in terms of true positives. Dyninst also provides high

true positive rates, though not as consistently as Hopper.

However, as shown in Figure 3, both Hopper and Dyninst

suffer from high false positive rates, with worst case mean

false positive rates of 28% and 19%, respectively. IDA

Pro provides lower false positive rates of under 5% in

most cases (except for x86 Visual Studio, where it peaks

at 20%). However, its true positive rate is substantially

lower than those of Hopper and Dyninst, regularly miss-

ing 20% or more of functions even at low optimization

levels. As with instruction recovery, the results for BAP

and ByteWeight depend heavily on the compiler config-

uration, ranging from over 90% accuracy on gcc x86 at

O0, to under 20% on clang x64.

Even for the best performing disassemblers, function

start identification is far more challenging than instruction

recovery. Accuracy drops particularly as the optimization

level increases, repeatedly falling from close to 99% true

positives at O0, to only 82% at O3, and worsened by high

false positive rates. For IDA Pro, the worst case mean true

positive rate is even lower, falling to 62% for C++ on x64

gcc at O3. Moreover, the standard deviation increases to

over 15% even for IDA Pro.

8060985: pop %ebx
8060986: pop %esi
8060987: ret
8060988: nop
8060989: lea 0x0(%esi,%eiz,1),%esi

Listing 3: False positive function (shaded) for Dyninst,

due to code misinterpreted as epilogue, sphinx compiled

with gcc at O2 for x86 ELF.

46b990 <Perl pp enterloop>:
[...]

46ba02: ja 46bb50 <Perl pp enterloop+0x1c0>
46ba08: mov %rsi,%rdi
46ba0b: shl %cl,%rdi
46ba0e: mov %rdi,%rcx
46ba11: and $0x46,%ecx
46ba14: je 46bb50 <Perl pp enterloop+0x1c0>

[...]
46bb47: pop %r12
46bb49: retq
46bb4a: nopw 0x0(%rax,%rax,1)
46bb50: sub $0x90,%rax

Listing 4: False positive function (shaded) for Dyninst,

due to code misinterpreted as epilogue, perlbench com-

piled with gcc at O3 for x64 ELF.

False negatives. The vast majority of false nega-

tives is caused by indirectly called or tailcalled functions

(reached by a jmp instead of a call), as shown in List-

ing 1. This explains why the true positive rate drops

steeply at high optimization levels, where tail calls and

functions lacking standard prologues are common (see

Section 3.1.3). Symbols, if available, help greatly in im-

proving accuracy. They are used especially effectively

by IDA Pro, which consistently yields over 99% true

positives for binaries with symbols, even at higher opti-

mization levels.

False positives. Several factors contribute to the false

positive rate. We analyzed a random sample of 50 false

positives for Dyninst, Hopper and IDA Pro, the three best

performing disassemblers in function detection.

For Dyninst, false positives are mainly due to erro-

neously applied signatures for function prologues and

epilogues. As an example, Listing 2 shows a false posi-

tive in Dyninst due to a misidentified prologue: Dyninst

scans for the push %r15 instruction (as well as several

other prologue signatures), missing preceding instructions

in the function. We observe similar cases for function

epilogues. For instance, as shown in Listings 3 and 4,

Dyninst assumes a new function following a ret; nop

instruction sequence. This is not always correct: as shown

in the examples, the same code pattern can result from

a multi-exit function with padding between basic blocks.

Note that both examples could be handled correctly by

control flow and semantics-aware disassemblers. In List-

ing 4, there are intraprocedural jumps towards the basic

block at 0x46bb50, showing that it is not a new function.

7

590 25th USENIX Security Symposium USENIX Association

 0

 20

 40

 60

 80

 100

O0 O1 O2 O3

%
 f

a
ls

e
 p

o
s

it
iv

e
s

 (
g

e
o

m
e
tr

ic
 m

e
a

n
)

gcc-5.1.1 x86

angr 4.6.1.4

BAP 0.9.9

ByteWeight 0.9.9

Dyninst 9.1.0

Hopper 3.11.5

IDA Pro 6.7

Jakstab 0.8.4

SPEC (C)

SPEC (C++)

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

Figure 3: False positives for function start detection (percentage of total detected functions).

42cec3: movss %xmm0,-0x340(%rbp)
42cecb: jmpq 42cfc8 <P7PriorifyTransitionVector+0x622>
42ced0: mov -0x344(%rbp),%eax

Listing 5: False positive function (shaded) for Hopper,

due to misclassified switch case block, hmmer compiled

with gcc at O0 for x64 ELF.

The false positive in Listing 3 is in effect a nop instruction,

emitted for padding by gcc on x86.

All false positives we sampled for Hopper are located

directly after padding code, or after a direct jmp (with-

out a fallthrough edge), and are not directly reached by

other instructions. An example is shown in Listing 5.

Since these instructions are never reached directly, Hop-

per assumes that they represent function starts. This is not

always correct; for instance, the same pattern frequently

results from case blocks belonging to switch statements,

as seen in Listing 5.

Similarly, the majority of false positives for IDA Pro

is also caused by unreachable code assumed to be a new

function. However, these cases are far less common in

IDA Pro than in Hopper, as IDA Pro more accurately

resolves difficult control flow constructs such as switches.

Interestingly, the false positive rate for IDA Pro drops

to a mean of under 0.3% for x64 Visual Studio 2015.

This is because 64-bit Visual Studio uses just one well-

defined calling convention, while other compilers use a

variety [22].

3.1.1.3 Function signatures

Of the tested disassemblers, only IDA Pro supports func-

tion signature analysis. Figure 2c shows the percentage

of non-empty function argument lists where IDA Pro cor-

rectly identified the number of arguments. We focus on

non-empty argument lists because IDA Pro defaults to an

empty list, skewing our results if counted as correct.

Argument recovery is far more accurate on x86 code,

where parameters are typically passed on the stack, than

it is on the register-oriented x64 architecture. For x86

code generated by gcc and clang, IDA Pro correctly

identifies between 64% and 81% of the argument lists

on non-optimized binaries, dropping to 48% in the worst

case at O3. Results for Visual Studio are slightly worse,

ranging from 36% worst case to 59% in the best case.

As for function starts, the standard deviation is just over

15%. On x64 code, IDA Pro recovers almost none of the

argument lists, with accuracy between 0.38% and 1.87%.

Performance is significantly better for binaries with

symbols, even on x64, but only for C++ code. For in-

stance, IDA Pro’s accuracy for gcc x64 increases to a

mean of 44% for C++, peaking at 75% correct argument

lists. This is because IDA Pro parses mangled function

names that occur in C++ symbols, which encode signature

information in the function name.

3.1.1.4 Control Flow Graph accuracy

Figure 2d presents the accuracy of basic blocks in the

ICFG, the union of all function-level CFGs. We found

these results to be representative of the per-function CFG

accuracy. The accuracy of the ICFG is strongly correlated

with instruction discovery; indeed, recursive disassem-

blers typically find instructions through the process of

expanding the ICFG itself. Thus, the disassemblers that

perform well in instruction recovery also perform well in

CFG construction. For some disassemblers, such as IDA

Pro, the basic block true positive rate at high optimization

levels even exceeds the raw instruction recovery results

(Figure 2a). This is because for the ICFG, we did not

count missing nop instructions as false negatives.

8

USENIX Association 25th USENIX Security Symposium 591

IDA Pro consistently achieves a basic block recovery

rate of between 98–100%, even at high optimization lev-

els. Even at moderate optimization levels, the results

for Hopper and Dyninst are considerably less complete,

regularly dropping to 90% or less. For the remaining

disassemblers, basic block recovery rates of 75% or less

are typical.

All disassemblers except IDA Pro show a considerable

drop in accuracy on gcc and clang for x64, compared

to the x86 results. This is strongly correlated with the

diminishing instruction and function detection results for

these disassembler/architecture combinations (see Fig-

ures 2a–2b). This implies that when functions are missed,

these disassemblers also fail to recover the instructions

and basic blocks contained in the missed functions. In

contrast, IDA Pro disassembles instructions even when

it cannot attribute them to any function. The difference

between x86/x64 and C/C++ results is less pronounced

for Visual Studio binaries than for gcc/clang.

3.1.1.5 Callgraph accuracy

Like ICFG accuracy, callgraph accuracy depends strongly

on the completeness of the underlying instruction analy-

sis. As mentioned, the callgraphs returned by the tested

disassemblers contain only the direct call edges, and do

not deal with address-taken functions. For this reason,

Figure 2e presents results for the direct component of the

callgraph only. We study the impact of indirect calls on

function identification accuracy in our complex case anal-

ysis instead (Section 3.1.3). The direct callgraph results in

Figure 2e again show IDA Pro to be the most accurate at

a consistent 99% function call resolve rate (linking func-

tion call edges to function starts), in most cases followed

closely by Dyninst and Hopper. This illustrates that the

lower accuracy for function starts (Figure 2b) is mainly

due to indirectly called functions (such as those called via

function pointers or in tail call optimizations).

3.1.2 Server Results

Table 1 shows disassembly results for the servers from

our test suite. For space reasons, and because the rel-

ative accuracy of the disassemblers is the same as for

SPEC, we only show results for IDA Pro, the best overall

disassembler. All other results are available externally,

as mentioned at the start of Section 3. We compiled all

servers for both x86 and x64 with gcc and clang, using

their default Makefile optimization levels.

The server tests confirm that the SPEC results from

Section 3.1.1 are representative; all results lie well within

the established bounds. As with SPEC, linear disassembly

achieved 100% correctness. The nginx results warrant

closer inspection; given its optimization level O1, the

In
st

ru
ct

io
n
s

F
u
n
ct

io
n
s

S
ig

n
at

u
re

s
IC

F
G

C
al

lg
ra

p
h

In
st

ru
ct

io
n
s

F
u
n
ct

io
n
s

S
ig

n
at

u
re

s
IC

F
G

C
al

lg
ra

p
h

x86 x64

gcc-5.1.1

nginx 99.9 65.5 49.6 100 100 99.9 59.2 0.9 99.9 100
lighttpd 99.9 99.5 85.9 99.9 100 99.9 99.5 0.0 99.9 100

vsftpd 95.4 93.4 73.6 95.9 99.5 93.0 92.5 4.3 99.9 100
opensshd 99.9 86.2 74.9 100 100 99.9 86.2 0.0 100 100

exim 99.9 90.1 58.2 99.9 100 99.9 89.9 4.5 99.9 100

clang-3.7.0

nginx 98.5 57.5 44.0 99.5 100 98.6 53.0 0.7 99.4 100
lighttpd 98.7 99.5 87.9 99.9 100 99.0 99.5 0.0 99.9 100

vsftpd 96.8 93.3 72.9 99.8 100 97.0 92.0 6.6 99.5 99.9
opensshd 98.9 86.5 78.1 100 100 99.2 86.3 0.0 100 100

exim 99.0 82.7 54.6 99.3 100 99.1 81.7 5.4 99.4 100

Table 1: IDA Pro 6.7 disassembly results for server tests

(% correct, per test case).

function start and argument information is on the low

end of the accuracy spectrum. Closer analysis shows that

this results from extensive use in nginx of indirect calls

through function pointers; Section 3.1.1 shows that this

negatively affects function information. Indeed, for all

tested servers, the accuracy of function start detection is

inversely proportional to the ratio of address-taken func-

tions to the total number of instructions. This shows that

coding style can carry through the compilation process to

have a strong effect on disassembler performance.

3.1.3 Prevalence of Complex Constructs

Figure 4 shows the prevalence of complex constructs in

SPEC CPU2006, which pose special disassembly chal-

lenges. We also analyzed these constructs in the server

binaries, finding no significantly different results.

We did not encounter any overlapping or shared basic

blocks in either the SPEC or server tests on any compiler.

This is surprising, as these constructs are frequently cited

in the literature [5, 17, 23]. Closer inspection showed

that all the cited cases of overlapping blocks are due to

constructs which we classify more specifically, namely

overlapping instructions and multi-entry functions. These

constructs are exceedingly rare, and occur almost exclu-

sively in library code (discussed in Section 3.2.2). This

finding fits with the examples seen in the literature, which

all stem from library code, most commonly glibc.

No overlapping instructions occur in Linux applica-

tion code, and only a handful in Windows code (with a

mean of zero, and a maximum of 3 and 10 instructions

for x86 and x64 Visual Studio, respectively). Multi-entry

functions are somewhat more common. All cases we

found consisted of functions with optional basic blocks

that can execute before the main function body, and finish

by jumping over the main function body prologue. Fig-

ure 4 lists such jumps as multi-entry jumps, and shows

9

592 25th USENIX Security Symposium USENIX Association

 0

 100

 200

 300

 400

 500

 600

O0 O1 O2 O3

#
 c

o
m

p
le

x
 c

a
s

e
s

 (
g

e
o

m
e
tr

ic
 m

e
a

n
)

gcc-5.1.1 x86

BB overlap

ins overlap

multi-entry jmps

multi-entry targets

tailcall jmps

tailcall targets

SPEC (C)

SPEC (C++)

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

Figure 4: Prevalence of complex constructs in SPEC CPU2006 binaries.

the targeted main function bodies as multi-entry targets.

In binaries compiled with gcc and clang, we found up

to 18 multi-entry jumps for C code, and up to 64 for C++,

with the highest prevalence in x64 binaries. Visual Studio

produced up to 172 multi-entry jumps for C, and up to

88 for C++, the construct being most prevalent in x86

code. This kind of multi-entry function is handled well by

disassemblers in practice, producing no notable decrease

in disassembly accuracy compared to other functions.

Tailcalls form the most prevalent complex case, and

do negatively affect function start detection if the target

function is never called normally (see Section 3.1.1). The

largest number of tailcalls (listed as tailcall jumps in Fig-

ure 4) is found in clang x64 C++ binaries, at a mean

of 545 cases. Visual Studio produces a similar number

of tailcalls. For clang, the number of tailcalls peaks at

optimization level O1, while Visual Studio peaks at O3.

For clang (and to a lesser extent gcc), higher optimiza-

tion levels can lead to a decrease in tailcalls through other

modifications like code merging and code elimination.

Jump tables (due to switches) are by far the most com-

mon case of inline data. They occur as inline data only

on Visual Studio (gcc and clang place jump tables in

the .rodata section). As seen in Section 3.1.1, inline

data causes false positive instructions especially in linear

disassembly (peaking at 0.56% false positives).

Another challenge due to jump tables is locating all

case blocks belonging to the switch; these are typically

reached indirectly via a jump that loads its target ad-

dress from the jump table. Linear disassembly covers

100% of case blocks correctly on gcc and clang (see

Section 3.1.1), and also achieves very high accuracy for

Visual Studio. The best performing recursive disassem-

blers, most notably IDA Pro, also achieved very high

coverage of switch/case blocks; coverage of these blocks

is comparable to the overall instruction/basic block recov-

ery rates. This is because many recursive disassemblers

have special heuristics for identifying and parsing stan-

dard jump tables.

3.1.4 Optimizing for Size

At optimization levels O0–O3, no overlapping or shared

basic blocks occur. A reasonable hypothesis is that com-

pilers might more readily produce such blocks when op-

timizing for size (optimization level Os) rather than for

performance. To verify this, we recompiled the SPEC C

and C++ benchmarks with size optimization, and repeated

our disassembly tests.

Even for size-optimized binaries, we did not find any

overlapping or shared blocks. Moreover, the accuracy of

the instruction boundaries, callgraph and ICFG did not

significantly differ from our results for O0–O3. Function

starts and argument lists were comparable in precision to

those for performance-optimized binaries (O2–O3).

3.2 Shared Library Objects

This section discusses our disassembly results and com-

plex case analysis for library code. Libraries are often

highly optimized, and therefore contain more complex

(handcrafted) corner cases than application code. We fo-

cus our analysis on glibc-2.22, the standard C library

used in GNU systems, compiled in its default configura-

tion (gcc with optimization level O2). This is one of the

most widespread and highly optimized libraries, and is

often cited as a highly complex case [5, 23].

3.2.1 Disassembly Results

Table 2 shows disassembly results for glibc-2.22, for

all tested disassemblers that support 64-bit ELF bina-

ries. Nearly all disassemblers display significantly lower

10

USENIX Association 25th USENIX Security Symposium 593

In
st

ru
ct

io
n
s

F
u
n
ct

io
n
s

S
ig

n
at

u
re

s
IC

F
G

C
al

lg
ra

p
h

gcc-5.1.1 x64

angr 64.4 75.6 — 70.2 87.9
BAP 65.3 79.6 — 72.4 84.8

ByteWeight — 29.3 — — —
Dyninst 79.7 85.2 — 87.6 95.5
Hopper 84.3 93.3 — 90.6 93.9

IDA Pro 96.0 92.0 5.4 99.9 99.9
Linear 99.9 — — — —

Table 2: Disassembly results for glibc (% correct).

accuracy on instruction boundaries than the mean for ap-

plication binaries in equivalent compiler configurations.

Only IDA Pro and linear disassembly are on par with their

performance on application code, achieving very good

accuracy without any false positives. Note that objdump

achieves 99.9% accuracy instead of the usual 100% for

ELF binaries. This is because unlike IDA Pro, it does not

explicitly separate the overlapping instructions that occur

in glibc (see Section 3.2.2).

Function start results are on par with, or even exceed

the mean for application binaries; this holds true for all

disassemblers. Moreover, the accuracy of function argu-

ment lists (5.4%) is much higher than one would expect

from the x64 SPEC CPU2006 results (under 1% accu-

racy). This is because IDA Pro comes with a set of code

signatures designed to recognize standard library func-

tions that are statically linked into binaries.

For the ICFG, we see the same pattern as for instruc-

tions: all disassemblers perform worse than for applica-

tion code, while IDA Pro delivers comparable accuracy.

Callgraph accuracy is below the mean for most disassem-

blers, though IDA Pro and Dyninst perform very close to

the mean, and BAP well exceeds it.

3.2.2 Complex Constructs

Overall, we found the glibc-2.22 code to be surpris-

ingly well-behaved. Our analysis found no overlapping

or shared basic blocks, and no inline data. Indeed, the

glibc developers have taken special care to prevent this,

explicitly placing data and jump tables in the .rodata

section even when manually declared in handwritten as-

sembly code. Prior work has analysed earlier versions

of glibc, showing that inline jump tables are present in

glibc-2.12 [23]. Moreover, inline zero-bytes used for

function padding are confirmed in versions up to 2.21.

This is worth noting, as older glibc versions may still be

encountered in practice. Our analysis of glibc versions

ranging from 2.12 to 2.22 shows consistently improving

disassembler-friendliness over time.

We did find some complex constructs that do not occur

in application code, the most notable being overlapping

7b05a: cmpl $0x0,%fs:0x18
7b063: je 7b066
7b065: lock cmpxchg %rcx,0x3230fa(%rip)

Listing 6: Overlapping instruction in glibc-2.22.

e9a30 <splice>:
e9a30: cmpl $0x0,0x2b9da9(%rip)
e9a37: jne e9a4c < splice nocancel+0x13>

e9a39 < splice nocancel>:
e9a39: mov %rcx,%r10
e9a3c: mov $0x113,%eax
e9a41: syscall
e9a43: cmp $0xfffffffffffff001,%rax
e9a49: jae e9a7f < splice nocancel+0x46>
e9a4b: retq
e9a4c: sub $0x8,%rsp
e9a50: callq f56d0 < libc enable asynccancel>
[...]

Listing 7: Multi-entry function in glibc-2.22.

instructions. We found 31 such instructions in glibc. All

of these are instructions with optional prefixes, such as the

one shown in Listing 6. These overlapping instructions

are defined manually in handcrafted assembly code, and

typically use a conditional jump to optionally skip a lock

prefix. They correspond to frequently cited complex cases

in the literature [5, 23].

In addition, we found 508 tailcalls resulting from the

compiler’s normal optimization; a number comparable

to application binaries of similar size as glibc. We also

found significantly more multi-entry functions than in

the SPEC benchmarks. Most of these belong to the

nocancel family, explicitly defined in glibc, an ex-

ample of which is shown in Listing 7. These functions

provide optional basic blocks which can be prefixed to

the main function body to choose a threadsafe variant of

the function. These prefix blocks end by jumping over

the prologue of the main function body, a pattern also

sometimes seen in application code.

Given that all non-standard complex constructs in

glibc are due to handwritten assembly, we manually

analyzed all assembly code in libc++ and libstdc++.

However, the amount of assembly in these libraries is

very limited and revealed no new complex constructs.

This suggests that the optimization constructs in glibc

are typical for low-level libraries, and less common in

higher-level ones such as the C++ standard libraries.

3.3 Static Linking & Linker Optimization

Static linking can reduce disassembler performance on

application binaries by merging complex library code into

the binary. Link-time optimization performs intermodu-

lar optimization at link-time, as opposed to more local

compile-time optimizations. It is a relatively new feature

that is gaining in popularity, and could worsen disassem-

bler performance if combined with static linking, by opti-

mizing application and library code as a whole. To study

11

594 25th USENIX Security Symposium USENIX Association

In
st

ru
ct

io
n
s

F
u
n
ct

io
n
s

S
ig

n
at

u
re

s
IC

F
G

C
al

lg
ra

p
h

gcc-5.1.1 x64 with -static

SPEC/C O0 96.2 69.4 0.1 98.3 98.2
SPEC/C O1 96.2 68.4 0.2 98.6 98.4
SPEC/C O2 95.5 67.1 0.2 98.8 98.9
SPEC/C O3 95.6 65.7 0.2 98.7 98.7
SPEC/C Os 95.9 67.8 0.2 98.7 98.4

gcc-5.1.1 x64 with -static and -flto

SPEC/C O0 96.3 69.3 0.2 98.5 98.3
SPEC/C O1 96.0 68.6 0.3 98.6 98.4
SPEC/C O2 95.0 67.4 0.3 98.3 98.0
SPEC/C O3 95.2 66.9 0.3 98.3 98.4
SPEC/C Os 95.5 67.8 0.2 98.4 97.7

Table 3: IDA Pro 6.7 disassembly results for static and

link-time optimized SPEC C benchmarks (% correct, ge-

ometric mean).

the effects of these options, we recompiled the SPEC

CPU2006 C benchmarks, statically linking them with

glibc-2.22 using gcc’s -static flag. Subsequently,

we repeated the process with both static linking and link-

time optimization (gcc’s -flto) enabled.

As expected, static linking merges complex cases from

glibc into SPEC, including overlapping instructions.

The effect on disassembly performance is shown in Ta-

ble 3 for IDA, the overall best performing disassembler in

our glibc tests. The impact is slight but noticeable, with

an instruction accuracy drop of up to 3 percentage points

compared to baseline SPEC; about the same as for glibc.

As can be seen in Table 3, link-time optimization does not

significantly decrease disassembly accuracy compared to

static linking only.

Function start detection suffers from static linking

mostly at lower optimization levels, dropping from a

mean of 80% to just under 70% for O0; at level O3 the per-

formance is not significantly reduced. Again, link-time

optimization does not worsen the situation compared to

pure static linking. For the ICFG and callgraph tests, a

small accuracy drop is again seen at lower optimization

levels, again with no more adverse effects due to link-time

optimization. For instance, ICFG accuracy drops from

close to 100% mean in baseline SPEC to just over 98%

in statically linked SPEC at O0, while the results at O2

and O3 show no negative impact. We suspect that this is

a result of optimized library code being linked in even

at lower optimization levels. Overall, we do not expect

any significant adverse impact on binary-based research

as link-time optimization gains in popularity.

4 Implications of Results

This section discusses the implications of our results for

three popular directions in binary-based research: (1)

Control-Flow Integrity, (2) Decompilation, and (3) Auto-

matic bug search. A detailed comparison of our results to

assumptions in the literature is given in Section 5.

4.1 Control-Flow Integrity

Control-Flow Integrity (CFI) is currently one of the most

popular research directions in systems security, as shown

in Table 6. Binary-level CFI typically relies on binary

instrumentation to insert control flow protections into pro-

prietary or legacy binaries [1, 10, 24, 29, 41, 45, 46, 48].

Though a wide variety of CFI solutions has been proposed,

most of these have similar binary analysis requirements,

due to their common aim of protecting indirect jumps,

indirect calls, and return instructions. We structure our

discussion around what is needed to analyze and protect

each of these control edge types.

Indirect calls. Typically, protecting an indirect call

requires instrumenting both the call site (the call in-

struction itself, possibly including parameters), and the

call target (the called function). Finding call sites relies

mainly on accurate and complete disassembly of the ba-

sic instructions. As shown in Figure 2a, these can be

recovered with extremely high accuracy, even 100% ac-

curacy for linear disassembly on gcc and clang binaries.

Thus, a binary-level CFI solution is unlikely to encounter

problems analyzing and instrumenting call sites.

For Visual Studio binaries, there is a chance that a small

percentage of call sites may be missed. Depending on the

specific CFI solution, it may be possible to detect calls

from uninstrumented sites in the target function, trigger-

ing a runtime error handling mechanism (see Section 5).

Since these cases are rare, it is then feasible to perform

more elaborate (slow path) alternative security checks.

The main challenge is to accurately detect all possible

target functions for each indirect call. As a basic prereq-

uisite, this requires finding the complete set of indirectly

called functions. As shown in Section 3.1.1 and Figure 2b,

this is one of the most challenging problems in disassem-

bly — at high optimization levels, 20% or more of all

functions are routinely missed.

Moreover, fine-grained CFI systems must perform even

more elaborate analysis to decide which functions are le-

gal targets for each indirect call site. Overestimating the

set of legal targets leads to attacks which redirect indirect

calls to unexpected functions [12]. Matching call sites to

a set of targets typically requires an accurate (I)CFG, so

that control-flow and data-flow analysis can be performed

to determine which function pointers are passed to each

call site. Figure 2d and Sections 3.1.1–3.1.3 show that an

accurate and complete ICFG is typically available, includ-

ing accurate resolution of switch/jump tables in the best

disassemblers. Although this type of analysis remains

12

USENIX Association 25th USENIX Security Symposium 595

extremely challenging, especially if done interprocedu-

rally (requiring accurate indirect call resolution), it is at

least not limited by the accuracy of basic blocks or direct

control edges.

Additionally, fine-grained CFI systems can benefit

from function signature information, to further narrow

down the set of targets per call site by matching the func-

tion prototype to parameters passed at the call site [39].

Though signature information is often far from complete

(Figure 2c), especially on x64, the information which is

available can still be useful — even with incomplete infor-

mation, the target set can be reduced, directly leading to

security improvements. However, care must be taken to

make the analysis as conservative as possible; if this is not

done, the inaccuracy of function signature information

can easily cause illegal function calls to be allowed, or

worse, can cause legal calls to be inadvertently blocked.

Indirect jumps. Protecting indirect jumps requires

analysis similar to the requirements for indirect calls.

However, as indirect jumps are typically intraprocedu-

ral, protecting them usually does not rely on function

detection. Instead, accurate switch/jump table resolution

is required, which is available in disassemblers like IDA

Pro (Section 3.1.3).

Return instructions. Return instructions are typi-

cally protected using a shadow stack, which requires in-

strumenting all call and return sites (and jumps, to handle

tailcalls) [8]. Given the accurate instruction recovery pos-

sible with modern disassemblers (Figure 2a), it is possible

to accurately and completely instrument these sites.

Summarizing, the main challenge for modern CFI lies

in accurately and completely protecting indirect call sites.

The reasons for this are twofold: (1) Function detection

is one of the most inaccurate primitives (especially for

indirectly called functions), even in state of the art disas-

semblers, and (2) It is currently very difficult to recover

rich information, such as function signature information,

through disassembly. This makes it extremely challenging

to accurately couple indirect call sites with valid targets.

4.2 Decompilation

Instead of translating a binary into assembly instructions,

decompilers lift binaries to a higher-level language, typ-

ically (pseudo-) C. Decompilers are typically built on

top of a disassembler, and therefore rely heavily on the

quality of the disassembly [33, 44].

As most decompilers operate at function granularity,

they rely on accurate function start information. More-

over, they must translate all basic blocks belonging to

a function, requiring knowledge of the function’s CFG.

In effect, this requires not only accurate function start

detection, but accurate function boundary detection. As

described in related work, function boundary detection

is even more challenging than function start detection, as

it additionally requires locating the end address of each

function [4]. This is difficult, especially in optimized bi-

naries, where tailcalls often blur the boundaries between

functions (since the jmp instructions used in tailcalls can

easily be mistaken for intraprocedural control transfers).

In addition to function detection, decompilers rely on

accurate instruction disassembly, and can also greatly

benefit from function signature/type information. More-

over, switch detection is required to correctly attribute all

switch case blocks to their parent function. Finally, call-

graph information is useful to understand the connections

between decompiled functions.

The impact of inaccuracies for decompilation is not

as severe as for CFI systems, since decompiled code is

typically intended for use in manual reverse engineering

rather than automated analysis. However, disassembly

errors can still affect the decompilation process itself,

especially in later passes (such as stack frame analysis

or data type analysis passes) over the raw decompiled

function. Such analysis phases, as well as human reverse

engineers, must take into account the high probability of

errors in function boundary and signature information.

4.3 Automatic Bug Search

The binary analysis requirements of automatic bug search

systems depend on the type of bug being searched for,

and the granularity of the search. In practice, many such

systems operate at the function level, both for ease of

analysis, and because it is a suitable search-granularity

for common bugs, such as stack-based bugs [14, 27, 50].

Operating at the function level is also useful for interop-

erability with other binary analysis primitives, such as

symbolic execution, which are powerful tools for seman-

tic analysis but do not scale to full binaries [14].

Thus, like decompilation, many automatic bug search

systems rely on accurate function boundary information

and per-function CFGs. Fortunately, despite the relatively

large inaccuracies in the input information, the output

of bug detection systems tends to degrade gracefully —

input inaccuracies may lead to bugs being missed, but

typically do not affect the correctness of the analysis for

other parts of the code. Quantifying the accuracy of the

inputs (disassembly, CFG, function boundaries) helps

users to determine the expected output completeness of

automatic bug search systems.

5 Disassembly in the Literature

Given our disassembly results, we studied recent binary-

based research to determine how well the capabilities

13

596 25th USENIX Security Symposium USENIX Association

#
P

ap
er

s
In

st
ru

ct
io

n
s

F
u
n
ct

io
n
s

S
ig

n
at

u
re

s
C

F
G

C
al

lg
ra

p
h

angr 0 0 0 0 0 0
BAP 2 1 2 1 2 0

ByteWeight 0 0 0 0 0 0
Dyninst 1 1 0 0 1 1
Hopper 0 0 0 0 0 0

IDA Pro 13 11 6 2 11 4
Jakstab 0 0 0 0 0 0

PSI/BinCFI 4 3 3 0 3 2
Linear 2 2 1 0 1 1

Other/Custom 8 7 2 0 6 3

Total 30 25 14 3 24 11

Table 4: Primitives/disassemblers used in the literature.

of disassemblers match the expectations in the literature.

Our study covers research published between 2013 and

2015 in all top-tier systems security conferences, namely

S&P (Oakland), CCS, NDSS and USENIX Security. In

addition, we cover research published in these same years

at RAID and ACSAC, two other major conferences which

are popular targets for such research.

We found 30 papers on binary-based research published

in these venues, summarized in Table 6. The rest of this

section presents aggregated findings to provide a degree

of anonymization for these papers.

Table 4 shows the primitives and disassemblers used

in these papers. IDA Pro is by far the most popular, for

all primitives; our disassembly results (Section 3) justify

this choice. Despite its good accuracy, linear disassembly

is among the least used, even for papers that handle only

ELF binaries. This may result from the widespread belief

that inline data causes far more problems than we found.

Instructions are the most often needed primitive, used

by 25 of the 30 papers. It is followed by the CFG (24

papers) and function starts (14 papers). Function signature

information is needed by only 3 of the analyzed papers.

One paper used linear disassembly as a basis for building

a CFG and callgraph, and scanning for function starts.

Table 5 provides a more detailed insight into the prop-

erties of the papers we analyzed. We distinguish between

papers that target Windows PE binaries, and those that

target Linux ELF. This is because some complex cases,

such as inline data, are more often generated by Visual

Studio, deserving closer attention in Windows papers.

Most papers that support obfuscated binaries target

Windows (33% of papers versus 10% for Linux). This is

because obfuscation typically occurs in malware, which is

more prevalent on Windows. Though we do not consider

obfuscated binaries in our tests, it is still interesting to

know how many papers target such binaries. After all,

these papers should pay special attention to disassembly

errors and complex corner cases. Unfortunately, this is

not the case; only 50% of papers that support obfusca-

tion discuss potential errors, while 33% implement error

All papers Top-tier
Property Subproperty # % # %

Windows PE x86/x64 (16 papers, 12 top-tier)

Obfuscated code 5 31% 4 33%
Optimized binaries 14 88% 11 92%
Stripped binaries 15 94% 11 92%
Recursive disassembly 16 100% 12 100%
Needs relocation info 2 12% 2 17%
Primitive errors discussed Instructions 5 (13) 38% 5 (9) 56%

Functions 1 (5) 20% 1 (4) 25%
Signatures 0 (2) 0% 0 (2) 0%
Callgraph 4 (5) 80% 4 (5) 80%
CFG 5 (13) 38% 5 (10) 50%

Complex cases discussed 5 31% 5 42%
Primitive errors handled Overestimate 4 25% 4 33%

Underestimate 3 19% 2 17%
Runtime 1 6% 1 8%

Errors are fatal 13 81% 11 92%

Linux ELF x86/x64 (14 papers, 10 top-tier)

Obfuscated code 1 7% 1 10%
Optimized binaries 13 93% 9 90%
Stripped binaries 11 79% 7 70%
Recursive disassembly 12 86% 8 80%
Primitive errors discussed Instructions 6 (12) 50% 6 (9) 67%

Functions 3 (9) 33% 3 (6) 50%
Signatures 1 (1) 100% 1 (1) 100%
Callgraph 2 (6) 33% 2 (4) 50%
CFG 5 (11) 45% 5 (8) 62%

Complex cases discussed 1 7% 1 10%
Primitive errors handled Overestimate 4 29% 3 30%

Underestimate 0 0% 0 0%
Runtime 1 7% 1 10%

Errors are fatal 8 57% 6 60%

Table 5: Properties of binary-based papers (number and

percentage of papers). Numbers in parentheses indicate

the total number of papers that use this primitive.

handling. This is no better than the overall number. More-

over, only 17% of these papers explicitly discuss complex

cases; far below the overall rate for Windows.

Nearly all papers support optimized binaries (90% or

more for both Linux and Windows, overall as well as

top-tier). Stripped binaries are supported by an equally

large majority of papers on Windows, and by a slightly

smaller majority on Linux. Curiously, the number of top-

tier papers that support stripped binaries on Linux (70%)

is significantly less than the overall number (79%).

The vast majority of papers use recursive disassembly

(100% on Windows and 86% on Linux), with IDA Pro

being the most popular disassembler. The few papers

that do use linear disassembly are based on objdump, and

augment it with a layer of error correction. Interestingly,

these papers claim perfect (100% accurate) or close to

perfect disassembly. As shown in Section 3.1.1, this

precision on Linux binaries owes entirely to the core linear

disassembly, making any error correction redundant other

than for a few corner cases in library code (and obfuscated

code, which these papers do not consider).

A relatively small percentage of Windows papers use

relocation information to find disassembly starting points.

At 17%, this number is slightly higher for top-tier papers.

Discussion on disassembly errors and complex cases is

somewhat lacking in the analyzed papers. For most prim-

14

USENIX Association 25th USENIX Security Symposium 597

Title Authors Venue Year Top-tier

A Principled Approach for ROP Defense [30] Qiao et al. ACSAC 2015
Binary Code Continent: Finer-Grained Control Flow Integrity (...) [41] Wang et al. ACSAC 2015
Blanket Execution: Dynamic Similarity Testing for Program (...) [11] Egele et al. USENIX Sec 2014 ✓
BYTEWEIGHT: Learning to Recognize Functions in Binary Code [4] Bao et al. USENIX Sec 2014 ✓
CoDisasm: Medium Scale Concatic Disassembly of Self-Modifying (...) [6] Bonfante et al. CCS 2015 ✓
Control Flow and Code Integrity for COTS binaries [49] Zhang et al. ACSAC 2015
Control Flow Integrity for COTS Binaries [48] Zhang et al. USENIX Sec 2013 ✓
Cross-Architecture Bug Search in Binary Executables [27] Pewny et al. S&P 2015 ✓
DUET: Integration of Dynamic and Static Analyses for Malware (...) [15] Hu et al. ACSAC 2013
Dynamic Hooks: Hiding Control Flow Changes within (...) [40] Vogl et al. USENIX Sec 2014 ✓
Hardware-Assisted Fine-Grained Control-Flow Integrity (...) [10] Davi et al. RAID 2015
Heisenbyte: Thwarting Memory Disclosure Attacks using (...) [37] Tang et al. CCS 2015 ✓
High Accuracy Attack Provenance via Binary-based (...) [20] Hyung Lee et al. NDSS 2013 ✓
Improving Accuracy of Static Integer Overflow Detection in Binary [50] Zhang et al. RAID 2015
Leveraging Semantic Signatures for Bug Search in Binary Programs [28] Pewny et al. ACSAC 2014
Native x86 Decompilation Using Semantics-Preserving (...) [33] Schwartz et al. USENIX Sec 2013 ✓
No More Gotos: Decompilation Using Pattern-Independent (...) [44] Yakdan et al. NDSS 2015 ✓
Opaque Control-Flow Integrity [24] Mohan et al. NDSS 2015 ✓
Oxymoron Making Fine-Grained Memory Randomization Practical (...) [2] Backes et al. USENIX Sec 2014 ✓
Practical Context-Sensitive CFI [1] Andriesse et al. CCS 2015 ✓
Practical Control Flow Integrity & Randomization for (...) [46] Zhang et al. S&P 2013 ✓
Reassembleable Disassembling [42] Wang et al. USENIX Sec 2015 ✓
Recognizing Functions in Binaries with Neural Networks [35] Chul et al. USENIX Sec 2015 ✓
ROPecker: A Generic and Practical Approach for Defending (...) [9] Cheng et al. NDSS 2014 ✓
StackArmor: Comprehensive Protection from Stack-based (...) [8] Chen et al. NDSS 2015 ✓
Towards Automated Integrity Protection of C++ Virtual Function (...) [13] Gawlik et al. ACSAC 2014
Towards Automatic Software Lineage Inference [16] Jang et al. USENIX Sec 2013 ✓
vfGuard: Strict Protection for Virtual Function Calls (...) [29] Prakash et al. NDSS 2015 ✓
VTint: Protecting Virtual Function Tables’ Integrity [45] Zhang et al. NDSS 2015 ✓
X-Force: Force-Executing Binary Programs for Security (...) [26] Peng et al. USENIX Sec 2014 ✓

Table 6: Set of papers discussed in the literature study.

itives on Windows, at best 50% of papers discuss what

happens if the primitive is not recovered perfectly. This

number applies to the top-tier papers; overall, the num-

ber is even lower. The number for Linux-based papers is

slightly better, though even here only a small majority of

papers devote significant attention to potential problems.

One would expect more thorough discussion, especially

given that between 80% and 90% of Windows papers,

and around 60% of Linux papers, may suffer malignant

failures given imperfect primitives. The issue is most

apparent in the Windows papers that require function start

information. Only 25% of the top-tier papers that require

function starts consider potential errors in this informa-

tion, even though Section 3.1.1 shows that function starts

are quite challenging to recover accurately.

The percentage of Windows papers that discuss com-

plex cases such as inline data varies from 31% overall

to 42% for top-tier papers. Again, this is less than we

would expect given the prevalence of inline jump tables

generated by Visual Studio. The number for papers that

target Linux is even lower, though this causes fewer issues

as complex cases in ELF binaries are rare.

There is a strong correlation within all papers between

discussion of errors and complex cases, and support for

error handling. Papers that discuss such cases also tend

to implement some mechanism for dealing with errors

if they occur. Conversely, papers that do not implement

error handling nearly always fail to discuss errors at all.

We identified three popular and recurring categories of

error handling mechanisms.

(1) Overestimation: For instance, CFG and callgraph

overestimation are popular in papers that build binary-

level security; it minimizes the risk of accidentally pro-

hibiting valid edges, though the precision of security poli-

cies may suffer slightly.

(2) Underestimation: This is used in papers where

soundness is more important than completeness.

(3) Runtime augmentation: Some papers use static

analysis to approximate a primitive, and use low-cost

runtime checks to fix errors in the primitive where needed.

Overestimation is the most popular error handling strat-

egy, used in around 30% of top-tier papers. It is followed

by underestimation and runtime augmentation.

6 Discussion

Our findings show a dualism in the stance on disassem-

bly in the literature. On the one hand, the difficulty

of pure (instruction-level) disassembly is often exagger-

ated. The prevalence of complex constructs like overlap-

ping basic blocks, inline data, and overlapping instruc-

tions is frequently overestimated, especially for gcc and

clang [5, 23]. This leads reviewers and researchers to

underestimate the effectiveness of binary-based research.

We showed that unless binaries are deliberately ob-

fuscated, instruction recovery is extremely accurate, es-

15

598 25th USENIX Security Symposium USENIX Association

pecially in ELF binaries generated with gcc or clang.

We did not find any inline data for these binaries, even

in optimized library code; even jump tables are explic-

itly placed in the .rodata section. Moreover, in Visual

Studio binaries with jump tables in the code section, mod-

ern disassemblers like IDA Pro recognize and resolve

them quite accurately. The rare overlapping instructions

in handcrafted library code take on a limited number of

forms, typically using a direct conditional jump over a

prefix. These are resolved without problems by IDA Pro

and Dyninst, among others. The same is true for multi-

entry functions, which are also rare. Moreover, overlap-

ping/shared basic blocks (commonly cited as particularly

challenging for binary analysis), do not appear in our

findings at all.

On the other hand, some primitives really do often suf-

fer from inaccuracies. Some recursive disassemblers used

for binary instrumentation (notably Dyninst) regularly

miss up to 10% of basic blocks in optimized binaries, call-

ing for special attention in systems which rely on basic

block-level binary instrumentation. Additionally, func-

tion signatures in 64-bit code are extremely inaccurate;

fortunately, they are also rarely used in the literature.

However, function starts are regularly needed, though

the false negative rate regularly rises to 20% or more

even for the best performing disassemblers. This is es-

pecially true in optimized binaries, or in coding styles

that make extensive use of function pointers. Worse, false

positive function starts are almost as common. This can

lead to problems in some binary-based research, espe-

cially binary instrumentation, if care is not taken to en-

sure graceful failure in the event of misdetected function

starts. Symbols offer a great deal of help, especially in

reducing the false negative rate. Unfortunately, they are

rarely available in practice.

It is surprising then, to find that only 20% to 25%

(top-tier) of Windows papers that use function starts, and

33% to 50% (top-tier) of the Linux papers, devote any

attention to discussing these problems. A similarly small

number of papers implement error handling, even though

errors can cause malignant failures in a majority of pa-

pers. While it is not impossible to base well-functioning

binary-based systems on function start information (or

other primitives), it is crucial that such work implement

mechanisms for handling inaccuracies. Three effective

classes of error handling (depending on the situation) have

already been proposed in the literature: overestimation,

underestimation, and runtime augmentation.

We hope our study will facilitate a better match be-

tween expectations on disassembly in future research, and

the performance actually delivered by modern disassem-

blers. Moreover, we believe our findings can be used to

better judge where problems are to be expected, and to

implement effective mechanisms for dealing with them.

7 Related Work

Prior work on disassembly precision focused on complex

corner cases [5, 23, 25] or obfuscated code [18, 34], show-

ing that these can strongly reduce disassembly accuracy.

We focus instead on the performance of modern disas-

semblers given realistic full-scale binaries without active

anti-disassembly techniques.

Miller et al. center their analysis around complex cases

in glibc-2.12 [23]. Their findings largely correspond

to our own, though we found no inline jump tables in

glibc-2.22. In addition to their glibc analysis, Miller

et al. find complex cases in SPEC CPU2006; however,

this analysis focuses exclusively on statically linked bina-

ries. We show in Section 3.3 that these cases are entirely

due to embedded library code, and are extremely rare in

non-statically linked applications.

Our finding that function starts are among the most

challenging primitives to recover is in agreement with

results by Bao et al. [4].

Paleari et al. study instruction decoders in disassem-

blers [25], which parse individual x86 instructions. Spe-

cific instructions that are sometimes wrongly parsed have

also been outlined by the authors of Capstone [31].

Complex constructs in obfuscated code are discussed

by Schwarz et al. [34], Linn et al. [21] and Kruegel et

al. [18]. We show that these worst-case complex con-

structs are exceedingly rare in non-obfuscated code.

8 Conclusion

Our study contradicts the widespread belief that complex

constructs severely limit the usefulness of binary-based

research. Instead, we show that modern disassemblers

achieve close to 100% instruction disassembly accuracy

for compiler-generated binaries, and that constructs like

inline data and overlapping code are very rare. Errors in

areas where disassembly is truly lacking, such as function

start recovery, are not discussed nearly as often in the

literature. By analyzing discrepancies between disassem-

bler capabilities and the literature, our work provides a

foundation for guiding future research.

Acknowledgements

We thank the anonymous reviewers for their valuable

input to improve the paper. We also thank Mingwei

Zhang and Rui Qiao for their proofreading and feedback.

This work was supported by the European Commission

through project H2020 ICT-32-2014 “SHARCS” under

Grant Agreement No. 644571, and by the Netherlands

Organisation for Scientific Research through grant NWO

CSI-DHS 628.001.021 and the NWO 639.023.309 VICI

“Dowsing” project.

16

USENIX Association 25th USENIX Security Symposium 599

References

[1] ANDRIESSE, D., VAN DER VEEN, V., GÖKTAŞ, E., GRAS, B.,

SAMBUC, L., SLOWINSKA, A., BOS, H., AND GIUFFRIDA,

C. Practical Context-Sensitive CFI. In Proceedings of the 22nd

Conference on Computer and Communications Security (CCS’15)

(Denver, CO, USA, October 2015), ACM.

[2] BACKES, M., AND NÜRNBERGER, S. Oxymoron Making Fine-

Grained Memory Randomization Practical by Allowing Code

Sharing. In Proceedings of the 23rd USENIX Security Symposium

(USENIX Sec’14) (2014).

[3] BALAKRISHNAN, G., AND REPS, T. WYSINWYX: What You

See is Not What You eXecute. ACM Transactions on Program-

ming Languages and Systems 32, 6 (Aug. 2010), 23:1–23:84.

[4] BAO, T., BURKET, J., WOO, M., TURNER, R., AND BRUMLEY,

D. BYTEWEIGHT: Learning to Recognize Functions in Binary

Code. In Proceedings of the 23rd USENIX Security Symposium

(USENIX Sec’14) (2014).

[5] BERNAT, A. R., AND MILLER, B. P. Anywhere, Any-Time Bi-

nary Instrumentation. In Proceedings of the 10th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools

(2011).

[6] BONFANTE, G., FERNANDEZ, J., MARION, J.-Y., ROUXEL, B.,

SABATIER, F., AND THIERRY, A. CoDisasm: Medium Scale Con-

catic Disassembly of Self-Modifying Binaries with Overlapping

Instructions. In Proceedings of the 22nd Conference on Computer

and Communications Security (CCS’15) (2015).

[7] BRUMLEY, D., JAGER, I., AVGERINOS, T., AND SCHWARTZ,

E. J. BAP: A Binary Analysis Platform. In Proceedings of the

23rd International Conference on Computer Aided Verification

(CAV’11) (2011).

[8] CHEN, X., SLOWINSKA, A., ANDRIESSE, D., BOS, H., AND

GIUFFRIDA, C. StackArmor: Comprehensive Protection from

Stack-Based Memory Error Vulnerabilities for Binaries. In Pro-

ceedings of the Network and Distributed System Security Sympo-

sium (NDSS’15) (San Diego, CA, USA, February 2015), Internet

Society.

[9] CHENG, Y., ZHOU, Z., YU, M., DING, X., AND DENG, R. H.

ROPecker: A Generic and Practical Approach for Defending

Against ROP Attacks. In Proceedings of the Network and Dis-

tributed System Security Symposium (NDSS’14) (2014).

[10] DAVI, L., KOEBERL, P., AND SADEGHI, A.-R. Hardware-

Assisted Fine-Grained Control-Flow Integrity: Towards Efficient

Protection of Embedded Systems Against Software Exploitation.

In Proceedings of the 18th International Symposium on Research

in Attacks, Intrusions, and Defenses (RAID’15) (2015).

[11] EGELE, M., WOO, M., CHAPMAN, P., AND BRUMLEY, D. Blan-

ket Execution: Dynamic Similarity Testing for Program Binaries

and Components. In Proceedings of the 23rd USENIX Security

Symposium (USENIX Sec’14) (2014).

[12] EVANS, I., LONG, F., OTGONBAATAR, U., SHROBE, H., RI-

NARD, M., OKHRAVI, H., AND SIDIROGLOU-DOUSKOS, S.

Control Jujutsu: On the Weaknesses of Fine-Grained Control

Flow Integrity. In Proceedings of the 22nd Conference on Com-

puter and Communications Security (CCS’15) (Denver, CO, USA,

2015), ACM.

[13] GAWLIK, R., AND HOLZ, T. Towards Automated Integrity Pro-

tection of C++ Virtual Function Tables in Binary Programs. In

Proceedings of the 30th Annual Computer Security Applications

Conference (ACSAC’14) (2014).

[14] HALLER, I., SLOWINSKA, A., NEUGSCHWANDTNER, M., AND

BOS, H. Dowsing for Overflows: A Guided Fuzzer to Find Buffer

Boundary Violations. In Proceedings of the 22nd USENIX Security

Symposium (USENIX Sec’13) (2013).

[15] HU, X., AND SHIN, K. G. DUET: Integration of Dynamic and

Static Analyses for Malware Clustering with Cluster Ensembles.

In Proceedings of the 29th Annual Computer Security Applications

Conference (ACSAC’13) (2013).

[16] JANG, J., WOO, M., AND BRUMLEY, D. Towards Automatic

Software Lineage Inference. In Proceedings of the 22nd USENIX

Security Symposium (USENIX Sec’13) (2013).

[17] KINDER, J. Static Analysis of x86 Executables. PhD thesis,

Technische Universität Darmstadt, 2010.

[18] KRUEGEL, C., ROBERTSON, W., VALEUR, F., AND VIGNA, G.

Static Disassembly of Obfuscated Binaries. In Proceedings of the

13th USENIX Security Symposium (USENIX Sec’04) (2004).

[19] LAURENZANO, M., TIKIR, M. M., CARRINGTON, L., AND

SNAVELY, A. PEBIL: Efficient Static Binary Instrumentation

for Linux. In Proceedings of the International Symposium on

Performance Analysis of Systems and Software (2010).

[20] LEE, K. H., ZHANG, X., AND XU, D. High Accuracy Attack

Provenance via Binary-based Execution Partition. In Proceed-

ings of the Network and Distributed System Security Symposium

(NDSS’13) (2013).

[21] LINN, C., AND DEBRAY, S. Obfuscation of Executable Code to

Improve Resistance to Static Disassembly. In Proceedings of the

10th ACM Conference on Computer and Communications Security

(CCS’03) (2003).

[22] MICROSOFT DEVELOPER NETWORK. Overview of x64 Calling

Conventions, 2015. https://msdn.microsoft.com/en-us/

library/ms235286.aspx.

[23] MILLER, B. P., AND MENG, X. Binary Code is Not Easy, 2015.

Technical report, University of Wisconsin-Madison.

[24] MOHAN, V., LARSEN, P., BRUNTHALER, S., HAMLEN, K. W.,

AND FRANZ, M. Opaque Control-Flow Integrity. In Proceed-

ings of the Network and Distributed System Security Symposium

(NDSS’15) (2015).

[25] PALEARI, R., MARTIGNONI, L., FRESI ROGLIA, G., AND BR-

USCHI, D. N-Version Disassembly: Differential Testing of x86

Disassemblers. In Proceedings of the 19th International Sympo-

sium on Software Testing and Analysis (2010), ISSTA’10.

[26] PENG, F., DENG, Z., ZHANG, X., XU, D., LIN, Z., AND SU, Z.

X-Force: Force-Executing Binary Programs for Security Applica-

tions. In Proceedings of the 23rd USENIX Security Symposium

(USENIX Sec’14) (2014).

[27] PEWNY, J., GARMANY, B., GAWLIK, R., ROSSOW, C., AND

HOLZ, T. Cross-Architecture Bug Search in Binary Executables.

In Proceedings of the 36th IEEE Symposium on Security and

Privacy (S&P’15) (2015).

[28] PEWNY, J., SCHUSTER, F., ROSSOW, C., BERNHARD, L., AND

HOLZ, T. Leveraging Semantic Signatures for Bug Search in

Binary Programs. In Proceedings of the 30th Annual Computer

Security Applications Conference (ACSAC’14) (2014).

17

600 25th USENIX Security Symposium USENIX Association

[29] PRAKASH, A., HU, X., AND YIN, H. vfGuard: Strict Protection

for Virtual Function Calls in COTS C++ Binaries. In Proceed-

ings of the Network and Distributed System Security Symposium

(NDSS’15) (San Diego, CA, USA, February 2015), Internet Soci-

ety.

[30] QIAO, R., ZHANG, M., AND SEKAR, R. A Principled Approach

for ROP Defense. In Proceedings of the 31st Annual Computer

Security Applications Conference (ACSAC’15) (2015).

[31] QUYNH, N. A. Capstone: Next-Gen Disassembly Framework. In

Blackhat USA (2014).

[32] ROMER, T., VOELKER, G., LEE, D., WOLMAN, A., WONG, W.,

LEVY, H., BERSHAD, B., AND CHEN, B. Instrumentation and

Optimization of Win32/Intel Executables Using Etch. In Proceed-

ings of the USENIX Windows NT Workshop (NT’97) (1997).

[33] SCHWARTZ, E. J., LEE, J., WOO, M., AND BRUMLEY, D. Na-

tive x86 Decompilation Using Semantics-Preserving Structural

Analysis and Iterative Control-Flow Structuring. In Proceedings of

the 22nd USENIX Security Symposium (USENIX Sec’13) (2013).

[34] SCHWARZ, B., DEBRAY, S., AND ANDREWS, G. Disassembly

of Executable Code Revisited. In Proceedings of the 9th Working

Conference on Reverse Engineering (WCRE’02) (2002).

[35] SHIN, E. C. R., SONG, D., AND MOAZZEZI, R. Recognizing

Functions in Binaries with Neural Networks. In Proceedings of

the 24th USENIX Security Symposium (USENIX Sec’15) (2015).

[36] SHOSHITAISHVILI, Y., WANG, R., HAUSER, C., KRUEGEL, C.,

AND VIGNA, G. Firmalice - Automatic Detection of Authentica-

tion Bypass Vulnerabilities in Binary Firmware.

[37] TANG, A., SETHUMADHAVAN, S., AND STOLFO, S. Heisenbyte:

Thwarting Memory Disclosure Attacks using Destructive Code

Reads. In Proceedings of the 22nd Conference on Computer and

Communications Security (CCS’15) (2015).

[38] TRAIL OF BITS. A Preview of McSema, 2014. Techni-

cal report. http://blog.trailofbits.com/2014/06/23/a-

preview-of-mcsema/.

[39] VAN DER VEEN, V., GÖKTAŞ, E., CONTAG, M., PAWLOSKI, A.,

CHEN, X., RAWAT, S., BOS, H., HOLZ, T., ATHANASOPOULOS,

E., AND GIUFFRIDA, C. A Tough call: Mitigating Advanced

Code-Reuse Attacks At The Binary Level. In Proceedings of the

37th Symposium on Security and Privacy (S&P’16) (May 2016).

[40] VOGL, S., GAWLIK, R., GARMANY, B., KITTEL, T., PFOH, J.,

ECKERT, C., AND HOLZ, T. Dynamic Hooks: Hiding Control

Flow Changes within Non-Control Data. In Proceedings of the

23rd USENIX Security Symposium (USENIX Sec’14) (2014).

[41] WANG, M., YIN, H., BHASKAR, A. V., SU, P., AND FENG, D.

Binary Code Continent: Finer-Grained Control Flow Integrity for

Stripped Binaries. In Proceedings of the 31st Annual Computer

Security Applications Conference (ACSAC’15) (2015).

[42] WANG, S., WANG, P., AND WU, D. Reassembleable Disassem-

bling. In Proceedings of the 24th USENIX Security Symposium

(USENIX Sec’15) (2015).

[43] WARTELL, R., ZHOU, Y., HAMLEN, K. W., KANTARCIOGLU,

M., AND THURAISINGHAM, B. M. Differentiating Code from

Data in x86 Binaries. In Proceedings of the European Conference

on Machine Learning and Knowledge Discovery in Databases

(2011).
[44] YAKDAN, K., ESCHWEILER, S., GERHARDS-PADILLA, E., AND

SMITH, M. No More Gotos: Decompilation Using Pattern-

Independent Control-Flow Structuring and Semantics-Preserving

Transformations. In Proceedings of the Network and Distributed

System Security Symposium (NDSS’15) (2015).

[45] ZHANG, C., SONG, C., CHEN, K. Z., CHEN, Z., AND SONG, D.

VTint: Protecting Virtual Function Tables’ Integrity. In Proceed-

ings of the Network and Distributed System Security Symposium

(NDSS’15) (2015).

[46] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES, L.,

MCCAMANT, S., SONG, D., AND ZOU, W. Practical Control

Flow Integrity and Randomization for Binary Executables. In

Proceedings of the 34th IEEE Symposium on Security and Privacy

(S&P’13) (2013).

[47] ZHANG, M., QIAO, R., HASABNIS, N., AND SEKAR, R. A

Platform for Secure Static Binary Instrumentation. In Proceedings

of the 10th ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments (VEE’14) (2014).

[48] ZHANG, M., AND SEKAR, R. Control Flow Integrity for COTS

Binaries. In Proceedings of the 22nd USENIX Security Symposium

(USENIX Sec’13) (2013).

[49] ZHANG, M., AND SEKAR, R. Control Flow and Code Integrity

for COTS binaries. In Proceedings of the 31st Annual Computer

Security Applications Conference (ACSAC’15) (2015).

[50] ZHANG, Y., SUN, X., DENG, Y., CHENG, L., ZENG, S., FU, Y.,

AND FENG, D. Improving Accuracy of Static Integer Overflow De-

tection in Binary. In Proceedings of the 18th International Sympo-

sium on Research in Attacks, Intrusions, and Defenses (RAID’15)

(2015).

18

USENIX Association 25th USENIX Security Symposium 601

Stealing Machine Learning Models via Prediction APIs

Florian Tramèr
EPFL

Fan Zhang
Cornell University

Ari Juels
Cornell Tech, Jacobs Institute

Michael K. Reiter
UNC Chapel Hill

Thomas Ristenpart
Cornell Tech

Abstract
Machine learning (ML) models may be deemed con-

fidential due to their sensitive training data, commercial
value, or use in security applications. Increasingly often,
confidential ML models are being deployed with pub-
licly accessible query interfaces. ML-as-a-service (“pre-
dictive analytics”) systems are an example: Some allow
users to train models on potentially sensitive data and
charge others for access on a pay-per-query basis.

The tension between model confidentiality and pub-
lic access motivates our investigation of model extraction
attacks. In such attacks, an adversary with black-box ac-
cess, but no prior knowledge of an ML model’s param-
eters or training data, aims to duplicate the functionality
of (i.e., “steal”) the model. Unlike in classical learning
theory settings, ML-as-a-service offerings may accept
partial feature vectors as inputs and include confidence
values with predictions. Given these practices, we show
simple, efficient attacks that extract target ML models
with near-perfect fidelity for popular model classes in-
cluding logistic regression, neural networks, and deci-
sion trees. We demonstrate these attacks against the on-
line services of BigML and Amazon Machine Learning.
We further show that the natural countermeasure of omit-
ting confidence values from model outputs still admits
potentially harmful model extraction attacks. Our results
highlight the need for careful ML model deployment and
new model extraction countermeasures.

1 Introduction

Machine learning (ML) aims to provide automated ex-
traction of insights from data by means of a predictive
model. A predictive model is a function that maps feature
vectors to a categorical or real-valued output. In a super-
vised setting, a previously gathered data set consisting
of possibly confidential feature-vector inputs (e.g., digi-
tized health records) with corresponding output class la-
bels (e.g., a diagnosis) serves to train a predictive model

that can generate labels on future inputs. Popular models
include support vector machines (SVMs), logistic regres-
sions, neural networks, and decision trees.

ML algorithms’ success in the lab and in practice has
led to an explosion in demand. Open-source frameworks
such as PredictionIO and cloud-based services offered
by Amazon, Google, Microsoft, BigML, and others have
arisen to broaden and simplify ML model deployment.

Cloud-based ML services often allow model owners to
charge others for queries to their commercially valuable
models. This pay-per-query deployment option exem-
plifies an increasingly common tension: The query in-
terface of an ML model may be widely accessible, yet
the model itself and the data on which it was trained
may be proprietary and confidential. Models may also
be privacy-sensitive because they leak information about
training data [4, 23, 24]. For security applications such
as spam or fraud detection [9,29,36,55], an ML model’s
confidentiality is critical to its utility: An adversary that
can learn the model can also often evade detection [4,36].

In this paper we explore model extraction attacks,
which exploit the tension between query access and con-
fidentiality in ML models. We consider an adversary that
can query an ML model (a.k.a. a prediction API) to ob-
tain predictions on input feature vectors. The model may
be viewed as a black box. The adversary may or may
not know the model type (logistic regression, decision
tree, etc.) or the distribution over the data used to train
the model. The adversary’s goal is to extract an equiva-
lent or near-equivalent ML model, i.e., one that achieves
(close to) 100% agreement on an input space of interest.

We demonstrate successful model extraction attacks
against a wide variety of ML model types, including de-
cision trees, logistic regressions, SVMs, and deep neu-
ral networks, and against production ML-as-a-service
(MLaaS) providers, including Amazon and BigML.1 In
nearly all cases, our attacks yield models that are func-

1We simulated victims by training models in our own accounts. We
have disclosed our results to affected services in February 2016.

602 25th USENIX Security Symposium USENIX Association

Service Model Type Data set Queries Time (s)

Amazon Logistic Regression Digits 650 70
Logistic Regression Adult 1,485 149

BigML Decision Tree German Credit 1,150 631
Decision Tree Steak Survey 4,013 2,088

Table 1: Results of model extraction attacks on ML services. For
each target model, we report the number of prediction queries made to
the ML API in an attack that extracts a 100% equivalent model. The
attack time is primarily influenced by the service’s prediction latency
(≈ 100ms/query for Amazon and ≈ 500ms/query for BigML).

tionally very close to the target. In some cases, our at-
tacks extract the exact parameters of the target (e.g., the
coefficients of a linear classifier or the paths of a decision
tree). For some targets employing a model type, param-
eters or features unknown to the attacker, we addition-
ally show a successful preliminary attack step involving
reverse-engineering these model characteristics.

Our most successful attacks rely on the information-
rich outputs returned by the ML prediction APIs of all
cloud-based services we investigated. Those of Google,
Amazon, Microsoft, and BigML all return high-precision
confidence values in addition to class labels. They also
respond to partial queries lacking one or more features.
Our setting thus differs from traditional learning-theory
settings [3,7,8,15,30,33,36,53] that assume only mem-
bership queries, outputs consisting of a class label only.
For example, for logistic regression, the confidence value
is a simple log-linear function 1/(1+e−(w·x+β)) of the d-
dimensional input vector x. By querying d + 1 random
d-dimensional inputs, an attacker can with high proba-
bility solve for the unknown d + 1 parameters w and β
defining the model. We emphasize that while this model
extraction attack is simple and non-adaptive, it affects all
of the ML services we have investigated.

Such equation-solving attacks extend to multiclass lo-
gistic regressions and neural networks, but do not work
for decision trees, a popular model choice. (BigML, for
example, initially offered only decision trees.) For de-
cision trees, a confidence value reflects the number of
training data points labeled correctly on an input’s path
in the tree; simple equation-solving is thus inapplicable.
We show how confidence values can nonetheless be ex-
ploited as pseudo-identifiers for paths in the tree, facili-
tating discovery of the tree’s structure. We demonstrate
successful model extraction attacks that use adaptive, it-
erative search algorithms to discover paths in a tree.

We experimentally evaluate our attacks by training
models on an array of public data sets suitable as stand-
ins for proprietary ones. We validate the attacks locally
using standard ML libraries, and then present case stud-
ies on BigML and Amazon. For both services, we show
computationally fast attacks that use a small number of
queries to extract models matching the targets on 100%
of tested inputs. See Table 1 for a quantitative summary.

Having demonstrated the broad applicability of model
extraction attacks to existing services, we consider the
most obvious potential countermeasure ML services
might adopt: Omission of confidence values, i.e., output
of class labels only. This approach would place model
extraction back in the membership query setting of prior
work in learning theory [3, 8, 36, 53]. We demonstrate
a generalization of an adaptive algorithm by Lowd and
Meek [36] from binary linear classifiers to more com-
plex model types, and also propose an attack inspired by
the agnostic learning algorithm of Cohn et al. [18]. Our
new attacks extract models matching targets on >99% of
the input space for a variety of model classes, but need
up to 100× more queries than equation-solving attacks
(specifically for multiclass linear regression and neural
networks). While less effective than equation-solving,
these attacks remain attractive for certain types of adver-
sary. We thus discuss further ideas for countermeasures.

In summary, we explore model extraction attacks, a
practical kind of learning task that, in particular, affects
emerging cloud-based ML services being built by Ama-
zon, Google, Microsoft, BigML, and others. We show:
• Simple equation-solving model extraction attacks that

use non-adaptive, random queries to solve for the pa-
rameters of a target model. These attacks affect a wide
variety of ML models that output confidence values.
We show their success against Amazon’s service (us-
ing our own models as stand-ins for victims’), and also
report successful reverse-engineering of the (only par-
tially documented) model type employed by Amazon.

• A new path-finding algorithm for extracting decision
trees that abuses confidence values as quasi-identifiers
for paths. To our knowledge, this is the first example
of practical “exact” decision tree learning. We demon-
strate the attack’s efficacy via experiments on BigML.

• Model extraction attacks against models that output
only class labels, the obvious countermeasure against
extraction attacks that rely on confidence values. We
show slower, but still potentially dangerous, attacks in
this setting that build on prior work in learning theory.

We additionally make a number of observations about the
implications of extraction. For example, attacks against
Amazon’s system indirectly leak various summary statis-
tics about a private training set, while extraction against
kernel logistic regression models [57] recovers signifi-
cant information about individual training data points.

The source code for our attacks is available online at
https://github.com/ftramer/Steal-ML.

2 Background

For our purposes, a ML model is a function f : X → Y .
An input is a d-dimensional vector in the feature space

USENIX Association 25th USENIX Security Symposium 603

X = X1 ×X2 ×·· ·×Xd . Outputs lie in the range Y .
We distinguish between categorical features, which as-

sume one of a finite set of values (whose set size is the
arity of the feature), and continuous features, which as-
sume a value in a bounded subset of the real numbers.
Without loss of generality, for a categorical feature of ar-
ity k, we let Xi = Zk. For a continuous feature taking
values between bounds a and b, we let Xi = [a,b]⊂ R.

Inputs to a model may be pre-processed to perform
feature extraction. In this case, inputs come from a space
M, and feature extraction involves application of a func-
tion ex : M → X that maps inputs into a feature space.
Model application then proceeds by composition in the
natural way, taking the form f (ex(M)). Generally, fea-
ture extraction is many-to-one. For example, M may
be a piece of English language text and the extracted
features counts of individual words (so-called “bag-of-
words” feature extraction). Other examples are input
scaling and one-hot-encoding of categorical features.

We focus primarily on classification settings in which
f predicts a nominal variable ranging over a set of
classes. Given c classes, we use as class labels the set
Zc. If Y = Zc, the model returns only the predicted class
label. In some applications, however, additional informa-
tion is often helpful, in the form of real-valued measures
of confidence on the labels output by the model; these
measures are called confidence values. The output space
is then Y = [0,1]c. For a given x ∈ X and i ∈ Zc, we de-
note by fi(x) the ith component of f (x) ∈ Y . The value
fi(x) is a model-assigned probability that x has associ-
ated class label i. The model’s predicted class is defined
by the value argmaxi fi(x), i.e., the most probable label.

We associate with Y a distance measure dY . We drop
the subscript Y when it is clear from context. For Y =Zc
we use 0-1 distance, meaning d(y,y′) = 0 if y = y′ and
d(y,y′) = 1 otherwise. For Y = [0,1]c, we use the 0-1
distance when comparing predicted classes; when com-
paring class probabilities directly, we instead use the to-
tal variation distance, given by d(y,y′) = 1

2 ∑ |y[i]−y′[i]|.
In the rest of this paper, unless explicitly specified other-
wise, dY refers to the 0-1 distance over class labels.

Training algorithms. We consider models obtained
via supervised learning. These models are generated by
a training algorithm T that takes as input a training set
{(xi,yi)}i, where (xi,yi) ∈ X ×Y is an input with an as-
sociated (presumptively correct) class label. The output
of T is a model f defined by a set of parameters, which
are model-specific, and hyper-parameters, which spec-
ify the type of models T generates. Hyper-parameters
may be viewed as distinguished parameters, often taken
from a small number of standard values; for example, the
kernel-type used in an SVM, of which only a small set
are used in practice, may be seen as a hyper-parameter.

DB#
Data#owner#

Train#
model##

Extrac3on#
adversary#

f̂

ML#service#

f(x1)

f(xq)

xq

x1

…
#

Figure 1: Diagram of ML model extraction attacks. A data owner
has a model f trained on its data and allows others to make prediction
queries. An adversary uses q prediction queries to extract an f̂ ≈ f .

3 Model Extraction Attacks

An ML model extraction attack arises when an adversary
obtains black-box access to some target model f and at-
tempts to learn a model f̂ that closely approximates, or
even matches, f (see Figure 1).

As mentioned previously, the restricted case in which
f outputs class labels only, matches the membership
query setting considered in learning theory, e.g., PAC
learning [53] and other previous works [3, 7, 8, 15, 30,
33, 36]. Learning theory algorithms have seen only lim-
ited study in practice, e.g., in [36], and our investiga-
tion may be viewed as a practice-oriented exploration of
this branch of research. Our initial focus, however, is on
a different setting common in today’s MLaaS services,
which we now explain in detail. Models trained by these
services emit data-rich outputs that often include confi-
dence values, and in which partial feature vectors may
be considered valid inputs. As we show later, this setting
greatly advantages adversaries.

Machine learning services. A number of companies
have launched or are planning to launch cloud-based ML
services. A common denominator is the ability of users
to upload data sets, have the provider run training algo-
rithms on the data, and make the resulting models gener-
ally available for prediction queries. Simple-to-use Web
APIs handle the entire interaction. This service model
lets users capitalize on their data without having to set
up their own large-scale ML infrastructure. Details vary
greatly across services. We summarize a number of them
in Table 2 and now explain some of the salient features.

A model is white-box if a user may download a rep-
resentation suitable for local use. It is black-box if ac-
cessible only via a prediction query interface. Ama-
zon and Google, for example, provide black-box-only
services. Google does not even specify what training
algorithm their service uses, while Amazon provides
only partial documentation for its feature extraction ex
(see Section 5). Some services allow users to monetize
trained models by charging others for prediction queries.

To use these services, a user uploads a data set and
optionally applies some data pre-processing (e.g., field
removal or handling of missing values). She then trains a

604 25th USENIX Security Symposium USENIX Association

Service W
hi

te
-b

ox

M
on

et
iz

e

C
on

fid
en

ce
Sc

or
es

L
og

is
tic

R
eg

re
ss

io
n

SV
M

N
eu

ra
l

N
et

w
or

k

D
ec

is
io

n
Tr

ee

Amazon [1] � � � � � � �
Microsoft [38] � � � � � � �
BigML [11] � � � � � � �
PredictionIO [43] � � � � � � �
Google [25] � � � � � � �

Table 2: Particularities of major MLaaS providers. ‘White-box’
refers to the ability to download and use a trained model locally, and
‘Monetize’ means that a user may charge other users for black-box
access to her models. Model support for each service is obtained from
available documentation. The models listed for Google’s API are a pro-
jection based on the announced support of models in standard PMML
format [25]. Details on ML models are given in Appendix A.

model by either choosing one of many supported model
classes (as in BigML, Microsoft, and PredictionIO) or
having the service choose an appropriate model class (as
in Amazon and Google). Two services have also an-
nounced upcoming support for users to upload their own
trained models (Google) and their own custom learning
algorithms (PredictionIO). When training a model, users
may tune various parameters of the model or training-
algorithm (e.g., regularizers, tree size, learning rates) and
control feature-extraction and transformation methods.

For black-box models, the service provides users with
information needed to create and interpret predictions,
such as the list of input features and their types. Some
services also supply the model class, chosen training pa-
rameters, and training data statistics (e.g., BigML gives
the range, mean, and standard deviation of each feature).

To get a prediction from a model, a user sends one
or more input queries. The services we reviewed accept
both synchronous requests and asynchronous ‘batch’ re-
quests for multiple predictions. We further found vary-
ing degrees of support for ‘incomplete’ queries, in which
some input features are left unspecified [46]. We will
show that exploiting incomplete queries can drastically
improve the success of some of our attacks. Apart from
PredictionIO, all of the services we examined respond to
prediction queries with not only class labels, but a variety
of additional information, including confidence scores
(typically class probabilities) for the predicted outputs.

Google and BigML allow model owners to mone-
tize their models by charging other users for predictions.
Google sets a minimum price of $0.50 per 1,000 queries.
On BigML, 1,000 queries consume at least 100 credits,
costing $0.10–$5, depending on the user’s subscription.

Attack scenarios. We now describe possible motiva-
tions for adversaries to perform model extraction attacks.
We then present a more detailed threat model informed
by characteristics of the aforementioned ML services.

Avoiding query charges. Successful monetization of

prediction queries by the owner of an ML model f re-
quires confidentiality of f . A malicious user may seek to
launch what we call a cross-user model extraction attack,
stealing f for subsequent free use. More subtly, in black-
box-only settings (e.g., Google and Amazon), a service’s
business model may involve amortizing up-front training
costs by charging users for future predictions. A model
extraction attack will undermine the provider’s business
model if a malicious user pays less for training and ex-
tracting than for paying per-query charges.

Violating training-data privacy. Model extraction
could, in turn, leak information about sensitive training
data. Prior attacks such as model inversion [4, 23, 24]
have shown that access to a model can be abused to infer
information about training set points. Many of these at-
tacks work better in white-box settings; model extraction
may thus be a stepping stone to such privacy-abusing at-
tacks. Looking ahead, we will see that in some cases,
significant information about training data is leaked triv-
ially by successful model extraction, because the model
itself directly incorporates training set points.

Stepping stone to evasion. In settings where an ML
model serves to detect adversarial behavior, such as iden-
tification of spam, malware classification, and network
anomaly detection, model extraction can facilitate eva-
sion attacks. An adversary may use knowledge of the
ML model to avoid detection by it [4, 9, 29, 36, 55].

In all of these settings, there is an inherent assumption
of secrecy of the ML model in use. We show that this
assumption is broken for all ML APIs that we investigate.

Threat model in detail. Two distinct adversarial mod-
els arise in practice. An adversary may be able to make
direct queries, providing an arbitrary input x to a model f
and obtaining the output f (x). Or the adversary may be
able to make only indirect queries, i.e., queries on points
in input space M yielding outputs f (ex(M)). The feature
extraction mechanism ex may be unknown to the adver-
sary. In Section 5, we show how ML APIs can further
be exploited to “learn” feature extraction mechanisms.
Both direct and indirect access to f arise in ML services.
(Direct query interfaces arise when clients are expected
to perform feature extraction locally.) In either case, the
output value can be a class label, a confidence value vec-
tor, or some data structure revealing various levels of in-
formation, depending on the exposed API.

We model the adversary, denoted by A, as a random-
ized algorithm. The adversary’s goal is to use as few
queries as possible to f in order to efficiently compute
an approximation f̂ that closely matches f . We formalize
“closely matching” using two different error measures:

• Test error Rtest: This is the average error over a test set
D, given by Rtest(f , f̂) = ∑(x,y)∈D d(f (x), f̂ (x))/|D|.

USENIX Association 25th USENIX Security Symposium 605

A low test error implies that f̂ matches f well for in-
puts distributed like the training data samples. 2

• Uniform error Runif: For a set U of vectors uniformly
chosen in X , let Runif(f , f̂) =∑x∈U d(f (x), f̂ (x))/|U |.
Thus Runif estimates the fraction of the full feature
space on which f and f̂ disagree. (In our experiments,
we found |U |= 10,000 was sufficiently large to obtain
stable error estimates for the models we analyzed.)

We define the extraction accuracy under test and uni-
form error as 1−Rtest(f , f̂) and 1−Runif(f , f̂). Here we
implicitly refer to accuracy under 0-1 distance. When as-
sessing how close the class probabilities output by f̂ are
to those of f (with the total-variation distance) we use
the notations RTV

test(f , f̂) and RTV
unif(f , f̂).

An adversary may know any of a number of pieces
of information about a target f : What training algorithm
T generated f , the hyper-parameters used with T , the
feature extraction function ex, etc. We will investigate a
variety of settings in this work corresponding to different
APIs seen in practice. We assume that A has no more
information about a model’s training data, than what is
provided by an ML API (e.g., summary statistics). For
simplicity, we focus on proper model extraction: If A
believes that f belongs to some model class, then A’s
goal is to extract a model f̂ from the same class. We
discuss some intuition in favor of proper extraction in
Appendix D, and leave a broader treatment of improper
extraction strategies as an interesting open problem.

4 Extraction with Confidence Values

We begin our study of extraction attacks by focusing on
prediction APIs that return confidence values. As per
Section 2, the output of a query to f thus falls in a range
[0,1]c where c is the number of classes. To motivate this,
we recall that most ML APIs reveal confidence values
for models that support them (see Table 2). This includes
logistic regressions (LR), neural networks, and decision
trees, defined formally in Appendix A. We first introduce
a generic equation-solving attack that applies to all logis-
tic models (LR and neural networks). In Section 4.2, we
present two novel path-finding attacks on decision trees.

4.1 Equation-Solving Attacks
Many ML models we consider directly compute class
probabilities as a continuous function of the input x and
real-valued model parameters. In this case, an API that
reveals these class probabilities provides an adversary A
with samples (x, f (x)) that can be viewed as equations
in the unknown model parameters. For a large class of

2Note that for some D, it is possible that f̂ predicts true labels better
than f , yet Rtest(f , f̂) is large, because f̂ does not closely match f .

Data set Synthetic # records # classes # features
Circles Yes 5,000 2 2
Moons Yes 5,000 2 2
Blobs Yes 5,000 3 2
5-Class Yes 1,000 5 20
Adult (Income) No 48,842 2 108
Adult (Race) No 48,842 5 105
Iris No 150 3 4
Steak Survey No 331 5 40
GSS Survey No 16,127 3 101
Digits No 1,797 10 64
Breast Cancer No 683 2 10
Mushrooms No 8,124 2 112
Diabetes No 768 2 8

Table 3: Data sets used for extraction attacks. We train two models on the
Adult data, with targets ‘Income’ and ‘Race’. SVMs and binary logistic regres-
sions are trained on data sets with 2 classes. Multiclass regressions and neural
networks are trained on multiclass data sets. For decision trees, we use a set of
public models shown in Table 5.

models, these equation systems can be efficiently solved,
thus recovering f (or some good approximation of it).

Our approach for evaluating attacks will primarily
be experimental. We use a suite of synthetic or pub-
licly available data sets to serve as stand-ins for propri-
etary data that might be the target of an extraction at-
tack. Table 3 displays the data sets used in this section,
which we obtained from various sources: the synthetic
ones we generated; the others are taken from public
surveys (Steak Survey [26] and GSS Survey [49]), from
scikit [42] (Digits) or from the UCI ML library [35].
More details about these data sets are in Appendix B.

Before training, we remove rows with missing values,
apply one-hot-encoding to categorical features, and scale
all numeric features to the range [−1,1]. We train our
models over a randomly chosen subset of 70% of the
data, and keep the rest for evaluation (i.e., to calculate
Rtest). We discuss the impact of different pre-processing
and feature extraction steps in Section 5, when we evalu-
ate equation-solving attacks on production ML services.

4.1.1 Binary logistic regression

As a simple starting point, we consider the case of logis-
tic regression (LR). A LR model performs binary clas-
sification (c = 2), by estimating the probability of a bi-
nary response, based on a number of independent fea-
tures. LR is one of the most popular binary classifiers,
due to its simplicity and efficiency. It is widely used in
many scientific fields (e.g., medical and social sciences)
and is supported by all the ML services we reviewed.

Formally, a LR model is defined by parameters w ∈
Rd , β ∈ R, and outputs a probability f1(x) = σ(w · x+
β), where σ(t) = 1/(1+e−t). LR is a linear classifier: it
defines a hyperplane in the feature space X (defined by
w ·x+β = 0), that separates the two classes.

Given an oracle sample (x, f (x)), we get a linear equa-
tion w ·x+β =σ−1(f1(x)). Thus, d+1 samples are both
necessary and sufficient (if the queried x are linearly in-
dependent) to recover w and β . Note that the required

606 25th USENIX Security Symposium USENIX Association

samples are chosen non-adaptively, and can thus be ob-
tained from a single batch request to the ML service.

We stress that while this extraction attack is rather
straightforward, it directly applies, with possibly devas-
tating consequences, to all cloud-based ML services we
considered. As an example, recall that some services
(e.g., BigML and Google) let model owners monetize
black-box access to their models. Any user who wishes
to make more than d + 1 queries to a model would then
minimize the prediction cost by first running a cross-
user model extraction attack, and then using the extracted
model for personal use, free of charge. As mentioned in
Section 3, attackers with a final goal of model-inversion
or evasion may also have incentives to first extract the
model. Moreover, for services with black-box-only ac-
cess (e.g., Amazon or Google), a user may abuse the ser-
vice’s resources to train a model over a large data set D
(i.e., |D| � d), and extract it after only d+1 predictions.
Crucially, the extraction cost is independent of |D|. This
could undermine a service’s business model, should pre-
diction fees be used to amortize the high cost of training.

For each binary data set shown in Table 3, we train a
LR model and extract it given d + 1 predictions. In all
cases, we achieve Rtest = Runif = 0. If we compare the
probabilities output by f and f̂ , RTV

test and RTV
unif are lower

than 10−9. For these models, the attack requires only 41
queries on average, and 113 at most. On Google’s plat-
form for example, an extraction attack would cost less
than $0.10, and subvert any further model monetization.

4.1.2 Multiclass LRs and Multilayer Perceptrons

We now show that such equation-solving attacks broadly
extend to all model classes with a ‘logistic’ layer, includ-
ing multiclass (c > 2) LR and deeper neural networks.
We define these models formally in Appendix A.

A multiclass logistic regression (MLR) combines c bi-
nary models, each with parameters wi,βi, to form a mul-
ticlass model. MLRs are available in all ML services we
reviewed. We consider two types of MLR models: soft-
max and one-vs-rest (OvR), that differ in how the c bi-
nary models are trained and combined: A softmax model
fits a joint multinomial distribution to all training sam-
ples, while a OvR model trains a separate binary LR for
each class, and then normalizes the class probabilities.

A MLR model f is defined by parameters w ∈ Rcd ,
βββ ∈Rc. Each sample (x, f (x)) gives c equations in w and
βββ . The equation system is non-linear however, and has
no analytic solution. For softmax models for instance,
the equations take the form ewi·x+βi/(∑c−1

j=0 ew j ·x+β j) =

fi(x). A common method for solving such a system is
by minimizing an appropriate loss function, such as the
logistic loss. With a regularization term, the loss func-
tion is strongly convex, and the optimization thus con-

Model Unknowns Queries 1−Rtest 1−Runif Time (s)

Softmax 530 265 99.96% 99.75% 2.6
530 100.00% 100.00% 3.1

OvR 530 265 99.98% 99.98% 2.8
530 100.00% 100.00% 3.5

MLP 2,225

1,112 98.17% 94.32% 155
2,225 98.68% 97.23% 168
4,450 99.89% 99.82% 195

11,125 99.96% 99.99% 89

Table 4: Success of equation-solving attacks. Models to extract
were trained on the Adult data set with multiclass target ‘Race’. For
each model, we report the number of unknown model parameters, the
number of queries used, and the running time of the equation solver.
The attack on the MLP with 11,125 queries converged after 490 epochs.

verges to a global minimum (i.e., a function f̂ that pre-
dicts the same probabilities as f for all available sam-
ples). A similar optimization (over class labels rather
than probabilities) is actually used for training logistic
models. Any MLR implementation can thus easily be
adapted for model extraction with equation-solving.

This approach naturally extends to deeper neural net-
works. We consider multilayer perceptrons (MLP), that
first apply a non-linear transform to all inputs (the hid-
den layer), followed by a softmax regression in the trans-
formed space. MLPs are becoming increasingly popular
due to the continued success of deep learning methods;
the advent of cloud-based ML services is likely to further
boost their adoption. For our attacks, MLPs and MLRs
mainly differ in the number of unknowns in the system
to solve. For perceptrons with one hidden layer, we have
w ∈ Rdh+hc, βββ ∈ Rh+c, where h is the number of hidden
nodes (h = 20 in our experiments). Another difference
is that the loss function for MLPs is not strongly convex.
The optimization may thus converge to a local minimum,
i.e., a model f̂ that does not exactly match f ’s behavior.

To illustrate our attack’s success, we train a softmax
regression, a OvR regression and a MLP on the Adult
data set with target ‘Race’ (c = 5). For the non-linear
equation systems we obtain, we do not know a priori
how many samples we need to find a solution (in con-
trast to linear systems where d+1 samples are necessary
and sufficient). We thus explore various query budgets
of the form α · k, where k is the number of unknown
model parameters, and α is a budget scaling factor. For
MLRs, we solve the equation system with BFGS [41]
in scikit [42]. For MLPs, we use theano [51] to run
stochastic gradient descent for 1,000 epochs. Our experi-
ments were performed on a commodity laptop (2-core In-
tel CPU @3.1GHz, 16GB RAM, no GPU acceleration).

Table 4 shows the extraction success for each model,
as we vary α from 0.5 to at most 5. For MLR models
(softmax and OvR), the attack is extremely efficient, re-
quiring around one query per unknown parameter of f
(each query yields c = 5 equations). For MLPs, the sys-
tem to solve is more complex, with about 4 times more

USENIX Association 25th USENIX Security Symposium 607

(a) (b)
Figure 2: Training data leakage in KLR models. (a) Displays 5 of
20 training samples used as representers in a KLR model (top) and 5 of
20 extracted representers (bottom). (b) For a second model, shows the
average of all 1,257 representers that the model classifies as a 3,4,5,6
or 7 (top) and 5 of 10 extracted representers (bottom).

unknowns. With a sufficiently over-determined system,
we converge to a model f̂ that very closely approximates
f . As for LR models, queries are chosen non-adaptively,
so A may submit a single ‘batch request’ to the API.

We further evaluated our attacks over all multiclass
data sets from Table 3. For MLR models with k = c ·(d+
1) parameters (c is the number of classes), k queries were
sufficient to achieve perfect extraction (Rtest = Runif = 0,
RTV

test and RTV
unif below 10−7). We use 260 samples on

average, and 650 for the largest model (Digits). For
MLPs with 20 hidden nodes, we achieved >99.9% accu-
racy with 5,410 samples on average and 11,125 at most
(Adult). With 54,100 queries on average, we extracted a
f̂ with 100% accuracy over tested inputs. As for binary
LRs, we thus find that cross-user model extraction at-
tacks for these model classes can be extremely efficient.

4.1.3 Training Data Leakage for Kernel LR

We now move to a less mainstream model class, kernel
logistic regression [57], that illustrates how extraction at-
tacks can leak private training data, when a model’s out-
puts are directly computed as a function of that data.

Kernel methods are commonly used to efficiently ex-
tend support vector machines (SVM) to nonlinear clas-
sifiers [14], but similar techniques can be applied to lo-
gistic regression [57]. Compared to kernel SVMs, kernel
logistic regressions (KLR) have the advantage of com-
puting class probabilities, and of naturally extending to
multiclass problems. Yet, KLRs have not reached the
popularity of kernel SVMs or standard LRs, and are not
provided by any MLaaS provider at the time. We note
that KLRs could easily be constructed in any ML library
that supports both kernel functions and LR models.

A KLR model is a softmax model, where we re-
place the linear components wi · x + βi by a mapping
∑s

r=1 αi,rK(x,xr)+βi. Here, K is a kernel function, and
the representers x1, . . . ,xs are a chosen subset of the
training points [57]. More details are in Appendix A.

Each sample (x, f (x)) from a KLR model yields c
equations over the parameters ααα ∈ Rsc,βββ ∈ Rc and the
representers x1, . . . ,xs. Thus, by querying the model,
A obtains a non-linear equation system, the solution of
which leaks training data. This assumes that A knows
the exact number s of representers sampled from the data.

However, we can relax this assumption: First, note that
f ’s outputs are unchanged by adding ‘extra’ representers,
with weights α = 0. Thus, over-estimating s still results
in a consistent system of equations, of which a solution
is the model f , augmented with unused representers. We
will also show experimentally that training data may leak
even if A extracts a model f̂ with s′ � s representers.

We build two KLR models with a radial-basis function
(RBF) kernel for a data set of handwritten digits. We se-
lect 20 random digits as representers for the first model,
and all 1,257 training points for the second. We extract
the first model, assuming knowledge of s, by solving a
system of 50,000 equations in 1,490 unknowns. We use
the same approach as for MLPs, i.e., logistic-loss min-
imization using gradient descent. We initialize the ex-
tracted representers to uniformly random vectors in X ,
as we assume A does not know the training data distribu-
tion. In Figure 2a, we plot 5 of the model’s representers
from the training data, and the 5 closest (in l1 norm) ex-
tracted representers. The attack clearly leaks information
on individual training points. We measure the attack’s ro-
bustness to uncertainty about s, by attacking the second
model with only 10 local representers (10,000 equations
in 750 unknowns). Figure 2b shows the average image
of training points classified as a 3,4,5,6 or 7 by the tar-
get model f , along with 5 extracted representers of f̂ .
Surprisingly maybe, the attack seems to be leaking the
‘average representor’ of each class in the training data.

4.1.4 Model Inversion Attacks on Extracted Models

Access to a model may enable inference of privacy-
damaging information, particularly about the training
set [4, 23, 24]. The model inversion attack explored by
Fredrikson et al. [23] uses access to a classifier f to find
the input xopt that maximizes the class probability for
class i, i.e., xopt = argmaxx∈X fi(x). This was shown
to allow recovery of recognizable images of training set
members’ faces when f is a facial recognition model.

Their attacks work best in a white-box setting, where
the attacker knows f and its parameters. Yet, the authors
also note that in a black-box setting, remote queries to a
prediction API, combined with numerical approximation
techniques, enable successful, albeit much less efficient,
attacks. Furthermore, their black-box attacks inherently
require f to be queried adaptively. They leave as an open
question making black-box attacks more efficient.

We explore composing an attack that first attempts to
extract a model f̂ ≈ f , and then uses it with the [23]
white-box inversion attack. Our extraction techniques re-
place adaptive queries with a non-adaptive “batch” query
to f , followed by local computation. We show that ex-
traction plus inversion can require fewer queries and less
time than performing black-box inversion directly.

608 25th USENIX Security Symposium USENIX Association

As a case study, we use the softmax model from [23],
trained over the AT&T Faces data [5]. The data set con-
sists of images of faces (92 × 112 pixels) of 40 peo-
ple. The black-box attack from [23] needs about 20,600
queries to reconstruct a recognizable face for a single
training set individual. Reconstructing the faces of all 40
individuals would require around 800,000 online queries.

The trained softmax model is much larger than those
considered in Section 4.1, with 412,160 unknowns (d =
10,304 and c = 40). We solve an under-determined sys-
tem with 41,216 equations (using gradient descent with
200 epochs), and recover a model f̂ achieving RTV

test,R
TV
unif

in the order of 10−3. Note that the number of model
parameters to extract is linear in the number of people c,
whose faces we hope to recover. By using f̂ in white-box
model inversion attacks, we obtain results that are visu-
ally indistinguishable from the ones obtained using the
true f . Given the extracted model f̂ , we can recover all
40 faces using white-box attacks, incurring around 20×
fewer remote queries to f than with 40 black-box attacks.

For black-box attacks, the authors of [23] estimate a
query latency of 70 milliseconds (a little less than in our
own measurements of ML services, see Table 1). Thus,
it takes 24 minutes to recover a single face (the inversion
attack runs in seconds), and 16 hours to recover all 40 im-
ages. In contrast, solving the large equation system un-
derlying our model-extraction attack took 10 hours. The
41,216 online queries would take under one hour if exe-
cuted sequentially and even less with a batch query. The
cost of the 40 local white-box attacks is negligible.

Thus, if the goal is to reconstruct faces for all 40 train-
ing individuals, performing model inversion over a pre-
viously extracted model results in an attack that is both
faster and requires 20× fewer online queries.

4.2 Decision Tree Path-Finding Attacks
Contrary to logistic models, decision trees do not com-
pute class probabilities as a continuous function of their
input. Rather, decision trees partition the input space into
discrete regions, each of which is assigned a label and
confidence score. We propose a new path-finding attack,
that exploits API particularities to extract the ‘decisions’
taken by a tree when classifying an input.

Prior work on decision tree extraction [7, 12, 33] has
focused on trees with Boolean features and outputs.
While of theoretical importance, such trees have limited
practical use. Kushilevitz and Mansour [33] showed that
Boolean trees can be extracted using membership queries
(arbitrary queries for class labels), but their algorithm
does not extend to more general trees. Here, we propose
attacks that exploit ML API specificities, and that apply
to decision tree models used in MLaaS platforms.

Our tree model, defined formally in Appendix A, al-

lows for binary and multi-ary splits over categorical fea-
tures, and binary splits over numeric features. Each leaf
of the tree is labeled with a class label and a confidence
score. We note that our attacks also apply (often with bet-
ter results) to regression trees. In regression trees, each
leaf is labeled with a real-valued output and confidence.

The key idea behind our attack is to use the rich in-
formation provided by APIs on a prediction query, as a
pseudo-identifier for the path that the input traversed in
the tree. By varying the value of each input feature, we
then find the predicates to be satisfied, for an input to
follow a given path in the tree. We will also exploit the
ability to query incomplete inputs, in which each feature
xi is chosen from a space Xi ∪ {⊥}, where ⊥ encodes
the absence of a value. One way of handling such inputs
([11, 46]) is to label each node in the tree with an output
value. On an input, we traverse the tree until we reach a
leaf or an internal node with a split over a missing fea-
ture, and output that value of that leaf or node.

We formalize these notions by defining oracles that
A can query to obtain an identifier for the leaf or inter-
nal node reached by an input. In practice, we instantiate
these oracles using prediction API peculiarities.

Definition 1 (Identity Oracles). Let each node v of a tree
T be assigned some identifier idv. A leaf-identity oracle
O takes as input a query x ∈ X and returns the identifier
of the leaf of the tree T that is reached on input x.

A node-identity oracle O⊥ takes as input a query x ∈
X1 ∪{⊥}× ·· ·×Xd ∪{⊥} and returns the identifier of
the node or leaf of T at which the tree computation halts.

4.2.1 Extraction Algorithms

We now present our path-finding attack (Algorithm 1),
that assumes a leaf-identity oracle that returns unique
identifiers for each leaf. We will relax the uniqueness
assumption further on. The attack starts with a random
input x and gets the leaf id from the oracle. We then
search for all constraints on x that have to be satisfied to
remain in that leaf, using procedures LINE SEARCH (for
continuous features) and CAT SPLIT (for categorical fea-
tures) described below. From this information, we then
create new queries for unvisited leaves. Once all leaves
have been found, the algorithm returns, for each leaf, the
corresponding constraints on x. We analyze the algo-
rithm’s correctness and complexity in Appendix C.

We illustrate our algorithm with a toy example of a
tree over continuous feature Size and categorical feature
Color (see Figure 3). The current query is x = {Size =
50, Color = R} and O(x) = id2. Our goal is two-fold:
(1) Find the predicates that x has to satisfy to end up in
leaf id2 (i.e., Size ∈ (40,60], Color = R), and (2) create
new inputs x′ to explore other paths in the tree.

USENIX Association 25th USENIX Security Symposium 609

Algorithm 1 The path-finding algorithm. The notation id ←
O(x) means querying the leaf-identity oracle O with an input x and
obtaining a response id. By x[i]⇒ v we denote the query x′ obtained
from x by replacing the value of xi by v.

1: xinit ←{x1, . . . ,xd} � random initial query
2: Q ←{xinit} � Set of unprocessed queries
3: P ←{} � Set of explored leaves with their predicates
4: while Q not empty do
5: x ← Q.POP()
6: id←O(x) � Call to the leaf identity oracle
7: if id ∈ P then � Check if leaf already visited
8: continue
9: end if

10: for 1 ≤ i ≤ d do � Test all features
11: if IS CONTINUOUS(i) then
12: for (α,β] ∈ LINE SEARCH(x, i,ε) do
13: if xi ∈ (α,β] then
14: P[id].ADD(‘xi ∈ (α,β]‘) � Current interval
15: else
16: Q.PUSH(x[i]⇒ β) � New leaf to visit
17: end if
18: end for
19: else
20: S,V ← CATEGORY SPLIT(x, i,id)
21: P[id].ADD(‘xi ∈ S‘) � Values for current leaf
22: for v ∈V do
23: Q.PUSH(x[i]⇒ v) � New leaves to visit
24: end for
25: end if
26: end for
27: end while

The LINE SEARCH procedure (line 12) tests continu-
ous features. We start from bounds on the range of a fea-
ture Xi = [a,b]. In our example, we have Size ∈ [0,100].
We set the value of Size in x to 0 and 100, query O, and
obtain id1 and id5. As the ids do not match, a split on
Size occurs on the path to id2. With a binary search over
feature Size (and all other features in x fixed), we find all
intervals that lead to different leaves, i.e., [0,40], (40,60],
(60,100]. From these intervals, we find the predicate for
the current leaf (i.e., Size ∈ (40,60]) and build queries to
explore new tree paths. To ensure termination of the line
search, we specify some precision ε . If a split is on a
threshold t, we find the value t̃ that is the unique multiple
of ε in the range (t − ε, t]. For values xi with granularity
ε , splitting on t̃ is then equivalent to splitting on t.

The CATEGORY SPLIT procedure (line 20) finds splits
on categorical features. In our example, we vary the
value of Color in x and query O to get a leaf id for each
value. We then build a set S of values that lead to the cur-
rent leaf, i.e., S = {R}, and a set V of values to set in x to
explore other leaves (one representative per leaf). In our
example, we could have V = {B,G,Y} or V = {B,G,O}.

Using these two procedures, we thus find the pred-
icates defining the path to leaf id2, and generate new
queries x′ for unvisited leaves of the tree.

A top-down approach. We propose an empirically
more efficient top-down algorithm that exploits queries
over partial inputs. It extracts the tree ‘layer by layer’,

Color
Size

id1

≤ 40

Size

Color

id2

= R

id3

= B

id4

= G

≤ 60

id5

> 60

> 40

∈ {R,B,G}
id6

∈ {Y,O}

Figure 3: Decision tree over features Color and Size. Shows the
path (thick green) to leaf id2 on input x = {Size = 50, Color = R}.

Data set # records # classes # features
IRS Tax Patterns 191,283 51 31
Steak Survey 430 5 12
GSS Survey 51,020 3 7
Email Importance 4,709 2 14
Email Spam 4,601 2 46
German Credit 1,000 2 11
Medical Cover 163,065 Y = R 13
Bitcoin Price 1,076 Y = R 7

Table 5: Data sets used for decision tree extraction. Trained trees
for these data sets are available in BigML’s public gallery. The last two
data sets are used to train regression trees.

starting at the root: We start with an empty query (all
features set to ⊥) and get the root’s id by querying O⊥.
We then set each feature in turn and query O again. For
exactly one feature (the root’s splitting feature), the input
will reach a different node. With similar procedures as
described previously, we extract the root’s splitting crite-
rion, and recursively search lower layers of the tree.

Duplicate identities. As we verify empirically, our at-
tacks are resilient to some nodes or leaves sharing the
same id. We can modify line 7 in Algorithm 1 to detect
id duplicates, by checking not only whether a leaf with
the current id was already visited, but also whether the
current query violates that leaf’s predicates. The main
issue with duplicate ids comes from the LINE SEARCH

and CATEGORY SPLIT procedures: if two queries x and
x′ differ in a single feature and reach different leaves with
the same id, the split on that feature will be missed.

4.2.2 Attack Evaluation

Our tree model (see Appendix A) is the one used by
BigML. Other ML services use similar tree models. For
our experiments, we downloaded eight public decision
trees from BigML (see Table 5), and queried them lo-
cally using available API bindings. More details on these
models are in Appendix B. We show online extraction
attacks on black-box models from BigML in Section 5.

To emulate black-box model access, we first issue
online queries to BigML, to determine the information
contained in the service’s responses. We then simulate
black-box access locally, by discarding any extra infor-
mation returned by the local API. Specifically, we make
use of the following fields in query responses:

610 25th USENIX Security Symposium USENIX Association

Without incomplete queries With incomplete queries
Model Leaves Unique IDs Depth 1−Rtest 1−Runif Queries 1−Rtest 1−Runif Queries
IRS Tax Patterns 318 318 8 100.00% 100.00% 101,057 100.00% 100.00% 29,609
Steak Survey 193 28 17 92.45% 86.40% 3,652 100.00% 100.00% 4,013
GSS Survey 159 113 8 99.98% 99.61% 7,434 100.00% 99.65% 2,752
Email Importance 109 55 17 99.13% 99.90% 12,888 99.81% 99.99% 4,081
Email Spam 219 78 29 87.20% 100.00% 42,324 99.70% 100.00% 21,808
German Credit 26 25 11 100.00% 100.00% 1,722 100.00% 100.00% 1,150
Medical Cover 49 49 11 100.00% 100.00% 5,966 100.00% 100.00% 1,788
Bitcoin Price 155 155 9 100.00% 100.00% 31,956 100.00% 100.00% 7,390

Table 6: Performance of extraction attacks on public models from BigML. For each model, we report the number of leaves in the tree, the
number of unique identifiers for those leaves, and the maximal tree depth. The chosen granularity ε for continuous features is 10−3.

• Prediction. This entry contains the predicted class la-
bel (classification) or real-valued output (regression).

• Confidence. For classification and regression trees,
BigML computes confidence scores based on a confi-
dence interval for predictions at each node [11]. The
prediction and confidence value constitute a node’s id.

• Fields. Responses to black-box queries contain a
‘fields’ property, that lists all features that appear ei-
ther in the input query or on the path traversed in the
tree. If a partial query x reaches an internal node v,
this entry tells us which feature v splits on (the feature
is in the ‘fields’ entry, but not in the input x). We make
use of this property for the top-down attack variant.

Table 6 displays the results of our attacks. For each
tree, we give its number of leaves, the number of unique
leaf ids, and the tree depth. We display the success
rate for Algorithm 1 and for the “top-down” variant with
incomplete queries. Querying partial inputs vastly im-
proves our attack: we require far less queries (except for
the Steak Survey model, where Algorithm 1 only visits
a fraction of all leaves and thus achieves low success)
and achieve higher accuracy for trees with duplicate leaf
ids. As expected, both attacks achieve perfect extraction
when all leaves have unique ids. While this is not al-
ways the case for classification trees, it is far more likely
for regression trees, where both the label and confidence
score take real values. Surprisingly maybe, the top-down
approach also fully extracts some trees with a large num-
ber of duplicate leaf ids. The attacks are also efficient:
The top-down approach takes less than 10 seconds to ex-
tract a tree, and Algorithm 1 takes less than 6 minutes
for the largest tree. For online attacks on ML services,
discussed next, this cost is trumped by the delay for the
inherently adaptive prediction queries that are issued.

5 Online Model Extraction Attacks

In this section, we showcase online model extraction at-
tacks against two ML services: BigML and Amazon. For
BigML, we focus on extracting models set up by a user,
who wishes to charge for predictions. For Amazon, our
goal is to extract a model trained by ourselves, to which
we only get black-box access. Our attacks only use ex-

Model OHE Binning Queries Time (s) Price ($)
Circles - Yes 278 28 0.03
Digits - No 650 70 0.07
Iris - Yes 644 68 0.07
Adult Yes Yes 1,485 149 0.15

Table 7: Results of model extraction attacks on Amazon. OHE
stands for one-hot-encoding. The reported query count is the number
used to find quantile bins (at a granularity of 10−3), plus those queries
used for equation-solving. Amazon charges $0.0001 per prediction [1].

posed APIs, and do not in any way attempt to bypass the
services’ authentication or access-control mechanisms.
We only attack models trained in our own accounts.

5.1 Case Study 1: BigML
BigML currently only allows monetization of decision
trees [11]. We train a tree on the German Credit data,
and set it up as a black-box model. The tree has 26
leaves, two of which share the same label and confidence
score. From another account, we extract the model us-
ing the two attacks from Section 4.2. We first find the
tree’s number of features, their type and their range, from
BigML’s public gallery. Our attacks (Algorithm 1 and
the top-down variant) extract an exact description of the
tree’s paths, using respectively 1,722 and 1,150 queries.
Both attacks’ duration (1,030 seconds and 631 sec-
onds) is dominated by query latency (≈ 500ms/query).
The monetary cost of the attack depends on the per-
prediction-fee set by the model owner. In any case, a
user who wishes to make more than 1,150 predictions
has economic incentives to run an extraction attack.

5.2 Case Study 2: Amazon Web Services
Amazon uses logistic regression for classification, and
provides black-box-only access to trained models [1].
By default, Amazon uses two feature extraction tech-
niques: (1) Categorical features are one-hot-encoded,
i.e., the input space Mi = Zk is mapped to k binary fea-
tures encoding the input value. (2) Quantile binning is
used for numeric features. The training data values are
split into k-quantiles (k equally-sized bins), and the input
space Mi = [a,b] is mapped to k binary features encod-
ing the bin that a value falls into. Note that |X | > |M|,

USENIX Association 25th USENIX Security Symposium 611

i.e., ex increases the number of features. If A reverse-
engineers ex, she can query the service on samples M in
input space, compute x = ex(M) locally, and extract f in
feature-space using equation-solving.

We apply this approach to models trained by Amazon.
Our results are summarized in Table 7. We first train a
model with no categorical features, and quantile binning
disabled (this is a manually tunable parameter), over the
Digits data set. The attack is then identical to the one
considered in Section 4.1.2: using 650 queries to Ama-
zon, we extract a model that achieves Rtest = Runif = 0.

We now consider models with feature extraction en-
abled. We assume that A knows the input space M, but
not the training data distribution. For one-hot-encoding,
knowledge of M suffices to apply the same encoding lo-
cally. For quantile binning however, applying ex locally
requires knowledge of the training data quantiles. To
reverse-engineer the binning transformation, we use line-
searches similar to those we used for decision trees: For
each numeric feature, we search the feature’s range in in-
put space for thresholds (up to a granularity ε) where f ’s
output changes. This indicates our value landed in an ad-
jacent bin, with a different learned regression coefficient.
Note that learning the bin boundaries may be interesting
in its own right, as it leaks information about the train-
ing data distribution. Having found the bin boundaries,
we can apply both one-hot-encoding and binning locally,
and extract f over its feature space. As we are restricted
to queries over M, we cannot define an arbitrary sys-
tem of equations over X . Building a well-determined
and consistent system can be difficult, as the encoding ex
generates sparse inputs over X . However, Amazon facil-
itates this process with the way it handles queries with
missing features: if a feature is omitted from a query,
all corresponding features in X are set to 0. For a lin-
ear model for instance, we can trivially re-construct the
model by issuing queries with a single feature specified,
such as to obtain equations with a single unknown in X .

We trained models for the Circles, Iris and Adult data
sets, with Amazon’s default feature-extraction settings.
Table 7 shows the results of our attacks, for the reverse-
engineering of ex and extraction of f . For binary models
(Circles and Adult), we use d+1 queries to solve a linear
equation-system over X . For models with c > 2 classes,
we use c · (d + 1) queries. In all cases, the extracted
model matches f on 100% of tested inputs. To optimize
the query complexity, the queries we use to find quantile
bins are re-used for equation-solving. As line searches
require adaptive queries, we do not use batch predictions.
However, even for the Digits model, we resorted to using
real-time predictions, because of the service’s significant
overhead in evaluating batches. For attacks that require
a large number of non-adaptive queries, we expect batch
predictions to be faster than real-time predictions.

5.3 Discussion
Additional feature extractors. In some ML services
we considered, users may enable further feature extrac-
tors. A common transformation is feature scaling or nor-
malization. If A has access to training data statistics
(as provided by BigML for instance), applying the trans-
formation locally is trivial. More generally, for models
with a linear input layer (i.e., logistic regressions, linear
SVMs, MLPs) the scaling or normalization can be seen
as being applied to the learned weights, rather than the
input features. We can thus view the composition f ◦ ex
as a model f ′ that operates over the ‘un-scaled’ input
space M and extract f ′ directly using equation-solving.

Further extractors include text analysis (e.g., bag-of-
words or n-gram models) and Cartesian products (group-
ing many features into one). We have not analyzed these
in this work, but we believe that they could also be easily
reverse-engineered, especially given some training data
statistics and the ability to make incomplete queries.

Learning unknown model classes or hyper-parame-
ters. For our online attacks, we obtained information
about the model class of f , the enabled feature extrac-
tion ex, and other hyper-parameters, directly from the
ML service or its documentation. More generally, if A
does not have full certainty about certain model charac-
teristics, it may be able to narrow down a guess to a small
range. Model hyper-parameters for instance (such as the
free parameter of an RBF kernel) are typically chosen
through cross-validation over a default range of values.

Given a set of attack strategies with varying assump-
tions, A can use a generic extract-and-test approach:
each attack is applied in turn, and evaluated by comput-
ing Rtest or Runif over a chosen set of points. The adver-
sary succeeds if any of the strategies achieves a low error.
Note that A needs to interact with the model f only once,
to obtain responses for a chosen set of extraction samples
and test samples, that can be re-used for each strategy.

Our attacks on Amazon’s service followed this ap-
proach: We first formulated guesses for model charac-
teristics left unspecified by the documentation (e.g., we
found no mention of one-hot-encoding, or of how miss-
ing inputs are handled). We then evaluated our assump-
tions with successive extraction attempts. Our results in-
dicate that Amazon uses softmax regression and does not
create binary predictors for missing values. Interestingly,
BigML takes the ’opposite’ approach (i.e., BigML uses
OvR regression and adds predictors for missing values).

6 Extraction Given Class Labels Only

The successful attacks given in Sections 4 and 5 show
the danger of revealing confidence values. While current

612 25th USENIX Security Symposium USENIX Association

ML services have been designed to reveal rich informa-
tion, our attacks may suggest that returning only labels
would be safer. Here we explore model extraction in a
setting with no confidence scores. We will discuss fur-
ther countermeasures in Section 7. We primarily focus
on settings where A can make direct queries to an API,
i.e., queries for arbitrary inputs x∈X . We briefly discuss
indirect queries in the context of linear classifiers.

The Lowd-Meek attack. We start with the prior work
of Lowd and Meek [36]. They present an attack on any
linear classifier, assuming black-box oracle access with
membership queries that return just the predicted class
label. A linear classifier is defined by a vector w ∈ Rd

and a constant β ∈R, and classifies an instance x as pos-
itive if w ·x+β > 0 and negative otherwise. SVMs with
linear kernels and binary LRs are examples of linear clas-
sifiers. Their attack uses line searches to find points ar-
bitrarily close to f ’s decision boundary (points for which
w ·x+β ≈ 0), and extracts w and β from these samples.

This attack only works for linear binary models. We
describe a straightforward extension to some non-linear
models, such as polynomial kernel SVMs. Extracting a
polynomial kernel SVM can be reduced to extracting a
linear SVM in the transformed feature space. Indeed,
for any kernel Kpoly(x,x′)=(xT · x′+ 1)d , we can derive
a projection function φ(·), so that Kpoly(x,x′)=φ(x)T ·
φ(x′). This transforms the kernel SVM into a linear one,
since the decision boundary now becomes wF · φ(x) +
β = 0 where wF = ∑t

i=1 αiφ(xi). We can use the Lowd-
Meek attack to extract wF and β as long as φ(x) and its
inverse are feasible to compute; this is unfortunately not
the case for the more common RBF kernels.3

The retraining approach. In addition to evaluating
the Lowd-Meek attack against ML APIs, we introduce
a number of other approaches based on the broad strat-
egy of re-training a model locally, given input-output
examples. Informally, our hope is that by extracting a
model that achieves low training error over the queried
samples, we would effectively approximate the target
model’s decision boundaries. We consider three re-
training strategies, described below. We apply these
to the model classes that we previously extracted using
equation-solving attacks, as well as to SVMs.4

(1) Retraining with uniform queries. This baseline
strategy simply consists in sampling m points xi ∈
X uniformly at random, querying the oracle, and
training a model f̂ on these samples.

3We did explore using approximations of φ , but found that the adap-
tive re-training techniques discussed in this section perform better.

4We do not expect retraining attacks to work well for decision trees,
because of the greedy approach taken by learning algorithms. We have
not evaluated extraction of trees, given class labels only, in this work.

0 25 50 75 100
0

10−4

10−3

10−2

10−1

100

Budget Factor α

A
vg

.E
xt

ra
ct

io
n

E
rr

or

Rtest

0 25 50 75 100
Budget Factor α

Runif

Uniform
Line-Search
Adaptive
Lowd-Meek

Figure 4: Average error of extracted linear models. Results are for
different extraction strategies applied to models trained on all binary
data sets from Table 3. The left shows Rtest and the right shows Runif.

(2) Line-search retraining. This strategy can be seen
as a model-agnostic generalization of the Lowd-
Meek attack. It issues m adaptive queries to the
oracle using line search techniques, to find samples
close to the decision boundaries of f . A model f̂ is
then trained on the m queried samples.

(3) Adaptive retraining. This strategy applies tech-
niques from active learning [18, 47]. For some
number r of rounds and a query budget m, it first
queries the oracle on m

r uniform points, and trains a
model f̂ . Over a total of r rounds, it then selects m

r
new points, along the decision boundary of f̂ (in-
tuitively, these are points f̂ is least certain about),
and sends those to the oracle before retraining f̂ .

6.1 Linear Binary Models
We first explore how well the various approaches work
in settings where the Lowd-Meek attack can be applied.
We evaluate their attack and our three retraining strate-
gies for logistic regression models trained over the binary
data sets shown in Table 3. These models have d +1 pa-
rameters, and we vary the query budget as α ·(d+1), for
0.5 ≤ α ≤ 100. Figure 4 displays the average errors Rtest
and Runif over all models, as a function of α .

The retraining strategies that search for points near
the decision boundary clearly perform better than simple
uniform retraining. The adaptive strategy is the most ef-
ficient of our three strategies. For relatively low budgets,
it even outperforms the Lowd-Meek attack. However, for
budgets large enough to run line searches in each dimen-
sion, the Lowd-Meek attack is clearly the most efficient.

For the models we trained, about 2,050 queries on av-
erage, and 5,650 at most, are needed to run the Lowd-
Meek attack effectively. This is 50× more queries than
what we needed for equation-solving attacks. With 827
queries on average, adaptive retraining yields a model f̂
that matches f on over 99% of tested inputs. Thus, even
if an ML API only provides class labels, efficient extrac-

USENIX Association 25th USENIX Security Symposium 613

tion attacks on linear models remain possible.
We further consider a setting where feature-extraction

(specifically one-hot-encoding of categorical features) is
applied by the ML service, rather than by the user. A is
then limited to indirect queries in input space. Lowd and
Meek [36] note that their extraction attack does not work
in this setting, as A can not run line searches directly over
X . In contrast, for the linear models we trained, we ob-
served no major difference in extraction accuracy for the
adaptive-retraining strategy, when limited to queries over
M. We leave an in-depth study of model extraction with
indirect queries, and class labels only, for future work.

6.2 Multiclass LR Models
The Lowd-Meek attack is not applicable in multiclass
(c > 2) settings, even when the decision boundary is a
combination of linear boundaries (as in multiclass re-
gression) [39, 50]. We thus focus on evaluating the three
retraining attacks we introduced, for the type of ML
models we expect to find in real-world applications.

We focus on softmax models here, as softmax and one-
vs-rest models have identical output behaviors when only
class labels are provided: in both cases, the class label
for an input x is given by argmaxi(wi · x+βi). From an
extractor’s perspective, it is thus irrelevant whether the
target was trained using a softmax or OvR approach.

We evaluate our attacks on softmax models trained on
the multiclass data sets shown in Table 3. We again vary
the query budget as a factor α of the number of model
parameters, namely α · c · (d + 1). Results are displayed
in Figure 5. We observe that the adaptive strategy clearly
performs best and that the line-search strategy does not
improve over uniform retraining, possibly because the
line-searches have to be split across multiple decision-
boundaries. We further note that all strategies achieve
lower Rtest than Runif. It thus appears that for the models
we trained, points from the test set are on average ‘far’
from the decision boundaries of f (i.e., the trained mod-
els separate the different classes with large margins).

For all models, 100 · c · (d + 1) queries resulted in ex-
traction accuracy above 99.9%. This represents 26,000
queries on average, and 65,000 at the most (Digits data
set). Our equation-solving attacks achieved similar or
better results with 100× less queries. Yet, for scenar-
ios with high monetary incentives (e.g., intrusion detec-
tor evasion), extraction attacks on MLR models may be
attractive, even if APIs only provide class labels.

6.3 Neural Networks
We now turn to attacks on more complex deep neural
networks. We expect these to be harder to retrain than
multiclass regressions, as deep networks have more pa-

0 25 50 75 100
10−4

10−3

10−2

10−1

100

Budget Factor α

A
vg

.E
xt

ra
ct

io
n

E
rr

or

Rtest

Uniform
Line-Search
Adaptive

0 25 50 75 100
Budget Factor α

Runif

Figure 5: Average error of extracted softmax models. Results are
for three retraining strategies applied to models trained on all multiclass
data sets from Table 3. The left shows Rtest and the right shows Runif.

0 25 50 75 100
10−3

10−2

10−1

100

Budget Factor α

A
vg

.E
xt

ra
ct

io
n

E
rr

or

Rtest

Uniform
Line-Search
Adaptive

0 25 50 75 100
Budget Factor α

Runif

Figure 6: Average error of extracted RBF kernel SVMs Results
are for three retraining strategies applied to models trained on all binary
data sets from Table 3. The left shows Rtest and the right shows Runif.

rameters and non-linear decision-boundaries. Therefore,
we may need to find a large number of points close to a
decision boundary in order to extract it accurately.

We evaluated our attacks on the multiclass models
from Table 3. For the tested query budgets, line-search
and adaptive retraining gave little benefit over uniform
retraining. For a budget of 100 · k, where k is the num-
ber of model parameters, we get Rtest = 99.16% and
Runif = 98.24%, using 108,200 queries per model on av-
erage. Our attacks might improve for higher budgets but
it is unclear whether they would then provide any mone-
tary advantage over using ML APIs in an honest way.

6.4 RBF Kernel SVMs

Another class of nonlinear models that we consider are
support-vector machines (SVMs) with radial-basis func-
tion (RBF) kernels. A kernel SVM first maps inputs into
a higher-dimensional space, and then finds the hyper-
plane that maximally separates the two classes. As men-
tioned in Section 6, SVMs with polynomial kernels can
be extracted using the Lowd-Meek attack in the trans-
formed feature space. For RBF kernels, this is not possi-
ble because the transformed space has infinite dimension.

SVMs do not provide class probability estimates. Our
only applicable attack is thus retraining. As for linear
models, we vary the query budget as α · (d + 1), where
d is the input dimension. We further use the extract-and-
test approach from Section 5 to find the value of the RBF
kernel’s hyper-parameter. Results of our attacks are in

614 25th USENIX Security Symposium USENIX Association

Figure 6. Again, we see that adaptive retraining performs
best, even though the decision boundary to extract is non-
linear (in input space) here. Kernel SVMs models are
overall harder to retrain than models with linear decision
boundaries. Yet, for our largest budgets (2,050 queries
on average), we do extract models with over 99% accu-
racy, which may suffice in certain adversarial settings.

7 Extraction Countermeasures

We have shown in Sections 4 and 5 that adversarial
clients can effectively extract ML models given access
to rich prediction APIs. Given that this undermines the
financial models targeted by some ML cloud services,
and potentially leaks confidential training data, we be-
lieve researchers should seek countermeasures.

In Section 6, we analyzed the most obvious defense
against our attacks: prediction API minimization. The
constraint here is that the resulting API must still be use-
ful in (honest) applications. For example, it is simple to
change APIs to not return confidences and not respond
to incomplete queries, assuming applications can get by
without it. This will prevent many of our attacks, most
notably the ones described in Section 4 as well as the fea-
ture discovery techniques used in our Amazon case study
(Section 5). Yet, we showed that even if we strip an API
to only provide class labels, successful attacks remain
possible (Section 6), albeit at a much higher query cost.

We discuss further potential countermeasures below.

Rounding confidences. Applications might need con-
fidences, but only at lower granularity. A possible de-
fense is to round confidence scores to some fixed preci-
sion [23]. We note that ML APIs already work with some
finite precision when answering queries. For instance,
BigML reports confidences with 5 decimal places, and
Amazon provides values with 16 significant digits.

To understand the effects of limiting precision further,
we re-evaluate equation-solving and decision tree path-
finding attacks with confidence scores rounded to a fixed
decimal place. For equation-solving attacks, rounding
the class probabilities means that the solution to the ob-
tained equation-system might not be the target f , but
some truncated version of it. For decision trees, round-
ing confidence scores increases the chance of node id

collisions, and thus decreases our attacks’ success rate.
Figure 7 shows the results of experiments on softmax

models, with class probabilities rounded to 2–5 decimals.
We plot only Rtest, the results for Runif being similar. We
observe that class probabilities rounded to 4 or 5 deci-
mal places (as done already in BigML) have no effect on
the attack’s success. When rounding further to 3 and 2
decimal places, the attack is weakened, but still vastly
outperforms adaptive retraining using class labels only.

0 20 40 60 80 100
0

10−4

10−3

10−2

10−1

Budget Factor α

Rtest

Labels only 4 decimals
2 decimals 5 decimals
3 decimals No rounding

Figure 7: Effect of rounding on model extraction. Shows the av-
erage test error of equation-solving attacks on softmax models trained
on the benchmark suite (Table 3), as we vary the number of significant
digits in reported class probabilities. Extraction with no rounding and
with class labels only (adaptive retraining) are added for comparison.

For regression trees, rounding has no effect on our at-
tacks. Indeed, for the models we considered, the output
itself is unique in each leaf (we could also round out-
puts, but the impact on utility may be more critical). For
classification trees, we re-evaluated our top-down attack,
with confidence scores rounded to fewer than 5 decimal
places. The attacks on the ‘IRS Tax Patterns’ and ‘Email
Importance’ models are the most resilient, and suffer no
success degradation before scores are rounded to 2 deci-
mal places. For the other models, rounding confidences
to 3 or 4 decimal places severely undermines our attack.

Differential privacy. Differential privacy (DP) [22]
and its variants [34] have been explored as mechanisms
for protecting, in particular, the privacy of ML train-
ing data [54]. DP learning has been applied to regres-
sions [17,56], SVMs [44], decision trees [31] and neural
networks [48]. As some of our extraction attacks leak
training data information (Section 4.1.3), one may ask
whether DP can prevent extraction, or at least reduce the
severity of the privacy violations that extraction enables.

Consider naı̈ve application of DP to protect individual
training data elements. This should, in theory, decrease
the ability of an adversary A to learn information about
training set elements, when given access to prediction
queries. One would not expect, however, that this pre-
vents model extraction, as DP is not defined to do so:
consider a trivially useless learning algorithm for binary
logistic regression, that discards the training data and sets
w and β to 0. This algorithm is differentially private, yet
w and β can easily be recovered using equation-solving.

A more appropriate strategy would be to apply DP di-
rectly to the model parameters, which would amount to
saying that a query should not allow A to distinguish be-
tween closely neighboring model parameters. How ex-
actly this would work and what privacy budgets would
be required is left as an open question by our work.

Ensemble methods. Ensemble methods such as ran-
dom forests return as prediction an aggregation of pre-

USENIX Association 25th USENIX Security Symposium 615

dictions by a number of individual models. While we
have not experimented with ensemble methods as targets,
we suspect that they may be more resilient to extraction
attacks, in the sense that attackers will only be able to ob-
tain relatively coarse approximations of the target func-
tion. Nevertheless, ensemble methods may still be vul-
nerable to other attacks such as model evasion [55].

8 Related Work

Our work is related to the extensive literature on learning
theory, such as PAC learning [53] and its variants [3, 8].
Indeed, extraction can be viewed as a type of learning, in
which an unknown instance of a known hypothesis class
(model type) is providing labels (without error). This is
often called learning with membership queries [3]. Our
setting differs from these in two ways. The first is con-
ceptual: in PAC learning one builds algorithms to learn a
concept — the terminology belies the motivation of for-
malizing learning from data. In model extraction, an at-
tacker is literally given a function oracle that it seeks to
illicitly determine. The second difference is more prag-
matic: prediction APIs reveal richer information than as-
sumed in prior learning theory work, and we exploit that.

Algorithms for learning with membership queries
have been proposed for Boolean functions [7, 15, 30, 33]
and various binary classifiers [36, 39, 50]. The latter line
of work, initiated by Lowd and Meek [36], studies strate-
gies for model evasion, in the context of spam or fraud
detectors [9, 29, 36, 37, 55]. Intuitively, model extraction
seems harder than evasion, and this is corroborated by
results from theory [36, 39, 50] and practice [36, 55].

Evasion attacks fall into the larger field of adversarial
machine learning, that studies machine learning in gen-
eral adversarial settings [6,29]. In that context, a number
of authors have considered strategies and defenses for
poisoning attacks, that consist in injecting maliciously
crafted samples into a model’s train or test data, so as to
decrease the learned model’s accuracy [10,21,32,40,45].

In a non-malicious setting, improper model extraction
techniques have been applied for interpreting [2, 19, 52]
and compressing [16, 27] complex neural networks.

9 Conclusion

We demonstrated how the flexible prediction APIs ex-
posed by current ML-as-a-service providers enable new
model extraction attacks that could subvert model mon-
etization, violate training-data privacy, and facilitate
model evasion. Through local experiments and online
attacks on two major providers, BigML and Amazon,
we illustrated the efficiency and broad applicability of
attacks that exploit common API features, such as the

availability of confidence scores or the ability to query
arbitrary partial inputs. We presented a generic equation-
solving attack for models with a logistic output layer and
a novel path-finding algorithm for decision trees.

We further explored potential countermeasures to
these attacks, the most obvious being a restriction on the
information provided by ML APIs. Building upon prior
work from learning-theory, we showed how an attacker
that only obtains class labels for adaptively chosen in-
puts, may launch less effective, yet potentially harmful,
retraining attacks. Evaluating these attacks, as well as
more refined countermeasures, on production-grade ML
services is an interesting avenue for future work.

Acknowledgments. We thank Martı́n Abadi and the
anonymous reviewers for their comments. This work
was supported by NSF grants 1330599, 1330308, and
1546033, as well as a generous gift from Microsoft.

References

[1] AMAZON WEB SERVICES. https://aws.amazon.com/
machine-learning. Accessed Feb. 10, 2016.

[2] ANDREWS, R., DIEDERICH, J., AND TICKLE, A. Survey and
critique of techniques for extracting rules from trained artificial
neural networks. KBS 8, 6 (1995), 373–389.

[3] ANGLUIN, D. Queries and concept learning. Machine learning
2, 4 (1988), 319–342.

[4] ATENIESE, G., MANCINI, L. V., SPOGNARDI, A., VILLANI,
A., VITALI, D., AND FELICI, G. Hacking smart machines
with smarter ones: How to extract meaningful data from machine
learning classifiers. IJSN 10, 3 (2015), 137–150.

[5] AT&T LABORATORIES CAMBRIDGE. The ORL database
of faces. http://www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html.

[6] BARRENO, M., NELSON, B., SEARS, R., JOSEPH, A. D., AND
TYGAR, J. D. Can machine learning be secure? In ASIACCS
(2006), ACM, pp. 16–25.

[7] BELLARE, M. A technique for upper bounding the spectral norm
with applications to learning. In COLT (1992), ACM, pp. 62–70.

[8] BENEDEK, G. M., AND ITAI, A. Learnability with respect to
fixed distributions. TCS 86, 2 (1991), 377–389.

[9] BIGGIO, B., CORONA, I., MAIORCA, D., NELSON, B.,
ŠRNDIĆ, N., LASKOV, P., GIACINTO, G., AND ROLI, F. Eva-
sion attacks against machine learning at test time. In ECML
PKDD. Springer, 2013, pp. 387–402.

[10] BIGGIO, B., NELSON, B., AND LASKOV, P. Poisoning attacks
against support vector machines. In ICML (2012).

[11] BIGML. https://www.bigml.com. Accessed Feb. 10, 2016.

[12] BLUM, A. L., AND LANGLEY, P. Selection of relevant features
and examples in machine learning. Artificial intelligence 97, 1
(1997), 245–271.

[13] BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., AND WAR-
MUTH, M. K. Occam’s razor. Readings in machine learning
(1990), 201–204.

[14] BOSER, B. E., GUYON, I. M., AND VAPNIK, V. N. A training
algorithm for optimal margin classifiers. In COLT (1992), ACM,
pp. 144–152.

616 25th USENIX Security Symposium USENIX Association

[15] BSHOUTY, N. H. Exact learning boolean functions via the mono-
tone theory. Inform. Comp. 123, 1 (1995), 146–153.

[16] BUCILUǍ, C., CARUANA, R., AND NICULESCU-MIZIL, A.
Model compression. In KDD (2006), ACM, pp. 535–541.

[17] CHAUDHURI, K., AND MONTELEONI, C. Privacy-preserving
logistic regression. In NIPS (2009), pp. 289–296.

[18] COHN, D., ATLAS, L., AND LADNER, R. Improving gener-
alization with active learning. Machine learning 15, 2 (1994),
201–221.

[19] CRAVEN, M. W., AND SHAVLIK, J. W. Extracting tree-
structured representations of trained networks. In NIPS (1996).

[20] CYBENKO, G. Approximation by superpositions of a sigmoidal
function. MCSS 2, 4 (1989), 303–314.

[21] DALVI, N., DOMINGOS, P., SANGHAI, S., VERMA, D., ET AL.
Adversarial classification. In KDD (2004), ACM, pp. 99–108.

[22] DWORK, C. Differential privacy. In ICALP (2006), Springer.

[23] FREDRIKSON, M., JHA, S., AND RISTENPART, T. Model inver-
sion attacks that exploit confidence information and basic coun-
termeasures. In CCS (2015), ACM, pp. 1322–1333.

[24] FREDRIKSON, M., LANTZ, E., JHA, S., LIN, S., PAGE, D.,
AND RISTENPART, T. Privacy in pharmacogenetics: An end-
to-end case study of personalized Warfarin dosing. In USENIX
Security (2014), pp. 17–32.

[25] GOOGLE PREDICTION API. https://cloud.google.com/
prediction. Accessed Feb. 10, 2016.

[26] HICKEY, W. How Americans Like their Steak.
http://fivethirtyeight.com/datalab/how-americans-
like-their-steak, 2014. Accessed Feb. 10, 2016.

[27] HINTON, G., VINYALS, O., AND DEAN, J. Distilling the knowl-
edge in a neural network. arXiv:1503.02531 (2015).

[28] HORNIK, K., STINCHCOMBE, M., AND WHITE, H. Multilayer
feedforward networks are universal approximators. Neural net-
works 2, 5 (1989), 359–366.

[29] HUANG, L., JOSEPH, A. D., NELSON, B., RUBINSTEIN, B. I.,
AND TYGAR, J. Adversarial machine learning. In AISec (2011),
ACM, pp. 43–58.

[30] JACKSON, J. An efficient membership-query algorithm for learn-
ing DNF with respect to the uniform distribution. In FOCS
(1994), IEEE, pp. 42–53.

[31] JAGANNATHAN, G., PILLAIPAKKAMNATT, K., AND WRIGHT,
R. N. A practical differentially private random decision tree clas-
sifier. In ICDMW (2009), IEEE, pp. 114–121.

[32] KLOFT, M., AND LASKOV, P. Online anomaly detection under
adversarial impact. In AISTATS (2010), pp. 405–412.

[33] KUSHILEVITZ, E., AND MANSOUR, Y. Learning decision trees
using the Fourier spectrum. SICOMP 22, 6 (1993), 1331–1348.

[34] LI, N., QARDAJI, W., SU, D., WU, Y., AND YANG, W. Mem-
bership privacy: A unifying framework for privacy definitions. In
CCS (2013), ACM.

[35] LICHMAN, M. UCI machine learning repository, 2013.

[36] LOWD, D., AND MEEK, C. Adversarial learning. In KDD
(2005), ACM, pp. 641–647.

[37] LOWD, D., AND MEEK, C. Good word attacks on statistical
spam filters. In CEAS (2005).

[38] MICROSOFT AZURE. https://azure.microsoft.com/
services/machine-learning. Accessed Feb. 10, 2016.

[39] NELSON, B., RUBINSTEIN, B. I., HUANG, L., JOSEPH, A. D.,
LEE, S. J., RAO, S., AND TYGAR, J. Query strategies for evad-
ing convex-inducing classifiers. JMLR 13, 1 (2012), 1293–1332.

[40] NEWSOME, J., KARP, B., AND SONG, D. Paragraph: Thwart-
ing signature learning by training maliciously. In RAID (2006),
Springer, pp. 81–105.

[41] NOCEDAL, J., AND WRIGHT, S. Numerical optimization.
Springer Science & Business Media, 2006.

[42] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL,
V., THIRION, B., GRISEL, O., BLONDEL, M., PRETTEN-
HOFER, P., WEISS, R., DUBOURG, V., VANDERPLAS, J., PAS-
SOS, A., COURNAPEAU, D., BRUCHER, M., PERROT, M.,
AND DUCHESNAY, E. Scikit-learn: Machine learning in Python.
JMLR 12 (2011), 2825–2830.

[43] PREDICTIONIO. http://prediction.io. Accessed Feb. 10,
2016.

[44] RUBINSTEIN, B. I., BARTLETT, P. L., HUANG, L., AND TAFT,
N. Learning in a large function space: Privacy-preserving mech-
anisms for SVM learning. JPC 4, 1 (2012), 4.

[45] RUBINSTEIN, B. I., NELSON, B., HUANG, L., JOSEPH, A. D.,
LAU, S.-H., RAO, S., TAFT, N., AND TYGAR, J. Antidote:
understanding and defending against poisoning of anomaly de-
tectors. In IMC (2009), ACM, pp. 1–14.

[46] SAAR-TSECHANSKY, M., AND PROVOST, F. Handling missing
values when applying classification models. JMLR (2007).

[47] SETTLES, B. Active learning literature survey. University of
Wisconsin, Madison 52, 55-66 (1995), 11.

[48] SHOKRI, R., AND SHMATIKOV, V. Privacy-preserving deep
learning. In CCS (2015), ACM, pp. 1310–1321.

[49] SMITH, T. W., MARSDEN, P., HOUT, M., AND KIM, J. General
social surveys, 1972-2012, 2013.

[50] STEVENS, D., AND LOWD, D. On the hardness of evading com-
binations of linear classifiers. In AISec (2013), ACM, pp. 77–86.

[51] THEANO DEVELOPMENT TEAM. Theano: A Python
framework for fast computation of mathematical expressions.
arXiv:1605.02688 (2016).

[52] TOWELL, G. G., AND SHAVLIK, J. W. Extracting refined rules
from knowledge-based neural networks. Machine learning 13, 1
(1993), 71–101.

[53] VALIANT, L. G. A theory of the learnable. Communications of
the ACM 27, 11 (1984), 1134–1142.

[54] VINTERBO, S. Differentially private projected histograms: Con-
struction and use for prediction. In ECML-PKDD (2012).

[55] ŠRNDIĆ, N., AND LASKOV, P. Practical evasion of a learning-
based classifier: A case study. In Security and Privacy (SP)
(2014), IEEE, pp. 197–211.

[56] ZHANG, J., ZHANG, Z., XIAO, X., YANG, Y., AND WINSLETT,
M. Functional mechanism: regression analysis under differential
privacy. In VLDB (2012).

[57] ZHU, J., AND HASTIE, T. Kernel logistic regression and the
import vector machine. In NIPS (2001), pp. 1081–1088.

A Some Details on Models

SVMs. Support vector machines (SVMs) perform bi-
nary classification (c = 2) by defining a maximally sep-
arating hyperplane in d-dimensional feature space. A
linear SVM is a function f (x) = sign(w · x+ β) where
‘sign’ outputs 0 for all negative inputs and 1 otherwise.
Linear SVMs are not suitable for non-linearly separable
data. Here one uses instead kernel techniques [14].

USENIX Association 25th USENIX Security Symposium 617

A kernel is a function K : X ×X →R. Typical kernels
include the quadratic kernel Kquad(x,x′) = (xT · x′+ 1)2

and the Gaussian radial basis function (RBF) kernel
Krbf(x,x′) = e−γ||x−x′||2 , parameterized by a value γ ∈R.
A kernel’s projection function is a map φ defined by
K(x,x′) = φ(x) · φ(x′). We do not use φ explicitly, in-
deed for RBF kernels this produces an infinite-dimension
vector. Instead, classification is defined using a “ker-
nel trick”: f (x) = sign([∑t

i=1 αiK(x,xi)]+β) where β is
again a learned threshold, α1, . . . ,αt are learned weights,
and x1, . . . ,xt are feature vectors of inputs from a training
set. The xi for which αi �= 0 are called support vectors.
Note that for non-zero αi, it is the case that αi < 0 if the
training-set label of xi was zero and αi > 0 otherwise.

Logistic regression. SVMs do not directly generalize to
multiclass settings c > 2, nor do they output class prob-
abilities. Logistic regression (LR) is a popular classi-
fier that does. A binary LR model is defined as f1(x) =
σ(w ·x+β) = 1/(1+ e−(w·x+β)) and f0(x) = 1− f1(x).
A class label is chosen as 1 iff f1(x)> 0.5.

When c > 2, one fixes c weight vectors w0, . . . ,wc−1
each in Rd , thresholds β0, . . . ,βc−1 in R and defines
fi(x) = ewi·x+βi/(∑c−1

j=0 ew j ·x+β j) for i ∈ Zc. The class la-
bel is taken to be argmaxi fi(x). Multiclass regression is
referred to as multinomial or softmax regression. An al-
ternative approach to softmax regression is to build a bi-
nary model σ(wi ·x+βi) per class in a one-vs-rest fash-
ion and then set fi(x) = σ(wi ·x+βi)/∑ j σ(w j ·x+β j).

These are log-linear models, and may not be suit-
able for data that is not linearly separable in X . Again,
one may use kernel techniques to deal with more com-
plex data relationships (c.f., [57]). Then, one replaces
wi · x+ βi with ∑t

r=1 αi,rK(x,xr) + βi. As written, this
uses the entire set of training data points x1, . . . ,xt as so-
called representors (here analogous to support vectors).
Unlike with SVMs, where most training data set points
will never end up as support vectors, here all training set
points are potentially representors. In practice one uses a
size s < t random subset of training data [57].

Deep neural networks. A popular way of extending
softmax regression to handle data that is non linearly sep-
arable in X is to first apply one or more non-linear trans-
formations to the input data. The goal of these hidden
layers is to map the input data into a (typically) lower-
dimensional space in which the classes are separable by
the softmax layer. We focus here on fully connected net-
works, also known as multilayer perceptrons, with a sin-
gle hidden layer. The hidden layer consists of a num-
ber h of hidden nodes, with associated weight vectors
w(1)

0 , . . . ,w(1)
h−1 in Rd and thresholds β (1)

0 , . . . ,β (1)
h−1 in R.

The i-th hidden unit applies a non linear transformation
hi(x) = g(w(1)

i ·x+β (1)
i), where g is an activation func-

tion such as tanh or σ . The vector h(x) ∈ Rh is then

input into a softmax output layer with weight vectors
w(2)

0 , . . . ,w(2)
c−1 in Rh and thresholds β (2)

0 , . . . ,β (2)
c−1 in R.

Decision trees. A decision tree T is a labeled tree. Each
internal node v is labeled by a feature index i∈ {1, . . . ,d}
and a splitting function ρ : Xi → Zkv , where kv ≥ 2 de-
notes the number of outgoing edges of v.

On an input x=(x1,x2, . . . ,xd), a tree T defines a com-
putation as follows, starting at the root. When we reach
a node v, labeled by {i,ρ}, we proceed to the child of
v indexed by ρ(xi). We consider three types of splitting
functions ρ that are typically used in practice ([11]):

(1) The feature xi is categorical with Xi = Zk. Let
{S,T} be some partition of Zk. Then kv = 2 and
ρ(xi) = 0 if xi ∈ S and ρ(xi) = 1 if xi ∈ T . This is a
binary split on a categorical feature.

(2) The feature xi is categorical with Xi = Zk. We have
kv = k and ρ(xi) = xi. This corresponds to a k-ary
split on a categorical feature of arity k.

(3) The feature xi is continuous with Xi = [a,b]. Let
a < t < b be a threshold. Then kv = 2 and ρ(xi) = 0
if xi ≤ t and ρ(xi) = 1 if xi > t. This is a binary split
on a continuous feature with threshold t.

When we reach a leaf, we terminate and output that leaf’s
value. This value can be a class label, or a class label and
confidence score. This defines a function f : X →Y .

B Details on Data Sets

Here we give some more information about the data sets
we used in this work. Refer back to Table 3 and Table 5.

Synthetic data sets. We used 4 synthetic data sets from
scikit [42]. The first two data sets are classic examples
of non-linearly separable data, consisting of two concen-
tric Circles, or two interleaving Moons. The next two
synthetic data sets, Blobs and 5-Class, consist of Gaus-
sian clusters of points assigned to either 3 or 5 classes.

Public data sets. We gathered a varied set of data sets
representative of the type of data we would expect ML
service users to use to train logistic and SVM based mod-
els. These include famous data sets used for supervised
learning, obtained from the UCI ML repository (Adult,
Iris, Breast Cancer, Mushrooms, Diabetes). We also
consider the Steak and GSS data sets used in prior work
on model inversion [23]. Finally, we add a data set of dig-
its available in scikit, to visually illustrate training data
leakage in kernelized logistic models (c.f. Section 4.1.3).

Public data sets and models from BigML. For experi-
ments on decision trees, we chose a varied set of models
publicly available on BigML’s platform. These models
were trained by real MLaaS users and they cover a wide
range of application scenarios, thus providing a realistic
benchmark for the evaluation of our extraction attacks.

618 25th USENIX Security Symposium USENIX Association

The IRS model predicts a US state, based on admin-
istrative tax records. The Steak and GSS models re-
spectively predict a person’s preferred steak preparation
and happiness level, from survey and demographic data.
These two models were also considered in [23]. The
Email Importance model predicts whether Gmail clas-
sifies an email as ‘important’ or not, given message
metadata. The Email Spam model classifies emails as
spam, given the presence of certain words in its content.
The German Credit data set was taken from the UCI li-
brary [35] and classifies a user’s loan risk. Finally, two
regression models respectively predict Medical Charges
in the US based on state demographics, and the Bitcoin
Market Price from daily opening and closing values.

C Analysis of the Path-Finding Algorithm

In this section, we analyze the correctness and com-
plexity of the decision tree extraction algorithm in
Algorithm 1. We assume that all leaves are assigned a
unique id by the oracle O, and that no continuous fea-
ture is split into intervals of width smaller than ε . We
may use id to refer directly to the leaf with identity id.

Correctness. Termination of the algorithm follows im-
mediately from the fact that new queries are only added
to Q when a new leaf is visited. As the number of leaves
in the tree is bounded, the algorithm must terminate.

We prove by contradiction that all leaves are eventu-
ally visited. Let the depth of a node v, denote the length
of the path from v to the root (the root has depth 0). For
two leaves id,id′, let A be their deepest common ances-
tor (A is the deepest node appearing on both the paths of
id and id′). We denote the depth of A as ∆(id,id′).

Suppose Algorithm 1 terminates without visiting all
leaves, and let (id,id′) be a pair of leaves with maxi-
mal ∆(id,id′), such that id was visited but id′ was not.
Let xi be the feature that their deepest common ances-
tor A splits on. When id is visited, the algorithm calls
LINE SEARCH or CATEGORY SPLIT on feature xi. As all
leaf ids are unique and there are no intervals smaller than
ε , we will discover a leaf in each sub-tree rooted at A, in-
cluding the one that contains id′. Thus, we visit a leaf
id′′ for which ∆(id′′,id′)> ∆(id,id′), a contradiction.

Complexity. Let m denote the number of leaves in the
tree. Each leaf is visited exactly once, and for each leaf
we check all d features. Suppose continuous features
have range [0,b], and categorical features have arity k.
For continuous features, finding one threshold takes at
most log2(

b
ε) queries. As the total number of splits on

one feature is at most m (i.e., all nodes split on the same
feature), finding all thresholds uses at most m · log2(

b
ε)

queries. Testing a categorical feature uses k queries.
The total query complexity is O(m · (dcat · k+ dcont ·m ·

log(b
ε)), where dcat and dcont represent respectively the

number of categorical and continuous features.
For the special case of boolean trees, the complexity is

O(m ·d). In comparison, the algorithm of [33], that uses
membership queries only, has a complexity polynomial
in d and 2δ , where δ is the tree depth. For degenerate
trees, 2δ can be exponential in m, implying that the as-
sumption of unique leaf identities (obtained from confi-
dence scores for instance) provides an exponential speed-
up over the best-known approach with class labels only.
The algorithm from [33] can be extended to regression
trees, with a complexity polynomial in the size of the out-
put range Y . Again, under the assumption of unique leaf
identities (which could be obtained solely from the out-
put values) we obtain a much more efficient algorithm,
with a complexity independent of the output range.
The Top-Down Approach. The correctness and com-
plexity of the top-down algorithm from Section 4.2
(which uses incomplete queries), follow from a similar
analysis. The main difference is that we assume that all
nodes have a unique id, rather than only the leaves.

D A Note on Improper Extraction

To extract a model f , without knowledge of the model
class, a simple strategy is to extract a multilayer percep-
tron f̂ with a large enough hidden layer. Indeed, feed-
forward networks with a single hidden layer can, in prin-
ciple, closely approximate any continuous function over
a bounded subset of Rd [20, 28].

However, this strategy intuitively does not appear to be
optimal. Even if we know that we can find a multilayer
perceptron f̂ that closely matches f , f̂ might have a far
more complex representation (more parameters) than f .
Thus, tailoring the extraction to the ‘simpler’ model class
of the target f appears more efficient. In learning theory,
the problem of finding a succinct representation of some
target model f is known as Occam Learning [13].

Our experiments indicate that such generic improper
extraction indeed appears sub-optimal, in the context of
equation-solving attacks. We train a softmax regression
over the Adult data set with target “Race”. The model
f is defined by 530 real-valued parameters. As shown in
Section 4.1.2, using only 530 queries, we extract a model
f̂ from the same model class, that closely matches f (f̂
and f predict the same labels on 100% of tested inputs,
and produce class probabilities that differ by less than
10−7 in TV distance). We also extracted the same model,
assuming a multilayer perceptron target class. Even with
1,000 hidden nodes (this model has 111,005 parameters),
and 10× more queries (5,300), the extracted model f̂ is
a weaker approximation of f (99.5% accuracy for class
labels and TV distance of 10−2 for class probabilities).

USENIX Association 25th USENIX Security Symposium 619

Oblivious Multi-Party Machine Learning on Trusted Processors

Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta∗, Sebastian Nowozin
Kapil Vaswani, Manuel Costa

Microsoft Research

Abstract

Privacy-preserving multi-party machine learning allows
multiple organizations to perform collaborative data an-
alytics while guaranteeing the privacy of their individ-
ual datasets. Using trusted SGX-processors for this task
yields high performance, but requires a careful selection,
adaptation, and implementation of machine-learning al-
gorithms to provably prevent the exploitation of any side
channels induced by data-dependent access patterns.

We propose data-oblivious machine learning algo-
rithms for support vector machines, matrix factorization,
neural networks, decision trees, and k-means cluster-
ing. We show that our efficient implementation based
on Intel Skylake processors scales up to large, realis-
tic datasets, with overheads several orders of magnitude
lower than with previous approaches based on advanced
cryptographic multi-party computation schemes.

1 Introduction
In many application domains, multiple parties would
benefit from pooling their private datasets, training pre-
cise machine-learning models on the aggregate data, and
sharing the benefits of using these models. For exam-
ple, multiple hospitals might share patient data to train
a model that helps in diagnosing a disease; having more
data allows the machine learning algorithm to produce a
better model, benefiting all the parties. As another ex-
ample, multiple companies often collect complementary
data about customers; sharing such data would allow ma-
chine learning algorithms to make joint predictions about
customers based on a set of features that would not other-
wise be available to any of the companies. This scenario
also applies to individuals. For example, some systems
learn an individual’s preferences to make accurate rec-
ommendations [9]; while users would like to keep their
data private, they want to reap the rewards of correlating
their preferences with those of other users.

Secure multi-party computation [17, 24, 44] and fully
homomorphic encryption [23] are powerful crypto-
graphic tools that can be used for privacy preserving ma-
chine learning. However, recent work [38, 47, 48, 54] re-
ports large runtime overheads, which limits their prac-

∗Work done while at Microsoft Research; affiliated with Max
Planck Institute for Software Systems (MPI-SWS), Germany.

tical adoption for compute-intensive analyses of large
datasets. We propose an alternative privacy-preserving
multi-party machine learning system based on trusted
SGX processors [45]. In our system, multiple parties
agree on a joint machine learning task to be executed on
their aggregate data, and on an SGX-enabled data cen-
ter to run the task. Although they do not trust one an-
other, they can each review the corresponding machine-
learning code, deploy the code into a processor-protected
memory region (called an enclave), upload their en-
crypted data just for this task, perform remote attestation,
securely upload their encryption keys into the enclave,
run the machine learning code, and finally download the
encrypted machine learning model. The model may also
be kept within the enclave for secure evaluation by all
the parties, subject to their agreed access control poli-
cies. Figure 1 provides an overview of our system.

While we rely on the processor to guarantee that only
the machine learning code inside the enclave has di-
rect access to the data, achieving privacy still requires
a careful selection, adaptation, and implementation of
machine-learning algorithms, in order to prevent the ex-
ploitation of any side channels induced by disk, net-
work, and memory access patterns, which may other-
wise leak a surprisingly large amount of data [39,49,70].
The robust property we want from these algorithms is
data-obliviousness: the sequence of memory references,
disk accesses, and network accesses that they perform
should not depend on secret data. We propose data-
oblivious machine learning algorithms for support vec-
tor machines (SVM), matrix factorization, neural net-
works, decision trees, and k-means clustering. Our data-
oblivious algorithms are based on careful elimination of
data-dependent accesses (SVM, neural networks and k-
means), novel algorithmic techniques (matrix factoriza-
tion) and deployment of platform specific hardware fea-
tures (decision trees). We provide strong, provable confi-
dentiality guarantees, similar to those achieved by purely
cryptographic solutions: we ensure that an attacker that
observes the sequence of I/O operations, including their
addresses and their encrypted contents, cannot distin-
guish between two datasets of the same size that yield
results of the same size.

We implemented and ran our algorithms on off-the-
shelf Intel Skylake processors, using several large ma-

1

620 25th USENIX Security Symposium USENIX Association

Figure 1: Sample privacy-preserving multi-party machine
learning system. Multiple hospitals encrypt patient datasets,
each with a different key. The hospitals deploy an agreed-upon
machine learning algorithm in an enclave in a cloud data center
and share their data keys with the enclave. The enclave pro-
cesses the aggregate datasets and outputs an encrypted machine
learning model.

chine learning datasets. Our results show that our ap-
proach scales to realistic datasets, with overheads that
are several orders of magnitude better than with previous
approaches based on advanced cryptographic multi-party
computation schemes. On the other hand, our approach
trusts the processor to protect the confidentiality of its in-
ternal state, whereas these cryptographic approaches do
not rely on this assumption.

2 Preliminaries
Intel SGX SGX [45] is a set of new x86 instructions
that applications can use to create protected memory re-
gions within their address space. These regions, called
enclaves, are isolated from any other code in the system,
including operating system and hypervisor. The proces-
sor monitors all memory accesses to the enclaves: only
code running in an enclave can access data in the en-
clave. When inside the physical processor package (in
the processor’s caches), the enclave memory is available
in plaintext, but it is encrypted and integrity protected
when written to system memory (RAM). External code
can only invoke code inside the enclave at statically-
defined entry points. SGX also supports attestation and
sealing [2]: code inside an enclave can get messages
signed using a per-processor private key along with a di-
gest of the enclave. This enables other entities to verify
that these messages originated from a genuine enclave
with a specific code and data configuration.

Using SGX instructions, applications can set up fine-
grained trusted execution environments even in (poten-
tially) hostile or compromised hosts, but application de-
velopers who write code that runs inside enclaves are
still responsible for maintaining confidentiality of secrets
managed by the enclave. In this paper, we focus on guar-
anteeing that the machine learning algorithms that we

load into enclaves do not leak information through mem-
ory, disk, or network access patterns.

Adversary Model We assume the machine learning
computation runs in an SGX-enabled cloud data center
that provides a convenient ‘neutral ground’ to run the
computation on datasets provided by multiple parties.
The parties do not trust one another, and they are also
suspicious about the cloud provider. From the point of
view of each party (or any subset of parties), the adver-
sary models all the other parties and the cloud provider.

The adversary may control all the hardware in the
cloud data center, except the processor chips used in
the computation. In particular, the adversary controls
the network cards, disks, and other chips in the moth-
erboards. She may record, replay, and modify network
packets or files. The adversary may also read or modify
data after it left the processor chip using physical prob-
ing, direct memory access (DMA), or similar techniques.

The adversary may also control all the software in the
data center, including the operating system and hypervi-
sor. For instance, the adversary may change the page ta-
bles so that any enclave memory access results in a page
fault. This active adversary is general enough to model
privileged malware running in the operating or hypervi-
sor layers, as well as malicious cloud administrators who
may try to access the data by logging into hosts and in-
specting disks and memory.

We assume that the adversary is unable to physically
open and manipulate the SGX processor chips that run
the machine learning computation. Denial of-service and
side-channel attacks based on power and timing analy-
sis are outside our scope. We consider the implementa-
tion of the machine learning algorithms to be benign: the
code will never intentionally try to leak secrets from en-
claves. We assume that all parties agree on the machine
learning code that gets access to their datasets, after in-
specting the code or using automated verification [60]
to ascertain its trustworthiness. We assume that all par-
ties get access to the output of the machine learning
algorithm, and focus on securing its implementation—
limiting the amount of information released by its correct
output [19] is outside the scope of this paper.

Security Guarantees We are interested in designing
algorithms with strong provable security guarantees. The
attacker described above should not gain any side infor-
mation about sensitive data inputs. More precisely, for
each machine learning algorithm, we specify public pa-
rameters that are allowed to be disclosed (such as the
input sizes and the number of iterations to perform) and
we treat all other inputs as private. We then say that an
algorithm is data-oblivious if an attacker that interacts
with it and observes its interaction with memory, disk
and network learns nothing except possibly those public

2

USENIX Association 25th USENIX Security Symposium 621

parameters. We define this interaction as a trace execu-
tion τ of I/O events, each recording an access type (read
or write), an address, and some contents, controlled by
the adversary for all read accesses. Crucially, this trace
leaks accurate information about access to code as well
as data; for example, a conditional jump within an en-
clave may reveal the condition value by leaking the next
code address [70].

We express our security properties using a simulation-
based technique: for each run of an algorithm given some
input that yields a trace τ , we show that there exists
a simulator program given only the public parameters
that simulates the interaction of the original algorithm
with the memory by producing a trace τ ′ indistinguish-
able from τ . Intuitively, if the algorithm leaked any in-
formation depending on private data, then the simulator
(that does not have the data) would not be able to adapt
its behavior accordingly. Beside the public parameters,
the simulator may be given the result of the algorithm
(e.g., the machine learning model) in scenarios where
the result is revealed to the parties running the algo-
rithm. We rely on indistinguishability (rather than simple
trace equivalence τ ′ = τ) to account for randomized algo-
rithms, and in particular for encryption. For instance, any
private contents in write events will be freshly encrypted
and thus (under some suitable semantic-encryption se-
curity assumption) will appear to be independently ran-
dom in both τ and τ ′, rather than equal. More precisely,
we define indistinguishability as usual in cryptography,
using a game between a system that runs the algorithm
(or the simulator) and a computationally bounded adver-
sary that selects the inputs, interacts with the system, ob-
serves the trace, and attempts to guess whether it inter-
acts with the algorithm or the simulator. The algorithm
is data-oblivious when such adversaries guess correctly
with probability at most 1

2 plus a negligible advantage.

3 Data-Oblivious Primitives
Our algorithms rely on a library of general-purpose
oblivious primitives. We describe them first and then
show how we use them in machine learning algorithms.

Oblivious assignments and comparisons These
primitives can be used to conditionally assign or com-
pare integer, floating point, or 256-bit vector variables.
They are implemented in x86-64 assembly, operating
solely on registers whose content is loaded from and
stored to memory using deterministic memory accesses.
The registers are private to the processor; their contents
are not accessible to code outside the enclave. As
such, evaluations that involve registers only are not
recorded in the trace τ , hence, any register-to-register
data manipulation is data-oblivious by default.

We choose omove() and ogreater() as two repre-
sentative oblivious primitives. In conjunction, they en-

int max(int x, int y) {
 bool getX = ogreater(x, y);
 return omove(getX, x, y);
}

int max(int x, int y) {
 if (x > y) return x;
 else return y;
}

Non-oblivious Oblivious

Figure 2: Left: C++ function determining the maximum of two
integers using a non-oblivious if-else statement; right: oblivi-
ous variant of the function using oblivious primitives.

able the straightforward, oblivious implementation of the
max() function, as shown in Figure 2. In the oblivious
version of max(), ogreater() evaluates the guard x >

y and omove() selects either x or y, depending on that
guard. In our library, similar to related work [53], both
primitives are implemented with conditional instructions
cmovz and setg. For example, in simplified form,
omove() and ogreater() for 64-bit integers comprise
the following instructions:

mov rcx, x
mov rdx, y
cmp rcx, rdx
setg al
retn

omove()ogreater()

mov rcx, cond
mov rdx, x
mov rax, y
test rcx, rcx
cmovz rax, rdx
retn

On top of such primitives for native C++ types, our
library implements more complex primitives for user-
defined types. For example, most of our oblivious al-
gorithms rely on omoveEx(), an extended version of the
basic omove(), which can be used to conditionally as-
sign any type of variable; depending on the size of the
given type, omoveEx() iteratively uses the 64-bit integer
or 256-bit vector version of omove().

Oblivious array accesses Scanning entire arrays is a
commonly used technique to make data-dependent mem-
ory accesses oblivious. In the simplest case, we use
omoveEx() iteratively to access each element when ac-
tually just a single element is to be loaded or stored.1

However, our adversary model implies that, for enclave
code, the attacker can only observe memory accesses at
cache-line granularity. Accordingly, the x least signif-
icant bits2 of memory addresses are not recorded in a
trace τ . It is hence sufficient to scan arrays at cache-
line granularity rather than element or byte granularity.
We implement accordingly optimized array access prim-
itives that leverage AVX2 vector instructions [31]. In
particular, the vpgatherdd instruction can load each of
the eight 32-bit (4-byte) components of a 256-bit vector

1Dummy writes without actual effect are made to all but one el-
ement in case of a store. Modern processors treat such writes in the
same way as real writes and mark corresponding cache lines as dirty.

2The value of x depends on the actual hardware implementation; for
Skylake processors, where cache lines are 64 bytes long, x = 6.

3

622 25th USENIX Security Symposium USENIX Association

256-bit vector register with 32-bit components

(c0 c1 c2 c3 c4 c5 c6 c7)

...

array in memorycache line

...

Figure 3: Optimized array scanning using the vpgatherdd in-
struction; here, the value of interest is read into C4. The other
components perform dummy reads.

register from a different memory offset. Hence, by load-
ing each component from a different cache line, 4 bytes
can be read obliviously from an aligned 512-byte array
with a single instruction as depicted in Figure 3 (i.e.,
a 4-byte read is hidden among 8 cache lines accessed
via vpgatherdd). On top of this, the oget() primitive
is created, which obliviously reads an element from an
unaligned array of arbitrary form and size. oget() it-
eratively applies the vpgatherdd instruction in the de-
scribed way while avoiding out-of-bounds reads. De-
pending on the dynamic layout of the caches, oget()
can significantly speed-up oblivious array lookups (see
Section 6.6). The construction of oget() is conserva-
tive in the sense that it assumes (i) that the processor
may load vector components in arbitrary, possibly par-
allel order3 and (ii) that this order is recorded precisely
in τ . For cases where (i) or (ii) do not apply, e.g., for
software-only attackers, a further optimized version of
oget() is described in Appendix B.

Oblivious sorting We implement oblivious sorting by
passing its elements through a network of carefully ar-
ranged compare-and-swap functions. Given an input
size n, the network layout is fixed and, hence, the mem-
ory accesses fed to the functions in each layer of the net-
work depend only on n and not the content of the ar-
ray (as opposed to, e.g., quicksort). Hence, its memory
trace can be easily simulated using public parameter n
and fixed element size. Though there exists an optimal
sorting network due to Ajtai et al. [1], it incurs high con-
stants. As a result, a Batcher’s sorting network [7] with
running time of O(n(logn)2) is preferred in practice. Our
library includes a generic implementation of Batcher’s
sort for shuffling the data as well as re-ordering input
instances to allow for efficient (algorithm-specific) ac-
cess later on. The sorting network takes as input an array
of user-defined type and an oblivious compare-and-swap
function for this type. The oblivious compare-and-swap
usually relies on the ogreater() and omoveEx() prim-
itives described above.

3The implementation of the vpgatherdd instruction is
microarchiteture-specific and undocumented.

4 Machine Learning Algorithms
We describe five machine learning algorithms: four train-
ing and one prediction method, and their data-oblivious
counter-parts. The algorithms vary in the complexity
of access patterns, from randomly sampling the training
data to input-dependent accesses to the corresponding
model. Hence, we propose algorithm-specific mitigation
techniques that build on the oblivious primitives from the
last section.

4.1 K-Means

The goal of k-means clustering is to partition input data
points into k clusters such that each point is assigned to
the cluster closest to it. Data points are vectors in the
Euclidean space d . To implement clustering, we chose
a popular and efficient Lloyd’s algorithm [40, 41, 43].

During its execution, k-means maintains a list of k
points that represent the current cluster centroids: for
i = 1..k, the ith point is the mean of all points currently
assigned to the ith cluster. Starting from random cen-
troids, the algorithm iteratively reassigns points between
clusters: (1) for each point, it compares its distances to
the current k centroids, and assigns it to the closest clus-
ter; (2) once all points have been processed, it recom-
putes the centroids based on the new assignment. The
algorithm ends after a fixed number of iterations, or once
the clustering is stable, that is, in case points no longer
change their cluster assignments. Depending on the ap-
plication, k-means returns either the centroids or the as-
signment of data points to clusters.

Although the algorithm data flow is largely indepen-
dent of the actual points and clusters, its naive implemen-
tation may still leak much information in the conditional
update in (1)—enabling for instance an attacker to in-
fer some point coordinates from the final assignment, or
vice-versa—and in the recomputation (2)—leaking, for
instance, intermediate cluster sizes and assignments.

In the following, we treat the number of points (n),
clusters (k), dimension (d) and iterations (T) as pub-
lic. We consider efficient, streaming implementations
with, for each iteration, an outer loop traversing all points
once, and successive inner loops on all centroids for the
steps (1) and (2) above. For each centroid, in addition
to the d coordinates, we locally maintain its current clus-
ter size (in 0..n). To perform both (1) and (2) in a single
pass, we maintain both the current and the next centroids,
and we delay the division of coordinates by the cluster
size in the latter. Thus, for a given point, inner loop (1)
for i = 1..k maintains the (square of the) current minimal
distance δmin and its centroid index imin. And inner loop
(2) performs k conditional updates on the next centroids,
depending on i = imin. Finally, a single pass over cen-
troids recomputes their coordinates. An important detail
is to uniformly handle the special case of empty clus-

4

USENIX Association 25th USENIX Security Symposium 623

ters; another to select the initial centroids, for instance
by sampling random points from the shuffled dataset.

In our adapted algorithm, the “privacy overhead” pri-
marily consists of oblivious assignments to loop vari-
ables in (1), held in registers, and to the next centroids,
held in the cache. In particular, instead of updating
statistics for only the centroid that the point belongs
to, we make dummy updates to each centroid (using
our omoveEx() primitive). In the computation of new
centroids, we use a combination of ogreater() and
omoveEx() to handle the case of empty clusters. These
changes do not affect the algorithm’s time complexity: in
the RAM model the operations above can still be done in
O(T (nkd + kd)) = O(T nkd) operations.

Theorem 1. The adapted k-means algorithm runs in
time O(T nkd) and is data-oblivious, as there exists a
simulator for k-means that depends only on T , n, d,
and k.

Proof. The simulator can be trivially constructed as fol-
lows: given T , n, d and k, it chooses n random points
from d and simply runs the algorithm above for k cen-
troids and T iterations.

It is easy to see that the subroutine for finding the clos-
est centroid in the training algorithm can be also used to
predict the trained cluster that an input point belongs to.

4.2 Supervised Learning Methods

In supervised machine learning problems, we are given
a dataset D = {(xi,yi)}i=1..n of instances, where xi ∈ X
is an observation and yi ∈ Y is a desired prediction. The
goal then is to learn a predictive model f : X →Y such
that f (xi) ≈ yi and the model generalizes to unseen in-
stances x ∈ X . Many machine learning methods learn
such a model by minimizing an empirical risk objective
function together with a regularization term [65]:

min
w

Ω(w)+
1
n

n

∑
i=1

L(yi, fw(xi)). (1)

We will show secure implementations of support vector
machines (SVM) and neural networks, which are of the
form (1). Other popular methods such as linear regres-
sion and logistic regression are also instances of (1).

Most algorithms to minimize (1) operate iteratively on
small subsets of the data at a time. When sampling these
subsets, one common requirement for correctness is that
the algorithm should have access to a distribution of sam-
ples with an unbiased estimate of the expected value of
the original distribution. We make an important obser-
vation that an unbiased estimate of the expected value of
a population can be computed from a subset of indepen-
dent and identically distributed instances as well as from
a subset of pairwise-distinct instances.

Thus, we can achieve correctness and security by
adapting the learning algorithm as follows. Repeat-
edly, (1) securely shuffle all instances at random, us-
ing Batcher’s sort, for example, or an oblivious shuf-
fle [50]; (2) run the learning algorithm on the instances
sequentially, rather than randomly, either individually or
in small batches. Thus, the cost of shuffling is amortized
over all n instances. Next, we illustrate this scheme for
support vector machines and neural networks.

4.3 Support Vector Machines (SVM)

Support Vector Machines are a popular machine learning
model for classification problems. The original formula-
tion [12] applies to problems with two classes. Formally,
SVM specializes (1) by using the linear model fw(x) =
〈w,x〉, the regularization Ω(w) = λ

2 ‖w‖2 for λ > 0, and
the loss function L(yi, fw(xi)) = max{0,1− yi fw(xi)}.

The SVM method is important historically and in prac-
tice for at least four separate reasons: first, it is easy to
use and tune and it performs well in practice; second, it
is derived from the principle of structural risk minimiza-
tion [65] and comes with excellent theoretical guarantees
in the form of generalization bounds; third, it was the first
method to be turned into a non-linear classifier through
application of the kernel trick [12, 56], fourth, the SVM
has inspired a large number of generalizations, for ex-
ample to the multi-class case [67], regression [61], and
general pattern recognition problems [63].

Here we only consider the linear (primal) case with
two classes, but our methods would readily extend to
multiple classes or support vector regression problems.
There are many methods to solve the SVM objective
and for its simplicity we adapt the state-of-the-art Pega-
sos method [58]. The algorithm proceeds in iterations
t = 1..T and, at each iteration, works on small subsets
of l training instances at a time, A(t). It updates a se-
quence of weight vectors w(1),w(2), . . . ,w(T) converging
to the optimal minimizer of the objective function (1).

Let us now consider in detail our implementation
of the algorithm, and the changes that make it data-
oblivious. We present the pseudo-code in Algorithm 1
where our changes are highlighted in blue, and indented
to the right. As explained in Section 4.2, SVM sam-
ples input data during training. Instead, we obliviously
(or privately) shuffle the data and process it sequentially.
The original algorithm updates the model using instances
that are mispredicted by the current model, A(t)

+ in Line 5
of the pseudo-code. As this would reveal the state of
the current model to the attacker, we make sure that
the computation depends on every instance of A(t). In
particular, we generate a modified set of instances in
B(t) which has the original (x,y) instance if x is mispre-
dicted and (x,0) otherwise, assigning either 0 or y using
our ogreater() and omove() primitives (see Figure 2).

5

624 25th USENIX Security Symposium USENIX Association

Algorithm 1 SVM Original with changes (starting
with �) and additional steps required for the Oblivious
Version indicated in blue.

1: INPUT: I = {(xi,yi)}i=1,...,n, λ , T , l
2: INITIALIZE: Choose w(0) s.t. ‖w(0)‖ ≤ 1/

√
λ

3: Shuffle I
4: FOR t = 1,2, . . . ,T ×n/l
5: Choose A(t) ⊆ I s.t. |A(t)|= l

� Set A(t) to tth batch of l instances
6: Set A(t)

+ = {(x,y) ∈ A(t) : y〈wt ,x〉< 1}
� B(t) = {(x, [y〈wt ,x〉< 1]y) : ∀(x,y) ∈ A(t)}

7: Set η = 1/λ t
8: Set ν = ∑

(x,y)∈A(t)
+

yx � ν = ∑(x,z)∈B(t) zx

9: Set v = (1−ηλ)w(t) + η
l ν

10: Set c = 1 < 1√
λ
‖w‖

11: Set w(t+1) = min
{

1, 1√
λ
‖w‖

}
v

� Set w(t+1) =
(

c+(1− c)× 1√
λ‖w‖

)
v

12: OUTPUT w(t+1)

The second change is due to a Euclidean projection in
Line 11, where v is multiplied by the minimum of the
two values. In the oblivious version, we ensure that both
values participate in the update of the model, again us-
ing our oblivious primitives. The modifications above
are simple and, if the data is shuffled offline, asymptoti-
cally do not add overhead as the algorithm has to perform
prediction for every value in the sample. Otherwise, the
overhead of sorting is amortized as T is usually set to at
least one.

Theorem 2. The SVM algorithm described above runs
in time O(n(logn)2) and is data-oblivious, as there exists
a simulator for SVM that depends only on T , n, d, λ
and l, where d is the number of features in each input
instance.

The simulator can be constructed by composing a sim-
ulator for oblivious sorting and one that follows the steps
of Algorithm 1.

We note that the oblivious computation of a label in
the training algorithm (〈w,x〉 in Line 6 in Algorithm 1)
can be used also for the prediction phase of SVM.

4.4 Neural Networks

Feedforward neural networks are classic models for pat-
tern recognition that process an observation using a se-
quence of learned non-linear transformations [10]. Re-
cently, deep neural networks made significant progress
on difficult pattern recognition applications in speech, vi-
sion, and natural language understanding and the collec-
tive set of methods and models is known as deep learn-
ing [26].

Formally, a feedforward neural network is a sequence
of transformations f (x) = ft(. . . f2(f1(x))), where each
transformation fi is described by a fixed family of trans-
formations and a parameter wi to identify one particular
element in that family. Learning a neural network means
to find suitable parameters by minimization of the learn-
ing objective (1).

To minimize (1) efficiently in the context of neural
networks, we use stochastic gradient methods (SGD) on
small subsets of training data [26]. In particular, for
l � n, say l = 32, we compute a parameter gradient on
a subset S ⊂ {1,2, . . . ,n}, |S|= l of the data as

∇wΩ(w)+
1
l ∑

i∈S
∇wL(yi, f (xi)). (2)

The expression above is an unbiased estimate of the gra-
dient of (1) and we can use it to update the parameters
via gradient descent. By repeating this update for many
subsets S we can find parameters that approximately min-
imize the objective. Instead, as for SVM, we use disjoint
subsets that are contiguous within the set of all (oblivi-
ously or privately) shuffled instances and iterate T times.

Because most neural networks densely process each
input instance, memory access patterns during training
and testing do not depend on the particular data instance.
There are two exceptions. First, the initialization of a
vector with |Y | ground truth labels depends on the true
label yi of the instance (recall that Y is the set of pos-
sible prediction classes or labels). In particular, the yith
entry is set, for example, to 1 and all other entries to 0.
We initialize the label vector and hide the true label
of the instance by using our oblivious comparison and
move operations. The second exception is due to special
functions that occur in certain fi, for example in tanh-
activation layers. Since special functions are relatively
expensive, they are usually evaluated using piecewise ap-
proximations. Such conditional computation may leak
parameter values and, in our adapted algorithm, we in-
stead compute the approximation obliviously using a se-
quence of oblivious move operations. Neither of these
changes affects the complexity of the algorithm.

The prediction counterpart of NN, similar to the k-
means and SVM algorithms, is a subroutine of the train-
ing algorithm. Hence, our changes can be also used to
make an oblivious prediction given a trained network.

4.5 Decision Tree Evaluation

Decision trees are common machine learning models for
classification and regression tasks [15, 51, 52]. In these
models, a tree is traversed from root to leaf node by per-
forming a simple test on a given instance, at each interior
node of the tree. Once a leaf node is reached, a simple
model stored at this node, for example a constant value,
is used as prediction.

6

USENIX Association 25th USENIX Security Symposium 625

Decision trees remain popular because they are non-
parametric: the size of the decision tree can grow with
more training data, providing increasingly accurate mod-
els. Ensembles of decision trees, for example in the form
of random forests [14] offer improved predictive perfor-
mance by averaging the predictions of many individual
tree models [16]. Decision trees illustrate a class of data
structures whose usage is highly instance-specific: when
evaluating the model, the path traversed from root to leaf
node reveals a large amount of information on both the
instance and the tree itself. To enable the evaluation of
decision tress without leaking side information, we adapt
the evaluation algorithm of an existing library for random
forests to make it data oblivious. We keep modifications
of the existing implementation at a minimum, relying on
the primitives of Section 3 wherever possible. Our target
tree evaluation algorithm operates on one instance x∈ d

at a time. In particular, the trees are such that, at each in-
terior node, a simple decision stump is performed:

φ(x; j, t) =
{

left, if x(j)≤ t,
right, otherwise, (3)

where j ∈ {1, . . . ,d} and t ∈ are learned parameters
stored at the interior tree node.

In order to conceal the path taken through a tree, we
modify the algorithm such that each tree layer is stored as
an array of nodes. During evaluation of an instance x, the
tree is traversed by making exactly one oblivious lookup
in each of these arrays. At each node, the lookup x(j) and
corresponding floating point comparison are done using
our oblivious primitives. In case a leaf is found early,
that is before the last layer of the tree was reached, its
ID is stored obliviously and the algorithm proceeds with
dummy accesses for the remaining layers of the tree. The
predictions of all trees in a random forest are accumu-
lated obliviously in an array; the final output is the pre-
diction with the largest weight.

Together, the described modifications guarantee data-
obliviousness both for instances and for trees (of the
same size, up to padding). The algorithmic overhead is
linear in the number of nodes n in a tree, i.e., O(n) for a
fixed d; we omit the corresponding formal development.

4.6 Matrix Factorization

Matrix factorization methods [55] are a popular set of
techniques for constructing recommender systems [32].
Given users and items to be rated, we take as input the
observed ratings for a fraction of user-item pairs, either
as explicit scores (“five stars”) or implicit user feedback.
As a running example, we consider a system to recom-
mend movies to viewers based on their experience.

Matrix factorization embeds users and items into a la-
tent vector space, such that the inner product of a user
vector with an item vector produces an estimate of the

rating a user would assign to the item. We can then use
this expected rating to propose novel items to the user.
While the individual preference dimensions in the user
and item vectors are not assigned fixed meanings, empir-
ically they often correspond to interpretable properties
of the items. For example, a latent dimension may corre-
spond to the level of action the movie contains.

Matrix factorization methods are remarkably effec-
tive [9] because they learn to transfer preference infor-
mation across users and items by discovering dimensions
of preferences shared by all users and items.

Let n be the number of users and m the number of
items in the system. We may represent all (known and
unknown) ratings as a matrix R ∈ n×m. The input con-
sists of M ratings ri, j with i ∈ 1..n and j ∈ 1..m, given by
users to the items they have seen (using the movies anal-
ogy). The output consists of U ∈ n×d and V ∈ m×d

such that R≈U V�; these two matrices may then be used
to predict unknown ratings ri, j as inner products 〈ui,v j〉.
Following [48], we refer to ui and v j as user and item
profiles, respectively.

The computation of U and V is performed by mini-
mizing regularized least squares on the known ratings:

min
1
M ∑(ri, j −〈ui,v j〉)2 +λ ∑‖ui‖2

2 +µ ∑‖v j‖2
2 (4)

where λ and µ determine the extent of regularization.
The function above is not jointly convex in U and V , but
becomes strictly convex in U for a fixed V , and strictly
convex in V for a fixed U .

We implement matrix factorization using a gradient
descent, as in prior work on oblivious methods [47, 48].
More efficient methods are now available to solve (4),
such as the so-called damped Wiberg method, as shown
in an extensive empirical evaluation [30], but they all in-
volve more advanced linear algebra, so we leave their
privacy-preserving implementation for future work.

Gradient descent This method iteratively updates U
and V based on the current prediction error on the input
ratings. The error is computed as ei, j = ri, j − 〈ui,v j〉,
and ui and v j are updated in the opposite direction of the
gradient as follows:

u(t+1)
i ← u(t)i + γ

[
∑ j ei, jv

(t)
j −λut

i

]
(5)

v(t+1)
j ← v(t)j + γ

[
∑i ei, ju

(t)
i −µvt

j

]
(6)

The descent continues as long as the error (4) decreases,
or for a fixed number of iterations (T). Each iteration
can be efficiently computed by updating U and V sequen-
tially. To update each user profile ui, we may for instance
use an auxiliary linked list of user ratings and pointers to
the corresponding movie profiles in V .

7

626 25th USENIX Security Symposium USENIX Association

The gradient descent above runs in time Θ(T M) in the
RAM model, since all ratings are used at each iteration.
For a fixed number of iterations, the access pattern of the
algorithm does not depend on the actual values of the
input ratings. However, it still reveals much sensitive in-
formation about which user-item pairs appear in the input
ratings. For example, assuming they indicate which users
have seen which movies, it trivially reveals the popular-
ity of each movie, and the intersection of movie profiles
between users, during the gradient update (see [46] for
privacy implications of leaking movie ratings).

Our data-oblivious algorithm We design an algo-
rithm whose observable behaviour depends only on pub-
lic parameters n, m, M and T , and, hence, it can be sim-
ulated and does not reveal R. (We assume that d, λ , µ ,
and γ are public and do not depend on the input data.)

The high level idea is to use data structures that inter-
leave user and movie profiles. This interleaving allows
us to perform an update by sequentially reading and up-
dating these profiles in-place. Once all profiles have been
updated, some additional processing is required to inter-
leave them for the next iteration but, with some care, this
can also be implemented by sequential traversals of our
data structures. (An illustration of the algorithm can be
found in the Appendix.)

Our algorithm preserves the symmetry between users
and items. It maintains data structures U and V that cor-
respond to expanded versions of the matrices U and V .
Intuitively, every user profile in U is followed by the
movie profiles required to update it (that is, the profiles
for all movies rated by this user), and symmetrically ev-
ery movie profile in V is followed by its user profiles. We
use superscript notation U(t) and V(t) to distinguish these
data structures between iterations.

U stores n user tuples that embed the user profiles of
the original U , and M rating tuples that contain both
movie profiles and their ratings. All tuples have the same
size; they each include a user id, a movie id, a rating,
and a vector of d values. User tuples are of the form
(i,0,0,ui) with i ∈ 1..n; Rating tuples are of the form
(i, j,ri, j,v j). Hence, for each rating for j, we have a copy
of v j in a rating tuple. V symmetrically stores m item tu-
ples, of the form (0, j,0,v j), and M rating tuples, of the
form (i, j,ri, j,ui).

The precise ordering of tuples within U (and V) is ex-
plained shortly but, as long as the tuples of U are grouped
by user ids (i), and the user tuple precedes its rating tu-
ples, we can compute each u(t+1)

i according to Equa-
tion (5) by traversing U(t) once, in order. After an ini-
tial Setup, each iteration actually consists of three data-
oblivious phases:

• Update the user profiles ui within U(t) using Equa-
tion (5); let Ũ be the updated data structure;

• Extract U (t+1) from Ũ;
• Copy U (t+1) into the rating tuples of Ṽ to obtain

V(t+1) for the next iteration.

(We omit symmetric steps producing Ṽ, V (t+1), and
U(t+1).) The extraction step is necessary to compute the
prediction error and prepare U and V for the next itera-
tion. Without tweaking the tuple ordering, the only effi-
cient way of doing so would be to sort Ũ lexicographi-
cally (by j, then i) so that the updated user profiles appear
in the first n tuples (the approach taken in [48]). Obliv-
ious sorting at each iteration is expensive, however, and
would take O((M+n)(log(M+n))2) oblivious compare-
and-swap of pairs of d +3 elements.

Instead, we carefully place the user tuples in Ũ so that
they can be extracted in a single scan, outputting pro-
files at a fixed rate: one user profile every (M + n)/n
tuples, on average. Intuitively, this is achieved by inter-
leaving the tuples of users with many ratings with those
of users with few ratings—Section 4.7 explains how we
efficiently compute such a tuple ordering.

Setup phase: We first initialize the user and vector pro-
files, and fill U and V using the input ratings.

(1) We build a sequence LU (and symmetrically LV)
that, for every user, contains a pair of the user id i and
the count wi of the movies he has rated. To this end, we
extract the user ids from the input ratings (discarding the
other fields); we sort them; we rewrite them sequentially,
so that each entry is extended with a partial count and a
flag indicating whether the next user id changes; and we
sort them again, this time by flag then user id, to obtain
LU as the top n entries. (Directly outputting LU during the
sequential scan would reveal the counts.) For instance,
after the first sorting and rewriting, the entries may be of
the form (1,1,⊥),(1,2,⊥),(1,3,�),(2,1,⊥),

(2) We expand LU (and symmetrically LV) into a se-
quence IU of size M + n that includes, for every user i
with wi ratings, one tuple (i,0,⊥,k, �) for each k = 0..wi,
such that the values � are ordered by the interleaving ex-
plained in Section 4.7.

(3) We construct U with empty user and rating pro-
files, as follows. Our goal is to order the input ratings ac-
cording to LU. To this end, we extend each input rating
with a user-rating sequence number k = 1..wi, thereby
producing M tuples (i, j,ri, j,k,⊥), and we append those
to IU. We sort those tuples by i then k then ri, j, so that
(i,0,⊥,k, �) is directly followed by (i, j,ri, j,k,⊥) for k =
1..wi; we sequentially rewrite those tuples so that they
become (, , , ,) directly followed by (i, j,ri, j,k, �); we
sort again by �; and we discard the last M dummy tuples
(, , , ,).

(4) We generate initial values for the user and item
profiles by scanning U and filling in ui and v j using two
pseudo-random functions (PRFs): one for uis and one

8

USENIX Association 25th USENIX Security Symposium 627

for v js. For each, user tuple (i,0,0,ui), we use the first
PRF on inputs (i− 1)d + 1, .., id to generate d random
numbers that we normalize and write to ui. For each, rat-
ing tuple (i, j,ri, j,v j), we use the second PRF on inputs
(j−1)d+1, .., jd to generate d random numbers that we
also normalize and write to v j. We then use the same two
PRFs for V: the first one for rating tuples and the second
one for item tuples.

Update phase: We compute updated user profiles (and
symmetrically item profiles) in a single scan, reading
each tuple of U (and symmetrically V) and (always)
rewriting its vector—that is, its last d values, storing ui
for user tuples and v j for rating tuples.

We use 4 loop variables u, δ , u◦, and δ ◦ each holding
a d vector, to record partially-updated profiles for the
current user and for user i◦. We first explain how u and δ
are updated for the current user (i). During the scan, upon
reading a user tuple (i,0,0,ui), as is always the case for
the first tuple, we set u to ui and δ to ui(1 − λγ) and
we overwrite ui (to hide the fact that we scanned a user
tuple). Upon reading a rating tuple (i, j,ri, j,v j) for the
current user i, we update δ to γv j(ri, j −〈u,v j〉)+ δ and
overwrite v j with δ . Hence, the last rating tuple (before
the next user tuple) now stores the updated profile u(t+1)

i
for the current user i.

We now bring our attention to i◦, u◦, and δ ◦. Recall
that our interleaving of users in U splits the rating tuples
for some users. In such cases, if there are ratings left
to scan, the running value δ written to v j (before scan-
ning the next user) may not yet contain the updated user
profile. Accordingly, we use i◦, u◦, and δ ◦ to save the
state of the ‘split’ user while we process the next user,
and restore it later as we scan the next rating tuple of the
form (i◦, j,ri◦, j,v j). In the full version of the paper we
prove that a single state copy suffices during the expan-
sion of LU as we split at most one user at a time.

Extraction phase: The update leaves some of the val-
ues u(t+1)

i scattered within Ũ (and similarly for v(t+1)
j

within Ṽ). Similar to the update phase we can extract
all profiles by maintaining a state i◦ and u◦ for only one
user. We extract U while scanning Ũ. In particular, after
reading the last tuple of every chunk of size (M + n)/n
in Ũ we always append an entry to U . This entry is ei-
ther i◦ and u◦ or the content of the last tuple i and u.
Meanwhile, after reading every tuple of Ũ we write back
either the same entry or the profile that was written to U
last. This step ensures that user tuples contain the up-
dated u(t+1). We also update i◦ and u◦ on every tuple:
either performing a dummy update or changing the state
to the next (split) user.

This step relies on a preliminary re-ordering and inter-
leaving of users, such that the ith chunk of tuples always
contains (a copy of) a user profile, and all n user profiles

can be collected (details of the expansion properties that
are used here are described in the following section and
in the full version of the paper).
Copying phase: We finally propagate the updated user
profiles U (t+1) to the rating tuples in Ṽ, which still carry
(multiple copies of) the user profiles U (t). We update Ṽ
sequentially in chunks of size n, that is, we first update
the first n rows of V, then rows n+1 to 2n and so on until
all V is updated, each time copying from the same n user
profiles of U (t+1), as follows. (The exact chunk size is
irrelevant, but n is asymptotically optimal.)

Recall that each rating tuple of Ṽ is of the form
(i, j,ri, j,ut

i, �) where i �= 0 and � indicates the interleaved
position of the tuple in V. To each chunk of Ṽ, we ap-
pend the profiles of U (t+1) extended with dummy values,
of the form (i,0, ,u(t+1)

i ,); we sort those 2n tuples by i
then j, so that each tuple from U (t+1) immediately pre-
cedes tuples from (the chunk of) Ṽ whose user profile
must be updated by u(t+1)

i ; we perform all updates by
a linear rewriting; we sort again by �; and we keep the
first n tuples. Finally, V(t+1) is just the concatenation of
those updated chunks.

Theorem 3. Our matrix factorization algorithm runs
in time O

(
(M+ ñ)(log(M+ ñ))2 +T (M+ ñ)(log ñ)2

)
where ñ = max(n,m). It is data-oblivious, as there ex-
ists a simulator that depends only on T , M, n, m, and d
and produces the same trace.

Proof Outline. The Setup phase is the most expensive,
as it involves oblivious sorting on all the input ratings
at once, with a O((M + ñ)(log(M + ñ))2) run time. The
update phase runs in time O(M+n+m) since it requires
a single scan of U and V. The extraction phase similarly
runs in time O(M + n+m). The copying phase runs in
time O((M+m)(logn)2 +(M+n)(logm)2) due to (M+
m)/n sorts of U of size n and (M + n)/m sorts of V of
size m. Since all phases except Setup run T times, the
total run time is

O
(
(M+ ñ) log2(M+ ñ)+T (M+ ñ) log2 ñ

)
.

A simulator can be built from the public parameters
mentioned in the beginning of the algorithm. It executes
every step of the algorithm: it creates the interleaving
data structures that depend only on n, m, M and d and
updates them using the steps of the Setup once and runs
the Update, Extraction and Copy phases for T iterations.
As part of Setup, it invokes the simulator of the sequence
expansion algorithm described in the full version of the
paper.

4.7 Equally-Interleaved Expansion

We finally present our method for arranging tuples of U
and V in Matrix Factorization. We believe this method is

9

628 25th USENIX Security Symposium USENIX Association

applicable to other data processing scenarios. For exam-
ple, Arasu and Kaushik [4] use a similar, careful arrange-
ment of tuples to obliviously answer database queries.

Definition 1. A weighted list L is a sequence of pairs
(i,wi) with n elements i and integer weights wi ≥ 1.

An expansion I of L is a sequence of elements of length
∑n

1 wi such that every element i occurs exactly wi times.

Definition 2. Let α = ∑wi/n be the average weight of L
and the jth chunk of I be the sub-sequence of �α� ele-
ments I�(j−1)α+1�, . . . , I� jα�.

I equally interleaves L when all its elements can be
collected by selecting one element from each chunk.

For example, for L = (a,4),(b,1),(c,1), every chunk
has α = 2 elements. The expansion I = a,b,a,c,a,a
equally interleaves L, as its elements a, b, and c can be
chosen from its third, first, and second chunks, respec-
tively. The expansion I′ = a,a,a,a,b,c does not.

We propose an efficient method for generating equal
interleavings. Since it is used as an oblivious building
block, we ensure that it accesses L, I and intermediate
data structures in a manner that depends only on n and
M = ∑wi, not on the individual weights. (In matrix fac-
torization, M is the total number of input ratings.) We
adopt the terminology of Arasu and Kaushik [4], even if
our definitions and algorithm are different. (In compari-
son, our expansions do not involve padding, as we do not
require that copies of the same element are adjacent).

Given a weighted list L, we say that element i is heavy
when wi ≥α , and light otherwise. The main idea is to put
at most one light element in every chunk, filling the rest
with heavy elements. We proceed in two steps: (1) we re-
order L so that each heavy element is followed by light
elements that compensate for it; (2) we sequentially pro-
duce chunks containing copies of one or two elements.

Step 1: Assume L is sorted by decreasing weights
(wi ≥ wi+1 for i ∈ [1,n− 1]), and b is its last heavy el-
ement (wb ≥ α > wb+1). Let δi be the sum of differ-
ences defined as ∑ j∈[1,i](w j −α) for heavy elements and
∑ j∈[b+1,i](α −w j) for light elements. Let S be L (obliv-
iously) sorted by δ j, breaking ties in favor of higher el-
ement indices. This does not yet guarantee that light el-
ements appear after the heavy element they compensate
for. To this end, we scan S starting from its last element
(which is always the lightest), swapping any light ele-
ment followed by a heavy element (so that, eventually,
the first element is the heaviest).

Step 2: We produce I sequentially, using two loop
variables: k, the latest heavy element read so far; and w,
the remaining number of copies of k to place in I. We
repeatedly read an element from the re-ordered list and
produce a chunk of elements. For the first element k1,
we produce α copies of k1, and we set k = k1 and

w = wk1 −α . For each light element ki, we produce wki

copies of ki and α −wki copies of k, and we decrement w
by α −wki . For each heavy element ki, we produce w
copies of k and α −w copies of ki, and we set k = ki and
w = wki − (α −w).

Continuing with our example sequence L above, a is
heavy, b and c are light, and we have δa = 2, δb = 1, and
δc = 2. Sorting L by δ yields (b,1),(a,4),(c,1). Swap-
ping heavy and light elements yields (a,4),(b,1),(c,1)
and we produce the expansion I = a,a,b,a,c,a.

In the full version of the paper we prove that the al-
gorithm is oblivious, always succeeds and runs in time
O(n(logn)2 +∑w).

5 Protocols
For completeness, we give an overview of the protocols
we use for running multi-party machine learning algo-
rithms in a cloud equipped with SGX processors. Our
protocols are standard, and similar to those used in prior
work for outsourcing computations [29,57]. For simplic-
ity, we describe protocols involving a single enclave.

We assume that each party agrees on the machine-
learning code, its public parameters, and the identities
of all other parties (based, for example, on their public
keys for signature). One of the parties sends this col-
lection of code and static data to the cloud data center,
where an (untrusted) code-loader allocates resources and
creates an enclave with that code and data.

Each party independently establishes a secure channel
with the enclave, authenticating themselves (e.g., using
signatures) and using remote attestation [2] to check the
integrity of the code and static data loaded into the en-
clave. They may independently interact with the cloud
provider to confirm that this SGX processor is part of that
data center. Each party securely uploads its private data
to the enclave, using for instance AES-GCM for con-
fidentiality and integrity protection. Each party uses a
separate, locally-generated secret key to encrypt its own
input data set, and uses its secure channel to share that
key with the enclave. The agreed-upon machine learning
code may also be optionally encrypted but we expect that
in the common case this code will be public.

After communicating with all parties, and getting the
keys for all the data sets, the enclave code runs the target
algorithm on the whole data set, and outputs a machine
learning model encrypted and integrity protected with a
fresh symmetric key. We note that denial-of-service at-
tacks are outside the threat model for this paper—the par-
ties or the data centre may cause the computation to fail
before completion. Conversely, any attempt to tamper
with the enclave memory (including its code and data)
would be caught as it is read by the SGX processor, and
hence the job completion guarantees the integrity of the
whole run. Finally, the system needs to guarantee that all

10

USENIX Association 25th USENIX Security Symposium 629

parties get access to the output. To achieve this, the en-
clave sends the encrypted output to every party over their
secure authenticated channel, and waits for each of them
to acknowledge its receipt and integrity. It then publishes
the output key, sending it to all parties, as well as to any
reliable third-party (to ensure its fair availability).

6 Evaluation
This section describes our experiments to evaluate the
overhead of running our machine learning algorithms
with privacy guarantees. We ran oblivious and non-
oblivious versions of the algorithms that decrypt and pro-
cess the data inside SGX enclaves, using off-the-shelf
Intel Skylake processors. Our results show that, in all
cases, the overhead of encryption and SGX protection
was low. The oblivious version of algorithms with ir-
regular data structures, such as matrix factorization and
decision trees, adds substantial overhead, but we find that
it is still several orders of magnitude better than previous
work based on advanced cryptography.

6.1 Datasets

We use standard machine learning datasets from the UCI
Machine Learning Repository.4 We evaluate matrix fac-
torization on the MovieLens dataset [28]. Table 1 sum-
marizes our datasets and configuration parameters.

The Nursery dataset describes the outcomes of the
Slovenian nursery admission process for 12,960 appli-
cations in the 1980s. Given eight socio-economic at-
tributes about the child and parents, the task is to clas-
sify the record into one out of five possible classes. We
use the 0/1 encoding of the attributes as we evaluate the
records on binary decision trees. Hence, each record in
the dataset is represented using 27 features.

The MNIST dataset is a set of 70,000 digitized
grayscale images of 28-by-28 pixels recording handwrit-
ten digits written by 500 different writers. The task is to
classify each image into one of ten possible classes.

The SUSY dataset comprises 5,000,000 instances pro-
duced by Monte Carlo simulations of particle physics
processes. The task is to classify, based on 18 observed
features, whether the particles originate from a process
producing supersymmetric (SUSY) particles or not.

The MovieLens datasets contain movie ratings (1–5):
100K ratings given by 943 users to 1682 movies.

The datasets were chosen either because they were
used in prior work on secure ML (e.g., Nursery in [13],
MovieLens in [47, 48]) or because they are one of the
largest in the UCI repository (e.g., SUSY), or because
they represent common benchmarks for particular algo-
rithms (e.g., MNIST for neural networks).

Our learning algorithms are iterative—the accuracy
(and execution time) of the model depends on the number

4https://archive.ics.uci.edu/ml/

of iterations. In our experiments, we fixed the number of
iterations a priori to a value that typically results in con-
vergence: 10 for k-means, 5 for neural network, 10 for
SVM, and 20 for matrix factorization.

6.2 Setup

The experiments were conducted on a single machine
with quad-core Intel Skylake processor, 8GB RAM, and
256GB solid state drive running Windows 10 enterprise.
This processor limits the amount of platform memory
that can be reserved for enclaves to 94MB (out of a to-
tal of 128MB of protected memory). Each benchmark
is compiled using the Microsoft C/C++ compiler ver-
sion 17.00 with the O2 flag (optimize for speed) and
linked against the Intel SGX SDK for Windows ver-
sion 1.1.30214.81. We encrypted and integrity protected
the input datasets with AES-GCM; we used a hardware-
accelerated implementation of AES-GCM based on the
Intel AES-NI instructions. We ran non-oblivious and
oblivious versions of our algorithms that decrypt and
process the binary data inside SGX enclaves. We com-
pare the run times with a baseline that processes the data
in plaintext and does not use SGX protection. Table 1
summarizes the relative run time for all the algorithms
(we report averages over five runs). Next we analyze the
results for each algorithm.

6.3 K-Means

We have implemented a streaming version of the k-
means clustering algorithm to overcome space con-
straints of enclaves. Our implementation partitions the
inputs into batches of a specified size, copies each batch
into enclave memory, decrypts it and processes each
point within the batch.

Table 1 shows the overheads for partitions of
size 1MB. The non-oblivious and oblivious versions
have overheads of 91% and 199% over baseline (6.8 sec-
onds). The overhead for the non-oblivious version is due
to the cost of copying encrypted data into the enclave and
decrypting it.

We observe similar overheads for longer executions.
The overheads decrease with the number of clusters
(34% with 30 clusters and 11% with 50 clusters for non-
oblivious version) and (154% for 30 clusters and 138%
for 50 clusters for oblivious version) as the cost of in-
put decryption is amortized over cluster computation.
By comparison, recent work [38] based on cryptographic
primitives reports 5 to 6 orders of magnitude slowdown
for k-means.

6.4 Neural Networks

We have implemented a streaming version of the algo-
rithm for training a convolution neural network (CNN)
on top of an existing library [20]. Table 1 shows the
overheads of training the network for the MNIST dataset.

11

630 25th USENIX Security Symposium USENIX Association

Algorithm SGX+enc. SGX+enc.+obl. Dataset Parameters Input size # Instances
K-Means 1.91 2.99 MNIST k=10, d=784 128MB 70KCNN 1.01 1.03

SVM 1.07 1.08 SUSY k=2, d=18 307MB 2.25M
Matrix fact. 1.07 115.00 MovieLens n=943, m=1,682 2MB 100K

Decision trees 1.22 31.10 Nursery k=5, d=27 358KB 6.4K

Table 1: Relative run times for all algorithms with SGX protection + encryption, and SGX protection + encryption + data oblivi-
ousness, compared with a baseline that processes the data in plaintext without SGX protection. Parameters of the datasets used for
each algorithm are provided on the right, where d is the number of features, k is the number of classes, n is the number of users
and m is the number of movies in the MovieLens dataset.

The low overheads (< 0.3%) reflect the observation that
the training algorithm is predominantly data oblivious,
hence running obliviously does not increase execution
time while achieving the same accuracy. We are aware
that state-of-the-art implementations use data-dependent
optimizations such as max pooling and adding noise;
finding oblivious algorithms that support these optimiza-
tions with good performance remains an open problem.

6.5 SVM

As described in Section 4.2, the correctness of supervised
learning methods requires that the input data instances be
independent and identically distributed. Our oblivious
SVM implementation achieves this by accessing a batch
of l data instances uniformly at random during each it-
eration. We implement random access by copying the
partition containing the instance into enclave memory,
decrypting the partition and then accessing the data in-
stance. In the experiments we set data partitions to be
of size 2KB and l = 20. In addition, we use condi-
tional move instructions to make data accesses within the
training algorithm oblivious. These modifications allow
us to process datasets much larger than enclave mem-
ory. Our evaluation (Table 1) shows that random ac-
cess adds a 7% overhead to the non-oblivious SVM algo-
rithm, whereas the additional overhead of the oblivious
algorithm is marginal.

6.6 Decision Tree Evaluation

For the Nursery dataset, we use an offline-trained ensem-
ble of 32 sparse decision trees (182KB) with 295–367
nodes/leaves each and depths ranging from 14 to 16 lay-
ers. For this dataset, as shown in Table 1, our oblivi-
ous classifier running inside an enclave has an average
overhead of 31.1x over the baseline (255ms vs. 10ms).
The oblivious implementation of the algorithm em-
ploys the oget() primitive (see Section 3) for all data-
dependent array lookups. Without this optimization, us-
ing omoveEx() for the element-granular scanning of ar-
rays instead, the overhead is much higher (142.27x on
average). We observe that our oblivious implementation
scales well to even very large trees. For example, for an

ensemble of 32 decision trees (16,860KB) with 30,497–
32,663 nodes/leaves and 35–45 layers each,5 the average
overhead is 63.16x over the baseline.

In comparison, prior work based on homomorphic
encryption [13] uses much smaller decision trees (four
nodes on four layers for the Nursery dataset), has higher
overheads and communication costs, and scales poorly
with increasing depth. Our experiments show that
smaller depth trees have much lower accuracy (82% for
depth 4 and 84% for depth 5). In contrast, our classifier
for the Nursery dataset achieves an accuracy of 98.7%.

6.7 Matrix Factorization

We measure the performance of our gradient descent on
the MovieLens dataset. We implemented both the base-
line algorithm and the oblivious algorithm of Section 4.6.
As for k-means, we stream the input data (once) into the
enclave to initialize the data structures, then we operate
on them in-place. We also implemented the oblivious
method of Nikolaenko et al. [48] to compare its overhead
with ours (see Section 7 for the asymptotic comparison).
We did not use garbled circuits, and merely implemented
their algorithm natively on Skylake CPUs.

In each experiment, we set the dimension of user and
vector profiles to d = 10, following previous implemen-
tations in [47, 48]. We experimented with fixed numbers
of iterations T = 1,10,20. With higher number of itera-
tions the prediction rate of the model improves. For ex-
ample, when using 90K instances for training, the mean
squared error of prediction on 10K test dataset drops
from 12.94 after 1 iteration, to 4.04 after 20 iterations,
to 1.06 after 100 iterations (with λ = µ = γ = 0.0001).

Table 1 reports the overheads for the MovieLens-100K
dataset. The oblivious version takes 49s, versus 0.43s
for the baseline, reflecting the cost of multiple oblivious
sorting for each of the T = 20) iterations. With smaller
number of iterations, the running times are 8.2s versus
0.03s for T = 1, and 27s versus 0.21s for T = 10. (As
a sanity check, a naive oblivious algorithm that accesses

5The numbers correspond to a random forest trained on the standard
Covertype dataset from the UCI repository.

12

USENIX Association 25th USENIX Security Symposium 631

T This work Previous work
1 8 14 (1.7x)

10 27 67 (2.4x)
20 49 123 (2.5x)

Table 2: Comparison of running times (in seconds) of oblivious
matrix factorization methods on the MovieLens dataset: our
work is the method in Section 4.6 and previous work is our im-
plementation of an algorithm in [48] without garbled circuits.
T is the number of algorithm iterations.

all entries in U and V to hide its random accesses runs in
1850s for T = 10.)

Table 2 compares the overheads of our oblivious algo-
rithm and the one of [48]. As expected, our method out-
performs theirs as the number of iterations grows, inas-
much as it sorts smaller data structures.

Comparison with cryptographic evaluations: We
are aware of two prior evaluations of oblivious matrix
factorization [47, 48]. Both solutions are based on gar-
bled circuits, and exploit their parallelism. Both only
perform one iteration (T = 1). Nikolaenko et al. (in
2013) report a run time of 2.9 hours for 15K ratings
(extracted from 100K MovieLens dataset) using two ma-
chines with 16 cores each. Nayak et al. (in 2015) report
a run time of 2048s for 32K ratings, using 32 processors.

6.8 Security Evaluation

We experimentally confirmed the data-obliviousness of
all enclave code for each of our algorithms, as follows.
We ran each algorithm in a simulated SGX environment6

and used Intel’s Pin framework [42] to collect runtime
traces that record all memory accesses of enclave code,
not only including our core algorithms, but also all stan-
dard libraries and SGX framework code. For each algo-
rithm, we collected traces for a range of different inputs
of the same size and compared code and data accesses at
cache-line granularity, simulating the powerful attacker
from Section 2. While we initially discovered deviations
in the traces due to implementation errors in our oblivi-
ous primitives and algorithmic modifications, we can re-
port that the final versions of all implementations pro-
duce uniform traces that depend only on the input size.

7 Related Work
Secure multi-party machine learning General cryp-
tographic approaches to secure multi-party computation

6For debugging purposes, the Intel SGX SDK allows for the cre-
ation of simulated SGX enclaves. Those simulated enclaves have
largely the same memory layout as regular SGX enclaves, but are not
isolated from the rest of the system. In simulation mode, SGX instruc-
tions are emulated in software inside and outside the enclave with a
high level of abstraction.

are based on garbled circuits, secret sharing and en-
cryption with homomorphic properties. Lindell and
Pinkas [36] survey these techniques with respect to data
mining tasks including machine learning. It is worth not-
ing that beside mathematical assumptions, some of the
above approaches also rely on (a subset of) computing
parties being honest when running the protocol as well
as non-colluding.

Garbled circuits [71] provide a mechanism for multi-
ple parties to compute any function on their joint inputs
without having to reveal the inputs to each other. So-
lutions based on garbled circuits have been tailored for
several specific machine learning tasks including matrix
factorization [48], and training of a decision tree [6, 35].
GraphSC [47] and ObliVM [38] are two recent program-
ming frameworks for secure computation using garbled
circuits. The former framework offers a paradigm for
parallel computation (e.g., MapReduce) and the latter
uses a combination of ORAM and garbled circuits.

Training of an SVM kernel [34] and construction of a
decision tree [18] have been proposed based on secret-
sharing and oblivious transfer.

Homomorphic encryption lets multiple parties encrypt
their data and request the server to compute a joint func-
tion by performing computations directly on the cipher-
texts. Bost et al. [13] study classification over encrypted
data in the model where the server performs classifica-
tion by operating on semi-homomorphic encrypted data;
whenever the server needs to perform operations not sup-
ported by the encryption, it engages in a protocol with a
party that can decrypt the data and perform the necessary
computation. Solutions based on fully-homomorphic en-
cryption have been proposed for training several ML al-
gorithms [27, 69] and for classifying decision trees [68].

Shokri and Shmatikov [59] describe a method for mul-
tiple parties to compute a deep neural network on joint
inputs. This method does not rely on cryptographic prim-
itives. It assumes that the parties train their own model
and do not share the data with each other, but exchange
intermediate parameters during training. Our model is
different as parties in our solution do not perform any
computation and do not learn anything about the train-
ing process; after the training they can either obtain the
model, if they agreed to, or use it for querying in a black-
box manner.

Privacy implications of revealing the output of a ma-
chine learning algorithm, i.e., the model, is orthogonal
to the focus of this paper; we refer the reader to Fredrik-
son et al. [21, 22] on this topic. As a remedy, differ-
ential privacy guarantees for the output of several ma-
chine learning algorithms have been studied by Blum et
al. [11].

Data-oblivious techniques Oblivious RAM
(ORAM) [25] is a general protection technique against

13

632 25th USENIX Security Symposium USENIX Association

side-channels on memory accesses. Though recent
advances in this space [62] have significantly decreased
the ORAM overhead, there are cases where the default
solution does not always meet system requirements.
First, many ORAM solutions offer a tradeoff between
the size of the private memory and the overhead they
incur. In current CPUs, registers act as an equivalent
of processor’s private memory, however their number
is limited, e.g., even for the latest x86 generations, less
than 2KB can be stored in all general purpose and SIMD
registers combined. Second, ORAM does not hide the
number of accesses. That is, if this number depends
on a sensitive input (e.g., number of movies rated by
each user) then fake accesses need to be generated to
hide the real number of accesses. Finally, ORAM is
ideal for programs that make few accesses in a large
dataset. For algorithms that process data multiple
times, customized solutions often perform better (e.g.,
MapReduce [47, 49]). Machine learning algorithms fall
in the latter category as they need all input instances to
train and use the model.

Raccoon [53] and GhostRider [37] propose general
compiler techniques for protecting memory accesses of
a program. Some of the techniques they deploy are
ORAM and execution of both branches of if-else state-
ments. However, general techniques are less effective in
cases where an algorithm accesses data in a structured
way that can be exploited for greater efficiency. For ex-
ample, compiling matrix factorization using these tech-
niques is not trivial as the interleaving of the accesses
between internal data structures has to be also protected.
(The interleaving depends on sensitive information such
as rating counts per user and per movie which have to be
taken into account.)

Asymptotical comparison of individual algorithms
We now compare the asymptotic performance of our
data-oblivious algorithms to prior work. We evaluate the
overhead of obtaining oblivious properties only. That is,
we do not consider the cost of their secure implemen-
tation on SGX (our approach) or using garbled circuits
in [38, 47, 48] (though the latter is known to add large
run time overheads).

ObliVM [38] uses a streaming version of MapReduce
to perform oblivious k-means which is then compiled to
garbled circuits. The algorithm relies on oblivious sort-
ing to update the centroids at each iteration, resulting
in the running time of O

(
T (nkd +dn(logn)2)

)
(ignor-

ing conversion to garbled circuits). Since our algorithm
takes O(T nkd) time, the asymptotical comparison be-
tween the two depends on the relation between values k
and O((logn)2). Moreover, oblivious sorting incurs high
constants and our experiments confirmed that our simple
method was more efficient.

The algorithmic changes required to make SVM and
Neural Networks oblivious can be captured with auto-
mated tools for compiling code into its oblivious coun-
terpart. Instead of an oblivious shuffle or sort between
the iterations, these methods would place input instances
into an ORAM and then sample them by accessing the
ORAM. Since all n instances are accessed at each itera-
tion, the asymptotical cost of the two solutions remains
the same. However, such tools either use a backend that
would require careful adaption for the constrained SGX
environment (for example, GhostRider [37] defines its
own source language and ObliVM [38] translates code
into circuits) or they are not as optimized as our approach
(for example, Raccoon [53] always executes both code
paths of a secret-dependent conditional statement and its
described array scanning technique is less fine-tuned for
the x86 architecture than ours).

Our simple data-oblivious decision tree algorithm is
adequate for ad hoc tree evaluations, and scales up to
reasonably large forests. With larger irregular data struc-
tures, algorithms based instead on oblivious data struc-
tures [38, 66] may be more effective as they store data in
elaborate randomized data structures that avoid stream-
ing over all the tree leaves. Though their asymptoti-
cal performance dominates our approach — O((logn)2)
vs. O(n), assuming height of the tree of O(logn) —
as pointed out in [53] ORAM-based solutions improve
over the plain scanning of arrays only for larger n due
to the involved constants. Moreover, private mem-
ory of size O(logn) is assumed in [66] while as men-
tioned earlier, private memory for SGX is limited to
registers. Oblivious tree can be implemented also via
ORAM with constant private memory size [33], incur-
ring O((logn)3/ log logn) overhead.

Finally, oblivious matrix factorization for garbled cir-
cuits, rather than SGX processors, was considered in [48]
and [47]. Nikolaenko et al. [48] also rely on a data struc-
ture that combines both user and movie profiles: They
maintain a global matrix of size M+n+m with M rows
for the ratings, n rows for the users, and m rows for the
movies. Their updates are performed in several sequen-
tial passes, and synchronized using a sorting network on
the whole data structure. Hence, their algorithm runs
in time O

(
T (M+n+m)(log(M+n+m))2

)
, dominated

by the cost of sorting the rows of the matrix at every it-
eration. GraphSC [47] implements matrix factorization
using an oblivious parallel graph processing paradigm.
However, this method also relies on oblivious sorting of
M + n+m profiles, hence, asymptotically it incurs the
same cost. In comparison, our approach sorts on that
scale only during Setup and, besides, those costly op-
erations only sort user ids and ratings—not the larger
profiles in d . Then, asymptotically, our iterations are
more efficient due to a smaller logarithmic factor as we

14

USENIX Association 25th USENIX Security Symposium 633

sort fewer tuples at a time: O
(
T (M+ ñ)(log ñ)2

)
where

ñ = max(n,m). As we showed in the evaluation section
our method also outperforms [48] in practice.

Similar to prior oblivious matrix factorization tech-
niques [47,48], our method is easily parallelizable. First,
an oblivious sort that runs in time O(n(logn)2) sequen-
tially can run in time O((logn)2) with n parallel pro-
cesses. Besides, each row in our data structures U
and V can be processed independently, and aggregated
in time log(M + ñ), as in the method described in [47].
Even with parallel processing, our method is more effi-
cient, because the depth of the computation stays loga-
rithmic in ñ for our method and M in theirs [47, 48].

Secure hardware TrustedDB [5], Cipherbase [3], and
Monomi [64] use different forms of trusted hardware to
process database queries with privacy. Haven [8] runs
unmodified Windows applications in SGX enclaves, and
VC3 [57] proposes a cloud data analytics framework
based on SGX. None of these systems provides protec-
tion from side-channel attacks. These systems were eval-
uated using SGX emulators. In contrast, we are the first
to evaluate implementations of machine learning algo-
rithms on real SGX processors.

8 Conclusions
We presented a new practical system for privacy-
preserving multi-party machine learning. We propose
data-oblivious algorithms for support vector machines,
matrix factorization, decision trees, neural networks, and
k-means. Our algorithms provide strong privacy guar-
antees: they prevent exploitation of side channels in-
duced by memory, disk, and network accesses. Exper-
iments with an efficient implementation based on Intel
SGX Skylake processors show that our system provides
good performance on realistic datasets.

References
[1] AJTAI, M., KOMLÓS, J., AND SZEMERÉDI, E. An

O(n logn) sorting network. In ACM Symposium on
Theory of Computing (STOC) (1983).

[2] ANATI, I., GUERON, S., JOHNSON, S., AND
SCARLATA, V. Innovative technology for CPU
based attestation and sealing. In Workshop on
Hardware and Architectural Support for Security
and Privacy (HASP) (2013).

[3] ARASU, A., BLANAS, S., EGURO, K., KAUSHIK,
R., KOSSMANN, D., RAMAMURTHY, R., AND
VENKATESAN, R. Orthogonal security with Ci-
pherbase. In Conference on Innovative Data Sys-
tems Research (CIDR) (2013).

[4] ARASU, A., AND KAUSHIK, R. Oblivious
query processing. In International Conference on
Database Theory (ICDT) (2014).

[5] BAJAJ, S., AND SION, R. TrustedDB: A trusted
hardware-based database with privacy and data
confidentiality. In IEEE Transactions on Knowl-
edge and Data Engineering (2014).

[6] BARNI, M., FAILLA, P., KOLESNIKOV, V.,
LAZZERETTI, R., SADEGHI, A., AND SCHNEI-
DER, T. Secure evaluation of private linear branch-
ing programs with medical applications. In Euro-
pean Symposium on Research in Computer Security
(ESORICS) (2009).

[7] BATCHER, K. E. Sorting networks and their appli-
cations. In Spring Joint Computer Conf. (1968).

[8] BAUMANN, A., PEINADO, M., AND HUNT, G.
Shielding applications from an untrusted cloud with
Haven. In USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI) (2014).

[9] BELL, R. M., AND KOREN, Y. Lessons from
the Netflix prize challenge. ACM SIGKDD Explo-
rations Newsletter 9, 2 (2007).

[10] BISHOP, C. M. Neural networks for pattern recog-
nition. Oxford university press, 1995.

[11] BLUM, A., DWORK, C., MCSHERRY, F., AND
NISSIM, K. Practical privacy: The SuLQ frame-
work. In ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems (PODS)
(2005).

[12] BOSER, B. E., GUYON, I. M., AND VAPNIK,
V. N. A training algorithm for optimal margin clas-
sifiers. In Proceedings of the fifth annual workshop
on Computational learning theory (1992).

[13] BOST, R., POPA, R. A., TU, S., AND GOLD-
WASSER, S. Machine learning classification over
encrypted data. In Symposium on Network and Dis-
tributed System Security (NDSS) (2015).

[14] BREIMAN, L. Random forests. Machine Learning
45, 1 (2001).

[15] BREIMAN, L., FRIEDMAN, J. H., OLSHEN,
R. A., AND STONE, C. J. Classification and Re-
gression Trees. Wadsworth, 1984.

[16] CRIMINISI, A., SHOTTON, J., AND
KONUKOGLU, E. Decision forests: A uni-
fied framework for classification, regression,
density estimation, manifold learning and semi-
supervised learning. Foundations and Trends in
Computer Graphics and Vision 7, 2-3 (2012).

15

634 25th USENIX Security Symposium USENIX Association

[17] C.YAO, A. Protocols for secure computations (ex-
tended abstract). In IEEE Symposium on Founda-
tions of Computer Science (FOCS) (1982).

[18] DE HOOGH, S., SCHOENMAKERS, B., CHEN, P.,
AND OP DEN AKKER, H. Practical secure de-
cision tree learning in a teletreatment application.
In Financial Cryptography and Data Security (FC)
(2014).

[19] DWORK, C., MCSHERRY, F., NISSIM, K., AND
SMITH, A. Calibrating noise to sensitivity in pri-
vate data analysis. In Theory of Cryptography Con-
ference (TCC) (2006).

[20] Fast CNN library. http://fastcnn.codeplex.

com/ (accessed 17/02/2016).

[21] FREDRIKSON, M., JHA, S., AND RISTENPART,
T. Model inversion attacks that exploit confidence
information and basic countermeasures. In ACM
Conference on Computer and Communications Se-
curity (CCS) (2015).

[22] FREDRIKSON, M., LANTZ, E., JHA, S., LIN, S.,
PAGE, D., AND RISTENPART, T. Privacy in phar-
macogenetics: An end-to-end case study of person-
alized warfarin dosing. In USENIX Security Sym-
posium (2014).

[23] GENTRY, C. Fully homomorphic encryption us-
ing ideal lattices. In ACM Symposium on Theory of
Computing (STOC) (2009).

[24] GOLDREICH, O., MICALI, S., AND WIGDERSON,
A. How to play any mental game. In ACM Sympo-
sium on Theory of Computing (STOC) (1987).

[25] GOLDREICH, O., AND OSTROVSKY, R. Soft-
ware protection and simulation on oblivious RAMs.
Journal of the ACM (JACM) 43, 3 (1996).

[26] GOODFELLOW, I., BENGIO, Y., AND
COURVILLE, A. Deep learning. Book in
preparation for MIT Press, 2016.

[27] GRAEPEL, T., LAUTER, K., AND NAEHRIG, M.
ML confidential: Machine learning on encrypted
data. In International Conference on Information
Security and Cryptology (ICISC) (2013).

[28] HARPER, F. M., AND KONSTAN, J. A. The
MovieLens datasets: History and context. In
ACM Transactions on Interactive Intelligent Sys-
tems (TiiS) (2015).

[29] HOEKSTRA, M., LAL, R., PAPPACHAN, P.,
ROZAS, C., PHEGADE, V., AND DEL CUVILLO,

J. Using innovative instructions to create trustwor-
thy software solutions. In Workshop on Hardware
and Architectural Support for Security and Privacy
(HASP) (2013).

[30] HYEONG HONG, J., AND FITZGIBBON, A. Se-
crets of matrix factorization: Approximations, nu-
merics, manifold optimization and random restarts.
In Proceedings of the IEEE International Confer-
ence on Computer Vision (2015).

[31] INTEL CORP. Intel 64 and IA-32 architectures soft-
ware developer’s manual—combined volumes: 1,
2a, 2b, 2c, 3a, 3b and 3c, 2013. No. 325462-048.

[32] KOREN, Y., BELL, R., AND VOLINSKY, C. Ma-
trix factorization techniques for recommender sys-
tems. Computer, 8 (2009).

[33] KUSHILEVITZ, E., LU, S., AND OSTROVSKY, R.
On the (in)security of hash-based oblivious RAM
and a new balancing scheme. In ACM-SIAM Sym-
posium on Discrete Algorithms (SODA) (2012).

[34] LAUR, S., LIPMAA, H., AND MIELIKÄINEN,
T. Cryptographically private support vector ma-
chines. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2006).

[35] LINDELL, Y., AND PINKAS, B. Privacy preserving
data mining. Journal of Cryptology (2000).

[36] LINDELL, Y., AND PINKAS, B. Secure multi-
party computation for privacy-preserving data min-
ing. IACR Cryptology ePrint Archive (2008).

[37] LIU, C., HARRIS, A., MAAS, M., HICKS, M. W.,
TIWARI, M., AND SHI, E. Ghostrider: A
hardware-software system for memory trace obliv-
ious computation. In International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2015).

[38] LIU, C., WANG, X. S., NAYAK, K., HUANG, Y.,
AND SHI, E. ObliVM: A programming framework
for secure computation. In IEEE Symposium on Se-
curity and Privacy (S&P) (2015).

[39] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND
LEE, R. B. Last-level cache side-channel attacks
are practical. In IEEE Symposium on Security and
Privacy (S&P) (2015).

[40] LLOYD, S. P. Least squares quantization in
PCM’S. Bell Telephone Labs Memo (1957).

[41] LLOYD, S. P. Least squares quantization in PCM.
IEEE Transactions on Information Theory 28, 2
(1982).

16

USENIX Association 25th USENIX Security Symposium 635

[42] LUK, C.-K., COHN, R., MUTH, R., PATIL, H.,
KLAUSER, A., LOWNEY, G., WALLACE, S.,
REDDI, V. J., AND HAZELWOOD, K. Pin: Build-
ing customized program analysis tools with dy-
namic instrumentation. In ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation (PLDI) (2005).

[43] MACQUEEN, J. Some methods for classifica-
tion and analysis of multivariate observations. In
Berkeley Symposium on Mathematics, Statistics
and Probability, Vol. 1 (1967).

[44] MALKHI, D., NISAN, N., PINKAS, B., AND
SELLA, Y. Fairplay: a secure two party com-
putation system. In USENIX Security Symposium
(2004).

[45] MCKEEN, F., ALEXANDROVICH, I., BERENZON,
A., ROZAS, C., SHAFI, H., SHANBHOGUE, V.,
AND SAVAGAONKAR, U. Innovative instructions
and software model for isolated execution. In Work-
shop on Hardware and Architectural Support for
Security and Privacy (HASP) (2013).

[46] NARAYANAN, A., AND SHMATIKOV, V. Robust
de-anonymization of large sparse datasets. In IEEE
Symposium on Security and Privacy (S&P) (2008).

[47] NAYAK, K., WANG, X. S., IOANNIDIS, S.,
WEINSBERG, U., TAFT, N., AND SHI, E.
GraphSC: Parallel secure computation made easy.
In IEEE Symposium on Security and Privacy (S&P)
(2015).

[48] NIKOLAENKO, V., IOANNIDIS, S., WEINSBERG,
U., JOYE, M., TAFT, N., AND BONEH, D.
Privacy-preserving matrix factorization. In ACM
Conference on Computer and Communications Se-
curity (CCS) (2013).

[49] OHRIMENKO, O., COSTA, M., FOURNET, C.,
GKANTSIDIES, C., KOHLWEISS, M., AND
SHARMA, D. Observing and preventing leakage
in MapReduce. In ACM Conference on Computer
and Communications Security (CCS) (2015).

[50] OHRIMENKO, O., GOODRICH, M. T., TAMAS-
SIA, R., AND UPFAL, E. The Melbourne shuffle:
Improving oblivious storage in the cloud. In Inter-
national Colloquium on Automata, Languages and
Programming (ICALP), vol. 8573. Springer, 2014.

[51] QUINLAN, J. R. Induction of decision trees. Ma-
chine Learning 1, 1 (1986).

[52] QUINLAN, J. R. C4.5: Programs for Machine
Learning. Morgan Kaufmann, 1993.

[53] RANE, A., LIN, C., AND TIWARI, M. Raccoon:
Closing digital side-channels through obfuscated
execution. In USENIX Security Symposium (2015).

[54] RASTOGI, A., HAMMER, M. A., AND HICKS, M.
Wysteria: A programming language for generic,
mixed-mode multiparty computations. In IEEE
Symposium on Security and Privacy (S&P) (2014).

[55] SARWAR, B., KARYPIS, G., KONSTAN, J., AND
RIEDL, J. Application of dimensionality reduction
in recommender system – A case study. Tech. rep.,
DTIC Document, 2000.

[56] SCHÖLKOPF, B., AND SMOLA, A. J. Learning
with kernels: support vector machines, regulariza-
tion, optimization, and beyond. MIT press, 2002.

[57] SCHUSTER, F., COSTA, M., FOURNET, C.,
GKANTSIDIS, C., PEINADO, M., MAINAR-RUIZ,
G., AND RUSSINOVICH, M. VC3: Trustworthy
data analytics in the cloud using sgx. In IEEE Sym-
posium on Security and Privacy (S&P) (2015).

[58] SHALEV-SHWARTZ, S., SINGER, Y., SREBRO,
N., AND COTTER, A. Pegasos: Primal estimated
sub-gradient solver for SVM. Mathematical pro-
gramming 127, 1 (2011).

[59] SHOKRI, R., AND SHMATIKOV, V. Privacy-
preserving deep learning. In ACM Conference
on Computer and Communications Security (CCS)
(2015).

[60] SINHA, R., COSTA, M., LAL, A., LOPES, N., SE-
SHIA, S., RAJAMANI, S., AND VASWANI, K. A
design and verification methodology for secure iso-
lated regions. In ACM SIGPLAN Conference on
Programming Language Design and Implementa-
tion (PLDI) (2016).

[61] SMOLA, A. J., AND SCHÖLKOPF, B. A tutorial on
support vector regression. Statistics and computing
14, 3 (2004).

[62] STEFANOV, E., VAN DIJK, M., SHI, E.,
FLETCHER, C. W., REN, L., YU, X., AND DE-
VADAS, S. Path ORAM: an extremely simple
oblivious RAM protocol. In ACM Conference
on Computer and Communications Security (CCS)
(2013).

[63] TSOCHANTARIDIS, I., JOACHIMS, T., HOF-
MANN, T., AND ALTUN, Y. Large margin methods
for structured and interdependent output variables.
In Journal of Machine Learning Research (2005).

17

636 25th USENIX Security Symposium USENIX Association

[64] TU, S., KAASHOEK, M. F., MADDEN, S., AND
ZELDOVICH, N. Processing analytical queries over
encrypted data. In International Conference on
Very Large Data Bases (VLDB) (2013).

[65] VAPNIK, V. N., AND VAPNIK, V. Statistical learn-
ing theory, vol. 1. Wiley New York, 1998.

[66] WANG, X. S., NAYAK, K., LIU, C., CHAN, T.,
SHI, E., STEFANOV, E., AND HUANG, Y. Obliv-
ious data structures. In ACM Conference on Com-
puter and Communications Security (CCS) (2014).

[67] WESTON, J., AND WATKINS, C. Support vector
machines for multi-class pattern recognition. In
ESANN (1999).

[68] WU, D. J., FENG, T., NAEHRIG, M., AND
LAUTER, K. Privately evaluating decision trees
and random forests. IACR Cryptology ePrint
Archive (2015).

[69] XIE, P., BILENKO, M., FINLEY, T., GILAD-
BACHRACH, R., LAUTER, K. E., AND NAEHRIG,
M. Crypto-nets: Neural networks over encrypted
data. CoRR abs/1412.6181 (2014).

[70] XU, Y., CUI, W., AND PEINADO, M. Controlled-
channel attacks: Deterministic side channels for
untrusted operating systems. In IEEE Symposium
on Security and Privacy (S&P) (2015).

[71] YAO, A. C. How to generate and exchange secrets
(extended abstract). In IEEE Symposium on Foun-
dations of Computer Science (FOCS) (1986).

A Illustration of Oblivious Matrix Factor-
ization from Section 4.6

256-bit vector register with 32-bit components
(c0 c1 c2 c3 c4 c5 c6 c7)

... ...

array in memorycache line

Figure 4: Optimized array scanning using the 256-bit vector
instruction vpgatherdd

B Optimized Array Scanning
The oget() primitive can be further optimized using
vpgatherdd as follows. We make sure that a certain
number of components of the vector register load values
that span two cache lines. (This can be done by load-
ing two bytes from one cache line and two bytes from
the next one, recall that each component loads 4 bytes.)
Hence, up to 16 cache lines can potentially be touched
with a single instruction.

We assign components to cache lines in a careful man-
ner. The first few components request addresses within
dummy cache lines or cache lines that contain the values
of interest (whose addresses should be kept secret). The
values of interest are loaded into the remaining compo-
nents. The concept is depicted in Figure 4 where com-
ponents C0 and C2-C6 request dummy cache lines, C1
requests the cache lines that contain the desired value
which is loaded into C7. In this configuration, four
bytes are read obliviously from a memory region of size
7 · 2 · 64 bytes = 896 bytes with a single vpgatherdd

instruction. The method easily generalizes when more
bytes (e.g., 8 bytes using C6 and C7) are to be read.

This technique can significantly increase throughput
(up to 2x in some micro-benchmarks outside enclaves on
recent Intel Skylake processors). However, it requires
that vpgatherdd appears as a truly atomic operation
or, at least, that the hardware loads dummy components
before secret ones (and those are then loaded from the
cache). Though this may be true in a software-only at-
tacker model, it is not the case in the powerful threat
model in Section 2. Hence, our implementation relies
on the conservative oget() from Section 3.

18

USENIX Association 25th USENIX Security Symposium 637

Thoth: Comprehensive Policy Compliance in Data Retrieval

Systems

Eslam Elnikety Aastha Mehta Anjo Vahldiek-Oberwagner Deepak Garg

Peter Druschel

Max Planck Institute for Software Systems (MPI-SWS)

Abstract

Data retrieval systems process data from many sources,

each subject to its own data use policy. Ensuring compli-

ance with these policies despite bugs, misconfiguration,

or operator error in a large, complex, and fast evolving

system is a major challenge. Thoth provides an effi-

cient, kernel-level compliance layer for data use policies.

Declarative policies are attached to the systems’ input

and output files, key-value tuples, and network connec-

tions, and specify the data’s integrity and confidential-

ity requirements. Thoth tracks the flow of data through

the system, and enforces policy regardless of bugs, mis-

configurations, compromises in application code, or ac-

tions by unprivileged operators. Thoth requires minimal

changes to an existing system and has modest overhead,

as we show using a prototype Thoth-enabled data re-

trieval system based on the popular Apache Lucene.

1 Introduction

Online data retrieval systems typically serve a search-

able corpus of documents, web pages, blogs, personal

emails, online social network (OSN) profiles and posts,

along with real-time microblogs, stock and news tickers.

Examples include large providers like Amazon, Face-

book, eBay, Google, and Microsoft, and also numerous

smaller, domain-specific sharing, trading and networking

sites run by organizations, enterprises, and governments.

Each data item served or used by a retrieval system

may have its own usage policy. For instance, email

is private to its sender/receiver(s), OSN data and blogs

limited to friends, and corporate documents limited to

employees. External data stream providers may re-

strict the use of (meta)data, and require expiration. The

provider’s privacy policy may require that a user’s query

and click stream be used only for personalization. Lastly,

providers must comply with local laws, which may re-

quire them, for instance, to filter certain data items within

a given jurisdiction.

Ensuring compliance with applicable policies is labor-

intensive and error-prone [36]. The policy actually in ef-

fect for a data item may depend on checks and settings in

many components and several layers of a system, making

it difficult to audit and reason about. Moreover, any bug,

misconfiguration, or compromise in a large and evolving

application codebase could violate a policy. The problem

affects both large providers with complex, fast evolving

systems and smaller providers with limited IT budgets.

Indeed, reports of data losses abound [14, 1, 44, 11, 13].

The stakes are high: providers stand to lose customer

confidence, business and reputation, and may face fines.

Hence, developing technical mechanisms to enforce poli-

cies in data retrieval systems is important. In fact, the

Grok system combines lightweight static analysis with

heuristics to annotate source code to check for policy vi-

olations in Bing’s back-end [36].

Existing policy compliance systems for data retrieval,

including Grok, usually target column-specific policies—

policies that apply uniformly to all data of a specific type,

e.g., the policy “no IP address can be used for advertiz-

ing.” However, no existing work covers the equally im-

portant individual policies that are specific to individual

data items or to a given client’s data items. For exam-

ple, Alice’s blog posts, but not Bob’s, may be subject to

the policy “visible only to Alice’s friends”. Similarly,

the expiration time of every item in a news ticker may

be different. In fact, all policies mentioned a couple of

paragraphs ago are individual policies. It is this (signif-

icant and important) missing part of policy enforcement

that we wish to address in this paper. Specifically, we

present Thoth, a policy compliance layer integrated into

the Linux kernel to enforce both individual and column-

specific policies efficiently.

We briefly describe the key insights in Thoth’s de-

sign. First, by design, Thoth separates policies from ap-

plication code. A policy specifying confidentiality and

integrity requirements may be associated with any data

conduit, i.e, a file, key-value tuple, named pipe or net-

work connection, and is enforced on all application code

that accesses the conduit’s data or data derived from that

data. Thoth provides a declarative language for specify-

ing policies. The language itself is novel; in addition to

standard access (read/write) policies, it also allows spec-

ifying data declassification policies by stipulating how

638 25th USENIX Security Symposium USENIX Association

access policies may change along a data flow.

Second, unlike column-specific policies, individual

policies may not be very amenable to static analysis be-

cause a given program variable may contain data with

very different individual policies over time at the same

program point and, hence, the abstraction of static anal-

ysis may lose precision quickly. So, Thoth uses dynamic

analysis. It intercepts I/O in the kernel, tracks the flow of

data at the granularity of conduits and processes (similar

to Flume [28]), and enforces policies at process bound-

aries. This incurs a runtime overhead but we show that

the overhead is not too high. With an optimized proto-

type implementation, we measure an overhead of 0.7%

on indexing and 3.6% on query throughput in the widely

used search engine Apache Lucene. While this overhead

may be too high for large-scale data retrieval systems,

we believe that it can be optimized further and that it is

already suitable for domain-specific, medium-scale data

retrieval systems run by organizations, enterprises and

governments. Moreover, application code requires very

few changes to run with Thoth (50 lines in a codebase of

300,000 LoC in our experiments).

Third, the complexity of a data retrieval system often

necessitates some declassification to maintain function-

ality. For instance, a search process that consults an in-

dex computed over a corpus containing the private data

of more than one individual cannot produce any read-

able results without declassification. To handle this and

similar situations, we introduce a new form of declassifi-

cation called typed declassification, which allows the de-

classification of data in specific forms (types). To accom-

modate the aforementioned search process, all source

data policies allow declassification into a list of search

results (document names). Hence, the search process

can function as usual. At the same time, the possibil-

ity of data leaks is limited to a very narrow channel: To

leak information from a private file, the search process’

code must maliciously encode the information in a list

of valid document names. Given that the provider has a

genuine interest in preventing data breaches and that the

search process is an internal component that is unlikely

to be compromised in a casual external attack, the chance

of having such malicious code in the search process is

low. Thus, typed declassification is a pragmatic design

point in the security-functionality trade-off for our threat

model. Note that typed declassification needs content-

dependent policies, which our policy language supports.

To summarize, the contributions of this work are:

(1) A policy language that can express individual ac-

cess and declassification policies declaratively (Sec-

tion 2); (2) the design of a kernel-level monitor to

enforce policies by I/O interception and lightweight

taint propagation (Section 3); (3) application of the de-

sign to medium-scale data retrieval systems, specifically

Apache’s Lucene (Sections 2; 5); and (4) an optimized

prototype implementation and experimental evaluation

to measure overheads (Sections 4, 6).

2 Thoth policies

Thoth is a kernel-level policy compliance layer that helps

data retrieval system providers enforce confidentiality

and integrity policies on the data they collect and serve.

In Thoth, the provider attaches policies to data sources

(documents and live streams, posts and profiles, user

click history, etc.) based on the privacy preferences of

clients, external (e.g., legal) and internal usage require-

ments. Thoth tracks data flows by intercepting all IPC

and I/O in the kernel, and it propagates source policies

along these flows. It enforces policy conditions when

data leaves the system, or when a declassification hap-

pens. The policy attached to a data source is a complete,

one point description of all privacy and integrity rules in

effect for that source.

Thoth policies are specified in a new, expressive

declarative language, separate from application code. In

this section, we describe this policy language briefly, dis-

cuss example policies that clients, data sources, and the

provider might wish to enforce in a data retrieval sys-

tem, and give a glimpse of how to express these policies

in Thoth’s policy language. More policy examples are

included in Appendix A. Section 3 explains how Thoth

enforces these policies. We note that our policy language

and enforcement are general and apply beyond data re-

trieval systems.

Policy language overview A Thoth policy can be at-

tached to any conduit—a file, key-value tuple, named

pipe or network socket that stores data or carries data in

transit. The policy on a conduit protects the confidential-

ity and integrity of the data in the conduit and is specified

in two layers. The first layer, an access control policy,

specifies which principals may read and update the con-

duit and under what conditions (e.g., only before or only

after a certain date). A second layer protects data derived

from the conduit by restricting the policies of conduits

downstream in the data pipeline. This layer can declas-

sify data by allowing the access policies downstream to

be relaxed progressively, as more and more declassifica-

tion conditions are met. The second layer that specifies

declassification by controlling downstream policies is the

language’s key novelty.1 Another noteworthy feature is

that we allow policy evaluation to depend on a conduit’s

state—both its data and its metadata. This allows ex-

pressing content-dependent policies and, in particular, a

kind of declassification that we call typed declassifica-

tion.

1Our full language also supports provenance policies in the second

layer by allowing control over upstream policies. Due to lack of space,

we omit provenance policies here.

USENIX Association 25th USENIX Security Symposium 639

Arithmetic/string Conduit Content

add(x,y,z) x=y+z cNameIs(x) x is the conduit pathname (c,off) says x1, . . . ,xn is the tuple found in

sub(x,y,z) x=y-z cIdIs(x) x is the conduit id (x1, . . . ,xn) conduit c at off

mul(x,y,z) x=y*z cIdExists(x) x is a valid conduit id (c,off) willsay ditto for the update of c in the

div(x,y,z) x=y/z cCurrLenIs(x) x is the conduit length (x1, . . . ,xn) current transaction

rem(x,y,z) x=y%z cNewLenIs(x) x is the new conduit length each in (c,off) says for each tuple in c at off, assign

concat(x,y) x || y hasPol(c, p) p is conduit c’s policy (x1, ..,xn) {condition} to x1,..,xn and evaluate condition

vType(x,y) is x of cIsIntrinsic does this conduit connect each in (c,off) willsay ditto for the update of c in the

type y? two confined processes? (x1, ..,xn) {condition} current transaction

Relational Session Declassification rules

eq(x,y) x=y sKeyIs(x) x is the session’s c1 until c2 condition c1 must hold on the

neq(x,y) x!=y authentication key downstream flow until c2 holds

lt(x,y) x<y sIpIs(x) x is the session’s source IP isAsRestrictive(p1,p2) the permission p1 is at least as

gt(x,y) x>y address restrictive as p2

le(x,y) x<=y IpPrefix(x,y) x is IP prefix of y

ge(x,y) x>=y timeIs(t) t is the current time

Table 1: Thoth policy language predicates and connectives

Layer 1: Access policies The first layer of a conduit’s

policy contains two rules that specify who can read and

update the conduit’s state under what conditions. We

write both rules in the syntax of Datalog, which has been

used widely in the past for the declarative specification of

access policies [18, 20, 30]. Briefly, the read rule has the

form (read :- cond) and means that the conduit can be

read if the condition “cond” is satisfied. The condition

“cond” consists of predicates connected with conjunc-

tion (“and”, written ∧) and disjunction (“or”, written ∨).

All supported predicates are listed in Table 1. Similarly,

the update rule has the form (update :- cond).

Example (Client policies) Consider a search engine

that indexes clients’ private data. A relevant security

goal might be that a client Alice’s private emails and pro-

file should be visible only to Alice, and only she should

be able to modify this data. This private data policy

can be expressed by attaching to each conduit holding

Alice’s private items read and update rules that allow

these operations only in the context of a session authen-

ticated with Alice’s key. The latter condition can be ex-

pressed using a single predicate sKeyIs(kAlice), which

means that the active session is authenticated with Al-

ice’s public key, denoted kAlice. Hence, the read rule

would be read :- sKeyIs(kAlice). The update rule would

be update :- sKeyIs(kAlice). (Clients, or processes run-

ning on behalf of clients, authenticate directly to Thoth,

so Thoth does not rely on untrusted applications for ses-

sion authentication information.)

Alice’s friends only blog and OSN profile should be

readable by her friends as well, which can be expressed

with an additional disjunctive clause in the read rule:

read :- sKeyIs(kAlice) ∨
(sKeyIs(K) ∧ (“Alice.acl”, Offset) says isFriend(K))

The part after the ∨ is read as “the key K that authenti-

cated the current session exists in Alice.acl at some off-

set Offset.” Here, Alice.acl is a trusted key-value tuple

that contains Alice’s friend list.

Following standard Datalog convention, terms like K

and Offset that start with uppercase letters are exis-

tentially quantified variables. The predicate sKeyIs(K)
binds K to the key that authenticates the session. Dur-

ing each policy evaluation, application code is expected

to provide a binding for the variable Offset that refers

to a location in the tuple’s value saying that K belongs

to a friend of Alice. Note that policy compliance does

not depend on application correctness: if the application

does not provide a correct offset, access will be denied.

Extending further, visibility to Alice’s friends of

friends can be allowed by modifying the read rule to

check that Alice and the owner of the current session’s

key have a common friend. Then, the application code

would be expected to provide an offset in Alice’s acl

where the common friend exists and an offset in the com-

mon friend’s acl where the current session’s key exists.

Layer 2: Declassification policies The second layer

of a conduit’s policy contains a single rule that controls

the policies of downstream conduits. This rule is written

(declassify :- cond), where “cond” is a condition or pred-

icate on all downstream sequences of conduits. For in-

stance, “cond” may say that in any downstream sequence

of conduits, the access policies must allow read access

only to Alice, until the calendar year is at least 2017, af-

ter which the policies may allow read access to anyone.

This represents the declassification policy “private to Al-

ice until the end of 2016”.

We represent such declassification policies using the

notation of linear temporal logic (LTL), a well-known

syntax to represent predicates that change over time [32].

We allow one new connective in “cond” in the declassify

rule: c1 until c2, which means that condition c1 must

640 25th USENIX Security Symposium USENIX Association

hold of all downstream conduits until condition c2 holds.

Also, we allow a new predicate isAsRestrictive(p1, p2),

which checks that policy p1 is at least as restrictive as

p2. The two together can represent expressive declassifi-

cation policies, as we illustrate next.

Example (Index policy) In the last example, we dis-

cussed confidentiality policies that reflect data owners’

privacy choices. For the retrieval system to do its job,

however, the input data policies must allow some de-

classification. Without it, the search engine, which con-

sults an index computed over the entire corpus, including

the private data of several individuals, would not be al-

lowed to produce any readable output. We rely on the

policy language’s novel ability to refer to a conduit’s

(meta-)data to allow the selective, typed declassification

of search results. The policy can be implemented by

adding the following declassify rule to all searchable in-

put data:

declassify :- isAsRestrictive(read,this.read) until
ONLY_CND_IDS

This policy stipulates that data derived from Alice’s data

can be written into conduits whose read rule is at least

as restrictive as Alice’s (which is bound to this.read),

until it is written into a conduit which satisfies the condi-

tion ONLY_CND_IDS. This macro stipulates that only

a list of valid conduit ids has been written. The macro

expands to

cCurrLenIs(CurrLen) ∧ cNewLenIs(NewLen) ∧
each in(this,CurrLen,NewLen) says(CndId)
{cIdExists(CndId)}

and permits the declassification of a list of proper conduit

ids. A conduit id is a unique identifier for a conduit (con-

duit ids are defined in Section 3). The predicate “each

in () says () {}” iterates over the sequence of tuples in

the newly written data and checks that each is a valid

conduit id. By including this declassification rule in her

data item’s policy, Alice allows the search engine to in-

dex her item and include it in search results. To view

the contents, of course, a querier still has to satisfy each

conduit’s confidentiality policy.2

So far, we have assumed that the conduit ids (i.e., the

names of indexed files) are not themselves confidential.

If the conduit ids are themselves confidential, then the

2Our declassification policies can be intuitively viewed as state ma-

chines whose states are access policies and whose transitions are events

in the data flow. For instance, the declassification policy just described

is a two state machine, whose initial state has a read policy as restrictive

as Alice’s, and whose second state allows read access to everyone. The

transition from the first to the second state is allowed when data passes

through a conduit that satisfies ONLY_CND_IDS. This state-machine

view of our policies is universal because it is well known that all LTL

formulas can be represented as Büchi automata.

above declassify rule is insufficient since it stipulates

no restriction on policies after ONLY_CND_IDS holds.

Thus, a more restrictive declassify rule is needed. Ide-

ally, we want that the read and declassify rules of the

conduit that contains the list of conduit ids be at least as

restrictive as the read and declassify rules of all conduits

in the list. This can be accomplished by the following

replacement for ONLY_CND_IDS.

cCurrLenIs(CurrLen) ∧ cNewLenIs(NewLen) ∧
each in(this,CurrLen,NewLen) willsay(CndId)
{cIdExists(CndId) ∧ hasPol(CndId ,P) ∧
isAsRestrictive(read,P.read) ∧
isAsRestrictive(declassify,P.declassify)}

The predicate hasPol(CndId,P) binds P to

the policy of the conduit CndId, and the

predicates isAsRestrictive(read,P.read) and

isAsRestrictive(declassify,P.declassify) enforce that

the read and declassify rules of the search results are

at least as restrictive as those of CndId. We call this

modified macro ONLY_CND_IDS+.

Other data retrieval policies

We briefly describe several other policies relevant to data

retrieval systems that we have represented in our policy

language and implemented in our prototype. For the for-

mal encodings of these policies, see Appendix A.

Data analytics Many retrieval systems transform logs

of user activity into a user preferences vector, which is

used for targeting ads, computing user profiles, and pro-

viding recommendations. Raw logs of user clicks and

queries are typically private, so a profile vector derived

from them cannot be used for any of these purposes with-

out a declassification. A policy that allows typed declas-

sification into a vector of a fixed size can be attached to

raw user logs to ensure that the raw logs cannot be leaked

from the system, but that the profile vector can be used

for the above-mentioned purposes.

Provider policies The provider may need to censor

certain documents when a query arrives from a partic-

ular country. For this purpose, the system uses a map of

IP address prefixes to countries. Separately, the provider

maintains a per-country blacklist, containing a list of

censored conduit ids. The censorship policy takes the

form of a common declassification rule on source files.

The rule requires that, at a conduit connecting to a client,

the client’s IP prefix is looked up in the prefix map, and

the corresponding blacklist is checked to see if any of

the search results are censored. Both the prefix map and

the blacklist are maintained in sorted order for efficient

lookup. The sort order is enforced by an integrity policy

on the conduits.

A second common provider policy allows employees

to access client’s private data for troubleshooting pur-

USENIX Association 25th USENIX Security Symposium 641

Figure 1: Thoth architecture

poses, as long as such accesses are logged for auditing. A

mandatory access logging (MAL) policy can be added for

this purpose. The policy allows accesses by authorized

employees, if and only if an entry exists in a separate log

file, which states a signature by the employee, the con-

duit being accessed, and a timestamp. The log file itself

has an integrity policy that allows appends only, thus en-

suring that an entry cannot be removed or overwritten.

Finally, data sources must consent to provider access by

allowing declassification into a conduit readable by au-

thorized employees subject to MAL.

3 Thoth architecture and design

3.1 Overview

Figure 1 depicts the Thoth architecture. At each par-

ticipating node, Thoth comprises a kernel module that

intercepts I/O, a trusted reference monitor process that

maintains per-task taint sets3 and evaluates policies, a

persistent store for metadata and transaction log, and a

persistent policy store. Each node tracks taint and en-

forces policies independently of other nodes. The policy

store is accessible exclusively by the reference monitors

and provides a consistent view of all policies. This can

be attained by using either central storage for policies or

a consensus protocol like Paxos [29].

Figure 2 shows the data flow model of a Thoth-

protected system. An application consists of a set of

tasks (i.e., processes) that execute on one or more nodes.

Data flows among the tasks via conduits. A file, named

pipe or a tuple in a key-value store is a conduit. A net-

work connection or a named pipe is a pair of conduits,

one for each direction of data traffic. Thoth identifies

each conduit with a unique numeric identifier, called the

conduit id. The conduit id is the hash of the path name in

case of a file or named pipe, the hash of the 5-tuple 〈srcIP,

srcPort, protocol, destIP, destPort〉 in case of a network

connection, or the key in case of a key-value tuple. Any

conduit may have an associated policy.4

The core of the application system is a set of CONFINED

tasks within Thoth’s confinement boundary. The sys-

tem interacts with the outside world via conduits (typ-

3A task’s taint set is the set of policies of conduits it has read.
4If a file has multiple hard links, each of its path names can be

associated with a different policy. When a path name is used to access

the file, that path name’s policies are checked.

ically network connections) to external, UNCONFINED

tasks. UNCONFINED tasks represent external users or com-

ponents. Neither type of task is trusted by Thoth, al-

though an UNCONFINED task may represent a user and may

possess the user’s authentication credentials.

Policies on inbound and outbound conduits that cross

the confinement boundary represent the ingress and

egress policies, respectively. The read and declassifica-

tion rules of an ingress policy control how data can be

used and disseminated by the system whereas the update

rule of an ingress policy determines who may feed data

into the system. The read rule of an egress policy defines

who outside the system may read the output data.

3.2 Threat model

The Thoth kernel module and reference monitor, as well

as the Linux system and policy store they depend on, are

trusted. Active attacks on these components are out of

scope. We assume that correct policies are installed on

ingress and egress conduits. In our current prototype,

storage systems that hold application data are assumed to

be trusted. This assumption can be relaxed by encrypting

and checksumming application data in the Thoth kernel

module.

Thoth makes no assumptions about the nature of bugs

and misconfigurations in application components, the

type of errors committed by unprivileged operators, or

errors in policies on internal conduits. Subject to this

threat model, Thoth provably enforces all ingress poli-

cies. In information flow control terms, Thoth can con-

trol both explicit and implicit flows, but leaks due to

covert and side-channels are out of scope.

Justification Trusting the Thoth kernel module, ref-

erence monitor, and the Linux system they depend on

is reasonable in practice because (i) reputable providers

will install security patches on the OS and Thoth compo-

nents, and correct policies; (ii) OS and Thoth are main-

tained by a small team of experts and are more stable than

applications; thus, an attacker will likely find it more dif-

ficult to find a vulnerability in the OS or Thoth than in a

rapidly evolving application with a large attack surface.

Typed declassification policies admit limited informa-

tion flows, which can be exploited by malicious appli-

cations covertly. For instance, malware injected into a

search engine can encode private information in the set

of conduit ids it produces, if the conduits in the set them-

selves are public. This channel is out of scope. In prac-

tice, such attacks require significant sophistication. A

successful attack must inject code strategically into the

data flow before a declassification point and encode pri-

vate data on a policy-compliant flow.

On the other hand, Thoth prevents the large class of

practical attacks that involve direct flows to unauthorized

parties, and accidental policy violations due to applica-

642 25th USENIX Security Symposium USENIX Association

Figure 2: Thoth data flow

tion bugs, misconfigurations, and errors by unprivileged

operators. We demonstrate this in Section 6.3 where a

Thoth compliant search engine is able to enforce data

policies, preventing (real and synthetic) bugs and mis-

configurations from leaking information.

3.3 Data flow tracking and enforcement

Tracking data flow Thoth tracks data flows coarsely

at the task-level. CONFINED and UNCONFINED tasks are

subject to different policy checks. A CONFINED task may

read any conduit, irrespective of the conduit’s read rule,

but Thoth enforces each such conduit’s declassify rule

when the task writes to other conduits. To do this, Thoth

maintains the declassify rules of conduits read by each

CONFINED task in the task’s metadata (these rules consti-

tute the taint set of the task).

UNCONFINED tasks form the ingress and egress points

for Thoth’s flow tracking; they are subject to access con-

trol checks, not tainting. An UNCONFINED task may read

from (write to) a conduit only if the conduit’s read (up-

date) rule is satisfied. For example, to read Alice’s pri-

vate data, an UNCONFINED task must authenticate with Al-

ice’s credentials. Conduits without policies can be read

and written by all tasks freely.

In summary, Thoth tracks data flows across CONFINED

tasks coarsely, and enforces declassification policies on

these flows. At the ingress and egress tasks (UNCONFINED

tasks), Thoth imposes access control through the read

and update rules. Every new task starts UNCONFINED.

The task may transition to the CONFINED state through

a designated Thoth API call. The reverse transition is

disallowed to prevent a task from reading private data

in the CONFINED state and leaking the data to a conduit

without any policy protection after transitioning to the

UNCONFINED state.

Conduit interceptors The Thoth kernel component

includes a conduit interceptor (CI) for each type of con-

duit. A CI for a given conduit type intercepts system

calls that access or manipulate conduits of that type, and

associates a conduit with its policy. Thoth has built-in

CIs for kernel-defined conduit types, namely files, named

pipes, and network connections. CIs for additional con-

duit types can be plugged in. For instance, our prototype

uses a CI for the memcached key-value store (KV).

Question: Should a conduit read or write be allowed?

Inputs: t, the task reading or writing the conduit

f, the conduit being read or written

op, the operation being performed (read or write)

Output: Allow or deny the access

Side-effects: May update the taint set of t

1 if t is UNCONFINED:

2 if op is read:

3 Check f’s read rule.

4 if op is write:

5 Check f’s update rule.

6 if t is CONFINED:

7 if op is read:

8 Add f’s policy to t’s taint set.

9 if op is write:

10 // Enforce declassification policies of t’s taint set

11 for each declassification rule (c until c’) in t’s taint set:

12 Check that EITHER c’ holds OR (c holds AND

f’s declassification policy implies (c until c’)).

Figure 3: Thoth policy enforcement algorithm

The CIs for files and named pipes associate a policy

with the unique pathname of a file or pipe. The socket CI

associates a policy with the network connection’s 5-tuple

〈srcIP, srcPort, protocol, destIP, destPort〉. The 5-tuple

may be underspecified. For instance, the policy associ-

ated with 〈?, ?, ?, destIP, destPort〉 applies to any network

connection with the specified destination IP address and

port. Both ends of a network connection have the same

policy. The KV CI associates a policy with a tuple’s key.

The KV CI can automatically derive policies from pol-

icy templates that cover a subspace of keys (e.g., all keys

with prefix #user_pro f ile). It can also replace template

variables with metadata, e.g., the time at which the key

was created.

Policy enforcement algorithm Figure 3 summarizes

the abstract checks that Thoth makes when it intercepts

a conduit access. If the calling task is UNCONFINED, then

Thoth evaluates the read or update policy of the conduit

(lines 1–5). If the calling task is CONFINED and the oper-

ation is a read, then Thoth adds the policy of the conduit

being read to the taint set of the calling task. No policy

check is performed in this case (lines 6–8). To reduce

the size of a CONFINED task’s taint set, our prototype per-

forms taint compression when possible: A policy is not

added if the taint set already includes an equally or more

restrictive policy.

When a CONFINED task t writes a conduit f, there is a

potential data flow from every conduit that t has read in

the past to f. Hence, all declassification rules in t’s taint

set are enforced (lines 11–12). Suppose (c until c’) is a

declassification rule in t’s taint set. Since this rule means

USENIX Association 25th USENIX Security Symposium 643

that condition c must continue to hold downstream un-

til the declassification condition c’ holds, this rule can

be satisfied in one of two ways: Either the declassifica-

tion condition c’ holds now, or c holds now and the next

downstream conduit (f here) continues to enforce (c until
c’). Line 12 makes exactly this check.

End-to-end correctness of policy enforcement

Within Thoth’s threat model, the checks described

above enforce all policies on conduits and, specifically,

all ingress policies. Incorrect policy configuration on

internal conduits cannot cause violation of ingress

policies but may cause compliant data flows to be denied

by the Thoth reference monitor. Informally, this holds

because our checks ensure that the conditions in every

declassification policy are propagated downstream until

they are satisfied. 5

Policy comparison Thoth compares policies for re-

strictiveness in three cases: for taint compression, when

evaluating the predicate isAsRestrictive(), and in line

12 of the enforcement algorithm (Figure 3). The gen-

eral comparison problem is undecidable for first-order

logic, so Thoth uses the following heuristics: 1) Equal-

ity: Compare the hashes of the two policies. 2) Inclu-

sion: Check that all predicates in the less restrictive pol-

icy also appear in the more restrictive one, taking into

account variable renaming and conjunctions and disjunc-

tions between the predicates. Inclusion has exponential

time complexity in the worst case, but is fast in practice.

3) Partial evaluation: Evaluate and delete an application-

specified subpart of each policy, then try equality and

inclusion. These heuristics suffice in all cases we have

encountered.

Note that a policy comparison failure can never affect

Thoth’s safety. However, a failure can (a) defeat taint

compression and therefore increase taint size and policy

evaluation overhead; or (b) cause a compliant data flow

to be denied. In the latter case, a policy designer may

re-state a policy so that the policy comparison succeeds.

3.4 Thoth API

Table 2 lists Thoth API functions provided to user-level

tasks by means of a new system call. To check structural

properties of written data (e.g., that the data is a list of

conduit ids), it is often necessary to evaluate the update

rule atomically on a batch of writes. Hence, Thoth sup-

ports write transactions on conduits. By default, a trans-

action starts with a POSIX open() call and ends with the

close() call on a conduit. This behavior can be overridden

by passing additional flags to open() and close(). Trans-

actions can also be explicitly started and ended using the

Thoth API calls open_tx and close_tx.

5A formal proof of this fact is the subject of a forthcoming paper.

Our formal model and implementation support nested uses of the until

operator, which we omitted here.

During a transaction, Thoth buffers writes in a per-

sistent re-do log. When the transaction is closed by the

application, Thoth makes the policy checks described in

Figure 3. If the policy checks succeed, then the writes

are sent to the conduit, else the writes are discarded. The

re-do log allows recovery from crashes and avoids ex-

pensive filesystem syncs when a transaction commits.

Summary Thoth enforces ingress and egress policies

despite application-level bugs, misconfigurations, and

compromises, or actions by unprivileged operators. A

data source’s policy specifies both access and declassi-

fication conditions and describes the source’s allowed

uses completely. Thoth uses policies as taint, which dif-

fers significantly from the standard information flow con-

trol practice of using abstract labels as taint. That prac-

tice requires trusted application processes to declassify

data and to control access at system edges. In contrast,

Thoth relies entirely on its reference monitor for all ac-

cess and declassification checks, and no application pro-

cesses have to be trusted.

4 Thoth prototype

Our prototype consists of a Linux kernel module that

plugs into the Linux Security Module (LSM) interface,

and a reference monitor. We also changed a few (22)

lines of the kernel proper to provide additional system

call interception hooks not included in the LSM inter-

face, and a new system call that allows applications to

interact with Thoth. A small application library consist-

ing of 840 LoC exports the API calls shown in Table 2

based on this system call.

LSM module The Thoth LSM module comprises ap-

proximately 3500 LoC and intercepts I/O related system

calls including open, close, read, write, socket, mknod,

mmap, etc. Intercepted system calls are redirected to the

reference monitor for taint tracking and validation. The

module includes conduit interceptors for files, named

pipes and sockets, as well as interceptors for client con-

nections to a memcached key-value store [12].

Thoth reference monitor Thoth’s reference monitor

is implemented as a trusted, privileged userspace pro-

cess. It implements the policy enforcement logic and

maintains the process taint, session state and transac-

tion state in DRAM. The monitor accesses the persistent

Thoth metadata store, which includes per-conduit meta-

data (conduit pathname, conduit id, a pointer to the pol-

icy in effect in the policy store, and for each persistent

file conduit, its current size), the transaction log, and the

global policy store. The metadata and transaction log are

stored in NVRAM. A write-through DRAM cache holds

recently accessed metadata and policies.

The monitor is multi-threaded so it can exploit multi-

core parallelism. Each worker thread invokes the Thoth

644 25th USENIX Security Symposium USENIX Association

Function Description

confine () Transition calling process from UNCONFINED to CONFINED state.

authenticate (key) Authenticate process with the private key key to satisfy identity-based policies.

add_policy (p) Store a policy p in Thoth metadata and return an id p_id for it.

set_tx_flags (c_id, flags) Set flags flags (type and partial evaluation hints) for a transaction on conduit c_id.

open_tx (c_id) Open a transaction on conduit c_id and return a file handle.

close_tx (fd) Close a transaction fd. Return 0 if successful, or error code of a policy check fails.

set_policy (fd, p_id) Attach policy id p_id to the conduit running transaction fd. Passing (-1) for p_id sets the null policy.

The new policy is applied only after fd is successfully closed. The declassification condition of the

conduit’s existing policy determines whether the policy change or removal is allowed.

get_policy (c_id, buf) Retrieve the policy attached to conduit c_id into buffer buf.

cache (fd, off, len) Cache content (for policy evaluation) from file handle fd from offset off with length len.

Table 2: Thoth API calls

system call and normally blocks in the LSM module

waiting for work. When an application issues a system

call that requires an action by the reference monitor, a

worker thread is unblocked and returns to the reference

monitor with appropriate parameters; when the work is

done, the thread invokes the system call again with the

appropriate results causing the original application call

to either be resumed or terminated. As an optimization,

the LSM seeks to amortize the cost of IPC by buffer-

ing and dispatching multiple asynchronous requests to a

worker thread whenever possible. The reference monitor

was implemented in 19,000 LoC of C, not counting the

OpenSSL library used for secure sessions and crypto.

Limitations Memory-mapped files are currently sup-

ported read-only. Interception is not yet implemented for

all I/O-related system calls. None of these missing fea-

tures are used by our prototype data retrieval system.

5 Policy-compliant data retrieval

We use Thoth for policy compliance in a data retrieval

system built around a distributed Apache Lucene search

engine. While Apache Lucene’s architecture is not ap-

propriate for large, public search engines like Google or

Bing, it is frequently used in smaller, domain-specific

data retrieval systems.

5.1 Baseline configuration

Lucene Apache Lucene is an open-source search en-

gine written in Java [2]. It consists of an indexer and

a search component. The sequential indexer is a single

process that scans a corpus of documents and produces

a set of index files. The search component consists of

a multi-threaded process that executes search queries in

parallel and produces a set of corpus file names relevant

to a given search query. The size of the Apache Lucene

codebase is about 300,000 LoC.

Lucene can be configured with replicated search pro-

cesses to scale its throughput. Here, multiple nodes run

a copy of the search component, each with the full in-

dex. A search query can be processed by any machine.

Lucene can also be sharded to scale with respect to the

corpus size. In this case, the corpus is partitioned, each

partition is indexed individually, and multiple nodes run

a copy of the search component, each with one partition

index. A search query is sent to all search components,

and the results combined. Replication and sharding can

be combined in the obvious way.

Front-end processes A simple front-end process ac-

cepts user requests from a remote client and forwards

search queries to one or more search process(es) via a

pipe. The search process(es) may forward the query to

other search processes with disjoint shards. When the

front-end receives the search results (a list of document

file names), it produces a HTML page with a URL and

a content snippet from each of the result documents, and

returns the page to the Web client. When the client clicks

on one of the URLs, the front-end serves the content.

A second, simple account manager front-end process

accepts connections from clients for the purpose of cre-

ating accounts, managing personal profiles and policies.

Clients choose from a set of policy templates for docu-

ments they have contributed to the corpus, and for their

personal profile information and activity history.

Search personalization and advertising To include

typical features of a data retrieval system, we added per-

sonalized search and targeted advertising components. A

memcached daemon runs on each search node to provide

a distributed key-value store for per-user information, in-

cluding a suffix of the search and click histories, profile

information, and the public key. The front-end process

appends a user’s search queries and clicks to the his-

tories. It uses the profile information to rewrite search

queries, re-order search results, and select ads for inclu-

sion in the results page.

An aggregator process periodically analyses a user’s

search and click history, and updates the personal pro-

file information accordingly. We are not concerned with

the details of user profiling, personalized search, or ad

USENIX Association 25th USENIX Security Symposium 645

targeting. It suffices for our purposes to capture the ap-

propriate data flows.

5.2 Controlling data flow with Thoth

With Thoth, the front-end, search, indexing, and aggre-

gation tasks execute as CONFINED processes, and the ac-

count manager executes as an UNCONFINED process. Rel-

ative to the baseline system, we made minimal modifica-

tions, mostly to set an appropriate policy on output con-

duits. The modifications to Apache Lucene amounted to

less than 20 lines of Java code and 30 lines of C code

in a JNI library. These modifications set policies on

internal conduits and, like the rest of Lucene, are not

trusted. Finding the appropriate points to modify was

relatively easy because Lucene’s codebase has separate

functions through which all I/O is channelled. For ap-

plications without this modularity, a dynamically-linked

library can be used that overrides libc’s I/O functions and

adds appropriate policies.

Unlike in the baseline, the front-end process must be

restarted after each user session, to drop its taint. We

implement this by exec-ing the process when a new user

session starts.

Ingress/egress policies Recall that the ingress and

egress policies determine which data flows are allowed

and reflect the policies of users, data sources, and

provider. In our system, the network connection between

the client and the front-end is both an ingress and an

egress conduit. The document files in the corpus and the

key-value tuples that contain a user’s personal informa-

tion are ingress conduits. Policies are associated with all

ingress and egress conduits as described below. The pri-

mary difficulty here is to determine appropriate policies,

a task that is required in any compliant system. Specify-

ing the policies in Thoth’s policy language is straightfor-

ward.

Account manager flow When Alice creates an ac-

count, credentials are exchanged for subsequent mutual

authentication, and stored in the key-value store, along

with any personal profile information Alice provides.

Alice can choose policies for her profile and history

information, as well as any contributed content, typically

from a set of policy templates written by the provider’s

compliance team. The declassification rule of each pol-

icy implicitly controls who can subsequently change the

policy; normally, Alice would choose a policy that allows

only her to make such a change. Alice may also edit her

friend lists or other access control lists stored in the key-

value store, which may be referenced by her policies.

Next, we explain the main data flows through the sys-

tem. For lack of space, we cannot detail all policies on

internal conduits, but we highlight the key steps.

Indexing flow Periodically, the indexer is invoked

to regenerate the index partitions. A correct indexer

only processes documents with the ONLY_CND_IDS

(or ONLY_CND_IDS+) declassification clause, which

is transferred to the index files. Note that the index

may contain arbitrary data and can be read by any

CONFINED process; however, an eventual declassification

to an UNCONFINED process is only possible for a list of

conduit ids.

Profile aggregation flow A profile aggregation task

periodically executes in the background, to scan the suf-

fix of a user’s query and click history and update the

user’s profile vector. A correct aggregator only ana-

lyzes user history data that has the ONLY_CND_IDS

(or ONLY_CND_IDS+) declassification clause, which is

transferred to the profile vectors.

Search flow Finally, we describe the sequence of steps

when Alice performs a search query. The search front-

end authenticates itself to Alice using the credentials

stored in the key-value store. A successful authentica-

tion assures Alice that (i) she is talking to the front-end,

and (ii) the front-end process is tainted with the policy of

Alice’s credentials (only Alice can read, else declassify

into a list of conduit ids) before Alice sends her search

query. Next, Alice authenticates herself to the Thoth ref-

erence monitor via the search front-end, which proves to

Thoth that the front-end process speaks for Alice.

The front-end now sends Alice’s query to one or more

search process(es) and adds it to her search history. The

search results are declassified as a list of conduit ids, and

therefore do not add new taint to the front-end. While

producing the HTML results page, the front-end reads

a snippet from each result document using Alice’s cre-

dentials. Each document has a censorship policy, which

checks that the document’s conduit ID is not blacklisted

in the client’s region. These policies differ in the conduit

IDs and so, in principle, the taint set on the front-end

could become very large. To prevent this, we use par-

tial evaluation (Section 3): Before a document’s policy

is added to the front-end’s taint, we check that the doc-

ument is not blacklisted. This way, the front-end’s taint

increases by a single predicate (which verifies Alice’s IP

address) when it reads the first document and does not

increase when it reads subsequent documents.

Finally, the front-end sends the results page to the

client. For this, it must satisfy the egress conduit policy,

which verifies Alice’s identity and her IP address.

Result caching High-performance retrieval systems

cache search results and content snippets for reuse in

similar queries. Although we have not implemented such

caching, it can be supported by Thoth. Intermediate re-

sults can be cached at various points in the data flow, usu-

ally before their policies have been specialized (through

646 25th USENIX Security Symposium USENIX Association

partial evaluation) for a particular client or jurisdiction.

Summary Assuming that the account manager cor-

rectly installs ingress and egress policies, Thoth ensures

that Alice’s documents, history and profile are used ac-

cording to her wishes and that the provider’s censorship

and MAL policies are enforced, despite any bugs in the

indexer, the front-end or the profile aggregator. Thoth’s

use in a data retrieval system highlights two different

ways of preventing process overtainting. The front-end

process is user-specific—it acts on behalf of one client.

Consequently, the front-end must be re-execed at the end

of a user session session to discard its taint. In con-

trast, the indexer is an aggregator process that is de-

signed to combine documents with conflicting policies

into a single index. To make its output (the index) usable

downstream, the provider installs a typed declassification

clause (ONLY_CND_IDS or ONLY_CND_IDS+) on all

documents. Due to the declassification clause, there is

no need to re-exec the search process.

6 Evaluation

In this section, we present results of an experimental

evaluation of our Thoth prototype.

All experiments were performed on Dell R410 servers,

each with 2x Intel Xeon X5650 2.66 GHz 6 hyper-

threaded core CPUs, 48GB main memory, running

OpenSuse Linux 12.1 (kernel version 3.13.1, x86-64).

The servers are connected to Cisco Nexus 7018 switches

with 1Gbit Ethernet links. Each server has a 1TB Sea-

gate ST31000424SS disk formatted under ext4, which

contains the OS installation and a 258GB static snapshot

of English language Wikipedia articles from 2008 [43].

We allocate a 2GB memory segment on /dev/shm to

simulate NVRAM used by Thoth to store its metadata

and transaction log. NVRAM is readily available and

commonly used to store frequently updated, fixed-sized

persistent data structures like transaction logs.

In the following experiments, we compare a system

where each OS kernel is configured with the Thoth LSM

kernel module and reference monitor against an other-

wise identical baseline system with unmodified Linux

3.13.1 kernels.

6.1 Thoth-based data retrieval system

We study the total Thoth overheads in the prototype re-

trieval system described in Section 4.

Indexing First, we measure the overhead of the search

engine’s index computation. We run the Lucene in-

dexer over a) the entire 258GB snapshot of the English

Wikipedia, and b) a 5GB part of the snapshot. The sizes

of the resulting indices are 54GB and 959MB, respec-

tively. Table 3 shows the average indexing time and stan-

dard deviation across 3 runs. In both cases, Thoth’s run-

time overhead is below 1%.

Dataset 258GB Dataset 5GB

Avg. (mins) σ Avg. (mins) σ
Linux 1956.1 30 27.8 0.06

Thoth 1968.6 24 28.0 0.11

Overhead 0.65% 0.7%

Table 3: Indexing runtime overhead

Even in a sharded configuration, Lucene relies on a se-

quential indexer, which can become a bottleneck when a

corpus is large and dynamic. Larger search engines may

rely on parallel map/reduce jobs to produce their index.

As a proof of concept, we built a Hadoop-based indexer

using Thoth, although we don’t use it in the following

evaluation because it does not support all the features

of the Lucene indexer. All mappers and reducers run as

confined tasks, and receive the same taint as the original,

sequential indexer.

Search throughput Next, we measure the overhead of

Thoth on the query latency and throughput. To ensure

load balance, we partitioned the index into two shards

of 22GB and 33GB, chosen to achieve approximately

equal query throughput. We use two configurations:

2SERVERS: 2 server machines execute a Lucene in-

stance with different index shards. 4SERVERS: Here,

we use two replicated Lucene instances in each shard to

scale the throughput. The front-end forwards each search

request to one of the two Lucene instances in each shard

and merges the results.

We drive the experiment with the following work-

load. We simulate a population of 40,000 users, where

each user is assigned a friend list consisting of 12 ran-

domly chosen other users, subject to the constraint that

the friendship relationship is symmetric. Each item in

the corpus is assigned either a private, public, or friends-

only policy in the proportion 30/50/20%, respectively. A

total of 1.0% of the dataset is censored in some region.

All simulated clients are in a region that blacklists 2250

random items.

We use query strings based on the popularity of

Wikipedia page accesses during one hour on April 1,

2012 [42]. Specifically, we search for the titles of the

top 20K visited articles and assign each of the queries

randomly to one of the users. 24 simulated active users

connect to each server machine, maintain their sessions

throughout the experiment, and issue 48 (2SERVERS)

and 96 (4SERVERS) queries concurrently to saturate

the system. In addition, a simulated “employee” spo-

radically issues a read access to protected user files for a

total of 200 MAL accesses.

During each query, the front-end looks up the user

profile and updates the user’s search history in the key-

value store. To maximize the performance of the baseline

and fully expose Thoth’s overheads, the index shard and

USENIX Association 25th USENIX Security Symposium 647

 0
 1
 2
 3
 4
 5
 6
 7

2SERVERS 4SERVERST
h

ro
u

g
h

p
u

t
(x

1
0

0
 Q

/s
)

(a) configuration

Linux Thothpublic Thothratio

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 5 20N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

(b) queries per session

Figure 4: Search throughput

parts of the corpus relevant to our query stream are pre-

loaded into the servers’ main memory caches, resulting

in a CPU-bound workload.

Figure 4 (a) shows the average throughput over 10 runs

of 20K queries each, for the baseline (Linux) and Thoth

under 2SERVERS and 4SERVERS. The error bars in-

dicate the standard deviation over the 10 runs. We used

two Thoth configurations, Thothpublic and Thothratio.

In Thothpublic, the policies permit all accesses. This

configuration helps to isolate the overhead of Thoth’s

I/O interposition and reference monitor invocation. In

Thothratio, input files are private to a user, public, or ac-

cessible to friends-only in the ratio 30:50:20. All files al-

low employee access under MAL, enforce region-based

censorship, and have the declassification condition with

ONLY_CONDUIT_IDS+.

The query throughput scales approximately linearly

from 2SERVERS (320 Q/s) to 4SERVERS (644 Q/s), as

expected. Thoth with all policies enforced (Thothratio)

has an overhead of 3.63% (308 Q/s) in 2SERVERS

and 3.55% in 4SERVERS (621 Q/s). We note that

the throughput achieved with Thothpublic (310 Q/s

and 627 Q/s, respectively) is only slightly higher than

Thothratio’s. This suggests that Thoth’s overhead is

dominated by costs like I/O interception, Thoth API

calls, and metadata operations, which are unrelated to

policy complexity.

To test whether overheads can be reduced further, we

also implemented a rudimentary reference monitor in the

kernel, which does not support session management and

policy interpretation (which require libraries that are un-

available in the Linux kernel). This reduced in-kernel

monitor suffices to execute Thothpublic. Moving the ref-

erence monitor to the kernel reduced the overhead of

Thothpublic from 3% to under 1%, which suggests that

overheads can be further reduced my moving the refer-

ence monitor to the kernel and, hence, eliminating the

cost of IPC between the LSM and the reference monitor.

With Thoth, the front-end is re-exec’ed at the end of

every user session to shed the front-end’s taint. The rel-

ative overhead of doing so reduces with session length.

Figure 4 (b) shows the average throughput normalized

to the Linux baseline for session lengths of 1, 2, 5 and

0

1

2

3

4

5

4KB 512KB

N
o
rm

a
liz

e
d
 l
a
te

n
c
y

Linux
Thothpublic
Thothprivate
ThothACL
ThothACL+
ThothFoF
ThothMAL

Figure 5: Read latency, normalized to Linux’s

20 queries in 2SERVERS. Due to the per-session front-

end exec, Thoth’s overhead is higher for small sessions

(15.8% for a single query); however, the overhead di-

minishes quickly to 8.6% for 2 queries per session, and

the throughput is within a standard deviation of the max-

imum for 5 or more queries per session in all configura-

tions, including 4SERVERS.

Search latency Next, we measure the overhead on

query latency. Table 4 shows the average query latency

across 5 runs of 10K queries in 2SERVERS. The results

in 4SERVERS are similar. In all cases, Thoth adds less

than 6.7ms to the baseline latency.

Avg. (ms) σ Overhead

Linux 47.09 0.43

Thothpublic 51.60 0.29 9.6%

Thothratio 53.78 0.20 14.2%

Table 4: Query search latency (ms)

6.2 Microbenchmarks

Next, we perform a set of microbenchmarks to isolate

Thoth’s overheads on different policies. We measure

the latency of opening, reading sequentially, and closing

10K files in the baseline and with Thoth under different

policies associated with the files. The files were previ-

ously written to disk sequentially to ensure fast sequen-

tial read performance for the baseline and therefore fully

expose the overheads.

In the Thoth experiments, accesses are performed by

an UNCONFINED task to force an immediate policy eval-

uation. The following policies are used. Thothpublic:

files can be read by anyone. Thothprivate: access is re-

stricted to a specific user. ThothACL: access to friends

only (all users have the same friend list). ThothACL+:

access to friends only (each user has a different friend

list). ThothFoF: access to friends of friends (each user

has a different friend list). All friend lists used in the

microbenchmark have 100 entries. ThothMAL: each file

has a MAL policy, where each read requires an entry in

a log with an append-only integrity policy.

648 25th USENIX Security Symposium USENIX Association

Figure 5 shows the average time for reading a file of

sizes 4K and 512K, normalized to the baseline Linux

latency (0.145ms and 3.6ms, respectively); the error

bars indicate the standard deviation among the 10K file

reads. We see that Thoth’s overheads increase with

the complexity of the policy, in the order listed above.

For the 4KB files, the overheads range from 10.6% for

Thothpublic and Thothprivate to 152.7% for ThothMAL.

The same trend holds for larger files, but the over-

head range diminishes to 0.6%–23% for 96KB files (not

shown in the figure) and 0.34%–3.3% for 512KB files.

We also experimented with friend list sizes of 12 and

50 entries for ThothACL, ThothACL+ and ThothFoF; the

resulting latency was within 2.4% of the corresponding

100-entry friend list latency. This is consistent with the

known complexity of the friend lookup, which is loga-

rithmic in the list size.

We also looked at the breakdown of Thoth latency

overheads. With ThothACL and 4KB files, Thoth’s over-

head for file read is on average 28µs, which are spent

intercepting the system call and maintaining the session

state. Interpreting the policy and checking the friend lists

takes 6µs, but this time is completely overlapped with the

disk read.

Write transaction latency We performed similar mi-

crobenchmarks for write transactions. In general,

Thoth’s write transactions have low overhead since its

transaction log is stored in (simulated) NVRAM. As in

the case of read latency, the overhead depends on the

granularity of writes and the complexity of the policy

being enforced. Under the index policy, the overhead

ranges from 0.25% for creating large files to 2.53x in the

case of small files. The baseline Linux is very fast at cre-

ating small files that are written to disk asynchronously,

while Thoth has to synchronously update its policy store

when a new file is created. The overhead is 5.8x and

8.6x in the case of a write of 10 conduit ids to a file un-

der the ONLY_CND_IDS and ONLY_CND_IDS+ poli-

cies, respectively. This high overhead is due to check-

ing that each conduit id being written exists (and is

written into a file with a stricter policy in the case of

ONLY_CND_IDS+). However, this overhead amounts

to only a small percentage of the overall search query

processing, as is evident from Table 4.

6.3 Fault-injection tests

To double-check Thoth’s ability to stop unwanted data

leaks, we injected several types of faults in different

stages of the search pipeline.

Faulty Lucene indexer We reproduced a known

Lucene bug [5] that associates documents with wrong

attributes during index creation. This bug is security-

relevant because, in the absence of another mechanism,

attributes can be used for labeling data with their owners.

In our experiment Thoth successfully stopped the flow

in all cases where the search results contained a conduit

whose policy disallowed access to the client.

We also intentionally misconfigured the indexer to in-

dex the users’ query and click histories, which should

not show up in search results. Thoth prevented the in-

dexer from writing the index after it had read either the

query or the click history.

Faulty Lucene search We reproduced a number of

known Lucene bugs that produce incorrect search results.

Such bugs may produce Alice’s private documents in

Bob’s search. The bugs include incorrect parsing of spe-

cial characters [7], incorrect tokenization [9], confusing

uppercase and lowercase letters [10], using an incorrect

logic for query expansion [4, 3], applying incorrect key-

word filters [8], and premature search termination [6].

We confirmed that all policy violations resulting from

these bugs faults were blocked by Thoth.

To check the declassification condition

ONLY_CND_IDS+, we modified the search pro-

cess to (incorrectly) output text from the index in place

of conduit ids. Thoth prevented the search process from

producing such output.

Faulty front-end We issued accesses to a private file

protected by the MAL policy without adding appropri-

ate log entries. Thoth prevented the front-end process

from extricating data to the caller. We performed similar

tests for the region-based censorship policy with similar

results.

7 Related work

Search engine policy compliance Grok [36] is a pri-

vacy compliance tool for the Bing search engine. Grok

and Thoth differ in techniques, expressiveness and tar-

get policies. Grok uses heuristics and selective manual

verification by developers to assign attributes — abstract

labels that represent intended confidentiality — to pro-

cesses and data stores. Grok policies, written in a lan-

guage called Legalese, specify allowed data flows on at-

tributes. Attributes and policies apply at the granular-

ity of fields (types), not individual users or data items,

so Legalese cannot express the private, friends only and

friends of friends policies from Section 2. (This restric-

tion applies broadly to most static analysis-based policy

enforcement techniques.) Legalese also does not sup-

port content-dependent policies and cannot express the

mandatory access logging, censorship and typed declas-

sification policies from Section 2. Grok enforces poli-

cies with a fast static analysis on computations written

in languages like Hive, Dremel, and Scope. Grok im-

poses no runtime overhead. Thoth uses kernel-level in-

terception and is language-independent, but has a small

runtime overhead. Grok-assigned attributes may be in-

correct, so Grok may have false negatives. In contrast,

USENIX Association 25th USENIX Security Symposium 649

Thoth enforces all conduit policies without false nega-

tives.

Cloud policy compliance Maniatis et al. [31] outline

a vision, architecture and challenges for data protection

in the Cloud using secure data capsules. Thoth can be

viewed as a realization of that vision in the context of a

data retrieval system, and contributes the design of a pol-

icy language, enforcement mechanism, and experimen-

tal evaluation. Secure Data Preservers (SDaPs) [27] are

software components that mediate access to data accord-

ing to a user-provided policy. Unlike Thoth, SDaPs are

suitable only for web services that interact with user data

through simple, narrow interfaces, and do not require di-

rect access to users’ raw data. LoNet [26] enforces data-

use policies at the VM-level. Unlike Thoth, declassifica-

tion requires trusted application code and interception is

limited to file I/O using FUSE, which results in very high

overhead.

Information flow control (IFC) Numerous systems

restrict a program’s data flow to enforce security poli-

cies, either in the programming language (Jif [34]), in

the language runtime (Resin [46], Nemesis [19]), in lan-

guage libraries (Hails [25]), using software fault isola-

tion (duPro [35]), in the OS kernel (e.g., Asbestos [22],

HiStar [47], Flume [28], Silverline [33]), or in a hyper-

visor (Neon [48]). Thoth differs from these systems in

a number of ways. Unlike language-based IFC, Thoth

applications can be written in any language.

Architecturally, Thoth is close to Flume. Both iso-

late processes using a Linux security extension and a

user-space reference monitor, both enforce policies on

conduits and both distinguish between CONFINED and

UNCONFINED processes in similar ways. However, like

all other kernel-level solutions for IFC (Asbestos, HiS-

tar, Silverline), Flume uses abstract labels as taints. In

contrast, Thoth uses declarative policies as taints. This

results in two fundamental differences. First, Flume re-

lies on trusted application components to map system

access policies to abstract labels and for all declassifi-

cation. In contrast, in Thoth, the reference monitor en-

forces all access conditions (specified in the read and

update rules) and all declassification conditions (speci-

fied in the declassify clauses). Application components

are trusted only to install correct policies on ingress and

egress nodes. Second, Thoth policies describe the policy

configuration completely. In Flume, the policy configu-

ration is implicit in the code of the trusted components

that declassify and endorse data, and map access policies

to labels (although mapping can be automated to some

extent [21]).

Resin [46] enforces programmer-provided policies on

PHP and Python web applications. Unlike Thoth’s

declarative policies, Resin’s policies are specified as

PHP/Python functions. Resin tracks flows at object

granularity. Thoth tracks flows at process granularity,

which matches the pipelined structure of data retrieval

systems and reduces overhead significantly. Hails [25]

is a Haskell-based web development framework with

statically-enforced IFC. Thoth offers IFC in the kernel,

and is independent of any language, runtime, or frame-

work used for developing applications. COWL [39] con-

fines JavaScript browser contexts using labels and IFC.

Thoth addresses the complementary problem of control-

ling data flows on the server side. Both Hails and COWL

use DC-labels [38] as policies. DC-labels cannot express

content-dependent policies like our censorship, manda-

tory access logging and ONLY_CND_IDS policies.

Declarative policies Thoth’s policy language is based

on Datalog and linear temporal logic (LTL). Datalog and

LTL are well-studied foundations for policy languages

(see [30, 18, 20] and [15, 16, 23], respectively), known

for their clarity, conciseness, and high-level of abstrac-

tion. The primary innovation in Thoth’s policy language

is its two-layered structure, where the first layer specifies

access policies and the second layer specifies declassi-

fication policies. Some operating systems (Nexus and

Taos [37, 45]), file systems (PFS and PCFS [41, 24]),

and at least one cyber-physical system (Grey [17]) and

one storage system (Guardat [40]) enforce access poli-

cies expressed in Datalog-like languages. Thoth can

enforce similar policies but, additionally, Thoth tracks

flows and can enforce declassification policies that these

systems cannot enforce. Like Guardat, but unlike the

other systems listed above, Thoth’s policy language sup-

ports data-dependent policies. The design of Thoth’s ref-

erence monitor is inspired by Guardat’s monitor. How-

ever, Thoth’s monitor tracks data flows, supports declas-

sification policies, and intercepts memcached I/O and

network communication, all of which Guardat’s monitor

does not do.

8 Ongoing work

In this section, we briefly describe ongoing work related

to Thoth.

Lightweight isolation Information flow control re-

quires the isolation of computations that handle differ-

ent users’ private data. In general-purpose operating sys-

tems, this means that separate processes must be used to

handle user sessions. Thoth, for instance, requires that

front-end processes be exec’ed for each new session. We

are working on an operating system primitive that pro-

vides isolation among different user sessions within the

same process with low cost.

Database-backed retrieval systems Thoth includes

conduit interceptors for files, named pipes, network con-

nections and a key-value store (memcached). In current

650 25th USENIX Security Symposium USENIX Association

work, we are building a system to ensure compliance of

SQL database queries with declarative policies associ-

ated with the database schema. The system can be used

as a conduit interceptor, thus extending Thoth’s protec-

tion to database-backed data retrieval systems.

Policy testing Assigning policies to internal conduits

in Thoth, and making sure that they permit all data flows

compliant with the ingress and egress policies, can be

a tedious task in a large system. In current work, we

are developing a tool that generates internal conduit poli-

cies semi-automatically using a system’s dataflow graph

and the ingress/egress policies as inputs. Moreover, the

tool performs systematic testing to ensure all compliant

dataflows are allowed, and helps the policy developer

generate appropriate declassification policies as needed.

9 Conclusion

Efficient policy compliance in data retrieval systems is a

challenging problem. Thoth is a kernel-level policy com-

pliance layer to address this problem. The provider has

the option to associate a declarative policy with each data

source and sink. The policy specifies confidentiality and

integrity requirements and may reflect the data owner’s

privacy preferences, the provider’s own data-use policy,

and legal requirements. Thoth enforces these policies by

tracking and controlling data flows across tasks through

kernel I/O interception. It prevents data leaks and cor-

ruption due to bugs and misconfigurations in application

components (including misconfigurations in policies on

internal conduits), as well as actions by unprivileged op-

erators.

Our technical contributions include a declarative pol-

icy language that specifies both access (read/write) poli-

cies and how those access policies may change. The lat-

ter can be used to represent declassification policies. Ad-

ditionally, the language supports content-dependent poli-

cies. Thoth uses policy sets as taint, which eliminates the

need to trust application processes with access checks

at the system boundary and with declassification. Our

Linux-based prototype shows that Thoth can be deployed

with low overhead in data retrieval systems. Among

other things, this demonstrates the usefulness and viabil-

ity of coarse-grained taint tracking as a basis for policy

enforcement.

Acknowledgment

We would like to thank the anonymous reviewers for

their helpful feedback. This research was supported in

part by the European Research Council (ERC Synergy

imPACT 610150) and the German Research Foundation

(DFG CRC 1223).

References

[1] Adobe data breach more extensive than previ-

oulsy disclosed. http://www.reuters.

com/article/2013/10/29/us-adobe-

cyberattack-idUSBRE99S1DJ20131029.

[2] Apache Lucene. http://lucene.apache.

org.

[3] Apache Lucene bug report 1300. https://

issues.apache.org/jira/browse/

LUCENE-1300.

[4] Apache Lucene bug report 2756. https://

issues.apache.org/jira/browse/

LUCENE-2756.

[5] Apache Lucene bug report 3575. https://

issues.apache.org/jira/browse/

LUCENE-3575.

[6] Apache Lucene bug report 4511. https://

issues.apache.org/jira/browse/

LUCENE-4511.

[7] Apache Lucene bug report 49. https://

issues.apache.org/jira/browse/

LUCENE-49.

[8] Apache Lucene bug report 6503. https://

issues.apache.org/jira/browse/

LUCENE-6503.

[9] Apache Lucene bug report 6595. https://

issues.apache.org/jira/browse/

LUCENE-6595.

[10] Apache Lucene bug report 6832. https://

issues.apache.org/jira/browse/

LUCENE-6832.

[11] DataLossDB: Open Security Foundation.

http://datalossdb.org.

[12] Memcached. http://memcached.org/.

[13] Privacy Rights Clearinghouse. http://

privacyrights.org.

[14] Target breach worse than thought, states launch

joint probe. http://www.reuters.com/

article/2014/01/10/us-target-

breach-idUSBREA090L120140110.

[15] Adam Barth, John C. Mitchell, Anupam Datta, and

Sharada Sundaram. Privacy and utility in busi-

ness processes. In Proceedings of the 20th IEEE

Computer Security Foundations Symposium (CSF),

2007.

[16] David A. Basin, Felix Klaedtke, and Samuel

Müller. Policy monitoring in first-order temporal

logic. In Proceedings of the 22nd International

Conference on Computer-Aided Verification (CAV),

2010.

[17] Lujo Bauer, Scott Garriss, and Michael K. Reiter.

Distributed proving in access-control systems. In

Proceedings of the 26th IEEE Symposium on Secu-

rity and Privacy (S&P), 2005.

USENIX Association 25th USENIX Security Symposium 651

[18] Moritz Y. Becker, Cédric Fournet, and Andrew D.

Gordon. Design and semantics of a decentralized

authorization language. In Proceedings of the 20th

IEEE Computer Security Foundations Symposium

(CSF), 2007.

[19] Michael Dalton, Christos Kozyrakis, and Nickolai

Zeldovich. Nemesis: Preventing authentication &

access control vulnerabilities in web applications.

In Proceedings of the 18th USENIX Security Sym-

posium, 2009.

[20] John DeTreville. Binder, a logic-based security lan-

guage. In Proceedings of the 23rd IEEE Symposium

on Security and Privacy (S&P), 2002.

[21] Petros Efstathopoulos and Eddie Kohler. Manage-

able fine-grained information flow. In Proceedings

of the 3rd ACM SIGOPS European Conference on

Computer Systems (EuroSys), 2008.

[22] Petros Efstathopoulos, Maxwell Krohn, Steve Van-

DeBogart, Cliff Frey, David Ziegler, Eddie Kohler,

David Mazières, Frans Kaashoek, and Robert Mor-

ris. Labels and event processes in the Asbestos

operating system. In Proceedings of the 20th

ACM Symposium on Operating Systems Principles

(SOSP), 2005.

[23] Deepak Garg, Limin Jia, and Anupam Datta. Pol-

icy auditing over incomplete logs: theory, imple-

mentation and applications. In Proceedings of the

18th ACM Conference on Computer and Commu-

nications Security (CCS), 2011.

[24] Deepak Garg and Frank Pfenning. A proof-carrying

file system. In Proceedings of the 31st IEEE Sym-

posium on Security and Privacy (S&P), 2010.

[25] Daniel B. Giffin, Amit Levy, Deian Stefan, David

Terei, David Mazières, John Mitchell, and Alejan-

dro Russo. Hails: Protecting data privacy in un-

trusted web applications. In Proceedings of the 10th

USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2012.

[26] Havard D. Johansen, Eleanor Birrell, Robbert van

Renesse, Fred B. Schneider, Magnus Stenhaug, and

Dag Johansen. Enforcing privacy policies with

meta-code. In Proceedings of the 6th ACM SIGOPS

Asia-Pacific Workshop on Systems (APSys), 2015.

[27] Jayanthkumar Kannan, Petros Maniatis, and

Byung-Gon Chun. Secure data preservers for web

services. In Proceedings of the 2nd USENIX Con-

ference on Web Application Development, 2011.

[28] Maxwell Krohn, Alexander Yip, Micah Brodsky,

Natan Cliffer, M. Frans Kaashoek, Eddie Kohler,

and Robert Morris. Information flow control for

standard OS abstractions. In Proceedings of 21st

ACM SIGOPS Symposium on Operating Systems

Principles (SOSP), 2007.

[29] Leslie Lamport. The part-time parliament. ACM

Transactions on Computer Systems, 1998.

[30] Ninghui Li and John C. Mitchell. Datalog with con-

straints: A foundation for trust management lan-

guages. In Proceedings of the 5th Symposium on

Practical Aspects of Declarative Languages, 2003.

[31] Petros Maniatis, Devdatta Akhawe, Kevin Fall,

Elaine Shi, Stephen McCamant, and Dawn Song.

Do you know where your data are? secure data cap-

sules for deployable data protection. In Proceed-

ings of the 13th USENIX Conference on Hot Topics

in Operating Systems (HotOS), 2011.

[32] Zohar Manna and Amir Pnueli. Temporal Verifica-

tion of Reactive Systems: Safety. Springer-Verlag,

1995.

[33] Yogesh Mundada, Anirudh Ramachandran, and

Nick Feamster. Silverline: Preventing data leaks

from compromised web applications. In Proceed-

ings of the 29th Annual Computer Security Appli-

cations Conference, 2013.

[34] Andrew C. Myers. JFlow: Practical mostly-

static information flow control. In The 26th ACM

SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL), 1999.

[35] Ben Niu and Gang Tan. Efficient user-space infor-

mation flow control. In Proceedings of the 8th ACM

SIGSAC Symposium on Information, Computer and

Communications Security, 2013.

[36] Shayak Sen, Saikat Guha, Anupam Datta, Sri-

ram K. Rajamani, Janice Tsai, and Jeannette M.

Wing. Bootstrapping privacy compliance in big

data systems. In Proceedings of the 35th IEEE Sym-

posium on Security and Privacy (S&P), 2014.

[37] Alan Shieh, Dan Williams, Emin Gün Sirer, and

Fred B Schneider. Nexus: a new operating system

for trustworthy computing. In Proceedings of the

20th ACM Symposium on Operating Systems Prin-

ciples (SOSP), 2005.

[38] Deian Stefan, Alejandro Russo, David Mazières,

and John C. Mitchell. Disjunction category labels.

In Proceedings of the 16th Nordic Conference on

Information Security Technology for Applications,

2011.

[39] Deian Stefan, Edward Z. Yang, Petr Marchenko,

Alejandro Russo, Dave Herman, Brad Karp, and

David Mazières. Protecting users by confining

JavaScript with COWL. In Proceedings of the 11th

USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2014.

[40] Anjo Vahldiek-Oberwagner, Eslam Elnikety,

Aastha Mehta, Deepak Garg, Peter Druschel,

Rodrigo Rodrigues, Johannes Gehrke, and Ansley

Post. Guardat: Enforcing data policies at the

storage layer. In Proceedings of the 3rd ACM

SIGOPS European Conference on Computer

652 25th USENIX Security Symposium USENIX Association

Systems (EuroSys), 2015.

[41] Kevin Walsh and Fred B. Schneider. Costs of se-

curity in the PFS file system. Technical report,

Computing and Information Science, Cornell Uni-

versity, 2012.

[42] Wikimedia Foundation. Image Dump. http://

archive.org/details/wikimedia-

image-dump-2005-11.

[43] Wikimedia Foundation. Static HTML dump.

http://dumps.wikimedia.org/.

[44] Wikipedia. Data breach: Major incidents.

http://en.wikipedia.org/wiki/Data_

breach#Major_incidents.

[45] Edward Wobber, Martín Abadi, Michael Burrows,

and Butler Lampson. Authentication in the Taos

operating system. ACM Transactions on Computer

Systems (TOCS), 12(1), 1994.

[46] Alexander Yip, Xi Wang, Nickolai Zeldovich, and

M Frans Kaashoek. Improving application secu-

rity with data flow assertions. In Proceedings of

the ACM SIGOPS 22nd Symposium on Operating

Systems Principles (SOSP), 2009.

[47] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie

Kohler, and David Mazières. Making information

flow explicit in HiStar. In Proceedings of the 7th

USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2006.

[48] Qing Zhang, John McCullough, Justin Ma, Nabil

Schear, Michael Vrable, Amin Vahdat, Alex C.

Snoeren, Geoffrey M. Voelker, and Stefan Sav-

age. Neon: System support for derived data man-

agement. In Proceedings of the 6th ACM SIG-

PLAN/SIGOPS International Conference on Vir-

tual Execution Environments (VEE), 2010.

A Thoth policies for data flows in a search

engine

In this Appendix we provide details of the policies used

in our Thoth-compliant search engine. All policies are

represented in the read, update and declassify rules on

source conduits (documents that the search engine in-

dexes, the user profile, etc.). We describe these rules in-

crementally: We start from a set of base rules, which we

refine to include more policies.

Base rules Our base rules allow anyone to read, update

or destroy the source conduit they are attached to.

read :- T RUE

update :- T RUE

destroy :- T RUE

declassify :- isAsRestrictive(read,this.read)
until FALSE

The read, update and destroy rules have condition

T RUE , which always holds, so these rules do not re-

strict access at all. The declassify rule insists that the

read rule on any conduit containing data derived from

the source conduit be at least as restrictive as the read

rule above, which will always be the case (because the

read rule above is the most permissive read rule possi-

ble). This base policy is pointless in itself, but it serves

as the starting point for the remaining policies.

A.1 Client policies

First, we describe policies to represent client privacy

preferences.

Private data policy A user Alice may wish that her

private files (e.g., her e-mails) be accessible only to her.

This can be enforced by requiring that accesses to Alice’s

private files happen in the context of a session authenti-

cated with Alice’s key. Technically, this is accomplished

by replacing the conditions in the base read, update and

destroy rules as shown below and attaching the result-

ing rules to Alice’s private files. The predicate sKeyIs(k)
means that the current session is authenticated using the

public key k.
read :- sKeyIs(kAlice)
update :- sKeyIs(kAlice)
destroy :- sKeyIs(kAlice)

The declassify rule remains unchanged. It ensures that

any conduit containing data derived from Alice’s private

files is subject to a read rule that is at least as restrictive

as the revised read rule above. Hence, no such conduit

can be read by anyone other than Alice.

Friends only policy Alice might want that her blog

and online social network profile be readable by her

friends. To do this, she could add a disjunctive (“or”-

separated) clause in the read rule requiring that read ac-

cesses happen in the context of a session authenticated

with a key kX of one of Alice’s friends. Alice’s friends

are assumed to be listed in the file Alice.acl, which con-

tains an entry of the form isFriend(kX ,XACL) for each

public key kX that belongs to a friend of Alice. The

isFriend entry also states the file XACL which lists the

friends of the key kX ’s owner. Note that the isFriend en-

try format presented in the paper was slightly simplified

for readability.

read :- sKeyIs(kAlice) ∨
[sKeyIs(kX) ∧ (“Alice.acl”, off) says isFriend(kX ,XACL)]

The predicate ((‘Alice.acl”,off) says
isFriend(kX ,XACL)) checks that kX exists in the list

of Alice’s friends (file “Alice.acl”) at some offset off.

Friends of friends policy To additionally allow read

access to friends of friends, the policy would require read

accesses to happen in the context of an authenticated ses-

sion whose key is present in the friend list of any of Al-

ice’s friends.

USENIX Association 25th USENIX Security Symposium 653

read :- sKeyIs(kAlice) ∨
[sKeyIs(kX) ∧ (“Alice.acl”, off) says isFriend(kX ,XACL)]
∨

[sKeyIs(kY) ∧ (“Alice.acl”, off1) says isFriend(kX ,XACL)
∧ (XACL, off2) says isFriend(kY ,YACL)]

The predicate ((‘Alice.acl”,off1) says

isFriend(kX ,XACL)) checks that kX exists in the list

of Alice’s friends (file “Alice.acl”) at some offset

off1. It also binds the variable XACL to the friend

list of the key kX ’s owner. Next, the predicate

((XACL,off2) says isFriend(kY ,YACL)) checks that the

public key that authenticated the session kY exists in the

list of friends for the kX ’s owner at some offset off2.

A.2 Provider policies

Next, we describe two policies that a provider may wish

to impose, possibly to comply with legal requirements.

Mandatory Access Logging (MAL) The MAL policy

allows an authorized employee of the provider read ac-

cess to a source conduit F if the access is logged. The

log entry must have been previously written to the file

k.log, where k is the public key of the employee. The

log entry must mention the employee’s key, the ID of the

accessed conduit and the time at which the conduit is ac-

cessed with a tolerance of 60 seconds. To enforce these

requirements, a new disjunctive condition is added to the

last read rule above. The . . . in the rule below abbreviate

the conditions of the last read rule above.

read :- . . . ∨
sKeyIs(k) ∧ cIdIs(F) ∧
(“auth_employees”,off) says isEmployee(k) ∧
(LOGk = concat(k,“.log”)) ∧
(LOGk,off1) says readLog(k,F,T) ∧ timeIs(curT) ∧
gt(curT,T) ∧ sub(di f f ,curT,T) ∧ lt(di f f ,60)

The predicate sKeyIs(k) binds the public key that

authenticated the session (i.e., the public key of

the employee) to the variable k, and cIdIs(F) binds

the name of source conduit to F . Next, the

predicate ((“auth_employees”,off) says isEmployee(k))
checks that k exists in the list of authorized employ-

ees (file “auth_employees”) at some offset off, to ver-

ify that the source conduit’s reader is really an em-

ployee. Next, LOGk is bound to the name of the em-

ployee’s log file, k.log. The predicate ((LOGk,off1) says
readLog(k,F,T)) checks that the log file contains an ap-

propriate entry with some time stamp T and the remain-

ing predicates check that the current time, curT , satisfies

T ≤ curT ≤ T + 60s.

Every log file has a read rule that allows only autho-

rized auditors to read the file (the public keys of all au-

thorized auditors are assumed to be listed in the file “au-

ditors”). It also has an update rule that allows appends

only, thus ensuring that a log entry cannot be removed or

overwritten.

read :- sKeyIs(k) ∧ (“auditors”, off) says isAuditor(k)
update :- sKeyIs(k) ∧

(“auth_employees”, off) says isEmployee(k) ∧
cCurrLenIs(cLen) ∧ cNewLenIs(nLen) ∧
gt(nLen,cLen) ∧ (this,0,cLen) hasHash (h) ∧
(this,0,cLen) willHaveHash (h)

In the append-only policy (rule update above), the

predicate cCurrLenIs(cLen) binds the current length of

the log file to cLen and the predicate cNewLenIs(nLen)
binds the new length of the log file to nLen. Next, the

predicate gt(nLen,cLen) ensures that the update only

increases the log file’s length. (c, off, len) hasHash

(or willHaveHash) is a special mode of using says (or

willsay) which allows the policy interpreter to refer to the

hash of the conduit c’s content (or updated content in a

write transaction) from offset off with length len. In the

update rule, hasHash and willHaveHash are used to ver-

ify that the existing file content is not modified during an

update by checking that the hashes of the file from offset

0 to cLen, originally and after the prospective update, are

equal.

A more efficient implementation of the append-

only policy could rely on a specialized predicate

unmodified(off, len), which checks that the conduit con-

tents from offset off with length len were not modified.

The update rule could then be simplified to:

update :- sKeyIs(k) ∧
(“auth_employees”, off) says isEmployee(k) ∧
cCurrLenIs(cLen) ∧ cNewLenIs(nLen) ∧
gt(nLen,cLen) ∧ unmodified(0,cLen)

Region-based censorship Legal requirements may

force the provider to blacklist certain source files in cer-

tain regions. Accordingly, the goal of the censorship pol-

icy is to ensure that content from a document F can only

reach users in regions whose blacklists do not contain F .

The policy relies on a mapping from IP addresses to re-

gions and a per-region blacklist file. The blacklist file is

maintained in a sorted order to efficiently lookup whether

it contains a given document or not.

The censorship policy is expressed by modifying the

declassify rule of every source conduit cndID as follows:

declassify :- isAsRestrictive(read,this.read) until
(CENSOR(cndID) ∧ isAsRestrictive(read,this.read))

The rule says that the read rule on any con-

duit to which cndID flows must be as restrictive as

cndID’s read rule until a conduit at which the condition

CENSOR(cndID) holds is reached. CENSOR(cndID) is

a macro defined below. The predicate sIpIs(IP) checks

654 25th USENIX Security Symposium USENIX Association

that the IP address of the connecting (remote) party is

IP and the predicate IpPrefix(IP,R) means that IP be-

longs to region R. The blacklist file for region R is

R.BlackList. In words, CENSOR(cndID) means that the

remote party’s IP belongs to a region R and cndID lies

strictly between two two consecutive entries in R’s black-

list file (and, hence, cndID does not exist in R’s blacklist

file).

sIpIs(IP) ∧ IpPrefix(IP,R) ∧
(FBL = concat(R,“.BlackList”)) ∧
(FBL,off1) says isCensored(cnd1) ∧
add(off2,off1,CENSOR_ENTRY_LEN) ∧
(FBL,off2) says isCensored(cnd2) ∧
lt(cnd1,cndID) ∧ lt(cndID,cnd2)

A.3 Search engine flows

Indexing flow The indexer reads documents with pos-

sibly contradictory policies and, in the absence of a

dedicated provision for declassification, the index (and

any documents derived from it) cannot be served to any

client. To prevent this problem, searchable documents al-

low typed declassification. The declassify rule for each

searchable document is modified with a new clause that

allows complete declassification into an (internal) con-

duit whose update rule allows the conduit to contain

only a list of object ids. The modified declassify rule

of each source document has the form:

declassify :- . . . until (. . . ∨ (cIsIntrinsic ∧
isAsRestrictive(update,ONLY_CND_IDS)))

The macro ONLY_CND_IDS stipulates that only a list

of valid conduit ids can be written and it expands to:

cCurrLenIs(cLen) ∧ cNewLenIs(nLen) ∧
each in(this,cLen,nLen) says(cndId)
{cIdExists(cndId)}

In the macro above, the predicate cNewLenIs(nLen)
binds the new length of the output file to nLen. The pred-

icate willsay checks that the content update from offset 0

and length nLen is a list of conduit IDs, and the predi-

cate cIdExists(cndId) checks that cndId corresponds to

an existing conduit.

So far we have assumed that the conduit ids are not

themselves confidential. If the presence or absence of a

particular conduit id in the search results may leak sensi-

tive information, then the source declassification policy

can be augmented to require that the list of conduit ids

is accessible only to a principal who satisfies the confi-

dentiality policies of all listed conduits. Then, the macro

ONLY_CND_IDS can be re-written to:

cCurrLenIs(cLen) ∧ cNewLenIs(nLen) ∧
each in(this,cLen,nLen) willsay(cndId)
{cIdExists(cndId) ∧ hasPol(cndId,P) ∧
isAsRestrictive(read,P.read) ∧
isAsRestrictive(declassify,P.declassify)}

Additionally in the macro above, the predicate

hasPol(cndId,P) binds P to the policy of the conduit

cndId, and the predicate isAsRestrictive(read,P.read)
requires that the confidentiality of the list of conduit ids

is as restrictive as the confidentiality requirements of the

source conduit ids themselves.

Profile aggregation flow Since raw user activity logs

are typically private, a declassification is required that

enables a profile generator to produce a user preferences

vector (a vector of fixed length) from the activity logs.

However, this preferences vector must further be re-

stricted so that it can be used to produce only a list of

conduit ids (the search results). Further, the user might

also want to ensure that only activity logs generated in

the past 48 hours be used for personalization. This can be

achieved by allowing the declassification into the fixed-

size vector to happen only within 172800 seconds of the

log’s creation. Suppose an activity log is created at time

t and that the preferences vector has length n. Then, the

relevant policy rules on the activity log are the following

(note that t and n are constants, not variables).

read :- sKeyIs(kAlice)
declassify :- [isAsRestrictive(read,this.read) until
isAsRestrictive(update,ONLY_FLOATS(n)) ∧
cIsIntrinsic ∧ timeIs(curT) ∧ gt(curT, t) ∧
sub(di f f ,curT, t) ∧ lt(di f f ,172800)] ∧
[isAsRestrictive(read,this.read) until cIsIntrinsic ∧
isAsRestrictive(update,ONLY_CND_IDS)]

This policy ensures that the raw user logs can only be

transformed into the user preferences vector, which in

turn can only be declassified into the search results of the

search engine.

The macro ONLY_FLOATS(n) stipulates that only a

vector of n floats can be written. It expands to:

cNewLenIs(nLen) ∧
each in(this,0,nLen) willsay(value)
{vType(value,FLOAT) ∧ (Cnt++)} ∧
eq(Cnt,n)

In the macro above, the predicate cNewLenIs(nLen)
binds the new length of the output file to nLen. The pred-

icate willsay checks that the content update from offset

0 and length nLen is a list of values, and the predicate

vType(value, FLOAT) checks that each value in the list

is of type FLOAT. The predicate eq(cnt,n) checks that

the update contains n floats.

USENIX Association 25th USENIX Security Symposium 655

Dancing on the Lip of the Volcano:
Chosen Ciphertext Attacks on Apple iMessage

Christina Garman
Johns Hopkins University

cgarman@cs.jhu.edu

Matthew Green
Johns Hopkins University

mgreen@cs.jhu.edu

Gabriel Kaptchuk
Johns Hopkins University

gkaptchuk@cs.jhu.edu

Ian Miers
Johns Hopkins University

imiers@cs.jhu.edu

Michael Rushanan
Johns Hopkins University

micharu1@cs.jhu.edu

Abstract
Apple’s iMessage is one of the most widely-deployed
end-to-end encrypted messaging protocols. Despite its
broad deployment, the encryption protocols used by
iMessage have never been subjected to rigorous crypt-
analysis. In this paper, we conduct a thorough analy-
sis of iMessage to determine the security of the proto-
col against a variety of attacks. Our analysis shows that
iMessage has significant vulnerabilities that can be ex-
ploited by a sophisticated attacker. In particular, we out-
line a novel chosen ciphertext attack on Huffman com-
pressed data, which allows retrospective decryption of
some iMessage payloads in less than 218 queries. The
practical implication of these attacks is that any party
who gains access to iMessage ciphertexts may poten-
tially decrypt them remotely and after the fact. We ad-
ditionally describe mitigations that will prevent these at-
tacks on the protocol, without breaking backwards com-
patibility. Apple has deployed our mitigations in the lat-
est iOS and OS X releases.

1 Introduction

The past several years have seen widespread adoption of
end-to-end encrypted text messaging protocols. In this
work we focus on one of the most popular such proto-
cols: Apple’s iMessage. Introduced in 2011, iMessage
is an end-to-end encrypted text messaging system that
supports both iOS and OS X devices. While Apple does
not provide up-to-date statistics on iMessage usage, in
February 2016 an Apple executive noted that the system
had a peak transmission rate of more then 200,000 mes-
sages per second, across 1 billion deployed devices [12].

The broad adoption of iMessage has been controver-
sial, particularly within the law enforcement and national
security communities. In 2013, the U.S. Drug Enforce-
ment Agency deemed iMessage “a challenge for DEA
intercept” [22], while in 2015 the U.S. Department of

Justice accused Apple of thwarting an investigation by
refusing to turn over iMessage plaintext [11]. iMes-
sage has been at the center of a months-long debate
initiated by U.S. and overseas officials over the imple-
mentation of “exceptional access” mechanisms in end-
to-end encrypted communication systems [7, 26, 33], and
some national ISPs have temporarily blocked the proto-
col [32]. Throughout this controversy, Apple has consis-
tently maintained that iMessage encryption is end-to-end
and that even Apple cannot recover the plaintext for mes-
sages transmitted through its servers [10].

Given iMessage’s large installed base and the high
stakes riding on its confidentiality, one might expect
iMessage to have received critical attention from the re-
search community. Surprisingly, there has been very lit-
tle analysis of the system, in large part due to the fact that
Apple has declined to publish the details of iMessage’s
encryption protocol. In this paper we aim to remedy this
situation. Specifically, we attempt to answer the follow-
ing question: how secure is Apple iMessage?

Our contributions. In this work we analyze the iMessage
protocol and identify several weaknesses that an attacker
may use to decrypt iMessages and attachments. While
these flaws do not render iMessage completely insecure,
some flaws reduce the level of security to that of the TLS
encryption used to secure communications between end-
user devices and Apple’s servers. This finding is surpris-
ing given the protection claims advertised by Apple [10].
Moreover, we determine that the flaws we detect in iMes-
sage may have implications for other aspects of Apple’s
ecosystem, as we discuss below.

To perform our analysis, we derived a specification for
iMessage by conducting a partial black-box reverse engi-
neering of the protocol as implemented on multiple iOS
and OS X devices. Our efforts extend a high-level pro-
tocol overview published by Apple [9] and two existing
partial reverse-engineering efforts [1, 34]. Armed with a
protocol specification, we conducted manual cryptanal-

656 25th USENIX Security Symposium USENIX Association

ysis of the system. Specifically, we tried to determine
the system’s resilience to both back-end infrastructure at-
tacks and more restricted attacks that subvert only client-
local networks.

Our analysis uncovered several previously unreported
vulnerabilities in the iMessage protocol. Most signifi-
cantly, we identified a practical adaptive chosen cipher-
text attack on the iMessage encryption mechanism that
allows us to retrospectively decrypt certain iMessage
payloads and attachments, provided that a single Sender
or Recipient device is online. To validate this finding,
we implemented a proof of concept exploit against our
own test devices and show that the attack can be con-
ducted remotely (and silently) against any party with an
online device. This exploit is non-trivial and required
us to develop novel exploit techniques, including a new
chosen ciphertext attack that operates against ciphertexts
containing gzip compressed data. We refer to this tech-
nique as a gzip format oracle attack, and we believe it
may have applications to other encryption protocols. We
discuss the details of this attack in §5.

We also demonstrate weaknesses in the device reg-
istration and key distribution mechanisms of iMessage.
One weakness we exploit has been identified by the re-
verse engineering efforts in [34], while another is novel.
As they are not the main result of this work, we include
them in Appendix A for completeness.

Overall, our determination is that while iMessage’s
end-to-end encryption protocol is an improvement over
systems that use encryption on network traffic only (e.g.,
Google Hangouts), messages sent through iMessage may
not be secure against sophisticated adversaries. Our re-
sults show that an attacker who obtains iMessage cipher-
texts can, at least for some types of messages, retrospec-
tively decrypt traffic. Because Apple stores encrypted,
undelivered messages on its servers and retains them for
up to 30 days, such messages are vulnerable to any party
who can obtain access to this infrastructure, e.g., via
court order [11] or by compromising Apple’s globally-
distributed server infrastructure [36]. Similarly, an at-
tacker who can intercept TLS using a stolen certificate
may be able to intercept iMessages on certain versions of
iOS and Mac OS X that do not employ certificate pinning
on Apple Push Network Services (APNs) connections.

Given the wide deployment of iMessage, and the at-
tention paid to iMessage by national governments, these
threats do not seem unrealistic. Fortunately, the vulnera-
bilities we discovered in iMessage are relatively straight-
forward to repair. In the final section of this paper, we
offer a set of mitigations that will restore strong crypto-
graphic security to the iMessage protocol. Some of these
are included in iOS 9.3 and Mac OS X 10.11.4, which
shipped in March 2016.

Other uses of the iMessage encryption protocol. While

our work primarily considers the iMessage instant mes-
saging system, we note that the vulnerabilities identified
here go beyond iMessage. Apple documentation notes
that Apple’s “Handoff” service, which transmits per-
sonal data between Apple devices over Bluetooth Low
Energy, encrypts messages “in a similar fashion to iMes-
sage” [9]. This raises the possibility that our attacks on
iMessage encryption may also affect inter-device com-
munication channels used between Apple devices. At-
tacks on this channel are particularly concerning because
these functions are turned on by default in many new
Apple devices. We did not investigate these attack vec-
tors in this work but subsequent discussions with Apple
have confirmed that Apple uses the same encryption im-
plementation to secure both iMessage and inter-device
communications. Thus, securing these channels is one
side effect of the mitigations we propose in §7.

1.1 Responsible disclosure
In November 2015 we delivered a summary of the results
in this paper to Apple. Apple acknowledged the vulner-
ability in §5 and has initiated substantial repairs to the
iMessage system. These repairs include: enforcing cer-
tificate pinning across all channels used by iMessage,1

removing compression from the iMessage composition
(for attachment messages), and developing a fix based
on our proposed “duplicate ciphertext detection” mitiga-
tion (see §7). Apple has also made changes to the use of
iMessage in inter-device communications such as Hand-
off, although the company has declined to share the de-
tails with us. The repairs are included in iOS 9.3 and OS
X 10.11.4, which shipped in March 2016.

1.2 Attack Model
Our attacks in §5 require the ability to obtain iMessage
ciphertexts sent to or received by a client. Because Apple
Push Network Services (APNs) uses TLS to transmit en-
crypted messages to Apple’s back-end servers, exploit-
ing iMessage requires either access to data from Apple’s
servers or a forged TLS certificate. We stress that while
this is a strong assumption, it is the appropriate threat
model for considering end-to-end encrypted protocols.

A more interesting objection to this threat model is
the perception that iMesssage might be too weak to sat-
isfy it. For example, in 2013 Raynal et al. pointed out
a simple attack on Apple’s key distribution that enables
a TLS MITM attacker to replace the public key of a re-
cipient with an attacker-chosen key [34]. One finding of
this work is that as of December 2015 such attacks have
been entirely mitigated by Apple through the addition of

1This feature was added to OS X 10.11 in December, as a result of
our notification.

USENIX Association 25th USENIX Security Symposium 657

certificate pinning on key server connections (see Ap-
pendix A). More fundamentally, however, such attacks
are prospective – in the sense that they require the at-
tacker to target a particular individual before the individ-
ual begins communicating. By contrast, the attacks we
describe in this paper are retrospective. They can be run
against any stored message content, at any point subse-
quent to communication, provided that one target device
remains online. Moreover, unlike previous attacks which
require access to the target’s local network, our attacks
may be run remotely through Apple’s infrastructure.

2 The iMessage Protocol

To obtain the full iMessage specification, we began with
the security overview provided by Apple, as well as de-
tailed previous software reverse-engineering efforts con-
ducted by Raynal [34] and others [1]. While these pre-
vious results provide some details of the protocol, they
omit key details of the encryption mechanism, as well
as the complete key registration and notification mecha-
nisms. We conducted additional black-box reverse engi-
neering efforts to recover these elements. Specifically,
we analyzed and modified protocol exchanges to and
from several jailbroken and non-jailbroken Apple de-
vices.2 In conformity to Apple’s terms of service, we
did not perform any software decompilation.

2.1 System overview

iMessage clients. iMessage clients comprise several
pieces of software running on end-user devices. On iOS
and OS X devices, the primary user-facing component is
the Messages application. On OS X computers, this ap-
plication interacts with at least three daemons: apsd, the
daemon responsible for pushing and pulling application
traffic over the Apple Push Notification Service (APNs)
channel; imagent, a daemon that pulls notifications even
if Messages is closed; and identityservicesd, a dae-
mon which maintains a cache of other users’ keys. iOS
devices also contain an apsd daemon, while other dae-
mons handle the task of managing identities.

Apple services. iMessage clients interact with multiple
back-end services operated by Apple and its partners. We
focus on the two most relevant to our attack. The Apple
directory service (IDS, also known as ESS) maintains a
mapping between user identities and public keys and is
responsible for distributing user public keys on request.
iMessage content is transmitted via the Apple Push No-
tification Service (APNs). Long iMessages and attach-
ments are transmitted by uploading them to the iCloud

2In this analysis we considered iOS 6, 8, and 9 devices, as well as
Mac clients running OS X 10.10.3, 10.10.5, and 10.11.1.

service, which is operated by Apple using both their own
servers and virtual servers provisioned on Amazon AWS,
Microsoft Azure, and Google’s Cloud Platform.

Identity and registration The basic unit of identity in
iMessage is the iCloud account name, which typically
consists of an email address or phone number controlled
by the user. End-user devices are registered to the iCloud
service by associating them with an account. The map-
ping between client devices and accounts is not one-to-
one: a single account may be used across multiple de-
vices, and similarly, multiple accounts can be associated
with a single device. We give further information about
the registration process in Appendix A.

Message encryption and decryption To transmit a
message to some list of Recipient IDs, the Sender’s
iMessage client first contacts the IDS to obtain the pub-
lic key(s) PK1, . . . ,PKD and a list of APNs push to-
kens associated with the Sender and Recipient identi-
ties.3 It then encodes the Sender and Recipient ad-
dresses and plaintext message into a binary plist key-
value data structure and compresses this structure using
the gzip compression format. The client next gener-
ates a 128-bit AES session key K and encrypts the re-
sulting compressed message using AES-CTR with IV =
1. This produces a ciphertext c, which is next parti-
tioned as c = (c1‖c2) where c1 represents the first 101
bytes of c. The Sender parses each PKi to obtain the
public encryption key pkE,i and for i = 1 to D, cal-
culates Ci = RSA-OAEP(pkE,i,K‖c1) and a signature
σi = ECDSASign(skS,Ci‖c2). For each distinct push to-
ken received from IDS, the Sender transmits (Ci,c2,σi)
to the APNs server. This process is illustrated in Fig-
ure 1.

For each ciphertext, the APNs service delivers the tu-
ple (IDsender, IDrecipient ,Ci,c2,σi) to the intended desti-
nation. The receiving device contacts IDS to obtain the
Sender’s public key PK, parses for the signature veri-
fication key vkS, then verifies the signature σ . If veri-
fication succeeds, it decrypts Ci to obtain K‖c1, recon-
structs c = (c1‖c2) and decrypts the resulting AES-CTR
ciphertext using K. It decompresses the resulting gzip
ciphertext, parses the resulting plist to obtain the list
of Recipient IDs, and verifies that each of IDsender and
IDrecipient are present in this list. If any of the preced-
ing checks fail, or if the Recipient is unable to parse or
decompress the resulting message, the receiving device
silently aborts processing.

3This list includes one entry for each device registered to each
Sender and Recipient ID. The Messages client encrypts the message
with each Sender public key to ensure that message transcripts can be
read across all of the Sender’s devices.

658 25th USENIX Security Symposium USENIX Association

 AES encrypted payload

AES key

RSA ciphertext

 compressed payload

iMessage binary plist

huffman table

partial AES ciphertext signature

gzip compress

AES-CTR encrypt (IV=1)

extract bytes 101:nextract bytes 0:100

concatenation
RSA-OAEP encryption

CRC

Recipient PK Sender SK

ECDSA-SHA1 sign

sender ID

Figure 1: The iMessage encryption mechanism. From the top, each iMessage is encoded in a binary plist key/value
structure. The structure encodes a list of Sender and Recipient account identifiers, as well as the message contents.
This payload is subsequently gzip compressed, and encrypted under a freshly-generated 128-bit message key using
AES in CTR-mode. The AES key and the first 101 bytes of the AES ciphertext are concatenated and are encrypted
to each Recipient’s public key using RSA-OAEP. The remaining bytes of the AES ciphertext are concatenated to the
RSA ciphertext and the result is signed using ECDSA under the Sender’s registered signing key.

Attachments and long messages For long messages
and messages containing file attachments (e.g., images
or video), iMessage delivers the encrypted data using a
separate mechanism. First, the client generates a 256-
bit AES key K′ and encrypts the attached data using
AES in CTR mode. It next uploads the resulting en-
crypted document to Apple’s iCloud service and obtains
a unique icloud.com URL and an access token for the
attachment. In the course of this process, the iCloud
service may redirect the client to upload the encrypted
file to a third-party storage server operated by an outside
provider such as Amazon, Microsoft or Google. Hav-
ing uploaded the attachment, the client now constructs
a standard iMessage plist containing the URL and ac-
cess token, the key K′, and a SHA1 hash of the encrypted
document. This plist, which may also include normal
message text, is encrypted and transmitted to the Recip-
ient using the standard message encryption mechanism.
Upon receiving and decrypting the message, the Recip-
ient downloads the attachment using the provided URL
and access token, verifies that the provided hash matches
the received attachment, and decrypts the attachment us-
ing K′.

3 Security goals & Threat model

Apple has stated that iMessage is an end-to-end encryp-
tion protocol that should be secure against all attackers
that do not have control of Apple’s network. We base
our threat model on a recent survey on secure messag-
ing by Unger et al. [38]. This threat model includes the
following attackers:

Local Adversary. This includes an attacker with con-
trol over local networks, either on the Sender or Re-
cipient side of the connection.

Global Adversary. An attacker controlling large seg-
ments of the Internet, such as powerful nation states

or large Internet service providers.

Network operator. Apple operates centralized infras-
tructure for both public key distribution and mes-
sage transmission/storage. Potential adversaries in-
clude Apple, a government, or a malicious party
with access to Apple’s servers.

Each of these attackers may be active or passive. A
passive attacker simply observes traffic and does not seek
to alter or inject its own messages. An active attacker
may issue arbitrary messages to any party. In many
cases, these adversary classes may interact. As in [38]
we assume that adversaries also have access to the mes-
saging system and can use the system to register accounts
and transmit messages as normal participants. We also
assume that the endpoints in the conversation are secure.

4 High-level Protocol Analysis

An initial analysis of the iMessage specification shows
that the protocol suffers from a number of defects. In this
section we briefly detail several of these limitations. In
the following sections we focus on specific, exploitable
flaws in the encryption mechanism.

Key server and registration iMessage key manage-
ment uses a centralized directory server (IDS) which is
operated by Apple. This server represents a single point
of compromise for the iMessage system. Apple, and any
attacker capable of compromising the server, can use this
server to perform a man-in-the-middle attack and obtain
complete decryption of iMessages. The current gener-
ation of iMessage clients do not provide any means for
users to compare or verify the authenticity of keys re-
ceived from the server.

Of more concern, Apple’s “new device registration”
mechanism does not include a robust mechanism for no-
tifying users when new devices are registered on their

USENIX Association 25th USENIX Security Symposium 659

Original message from Bob

Attacker replays Bob’s message

Figure 2: Example of a simple ciphertext replay.

account. This mechanism is triggered by an Apple push
message, which in turn triggers a query to an Apple-
operated server. Our analysis shows that these protec-
tions are fragile; in Appendix A we implement attacks
against both the key server and the new device registra-
tion process.

Lack of forward secrecy iMessage does not provide
any forward secrecy mechanism for transmitted mes-
sages. This is due to the fact that iMessage encryption
keys are long-lived and are not replaced automatically
through any form of automated process. This exposes
users to the risk that a stolen device may be used to de-
crypt captured past traffic.

Moreover, the use of long term keys for encryption can
increase the impact of other vulnerabilities in the sys-
tem. For example, in §5, we demonstrate an active attack
on iMessage encryption that exposes current iMessage
users to decryption of past traffic. The risk of such at-
tacks would be greatly mitigated if iMessage clients pe-
riodically generated fresh encryption keys. See §7 for
proposed mitigations.

Replay and reflection attacks The iMessage encryp-
tion protocol does not incorporate any mechanism to pre-
vent replay or reflection of captured ciphertexts, leading
to the possibility that an attacker can falsify conversation
transcripts as illustrated in Figure 2. A more serious con-
cern is the possibility that an attacker, upon physically
capturing a device, may replay previously captured traf-
fic to the device and thus obtain the plaintext.

Lack of certificate pinning on older iOS versions
iMessage clients interact with many Apple servers. As of
December 2015, Apple has activated certificate pinning
on both APNs and ESS/IDS connections in iOS 9 and OS
X 10.11. This eliminates a serious attack noted by Ray-
nal et al. [34] in which an MITM attacker who controls
the Sender’s local network connection and possesses an
Apple certificate can intercept calls to the ESS/IDS key
server and substitute chosen encryption keys for any Re-
cipient (see Appendix A for further details). We note that

devices running iOS 8 (and earlier) or versions of OS X
released prior to December 2015 may still be vulnerable
to such attacks. For example, at the time of our initial
disclosure in November 2015 to Apple, pinning was not
present in OS X 10.11.

Non-standard encryption iMessage encryption does
not conform to best cryptographic practices and gener-
ally seems ad hoc. The protocol (see Figure 1) insecurely
composes a collection of secure primitives, including
RSA, AES and ECDSA. Most critically, iMessage does
not use a proper authenticated symmetric encryption al-
gorithm and instead relies on a digital signature to pre-
vent tampering. Unfortunately it is well known that in the
multi-user setting this approach may not be sound [21].
In the following sections, we show that an on-path at-
tacker can replace the signature on a given message with
that of another party. This vulnerability gives rise to a
practical chosen ciphertext attack that recovers the full
contents of some messages.

5 Attacks on the Encryption Mechanism

In this section we describe a practical attack on the iMes-
sage encryption mechanism (Figure 1) that allows an at-
tacker to completely decrypt certain messages.

5.1 Attack setting
Our attack assumes that an adversary can recover en-
crypted iMessage payloads and subsequently access the
iMessage infrastructure in the manner of a normal user.
The first requirement implies one of two conditions: in
condition (1) the attacker is on-path and capable of inter-
cepting encrypted iMessage payloads sent from a client
to Apple’s Push Notification Service (APNs) servers.
Since the APNs protocol employs TLS to secure connec-
tions between the client and APNs server, this attacker
must possess some means to bypass the TLS encryption
layer; we discuss TLS interception in more detail in Ap-
pendix B. In condition (2) the attacker can recover iMes-
sage ciphertexts from within Apple’s network. This re-
quires either a compromise of Apple’s infrastructure, a
rogue employee, or legal compulsion. Figure 3 describes
the network flow of a single iMessage, along with poten-
tial attacker locations.

5.2 Attack overview
There are two stages of the attack. The first exploits
a weakness in the design of the iMessage encryption
composition: namely, that iMessage does not properly
authenticate the symmetrically encrypted portion of the
message payload. In a properly-designed composition,

660 25th USENIX Security Symposium USENIX Association

apsd

Messages
app

ESS/IDS

APN server(s)

Apple networkSender machine

apsd

Messages
app

Recipient machine

iCloud.com

Amazon
S3

iCloud
Content

1 6

(3)

(2)

4 5

(7)

B

A

C

(8)

Google
Storage

Figure 3: The process of sending an iMessage through
the APNS network. The steps are as follows: (1) The
Sender contacts ESS/IDS to obtain the public keys for
each Recipient; (2) (optional) the Sender contacts iCloud
to upload an attachment; (3) (optional) the Sender up-
loads the encrypted attachment to an outside storage
provider as directed by iCloud; (4) the Sender’s apsd in-
stance transmits the encrypted iMessage payload to Ap-
ple’s APNs server; (5) Apple delivers the payload to a
Recipient; (6) the Recipient contacts ESS/IDS to obtain
the Sender’s public key; (7) (optional) the Recipient con-
tacts iCloud if an attachment is present; (8) (optional)
the Recipient downloads the encrypted attachment from
an outside storage provider. Potential attacker locations
are labeled A, B and C.

this section of the ciphertext would be authenticated us-
ing a MAC in generic composition [14] or via an AEAD
mode of operation. Apple, instead, relies on an ECDSA
signature to guarantee the authenticity of this ciphertext.
In practice, a signature is insufficient to prevent an at-
tacker from mauling the ciphertext since an on-path at-
tacker can simply replace the existing signature with a
new signature using a signing key from an account con-
trolled by the attacker. In practice, the actual attack is
slightly more complex; the first phase includes additional
operations to defeat a countermeasure in the decryption
mechanism, which we discuss below.

The second stage of the attack leverages the ability to
modify the AES ciphertext (specifically, the section not
contained within the RSA ciphertext). This phase con-
sists of an adaptive chosen ciphertext attack exploiting
the structure of the underlying plaintexts. The attack re-
peatedly modifies the ciphertext and sends it to either the
Sender or a Recipient for decryption. If the attacker can
determine if decryption and parsing were successful on
the target device, she can gradually recover the underly-
ing iMessage payload.

The attack specifics are reminiscent of Vaudenay’s
padding oracle attack [40], but relies on the usage of
compression within the iMessage protocol. Specifically,
our attack takes advantage of the 32-bit CRC checksum,
computed over the pre-compressed message, incorpo-
rated into gzip compressed ciphertexts. Since CRCs are

linear under XOR but the compression function is not,
we can verify guesses about message content by edit-
ing the compressed, encrypted message and testing if the
corresponding correction to the CRC results in a valid
message.4

5.3 A format oracle attack for gzip com-
pression

The gzip format [23] uses DEFLATE compression
which itself combines LZ77 [41] and Huffman coding
to efficiently compress common data types. The format
supports both static and dynamically-generated Huff-
man tables, though most encoders use dynamic tables
for all but the shortest messages. To compress a mes-
sage, a CRC32 C is calculated over the uncompressed
input. Next, the encoder identifies repeated strings and
replaces each repeated instance with a tuple of the form
〈length,backwards distance〉, where distance indicates
the relative position of the previous instance of the string.
The input is encoded using an alphabet of 286 symbols,
comprising the 256 byte literals, an end-of-block (EOB)
symbol, and 29 string replacement length values.5 If dy-
namic generation is selected, a Huffman table T is calcu-
lated using the resulting text as a basis (for static tables,
T = ε), and the text is Huffman coded into a string of
variable-length symbols S = (s1, . . . ,sN) where string re-
placement symbols are internally partitioned into a pair
〈length,distance〉. The resulting compressed message
consists of (T,S,C). On decompression the process is
reversed and the CRC of the resulting string is compared
to C. If any step fails, the decompressor outputs ⊥.

Attack intuition. Our attack assumes that the attacker has
intercepted a gzip compressed message encrypted using
an unauthenticated stream cipher and that we have access
to a decryption oracle that returns 1 if and only if the
message decrypts and successfully decompresses. Our
goal is to recover a substantial fraction of the plaintext
message.

For clarity, we assume the attacker knows the Huff-
man table T and the length in bits L of the uncompressed
input. We further assume the attacker knows the exact
location in the ciphertext corresponding to some (un-
known) �-bit Huffman symbol s that she wishes to re-
cover, as well as the position of the corresponding de-
coded literal in the uncompressed text. These are simpli-
fying assumptions and we will remove them as we pro-
ceed.

Given a ciphertext c, our attack works by first select-
ing a mask M ∈ {0,1}�,M �= 0� and perturbing the ci-

4Were the compression function and CRC both linear, the edit to
the CRC and compressed text would always cancel.

5A separate Huffman table is used to encode backwards distances.

USENIX Association 25th USENIX Security Symposium 661

phertext such that the underlying symbol s will decrypt
to s′ = s⊕M. This is done by xoring M into the cipher-
text at the appropriate location. Let decode(T,s) and
decode(T,s′) represent the Huffman decoding of s and
s′ respectively, and let repeats be a boolean variable that
is true if and only if s (resp. s′) is repeated subsequently
via a DEFLATE string replacement reference. The po-
tential values of these three variables can be categorized
into the following seven cases:

Case decode(T,s) decode(T,s⊕M) repeats
1 [0,255] [0,255] False
2 [0,255] [0,255] True
3 [0,255] [256,285] (either)
4 [0,255] ⊥ (either)
5 [256,285] [0,255] (either)
6 [256,285] [256,285] (either)
7 [256,285] ⊥ (either)

In the following paragraphs, we consider the outcome of
our experiment for each of the cases above.

CASE 1: In this case, when the attacker submits the
mauled ciphertext to the decryption oracle, the oracle
will internally decode a result that differs from the origi-
nal input string in exactly one byte position: the position
corresponding to symbol s′. However, with overwhelm-
ing probability, the CRC C′ of the decompressed string
will not match C and cause the oracle to output 0.

Because CRC is linear under XOR, the attacker may
correct the encrypted value C by further mauling the ci-
phertext. Let d indicate the bit position of the sym-
bol associated with s (resp. s′) in the decoded mes-
sage. For each i ∈ {0,1}8 the attacker xors the string
C̄ = CRC(0d ||i||0L−d)⊕CRC(0L) with the ciphertext at
the known location of C and submits each of the re-
sulting ciphertexts for decryption. Since we have that
decode(T,s′) ∈ [0,255], one of these tests will always
result in a successful CRC comparison.

Upon receiving a successful result from the decryp-
tion oracle, the attacker now examines the Huffman ta-
ble T to identify candidate symbols s for which relation
decode(T,s⊕M)= decode(T,s)⊕ i holds. If the attacker
cannot identify a unique solution for s, she may select a
new M′ �= M �= 0� and repeat the procedure described
above until she has uniquely identified s. The attacker
can now increment her position in the ciphertext by �
bits and repeat this process to obtain the next plaintext
symbol.

If this experiment is unsuccessful, it indicates that the
ciphertext is not in Case 1 from the above table. To de-
termine which case applies, the attacker must conduct
additional experiments as described below. Sometimes
recovery of the symbol s will not be feasible at all; when
this occurs, the attacker must simply continue to the next
symbol in S. Occasionally, the adversary may still be
able to recover s at some additional cost.

CASE 2: In this case, the symbol represented by s (resp.
s′) is referenced by one or more subsequent instances of
DEFLATE string repetition. The practical impact is that
modifying s will produce an identical alteration at two
or more positions in the decoded string and with high
probability none of the experiments indicated for Case 1
will succeed.

In some circumstances, it may be cost effective for the
attacker to skip s and simply move on to the next sym-
bol in S. Alternatively, the attacker can experimentally
modify the CRC to indicate the same alteration at all po-
sitions that could be affected by modifying s. Since the
attacker does not know the locations at which s is re-
peated or the number of such locations, this requires the
attacker to submit many candidate ciphertexts to the or-
acle, one for each possible set of locations where s may
repeat. In the event that s (resp. s′) is repeated only once,
this requires the attacker to issue 28 · (L− d)/8 queries
to the oracle (one for each value of i and for each pos-
sible location for the repeated value of s′). This may be
feasible for reasonably short strings.

CASES 3-4: In these cases, the original decoding of s
was a byte literal, but the decoding of s′ is either an in-
valid symbol or a special symbol (EOB or string replace-
ment symbol). The former case always results in decom-
pressor failure, while the latter will typically cause the
decoded string to differ from the original input at multi-
ple locations, resulting (with high probability) in a CRC
comparison failure that will not be corrected by the pro-
cedure described above.

To address these cases, the attacker may select a new
mask M′ �= M �= 0� and repeat the complete experiment
described above. Depending on the structure of the Huff-
man table T , and provided that s∈ [0,255], the new result
s⊕M′ may produce an outcome that satisfies the condi-
tions of cases (1) or (2).6

CASES 5-7: These cases occur when the original sym-
bol represented by decode(T,s) is a string replacement or
EOB symbol. In most instances, replacing s with (s⊕M)
produces a decoded string that differs from the original
in many positions, making it challenging for the attacker
to repair the CRC. If s decodes to a string replacement
token, and the replacement reference points to a location
that the attacker has already recovered, it may be possi-
ble for the attacker to detect the alteration using the tech-
nique described under Case 2. Otherwise the attacker
must skip s and move on to the next symbol in S.

Recovering the unknowns. The procedure described so
far requires the attacker to know the Huffman table T , the

6In principle, this approach might require as many as 28 · 2|M| =
28+� decryption queries to obtain a successful result, or rule out these
cases. In practice, however, the number of candidate mask values M′ is
likely to be much more limited.

662 25th USENIX Security Symposium USENIX Association

length of the uncompressed message L, the location and
length of the symbol s, and the byte index of the corre-
sponding decompressed literal. In practice many of these
quantities may be determined experimentally by iterat-
ing through candidate values for L, �,k and the symbol
position. This requires the attacker to issue many candi-
date decryption requests until one succeeds. In the case
of iMessage attachment messages, the length L is fixed
and an attacker can generate a representative corpus of
messages offline and easily estimate the other parame-
ters without oracle queries.

Recovering the Huffman table is more challenging. If
the message is encoded using a static table, then the ta-
ble is known to the attacker. However, if T is dynam-
ically generated, then the attacker learns only the re-
lation decode(T,s⊕M) = decode(T,s)⊕ i, but has no
clear way of learning s or decode(T,s). Nonetheless,
it might still be possible to recover enough information
from these relations to recover the value of the underly-
ing literals.

However, in iMessage this proves unnecessary as we
take advantage of iMessage’s structure to recover a large
fraction of the dynamic table T . iMessage payloads con-
taining attachments embed a URL within the encrypted
message, requests to which can be monitored (described
below). In this way, we learn the file path and/or host-
name indicated by the plaintext URL within each cipher-
text. Given this information, and by mauling individual
symbols s contained within the URL string, the attacker
can recover the value decode(T,s⊕M) for many differ-
ent values of M. This allows the attacker to identify a
relative-distance map of a portion of the Huffman tree.
This proves sufficient to recover much of the Huffman
table T .

Detecting successful decryption. Our attack assumes that
the attacker can detect successful decryption of a modi-
fied ciphertext. To simplify this assumption, we focused
on messages containing attachments, such as images and
videos. These messages include a URL for downloading
the attachment payload, as well as a 256-bit AES key to
be used in decrypting the attachment. When an iMessage
client correctly decrypts such a message, it automatically
initiates an HTTPS POST request to the provided URL.
A local network attacker can view (and intercept) this
request to determine whether decryption has occurred.
Moreover, if the attacker blocks the connection, the de-
vice will retry several times and then silently abort. Since
the client provides no indication to the user that a mes-
sage has been received, this admits silent decryption of
ciphertexts.

This technique can also be extended to situations
where the attacker is not on the target device’s local net-
work. By mauling the URL field to change the requested
hostname (e.g., from icloud.com to a domain that the

attacker controls), the attacker can simply direct the tar-
get device to issues HTTPS to a machine that the at-
tacker controls. This allows the attacker to conduct the
attack remotely by transmitting ciphertexts through Ap-
ple’s APNs network, at which point she obtains the full
HTTPS POST request from the target device. Since the
attacker controls the request domain, there is no need to
MITM the TLS connection.7

5.4 An Attack on Attachment Messages
Having provided an overview of the attack components,
we will describe each individual step of the complete at-
tack. This attack scenario assumes that a target Sender
has transmitted an attachment-bearing message to one or
more online receivers, and the attacker has the ability to
monitor the local network connection (and intercept TLS
connections) on one of the Sender or Recipient devices.

Step 1. Removing and replacing the iMessage signature.

Each iMessage is authenticated using an ECDSA sig-
nature, formulated using the private key of the iMessage
Sender. This signature prevents the attacker from directly
tampering with the message. However, a limitation of us-
ing signatures for authenticity is that they do not prevent
ciphertext mauling when an attacker controls another ac-
count in the system. An attacker who intercepts a signed
iMessage may simply remove the existing signature from
the message and re-sign the message using a different
key, corresponding to a separate account that the attacker
controls.8 The attacker now transmits the resulting en-
crypted payload, signed and delivered as though from a
different Sender address. The signature replacement pro-
cess is illustrated in Figure 4.

In practice, simply replacing the signature on a mes-
sage proves insufficient. In iMessage, a full list of Sender
and Recipient addresses is specified both in the unen-
crypted metadata for the message and in the encrypted
message payload. Upon decrypting each message, iMes-
sage clients verify that the message was received from
one of the accounts listed in the Sender/Recipient list,
and silently abort processing if this condition does not
hold.9 While it is trivial to replace the unencrypted
Sender field, replacing encrypted envelope information
is more challenging. Fortunately, in most cases this field
of the iMessage plist is contained within the malleable

7The current versions of Apple’s Messages client do not enforce
that this URL contains icloud.com and will connect to any hostname
provided in the URL. Similarly, the Messages client does not pin cer-
tificates for the HTTPS connection.

8On Mac OS X, iMessage signing keys are readily accessible from
the Apple Keychain.

9Based on our experiments, the participant list does not appear to
be ordered, or to distinguish between Sender and Recipients. It is suf-
ficient that the Sender identity appears somewhere in this list.

USENIX Association 25th USENIX Security Symposium 663

AES-CTR ciphertext, and we are able to alter the con-
tents of the Sender/Recipient list so that it contains the
identity of the replacement Sender account.

Step 2. Altering the Sender identity.

To alter the Sender identity, the attacker must selec-
tively maul the AES-CTR ciphertext to change specific
bytes of the Sender/Recipient plist field to incorpo-
rate the new Sender identity she is using to transmit the
mauled ciphertext. This is challenging for several rea-
sons.

First, the initial 101 bytes of the AES ciphertext
are stored within the RSA-OAEP ciphertext, which is
strongly non-malleable. Thus we are restricted to alter-
ing the subsequent bytes of the ciphertext. Fortunately,
the binary plist key-value data structure is top heavy,
in that it stores a list of all key values in the data struc-
ture prior to listing the values associated with each key.
In practice, this ensures that the relevant Sender iden-
tity appears some distance into the data structure. More-
over, the application of gzip compression produces ad-
ditional header information, including (in many cases)
a dynamic Huffman table. In all of the cases we ob-
served, the symbols encoding the Sender identity are lo-
cated subsequent to the first 101 bytes, and are therefore
not included within the OAEP ciphertext.

The use of gzip compression somewhat compli-
cates the attack. Rather than mauling uncompressed
ASCII bytes, the attacker must alter a set of compressed
Huffman symbols which have been encoded using a
(dynamically-generated) table T that the attacker does
not know. Fortunately, the attacker knows the original
identity of the Sender, as this value is transmitted in the
unencrypted apsd metadata. Moreover, in all iMessage
clients that we examined, the Sender identity is transmit-
ted as the first string in the Sender/Recipient list, which –
due to iMessage’s predictable format – appears in a rela-
tively restricted range of positions within the ciphertext.
Even with this knowledge, altering the Sender ID in-
volves a large component of guessing. The attacker first
estimates the location of the start of the Sender/Recipient
list, then selectively mauls the appropriate portions of the
AES ciphertext, while simultaneously updating the CRC
to contain a guess for the modified (decoded) symbol.
This is a time consuming process, since the attacker must
simultaneously identify (1) the appropriate location in
the ciphertext for the symbol she wishes to modify and
(2) a modification that causes the symbol to change to
the required symbol. The target device will silently ig-
nore any incorrect guesses and will proceed with attach-
ment download only when the mauled Sender ID in the
plist is equal to the Sender ID from which the attacker
is transmitting.

To simplify the attack, the attacker may restrict her at-

RSA ciphertext partial AES ciphertext sig A

RSA ciphertext modified partial AES ciphertext sig B

Change sender ID (A->B) Modify payload, adjust CRC Sign with skB

Figure 4: Modifying the partial AES ciphertext, includ-
ing the Sender ID and CRC, and replacing the signature
with a new signature corresponding to an account (and
signing key) we control.

tention to addresses that differ from the original Sender
ID in at most one symbol position. This is accomplished
by registering new iCloud addresses that are “one off”
from the target Sender identity. To increase the likeli-
hood that we will succeed in altering the Sender account
to match one that we have selected, we register multiple
new Sender identities that are near matches to the origi-
nal identity. For each attempt at mauling the ciphertext,
we must also “repair” the CRC by guessing the effect of
our changes on the decompressed message.

In our experiments, we found that an email address of
the form abcdef@icloud.com could be efficiently mod-
ified to a new account of the form abcdef@i8loud.com
in approximately 210 decryption queries to a target de-
vice.10 Since Huffman tables vary between messages, we
cannot mutate every message to the same domain, and
thus we need to control several variants of icloud.com
for this strategy to be successful in all cases. Fortunately,
the edits are predictable and our simulations indicate that
we require only one domain to recover most messages.

A side effect of this modification is that, due to string
replacement in gzip, the attachment URL is simultane-
ously altered to point to i8loud.com, which means that
attachment HTTPS POST requests are sent to a computer
under our control. This makes it possible to conduct the
attack remotely.

Step 3. Recovering the Huffman table. Given the abil-
ity to intercept the attachment request POST URL to
icloud.com, we now recover information about the dy-
namic Huffman tree T used in the message. The attach-
ment path consists of a string of alphanumeric digits,
which in most instances are encoded as Huffman sym-
bols of length � ∈ [4,8].

By intercepting the HTTPS connection to
icloud.com, the attacker can view the decoded
URL path and systematically maul each Huffman
symbol in turn, repairing the CRC using the technique
described in the previous subsection. This allows the
attacker to gradually recover a portion of the Huffman
tree (Figure 5). In practice, the attacker is able to
recover only a subset of the tree, however, because
the iMessage client will silently fail on any URL that

10These email addresses are examples and not the real email ad-
dresses we used in our experiments.

664 25th USENIX Security Symposium USENIX Association

Figure 5: Fragment of a Huffman tree from an attach-
ment iMessage.

contains characters outside the allowed URL character
set.11 Fortunately this set includes most printable
alphanumeric characters.

Our implementation recovers a portion of the Huffman
tree that is sufficient to identify the characters in the set
0−9, A−F . Our experiments indicate that this phase of
the process requires an average 217 decryption requests
and a maximum of 219.

Step 4. Recovering the attachment encryption key. When
an iMessage contains an attachment, the message em-
beds a 256-bit AES key that can be used to decrypt the
attachment contents. This key is encoded as 64 ASCII
hexadecimal characters and is contained within a field
named decryption-key. An attacker with oracle ac-
cess to a target device, and information on the Huffman
table T , can now systematically recover bytes from this
key. Upon recovering the key, they can use the inter-
cepted HTTPS request information to download the en-
crypted attachment and decrypt it using the recovered
key.

The approach used in recovering the attachment key
is an extension of the general format oracle attack de-
scribed above. The attacker first searches the cipher-
text to identify the first position of the decryption key
field. The attacker identifies a mask M (typically a sin-
gle or double-bit change to the ciphertext) that produces
a change in the decoded message at the first position
of the encryption key, which is known due to the pre-
dictable structure of attachment messages. To identify
this change, the attacker “fixes” the CRC to test for
each possible result from the decryption key, then learns
whether the decryption/decompression process succeeds.
To obtain the full key, the attacker repeats this process for
each of the 64 hexadecimal symbols of the encryption
key.

This process does not reliably produce every bit of the
key, due to some complications described in the gen-
eral attack description above. Principal among these is
the fact that some Huffman symbols represent string re-
placement tokens rather than byte literals. While it seems

11iMessage does not perform URL coding on disallowed characters.

counterintuitive to expect repeated strings within a ran-
dom key, this occurrence is surprisingly common due to
the fact gzip will substitute even short (3 digit) strings.
Indeed, on average we encounter 1.9 three-digit repeti-
tions within each key. In this case, we attempt to iden-
tify subsequent appearances of the symbol by guessing
later replacement locations. If this approach fails, our
approach is to simply ignore the symbol and experimen-
tally move forward until we reach the next symbol.

While it is possible to recover a larger fraction of
the symbols in the message by issuing more decryption
queries (see §6 for a discussion of the tradeoffs), in many
cases it is sufficient to simply guess the missing bits of
the key offline after recovering an encrypted attachment.
In practice, the entropy of the missing sections is usually
much lower than would be indicated by the number of
missing bits, since in most cases the replacement string
is drawn from either the URL field or earlier sections of
the key, both of which are known to the attacker.
Step 5. Recovering the message contents. Each attach-
ment message may also contain message text. This text
can be read in a manner similar to the way the key is
recovered in the previous step, by mauling the message
portion of the text and editing the CRC appropriately.
This approach takes slightly more effort than the hex-
adecimal key recovery step, due to the higher number of
potential values for each Huffman symbol in the message
text.

6 Implementation and Evaluation

6.1 Estimating attack duration

To validate the feasibility of the attack described in §5.4,
we implemented a prototype of the gzip format oracle
attack in Python and executed it against the Messages
client on OS X 10.10.3. Our attack successfully recov-
ered 232 out of 256 key bits after 218 decryption queries
to the target device. The main challenge in running the
attack was to determine the correct timeout period after
which we can be confident that a message has not been
successfully decrypted. This timeout period has a sub-
stantial impact on the duration of the attack, as we de-
scribe below.

Experimental Setup To deliver iMessage payloads to
the device, we customized an open-source Python project
called pushproxy (hereinafter called the proxy) and
used it to intercept connections from the device to Ap-
ple’s APNs server [3]. This approach models an at-
tacker who can either impersonate or control Apple’s
APNs servers. While our attack assumed local network
interception and did not send messages through Apple’s

USENIX Association 25th USENIX Security Symposium 665

servers, we note that if an attacker is able to capture mes-
sages in transit (by bypassing TLS or by compromising
Apple’s servers), the remainder of the attack can in prin-
ciple be conducted remotely (see the end of §5.3 for de-
tails). For ethical and legal reasons, we explicitly chose
not to test attacks that relayed messages via Apple’s pro-
duction servers. Thus all of our attacks were conducted
via a local network.

To address the use of TLS on apsd connections, we
configured our modified proxy with a forged Apple cer-
tificate based on a CA root certificate we created and
change /etc/hosts to redirect APNs connections in-
tended for Apple towards our local proxy. We generate
the forged certificate by installing our root CA on the tar-
get system.12

To monitor and intercept attachment download re-
quests, we configured an instance of a TLS MITM proxy
(mitmproxy) using our self-signed root certificate to in-
tercept all outbound requests from the device made via
HTTP/HTTPS. When the target device receives an at-
tachment message, it makes two HTTPS POST requests
to {0, . . . ,255}-content.icloud.com. Based on the
result of these requests, the device issues a second HTTP
GET request to download the actual attachment. In our
experiments we block both of the POST requests, ensur-
ing that no indication of the message processing is dis-
played by the Messages client. For each oracle query, the
attack code waits for mitmproxy to report an attachment
POST request as defined above or, after a set time out,
assumes the oracle query resulted in a failed message.

Finally, we created an iMessage account for the at-
tacker that is a single-character edit of the sender’s ad-
dress (e.g. if the sender is alice@example.com, the at-
tacker might be clice@example.com). We only generate
one such account for the edit we expect to be successful,
although a real attacker might register a large corpus of
iMessage accounts and thus increase the success proba-
bility of this phase of the attack.

Verifying the existence of the oracle To ensure that
iMessage behavior is as expected, we conducted a series
of tests using hand-generated messages to determine if
we were able to detect decryption success or failure on
these messages. Our results were sufficient to confirm
the vulnerability of §5 and verify iMessage’s behavior
sufficiently well that we could construct a simulated ora-
cle for our experiments of §6.2.

Estimating the timeout for failed queries The main
goal of our experiment was to determine the maximum

12Since OS X 10.10.3 does not include certificate pinning for APNs
connections, this allowed us to intercept and inject iMessage cipher-
texts.

timeout period after which we can determine that the de-
vice has been unable to successfully decrypt and process
a message. To determine this, our attack queries the gzip
format oracle by sending a candidate message and wait-
ing until it either sees a resulting attachment download
(in which case the message decrypted) or some timeout
passes. Too long of a timeout results in unreasonable
runtimes and too short of a timeout produces false nega-
tives, which lead to incorrect key recovery.

Small scale experiments proved unable to reliably esti-
mate the maximum timeout: the observed wait time dis-
tribution seemingly has a long tail and may be dependent
on load not encountered in small experiments (e.g. due to
failed decryptions). Using the full attack code to find the
max timeout, on the other hand, is impractical, since we
must run 218 queries, each lasting as long as the timeout.
This would take between 18 hours and 3 days depending
on the timeout duration we wish to test.

In order to estimate the correct timeout, we ran our
attack on the device in tandem with a local instance of
the format oracle which, using the recipient’s private key,
also decrypts the message and emulates iMessage’s be-
havior. If the candidate message fails to decrypt against
the local oracle, we use a short (400ms) timeout period.
If the candidate message decrypts successfully on this
local oracle, then we wait an unbounded amount of time
for the oracle query and record the necessary delay. We
stress that this local-oracle approach was used only to
speed up the process of finding the maximum delay; the
full attack can be conducted without knowledge of the
private key.

Results We ran our main experiment on a real mes-
sage intercepted using the proxy. It recovers 232 out of
256 key bits in 218 queries and took 35 hours to run. The
maximum observed delay between a query and the re-
sulting download request was 903ms, while the average
was 390ms with a standard deviation of 100ms. Based on
this data, and without considering further optimizations,
we estimate that the full attack would require approxi-
mately 73 hours to run if we naively used 1 second as the
timeout.

Optimizing runtime The obvious approach to opti-
mizing our attack is to reduce the timeout period to the
minimum period that iMessage requires to successfully
process and queue a message. Through experiments,
we determined this to be approximately 400ms. Thus
one avenue to optimizing the experiment is to reduce the
timeout period for all messages to 400ms, using the as-
sumption that a successful experiment may result in a
“late” download. Since we would not be able to neatly
determine the specific message query that occasioned the

666 25th USENIX Security Symposium USENIX Association

download, we would need to temporarily increase the de-
lay period and “backtrack” by repeating the most recent,
e.g., 10 queries to determine which one caused the down-
load. Because the issue is patched and further explo-
ration difficult, we have elected not to implement these
optimizations.

Because successful queries are quite sparse,13 this
does not meaningfully affect the number of queries
needed for the attack. In our estimation, these techniques
will reduce the cost of the full attack down to 35 hours
and requires only straightforward modifications to our
proof of concept code.

A second optimization is to run the attack against mul-
tiple devices with attack queries split and conducted in
parallel against them. For n devices, the attack time is
reduced by approximately a factor of n. As many users
may have 2 or 3 devices, this can offer substantial reduc-
tions.

Finally, we can reduce the raw number of queries
needed to mount the attack by refining the gzip-oracle
attack techniques. In particular, we can reduce the num-
ber of queries needed to recover the Huffman table by
inferring the structure of the tree from the partial infor-
mation we have and from the observation that the Huff-
man trees fall within a fairly limited range of distribu-
tions. In particular we note that for the Huffman trees
used in gzip, recovering the symbol lengths alone is suf-
ficient to recover the tree. An approach drawing from
techniques in machine learning to recover the Huffman
table given only a few queries, the distribution of such ta-
bles, and known partial information could offer substan-
tial improvements. We leave a full exploration of these
optimizations to future work.

6.2 Simulation results

Although we have conducted our attack on iMessage, we
have not explored its effectiveness with a large range of
messages. Given the time it takes to run an experiment,
doing so is prohibitive. We opt instead to simulate our
results.

Simulation To evaluate the overall effectiveness of our
format oracle attack, we constructed a simulated mes-
sage generator and decryption oracle. Messages pro-
duced by our generator are distributed identically to
real attachment-bearing messages, but contain randomly-
generated strings in place of the filename, URL path,
Sender and Recipient addresses, decryption key, and
“signature” (hash) fields. The decryption oracle emulates
the iMessage client’s parsing of the inner binary plist.

13Out of the 218, only 418 were successful.

For performance, it skips encryption and decryption.14

Decompression is done using Python’s gzip module,
which is a wrapper around on zlib. We experimentally
validate the oracle’s correctness against the transcript of
a real attack and against separate messages.

Results We ran our simulated attack on a corpus of
10,000 generated messages and show the results in Fig-
ure 6. In all cases, our experiments completed in at
most 219 queries, with an average of approximately 217

queries. For 34% of the experiments we ran, our attack
was able to recover ≥ 216 bits of the attachment AES
key. For 23% of the messages we experimented with,
we recovered ≥ 224 bits of the key, enabling rapid brute-
force of the remaining bits on commodity hardware.15

Optimizing success rate Many of the failures we ex-
perience in key recovery are caused by issues with string
repetition. Recall that repeated substrings in a message
are compressed in gzip by replacing all subsequent rep-
etitions of the substrings with a backwards-pointing ref-
erence. As a result, editing the canonical location of a
substring in the compressed message may cause similar
changes to future instances of the same substring in the
decompressed message. Our CRC correction for a given
location fails to compensate for these later changes be-
cause we simply do not know where in the uncompressed
message the second instance of the substring appears. As
a result, our current attack simply skips these bits.

However, we can address this weakness with only a
modest increase in the number of oracle queries. By
scanning through the remaining bytes and applying the
same CRC correction at each subsequent location in the
uncompressed message, we can identify the location of
the subsequent instances of the substring. This is effi-
cient mainly for strings that are repeated twice, but our
experiments indicate this is the most common case. Note
that we do not need to scan through the entire mes-
sage. As a result of the particular format of the mes-
sages, there are only a few points where we can get dupli-
cates: most of the message is in lowercase letters or non-
printable characters, whereas the decryption-key and
mmcs-url field (i.e. the locations where repeats cause
the most serious issues) are upper case alpha-numeric
and hence will not contain repeats from the majority of
the other fields. For the experiments described above,

14Our implementation prevents the attacker from modifying the first
101 bytes of the message, as those are normally contained within the
RSA ciphertext. Additionally, the oracle enforces that the alleged
Sender identity is included within the plist, which is a condition en-
forced by iMessage.

15Experiments on an inexpensive Intel Core i7 show that we can re-
cover 32 missing key bits in approximately 7 minutes using an AES-NI
implementation. Therefore recovering 40 missing key bits should take
approximately 28 hours on a single commodity desktop.

USENIX Association 25th USENIX Security Symposium 667

(a) Number of queries vs number of recovered key bits. The
orange dashed line represents 216 bits recovered, the solid
green line 224.

(b) Distribution of attack length, measured in queries. The
high concentration of attacks near zero is due to a rapid
failure when it fails to edit the sender email.

Figure 6: Simulation results for the attachment recovery attack.

this would result in a 14% increase in the number of mes-
sages for which we can recover 224 bits.

7 Mitigations

Our main recommendation is that Apple should replace
the entirety of iMessage with a messaging system that
has been properly designed and formally verified. How-
ever, we recognize this may not be immediately feasi-
ble given the large number of deployed iMessage clients.
Thus we divide our recommendations into short-term
“patches” that preserve compatibility with existing iMes-
sage clients and long-term recommendations that require
breaking changes to the iMessage protocol.

7.1 Immediate mitigations

Duplicate RSA ciphertext detection. The attacks we
described in §5 are possible because the unauthenticated
AES encryption used by iMessage is malleable and does
not provide security under adaptive chosen ciphertext at-
tack, unlike RSA-OAEP encryption [15]. Maintaining
a list of all previously-received RSA ciphertexts should
prevent these replay and CCA attacks without the need
for breaking changes in the protocol. Upon receiving a
stale RSA ciphertext, the Recipient would immediately
abort decryption. This fix does not prevent all possi-
ble replays, given that iMessage accounts may be shared
across multiple distinct devices. However, it would sub-
stantially reduce the impact of our attacks until a more
permanent fix can be implemented. Note: This modifica-
tion has been incorporated into iOS 9.3 and Mac OS X

10.11.4.

Force re-generation of all iMessage keys and destroy
message logs. iMessage uses long-term decryption keys
and offers no mechanism to provide forward secrecy. If
possible, Apple should force all devices to re-generate
their iMessage key pairs and destroy previously-held se-
cret keys. In addition, Apple should destroy any archives
of encrypted iMessage traffic currently held by the com-
pany.

Pin APSD/ESS certificates or sign ESS responses. The
current iMessage protocol relies heavily on the security
of TLS, both for communications with the key server and
as an additional layer of protection for iMessage push
traffic. Apple should enhance this security by employing
certificate (or public key) pinning within the Messages
application and apsd to prevent compromise of these
connections. Alternatively, Apple could extend their pro-
prietary signing mechanisms to authenticate key server
responses as well as requests.

Reorganize message layout. The current layout of
encrypted messages includes approximately 101 bytes
of the CTR message within the RSA-OAEP cipher-
text, which is resilient to ciphertext malleability attacks.
Modifying sender-side code to re-organize the layout of
the underlying plist data structure to incorporate the
sender and receiver fields within this section of the mes-
sage would immediately block our attack. Implement-
ing this change requires two significant modifications:
(1) Apple would need to disable dynamic construction
of Huffman tables within the gzip compression, and (2)
restructure the binary plist serialization code to place the
sender address first. We stress that this is a fragile patch:

668 25th USENIX Security Symposium USENIX Association

if any portion of the sender ID is left outside of the
RSA ciphertext, the ciphertext again becomes vulnera-
ble to mauling. Moreover, this fix will not protect group
messages where the list of Recipients is longer than 100
bytes.

7.2 Long term recommendations

Replace the iMessage encryption mechanism. Apple
should deprecate the existing iMessage protocol and re-
place it with a well-studied construction incorporating
modern cryptographic primitives, forward secrecy and
message authentication (e.g., OTR [17] or the TextSe-
cure/Axolotl protocol [4]). At minimum, Apple should
use a modern authenticated cipher mode such as AES-
GCM for symmetric encryption. This change alone
would eliminate our active attack on iMessage encryp-
tion, though it would still not address any weaknesses in
the key distribution mechanism. In addition, iMessage
should place the protocol versioning information within
the public key block and the authenticated portions of the
ciphertext, in order to prevent downgrade attacks.

Implement key transparency. While many of the
protocol-level attacks described in this paper can be mit-
igated with protocol changes, iMessage’s dependence on
a centralized key server represents an architectural weak-
ness. Apple should take steps to harden iMessage against
compromise of the ESS/IDS service, either through the
use of key transparency [31] or by exposing key finger-
prints to the user for manual verification.

8 Related Work

There are three lines of research related to our work: se-
cure message protocols, attacks on symmetric encryp-
tion, and decryption attacks using compression schemes.

Instant messaging has received a great deal of atten-
tion from the research community. Borisov et al. in-
troduced OTR [17] and proposed strong properties for
messaging, such as per-message forward secrecy and de-
niability. Frosh et al. analyze descendant protocols such
as TextSecure [24]. More recent work has focused on
multi-party messaging [25] and improved key exchange
deniability [39]. In a related area, Chen et al. analyzed
push messaging integrations, including Apple push net-
working [20]. For a survey of secure messaging tech-
nologies, see [38].

A number of works have developed attacks on unau-
thenticated, or poorly authenticated, encryption proto-
cols. In addition to the padding oracle of Vaudenay [40]
and later applications [13], padding oracle attacks have
been extended to use alternative side channels such as

timing [8, 19]. Some more recent works have pro-
posed attacks on more complex data formats such as
XML [27, 30].

Various works have addressed the combination of
compression and encryption. Some attacks use knowl-
edge of a relatively small number of bytes in the plain-
text to learn information about the compression algo-
rithm and eventually recover an encryption key [16, 37].
Kelsey [28] and others [29, 35] used compression in the
(partially) chosen plaintext setting to recover information
about plaintexts.

9 Conclusion

In this work we analyzed the security of a popular end-
to-end encrypted messaging protocol. Our results help
to shed light on the security of deployed messaging sys-
tems, and more generally, provide insight into the state
of the art in security mechanisms currently deployed by
industry. This insight raises questions about the way re-
search results are disseminated and applied in industry
and how our community should ensure that widely-used
protocols employ best cryptographic practices.

This work leaves several open questions. First, the
gzip format oracle attack we describe against iMes-
sage may apply to other protocols as well. For example,
OpenPGP encryption (as implemented by GnuPG) [18]
also employs gzip and may be vulnerable to similar at-
tacks when it is used for online applications such as in-
stant messaging [2]. Moreover, our attack requires that
the adversary have some access to a portion of the de-
crypted information. We leave to future work the devel-
opment of a pure “blind” attack on gzip encryption, one
that does not require this additional information.

10 Acknowledgments

This work was supported by: The National Science
Foundation under awards CNS-1010928 and EFRI-
1441209; The Office of Naval Research under contract
N00014-14-1-0333; and The Mozilla Foundation.

We also are deeply grateful to Nate Cardozo and Kurt
Opsahl of the Electronic Frontier Foundation for provid-
ing us with legal advice during our work on this paper.

References
[1] iMessage. In OpenIM Wiki, Available at https://imfreedom.

org/wiki/IMessage.

[2] MCABBER. Available at https://mcabber.com/.

[3] Pushproxy: A man-in-the-middle proxy for ios and os x device
push connections. Available at https://github.com/meeee/
pushproxy.

USENIX Association 25th USENIX Security Symposium 669

[4] Textsecure. https://github.com/WhisperSystems/
TextSecure/wiki/ProtocolV2. Accessed: 2014-11-13.

[5] Trustwave to escape ‘death penalty’ for SSL skeleton key, 2012.

[6] Apple pulls ad-blocking apps that can ‘compromise’ security. En-
gadget (October 2015).

[7] ABELSON, H., ANDERSON, R., BELLOVIN, S. M., BENALOH,
J., BLAZE, M., DIFFIE, W. W., GILMORE, J., GREEN, M.,
LANDAU, S., NEUMANN, P. G., RIVEST, R. L., SCHILLER,
J. I., SCHNEIER, B., SPECTER, M. A., AND WEITZNER, D. J.
Keys under doormats. Commun. ACM 58, 10 (Sept. 2015), 24–
26.

[8] ALFARDAN, N. J., AND PATERSON, K. G. Lucky thirteen:
Breaking the TLS and DTLS record protocols. In IEEE S&P
(Oakland) ’13 (2013), pp. 526–540.

[9] APPLE COMPUTER. iOS Security: iOS 9.0 or later. Avail-
able at https://www.apple.com/business/docs/iOS_
Security_Guide.pdf, September 2015.

[10] APPLE INC. Privacy. Available at http://www.apple.com/
privacy/approach-to-privacy/, 2015.

[11] APUZZO, M., SANGER, D. E., AND SCHMIDT, M. S. Apple
and other tech companies tangle with U.S. over data access.
Available at http://www.nytimes.com/2015/09/08/us/
politics/apple-and-other-tech-companies-tangle-
with-us-over-access-to-data.html, September 2015.

[12] BARBOSA, G. Apple execs Eddy Cue & Craig Federighi talk
Apple Music, App Store & more in new interview. Available at
http://9to5mac.com/2016/02/12/apple-execs-eddy-
cue-craig-federighi-talk-apple-music-app-store-
more-in-new-interview/, February 2016.

[13] BARDOU, R., FOCARDI, R., KAWAMOTO, Y., SIMIONATO, L.,
STEEL, G., AND TSAY, J.-K. Efficient padding oracle attacks
on cryptographic hardware. In CRYPTO ’12, vol. 7417 of LNCS.
Springer, 2012, pp. 608–625.

[14] BELLARE, M., AND NAMPREMPRE, C. Authenticated encryp-
tion; relations among notions and analysis of the generic compo-
sition paradigm. J. Cryptol. 21, 4 (Sept. 2008), 469–491.

[15] BELLARE, M., AND ROGAWAY, P. Optimal asymmetric encryp-
tion: How to encrypt with RSA. In EUROCRYPT ’94 (1994),
A. D. Santis, Ed., vol. 950 of LNCS, Springer, pp. 92–111.

[16] BIHAM, E., AND KOCHER, P. C. A known plaintext attack
on the PKZIP stream cipher. In Fast Software Encryption: Sec-
ond International Workshop. Leuven, Belgium, 14-16 December
1994, Proceedings (1994), pp. 144–153.

[17] BORISOV, N., GOLDBERG, I., AND BREWER, E. Off-the-record
communication, or, why not to use PGP. WPES ’04, ACM Press,
pp. 77–84.

[18] CALLAS, J., DONNERHACKE, L., FINNEY, H., SHAW, D., AND
THAYER, R. RFC 4880: OpenPGP Message Format. Available at
https://tools.ietf.org/html/rfc4880, November 2007.

[19] CANVEL, B., HILTGEN, A., VAUDENAY, S., AND VUAG-
NOUX, M. Password interception in a SSL/TLS channel. In
CRYPTO ’03, vol. 2729 of LNCS. Springer Berlin Heidelberg,
2003, pp. 583–599.

[20] CHEN, Y., LI, T., WANG, X., CHEN, K., AND HAN, X. Per-
plexed messengers from the cloud: Automated security analy-
sis of push-messaging integrations. In CCS ’15 (New York, NY,
USA, 2015), CCS ’15, ACM, pp. 1260–1272.

[21] CHIBA, D., MATSUDA, T., SCHULDT, J. C. N., AND MAT-
SUURA, K. Efficient generic constructions of signcryption with
insider security in the multi-user setting. In ACNS ’11 (2011),
pp. 220–237.

[22] COVERT, A. Apple’s iMessage is the DEA’s worst night-
mare. Available at http://money.cnn.com/2013/04/
07/technology/security/imessage-iphone-dea/, April
2013.

[23] DEUTSCH, P. RFC 1952: GZIP file format specification version
4.3, May 1996.

[24] FROSCH, T., MAINKA, C., BADER, C., BERGSMA, F.,
SCHWENK, J., AND HOLZ, T. How secure is TextSecure? Cryp-
tography ePrint Archive, October 2014.

[25] GOLDBERG, I., USTAOĞLU, B., VAN GUNDY, M. D., AND
CHEN, H. Multi-party off-the-record messaging. In CCS ’09
(New York, NY, USA, 2009), CCS ’09, ACM, pp. 358–368.

[26] GRIFFIN, A. WhatsApp and iMessage could be banned under
new surveillance plans. The Independent (January 2015).

[27] JAGER, T., AND SOMOROVSKY, J. How to break XML encryp-
tion. In ACM CCS ’2011 (October 2011), ACM Press.

[28] KELSEY, J. Compression and information leakage of plaintext.
In FSE ’02 (2002), vol. 2365 of LNCS, Springer, pp. 263–276.

[29] KOHNO, T. Attacking and repairing the winZip encryption
scheme. In ACM CCS ’2004 (2004), ACM Press, pp. 72–81.

[30] KUPSER, D., MAINKA, C., SCHWENK, J., AND SOMOROVSKY,
J. How to break XML encryption – automatically. In Proceed-
ings of the 9th USENIX Conference on Offensive Technologies
(Berkeley, CA, USA, 2015), WOOT’15, USENIX Association.

[31] MELARA, M. S., BLANKSTEIN, A., BONNEAU, J., FELTEN,
E. W., AND FREEDMAN, M. J. CONIKS: Bringing key trans-
parency to end users. In USENIX ’15 (Washington, D.C., Aug.
2015), USENIX Association, pp. 383–398.

[32] MESSIEH, N. Apple’s iMessage and Facetime blocked in the
UAE. TheNextWeb (November 2011).

[33] PALETTA, D. FBI Chief Punches Back on Encryption. Wall
Street Journal (July 2015).

[34] RAYNAL, F. iMessage privacy. Available at http://blog.
quarkslab.com/imessage-privacy.html, October 2013.

[35] RIZZO, J., AND DUONG, T. The CRIME Attack. Avail-
able at https://docs.google.com/presentation/d/
11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/
edit#slide=id.g1d134dff_1_222, September 2012.

[36] SHIH, G., AND CARSTEN, P. Apple begins storing users’ per-
sonal data on servers in China. Reuters (August 2014).

[37] STAY, M. ZIP attacks with reduced known plaintext. In Fast Soft-
ware Encryption, 8th International Workshop, FSE 2001 Yoko-
hama, Japan, April 2-4, 2001, Revised Papers (2001), pp. 125–
134.

[38] UNGER, N., DECHAND, S., BONNEAU, J., FAHL, S., PERL,
H., GOLDBERG, I., AND SMITH, M. SoK: Secure messaging.
In IEEE S&P (Oakland) ’15 (2015).

[39] UNGER, N., AND GOLDBERG, I. Deniable key exchanges for se-
cure messaging. In Proceedings of the 22Nd ACM SIGSAC Con-
ference on Computer and Communications Security (New York,
NY, USA, 2015), CCS ’15, ACM, pp. 1211–1223.

[40] VAUDENAY, S. Security flaws induced by CBC padding - appli-
cations to SSL, IPSEC, WTLS. In EUROCRYPT ’02 (London,
UK, 2002), vol. 2332 of LNCS, Springer-Verlag, pp. 534–546.

[41] ZIV, J., AND LEMPEL, A. A universal algorithm for sequential
data compression. IEEE Transactions on Information Theory 23,
3 (1977), 337–343.

670 25th USENIX Security Symposium USENIX Association

Client profile.ess.apple.com

AuthenticateUser(usr, pass)
ServerResponse(at, status=0, id)
AuthenticateDS(at, csrid , id)

ServerResponse(certid , id, status=0)
IDGetHandles(AH)

ServerResponse({urii, statusi}i∈N , id, status=0)

Figure 7: Profile conversation. usr = username, pass =
password, at = authentication token pt = push token,
pkclient = client’s public key, st = session token. AH is an
authentication header with the following fields: certdevice
= signed by the Apple Fairplay Certificate, certid = a cer-
tificate associated with the client id, id, pt, noncedevice,
nonceid, σdevice, and σid .

Client identity.ess.apple.com

InitializeValidation(pt, session_info_request)
ServerResponse(ttl, session info, status=0)

Register(AH, device_data, PKclient , misc_pref, uri, id, σ)
ServerResponse(id, uri, certreg, status=0)

GetDependantRegistrations(AH)
ServerResponse({PKi, sti, pti, device_datai, misc_prei }i∈D)

Figure 8: Identity conversation. pt = push token, pkclient
= client’s public key, st = session token. AH is an au-
thentication header with the following fields: certdevice =
signed by the Apple Fairplay Certificate, certid = a cer-
tificate associated with the client id, id, pt, noncedevice,
nonceid, σdevice, and σid .

A Attacks on Key Registration

While this work focuses on the retrospective decryption
of iMessage payloads, in the course of our reverse engi-
neering we were able to implement attacks on Apple’s
key registration infrastructure. The first attack is an im-
plementation of attacks previously noted by Raynal et
al. [34]. In these attacks, which work only against ver-
sions of iOS prior to iOS 9 and Mac devices prior to
OS X 10.11.4 (i.e., devices without key pinning), an at-
tacker with a forged Apple TLS certificate can intercept
the connection to the Apple key server in order to sub-
stitute chosen public keys. Additionally, we find a novel
attack against the device registration process that allows
an attack with stolen credentials to circumvent existing
protection mechanisms.

The protocol for registering a device is shown in
Figure 8. The user first establishes a TLS connec-
tion to Apple’s IDS server and authenticates using their
iCloud credentials. The client generates two separate
key pairs: a 1280-bit RSA public key pair (pkE ,skE)
for use in encrypting and decrypting messages and an
ECDSA keypair (vkS,skS) for authenticating messages.
The client transmits the public portion of these keys
PK = (pkE ,vkE) to the IDS, which registers it to the

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>identities</key>
 <array>
 <dict>
 <key>client-data</key>
 <dict>
 <key>public-message-identity-key</
key><data>MIH2gUMAQQQzklEBPP0Nu0FHBovCJe+Prn8Rd97qf/j/ER3p2fRSe/
2BaYJnbIfEfQcpooKa3fWayu4+J1DJsIMaIwl52T7agoGuAKwwgakCgaEAoScfeVODb
EMjRrCNMWDQ2E2hWOXn46Mdqx7mLxJMS3LpGQjBoc3PeN1k3yMUqhi0YUYJJIq7dvac
1IJEiQilQDrc18eZ754BBknNmq7wXuDs8rQ2qmiE8/vOnCP4pOwwDQBy/
bdX2J3u2365R2VK6GDuk0zIjCeeAavAXr8kt9SzcvrO9KkYH1JKyKqn6FIYmR8cfeHt
ctJ0Tax8tnlZGQIDAQAB</data>
 <key>public-message-identity-version</key><real>2</real>
 </dict>
 <key>push-token</key><data>CI/
 =</data>
 </dict>
 </array>
 <key>status</key><integer>0</integer>
</dict>
</plist>

GET /WebObjects/QueryService.woa/wa/query?uri=mailto
%3AXXXXXX2027%40icloud.com&weight=light HTTP/1.1
Host: query.ess.apple.com

Figure 9: Excerpts from an ESS/IDS directory lookup
request (top) and response (bottom). The request ad-
dress and a portion of the response Push token have been
redacted.

0x30 0x81 0xF6 0x81 0x43 0x00 0x41 0x04 488 Bits (ECDSA Key Material) 0x82 0x81 0xAE 0x00 0xAC

Public Exponent 1280 Bit RSA Key 0x30 0x81 0xA9 0x02 0x81 0xA1 0x00 0x02 0x03 0x01 0x00 0x01

Figure 10: Format of public key payload in ESS server
response

user’s iCloud account name. We diagram the full login
and registration protocols in Figures 7 and 8. To sup-
port multiple devices on a single account, the IDS will
store and return all public keys associated with a given
account.

A.1 Key Substitution Attack
The Apple key distribution systems are accessed each
time a legitimate user wants to send an iMessage to
a new Recipient. The Messages client first contacts
query.ess.apple.com to look up the keys for a given
username. In response, the server returns the user’s pub-
lic key(s), status, and push tokens for addressing APNs
communications to the user. A fragment of the request
and response is shown in Figure 9.

The query.ess.apple.com response message con-
tains public keys, along with push tokens, for each of the
devices registered to an account. Each of the key entries
is a 332 character long base64 encoded binary payload.
When decoded, they take the form shown in Figure 10.

USENIX Association 25th USENIX Security Symposium 671

Upon receiving the RSA public key in the above di-
agram, the Messages client uses this key to encrypt the
outgoing iMessage payload. The ECDSA key is not used
when sending a message, but is used to verify the in-
tegrity of a message when it is received from that user.
iMessage clients appear to accept the most recent key
delivered by ESS/IDS even if it disagrees with previous
entries cached by the device.

Notably, the only security measures embedded in this
conversation are authentication fields in the header of the
request; the server does not sign the response. Thus the
authenticity of the response depends entirely on the secu-
rity of the TLS connection. This seems like an oversight,
given that many other fields in the Apple protocols are
explicitly authenticated. Worse, in iOS 8 and versions of
OS X 10.11 released prior to December 2015, the Mes-
sages client does not use certificate pinning to ensure that
the connection terminated at an Apple server. Thus an at-
tacker with a stolen TLS root certificate can intercept key
requests and substitute their own key as a response. This
degrades the security of iMessage to that of TLS.

We implemented this attack by installing a self-signed
X.509 root certificate into the local root certificate store
of a Mac device. This allowed us to verify that there were
no warning mechanisms that might alert a user to the key
substitution. By further intercepting messages transmit-
ted via the APNs network, we were able to respond to
all key lookup requests with our own attacker key, and
subsequently decrypt any iMessages transmitted via the
device.

Our experiments demonstrate that iOS 9 is no longer
subject to simple key substitution attacks, due to the ad-
dition of certificate pinning on TLS connections. This
increases the relative impact of our novel decryption at-
tacks. Surprisingly, our experiments demonstrated that
OS X 10.11.1 remained vulnerable as of November 2015.
We notified Apple of this oversight, and they have added
key pinning as of OS X 10.11.13.

A.2 Credential theft
The first message in the registration process, shown
in Figure 7, passes the user’s credentials to the
profile.ess.apple.com server to be verified. As
noted in previous sections, OS X 10.10.5 and iOS 8 de-
vices do not employ certificate pinning on this server, and
the credentials are sent in plaintext within the TLS con-
nection.16 By conducting a TLS MITM attack on this
connection, we are able to intercept iCloud login creden-
tials. Using this information we can register new iMes-
sage devices to an account, ensuring that we will be able

16OS X 10.11 devices do not employ certificate pinning on this con-
nection either, but they do not appear to send the credentials in plain-
text.

to receive future messages.
Apple’s primary defense against registration of new

devices is a notification message that is sent to all
previously-registered devices. In order to register a new
device to a target account without alerting the victim, we
also developed a method to overcome these notification
mechanisms. We observed two such mechanisms:

1. Upon registration of a new device, all devices
logged into the account receive a push notification
over the APNs network. In response, each de-
vice initiates the GetDependantRegistrations
call shown in Figure 8.

2. When an iMessage account is registered to a device
that has not previously been registered to that ac-
count, a notification email is generated and sent to
the account’s registered email.

In the first instance, once the APNs push notifi-
cation signaling that a GetDependantRegistrations
call should be executed has arrived at a client, the client
will continuously send the request until it receives a re-
sponse. An active attacker on the victim’s network can
simply block all these requests, but this is not sustain-
able over long periods of time. We discovered that the
client is satisfied when it receives any response — even
a poorly formatted unreadable one. Thus, an attacker
can edit the server response causing it to decode incor-
rectly. The client will accept this response and terminate
the repeated GetDependantRegistrations calls. This
blocks notifications that would alert the victim to the fact
that a new device has been registered to their account.
All subsequent iMessage traffic, both incoming and out-
going, will be forwarded to the attack device. Until a
user logs out of their iMessage client, logs into a new
iMessage client, or manually checks the list of devices
associated with their account, they will never notice that
their traffic is being forwarded to the attack device.

A.3 Updates in OS X 10.11

The ESS messaging protocol changed in a number of
ways with the 10.11 update to OS X. The exchange
of credentials for an authorization token has moved to
point to gsa.apple.com and that connection has cer-
tificate pinning implemented. Due to this fact, we are
unable to MITM this connection, but attempting to login
to an account with bad credentials will result only in a
message to that server and an error message displayed
on the client. Additionally, there is a message sent to
setup.icloud.com with a username and password pair
in which the password is no longer transmitted in plain-
text.

672 25th USENIX Security Symposium USENIX Association

The key substitution attack still worked against OS X
10.11 versions as of November 2015, but the additional
certificate pinning of apsd made it more difficult to in-
tercept the message. In order to make sure the attack still
functioned properly, we recovered the encrypted payload
of the message from the apsd logs and were able to suc-
cessfully decrypt the message using our own keys. Al-
though we are not able to easily intercept the messages
as we could with 10.10.5, this attack still effectively re-
duces the security of iMessage to that of TLS.

B Bypassing TLS

To execute the attacks described in this paper, the at-
tacker must obtain encrypted iMessages from the APNs
link. Since iMessage secures the APNs connection using
TLS, this requires the attacker to penetrate to the TLS en-
cryption on the link between Apple and the end-device.

We identified three approaches to bypassing TLS on
the APNs connections: (1) Apple, or an attacker with
access to Apple’s infrastructure, can intercept the con-
tents of push messages as they transit the APNs servers;
(2) on certain iOS and OS X versions that do not include
certificate pinning for APNs, an attacker with access to
a stolen CA root certificate may be able to conduct an
MITM attack on the TLS connection; or (3) on the same
versions, an attacker can “sideload” a root certificate on
the target device, by briefly taking physical control of
it, or convincing a victim to install a root certificate via
a malicious email or web page. The latter technique
is particularly concerning due to the similarity between
Apple’s interface for installing root CAs and other non-
critical certificate installation requests that may be pre-
sented to the user (see Figure 11). Since some Apple
operating systems do not use certificate pinning, instal-
lation of a root certificate allows arbitrary interception of
both APNs and HTTPS connections.

We identified attacks (2) and (3) as infeasible on all
iOS 9 versions due to the inclusion of certificate pinning
on APNs connections in that operating system. As of
November 2015 when we first notified Apple of the re-
sults in this paper, we discovered that the then-current
version of OS X 10.11 did not include certificate pin-
ning. In response to our disclosure, Apple added certifi-
cate pinning to OS X as of December 2015.

We stress that given the interest in iMessage expressed
by nation-states [26], a compromise of CA infrastructure
cannot be ruled out. Even without such attacks, there
have been several recent examples of CA-signed root or
intermediate certificates being issued for use within cor-
porate middle-boxes, primarily for the purposes of enter-
prise TLS interception [5]. TLS interception may occur
even within Apple OS distributions: a recent incident in-
volving iOS 9 allowed ad-blocking software to install a

Figure 11: On the left is a certificate verification dialog
presented on encountering an unknown wireless access
point. On the right is a root CA installation dialog.

TLS root certificate [6].

USENIX Association 25th USENIX Security Symposium 673

Predicting, Decrypting, and Abusing WPA2/802.11 Group Keys

Mathy Vanhoef
iMinds-DistriNet, KU Leuven

Mathy.Vanhoef@cs.kuleuven.be

Frank Piessens
iMinds-DistriNet, KU Leuven

Frank.Piessens@cs.kuleuven.be

Abstract

We analyze the generation and management of 802.11
group keys. These keys protect broadcast and multicast
Wi-Fi traffic. We discovered several issues and illustrate
their importance by decrypting all group (and unicast)
traffic of a typical Wi-Fi network.

First we argue that the 802.11 random number gen-
erator is flawed by design, and provides an insufficient
amount of entropy. This is confirmed by predicting ran-
domly generated group keys on several platforms. We
then examine whether group keys are securely transmit-
ted to clients. Here we discover a downgrade attack that
forces usage of RC4 to encrypt the group key when trans-
mitted in the 4-way handshake. The per-message RC4
key is the concatenation of a public 16-byte initialization
vector with a secret 16-byte key, and the first 256 key-
stream bytes are dropped. We study this peculiar usage
of RC4, and find that capturing 231 handshakes can be
sufficient to recover (i.e., decrypt) a 128-bit group key.
We also examine whether group traffic is properly iso-
lated from unicast traffic. We find that this is not the case,
and show that the group key can be used to inject and de-
crypt unicast traffic. Finally, we propose and study a new
random number generator tailored for 802.11 platforms.

1 Introduction

In the last decennia, Wi-Fi became a de facto standard for
medium-range wireless communications. Not only is it
widely supported, several new enhancements also make
it increasingly more performant. One downside is that
(encrypted) traffic can easily be intercepted. As a result,
securing Wi-Fi traffic has received considerable attention
from the research community. For example, they showed
that WEP is utterly broken [11, 42, 4], demonstrated at-
tacks against WPA-TKIP [43, 45, 47, 41], performed se-
curity analysis of AES-CCMP [24, 39, 13], studied the
security of the 4-way handshake [17, 18, 34], and so on.

However, most research only focuses on the security of
pairwise keys and unicast traffic. Group keys and group
traffic have been given less attention, if mentioned at all.

In this paper we show that generating and managing
group keys is a critical, but underappreciated part, of a
modern Wi-Fi network. In particular we investigate the
generation of group keys, their transmission to clients,
and the isolation between group and unicast traffic. We
discovered issues during all these phases of a group key’s
lifetime. To address some of our findings, we propose
and implement a novel random number generator that ex-
tracts randomness from the physical Wi-Fi channel.

First we study the random number generator proposed
by the 802.11 standard. Among other things, the Access
Point (AP) uses it to generate group keys. Surprisingly,
we find that it is flawed by design. We argue that im-
plementing the algorithm as specified, results in an un-
acceptably slow algorithm. This argument is supported
empirically: all implementations we examined, modified
the generator to increase its speed. We demonstrate that
these modified implementations can be broken by pre-
dicting the generated group key within mere minutes.

The generated group keys are transferred to clients
during the 4-way WPA2 handshake. We found that it is
possible to perform a (type of) downgrade attack against
the 4-way handshake, causing RC4 to be used to encrypt
the transmission of the group key. We analyze the con-
struction of the per-message RC4 key and its effect on
biases in the keystream. This reveals that an attacker can
abuse biases to recover an 128-bit group key by capturing
230 to 232 encryptions of the group key, where the precise
number depends on the configuration of the network.

Group keys should only be used to protect broadcast
or multicast frames. In other words, pairwise and group
keys should be properly isolated, and unicast packets
should never be encrypted with a group key. An AP can
enforce this by only sending, but never receiving, group
addressed frames. However, all APs we tested did not
provide this isolation. We demonstrate that this allows

674 25th USENIX Security Symposium USENIX Association

FC addr1 addr2 addr3 KeyID / PN Data

Figure 1: Simplified 802.11 frame with a WPA2 header.

an attacker to use the group key to inject, and in turn de-
crypt, any traffic sent in a Wi-Fi network.

Finally, we propose and study a novel random num-
ber generation tailored for 802.11 platforms. It extracts
randomness from the wireless channel by collecting fine-
grained Received Signal Strength Indicator (RSSI) mea-
surements. These measurements can be made using com-
modity devices even if there is no background traffic. We
show our algorithm can generate more than 3000 bits per
second, and even when an adversary can predict individ-
ual RSSI measurements with high probability, the output
of the generator still remains close to uniformly random.

To summarize, our main contributions are:

• We show that the 802.11 random number genera-
tor is flawed, and break several implementations by
predicting its output, and hence also the group key.

• We present a downgrade-style attack against the
4-way handshake, allowing one to recover the group
key by exploiting weaknesses in the RC4 cipher.

• We show that the group key can be used to inject and
decrypt any (internet) traffic in a Wi-Fi network.

• We propose and study a random number generator
that extracts randomness from the wireless channel.

The rest of this paper is organized as follows. Sec-
tion 2 introduces relevant parts of the 802.11 standard.
We break the random number generator of 802.11 in Sec-
tion 3. Section 4 presents a downgrade attack against the
4-way handshake, and attacks on its usage of RC4. In
Section 5 we use the group key to inject and decrypt any
frames, including unicast ones. In Section 6 we propose
a new random number generator. Finally, we explore re-
lated work in Section 7, and conclude in Section 8.

2 Background

This section provides a background on the 802.11 proto-
col, the 4-way handshake, and the RC4 stream cipher.

2.1 The 802.11 Protocol
When a station wishes to transmit data, it needs to add a
valid 802.11 header (see Figure 1). This headers contains
the necessary MAC addresses to route the frame:

addr1 = Receiver MAC address
addr2 = Sender MAC address
addr3 = Destination MAC address

Client Access Point

Beacons: IEs containing supported ciphers

Select cipher

Association Request: IE with chosen cipher

Msg1: ANonce

PTK Msg2: SNonce, IE, MIC

PTK
verify IEMsg3: IEs, GTK, MIC

verify IEs Msg4: ACK, MIC

Figure 2: Discovering APs by listening to beacons, fol-
lowed by the association and 4-way WPA2 handshake.

The Access Point (AP) forwards received frames to their
destination, which is either a node on the wired network,
or a Wi-Fi client. In frames received by a client, addr1
should equal addr3, hence no further routing is required.
For example, when a client sends an outbound IP packet,
addr1 equals the address of the AP, addr2 contains his
own address, and addr3 equals the address of the router.

If a client wishes to transmit a broadcast or multicast
frame, i.e., a group addressed frame, he first sends it as a
unicast frame to the AP. This means addr1 equals the
address of the AP, and addr3 equals the broadcast or
multicast destination address. The AP then encrypts the
frame using the group key if needed, and broadcasts it to
all associated clients. This assures all clients within the
range of the AP will receive the frame, even if certain
stations are not within range of each other.

The Frame Control (FC) field contains, among other
things, the ToDS and FromDS flags. The ToDS flag is set
if the frame is sent from a client to an AP, and the FromDS
flag is set if the frame is sent in the reverse direction. The
fifth field in Figure 1 is only included when encryption is
used, and contains the Key ID and Packet Number (PN).
The PN prevents replay attacks. The 2-bit Key ID field is
only used in group addressed frames, where it identifies
which group key is used to protect and encrypt the frame.

2.2 Discovering APs and Negotiating Keys
Clients can discover APs by listening for beacons, which
are periodically broadcasted by the AP (see Figure 2).
These beacons contain the supported cipher suites of the
AP in Information Elements (IEs). When a client wants
to connect to an AP, and has selected a cipher to use, it
starts by sending an association request to the AP. This

USENIX Association 25th USENIX Security Symposium 675

Key Info Nonce Key IV MIC Key Data

Encrypted

Figure 3: Simplified layout of EAPOL-Key frames.

request includes the selected cipher in an information el-
ement (IE). To prevent downgrade attacks, the client and
AP will verify the received and selected IEs in the 4-way
handshake. In this handshake, the client and AP also au-
thenticate each other, and negotiate a Pairwise Temporal
Key (PTK). The PTK is essentially the set of negotiated
session keys. The first part of the PTK is called the Key
Confirmation Key (KCK), and is used to authenticate
handshake messages. The second part is called the Key
Encryption Key (KEK), and is used to encrypt any sen-
sitive data in the handshake messages. Finally, the third
part is called the Temporal Key (TK), and is used to pro-
tect data frames that are transmitted after the handshake.
To assure a new PTK is generated, both the client and
AP first generate unpredictable, random nonces called
SNonce and ANonce, respectively. The PTK is then de-
rived from a shared secret or passphrase, the ANonce and
SNonce, and the MAC addresses of the client and AP.

In the first message of the 4-way handshake, the AP
sends the ANonce to the client (see Figure 2). On re-
ceipt of this message, the client calculates the PTK. In
the second message, the client sends the SNonce, the
IE representing the previously selected cipher, and in-
cludes a Message Integrity Code (MIC) calculated over
the complete message. Note that the MIC is calculated
using the KCK key contained in the PTK. After receiving
Msg2 and the SNonce, the AP also derives the PTK. At
this point both parties know the PTK, and all messages
are authenticated using a MIC. Using the KCK and re-
ceived MIC, the AP verifies the integrity of Msg2. The
AP then checks whether the included IE matches the IE
that was received in the initial association request. If
these IEs differ, the handshake is aborted. Otherwise the
AP replies with the Group Temporal Key (GTK), and its
supported ciphers as a list of IEs. The client verifies the
integrity of Msg3, and compares the included IEs with
the ones previously received in the beacons. If the IEs
differ, the handshake is aborted. Otherwise the client fin-
ishes the handshake by sending Msg4 to the AP.

Messages in the 4-way handshake are defined using
EAPOL-Key frames, whose most important fields are
shown in Figure 3. The Key Info field contains flags
identifying which message this frame represents in the
handshake. It also states which algorithm is used to cal-
culate the MIC, and which cipher is used to encrypt the
Key Data field (see Section 4). Note that the KCK key
is used to calculate the MIC, and that the KEK key is
used to encrypt the Key Data field. Finally, the Key IV

Key Scheduling (KSA)
L = len(key)

j, S = 0, range(256)

for i in range(256):

j += S[i] + key[i % L]

swap(S[i], S[j])

return S

Keystream Output (PRGA)
S, i, j = KSA(key), 0, 0

while True:

i += 1

j += S[i]

swap(S[i], S[j])

yield S[S[i] + S[j]]

Figure 4: Implementation of RC4 in Python-like pseudo-
code. All additions are carried out modulo 256.

field may contain an initialization vector (IV) to assure
the Key Data field is always encrypted using a unique
key. The most common usage of the Key Data field is to
transport the group key (GTK), and to transfer any IEs.

2.3 The RC4 Stream Cipher
RC4 is a fast and well-known stream cipher consisting
of two algorithms: a Key Scheduling Algorithm (KSA)
and a Pseudo-Random Generation Algorithm (PRGA).
Both are shown in Figure 4. The KSA takes as input a
variable-length key, and generates a permutation S of the
set {0, . . . ,255}. This gradually changing permutation,
combined with a public counter i and a private index j,
form the internal state of the PRGA. In each algorithm, a
swap operation is performed near the end of every round.
We use the notations it , jt , and St , for the indices i and j
and the permutation S after round t. Rounds are indexed
based on the value of i after the swap operation. Hence
the KSA has rounds t = 0, . . . ,255 and the PRGA has
rounds t = 1,2, We let Zr denote the keystream byte
outputted at round r. Whenever it might not be clear
whether we are referring to the KSA or PRGA, we use
the notations SKSA

t and SPRGA
t , respectively.

Multiple biases have been found in the first few key-
stream bytes of RC4. These are called short-term biases.
Arguably the most well known was found by Mantin and
Shamir [30]. They showed that the value zero occurs
twice as often at position 2 compared to uniform. In con-
trast, there are also biases that keep occurring throughout
the whole keystream. We call these long-term biases. For
example, Fluhrer and McGrew (FM) found that the prob-
ability of certain consecutive bytes deviate from uniform
throughout the whole keystream [12]. Similarly, Mantin
discovered a long-term bias towards the pattern ABSAB,
where A and B represent byte values, and S a short se-
quence of bytes called the gap [29]. Letting g denote the
length of the gap, the bias can be written as follows:

Pr[Zr,Zr+1 = Zr+g+2,Zr+g+3] = 2−16

(
1+

e(−4−8g)/256

256

)

Hence the longer the gap, the weaker the bias.

676 25th USENIX Security Symposium USENIX Association

Listing 1: Random number generator as proposed by the
802.11 standard in Python-like pseudocode [21, §M.5].

1 def PRF-256(key, label, data):

2 R = HMAC-SHA1(key, label + "\x00" + data + "\x00")

3 R += HMAC-SHA1(key, label + "\x00" + data + "\x01")

4 return R[:32]

5

6 def Hash(data):

7 return PRF-256(0, "Init Counter", data)

8

9 def NetworkJitter():

10 if ethernet traffic available:

11 return LSB(receive time of ethernet packet)

12 else:

13 Start 4-way handshake, stop after receiving Msg2

14 return LSB(Msg1.sent_time) + LSB(Msg2.rssi)

15 + LSB(Msg2.receive_time) + Msg2.snonce

16

17 def GenRandom():

18 local = "\x00" * 32

19 # Wait for Ethernet traffic or association, and

20 # loop until result is "random enough" or 32 times

21 for i in range(32):

22 buf = Hash(macaddr + currtime + local + i)

23 for j in range(32):

24 local += NetworkJitter()

25 return Hash(macaddr + currtime + local + "\x20")

3 Breaking the 802.11 RNG

In this section we argue that the Random Number Gen-
erator (RNG) of 802.11 is flawed, and break several im-
plementations by predicting the generated group key.

3.1 The Proposed RNG in 802.11
The security enhancements amendment to 802.11, called
802.11i, includes a software-based RNG [22, §H.5.2]. It
extracts randomness from clock jitter and frame arrival
times. While the standard states the proposed algorithm
is only expository, and real implementations should ex-
tend it with other sources of entropy, we found that sev-
eral platforms directly implement it and even simplify it.

Listing 1 contains the proposed RNG as the function
GenRandom. The outer for-loop first calculates a hash
over the MAC address of the station, the current time, the
local variable, and the loop counter. Then it makes mul-
tiple calls to NetworkJitter in order to collect random-
ness from the arrival times of Ethernet or Wi-Fi frames.
Here LSB returns the least significant byte of a times-
tamp. Note the comment on line 20, which is copied
almost verbatim from the standard. It instructs to either
run the outer loop 32 times, or until the lcoal variable
is “random enough”. No clarification is made on what
this exactly means. The standard also mentions that the
variable currtime can be set to zero if the current time
is not available. However, there is no discussion on how

this impacts the RNG, e.g., whether additional iterations
of the outer for-loop should be executed. Additionally,
the standard does not mandate a minimum resolution for
the timestamps that are used. It only states that the send
and receive timestamps of frames should use the highest
resolution possible, preferably 1 ms or better. Finally, the
RNG is executed on demand, i.e., there is no state saved
between two invocations of GenRandom.

3.2 Analysis

A careful inspection of the RNG shows it is ill-
defined and likely insecure. One problem lies with the
NetworkJitter function, which is called 256 times by
GenRandom. First, the if test on line 10 is ambiguous. If
it checks whether there was Ethernet traffic in the last x
seconds, repeated calls will probably operate on the same
Ethernet packet, and the function will return the same
data. On the other hand, if this test implies monitoring
the Ethernet interface for x seconds, this might cause a
total delay of 256 ·x seconds. Furthermore, the value of x
is not given. In any case, either calling NetworkJitter

implies waiting a significant amount of time until there
is new traffic, or repeated calls return the same value.

When the second clause of the if statement on line 10
is taken, the arrival times of frames transmitted during
the 4-way handshake are used. Specifically, it mentions
to initiate the 4-way handshake. This is something only
an AP can do when a client is trying to connect to this
AP (see Figure 2). Therefore the proposed algorithm is
only usable by APs. We also remark that if the AP were
to constantly abort the handshake after receiving mes-
sage 2 (see line 13), most clients will blacklist the AP
for a certain period. During this period, the client will
no longer attempt to connect to the network. Hence it
becomes infeasible to initiate and abort 256 4-way hand-
shakes, which is something the random number gener-
ator is supposed to do. We conclude that the function
NetworkJitter is unusable in practice. Based on this
we conjecture, and empirically confirm in Section 3.4,
that vendors will not implement this function.

Another design flaw is that no state is kept between
subsequent calls to GenRandom. Hence its output de-
pends only on a small amount of network traffic and
timestamp samples. A better design is to collect random-
ness in a pool, and regularly reseed this pool with new
randomness. When done properly, this protects against
permanent compromise of the RNG, iterative guessing
attacks, backtracking attacks, and so on [25, 3, 9].

We conclude that the proposed RNG is questionable
at best. Either it returns bytes having a low amount of
entropy, or calling it will incur significant slowdowns. In
Section 3.4 we will show that in practice this construc-
tion results in defective and predictable RNGs.

USENIX Association 25th USENIX Security Symposium 677

3.3 Generation of the Group Key

The 802.11 standard defines, but does not mandate, a key
hierarchy for the generation of group keys [21, §11.6.1].
This hierarchy is described in Listing 2, where macaddr
denotes the MAC address of the AP, and currtime is
either the current time or zero. The on startup func-
tion is executed at boot time, and generates a random
auxiliary key called the Group Master Key (GMK). Ad-
ditionally, it initializes the key counter variable to a
pseudo-random value [21, §11.6.5]. Actual group keys,
called Group Temporal Keys (GTKs), are derived from
the GMK and key counter using a Pseudo-Random
Function (PRF) in new gtk. The length of the gener-
ated GTK depends on the cipher being used to protect
group traffic. If TKIP is used, the GTK is 32 bytes long.
If CCMP is used, the GTK is 16 bytes long. This implies
the PRF has to generate either 128 or 256 bits of keying
material, depending on the configuration of the network.
Hence we use the function name PRF-X, where the value
of X depends on the amount of requested keying mate-
rial. Note that the implementation of PRF-256 is shown
in Listing 1, and that PRF-128 closely resembles this
function. The latest standard also states [21, §11.6.1.4]:

“The GMK is an auxiliary key that may be used to de-
rive a GTK at a time interval configured into the AP
to reduce the exposure of data if the GMK is compro-
mised.”

However, this makes no sense: there is no point in in-
troducing a new key to reduce the impact if that key it-
self leaks. Curiously, we found that older versions of the
standard did not contain this description of the GMK. In-
stead, older versions stated that the GMK may be reini-
tialized to reduce the exposure of data in case the current
value of the GMK is ever leaked.

Most implementations renew the GTK every hour by
calling a function similar to new gtk. More importantly,
the key counter variable is also used to initialize the
Key IV field of certain EAPOL-Key frames (see Fig-
ure 3). After using the value of key counter for this
purpose, it is incremented by one. Since these IVs are
public values, the value of key counter is known by
adversaries. We found that some implementations even
use key counter to generate nonce values during the
4-way handshake, though this is not recommended as it
may enable precomputation attacks [21, §8.5.3.7].

One major disadvantage of the proposed key hierar-
chy, is that fresh entropy is never introduced when gener-
ating a new group key in new gtk. Hence, once the value
of GMK has been leaked, or recovered by an attacker, all
subsequent groups keys can be trivially predicted.

Since the standard assumes that GenRandom provides
cryptographic-quality random numbers, there appears

Listing 2: Python-like pseudocode describing the group
key hierarchy (and generation) according to the 802.11
standard.

1 def on_startup():

2 GMK, key = GenRandom(), GenRandom()

3 buf = macaddr + currtime

4 key_counter = PRF-256(key, "Init Counter", buf)

5

6 def new_gtk():

7 gnonce = key_counter++

8 buf = macaddr + gnonce

9 GTK = PRF-X(GMK, "Group key expansion", buf)

to be no advantage in using this key hierarchy. In-
stead, the AP can directly call GenRandom to generate
new group keys. Some consider this key hierarchy a
relic from older 802.11 standards, which did not yet re-
quire that devices must implement a strong RNG [20].
Perhaps the only (unintended) advantage this construc-
tion has, is that the first group key is now determined
by two calls to GenRandom, instead of only one call.
Hence, if an adversary is trying to attack a weak im-
plementation of GenRandom, he has to predict its out-
put twice (see Section 3.4). Nowadays implementations
are allowed to directly generate a random value for the
GTK [21, §11.6.1.4], though many platforms still imple-
ment the proposed group key hierarchy (see Section 3.4).

3.4 Practical Consequences
We now study the RNG of real 802.11 platforms. First
we focus on popular consumer devices. To estimate
the popularity of a specific brand, we surveyed wireless
networks in two Belgian municipalities. We were able
to recognize specific brands based on vendor-specific
information elements in beacons. We detected 6803
networks, and found that MediaTek- and Broadcom-
based APs alone covered at least 22% of all Wi-Fi net-
works. We will focus on both because of their popu-
larity. Additionally we examine Hostapd for Linux. Fi-
nally, we study embedded systems by analysing the Open
Firmware project. We found that, apart from Hostapd, all
these platforms produce predictable random numbers.

3.4.1 MediaTek-based Routers

Access points with a MediaTek radio use out-of-tree
Linux drivers to control the radio1. These drivers directly
manage the 4-way handshake and key generation. They
implement the 802.11 RNG as shown in Listing 1, but
do not call NetworkJitter. This strengthens our hy-
pothesis that this function is infeasible to implement in

1Available from www.mediatek.com/en/downloads1

678 25th USENIX Security Symposium USENIX Association

practice. It also means the only source of randomness is
the current time, for which it uses the jiffies counter of
the Linux kernel. This counter is initialized to a fixed
value at boot, and incremented at every timer interrupt.
The number of timer interrupts per second is configured
at compile time and commonly lies between 100 and
1000. Hence it is a coarse grained timestamp, meaning
the currtime variable likely has the same value each
time it is sampled in GenRandom. That is, the current
time is the only random source being used, and provides
little entropy.

The group key hierarchy is implemented according to
the 802.11 standard, with one exception. Instead of ini-
tializing gnonce to key counter in line 7 of Listing 2,
it generates a new value using GenRandom, and assigns
the result to gnonce.

We show that this RNG is flawed by predicting the
group key generated by an Asus RT-AC51U. A similar
approach can be followed for other routes that also use a
MediaTek radio. The first step is to predict the GMK
generated at boot. By recompiling the firmware, and
printing out the jiffies values that were used at the start
and end of an invocation of GenRandom, we observe that
it uses at most two different values. Note that we printed
these values out only after calling GenRandom, to assure
we did not noticeably influence the used jiffies values.
Hence the jiffies values is incremented at most by one
while executing GenRandom. Since this increment may
happen in any of the 32 loops, GenRandom can result
in total 32 possible values if the initial jiffies value is
known. If AES-CCMP is used to protect group traffic,
the initial jiffies value when generating the GMK lies in
the range [232 − 72889,232 − 72884]. If WPA-TKIP is
used, it lies in [232 − 73067,232 − 73061]. The number
of attached USB or Ethernet devices, amount of Ether-
net traffic, or other Wi-Fi options, did not impact these
estimates. Since it is trivial to determine whether AES
or TKIP is used, and less than 10 possible initial values
are used in both cases, we end up with at most 32 · 10
possible values for the GMK.

The second step is to estimate the jiffies count when
the GTK, i.e., group key, was generated. By default, a
new group key is generated every hour. Hence, if we
know the uptime of the router, we can determine when
the current group key was generated. Conveniently, bea-
cons leak the uptime of a device in their timestamp field.
This field is used to synchronize timers between all sta-
tions [21, §10.1], and is generally initialized to zero at
boot. Hence its value corresponds to the uptime of the
router. From this we can estimate the jiffies counter’s
value at the time the group key was generated. However,
as the device keeps running, clock skew will affect our
prediction. By logging jiffies values, we observed that
the clock skew over one month made our prediction off

by at most 4500 jiffies. Therefore, even after an uptime
of year, our prediction of the jiffies value will only be off
by roughly 50000. In other words, we conjecture that the
prediction after a year will be off by at most 200 seconds.

We created an OpenCL program to search for the
group key on a GPU. It tests candidate keys by decrypt-
ing the first 8 bytes of a packet, and checking if they
match the predictable LLC/SNAP header. If the tar-
geted router has been running for one year, it has to test
320 ·50000 ·32 ≈ 229 candidates to recover the group
key. However, testing each key is rather costly, as it
involves calculating 33 · 4 SHA-1 hashes to derive the
group key, and we must then decrypt the first 8 bytes
of the packet to verify the key. Nevertheless, on our
NVIDIA GeForce GTX 950M, it takes roughly two min-
utes to test all 229 candidates and recover the GTK. We
confirmed this by successfully predicting several group
keys generated by our Asus RT-AC51U, when it had an
uptime of more than a month. We conclude the group
key generated by a MediaTek driver can be brute-forced
using commodity hardware in negligible time.

3.4.2 Broadcom Network Authentication

The network access server of Broadcom implements the
4-way handshake, including the necessary key genera-
tion. It implements the group key hierarchy according to
the 802.11 standard (see Listing 7). Additionally, it uses
the key counter variable to initialize the Key IV field
of EAPOL-Key frames. However, it does not implement
the RNG as proposed in the 802.11 standard. Instead, the
RNG it uses depends on the kernel used by the device.

When running on a VxWorks or eCos kernel, random
numbers are generated by taking the MD5 checksum of
the current time in microsecond accuracy. Hence ran-
dom numbers are straightforward to predict. And since
the output of MD5 is used, only 16 bytes of supposedly
random data is generated in every call. One widely used
device that uses a VxWorks kernel, is version 5 or higher
of the popular WRT54G router. Furthermore, the Apple
AirPort Extreme also uses a VxWorks kernel. To pre-
dict the group key generated by these devices, we only
have to predict the value of GMK. Recall that the value
of key counter is leaked in the Key IV field of certain
EAPOL-Key fields, and can simply be passively sniffed.
Since GMK is a 32-byte value, it is initialized by calling
the random number generator twice. In order to predict
the output of these two calls, we must first determine the
time at which the group key was generated based on the
uptime of the router. Similar to the MediaTek case, the
uptime can be derived from the timestamp field in bea-
cons. Assuming we can estimate time at which the group
key was generated with an accuracy of one second, and
that the timestamp in the next call to the RNG differs by

USENIX Association 25th USENIX Security Symposium 679

Listing 3: Generation of random nonces by the Open
Firmware project in Python-like pseudocode.

1 def on_system_boot():

2 rn = lcg_next(milliseconds since boot)

3 data = macaddr + rn

4 rn = lcg_next(rn)

5 nonce = PRF-256(rn, "Init Counter", data)

6

7 def lcg_next(rn):

8 return rn * 0x107465 + 0x234567

9

10 def compute_next_snonce():

11 nonce += 1

12 return nonce

at most 10 ms, we have to test 1000000 · 10000 ≈ 233

keys. We implemented an OpenCL program to simu-
late this search, and on our GeForce GTX 950M, it takes
around 4 minutes to test all candidate keys. Hence the
generated group keys by this RNG can be predicted us-
ing commodity hardware.

When running on a Linux kernel, random bytes are
read from /dev/urandom. This is problematic since, on
routers and embedded devices, /dev/urandom is com-
monly predictable at boot [19]. And since entropy for
the group keys is only collected at boot (see Section 3.3),
this again means all groups keys may be predictable.

3.4.3 The Linux Hostapd Daemon

Hostapd implements the 802.11 group key hierarchy as
shown in Listing 2. However, when generating a new
group key using a function similar to new gtk, it also
samples and incorporates new entropy. Additionally,
Hostapd does not implement the 802.11 RNG. Instead,
it generates keys by reading from /dev/random. In case
insufficient entropy is available, it will re-sample from
/dev/random when the first client is attempting to con-
nect. In case there still is not enough entropy available,
the client is not allowed to connect All combined, this
means the keys used by Hostapd should be secure.

3.4.4 Open Firmware (OpenBoot)

The Open Firmware project, previously called Open-
Boot, is a free and open source boot loader programmed
in Forth2. Most notably it is used in the One Laptop
Per Child project. Interestingly, it provides basic but se-
cure Wi-Fi functionality during the early stages of the
boot process. Since at this stage no operating system is
loaded, we consider it an ideal candidate to investigate
how vendors implement RNGs in a constrained (embed-
ded) environment.

2Available from svn://openbios.org/openfirmware

Currently, the Wi-Fi module of Open Firmware only
provides client functionality. Therefore we focus on the
generation of random nonces during the 4-way hand-
shake. Listing 3 illustrates how Open Firmware gener-
ates these nonces. Summarized, when loading the Wi-Fi
module, a random initial nonce is generated, and this
nonce is incremented whenever it is used. In this regard,
the algorithm follows the 802.11 standard [21, §11.6.5].
However, the generation of the initial random nonce is
very weak. It takes the uptime of the device in number of
milliseconds, runs this twice through a linear congruen-
tial generator, combines it with its own MAC address,
and finally expands this data using a Pseudo-Random
Function (PRF). All this information can be predicted or
brute-forced by an adversary.

We attribute this weak construction to a careless im-
plementation, and treat it as an indication that a better
design is to let the Wi-Fi chip generate random numbers
itself. Users can then query the Wi-Fi chip when new
randomness is needed. In Section 3 we demonstrate how
a strong random number generator can be implemented
using commodity Wi-Fi devices.

4 RC4 in the 4-Way Handshake

In this section we present a (type of) downgrade attack
against the 4-way handshake. As a result, RC4 is used
to encrypt sensitive information in the handshake. We
present two attacks against the usage of RC4 in the hand-
shake, and show how it allows an attacker to recover the
group key. We also determine the performance of our
attacks, and propose countermeasures.

4.1 Downgrading to RC4

When inspecting the 4-way handshake in Figure 2, we
can see that the AP sends the group key (GTK) to the
client before the client verifies the IEs of the AP. Re-
call that these IEs contain the supported cipher suites
of the AP, which are advertised in plaintext beacons.
In other words, the client can only detect that a down-
grade attack has occurred after the AP has transmitted
the group key in Msg3. This is problematic because, if
multiple ciphers can be used to protect the handshake, an
adversary can try to perform a downgrade attack to in-
duce the AP into encrypting and transmitting the group
key using a weak cipher.

Interestingly, the 4-way handshake can indeed be pro-
tected by several cipher suites [21, §11.6.2], meaning a
downgrade attack is possible. More specifically, the ci-
pher suite that is used to protect the handshake is deter-
mined by two settings that may, or may not, be requested
by the client in its association request (see Figure 2). In

680 25th USENIX Security Symposium USENIX Association

Table 1: Cipher suites used in the 4-way handshake.

Selected Options Ciphers Used
Fast Transition (FT) AES-CMAC, AES key wrap
CCMP without FT HMAC-SHA1, AES key wrap
TKIP without FT HMAC-MD5, RC4

particular, when support for fast network transitions is re-
quested, AES-CMAC and and NIST AES key wrap are
used to protect messages in the 4-way handshake. Oth-
erwise, the cipher used to protect the handshake depends
on the pairwise cipher that will be used to protect nor-
mal data frames transmitted after the handshake. In case
CCMP will be used, the 4-way handshake uses HMAC-
SHA1 and NIST EAS key wrap. More troublesome,
if TKIP will be used, then HMAC-MD5 and RC4 are
used to authenticate and encrypt data, respectively. An
overview of this selection process is shown in Table 1.

Our idea is now to create a rogue AP that only adver-
tises support for TKIP. Hence victims wanting to con-
nect to the AP will use TKIP, and in turn the group key
transmitted in the 4-way handshake will be encrypted us-
ing RC4. This works because the client will only detect
the downgrade attack after receiving message 3. How-
ever, to make the AP send message 3, it must first re-
ceive and successfully verify the integrity of message 2.
If its integrity cannot be verified, which is done using
the negotiated session keys, the AP will not continue the
handshake. Since the session keys depend on the MAC
addresses of the client and AP, it means we must create a
rogue AP with the same MAC address as the real one.
Fortunately this is possible by performing a channel-
based man-in-the-middle attack [46]. Essentially, the at-
tacker clones the AP on a different channel, and forwards
packets to, and from, the real AP. The MAC addresses in
forwarded frames are not modified. This assures the sta-
tion and AP will generate the same session keys, mean-
ing the AP will successfully verify the authenticity of
message 2. This man-in-the-middle position allows the
attacker to reliably manipulate messages. In particular, it
will use this position to modify the beacons and probe re-
sponses so it seems the AP only supports (WPA-)TKIP.
Hence the client will be forced to select TKIP, causing
the AP use to RC4 for encrypting the group key.

We tested this downgrade-style attack against a net-
work that advertised both support for TKIP and CCMP.
Since the rogue AP only advertised support for TKIP, the
victim indeed selected TKIP. We then confirmed that the
AP encrypts the group key using RC4, and that the client
detected our attack only after receiving message 3.

Interestingly, the 4-way handshake uses RC4 in a
rather peculiar manner [22, §8.5.2j]. The per-message
RC4 key is the concatenation of the 16-byte Initial-

ization Vector (IV) and the 16-byte Key Encryption
Key (KEK). Additionally, the initial 256 keystream bytes
are dropped. This construction is similar to the one used
by WEP, except that the IV is longer, and that some ini-
tial keystream bytes are dropped. Interestingly, using a
longer IV likely weakens this per-message key construc-
tion [28, 36], while dropping the initial keystream bytes
should strengthen it [33, 28]. In the next two sections,
we analyze the impact of this peculiar combination.

4.2 Recovering the Key Encryption Key
We first examine whether it is possible to perform a key
recovery attack similar to those that broke WEP [11, 42].
In general, these attacks are applicable if a public IV
is prepended (or appended) to a fixed secret key. This
matches the construction of the per-message key K in
the 4-way handshake, where the public 16-byte IV is
prepended to the secret but static 16-byte KEK key. More
formally, the per-message key is constructed as follows:

K = IV || KEK

Although the first 256 keystream bytes of RC4 are
dropped, Mantin showed this does not prevent key re-
covery attacks [28]. We will adapt Mantin’s attack to the
4-way handshake, an study whether it is feasible to per-
form this attack in practice.

Similar to the original FMS attack [11], Mantin’s ex-
tension of the FMS attack uses an iterative process to re-
cover the key K [28]. That is, each iteration assumes the
first x bytes of K are known, and attempts to recover the
next key byte K[x]. In the first step of each iteration of
Mantin’s new attack, keystreams are collected that were
generated with an IV for which the condition SKSA

x−1 [1] = x
holds. We call these applicable IVs. Mantin proved that
applicable IVs leak information about the key byte K[x]
through the following relation [28]:

Pr[K[x] = S−1
x−1[i257 − z257]− jx−1 −Sx−1[x]]≈ 1.1 ·2−8

(1)
This relation can be used to recover K[x] with a simple
voting mechanism as follows. Each applicable IV casts
a vote for a certain value through equation (1). After all
IVs are processed, the value with the most votes is as-
sumed to be the value of K[x]. Unfortunately, this has
the downside that a single incorrect guess for any byte
means the complete key K is also wrong. To mitigate
this, we pick the C most likely values for each byte, and
construct C16 candidate values for K. Each candidate can
be tested based on the captured IVs and corresponding
keystreams. We simulated this attack against the 4-way
handshake, with as goal to determine how many applica-
ble IVs have to be capture to recover the KEK key. The
result of this simulation is shown in Figure 5. To obtain

USENIX Association 25th USENIX Security Symposium 681

0.0

0.2

0.4

0.6

0.8

1.0

Number of applicable IVs times 217

Pr
ob

ab
ilit

y
KE

K
ke

y
re

co
ve

ry

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C=1
C=4
C=8

Figure 5: Probability of finding the 16-byte KEK key
given the number of applicable IVs and the branch fac-
tor C.

a 80% success ratio of recovering the KEK, roughly 221

applicable IVs have to be collected. Note that to execute
the attack, we must be able to determine the value of z257.
Fortunately, this is possible by relying on the predictable
IEs that are located at the start of the EAPOL Key Data
field, meaning we can derive the keystream at these ini-
tial positions.

We now determine how much effort it takes to collect
the required number of applicable IVs. First notice that
the most likely way the condition SKSA

x−1 [1] = x is satisfied,
is when the value x is swapped into position 1 at round 1
of the KSA (recall Listing 4). Or more formally, that
j1 = x, since K[x] is likely not modified in the first round.
Indeed, the 15 other rounds only affect position 1 if j
ever equals 1. Assuming a random initial IV is used, this
will not happen with a probability of

(255
256

)15
= 0.94. At

round one, j1 = K[0] + 1+K[1] (we assume K[0] �= 1
which holds with high probability). Hence, with high
probability, an IV is applicable when K[0]+K[1] = x−1.

The 802.11 standard states that a station must generate
an initial random IV at startup, and increment this IV af-
ter it is used in a message [21, §11.6.5]. In other words,
the IV is used as a counter. However, it does not spec-
ify whether little or big endian counters must be used.
Our experiments indicate that most devices we use the
IV as a big endian counter. Fortunately, from a defend-
ers perspective, this means that generating the required
number of applicable IVs takes an enormous amount of
time. Assuming that the condition K[0] +K[1] = x− 1
does not hold, we must wait until K[1] has been incre-
mented sufficiently many times. However, only every
25614 = 2112 IVs does the value of K[1] change. Clearly,
this means that collecting the required number of IVs is
infeasible when the AP uses a big endian counter. If the
IV is generated by a little endian counter, the condition
K[0] + K[1] = x − 1 is generally satisfied every 256th
message. This means around 256 · n messages must be

collected in order to have roughly n applicable IVs for
all iterations.

While it is possible to generate many handshakes by
forcibly disconnecting clients, new handshakes will use
a different KEK key. Since our attack assumes that the
KEK is constant, this is not an option. The only method
we identified to make the AP send several handshake
messages protected by the same KEK, is by not acknowl-
edges them, and letting the AP retransmit them. Note
that each retransmission uses a new IV. Unfortunately,
only a few messages will be retransmitted before the AP
gives up and aborts the handshake process. In the next
Section we present an attack that does tolerate frequent
changes of the KEK key. We conclude that the 4-way
handshake, as defined in the 802.11i standard, is vulnera-
ble to key recovery attacks. However, these attacks seem
difficult to pull off against popular implementations.

4.3 Plaintext Recovery Attacks

We now turn our attention to plaintext recovery attacks,
where an adversary targets information that is repeatedly
encrypted under different RC4 keys. Previous work on
RC4 has shown that these types of attacks can be very
successful, with attacks against TLS and TKIP being on
the verge of practicality [2, 47]. In particular, the attack
against WPA-TKIP by Paterson et al. [37] is fairly sim-
ilar to our scenario. They showed that for WPA-TKIP,
the public 3-byte prefix of the per-message RC4 key in-
duces large, prefix-dependent, biases into the RC4 key-
stream [37, 15]. An adversary can precompute these
prefix-dependent biases, and mount a powerful plaintext
recovery attack against the first few bytes encrypted by
RC4. This inspired us to investigate whether the pub-
lic 16-byte IV used in the 4-way handshake also induces
IV-dependent biases, even though the first 256 keystream
bytes are dropped. Hence we examine the biases induced
by the public IV contained in EAPOL frames, and then
demonstrate through simulations that these can be used
to recover the group key.

It is impossible to empirically investigate every pos-
sible IV, since this would mean inspecting 2128 values.
Instead, we initially generated detailed keystream statis-
tics for four randomly selected IVs. This indicated that
large, IV-dependent biases indeed persist in the key-
stream, even after the first 256 bytes (which are dropped).
Motivated by this result, we took the all-zero initializa-
tion vector IV0, and investigated how changing the values
at each specific position in the IV influences the key-
stream distribution. Changing a byte at position x to
value y is denoted by IV0[x] = y. The generation of all
datasets took more than 13 CPU years.

Figure 6a and 6b show the keystream distribution for
the initialization vectors IVa and IVb, respectively. The

682 25th USENIX Security Symposium USENIX Association

Position of keystream byte

Va
lu

e
of

 k
ey

st
re

am
 b

yt
e

−40

−20

0

20

40

257 289 321 353 385
0

32

64

96

128

160

192

224

(a) Using IVa with random KEKs.

Position of keystream byte

Va
lu

e
of

 k
ey

st
re

am
 b

yt
e

−40

−20

0

20

40

257 289 321 353 385
0

32

64

96

128

160

192

224

(b) Using IVb with random KEKs.

Position of keystream byte

Va
lu

e
of

 k
ey

st
re

am
 b

yt
e

−40

−20

0

20

40

257 289 321 353 385
0

32

64

96

128

160

192

224

(c) Using random 16-byte keys.

Figure 6: Biases in the RC4 keystream when concatenating a fixed 16-byte IV with a random 16-byte key (here called
KEK key), and when using random 16-byte keys. Each points encodes a bias as the number (pr−2−8) ·224, capped to
values in [−50,50], with pr the empirical probability of the keystream byte value (y-axis) at a given location (x-axis).

distributions of IVc and IVd behave similarly. Their val-
ues were randomly generated in Python and are:

IVa = 0x2fe931f824ef842bf262dbca357bb31c

IVb = 0x48d9859f9fa08bb1599744a20491dd49

IVc = 0x6c1924761b03faf8decc0dfc09dd3078

IVd = 0xe31257489cbe7d91e5365286c26f5023

These keystream distributions were generated using 245

RC4 keys for each IV. For comparison, Figure 6c and
Figure 9c shows the keystream distribution for fully ran-
dom 16-byte keys, generated using roughly 247 RC4 key-
streams [47]. We observe that the initialization vector in-
duces strong biases that are visible as straight lines, even
after position 256. By comparing these biases with the
keystream distribution of 16-byte random RC4 keys in
Figure 6c, we can conclude that the biases represented
by the light and red background, are not caused by the
specific IV values. Instead, they appear inherent to RC4.

We also generated 16 datasets, where in each dataset
the value at one specific position in the all-zeros IV is
changed. That is, for 0 ≤ x ≤ 15, we generated datasets
for the vectors IV0[x] = y, where y ranges between 0
and 255. Each dataset was generated using 243 keys, re-
sulting in rather noisy distributions. Nevertheless, an in-
spection of these datasets confirmed that each IV induces
specific biases, visible as straight lines in our graphs. A
more detailed discussion of these biases is out of scope,
and is left as future work.

We now use the IV-dependent biases to recover re-
peated plaintext, in order to get an indication of how
well a plaintext recovery attack works against the 4-way
handshake. This is done by combining the precomputed
keystream distributions with captured ciphertexts, in or-
der to calculate likelihood estimates for each plaintext
value. The actual plaintext value is then assumed to be
the one with the highest likelihood. Since our goal is
mainly to evaluate the performance of the resulting at-

0.0

0.2

0.4

0.6

0.8

1.0

Position of byte in the EAPOL Key Data field

Av
er

ag
e

re
co

ve
ry

 ra
te

228

230

231

232

233

234

0 16 32 48 64 80 96 112

Figure 7: Success rate of decrypting a byte in the EAPOL
Key Data field, in function of the byte position and num-
ber of collected ciphertexts. The legend shows the total
number of ciphertexts used, where half of the ciphertexts
were generated using IVa, and the other half using IVb.

tacks, we refer to previous work for the technicalities
behind these calculations [2, 37, 47]. In particular, we
implemented the binning algorithm proposed by Pater-
son et al. [37], and the single-byte candidate generation
algorithm proposed by Vanhoef and Piessens [47]. To
keep the computations feasible, we assumed that half of
the captured ciphertext were generated by IVa, and the
other half by IVb. For the binning algorithm of Pater-
son et al., Figure 7 shows the probability of correctly de-
crypting a byte. For the candidate generation algorithm,
which returns a list of plaintext candidates for a sequence
of bytes, we first need to determine at which position the
group key is stored in the EAPOL Key Data field.

The location of the group key depends on which cipher
suites are supported. If only TKIP is supported in a RSN
network, it starts at position 30. In contrast, if both TKIP
and AES are supported, and if the older WPA informa-

USENIX Association 25th USENIX Security Symposium 683

0.0

0.2

0.4

0.6

0.8

1.0

Number of ciphertexts times 228

Pr
ob

ab
ilit

y
of

 k
ey

 re
co

ve
ry

0 8 16 24 32 40 48 56

pos 0
pos 8
pos 30
pos 62

Figure 8: Probability of recovering a 16-byte key using
short-term biases and 226 candidates. The legend shows
its starting position in the EAPOL key data field.

tion elements are included in addition to the RSN IEs3,
the group key starts at position 62. For other configura-
tions, the group key is located somewhere between po-
sition 30 and 62. The probability of recovering a 16-
byte key at these positions, in function of the number of
captured ciphertexts (handshakes), is shown in Figure 8.
We remark that if the group key starts at position 62, at-
tacks that exploit Mantin’s ABSAB bias become more ef-
ficient [29, 6]. This is because the 62 bytes that precede
the group key are predictable, and hence an attack similar
to the one that broke RC4 in TLS can be launched [47].

Finally, in principle it is also possible to attack group
key update messages, since the 802.11 standard does not
mandate that these messages should be encrypted using
the pairwise cipher [21, §11.6.7]. Group key updates
use EAPOL frames, and are sent when the AP gener-
ates a new group key. Interestingly, in these messages
the group key is either located at position 8, or at posi-
tion 0. The success rate of recovering a 16-byte key at
these positions is shown in Figure 8. For example, if the
key starts at position 8, roughly 231 encryptions of the
GTK have to be captured in order to decrypt it. Since in
this case there is little surrounding known plaintext, it is
the best attack an adversary can launch [2, 47, 6].

4.4 Countermeasures

To prevent the downgrade attack, APs should disable
support of WPA-TKIP. Even when an adversary creates
a rogue AP advertising TKIP, the real AP will reject any
request for TKIP, and hence will never use RC4 in the
4-way handshake. Similarly, clients should not connect
to a network using WPA-TKIP.

3Early implementations based on the draft 802.11i standard use
WPA IEs, instead of RSN IEs as used in modern networks.

5 Abusing the Group Key

In this section we show that the group key can be used to
decrypt and inject any traffic, including unicast traffic.

5.1 Injecting Unicast Frames
First we explain how to inject unicast traffic using the
group key. This is not possible by simply encrypting a
unicast frame with the group key, and setting the KeyID
field to the id used by the group key. The receiver always
uses pairwise keys to decrypt unicast frames, and ignores
the KeyID value (recall Section 2.1). Furthermore, it is
not possible to encapsulate unicast IP packets in group
addressed frames. Indeed, RFC 1122 states that stations
should discard unicast IP packets that were received on
a broadcast or multicast link-layer address [5, §3.3.6].
However, this check is only performed when the packet
is passed on to the IP layer. Since an AP does not op-
erate at the IP layer, but on the MAC layer, it does not
perform this check. Inspired by this observation, we en-
crypt the unicast IP packet using the group key, and send
it to the AP. For the three address fields in the frame we
use the following values:

addr1 = FF:FF:FF:FF:FF:FF

addr2 = Spoofed sender MAC address
addr3 = Spoofed destination MAC address

Although in a normal network the AP never processes
group addressed frames, we found that APs can be forced
to process our injected broadcast packet by setting the
ToDS bit in the Frame Control (FC) field. To assure
the correct value of the KeyID field is used, an adver-
sary can monitor other broadcast frames, or brute-force
this value. The AP will then decrypt this packet using
the group key. It will notice that the destination address
(addr3) does not equal its own MAC address, and hence
will forward the frame to the actual destination. If the
destination MAC address is another wireless station, the
AP will encrypt the frame using the appropriate pairwise
key, and transmit it. As a result, the receiver will decrypt
and process the forwarded, now unicast, frame. If the
destination address is not a wireless station, it will be for-
warded over the appropriate Ethernet connection. This
technique can be used to inject IP packets, ARP packets,
and so on, using the group key.

5.2 Decrypting All Traffic
Since unicast frames are encrypted with pairwise keys,
we cannot directly use the group key to decrypt them.
Nevertheless, it is possible to trick stations into sending
all IP traffic to the broadcast MAC address, meaning the

684 25th USENIX Security Symposium USENIX Association

group key will now be used to encrypt this traffic. This
is done by performing an ARP poisoning attack. The
malicious ARP packets are injected using the technique
presented in Section 5.1. In our attack, we poison the
ARP cache of the client so the IP address of the gateway
is associated with the broadcast MAC address. Similarly,
on the router, the IP address of the client will also be as-
sociated with a broadcast address. Since IP addresses
in local networks are generally predictable, an attacker
can brute-force the IP address of the client and router.
After the ARP poisoning attack, all IP packets sent by
the client and router are encrypted using the group key.
An attacker can now capture and decrypt these packets.
Furthermore, he can forward them to their real destina-
tion using the (unicast) packet injection technique of Sec-
tion 5.1, so the victim will not notice he is under attack.

5.3 Experimental Verification
We tested this attack against an Asus RT-AC51U and a
laptop running Windows 7. The group key was obtained
by exploiting the weak random number generator as dis-
cussed in Section 3.4.1. In order to successfully perform
the ARP poisoning attack against Windows, we injected
malicious ARP requests. First, we were able to success-
fully inject the ARP packets using the group key. This
confirms that the group key can be used to inject unicast
packets. Once we poisoned the ARP cache of both the
victim and router, they transmitted all their packets to-
wards the broadcast MAC address. At this point we were
able to successfully decrypt these broadcast packets us-
ing the group key, and read out the unicast IP packets
sent by both the victim and router.

5.4 Countermeasures
If the network is operating in infrastructure mode, the AP
should ignore all frames with a broadcast or multicast
receiver address. This prevents an attacker from abusing
the AP to forward unicast frames to stations. Another op-
tion is to disable all group traffic. While this may seem
drastic, it is useful for protected but public hotspots. In
these environments, connected stations do not trust each
other, meaning group keys should not be used at all. In-
terestingly, the upcoming Hotspot 2.0 standard already
supports this feature under the Downstream Group Ad-
dressed Forwarding (DGAF) option [49]. If DGAF is
disabled, no group keys are configured, meaning the sta-
tions and AP ignore all group addressed Wi-Fi frames.

6 A New RNG for 802.11 Platforms

In this section we propose a random number genera-
tor that extracts randomness from fine-grained Received

Signal Strength Indicator (RSSI) values. Specifically, we
rely on the spectral scan feature of commodity 802.11 ra-
dios. This gives us roughly three million RSSI measure-
ments per second, even if there is no background traffic.

6.1 Spectral Scan Feature
Most Atheros Wi-Fi radios, such as the AR9280, can per-
form RSSI measurements over the 56 sub-carriers used
in high throughput (HT) OFDM4. Atheros calls this fea-
ture a spectral scan. It matches the requirement to de-
code HT OFDM modulated frames, where the channel is
divided into 64 subcarriers [21, §18]. Eight of these sub-
carriers are used as guards to avoid channel cross talk,
and are thus not sampled, resulting in 56 usable subcarri-
ers. Therefore the spectral scan feature matches the nor-
mal OFDM demodulation requirements, and should be
straightforward to implement by other vendors as well.
The sweep time of one sample, i.e., spectral scan, is 4µs,
and these scans can be made even when there is no back-
ground traffic. Each RSSI measurement is reported as an
8-bit value. After some optimazations, we could make
our AR2980 chip generate around 50k samples per sec-
ond. Since each sample contains 56 RSSI values, this
totals to roughly three million measurements per second.

6.2 Random Number Generation
In our random number generator, we want to extract ran-
domness out of every single RSSI measurement. Since
our commodity devices can generate a large number of
measurements per second, even when there is no back-
ground traffic, we need a fast method to process all these
measurements. Hence our main goal is to design a tech-
nique to rapidly process all measurements. The resulting
output can then be given as input to a system that prop-
erly extracts and manages randomness (see for example
Yarrow-160 [25], or the model by Barak and Halevi [3]
and its improvements [9]). In other words, our goal is
only to design a method to rapidly process RSSI mea-
surements which can be implemented in Wi-Fi radios,
and to asses the quality of the resulting output.

We start by deriving one (possibly biased) bit out of
each RSSI measurement. Any biases will be suppressed
in a later step. Due to random variations in the back-
ground noise, the transmissions of other stations, and in-
ternal imperfections of the hardware, antenna, and radio,
we expect that each RSSI measurement contains some
amount of randomness. More concretely, we expect that
the least significant bit of each RSSI measurement dis-
plays the most amount of randomness. To also take into
account the other bits, we perform an exclusive or over
all bits in the 8-bit RSSI measurement. Even if the other

4See http://wikidevi.com/wiki/Atheros for a list.

USENIX Association 25th USENIX Security Symposium 685

Table 2: Average number statistical test results for vari-
ous configurations of the random number generator.

Configuration Pass Poor Weak Fail
1 bit per subcarrier 97.2% 0% 2.8% 0%

1 bit per spectral scan 98.1% 0% 1.9% 0%
normal mode 98.1% 0% 1.9% 0%

bits are not random, this can only increase the overall
randomness. Since we are extracting 1 bit per subcarrier,
we call this initial generator the “1 bit per subcarrier”
configuration. When running the Dieharder statistical
test suite [7] on this configuration, we noticed promising
results (see Table 2). The Dieharder suite is a reimple-
mentation of the Diehard tests [31], and in addition con-
tains several tests from the NIST test suite [40]. While
none of the tests fail, on average 2.8% of the tests return
a weak result. However, this only means that the gener-
ated bits do not contain any obvious deficiencies. Subtle
or small biases may still be present, and have to be fil-
tered out. We do this by relying on the large number of
measurements that our commodity devices can generate.

To suppress possible biases in the 1-bit per subcarrier
construction, we combine several bits using an exclusive-
or chain. More formally, if we have a sequence of bits
b1,b2, . . . ,bn, the exclusive-or chain of these bits is bit =
b1 ⊕ b2 ⊕ . . .⊕ bn. Assuming that each bit bi is equal to
one with probability p, combining n bits in this manner
has the following characteristics [10]:

Pr[bit = 1] = 0.5−2n−1 · (p−0.5)n (2)

Pr[bit = 0] = 0.5+2n−1 · (p−0.5)n (3)

We can now see that as n goes to infinity, both probabil-
ities approach 0.5, meaning any possible biases will be
suppressed. Moreover, an exclusive-or chain should also
be straightforward to implement in a Wi-Fi radio.

In the second version of our generator, we use the
exclusive-or chain to generate one random bit for each
spectral scan sample. That is, all 56 random bits ex-
tracted from the subcarriers are XOR’ed together. We
call this the “1-bit per spectral scan” mode. The reason-
ing behind this construction is that one bit is now influ-
enced by all subcarriers, i.e., all available frequencies.
An attacker that wants to influence the generation of any
bit, now has to predict or influence all 56 subcarriers.
The new results of the Dieharder tests show this improves
the quality of the random numbers (see Table 2).

In a last step we combine 16 bits generated using the
1-bit per spectral scan construction. Again this is done
using an exclusive-or chain. We call this the “normal
mode”. Interestingly, the results of the Dieharded test
suite no longer improve. We conjecture that the 1.9% of

tests that are marked as weak are statistical flukes: even
a random steam of bits can look non-random at times.

Finally, we remark that in the normal execution mode
of the generator, in total 56 ·16 bits are XOR’ed together.
Hence, even if an attacker can correctly predict the 1 bit
per subcarrier with a probability of 98%, our normal exe-
cution mode still outputs one bit that is close to uniform.
More precisely, by relying on equation 2 and 3, the re-
turned bit equals one with a probability of approximately
0.5 · (1−2−52). Hence, by relying on the large number
of measurements returned by the radio chip, even a very
powerful attacker is unlikely to predict the final output of
the generator. Furthermore, these bits are outputted at a
speed of roughly 3125 bits per second. Finally, we be-
lieve that our technique can be efficiently implemented
in Wi-Fi chips themselves. In practice, implementations
can then query the Wi-Fi chip for random samples, and
properly and securely manage this collected randomness
using a model such as the one proposed by Barak and
Halevi [3], or one of its improvements [9].

7 Related Work

While the random number generators that are used in cer-
tain browsers [14], OpenSSL [8], Linux [3, 16], GNU
Privacy Guard [35], FreeBSD [50], and so on, have been
widely studied, we are not aware of any works that study
the random number generator of 802.11. More closely
related to our work, Lorente et al. discovered that many
routers generate weak, and sometimes predictable, de-
fault WPA2 passwords [27]. However, the random num-
ber generator of 802.11 is not used for this purpose, and
hence was not analyzed.

The security of the 4-way handshake has been stud-
ied in several works [17, 18, 34]. These works revealed
denial-of-service vulnerabilities [17, 34], or proof the se-
curity of an improved design [18]. Additionally, they
focus on whether an attacker can perform a downgrade
attack against the cipher used to protect traffic transmit-
ted after the handshake. In contrast, we study downgrade
attacks against the ciphers used to protect the handshake
itself. The 802.11 standard also contains an informative
analysis of the handshake [21, 11.6.6.8].

Many researchers have studied RC4 and its usage. Key
recovery attacks against WEP were discovered [11], and
were later improved in other works [48, 44, 43, 42]. In
particular, Mantin and Klein studied whether the WEP
key can still be recovered if the initial 256 bytes of RC4
are dropped [28, 26]. We extend this analysis by studying
the impact of 16-byte initialization vectors as used in the
4-way handshake, and perform simulations of resulting
attacks. AlFardan et al. showed that the initial 256 bytes
of RC4 are biased [2]. Vanhoef and Piessens extended
this result and showed that bytes between position 256

686 25th USENIX Security Symposium USENIX Association

and 512 are also biased. [47]. In [6] Bricout et al. analyze
the structure and exploitation of Mantin’s ABSAB bias.

Security of group keys, and the isolation between
unicast and group traffic, is briefly mentioned in the
Hole 196 vulnerability [1]. However, this attack assumes
that an associated (trusted) client will abuse the group
key. Therefore it can only be considered an insider threat.
Furthermore, it does not discuss how to inject unicast
traffic using the group key, nor does it show how all in-
ternet traffic can be decrypted using the group key.

Several previous works use the RSSI measurements of
802.11 frames, as returned by commodity Wi-Fi radios,
to create secret key agreement protocols [32, 23, 38].
Such a protocol negotiates a shared secret between two
stations, that is unpredictable by observers. These works
use the average RSSI over all subcarriers, meaning some
entropy is lost compared to our per-subcarrier measure-
ments. We use the spectral scan feature to perform
RSSI measurements, which makes it possible to generate
these measurements even if there is no background traf-
fic. Models to properly collect and manage randomness,
such as those contained in RSSI measurements, have also
been studied. Examples are Yarrow-160 [25], the model
by Barak and Halevi [3], or the model by Dodis et al. [9].

8 Conclusion

Although the generation of pairwise 802.11 keys has
been widely analyzed, we have shown the same is not
true for group keys. For certain devices the group key
is easily predictable, which is caused by the faulty ran-
dom number generator proposed in the 802.11 standard.
This is especially problematic for Wi-Fi stacks in em-
bedded devices, as they generally do not have other
(standardized) sources of randomness. Furthermore, we
have demonstrated a downgrade attack against the 4-way
handshake, resulting in the usage of RC4 to protect the
group key. An adversary can abuse this in an attempt to
recover the group key.

We also showed that the group key can be used to in-
ject any type of packet, and can even be used decrypt all
internet traffic in a network. Combined with the faulty
802.11 random number generator, this enables an adver-
sary to easily bypass both WPA-TKIP and AES-CCMP.
To mitigate some of these issues, we also proposed and
implemented a strong random number generator tailored
for 802.11 platforms.

Acknowledgments

This research is partially funded by the Research Fund
KU Leuven. Mathy Vanhoef holds a Ph. D. fellowship
of the Research Foundation - Flanders (FWO).

References
[1] AHMAD, M. S. Wpa too! In DEF CON (2010).

[2] ALFARDAN, N. J., BERNSTEIN, D. J., PATERSON, K. G., PO-
ETTERING, B., AND SCHULDT, J. C. N. On the security of RC4
in TLS and WPA. In USENIX Security (2013).

[3] BARAK, B., AND HALEVI, S. A model and architecture for
pseudo-random generation with applications to/dev/random. In
CCS (2005).

[4] BITTAU, A., HANDLEY, M., AND LACKEY, J. The final nail in
WEP’s coffin. In IEEE SP (2006).

[5] BRADEN, R. Requirements for internet hosts – communication
layers. RFC 1122, 1989.

[6] BRICOUT, R., MURPHY, S., PATERSON, K. G., AND VAN DER
MERWE, T. Analysing and exploiting the mantin biases in RC4.
Cryptology ePrint Archive, Report 2016/063, 2016.

[7] BROWN, R. G. Dieharder: A random number test suite.
Available from http://www.phy.duke.edu/~rgb/General/

dieharder.php, Feb. 2016.

[8] CHECKOWAY, S., NIEDERHAGEN, R., EVERSPAUGH, A.,
GREEN, M., LANGE, T., RISTENPART, T., BERNSTEIN, D. J.,
MASKIEWICZ, J., SHACHAM, H., AND FREDRIKSON, M. On
the practical exploitability of Dual EC in TLS implementations.
In USENIX Security (2014).

[9] DODIS, Y., POINTCHEVAL, D., RUHAULT, S., VERGNIAUD,
D., AND WICHS, D. Security analysis of pseudo-random number
generators with input:/dev/random is not robust. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communi-
cations security (2013), ACM, pp. 647–658.

[10] FAIRFIELD, R., MORTENSON, R., AND COULTHART, K. An
LSI random number generator. In CRYPTO (1984).

[11] FLUHRER, S., MANTIN, I., AND SHAMIR, A. Weaknesses in
the key scheduling algorithm of RC4. In SAC (2001).

[12] FLUHRER, S. R., AND MCGREW, D. A. Statistical analysis of
the alleged RC4 keystream generator. In FSE (2000).

[13] FOUQUE, P.-A., MARTINET, G., VALETTE, F., AND ZIMMER,
S. On the security of the CCM encryption mode and of a slight
variant. In Applied Cryptography and Network Security (2008).

[14] GOLDBERG, I., AND WAGNER, D. Randomness and the
netscape browser. Dr. Dobb’s Journal (1996).

[15] GUPTA, S. S., MAITRA, S., MEIER, W., PAUL, G., AND
SARKAR, S. Dependence in IV-related bytes of RC4 key en-
hances vulnerabilities in WPA. Cryptology ePrint Archive, Re-
port 2013/476, 2013.

[16] GUTTERMAN, Z., PINKAS, B., AND REINMAN, T. Analysis of
the linux random number generator. In IEEE SP (2006).

[17] HE, C., AND MITCHELL, J. C. Analysis of the 802.1 i 4-Way
handshake. In WiSe (2004), ACM.

[18] HE, C., SUNDARARAJAN, M., DATTA, A., DEREK, A., AND
MITCHELL, J. C. A modular correctness proof of IEEE 802.11i
and TLS. In CCS (2005).

[19] HENINGER, N., DURUMERIC, Z., WUSTROW, E., AND HAL-
DERMAN, J. A. Mining your Ps and Qs: Detection of widespread
weak keys in network devices. In USENIX Security (2012).

[20] IEEE. Motions to address some letter ballot 52 comments. In
802.11 WLANs WG proceedings (2003).

[21] IEEE STD 802.11-2012. Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Spec, 2012.

[22] IEEE STD 802.11I. Amendment 6: Medium Access Control
(MAC) Security Enhancements, 2004.

USENIX Association 25th USENIX Security Symposium 687

[23] JANA, S., PREMNATH, S., CLARK, M., KASERA, S., PATWARI,
N., AND KRISHNAMURTHY, S. On the effectiveness of secret
key extraction from wireless signal strength. In MobiCom (2009).

[24] JONSSON, J. On the security of CTR+ CBC-MAC. In SAC
(2002).

[25] KELSEY, J., SCHNEIER, B., AND FERGUSON, N. Yarrow-160:
Notes on the design and analysis of the yarrow cryptographic
pseudorandom number generator. In Selected Areas in Cryptog-
raphy (1999), Springer, pp. 13–33.

[26] KLEIN, A. Attacks on the RC4 stream cipher. Designs, Codes
and Cryptography (2008).

[27] LORENTE, E. N., MEIJER, C., AND VERDULT, R. Scrutinizing
WPA2 password generating algorithms in wireless routers. In
USENIX WOOT (2015).

[28] MANTIN, I. A practical attack on the fixed RC4 in the WEP
mode. In AsiaCrypt (2005).

[29] MANTIN, I. Predicting and distinguishing attacks on RC4 key-
stream generator. In EUROCRYPT (2005).

[30] MANTIN, I., AND SHAMIR, A. A practical attack on broadcast
RC4. In FSE (2001).

[31] MARSAGLIA, G. Diehard tests of randomness. http://stat.
fsu.edu/pub/diehard/.

[32] MATHUR, S., TRAPPE, W., MANDAYAM, N., YE, C., AND
REZNIK, A. Radio-telepathy: extracting a secret key from an
unauthenticated wireless channel. In MobiCom (2008).

[33] MIRONOV, I. (Not so) random shuffles of RC4. In CRYPTO
(2002).

[34] MITCHELL, C. H. J. C. Security analysis and improvements for
IEEE 802.11i. In NDSS (2005).

[35] NGUYEN, P. Q. Can we trust cryptographic software? cryp-
tographic flaws in GNU privacy guard v1.2.3. In EUROCRYPT
(2004).

[36] PATERSON, K. G., POETTERING, B., AND SCHULDT, J. C. Big
bias hunting in amazonia: Large-scale computation and exploita-
tion of RC4 biases. In AsiaCrypt (2014).

[37] PATERSON, K. G., SCHULDT, J. C. N., AND POETTERING, B.
Plaintext recovery attacks against WPA/TKIP. In FSE (2014).

[38] PATWARI, N., CROFT, J., JANA, S., AND KASERA, S. High-
rate uncorrelated bit extraction for shared secret key generation
from channel measurements. TMC (2010).

[39] ROGAWAY, P., AND WAGNER, D. A critique of CCM. Cryptol-
ogy ePrint Archive, Report 2003/070, 2003.

[40] RUKHIN, A., SOTO, J., NECHVATAL, J., SMID, M., AND
BARKER, E. A statistical test suite for random and pseudo-
random number generators for cryptographic applications. Tech.
rep., DTIC Document, 2001.

[41] SEPEHRDAD, P., SUSIL, P., VAUDENAY, S., AND VUAGNOUX,
M. Tornado attack on RC4 with applications to WEP & WPA.
Cryptology ePrint Archive, Report 2015/254, 2015.

[42] STUBBLEFIELD, A., IOANNIDIS, J., AND RUBIN, A. D. A key
recovery attack on the 802.11b wired equivalent privacy protocol
(WEP). TISSEC (2004).

[43] TEWS, E., AND BECK, M. Practical attacks against WEP and
WPA. In WiSec (2009).

[44] TEWS, E., WEINMANN, R.-P., AND PYSHKIN, A. Breaking
104 bit WEP in less than 60 seconds. In JISA. 2007.

[45] VANHOEF, M., AND PIESSENS, F. Practical verification of
WPA-TKIP vulnerabilities. In ASIA CCS (2013), ACM, pp. 427–
436.

[46] VANHOEF, M., AND PIESSENS, F. Advanced Wi-Fi attacks us-
ing commodity hardware. In ACSAC (2014).

[47] VANHOEF, M., AND PIESSENS, F. All your biases belong to
us: Breaking RC4 in WPA-TKIP and TLS. In USENIX Security
(2015).

[48] VAUDENAY, S., AND VUAGNOUX, M. Passive–only key recov-
ery attacks on RC4. In SAC (2007).

[49] WI-FI ALLIANCE. Hotspot 2.0 (Release 2) Technical Specifica-
tion v1.1.0, 2010.

[50] WOOLLEY, R., MURRAY, M., DOUNIN, M., AND ERMILOV, R.
arc4random(9): predictable sequence vulnerability.

688 25th USENIX Security Symposium USENIX Association

Position of keystream byte

Va
lu

e
of

 k
ey

st
re

am
 b

yt
e

−40

−20

0

20

40

257 289 321 353 385
0

32

64

96

128

160

192

224

(a) Using IVc with random KEKs.

Position of keystream byte

Va
lu

e
of

 k
ey

st
re

am
 b

yt
e

−40

−20

0

20

40

257 289 321 353 385
0

32

64

96

128

160

192

224

(b) Using IVd with random KEKs.

Position of keystream byte

Va
lu

e
of

 k
ey

st
re

am
 b

yt
e

−40

−20

0

20

40

257 289 321 353 385
0

32

64

96

128

160

192

224

(c) Using random 16-byte keys.

Figure 9: Biases in the RC4 keystream when concatenating a fixed 16-byte IV with a random 16-byte key (here called
KEK key), and when using random 16-byte keys. Each points encodes a bias as the number (pr−2−8) ·224, capped to
values in [−50,50], with pr the empirical probability of the keystream byte value (y-axis) at a given location (x-axis).

USENIX Association 25th USENIX Security Symposium 689

DROWN: Breaking TLS using SSLv2

Nimrod Aviram1, Sebastian Schinzel2, Juraj Somorovsky3, Nadia Heninger4, Maik Dankel2,
Jens Steube5, Luke Valenta4, David Adrian6, J. Alex Halderman6, Viktor Dukhovni7,

Emilia Käsper8, Shaanan Cohney4, Susanne Engels3, Christof Paar3 and Yuval Shavitt1

1Department of Electrical Engineering, Tel Aviv University
2Münster University of Applied Sciences

3Horst Görtz Institute for IT Security, Ruhr University Bochum
4University of Pennsylvania

5Hashcat Project
6University of Michigan
7Two Sigma/OpenSSL

8Google/OpenSSL

Abstract
We present DROWN, a novel cross-protocol attack on
TLS that uses a server supporting SSLv2 as an oracle to
decrypt modern TLS connections.

We introduce two versions of the attack. The more
general form exploits multiple unnoticed protocol flaws
in SSLv2 to develop a new and stronger variant of the
Bleichenbacher RSA padding-oracle attack. To decrypt a
2048-bit RSA TLS ciphertext, an attacker must observe
1,000 TLS handshakes, initiate 40,000 SSLv2 connec-
tions, and perform 250 offline work. The victim client
never initiates SSLv2 connections. We implemented the
attack and can decrypt a TLS 1.2 handshake using 2048-
bit RSA in under 8 hours, at a cost of $440 on Amazon
EC2. Using Internet-wide scans, we find that 33% of all
HTTPS servers and 22% of those with browser-trusted
certificates are vulnerable to this protocol-level attack due
to widespread key and certificate reuse.

For an even cheaper attack, we apply our new tech-
niques together with a newly discovered vulnerability in
OpenSSL that was present in releases from 1998 to early
2015. Given an unpatched SSLv2 server to use as an
oracle, we can decrypt a TLS ciphertext in one minute on
a single CPU—fast enough to enable man-in-the-middle
attacks against modern browsers. We find that 26% of
HTTPS servers are vulnerable to this attack.

We further observe that the QUIC protocol is vulner-
able to a variant of our attack that allows an attacker to
impersonate a server indefinitely after performing as few
as 217 SSLv2 connections and 258 offline work.

We conclude that SSLv2 is not only weak, but actively
harmful to the TLS ecosystem.

1 Introduction
TLS [13] is one of the main protocols responsible for
transport security on the modern Internet. TLS and its
precursor SSLv3 have been the target of a large number
of cryptographic attacks in the research community, both
on popular implementations and the protocol itself [33].
Prominent recent examples include attacks on outdated
or deliberately weakened encryption in RC4 [3], RSA [5],
and Diffie-Hellman [1], different side channels includ-
ing Lucky13 [2], BEAST [14], and POODLE [35], and
several attacks on invalid TLS protocol flows [5, 6, 12].

Comparatively little attention has been paid to the
SSLv2 protocol, likely because the known attacks are
so devastating and the protocol has long been considered
obsolete. Wagner and Schneier wrote in 1996 that their at-
tacks on SSLv2 “will be irrelevant in the long term when
servers stop accepting SSL 2.0 connections” [41]. Most
modern TLS clients do not support SSLv2 at all. Yet in
2016, our Internet-wide scans find that out of 36 million
HTTPS servers, 6 million (17%) support SSLv2.

A Bleichenbacher attack on SSLv2. Bleichenbacher’s
padding oracle attack [8] is an adaptive chosen ciphertext
attack against PKCS#1 v1.5, the RSA padding standard
used in SSL and TLS. It enables decryption of RSA
ciphertexts if a server distinguishes between correctly and
incorrectly padded RSA plaintexts, and was termed the
“million-message attack” upon its introduction in 1998,
after the number of decryption queries needed to deduce
a plaintext. All widely used SSL/TLS servers include
countermeasures against Bleichenbacher attacks.

Our first result shows that the SSLv2 protocol is fatally
vulnerable to a form of Bleichenbacher attack that enables

690 25th USENIX Security Symposium USENIX Association

decryption of RSA ciphertexts. We develop a novel ap-
plication of the attack that allows us to use a server that
supports SSLv2 as an efficient padding oracle. This attack
is a protocol-level flaw in SSLv2 that results in a feasible
attack for 40-bit export cipher strengths, and in fact abuses
the universally implemented countermeasures against Ble-
ichenbacher attacks to obtain a decryption oracle.

We also discovered multiple implementation flaws in
commonly deployed OpenSSL versions that allow an ex-
tremely efficient instantiation of this attack.

Using SSLv2 to break TLS. Second, we present a novel
cross-protocol attack that allows an attacker to break a
passively collected RSA key exchange for any TLS server
if the RSA keys are also used for SSLv2, possibly on a
different server. We call this attack DROWN (Decrypting
RSA using Obsolete and Weakened eNcryption).

In its general version, the attack exploits the protocol
flaws in SSLv2, does not rely on any particular library
implementation, and is feasible to carry out in practice by
taking advantage of commonly supported export-grade
ciphers. In order to decrypt one TLS session, the attacker
must passively capture about 1,000 TLS sessions using
RSA key exchange, make 40,000 SSLv2 connections to
the victim server, and perform 250 symmetric encryption
operations. We successfully carried out this attack using
an optimized GPU implementation and were able to de-
crypt a 2048-bit RSA ciphertext in less than 18 hours on
a GPU cluster and less than 8 hours using Amazon EC2.

We found that 11.5 million HTTPS servers (33%) are
vulnerable to this attack, because many HTTPS servers
that do not directly support SSLv2 share RSA keys with
other services that do. Of servers offering HTTPS with
browser-trusted certificates, 22% are vulnerable.

We also present a special version of DROWN that ex-
ploits flaws in OpenSSL for a more efficient oracle. It re-
quires roughly the same number of captured TLS sessions
as the general attack, but only half as many connections to
the victim server and no large computations. This attack
can be completed on a single core on commodity hard-
ware in less than a minute, and is limited primarily by how
fast the server can complete handshakes. It is fast enough
that an attacker can perform man-in-the-middle attacks
on live TLS sessions before the handshake times out, and
downgrade a modern TLS client to RSA key exchange
with a server that prefers non-RSA cipher suites. Our
Internet-wide scans suggest that 79% of HTTPS servers
that are vulnerable to the general attack, or 26% of all
HTTPS servers, are also vulnerable to real-time attacks
exploiting these implementation flaws.

Our results highlight the risk that continued support
for SSLv2 imposes on the security of much more recent
TLS versions. This is an instance of a more general
phenomenon of insufficient domain separation, where
older, vulnerable security standards can open the door to

attacks on newer versions. We conclude that phasing out
outdated and insecure standards should become a priority
for standards designers and practitioners.

Disclosure. DROWN was assigned CVE-2016-0800.
We disclosed our attacks to OpenSSL and worked with
them to coordinate further disclosures. The specific
OpenSSL vulnerabilities we discovered have been desig-
nated CVE-2015-3197, CVE-2016-0703, and CVE-2016-
0704. In response to our findings, OpenSSL has made
it impossible to configure a TLS server in such a way
that it is vulnerable to DROWN. Microsoft had already
disabled SSLv2 for all supported versions of IIS. We
also disclosed the attack to the NSS developers, who have
disabled SSLv2 on the last NSS tool that supported it and
have hastened efforts to entirely remove the protocol from
their codebase. In response to our disclosure, Google
will disable QUIC support for non-whitelisted servers and
modify the QUIC standard. We also notified IBM, Cisco,
Amazon, the German CERT-Bund, and the Israeli CERT.

Online resources. Contact information, server test tools,
and updates are available at https://drownattack.com.

2 Background
In the following, a||b denotes concatenation of strings a
and b. a[i] references the i-th byte in a. (N,e) denotes an
RSA public key, where N has byte-length �m (|N|= �m)
and e is the public exponent. The corresponding secret
exponent is d = 1/e mod φ(N).

2.1 PKCS#1 v1.5 encryption padding
Our attacks rely on the structure of RSA PKCS#1 v1.5
padding. Although RSA PKCS#1 v2.0 implements OAEP,
SSL/TLS still uses PKCS#1 v1.5. The PKCS#1 v1.5
encryption padding scheme [27] randomizes encryptions
by prepending a random padding string PS to a message
k (here, a symmetric session key) before RSA encryption:

1. The plaintext message is k, �k = |k|. The
encrypter generates a random byte string PS,
where |PS| ≥ 8, |PS| = �m − 3 − �k, and 0x00 �∈
{PS[1], . . . ,PS[|PS|]}.

2. The encryption block is m = 00||02||PS||00||k.

3. The ciphertext is computed as c = me mod N.

To decrypt such a ciphertext, the decrypter first com-
putes m = cd mod N. Then it checks whether the de-
crypted message m is correctly formatted as a PKCS#1
v1.5-encoded message. We say that the ciphertext c
and the decrypted message bytes m[1]||m[2]||...||m[�m]
are PKCS#1 v1.5 conformant if:

m[1]||m[2] = 0x00||0x02
0x00 �∈ {m[3], . . . ,m[10]}

If this condition holds, the decrypter searches for the first

2

USENIX Association 25th USENIX Security Symposium 691

SSLv2
Client

SSLv2
Client

SSLv2
Server

SSLv2
Server

ClientHello:
cs

C
, r

C

ClientMasterKey: cs,
mk

clear
, enc

pk
(mk

secret
)

(Client-) Finished

ServerVerify

(Server-) Finished

master_key = mk
clear

 || mk
secret

ServerHello:
cert, cs

S
, r

S

Figure 1: SSLv2 handshake. The server responds with a
ServerVerify message directly after receiving an RSA-
PKCS#1 v1.5 ciphertext contained in ClientMasterKey.
This protocol feature enables our attack.

value i > 10 such that m[i] = 0x00. Then, it extracts k =
m[i+1]|| . . . ||m[�m]. Otherwise, the ciphertext is rejected.

In SSLv3 and TLS, RSA PKCS#1 v1.5 is used to en-
capsulate the premaster secret exchanged during the hand-
shake [13]. Thus, k is interpreted as the premaster secret.
In SSLv2, RSA PKCS#1 v1.5 is used for encapsulation
of an equivalent key denoted the master_key.

2.2 SSL and TLS
The first incarnation of the TLS protocol was the SSL
(Secure Socket Layer) protocol, which was designed by
Netscape in the 90s. The first two versions of SSL were
immediately found to be vulnerable to trivial attacks [40,
41] which were fixed in SSLv3 [17]. Later versions of the
standard were renamed TLS, and share a similar structure
to SSLv3. The current version of the protocol is TLS 1.2;
TLS 1.3 is currently under development.

An SSL/TLS protocol flow consists of two phases:
handshake and application data exchange. In the first
phase, the communicating parties agree on cryptographic
algorithms and establish shared keys. In the second phase,
these keys are used to protect the confidentiality and au-
thenticity of the transmitted application data.

The handshake protocol was fundamentally redesigned
in the SSLv3 version. This new handshake protocol was
then used in later TLS versions up to TLS 1.2. In the fol-
lowing, we describe the RSA-based handshake protocols
used in TLS and SSLv2, and highlight their differences.

The SSLv2 handshake protocol. The SSLv2 protocol
description [22] is less formally specified than modern
RFCs. Figure 1 depicts an SSLv2 handshake. A client
initiates an SSLv2 handshake by sending a ClientHello
message, which includes a list of cipher suites csc

supported by the client and a client nonce rc, termed
challenge. The server responds with a ServerHello
message, which contains a list of cipher suites css sup-
ported by the server, the server certificate, and a server
nonce rs, termed connection_ID.

The client responds with a ClientMasterKey mes-
sage, which specifies a cipher suite supported by both
peers and key data used for constructing a master_key.
In order to support export cipher suites with 40-bit se-
curity (e.g., SSL_RC2_128_CBC_EXPORT40_WITH_MD5),
the key data is divided into two parts:

• mkclear: A portion of the master_key sent in the
ClientMasterKey message as plaintext (termed
clear_key_data in the SSLv2 standard).

• mksecret : A secret portion of the master_key,
encrypted with RSA PKCS#1 v1.5 (termed
secret_key_data).

The resulting master_key mk is constructed by concate-
nating these two keys: mk = mkclear||mksecret . For 40-bit
export cipher suites, mksecret is five bytes in length. For
non-export cipher suites, the whole master_key is en-
crypted, and the length of mkclear is zero.

The client and server can then compute session keys
from the reconstructed master_key mk:

server_write_key= MD5(mk||“0”||rc||rs)
client_write_key= MD5(mk||“1”||rc||rs)

The server responds with a ServerVerify mes-
sage consisting of the challenge rc encrypted with
the server_write_key. Both peers then exchange
Finished messages in order to authenticate to each other.

Our attack exploits the fact that the server always de-
crypts an RSA-PKCS#1 v1.5 ciphertext, computes the
server_write_key, and immediately responds with a
ServerVerify message. The SSLv2 standard implies
this message ordering, but does not make it explicit. How-
ever, we observed this behavior in every implementation
we examined. Our attack also takes advantage of the fact
that the encrypted mksecret portion of the master_key can
vary in length, and is only five bytes for export ciphers.

The TLS handshake protocol. In TLS [13] or SSLv3,
the client initiates the handshake with a ClientHello,
which contains a client random rc and a list of supported
cipher suites. The server chooses one of the cipher
suites and responds with three messages, ServerHello,
Certificate, and ServerHelloDone. These messages
include the server’s choice of cipher suite, server nonce rs,
and a server certificate with an RSA public key. The client
then uses the public key to encrypt a newly generated 48-
byte premaster secret pms and sends it to the server in
a ClientKeyExchange message. The client and server
then derive encryption and MAC keys from the premaster
secret and the client and server random nonces. The de-
tails of this derivation are not important to our attack. The

3

692 25th USENIX Security Symposium USENIX Association

client then sends ChangeCipherSpec and Finished
messages. The Finished message authenticates all pre-
vious handshake messages using the derived keys. The
server responds with its own ChangeCipherSpec and
Finished messages.

The two main details relevant to our attacks are:
• The premaster secret is always 48 bytes long, inde-

pendent of the chosen cipher suite. This is also true
for export cipher suites.

• After receiving the ClientKeyExchange message,
the server waits for the ClientFinished message,
in order to authenticate the client.

2.3 Bleichenbacher’s attack
Bleichenbacher’s attack is a padding oracle attack—it
exploits the fact that RSA ciphertexts should decrypt to
PKCS#1 v1.5-compliant plaintexts. If an implementation
receives an RSA ciphertext that decrypts to an invalid
PKCS#1 v1.5 plaintext, it might naturally leak this infor-
mation via an error message, by closing the connection,
or by taking longer to process the error condition. This
behavior can leak information about the plaintext that can
be modeled as a cryptographic oracle for the decryption
process. Bleichenbacher [8] demonstrated how such an
oracle could be exploited to decrypt RSA ciphertexts.

Algorithm. In the simplest attack scenario, the attacker
has a valid PKCS#1 v1.5 ciphertext c0 that they wish to
decrypt to discover the message m0. They have no access
to the private RSA key, but instead have access to an
oracle O that will decrypt a ciphertext c and inform the
attacker whether the most significant two bytes match the
required value for a correct PKCS#1 v1.5 padding:

O(c) =

{
1 if m = cd mod N starts with 0x00 02
0 otherwise.

If the oracle answers with 1, the attacker knows that
2B ≤ m ≤ 3B−1, where B = 28(�m−2). The attacker can
take advantage of RSA malleability to generate new can-
didate ciphertexts for any s:

c = (c0 · se) mod N = (m0 · s)e mod N

The attacker queries the oracle with c. If the oracle re-
sponds with 0, the attacker increments s and repeats the
previous step. Otherwise, the attacker learns that for
some r, 2B ≤ m0s− rN < 3B. This allows the attacker to
reduce the range of possible solutions to:

2B+ rN
s

≤ m0 <
3B+ rN

s
The attacker proceeds by refining guesses for s and r
values and successively decreasing the size of the interval
containing m0. At some point the interval will contain a
single valid value, m0. Bleichenbacher’s original paper
describes this process in further detail [8].

Countermeasures. In order to protect against this attack,
the decrypter must not leak information about the PKCS#1
v1.5 validity of the ciphertext. The ciphertext does not
decrypt to a valid message, so the decrypter generates a
fake plaintext and continues the protocol with this decoy.
The attacker should not be able to distinguish the resulting
computation from a correctly decrypted ciphertext.

In the case of SSL/TLS, the server generates a ran-
dom premaster secret to continue the handshake if the
decrypted ciphertext is invalid. The client will not pos-
sess the session key to send a valid ClientFinished
message and the connection will terminate.

3 Breaking TLS with SSLv2
In this section, we describe our cross-protocol DROWN
attack that uses an SSLv2 server as an oracle to efficiently
decrypt TLS connections. The attacker learns the session
key for targeted TLS connections but does not learn the
server’s private RSA key. We first describe our techniques
using a generic SSLv2 oracle. In Section 4.1, we show
how a protocol flaw in SSLv2 can be used to construct
such an oracle, and describe our general DROWN attack.
In Section 5, we show how an implementation flaw in
common versions of OpenSSL leads to a more powerful
oracle and describe our efficient special DROWN attack.

We consider a server accepting TLS connections from
clients. The connections are established using a secure,
state-of-the-art TLS version (1.0–1.2) and a TLS_RSA ci-
pher suite with a private key unknown to the attacker.

The same RSA public key as the TLS connections is
also used for SSLv2. For simplicity, our presentation will
refer to the servers accepting TLS and SSLv2 connections
as the same entity.

Our attacker is able to passively eavesdrop on traffic
between the client and server and record RSA-based TLS
traffic. The attacker may or may not be also required
to perform active man-in-the-middle interference, as ex-
plained below.

The attacker can expect to decrypt one out of 1,000
intercepted TLS connections in our attack for typical pa-
rameters. This is a devastating threat in many scenarios.
For example, a decrypted TLS connection might reveal
a client’s HTTP cookie or plaintext password, and an at-
tacker would only need to successfully decrypt a single
ciphertext to compromise the client’s account. In order
to collect 1,000 TLS connections, the attacker might sim-
ply wait patiently until sufficiently many connections are
recorded. A less patient attacker might use man-in-the-
middle interference, as in the BEAST attack [14].

3.1 A generic SSLv2 oracle
Our attacks make use of an oracle that can be queried on
a ciphertext and leaks information about the decrypted
plaintext; this abstractly models the information gained

4

USENIX Association 25th USENIX Security Symposium 693

from an SSLv2 server’s behavior. Our SSLv2 oracles re-
veal many bytes of plaintext, enabling an efficient attack.

Our cryptographic oracle O has the following function-
ality: O decrypts an RSA ciphertext c and responds with
ciphertext validity based on the decrypted message m.
The ciphertext is valid only if m starts with 0x00 02 fol-
lowed by non-null padding bytes, a delimiter byte 0x00,
and a master_key mksecret of correct byte length �k. We
call such a ciphertext SSLv2 conformant.

All of the SSLv2 padding oracles we instantiate give
the attacker similar information about a PKCS#1 v1.5
conformant SSLv2 ciphertext:

O(c)=

{
mksecret if cd mod N = 00||02||PS||00||mksecret

0 otherwise.

That is, the oracle O(c) will return the decrypted message
mksecret if it is queried on a PKCS#1 v1.5 conformant
SSLv2 ciphertext c corresponding to a correctly PKCS#1
v1.5 padded encryption of mksecret . The attacker then
learns �k +3 bytes of m = cd mod N: the first two bytes
are 00||02, and the last �k +1 bytes are 00||mksecret . The
length �k of mksecret varies based on the cipher suite used
to instantiate the oracle. For export-grade cipher suites
such as SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5, k
will be 5 bytes, so the attacker learns 8 bytes of m.

3.2 DROWN attack template
Our attacker will use an SSLv2 oracle O to decrypt a
TLS ClientKeyExchange. The behavior of O poses two
problems for the attacker. First, a TLS key exchange ci-
phertext decrypts to a 48-byte premaster secret. But since
no SSLv2 cipher suites have 48-byte key strengths, this
means that a valid TLS ciphertext is invalid to our oracle
O . In order to apply Bleichenbacher’s attack, the attacker
must transform the TLS ciphertext into a valid SSLv2 key
exchange message. Second, O is very restrictive, since
it strictly checks the length of the unpadded message.
According to Bardou et al. [4], Bleichenbacher’s attack
would require 12 million queries to such an oracle.1

Our attacker overcomes these problems by following
this generic attack flow:

0. The attacker collects many encrypted TLS RSA key
exchange messages.

1. The attacker converts one of the intercepted TLS
ciphertexts containing a 48-byte premaster secret to
an RSA PKCS#1 v1.5 encoded ciphertext valid to
the SSLv2 oracle O .

2. Once the attacker has obtained a valid SSLv2 RSA
ciphertext, they can continue with a modified version
of Bleichenbacher’s attack, and decrypt the message
after many more oracle queries.

1See Table 1 in [4]. The oracle is denoted with the term FFF.

3. The attacker then transforms the decrypted plaintext
back into the original plaintext, which is one of the
collected TLS handshakes.

We describe the algorithmic improvements we use to
make each of these steps efficient below.

3.2.1 Finding an SSLv2 conformant ciphertext
The first step for the attacker is to transform the original
TLS ClientKeyExchange message c0 from a TLS con-
formant ciphertext into an SSLv2 conformant ciphertext.

For this task, we rely on the concept of trimmers, which
were introduced by Bardou et al. [4]. Assume that the mes-
sage m0 = c0

d mod N is divisible by a small number t. In
that case, m0 · t−1 mod N simply equals the natural num-
ber m0/t. If we choose u ≈ t, and multiply the original
message by u · t−1, the resulting number will lie near the
original message: m0 ≈ m0/t ·u.

This method gives a good chance of generating a new
SSLv2 conformant message. Let c0 be an intercepted
TLS conformant RSA ciphertext, and let m0 = cd

0 mod N
be the plaintext. We select a multiplier s = u/t mod N =
ut−1 mod N where u and t are coprime, compute the value
c1 = c0se mod N, and query O(c1). We will receive a
response if m1 = m0 ·u/t is SSLv2 conformant.

As an example, let us assume a 2048-bit RSA cipher-
text with �k = 5, and consider the fraction u = 7, t = 8.
The probability that c0 ·u/t will be SSLv2 conformant is
1/7,774, so we expect to make 7,774 oracle queries be-
fore obtaining a positive response from O . Appendix A.1
gives more details on computing these probabilities.

3.2.2 Shifting known plaintext bytes
Once we have obtained an SSLv2 conformant ciphertext
c1, the oracle has also revealed the �k +1 least significant
bytes (mksecret together with the delimiter byte 0x00) and
two most significant 0x00 02 bytes of the SSLv2 confor-
mant message m1. We would like to rotate these known
bytes around to the right, so that we have a large block
of contiguous known most significant bytes of plaintext.
In this section, we show that this can be accomplished
by multiplying by some shift 2−r mod N. In other words,
given an SSLv2 conformant ciphertext c1 = me

1 mod N,
we can efficiently generate an SSLv2 conformant cipher-
text c2 = me

2 mod N where m2 = s ·m1 · 2−r mod N and
we know several most significant bytes of m2.

Let R = 28(k+1) and B = 28(�m−2). Abusing notation
slightly, let the integer m1 = 2 ·B+PS ·R+mksecret be
the plaintext satisfying me

1 = c1 mod N. At this stage, the
�k-byte integer mksecret is known and the �m − �k −3-byte
integer PS is not.

Let m̃1 = 2 ·B+mksecret be the known components of
m1, so m1 = m̃1 +PS ·R. We can use this to compute a
new plaintext for which we know many most significant

5

694 25th USENIX Security Symposium USENIX Association

bytes. Consider the value:

m1 ·R−1 mod N = m̃1 ·R−1 +PS mod N.

The value of PS is unknown and consists of �m − �k −3
bytes. This means that the known value m̃1 ·R−1 shares
most of its �k +3 most significant bytes with m1 ·R−1.

Furthermore, we can iterate this process by finding a
new multiplier s such that m2 = s ·m1 ·R−1 mod N is also
SSLv2 conformant. A randomly chosen s < 230 will work
with probability 2−25.4. We can take use the bytes we have
already learned about m1 to efficiently compute such an s
with only 678 oracle queries in expectation for a 2048-bit
RSA modulus. Appendix A.3 gives more details.

3.2.3 Adapted Bleichenbacher iteration
It is feasible for all of our oracles to use the previous
technique to entirely recover a plaintext message. How-
ever, for our SSLv2 protocol oracle it is cheaper after a
few iterations to continue using Bleichenbacher’s original
attack. We can apply the original algorithm proposed by
Bleichenbacher as described in Section 2.3.

Each step obtains a message that starts with the required
0x00 02 bytes after two queries in expectation. Since we
know the value of the �k +1 least significant bytes after
multiplying by any integer, we can query the oracle only
on multipliers that cause the (�k + 1)st least significant
byte to be zero. However, we cannot ensure that the
padding string is entirely nonzero; for a 2048-bit modulus
this will hold with probability 0.37.

For a 2048-bit modulus, the total expected number of
queries when using this technique to fully decrypt the
plaintext is 2048∗2/0.37 ≈ 11,000.

4 General DROWN
In this section, we describe how to use any correct SSLv2
implementation accepting export-grade cipher suites as a
padding oracle. We then show how to adapt the techniques
described in Section 3.2 to decrypt TLS RSA ciphertexts.

4.1 The SSLv2 export padding oracle
SSLv2 is vulnerable to a direct message side channel
vulnerability exposing a Bleichenbacher oracle to the
attacker. The vulnerability follows from three prop-
erties of SSLv2. First, the server immediately re-
sponds with a ServerVerify message after receiving the
ClientMasterKey message, which includes the RSA ci-
phertext, without waiting for the ClientFinished mes-
sage that proves the client knows the RSA plaintext. Sec-
ond, when choosing 40-bit export RC2 or RC4 as the sym-
metric cipher, only 5 bytes of the master_key (mksecret)
are sent encrypted using RSA, and the remaining 11 bytes
are sent in cleartext. Third, a server implementation that
correctly implements the anti-Bleichenbacher counter-
measure and receives an RSA key exchange message with
invalid padding will generate a random premaster secret

TLS
Client

TLS
Client

Attack
Algorithm

Attack
Algorithm

TLS
Server

TLS
Server

ClientHello

ServerHelloCertificateServerHelloDone

ClientHello

ServerHello

ClientMasterKey

ClientHello
Finished

CertificateFinished

ServerHelloDone

Record TLS 1.2 handshake

Chosen-ciphertext attack

...

SSLv2
Server

SSLv2
Server

Bleichenbacher Oracle

Break 40-bit
encryption

Break 40-bit
encryption

c
RSA

c'
RSA

c
RC2

k
RC2 m?

ServerVerify

ClientKeyExchange

Figure 2: SSLv2-based Bleichenbacher attack on TLS.
An attacker passively collects RSA ciphertexts from a
TLS 1.2 handshake, and then performs oracle queries
against a server that supports SSLv2 with the same public
key to decrypt the TLS ciphertext.

and carry out the rest of the TLS handshake using this
randomly generated key material.

This allows an attacker to deduce the validity of RSA
ciphertexts in the following manner:

1. The attacker sends a ClientMasterKey message,
which contains an RSA ciphertext c0 and any
choice of 11 clear key bytes for mkclear. The
server responds with a ServerVerify message,
which contains the challenge encrypted using the
server_write_key.

2. The attacker performs an exhaustive search over
the possible values of the 5 bytes of the
master_key mksecret , computes the correspond-
ing server_write_key, and checks whether the
ServerVerify message decrypts to challenge.
One value should pass this check; call it mk0. Re-
call that if the RSA plaintext was valid, mk0 is the
unpadded data in the RSA plaintext cd

0. Otherwise,
mk0 is a randomly generated sequence of 5 bytes.

3. The attacker re-connects to the server with the
same RSA ciphertext c0. The server responds
with another ServerVerify message that contains
the current challenge encrypted using the current
server_write_key. If the decrypted RSA cipher-

6

USENIX Association 25th USENIX Security Symposium 695

text was valid, the attacker can use mk0 to decrypt a
correct challenge value from the ServerVerify
message. Otherwise, if the ServerVerify message
does not decrypt to challenge, the RSA ciphertext
was invalid, and mk0 must have been random.

Thus we can instantiate an oracle OSSLv2-export using
the procedure above; each oracle query requires two
server connections and 240 decryption attempts in the
simplest case. For each oracle call OSSLv2-export(c), the
attacker learns whether c is valid, and if so, learns the
two most significant bytes 0x00 02, the sixth least sig-
nificant 0x00 delimiter byte, and the value of the 5 least
significant bytes of the plaintext m.

4.2 TLS decryption attack
In this section, we describe how the oracle described in
Section 4.1 can be used to carry out a feasible attack to
decrypt passively collected TLS ciphertexts.

As described in Section 3, we consider a server that
accepts TLS connections from clients using an RSA pub-
lic key that is exposed via SSLv2, and an attacker who is
able to passively observe these connections.

We also assume the server supports export cipher suites
for SSLv2. This can happen for two reasons. First, the
same server operators that fail to follow best practices in
disabling SSLv2 [40] may also fail to follow best prac-
tices by supporting export cipher suites. Alternatively,
the server might be running a version of OpenSSL prior
to January 2016, in which case it is vulnerable to the
OpenSSL cipher suite selection bug described in Sec-
tion 7, and an attacker may negotiate a cipher suite of his
choice independent of the server configuration.

The attacker needs access to computing power suffi-
cient to perform a 250 time attack, mostly brute forcing
symmetric key encryption. After our optimizations, this
can be done with a one-time investment of a few thousand
dollars of GPUs, or in a few hours for a few hundred
dollars in the cloud. Our cost estimates are described
in Section 4.3.

4.2.1 Constructing the attack
The attacker can exploit the SSLv2 vulnerability follow-
ing the generic attack outline described in Section 3.2,
consisting of several distinct phases:

0. The attacker passively collects 1,000 TLS hand-
shakes from connections using RSA key exchange.

1. They then attempt to convert the intercepted TLS
ciphertexts containing a 48-byte premaster secret
to valid RSA PKCS#1 v1.5 encoded ciphertexts
containing five-byte messages using the fractional
trimmers described in Section 3.2.1, and querying
OSSLv2-export. The attacker sends the modified ci-
phertexts to the server using fresh SSLv2 connec-
tions with weak symmetric ciphers and uses the

ServerVerify messages to deduce ciphertext va-
lidity as described in the previous section. For each
queried RSA ciphertext, the attacker must perform
a brute force attack on the weak symmetric cipher.
The attacker expects to obtain a valid SSLv2 cipher-
text after roughly 10,000 oracle queries, or 20,000
connections to the server.

2. Once the attacker has obtained a valid SSLv2 RSA
ciphertext c1 = me

1, they use the shifting technique
explained in Section 3.2.2 to find an integer s1 such
that m2 = m1 · 2−40 · s1 is also SSLv2 conformant.
Appendix A.4 contains more details on this step.

3. The attacker then applies the shifting technique again
to find another integer s2 such that m3 = m2 ·2−40 ·s2
is also SSLv2 conformant.

4. They then search for yet another integer s3 such that
m3 · s3 is also SSLv2 conformant.

5. Finally, the attacker can continue with our adapted
Bleichenbacher iteration technique described in Sec-
tion 3.2.3, and decrypts the message after an ex-
pected 10,000 additional oracle queries, or 20,000
connections to the server.

6. The attacker can then transform the decrypted plain-
text back into the original plaintext, which is one of
the 1,000 intercepted TLS handshakes.

The rationale behind the different phases. Bleichen-
bacher’s original algorithm requires a conformant mes-
sage m0, and a multiplier s1 such that m1 = m0 · s1 is also
conformant. Naïvely, it would appear we can apply the
same algorithm here, after completing Phase 1. However,
the original algorithm expects s1 to be of size about 224.
This is not the case when we use fractions for s1, as the
integer s1 = ut−1 mod N will be the same size as N.

Therefore, our approach is to find a conformant mes-
sage for which we know the 5 most significant bytes; this
will happen after multiple rotations and this message will
be m3. After finding such a message, finding s3 such that
m4 = m3 · s3 is also conformant becomes trivial. From
there, we can finally apply the adapted Bleichenbacher
iteration technique as described in Appendix A.5.

4.2.2 Attack performance
The attacker wishes to minimize three major costs in the
attack: the number of recorded ciphertexts from the victim
client, the number of connections to the victim server, and
the number of symmetric keys to be brute forced. The
requirements for each of these elements are governed
by the set of fractions to be multiplied with each RSA
ciphertext in the first phase, as described in Section 3.2.1.

Table 1 highlights a few choices for F and the resulting
performance metrics for 2048-bit RSA keys. Appendix A
provides more details on the derivation of these numbers

7

696 25th USENIX Security Symposium USENIX Association

Optimizing Cipher- |F | SSLv2 Offline
for texts connections work

offline work 12,743 1 50,421 249.64

offline work 1,055 10 46,042 250.63

compromise 4,036 2 41,081 249.98

online work 2,321 3 38,866 251.99

online work 906 8 39,437 252.25

Table 1: 2048-bit Bleichenbacher attack complexity.
The cost to decrypt one ciphertext can be adjusted by
choosing the set of fractions F the attacker applies to
each of the passively collected ciphertexts in the first
step of the attack. This choice affects several parameters:
the number of these collected ciphertexts, the number of
connections the attacker makes to the SSLv2 server, and
the number of offline decryption operations.

Key size Phase 1 Phases 2–5 Total Offline
queries work

1024 4,129 4,132 8,261 250.01

2048 6,919 12,468 19,387 250.76

4096 18,286 62,185 80,471 252.16

Table 2: Oracle queries required by our attack. In
Phase 1, the attacker queries the oracle until an SSLv2
conformant ciphertext is found. In Phases 2–5, the at-
tacker decrypts this ciphertext using leaked plaintext.
These numbers minimize total queries. In our attack,
an oracle query represents two server connections.

and other optimization choices. Table 2 gives the expected
number of Bleichenbacher queries for different RSA key
sizes, when minimizing total oracle queries.

4.3 Implementing general DROWN with GPUs
The most computationally expensive part of our general
DROWN attack is breaking the 40-bit symmetric key, so
we developed a highly optimized GPU implementation of
this brute force attack. Our first naïve GPU implementa-
tion performed around 26MH/s, where MH denotes the
time required for testing one million possible values of
mksecret . Our optimized implementation runs at a final
speed of 515MH/s, a speedup factor of 19.8.

We obtained our improvements through a number of
optimizations. For example, our original implementation
ran into a communication bottleneck in the PCI-E bus
in transmitting candidate keys from CPU to GPU, so we
removed this bottleneck by generating key candidates
on the GPU itself. We optimized memory management,
including storing candidate keys and the RC2 permutation
table in constant memory, which is almost as fast as a
register, instead of slow global memory.

We experimentally evaluated our optimized implemen-
tation on a local cluster and in the cloud. We used it to
execute a full attack of 249.6 tested keys on each platform.
The required number of keys to test during the attack is
a random variable, distributed geometrically, with an ex-
pectation that ranges between 249.6 and 252.5 depending
on the choice of optimization parameters. We treat a full
attack as requiring 249.6 tested keys overall.

Hashcat. Hashcat [20] is an open source optimized
password-recovery tool. The Hashcat developers allowed
us to use their GPU servers for our attack evaluation. The
servers contain a total of 40 GPUs: 32 Nvidia GTX 980
cards, and 8 AMD R9 290X cards. The value of this
equipment is roughly $18,040. Our full attack took less
than 18 hours to complete on the Hashcat servers, with
the longest single instance taking 17h9m.

Amazon EC2. We also ran our optimized GPU code
on the Amazon Elastic Compute Cloud (EC2) service.
We used a cluster composed of 200 variable-price “spot”
instances: 150 g2.2xlarge instances, each containing
one high-performance NVIDIA GPU with 1,536 CUDA
cores and 50 g2.8xlarge instances, each containing four
of these GPUs. When we ran our experiments in January
2016, the average spot rates we paid were $0.09/hr and
$0.83/hr respectively. Our full attack finished in under 8
hours including startup and shutdown for a cost of $440.

4.4 OpenSSL SSLv2 cipher suite selection bug
General DROWN is a protocol flaw, but the population
of vulnerable hosts is increased due to a bug in OpenSSL
that causes many servers to erroneously support SSLv2
and export ciphers even when configured not to. The
OpenSSL team intended to disable SSLv2 by default in
2010, with a change that removed all SSLv2 cipher suites
from the default list of ciphers offered by the server [36].
However, the code for the protocol itself was not re-
moved in standard builds and SSLv2 itself remained en-
abled. We discovered a bug in OpenSSL’s SSLv2 ci-
pher suite negotiation logic that allows clients to select
SSLv2 cipher suites even when they are not explicitly
offered by the server. We notified the OpenSSL team of
this vulnerability, which was assigned CVE-2015-3197.
The problem was fixed in OpenSSL releases 1.0.2f and
1.0.1r [36].

5 Special DROWN
We discovered multiple vulnerabilities in recent (but not
current) versions of the OpenSSL SSLv2 handshake code
that create even more powerful Bleichenbacher oracles,
and drastically reduce the amount of computation required
to implement our attacks. The vulnerabilities, designated
CVE-2016-0703 and CVE-2016-0704, were present in
the OpenSSL codebase from at least the start of the reposi-
tory, in 1998, until they were unknowingly fixed on March

8

USENIX Association 25th USENIX Security Symposium 697

4, 2015 by a patch [28] designed to correct an unrelated
problem [11]. By adapting DROWN to exploit this spe-
cial case, we can significantly cut both the number of
connections and the computational work required.

5.1 The OpenSSL “extra clear” oracle
Prior to the fix, OpenSSL servers improperly al-
lowed the ClientMasterKey message to contain
clear_key_data bytes for non-export ciphers. When
such bytes are present, the server substitutes them for
bytes from the encrypted key. For example, consider the
case that the client chooses a 128-bit cipher and sends
a 16-byte encrypted key k[1],k[2], . . . ,k[16] but, contrary
to the protocol specification, includes 4 null bytes of
clear_key_data. Vulnerable OpenSSL versions will
construct the following master_key:

[00 00 00 00 k[1] k[2] k[3] k[4] . . . k[9] k[10] k[11] k[12]]

This enables a straightforward key recovery attack
against such versions. An attacker that has intercepted
an SSLv2 connection takes the RSA ciphertext of the
encrypted key and replays it in non-export handshakes to
the server with varying lengths of clear_key_data. For
a 16-byte encrypted key, the attacker starts with 15 bytes
of clear key, causing the server to use the master_key:

[00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 k[1]]

The attacker can brute force the first byte of the en-
crypted key by finding the matching ServerVerify mes-
sage among 256 possibilities. Knowing k[1], the attacker
makes another connection with the same RSA ciphertext
but 14 bytes of clear key, resulting in the master_key:

[00 00 00 00 00 00 00 00 00 00 00 00 00 00 k[1] k[2]]

The attacker can now easily brute force k[2]. With
only 15 probe connections and an expected 15 · 128 =
1,920 trial encryptions, the attacker learns the entire
master_key for the recorded session.

As this oracle is obtained by improperly sending unex-
pected clear-key bytes, we call it the Extra Clear oracle.

This session key-recovery attack can be directly con-
verted to a Bleichenbacher oracle. Given a candidate
ciphertext and symmetric key length �k, the attacker sends
the ciphertext with �k known bytes of clear_key_data.
The oracle decision is simple:

• If the ciphertext is valid, the ServerVerify mes-
sage will reflect a master_key consisting of those
�k known bytes.

• If the ciphertext is invalid, the master_key will be
replaced with �k random bytes (by following the
countermeasure against the Bleichenbacher attack),
resulting in a different ServerVerify message.

This oracle decision requires one connection to the
server and one ServerVerify computation. After the
attacker has found a valid ciphertext corresponding to a

�k-byte encrypted key, they recover the �k plaintext bytes
by repeating the key recovery attack from above. Thus
our oracle OSSLv2-extra-clear(c) requires one connection to
determine whether c is valid. After �k connections, the
attacker additionally learns the �k least significant bytes of
m. We model this as a single oracle call, but the number of
server connections will vary depending on the response.

5.2 MITM attack against TLS
Special DROWN is fast enough that it can decrypt a TLS
premaster secret online, during a connection handshake.
A man-in-the-middle attacker can use it to compromise
connections between modern browsers and TLS servers—
even those configured to prefer non-RSA cipher suites.

The MITM attacker impersonates the server and sends
a ServerHello message that selects a cipher suite with
RSA as the key-exchange method. Then, the attacker uses
special DROWN to decrypt the premaster secret. The
main difficulty is completing the decryption and produc-
ing a valid ServerFinished message before the client’s
connection times out. Most browsers will allow the hand-
shake to last up to one minute [1].

The attack requires targeting an average of 100 connec-
tions, only one of which will be attacked, probabilistically.
The simplest way for the attacker to facilitate this is to use
JavaScript to cause the client to connect repeatedly to the
victim server, as described in Section 3. Each connection
is tested against the oracle with only small number of
fractions, and the attacker can discern immediately when
he receives a positive response from the oracle.

Note that since the decryption must be completed on-
line, the Leaky Export oracle cannot be used, and the
attack uses only the Extra Clear oracle.

5.2.1 Constructing the attack
We will use SSL_DES_192_EDE3_CBC_WITH_MD5 as the
cipher suite, allowing the attacker to recover 24 bytes of
key at a time. The attack works as follows:

0. The attacker causes the victim client to connect re-
peatedly to the victim server, with at least 100 con-
nections.

1. The attacker uses the fractional trimmers as de-
scribed in Section 3.2.1 to convert one of the TLS
ciphertexts into an SSLv2 conformant ciphertext c0.

2. Once the attacker has obtained a valid SSLv2 cipher-
text c1, they repeatedly use the shifting technique
described in Section 3.2.2 to rotate the message by
25 bytes each iteration, learning 27 bytes with each
shift. After several iterations, they have learned the
entire plaintext.

3. The attacker then transforms the decrypted SSLv2
plaintext into the decrypted TLS plaintext.

9

698 25th USENIX Security Symposium USENIX Association

Using 100 fractional trimmers, this more efficient ora-
cle attack allows the attacker to recover one in 100 TLS
session keys using only about 27,000 connections to the
server, as described in Appendix A.6. The computation
cost is so low that we can complete the full attack on a
single workstation in under one minute.

5.3 The OpenSSL “leaky export” oracle
In addition to the extra clear implementation bug, the
same set of OpenSSL versions also contain a separate bug,
where they do not follow the correct algorithm for their
implementation of the Bleichenbacher countermeasure.
We now describe this faulty implementation:

• The SSLv2 ClientKeyExchange message contains
the mkclear bytes immediately before the ciphertext c.
Let p be the buffer starting at the first mkclear byte.

• Decrypt c in place. If the decryption operation suc-
ceeds, and c decrypted to a plaintext of a correct
padded length, p now contains the 11 mkclear bytes
followed by the 5 mksecret bytes.

• If c decrypted to an unpadded plaintext k of incorrect
length, the decryption operation overwrites the first
j = min(|k|,5) bytes of c with the first j bytes of k.

• If c is not SSLv2 conformant and the decryption
operation failed, randomize the first five bytes of p,
which are the first five bytes of mkclear.

This behavior allows the attacker to distinguish be-
tween these three cases. Suppose the attacker sends 11
null bytes as mkclear. Then these are the possible cases:

1. c decrypts to a correctly padded plaintext k of
the expected length, 5 bytes. Then the following
master_key will be constructed:
[00 00 00 00 00 00 00 00 00 00 00 k[1] k[2] k[3] k[4] k[5]]

2. c decrypts to a correctly padded plaintext k of a
wrong length. Let r be the five random bytes the
server generated. The yielded master_key will be:

[r[1] r[2] r[3] r[4] r[5] 00 00 00 00 00 00 k[1] k[2] k[3] k[4] k[5]]

when |k| ≥ 5. If |k| < 5, the server substitutes the
first |k| bytes of c with the first |k| bytes of k. Using
|k|= 3 as an example, the master_key will be:

[r[1] r[2] r[3] r[4] r[5] 00 00 00 00 00 00 k[1] k[2] k[3] c[4] c[5]]

3. c is not SSLv2 conformant, and hence the decryption
operation failed. The resulting master_key will be:

[r[1] r[2] r[3] r[4] r[5] 00 00 00 00 00 00 c[1] c[2] c[3] c[4] c[5]]

The attacker detects case (3) by performing an exhaus-
tive search over the 240 possibilities for r, and checking
whether any of the resulting values for the master_key
correctly decrypts the observed ServerVerify message.
If no r value satisfies this property, then cd starts with
bytes 0x00 02. The attacker then distinguishes between

cases (1) and (2) by performing an exhaustive search
over the five bytes of k, and checking whether any of the
resulting values for mk correctly decrypts the observed
ServerVerify message.

As this oracle leaks information when using export
ciphers, we have named it the Leaky Export oracle.

In conclusion, OSSLv2-export-leaky allows an attacker to
obtain a valid oracle response for all ciphertexts which de-
crypt to a correctly-padded plaintext of any length. This
is in contrary to the previous oracles OSSLv2-extra-clear and
OSSLv2-export, which required the plaintext to be of a spe-
cific length. Each oracle query to OSSLv2-export-leaky re-
quires one connection to the server and 241 offline work.

Combining the two oracles. The attacker can use the
Extra Clear and Leaky Export oracles together in order to
reduce the number of queries required for the TLS decryp-
tion attack. They first test a TLS conformant ciphertext for
divisors using the Leaky Export oracle, then use fractions
dividing the plaintext with both oracles. Once the attacker
has obtained a valid SSLv2 ciphertext c1, they repeatedly
use the shifting technique described in Section 3.2.2 to
rotate the message by 25 bytes each iteration while choos-
ing 3DES as the symmetric cipher, learning 27 bytes with
each shift. After several iterations, they have learned the
entire plaintext, using 6,300 queries (again for a 2048-bit
modulus). This brings the overall number of queries for
this variant of the attack to 900+16∗4+6,300 = 7,264.
These parameter choices are not necessarily optimal. We
give more details in Appendix A.7.

6 Extending the attack to QUIC
DROWN can also be extended to a feasible-time man-in-
the-middle attack against QUIC [26]. QUIC [10, 39] is a
recent cryptographic protocol designed and implemented
by Google that is intended to reduce the setup time to
establish a secure connection while providing security
guarantees analogous to TLS. QUIC’s security relies on
a static “server config” message signed by the server’s
public key. Jager et al. [26] observe that an attacker who
can forge a signature on a malicious QUIC server config
once would be able to impersonate the server indefinitely.
In this section, we show an attacker with significant re-
sources would be able to mount such an attack against a
server whose RSA public keys is exposed via SSLv2.

A QUIC client receives a “server config” message,
signed by the server’s public key, which enumerates con-
nection parameters: a static elliptic curve Diffie-Hellman
public value, and a validity period. In order to mount a
man-in-the-middle attack against any client, the attacker
wishes to generate a valid server config message contain-
ing their own Diffie-Hellman value, and an expiration
date far in the future.

The attacker needs to present a forged QUIC config to
the client in order to carry out a successful attack. This is

10

USENIX Association 25th USENIX Security Symposium 699

Pro- Attack Oracle SSLv2 Offline See
tocol type connec- work §

tions

TLS Decrypt SSLv2 41,081 250 4.2
TLS Decrypt Special 7,264 251 5.3
TLS MITM Special 27,000 215 5.2

QUIC MITM SSLv2 225 265 6.1
QUIC MITM Special 225 225 6.2
QUIC MITM Special 217 258 6.2

Table 3: Summary of attacks. “Oracle” denotes the ora-
cle required to mount each attack, which also implies the
vulnerable set of SSLv2 implementations. SSLv2 denotes
any SSLv2 implementation, while “Special” denotes an
OpenSSL version vulnerable to special DROWN.

straightforward, since QUIC discovery may happen over
non-encrypted HTTP [19]. The server does not even need
to support QUIC at all: an attacker could impersonate
the attacked server over an unencrypted HTTP connec-
tion and falsely indicate that the server supports QUIC.
The next time the client connects to the server, it will
attempt to connect using QUIC, allowing the attacker to
present the forged “server config” message and execute
the attack [26].

6.1 QUIC signature forgery attack based on
general DROWN

The attack proceeds much as in Section 3.2, except that
some of the optimizations are no longer applicable, mak-
ing the attack more expensive.

The first step is to discover a valid, PKCS conformant
SSLv2 ciphertext. In the case of TLS decryption, the
input ciphertext was PKCS conformant to begin with; this
is not the case for the QUIC message c0. Thus for the first
phase, the attacker iterates through possible multiplier
values s until they randomly encounter a valid SSLv2
message in c0 · sd . For 2048-bit RSA keys, the probability
of this random event is Prnd ≈ 2−25; see Section 3.2.

Once the first SSLv2 conformant message is found, the
attacker proceeds with the signature forgery as they would
in Step 2 of the TLS decryption attack. The required
number of oracle queries for this step is roughly 12,468
for 2048-bit RSA keys.

Attack cost. The overall oracle query cost is dominated
by the 225 ≈ 34 million expected queries in the first phase,
above. At a rate of 388 queries/second, the attacker would
finish in one day; at a rate of 12 queries/second they would
finish in one month.

For the SSLv2 export padding oracle, the offline com-
putation to break a 40-bit symmetric key for each query
requires iterating over 265 keys. At our optimized GPU
implementation rate of 515 million keys per second, this

would require 829,142 GPU days. Our experimental GPU
hardware retails for $400. An investment of $10 million
to purchase 25,000 GPUs would reduce the wall clock
time for the attack to 33 days.

Our implementation run on Amazon EC2 processed
about 174 billion keys per g2.2xlarge instance-hour,
so at a cost of $0.09/instance-hour the full attack would
cost $9.5 million and could be parallelized to Amazon’s
capacity.

6.2 Optimized QUIC signature forgery based
on special DROWN

For targeted servers that are vulnerable to special
DROWN, we are unaware of a way to combine the two
special DROWN oracles; the attacker would have to
choose a single oracle which minimizes his subjective
cost. For the Extra Clear oracle, there is only negligi-
ble computation per oracle query, so the computational
cost for the first phase is 225. For the Leaky Export or-
acle, as explained below, the required offline work is
258, and the required number of server connections is
roughly 145,573. Both oracles appear to bring this at-
tack well within the means of a moderately provisioned
adversary.

Mounting the attack using Leaky Export. For a 2048-
bit RSA modulus, the probability of a random mes-
sage being conformant when querying OSSLv2-export-leaky
is Prnd ≈ (1/256)2 ∗ (255/256)8 ∗ (1− (255/256)246) ≈
2−17. Therefore, to compute cd when c is not SSLv2 con-
formant, the attacker randomly generates values for s and
tests c · se against the Leaky Export oracle. After roughly
217 ≈ 131,000 queries, they obtain a positive response,
and learn that cd · s starts with bytes 0x00 02.

Naïvely, it would seem the attacker can then ap-
ply one of the techniques presented in this work, but
OSSLv2-export-leaky does not provide knowledge of any
least significant plaintext bytes when the plaintext length
is not at most the correct one. Instead, the attacker pro-
ceeds directly according to the algorithm presented in [4].
Referring to Table 1 in [4], OSSLv2-export-leaky is denoted
with the term FFT, as it returns a positive response for a
correctly padded plaintext of any length, and the median
number of required queries for this oracle is 14,501. This
number of queries is dominated by the 131,000 queries
the attacker has already executed. As each query requires
testing roughly 241 keys, the required offline work is ap-
proximately 258.

Future changes to QUIC. In addition to disabling
QUIC support for non-whitelisted servers, Google have
informed us that they plan to change the QUIC standard,
so that the “server config” message will include a client
nonce to prove freshness. They also plan to limit QUIC
discovery to HTTPS.

11

700 25th USENIX Security Symposium USENIX Association

All certificate Trusted certificates

Protocol Port SSL/TLS SSLv2
support

Vulnerable
key SSL/TLS SSLv2

support
Vulnerable

key

SMTP 25 3,357 K 936 K (28%) 1,666 K (50%) 1,083 K 190 K (18%) 686 K (63%)
POP3 110 4,193 K 404 K (10%) 1,764 K (42%) 1,787 K 230 K (13%) 1,031 K (58%)
IMAP 143 4,202 K 473 K (11%) 1,759 K (42%) 1,781 K 223 K (13%) 1,022 K (57%)
HTTPS 443 34,727 K 5,975 K (17%) 11,444 K (33%) 17,490 K 1,749 K (10%) 3,931 K (22%)
SMTPS 465 3,596 K 291 K (8%) 1,439 K (40%) 1,641 K 40 K (2%) 949 K (58%)
SMTP 587 3,507 K 423 K (12%) 1,464 K (42%) 1,657 K 133 K (8%) 986 K (59%)
IMAPS 993 4,315 K 853 K (20%) 1,835 K (43%) 1,909 K 260 K (14%) 1,119 K (59%)
POP3S 995 4,322 K 884 K (20%) 1,919 K (44%) 1,974 K 304 K (15%) 1,191 K (60%)

(Alexa Top 1M) 443 611 K 82 K (13%) 152 K (25%) 456 K 38 K (8%) 109 K (24%)

Table 4: Hosts vulnerable to general DROWN. We performed Internet-wide scans to measure the number of hosts
supporting SSLv2 on several different protocols. A host is vulnerable to DROWN if its public key is exposed anywhere
via SSLv2. Overall vulnerability to DROWN is much larger than support for SSLv2 due to widespread reuse of keys.

7 Measurements
We performed Internet-wide scans to analyze the number
of systems vulnerable to DROWN. A host is directly
vulnerable to general DROWN if it supports SSLv2. Sim-
ilarly, a host is directly vulnerable to special DROWN if
it supports SSLv2 and has the extra clear bug (which also
implies the leaky export bug). These directly vulnerable
hosts can be used as oracles to attack any other host with
the same key. Hosts that do not support SSLv2 are still
vulnerable to general or special DROWN if their RSA key
pair is exposed by any general or special DROWN oracle,
respectively. The oracles may be on an entirely different
host or port. Additionally, any host serving a browser-
trusted certificate is vulnerable to a special DROWN man-
in-the-middle if any name on the certificate appears on
any other certificate containing a key that is exposed by a
special DROWN oracle.

We used ZMap [16] to perform full IPv4 scans on
eight different ports during late January and February
2016. We examined port 443 (HTTPS), and common
email ports 25 (SMTP with STARTTLS), 110 (POP3
with STARTTLS), 143 (IMAP with STARTTLS), 465
(SMTPS), 587 (SMTP with STARTTLS), 993 (IMAPS),
and 995 (POP3S). For each open port, we attempted three
complete handshakes: one normal handshake with the
highest available SSL/TLS version; one SSLv2 handshake
requesting an export RC2 cipher suite; and one SSLv2
handshake with a non-export cipher and sixteen bytes of
plaintext key material sent during key exchange, which
we used to detect if a host has the extra clear bug.

We summarize our general DROWN results in Table 4.
The fraction of SSL/TLS hosts that directly supported
SSLv2 varied substantially across ports. 28% of SMTP
servers on port 25 supported SSLv2, likely due to the
opportunistic encryption model for email transit. Since
SMTP fails-open to plaintext, many servers are config-

ured with support for the largest possible set of protocol
versions and cipher suites, under the assumption that even
bad or obsolete encryption is better than plaintext [9]. The
other email ports ranged from 8% for SMTPS to 20% for
POP3S and IMAPS. We found 17% of all HTTPS servers,
and 10% of those with a browser-trusted certificate, are
directly vulnerable to general DROWN.

OpenSSL SSLv2 cipher suite selection bug. We dis-
covered that OpenSSL servers do not respect the cipher
suites advertised in the SSLv2 ServerHello message.
That is, a malicious client can select an arbitrary cipher
suite in the ClientMasterKey message, regardless of
the contents of the ServerHello, and force the use of
export cipher suites even if they are explicitly disabled in
the server configuration. To fully detect SSLv2 oracles,
we configured our scanner to ignore the ServerHello
cipher list. The cipher selection bug helps explain the
wide support for SSLv2—the protocol appeared disabled,
but non-standard clients could still complete handshakes.

Widespread public key reuse. Reuse of RSA key ma-
terial across hosts and certificates is widespread [21, 23].
Often this is benign: organizations may issue multiple
TLS certificates for distinct domains with the same public
key in order to simplify use of TLS acceleration hardware
and load balancing. However, there is also evidence that
system administrators may not entirely understand the
role of the public key in certificates. For example, in the
wake of the Heartbleed vulnerability, a substantial frac-
tion of compromised certificates were reissued with the
same public key [15]. The number of hosts vulnerable to
DROWN rises significantly when we take RSA key reuse
into account. For HTTPS, 17% of hosts are vulnerable
to general DROWN because they support both TLS and
SSLv2 on the HTTPS port, but 33% are vulnerable when
considering RSA keys used by another service.

12

USENIX Association 25th USENIX Security Symposium 701

Any certificate Trusted certificates

Protocol Port SSL/TLS Special DROWN
oracles

Vulnerable
key SSL/TLS Vulnerable

key
Vulnerable

name

SMTP 25 3,357 K 855 K (25%) 896 K (27%) 1,083 K 305 K (28%) 398 K (37%)
POP3 110 4,193 K 397 K (9%) 946 K (23%) 1,787 K 485 K (27%) 674 K (38%)
IMAP 143 4,202 K 457 K (11%) 969 K (23%) 1,781 K 498 K (30%) 690 K (39%)
HTTPS 443 34,727 K 4,029 K (12%) 9,089 K (26%) 17,490 K 2,523 K (14%) 3,793 K (22%)
SMTPS 465 3,596 K 334 K (9%) 765 K (21%) 1,641 K 430 K (26%) 630 K (38%)
SMTP 587 3,507 K 345 K (10%) 792 K (23%) 1,657 K 482 K (29%) 667 K (40%)
IMAPS 993 4,315 K 892 K (21%) 1,073 K (25%) 1,909 K 602 K (32%) 792 K (42%)
POP3S 995 4,322 K 897 K (21%) 1,108 K (26%) 1,974 K 641 K (32%) 835 K (42%)

(Alexa Top 1M) 443 611 K 22 K (4%) 52 K (9%) 456 K 33 K (7%) 85 K (19%)

Table 5: Hosts vulnerable to special DROWN. A server is vulnerable to special DROWN if its key is exposed by a
host with the CVE-2016-0703 bug. Since the attack is fast enough to enable man-in-the-middle attacks, a server is also
vulnerable (to impersonation) if any name in its certificate is found in any trusted certificate with an exposed key.

Special DROWN. As shown in Table 5, 9.1 M HTTPS
servers (26%) are vulnerable to special DROWN, as
are 2.5 M HTTPS servers with browser-trusted certifi-
cates (14%). 66% as many HTTPS hosts are vulnera-
ble to special DROWN as to general DROWN (70% for
browser-trusted servers). While 2.7 M public keys are
vulnerable to general DROWN, only 1.1 M are vulnerable
to special DROWN (41% as many). Vulnerability among
Alexa Top Million domains is also lower, with only 9%
of domains vulnerable (7% for browser-trusted domains).

Since special DROWN enables active man-in-the-
middle attacks, any host serving a browser-trusted certifi-
cate with at least one name that appears on any certificate
with an RSA key exposed by a special DROWN oracle
is vulnerable to an impersonation attack. Extending our
search to account for certificates with shared names, we
find that 3.8 M (22%) hosts with browser-trusted certifi-
cates are vulnerable to man-in-the-middle attacks, as well
as 19% of the browser-trusted domains in the Alexa Top
Million.

8 Related work
TLS has had a long history of implementation flaws and
protocol attacks [2,3,7,14,15,35,38]. We discuss relevant
Bleichenbacher and cross-protocol attacks below.

Bleichenbacher’s attack. Bleichenbacher’s adaptive
chosen ciphertext attack against SSL was first published
in 1998 [8]. Several works have adapted his attack to
different scenarios [4, 25, 29]. The TLS standard explic-
itly introduces countermeasures against the attack [13],
but several modern implementations have been discov-
ered to be vulnerable to timing-attack variants in recent
years [34, 42]. These side-channel attacks are implemen-
tation failures and only apply when the attacker is co-
located with the victim.

Cross-protocol attacks. Jager et al. [26] showed that a
cross-protocol Bleichenbacher RSA padding oracle attack
is possible against the proposed TLS 1.3 standard, in spite
of the fact that TLS 1.3 does not include RSA key ex-
change, if server implementations use the same certificate
for previous versions of TLS and TLS 1.3. Wagner and
Schneier [41] developed a cross-cipher suite attack for
SSLv3, in which an attacker could reuse a signed server
key exchange message in a later exchange with a different
cipher suite. Mavrogiannopoulos et al. [32] developed a
cross-cipher suite attack allowing an attacker to use ellip-
tic curve Diffie-Hellman as prime field Diffie-Hellman.

Attacks on export-grade cryptography. Recently, the
FREAK [5] and Logjam [1] attacks allowed an active
attacker to downgrade a connection to export-grade RSA
and Diffie-Hellman, respectively. DROWN exploits
export-grade symmetric ciphers, completing the export-
grade cryptography attack trifecta.

9 Discussion
9.1 Implications for modern protocols
Although the protocol flaws in SSLv2 enabling DROWN
are not present in recent TLS versions, many modern pro-
tocols meet a subset of the requirements to be vulnerable
to a DROWN-style attack. For example:

1. RSA key exchange. TLS 1.2 [13] allows this.

2. Reuse of server-side nonce by the client. QUIC [10]
allows this.

3. Server sends a message encrypted with the derived
key before the client. QUIC, TLS 1.3 [37], and TLS
False Start [30] do this.

4. Deterministic cipher parameters are generated from
the premaster secret and nonces. This is the case for
all TLS stream ciphers and TLS 1.0 block ciphers.

13

702 25th USENIX Security Symposium USENIX Association

DROWN has a natural adaptation when all three prop-
erties are present. The attacker exposes a Bleichenbacher
oracle by connecting to the server twice with the identi-
cal RSA ciphertexts and server-side nonces. If the RSA
ciphertext is PKCS conformant, the server will respond
with identical messages across both connections; other-
wise they will differ.

9.2 Lessons for key reuse
DROWN illustrates the cryptographic principle that keys
should be single use. Often, this principle is primarily
applied to keys that are used to both sign and decrypt, but
DROWN illustrates that using keys for different protocol
versions can also be a serious security risk. Unfortunately,
there is no widely supported way to pin X.509 certificates
to specific protocols. While using per-protocol certificates
may help defend against passive attacks, an active attacker
could still leverage any certificate with a matching name.

9.3 Harms from obsolete cryptography
Recent years have seen a significant number of serious
attacks exploiting outdated and obsolete cryptography.
Many protocols and cryptographic primitives that were
demonstrated to be weak decades ago are surprisingly
common in real-world systems.

DROWN exploits a modification of an 18-year-old at-
tack against a combination of protocols and ciphers that
have long been superseded by better options: the SSLv2
protocol, export cipher suites, and PKCS #1 v1.5 RSA
padding. In fact, support for RSA as a key exchange
method, including the use of PKCS #1 v1.5, is mandatory
even for TLS 1.2. The attack is made more severe by
implementation flaws in rarely used code.

Our work serves as yet another reminder of the im-
portance of removing deprecated technologies before
they become exploitable vulnerabilities. In response to
many of the vulnerabilities listed above, browser ven-
dors have been aggressively warning end users when TLS
connections are negotiated with unsafe cryptographic pa-
rameters, including SHA-1 certificates, small RSA and
Diffie-Hellman parameters, and SSLv3 connections. This
process is currently happening in a piecemeal fashion,
primitive by primitive. Vendors and developers rightly
prioritize usability and backward compatibility in stan-
dards, and are willing to sacrifice these only for practical
attacks. This approach works less well for cryptographic
vulnerabilities, where the first sign of a weakness, while
far from being practically exploitable, can signal trouble
in the future. Communication issues between academic
researchers and vendors and developers have been voiced
by many in the community, including Green [18] and
Jager et al. [24].

The long-term solution is to proactively remove these
obsolete technologies. There is movement towards this

already: TLS 1.3 has entirely removed RSA key exchange
and has restricted Diffie-Hellman key exchange to a few
groups large enough to withstand cryptanalytic attacks
long in the future. The CA/Browser forum will remove
support for SHA-1 certificates this year. Resources such
as the SSL Labs SSL Reports have gathered information
about best practices and vulnerabilities in one place, in or-
der to encourage administrators to make the best choices.

9.4 Harms from weakening cryptography
Export-grade cipher suites for TLS deliberately weak-
ened three primitives to the point that they are now bro-
ken even to enthusiastic amateurs: 512-bit RSA key ex-
change, 512-bit Diffie-Hellman key exchange, and 40-bit
symmetric encryption. All three deliberately weakened
primitives have been cornerstones of high-profile attacks:
FREAK exploits export RSA, Logjam exploits export
Diffie-Hellman, and now DROWN exploits export sym-
metric encryption.

Like FREAK and Logjam, our results illustrate the
continued harm that a legacy of deliberately weakened
export-grade cryptography inflicts on the security of mod-
ern systems, even decades after the regulations influenc-
ing the original design were lifted. The attacks described
in this paper are fully feasible against export cipher suites
today. The technical debt induced by cryptographic “front
doors” has left implementations vulnerable for decades.
With the slow rate at which obsolete protocols and primi-
tives fade away, we can expect some fraction of hosts to
remain vulnerable for years to come.

Acknowledgements
The authors thank team Hashcat for making their GPUs
available for the execution of the attack, Ralph Holz
for providing early scan data, Adam Langley for in-
sights about QUIC, Graham Steel for insights about TLS
False Start, the OpenSSL team for their help with dis-
closure, Ivan Ristic for comments on session resumption
in a BEAST-styled attack, and Tibor Jager and Christian
Mainka for further helpful comments. We thank the ex-
ceptional sysadmins at the University of Michigan for
their help and support throughout this project, including
Chris Brenner, Kevin Cheek, Laura Fink, Dan Maletta,
Jeff Richardson, Donald Welch, Don Winsor, and others
from ITS, CAEN, and DCO.

This material is based upon work supported by the
U.S. National Science Foundation under Grants No. CNS-
1345254, CNS-1408734, CNS-1409505, CNS-1505799,
CNS-1513671, and CNS-1518888, an AWS Research Ed-
ucation grant, a scholarship from the Israeli Ministry of
Science, Technology and Space, a grant from the Blavat-
nik Interdisciplinary Cyber Research Center (ICRC) at
Tel Aviv University, a gift from Cisco, and an Alfred P.
Sloan Foundation research fellowship.

14

USENIX Association 25th USENIX Security Symposium 703

References
[1] ADRIAN, D., BHARGAVAN, K., DURUMERIC, Z., GAUDRY, P.,

GREEN, M., HALDERMAN, J. A., HENINGER, N., SPRINGALL,
D., THOMÉ, E., VALENTA, L., VANDERSLOOT, B., WUSTROW,
E., ZANELLA-BÉGUELIN, S., AND ZIMMERMANN, P.
Imperfect forward secrecy: How Diffie-Hellman fails in practice.
In 22nd ACM Conference on Computer and Communications
Security (Oct. 2015).

[2] AL FARDAN, N. J., AND PATERSON, K. G. Lucky Thirteen:
Breaking the TLS and DTLS record protocols. In IEEE
Symposium on Security and Privacy (2013), IEEE, pp. 526–540.

[3] ALFARDAN, N. J., BERNSTEIN, D. J., PATERSON, K. G.,
POETTERING, B., AND SCHULDT, J. C. On the security of RC4
in TLS. In 22nd USENIX Security Symposium (2013),
pp. 305–320.

[4] BARDOU, R., FOCARDI, R., KAWAMOTO, Y., SIMIONATO, L.,
STEEL, G., AND TSAY, J.-K. Efficient padding oracle attacks on
cryptographic hardware. In Advances in Cryptology–CRYPTO
2012. Springer, 2012, pp. 608–625.

[5] BEURDOUCHE, B., BHARGAVAN, K., DELIGNAT-LAVAUD, A.,
FOURNET, C., KOHLWEISS, M., PIRONTI, A., STRUB, P.-Y.,
AND ZINZINDOHOUE, J. K. A messy state of the union: Taming
the composite state machines of TLS. In IEEE Symposium on
Security and Privacy (2015).

[6] BHARGAVAN, K., LAVAUD, A. D., FOURNET, C., PIRONTI, A.,
AND STRUB, P. Y. Triple handshakes and cookie cutters:
Breaking and fixing authentication over TLS. In IEEE
Symposium on Security and Privacy (2014), IEEE, pp. 98–113.

[7] BHARGAVAN, K., AND LEURENT, G. Transcript collision
attacks: Breaking authentication in TLS, IKE, and SSH. In
Network and Distributed System Security Symposium (Feb. 2016).

[8] BLEICHENBACHER, D. Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS #1. In
Advances in Cryptology — CRYPTO ’98, vol. 1462 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1998.

[9] BREYHA, W., DURVAUX, D., DUSSA, T., KAPLAN, L. A.,
MENDEL, F., MOCK, C., KOSCHUCH, M., KRIEGISCH, A.,
PÖSCHL, U., SABET, R., SAN, B., SCHLATTERBECK, R.,
SCHRECK, T., WÜRSTLEIN, A., ZAUNER, A., AND ZAWODSKY,
P. Better crypto – applied crypto hardening, 2016. Available at
https://bettercrypto.org/static/applied-crypto-hardening.pdf.

[10] CHANG, W.-T., AND LANGLEY, A. QUIC crypto, 2014.
https://docs.google.com/document/d/1g5nIXAIkN_Y-
7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit?pli=1.

[11] CVE-2015-0293. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-0293.

[12] DE RUITER, J., AND POLL, E. Protocol state fuzzing of TLS
implementations. In 24th USENIX Security Symposium
(Washington, D.C., Aug. 2015), USENIX Association.

[13] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard), Aug.
2008. Updated by RFCs 5746, 5878.

[14] DUONG, T., AND RIZZO, J. Here come the xor ninjas, 2011.
http://netifera.com/research/beast/beast_DRAFT_0621.pdf.

[15] DURUMERIC, Z., KASTEN, J., ADRIAN, D., HALDERMAN,
J. A., BAILEY, M., LI, F., WEAVER, N., AMANN, J.,
BEEKMAN, J., PAYER, M., AND PAXSON, V. The matter of
Heartbleed. In 14th Internet Measurement Conference (New York,
NY, USA, 2014), IMC ’14, ACM, pp. 475–488.

[16] DURUMERIC, Z., WUSTROW, E., AND HALDERMAN, J. A.
ZMap: Fast Internet-wide scanning and its security applications.
In 22nd USENIX Security Symposium (Aug. 2013).

[17] FREIER, A., KARLTON, P., AND KOCHER, P. The secure
sockets layer (SSL) protocol version 3.0. RFC 6101, 2011.

[18] GREEN, M. Secure protocols in a hostile world. In CHES 2015
(Aug. 2015). https://isi.jhu.edu/~mgreen/CHESPDF.pdf.

[19] HAMILTON, R. QUIC discovery.
https://docs.google.com/document/d/
1i4m7DbrWGgXafHxwl8SwIusY2ELUe8WX258xt2LFxPM/
edit#.

[20] Hashcat. http://hashcat.net.

[21] HENINGER, N., DURUMERIC, Z., WUSTROW, E., AND
HALDERMAN, J. A. Mining your Ps and Qs: Detection of
widespread weak keys in network devices. In 21st USENIX
Security Symposium (Aug. 2012).

[22] HICKMAN, K., AND ELGAMAL, T. The SSL protocol, 1995.
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00.

[23] HOLZ, R., AMANN, J., MEHANI, O., WACHS, M., AND
KAAFAR, M. A. TLS in the wild: An Internet-wide analysis of
TLS-based protocols for electronic communication. In Network
and Distributed System Security Symposium (Geneva,
Switzerland, Feb. 2016), S. Capkun, Ed., Internet Society.

[24] JAGER, T., PATERSON, K. G., AND SOMOROVSKY, J. One bad
apple: Backwards compatibility attacks on state-of-the-art
cryptography. In Network and Distributed System Security
Symposium (2013).

[25] JAGER, T., SCHINZEL, S., AND SOMOROVSKY, J.
Bleichenbacher’s attack strikes again: Breaking PKCS#1 v1.5 in
XML encryption. In 17th European Symposium on Research in
Computer Security (Berlin, Heidelberg, 2012), Springer Berlin
Heidelberg, pp. 752–769.

[26] JAGER, T., SCHWENK, J., AND SOMOROVSKY, J. On the
security of TLS 1.3 and QUIC against weaknesses in PKCS#1
v1.5 encryption. In 22nd ACM Conference on Computer and
Communications Security (New York, NY, USA, 2015), CCS ’15,
ACM, pp. 1185–1196.

[27] KALISKI, B. PKCS #1: RSA Encryption Version 1.5. RFC 2313
(Informational), Mar. 1998. Obsoleted by RFC 2437.

[28] KÄSPER, E. Fix reachable assert in SSLv2 servers. OpenSSL
patch, Mar. 2015. https://github.com/openssl/openssl/commit/
86f8fb0e344d62454f8daf3e15236b2b59210756.

[29] KLIMA, V., POKORNỲ, O., AND ROSA, T. Attacking
RSA-based sessions in SSL/TLS. In Cryptographic Hardware
and Embedded Systems-CHES 2003. Springer, 2003,
pp. 426–440.

[30] LANGLEY, A., MODADUGU, N., AND MOELLER, B. Transport
layer security (TLS) false start. draft-bmoeller-tls-falsestart-00,
June 2 (2010).

[31] LENSTRA, A. K., LENSTRA, H. W., AND LOVÁSZ, L.
Factoring polynomials with rational coefficients. Mathematische
Annalen 261 (1982), 515–534. 10.1007/BF01457454.

[32] MAVROGIANNOPOULOS, N., VERCAUTEREN, F., VELICHKOV,
V., AND PRENEEL, B. A cross-protocol attack on the TLS
protocol. In 19th ACM Conference on Computer and
Communications Security (New York, NY, USA, 2012), CCS ’12,
ACM, pp. 62–72.

[33] MEYER, C., AND SCHWENK, J. SoK: Lessons learned from
SSL/TLS attacks. In 14th International Workshop on Information
Security Applications (Berlin, Heidelberg, Aug. 2013), WISA
2013, Springer-Verlag.

[34] MEYER, C., SOMOROVSKY, J., WEISS, E., SCHWENK, J.,
SCHINZEL, S., AND TEWS, E. Revisiting SSL/TLS
implementations: New Bleichenbacher side channels and attacks.
In 23rd USENIX Security Symposium. USENIX Association, San
Diego, CA, Aug. 2014, pp. 733–748.

15

704 25th USENIX Security Symposium USENIX Association

[35] MÖLLER, B., DUONG, T., AND KOTOWICZ, K. This POODLE
bites: exploiting the SSL 3.0 fallback, 2014.

[36] OPENSSL. Change log.
https://www.openssl.org/news/changelog.html#x0.

[37] RESCORLA, E., ET AL. The transport layer security (TLS)
protocol version 1.3, draft.

[38] RIZZO, J., AND DUONG, T. The CRIME attack. EKOparty
Security Conference, 2012.

[39] ROSKIND, J. QUIC design document, 2013.
https://docs.google.com/a/chromium.org/document/d/
1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34.

[40] TURNER, S., AND POLK, T. Prohibiting secure sockets layer
(SSL) version 2.0. RFC 6176 (Informational), Apr. 2011.

[41] WAGNER, D., AND SCHNEIER, B. Analysis of the SSL 3.0
protocol. In 2nd USENIX Workshop on Electronic Commerce
(1996).

[42] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T.
Cross-tenant side-channel attacks in PaaS clouds. In 21st ACM
Conference on Computer and Communications Security (New
York, NY, USA, 2014), CCS ’14, ACM, pp. 990–1003.

A Adaptations to Bleichenbacher’s attack
A.1 Success probability of fractions
For a given fraction u/t, the success probability with a
randomly chosen TLS conformant ciphertext can be com-
puted as follows. Let m0 be a random TLS conformant
message, m1 = m0 ·u/t, and let �k be the expected length
of the unpadded message. For s = u/t mod N where u
and t are coprime, m1 will be SSLv2 conformant if the
following conditions all hold:

1. m0 is divisible by t. For a randomly generated m0,
this condition holds with probability 1/t.

2. m1[1] = 0 and m1[2] = 2, or the integer m · u/t ∈
[2B,3B). For a randomly generated m0 divisible by
t, this condition holds with probability

P =

3−2 · t/u for 2/3 < u/t < 1
3 · t/u−2 for 1 < u/t < 3/2
0 otherwise

3. ∀i∈ [3, �m−(�k+1)],m1[i] �= 0, or all bytes between
the first two bytes and the (k+ 1) least significant
bytes are non-zero. This condition holds with proba-
bility (1−1/256)�m−(�k+3).

4. m1[�m − �k] = 0: the (�k +1)st least significant byte
is 0. This condition holds with probability 1/256.

Using the above formulas for u/t = 7/8, the overall
probability of success is P = 1/8 · 0.71 · 0.37 · 1/256 =
1/7,774; thus the attacker expects to find an SSLv2 con-
formant ciphertext after testing 7,774 randomly chosen
TLS conformant ciphertexts. The attacker can decrease
the number of TLS conformant ciphertexts needed by mul-
tiplying each candidate ciphertext by several fractions.

Note that testing random s values until c1 = c0 · se mod
N is SSLv2 conformant yields a success probability of
Prnd ≈ (1/256)3 ∗ (255/256)249 ≈ 2−25.

A.2 Optimizing the chosen set of fractions
In order to deduce the validity of a single ciphertext, the
attacker would have to perform a non-trivial brute-force
search over all 5 byte master_key values. This translates
into 240 encryption operations.

The search space can be reduced by an additional opti-
mization, relying on the fractional multipliers used in the
first step. If the attacker uses u/t = 8/7 to compute a new
SSLv2 conformant candidate, and m0 is indeed divisible
by t = 7, then the new candidate message m1 = m0/t ·u
is divisible by u = 8, and the last three bits of m1 (and
thus mksecret) are zero. This allows reducing the searched
master_key space by selecting specific fractions.

More generally, for an integer u, the largest power of 2
by which u is divisible is denoted by v2(u), and multiply-
ing by a fraction u/t reduces the search space by a factor
of v2(u). With this observation, the trade-off between the
3 metrics: the required number of intercepted ciphertexts,
the required number of queries, and the required number
of encryption attempts, becomes non-trivial to analyze.

Therefore, we have resorted to using simulations when
evaluating the performance metrics for sets of fractions.
The probability that multiplying a ciphertext by any frac-
tion out of a given set of fractions results in an SSLv2
conformant message is difficult to compute, since the
events are in fact inter-dependent: If m · 16/15 is con-
forming, then m is divisible by 5, greatly increasing the
probability that m ·4/5 is also conforming. However, it is
easy to perform a Monte Carlo simulation, where we ran-
domly generate ciphertexts, and measure the probability
that any fraction out of a given set produces a conforming
message. The expected required number of intercepted
ciphertexts is the inverse of that probability.

Formally, if we denote the set of fractions as F , and
the event that a message m is conforming as C(m), we
perform a Monte Carlo estimation of the probability PF =
P(∃ f ∈F :C(m · f)), and the expected number of required
intercepted ciphertexts equals 1/PF . The required number
of oracle queries is simply 1/PF · |F |. Accordingly, the re-
quired number of server connections is 2 ·1/PF · |F |, since
each oracle query requires two server connections. And
as for the required number of encryption attempts, if we
denote this number when querying with a given fraction
f = u/t as E f , then E f = Eu/t = 240−v2(u). We further
define the required encryption attempts when testing a
ciphertext with a given set of fraction F as EF = ∑ f∈F E f .
Then the required number of encryption attempts in Phase
1 for a given set of fractions is (1/PF) ·EF .

We can now give precise figures for the expected num-
ber of required intercepted ciphertexts, connections to the
targeted server, and encryption attempts. The results pre-
sented in Table 1 were obtained using the above approach
with one billion random ciphertexts per fraction set F .

16

USENIX Association 25th USENIX Security Symposium 705

A.3 Rotation and multiplier speedups
For a randomly chosen s, the probability that the two
most significant bytes are 0x00 02 is 2−16; for a 2028-bit
modulus N the probability that the next �m − �k −3 bytes
of m2 are all nonzero is about 0.37 as in the previous
section, and the probability that the �k +1 least significant
delimiter byte is 0x00 is 1/256. Thus a randomly chosen s
will work with probability 2−25.4 and the attacker expects
to try 225.4 values for s before succeeding.

However, since the attacker has already learned �k +3
most significant bytes of m1 ·R−1 mod N, for �k ≥ 4 and
s < 230 they do not need to query the oracle to learn if the
two most significant bytes are SSLv2 conformant; they
can compute this themselves from their knowledge of
m̃1 ·R−1. They iterate through values of s, test that the top
two bytes of m̃1 ·R−1 mod N are 0x00 02, and only query
the oracle for s values that satisfy this test. Therefore, for a
2048-bit modulus they expect to test 216 values offline per
oracle query. The probability that a query is conformant is
then P= (1/256)∗(255/256)249 ≈ 1/678, so they expect
to perform 678 oracle queries before finding a fully SSLv2
conformant ciphertext c2 = (s ·R−1)ec1 mod N.

We can speed up the brute force testing of 216 values
of s using algebraic lattices. We are searching for values
of s satisfying m̃1R−1s < 3B mod N, or given an offset
s0 we would like to find solutions x and z to the equation
m̃1R−1(s0+x) = 2B+z mod N where |x|< 216 and |z|<
B. Let X = 215. We can construct the lattice basis

L =

−B Xm̃1R−1 m̃1R−1s0 +B
0 XN 0
0 0 N

We then run the LLL algorithm [31] on L to obtain a
reduced lattice basis V containing vectors v1,v2,v3. We
then construct the linear equations f1(x,z) = v1,1/B · z+
v1,2/X · x + v1,3 = 0 and f2(x,z) = v2,1/B · z + v2,2/X ·
x+ v2,3 = 0 and solve the system of equations to find a
candidate integer solution x = s̃. We then test s = s̃+ s0
as our candidate solution in this range.

detL = XZN2 and dimL = 3, thus we expect the
vectors vi in V to have length approximately |vi| ≈
(XZN2)1/3. We will succeed if |vi|< N, or in other words
XZ < N. N ≈ 28�m , so we expect to find short enough
vectors. This approach works well in practice and is sig-
nificantly faster than iterating through 216 possible values
of s̃ for each query.

In summary, given an SSLv2 conformant ciphertext
c1 = me

1 mod N, we can efficiently generate an SSLv2
conformant ciphertext c2 = me

2 mod N where m2 = s ·
m1 ·R−1 mod N and we know several most significant
bytes of m2, using only a few hundred oracle queries in
expectation. We can iterate this process as many times as
we like to continue generating SSLv2 conformant cipher-
texts ci for which we know increasing numbers of most

significant bytes, and which have a known multiplicative
relationship to our original message c0.

A.4 Rotations in the general DROWN attack
After the first phase, we have learned an SSLv2 confor-
mant ciphertext c1, and we wish to shift known plaintext
bytes from least to most significant bits. Since we learn
the least significant 6 bytes of plaintext of m1 from a suc-
cessful oracle OSSLv2-export query, we could use a shift of
2−48 to transfer 48 bits of known plaintext to the most
significant bits of a new ciphertext. However, we perform
a slight optimization here, to reduce the number of en-
cryption attempts. We instead use a shift of 2−40, so that
the least significant byte of m1 · 2−40 and m̃1 · 2−40 will
be known. This means that we can compute the least sig-
nificant byte of m1 ·2−40 · s mod N, so oracle queries now
only require 232 encryption attempts each. This brings
the total expected number of encryption attempts for each
shift to 232 ∗678 ≈ 241.

We perform two such plaintext shifts in order to obtain
an SSLv2 conformant message, m3 that resides in a nar-
row interval of length at most 28�−66. We can then obtain
a multiplier s3 such that m3 · s3 is also SSLv2 conformant.
Since m3 lies in an interval of length at most 28�−66, with
high probability for any s3 < 230, m3 ·s3 lies in an interval
of length at most 28�m−36 < B, so we know the two most
significant bytes of m3 · s3. Furthermore, we know the
value of the 6 least significant bytes after multiplication.
We therefore test possible values of s3, and for values
such that m3 · s3 ∈ [2B,3B), and (m3 · s3)[�m −5] = 0, we
query the oracle with c3 · se

3 mod N. The only condition
for PKCS conformance which we haven’t verified be-
fore querying the oracle is the requirement of non-zero
padding, which holds with probability 0.37.

In summary, after roughly 1/0.37 = 2.72 queries we
expect a positive response from the oracle. Since we know
the value of the 6 least significant bytes after multiplica-
tion, this phase does not require performing an exhaustive
search. If the message is SSLv2 conformant after multipli-
cation, we know the symmetric key, and can test whether
it correctly decrypts the ServerVerify message.

A.5 Adapted Bleichenbacher iteration
After we have bootstrapped the attack using rotations, the
original algorithm proposed by Bleichenbacher can be
applied with minimal modifications.

The original step obtains a message that starts with
the required 0x00 02 bytes once in roughly every two
queries on average, and requires the number of queries to
be roughly 16�m. Since we know the value of the 6 least
significant bytes after multiplying by any integer, we can
only query the oracle for multipliers that result in a zero
6th least significant byte, and again an exhaustive search
over keys is not required. However, we cannot ensure

17

706 25th USENIX Security Symposium USENIX Association

that the padding is non-zero when querying, which again
holds with probability 0.37. Therefore, for a 2048-bit
modulus, the overall expected number of queries for this
phase is roughly 2048∗2/0.37 = 11,070.

A.6 Special DROWN MITM performance
For the first step, the probability that the three padding
bytes are correct remains unchanged. The probability that
all the intermediate padding bytes are non-zero is now
slightly higher, P1 = (1−1/256)229 = 0.41, yielding an
overall maximal success probability P = 0.1 ·0.41 · 1

256 =
1/6,244 per oracle query. Since the attacker now only
needs to connect to the server once per oracle query, the
expected number of connections in this step is the same,
6,243. Phase 1 now yields a message with 3 known
padding bytes and 24 known plaintext bytes.

For the remaining rotation steps, each rotation requires
an expected 630 oracle queries. The attacker could now
complete the original Bleichenbacher attack by perform-
ing 11,000 sequential queries in the final phase. However,
with this more powerful oracle it is more efficient to apply
a rotation 10 more times to recover the remaining plain-
text bits. The number of queries required in this phase is
now 10 · 256/0.41 ≈ 6,300, and the queries for each of
the 10 steps can be executed in parallel.

Using multiple queries per fraction. For the
OSSLv2-extra-clear oracle, the attacker can increase
their chances of success by querying the server multiple
times per ciphertext and fraction, using different cipher
suites with different key lengths. They can negotiate
DES and hope the 9th least significant byte is zero, then
negotiate 128-bit RC4 and hope the 17th least significant
byte is zero, then negotiate 3DES and hope the 25th
least significant is zero. All three queries also require
the intermediate padding bytes to be non-zero. This
technique triples the success probability for a given
pair of (ciphertext, fraction), at a cost of triple the
queries. Its primary benefit is that fractions with smaller
denominators (and thus higher probabilities of success)
are now even more likely to succeed.

For a random ciphertext, when choosing 70 fractions,
the probability of the first zero delimiter byte being in
one of these three positions is 0.01. Hence, the attacker
can use only 100 recorded ciphertexts, and expect to use
100∗70∗3 = 21,000 oracle queries. For the Extra Clear
oracle, each query requires one SSLv2 connection to the
server. After obtaining the first positive response from the
oracle, the attacker proceeds to phase 2 using 3DES.

A.7 Special DROWN with combined oracles
Using the Leaky Export oracle, the probability that a
fraction u/t will result in a positive response is P=P0∗P3,
where the formula for computing P0 = P((m ·u/t)[1,2] =
00||02) is provided in Appendix A.1, and P3 is, for a

2048-bit modulus:

P3 = P(0x00 �∈ {m3, . . . ,m10}∧
0x00 ∈ {m11, . . . ,m�})

= (1−1/256)8 ∗ (1− (1−1/256)246) = 0.60

(1)

Phase 1. Our goal for this phase is to obtain a divisor t
as large as possible, such that t|m. We generate a list of
fractions, sorted in descending order of the probability
of resulting in a positive response from OSSLv2-export-leaky.
For a given ciphertext c, we then query with the 50 frac-
tions in the list with the highest probability, until we ob-
tain a first positive response for a fraction u0/t0. We can
now deduce that t0|m. We then generate a list of fractions
u/t where t is a multiple of t0, sort them again by success
probability, and again query with the 50 most probable
fractions, until a positive answer is obtained, or the list is
exhausted. If a positive answer is obtained, we iteratively
re-apply this process, until the list is exhausted, resulting
in a final fraction u∗/t∗.

Phase 2. We then query with all fractions denominated
by t∗, and hope the ciphertext decrypts to a plaintext of
one of seven possible lengths: {2,3,4,5,8,16,24}. As-
suming that this is the case, we learn at least three least
significant bytes, which allows us to use the shifting tech-
nique in order to continue the attack. Detecting plaintext
lengths 8, 16 and 24 can be accomplished using three Ex-
tra Clear oracle queries, employing DES, 128-bit RC4 and
3DES, respectively, as the chosen cipher suite. Detecting
plaintext lengths 2, 3, 4 and 5 can be accomplishing by
using a single Leaky Export oracle query, which requires
at most 241 offline computation. In fact, the optimization
over the key search space described in Section 3.2.1 is
applicable here and can slightly reduce the required com-
putation. Therefore, by initiating four SSLv2 connections
and performing at most 241 offline work, the attacker can
test for ciphertexts which decrypt to one of these seven
lengths.

In practice, choosing 50 fractions per iteration as de-
scribed above results in a success probability of 0.066 for
a single ciphertext. Hence, the expected number of re-
quired ciphertexts is merely 1/0.066 = 15. The expected
number of fractions per ciphertext for phase 1 is 60, as
in most cases phase 1 consists of just a few successful
iterations. Since each fraction requires a single query to
OSSLv2-export-leaky, the overall number of queries for this
stage is 15∗60 = 900, and the required offline computa-
tion is at most 900∗241 ≈ 251, which is similar to general
DROWN. For a 2048-bit RSA modulus, the expected
number of queries for phase 2 is 16. Each query con-
sists of three queries to OSSLv2-extra-clear and one query to
OSSLv2-export-leaky, which requires at most 241 computa-
tion. Therefore in expectancy the attacker has to perform
245 offline computation for phase 2.

18

USENIX Association 25th USENIX Security Symposium 707

All Your Queries Are Belong to Us:
The Power of File-Injection Attacks on Searchable Encryption

Yupeng Zhang∗ Jonathan Katz† Charalampos Papamanthou∗

Abstract
The goal of searchable encryption (SE) is to enable a
client to execute searches over encrypted files stored on
an untrusted server while ensuring some measure of pri-
vacy for both the encrypted files and the search queries.
Most recent research has focused on developing efficient
SE schemes at the expense of allowing some small, well-
characterized “(information) leakage” to the server about
the files and/or the queries. The practical impact of this
leakage, however, remains unclear.

We thoroughly study file-injection attacks—in which
the server sends files to the client that the client then
encrypts and stores—on the query privacy of single-
keyword and conjunctive SE schemes. We show such at-
tacks can reveal the client’s queries in their entirety using
very few injected files, even for SE schemes having low
leakage. We also demonstrate that natural countermea-
sures for preventing file-injection attacks can be easily
circumvented. Our attacks outperform prior work signifi-
cantly in terms of their effectiveness as well as in terms of
their assumptions about the attacker’s prior knowledge.

1 Introduction

The goal of searchable encryption (SE) is to enable
a client to perform keyword searches over encrypted
files stored on an untrusted server while still guarantee-
ing some measure of privacy for both the files them-
selves as well as the client’s queries. In principle, so-
lutions that leak no information to the server can be con-
structed based on powerful techniques such as secure

∗Department of Electrical and Computer Engineering, University of
Maryland. Research supported in part by NSF awards #1514261 and
#1526950, by a Google Faculty Research Award, and by Yahoo! Labs
through the Faculty Research Engagement Program (FREP). Email:
{zhangyp,cpap}@umd.edu.

†Department of Computer Science, University of Maryland. Re-
search supported in part by NSF awards #1223623 and #1514261.
Email: jkatz@cs.umd.edu.

two-party computation, fully-homomorphic encryption,
and/or oblivious RAM. Such systems, however, would be
prohibitively expensive and completely impractical [15].

In light of the above, researchers have focused on the
development of novel SE schemes that are much more
efficient, at the expense of allowing some information to
“leak” to the server [19, 9, 8, 11, 6, 16, 12, 20, 13, 5].
The situation is summarized, e.g., by Cash et al. [6]:

The premise of [our] work is that in order to
provide truly practical SSE solutions one needs
to accept a certain level of leakage; therefore,
the aim is to achieve an acceptable balance be-
tween leakage and performance.

The question then becomes: what sort of leakage is ac-
ceptable? Roughly speaking, and focusing on single-
keyword search for simplicity, current state-of-the-art
schemes leak mainly two things: the query pattern (i.e.,
when a query is repeated) and the file-access pattern
(namely, which files are returned in response to each
query); these are collectively called L1 leakage in [4].
The prevailing argument is that L1 leakage is inconse-
quential in practice, and so represents a reasonable sacri-
fice for obtaining an efficient SE scheme.

In truth, the ramifications of different types of leak-
age are poorly understood; indeed, characterizing the
real-world consequences of the leakage of existing SE
schemes was highlighted as an important open question
in [6]. Recently, several groups have shown that even
seemingly minor leakage can be exploited to learn sensi-
tive information, especially if the attacker has significant
prior knowledge about the client’s files or the keywords
they contain. Islam et al. [10] (IKK12), who initiated
this line of work, showed that if the server knows (al-
most) all the contents of the client’s files, then it can de-
termine the client’s queries from L1 leakage. Cash et
al. [4] (CGPR15) gave an improved attack that works for
larger keyword universes while assuming (slightly) less
knowledge about the files of the client. They also ex-

708 25th USENIX Security Symposium USENIX Association

plored the effects of even greater leakage, and showed
how query-recovery attacks could serve as a springboard
for learning further information about the client’s files.

A different attack for query recovery was given by Liu
et al. [14]. The attack assumes a known distribution on
the keywords being searched by the client, and works
only after the client issues a large number of queries.

1.1 Our Contributions
In this paper, we further investigate the consequences of
leakage in SE schemes through the lens of file-injection
attacks. In such attacks, the server sends files of its
choice to the client, who then encrypts and uploads them
as dictated by the SE scheme. This attack was introduced
by Cash et al. [4], who called it a known-document at-
tack. As argued by those authors, it would be quite easy
to carry out such attacks: for example, if a client is us-
ing an SE scheme for searching email (e.g., Pmail [2]),
with incoming emails processed automatically, then the
server can inject files by simply sending email to the
client (from a spoofed email address, if it wishes to avoid
suspicion). We stress that the server otherwise behaves
entirely in an “honest-but-curious” fashion.

We show that file-injection attacks are devastating for
query privacy: that is, a server can learn a very high frac-
tion of the keywords searched by the client, by injecting
a relatively small number of files. Compared to prior
work [10, 4], our attacks are both more effective in terms
of the fraction of queries recovered and far less demand-
ing in terms of the prior information the server knows.
Our attacks differ in that the server must inject files, but
as argued above this is easy to carry out in practice.

We consider both adaptive and non-adaptive attacks,
where adaptivity refers (in part) to whether the server in-
jects files before or after the client’s query is made. In
particular, a non-adaptive attack injects files that can be
used to break all future queries; An adaptive attack crafts
the injected files using leakage of previously-observed
queries. Our adaptive attacks are more effective, but
assume the SE scheme does not satisfy forward pri-
vacy [7, 20]. (Forward privacy means that the server can-
not tell if a newly inserted file matches previous search
queries. With the exception of [7, 20], however, all ef-
ficient SE schemes supporting updates do not have for-
ward privacy.) Our work thus highlights the importance
of forward privacy in any real-world deployment.

1.2 Organization of the paper
We begin by showing a simple, binary-search attack that
allows the server to learn 100% of the client’s queries
with no prior knowledge about the client’s files. We then
propose an easy countermeasure: limiting the number of

keywords that are indexed per file. (We show that this
idea is viable insofar as it has limited effect on the utility
of searchable encryption.) However, our attacks can be
suitably modified to defeat this countermeasure, either
using a larger number of injected files (but still no prior
knowledge about the client’s files) or based on limited
knowledge—as low as 10%—of the client’s files. Our
attacks still outperform prior work [10, 4], having a sig-
nificantly higher recovery rate and requiring a lower frac-
tion of the client’s files to be known.

We additionally investigate the effectiveness of
padding files with random keywords (suggested in [10,
4]) as another countermeasure against our attacks. We
show that the performance of our attacks degrades only
slightly when such padding is used, in contrast to prior
attacks that fail completely.

Finally, we initiate a study of the implications of leak-
age on conjunctive queries, and show how to extend
our attacks to this setting. Our attacks work against SE
schemes having “ideal” leakage, but are even more ef-
fective against the scheme of Cash et al. [6] (the most ef-
ficient SE scheme allowing conjunctive queries), which
suffers from larger leakage.

2 Background

For the purposes of this paper, only minimal background
about searchable encryption (SE) is needed. At a high
level, an SE scheme allows a client to store encrypted
versions of its files on a server, such that at a later point
in time the client can retrieve all files containing a cer-
tain keyword (or collection of keywords). We assume a
set of keywords K = {k0,k1, . . .} known to an attacker,
and for simplicity view a file as an unordered set of key-
words. (Although the order and multiplicity of the key-
words matter, and a file may contain non-keywords as
well, these details are irrelevant for our purposes.)

We assume an SE scheme in which searching for some
keyword k is done via the following process (all efficient
SE schemes work in this way): first, the client deter-
ministically computes a token t corresponding to k and
sends t to the server; using t, the server then computes
and sends back the file identifiers of all files containing
keyword k. (These file identifiers need not be “actual”
filenames; they can instead simply be pointers to the
appropriate encrypted files residing at the server.) The
client then downloads the appropriate files.

Because the token is generated deterministically from
the keyword, the server can tell when queries repeat and
thus learn the query pattern; the returned file identifiers
reveal the file-access pattern. Our attacks rely only on
knowledge of the file-access pattern, though we addition-
ally assume that the server can identify when a specific
file identifier corresponds to some particular file injected

2

USENIX Association 25th USENIX Security Symposium 709

k0 k1 k2 k3 k4 k5 k6 k7File 1:

k0 k1 k2 k3 k4 k5 k6 k7File 2:

k0 k1 k2 k3 k4 k5 k6 k7File 3:

search result

0

1

0

Figure 1: An example of the binary-search attack with
|K| = 8. Each file injected by the attacker contains 4
keywords, which are shaded in the figure. If file 2 is
returned in response to some token, but files 1 and 3 are
not, the keyword corresponding to that token is k2.

by the server. (The same assumption is made by Cash et
al. [4].) This is reasonable to assume, even if file identi-
fiers are chosen randomly by the client, for several rea-
sons: (1) the server can identify the file returned based
on its length (even if padding is used to mitigate this, it is
impractical to pad every file to the maximum file length);
(2) in SE schemes supporting updates, the server can in-
ject a file F and then identify F with the next (encrypted)
file uploaded by the client; (3) if the server can influence
the queries of the client, or even if it knows some of the
client’s queries, then the server can use that information
to identify specific injected files with particular file iden-
tifiers. We postpone further discussion to Section 8.

In this paper, we focus only on query-recovery at-
tacks where the server observes various tokens sent by
the client followed the file identifiers returned, and the
server’s goal is to determine the keywords correspond-
ing to those tokens. This violates query privacy, which
is important in its own right, and—as noted by Cash et
al. [4]—can also be leveraged to violate file privacy since
it reveals (some of) the keywords contained in (some
of) the files. Our attacks show that the leakage of SE
schemes should be analyzed carefully when SE is used
as part of a larger system.

3 Binary-Search Attack

In this section, we present a basic query-recovery at-
tack that we call the binary-search attack. This attack
does not require the server to have any knowledge about
the client’s files, and recovers all the keywords being
searched by the client with 100% accuracy.

3.1 Basic Algorithm
The basic observation is that if the server injects a file F
containing exactly half the keywords from the keyword
universe K, then by observing whether the token t sent

by the client matches that file (i.e., whether F is returned
in response to that token), the server learns one bit of
information about the keyword corresponding to t. Us-
ing a standard non-adaptive version of binary search, the
server can thus use �log |K|� injected files to determine
the keyword exactly. The idea is illustrated in Figure 1
for |K|= 8.

The attack is described more formally in the pseudo-
code of Figure 2. We assume for simplicity that |K| is a
power of 2, and identify K with the set {0, . . . , |K| − 1}
written in binary. The attack begins by having the server
generate a set F of log |K| files to be injected, where the
ith file contains exactly those keywords whose ith most-
significant bit is equal to 1. At some point,1 the server
learns, for each injected file, whether it is returned in re-
sponse to some token t. We let R = r1r2 · · · denote the
search results on the injected files, where ri = 1 if and
only if the ith file is returned in response to the token.
For this attack, the server can deduce that the keyword
corresponding to t is precisely R.

Algorithm F ← Inject Files(K)

1: for i = 1, . . . , log |K| do
2: Generate a file Fi that contains exactly the key-

words in K whose ith bit is 1.

3: Output F = {F1, . . . ,Flog |K|}.
Algorithm k ← Recover(R,K)

1: Return R as the keyword from universe K as-
sociated with the token.

Figure 2: The binary-search attack. R denotes the search
results for the token to be recovered on the injected files.

We highlight again that for this attack, the files are
generated non-adaptively and independent of the token t.
We note further that the same injected files can be used
to recover the keywords corresponding to any number of
tokens, i.e., once these files are injected, the server can
recover the keywords corresponding to any future tokens
sent by the client. The number of injected files needed
for this attack is quite reasonable; with a 10,000-keyword
universe, a server who sends only one email per day to
the client can inject the necessary files in just 2 weeks.

Small keyword universe. For completeness and future
reference, we note that the binary-search attack can be
optimized if the hidden keyword is known to lie in some
smaller universe of keywords, or if the server only cares
about keywords lying in some subset of the entire key-
word universe (and gives up on learning the keyword if

1This can occur if the files are injected before the token t is sent, or
if the files are injected after t is sent and the SE scheme does not satisfy
forward privacy.

3

710 25th USENIX Security Symposium USENIX Association

it lies outside this subset). Specifically, the server can
carry out the binary-search attack from Figure 2 based
on any subset K′ ⊂ K of the keyword universe using only
log |K′| injected files.

3.2 Threshold Countermeasure

A prominent feature of the binary-search attack is that
the files that need to be injected for the attack each con-
tain a large number of keywords, i.e., |K|/2 keywords
per file. We observe, then, that one possible countermea-
sure to our attack is to modify the SE scheme so as to
limit the number of keywords per indexed file to some
threshold T � |K|/2. This could be done either by sim-
ply not indexing files containing more than T keywords
(possibly caching such files at the client), or by choos-
ing at most T keywords to index from any file containing
more than T keywords.

The threshold T can be set to some reasonably small
value while not significantly impacting the utility of the
SE scheme. For example, in the Enron email dataset [1]
with roughly 5,000 keywords (see Section 5 for further
details), the average number of keywords per email is 90;
only 3% of the emails contain more than 200 keywords.
Using the threshold countermeasure with T = 200 would
thus affect only 3% of the honest client’s files, but would
require the server to inject many more files in order to
carry out a naive variant of the binary-search attack.
Specifically, the server could replace each file Fi (that
contains |K|/2 keywords) in the basic attack with a se-
quence of |K|/2T files Fi,1, . . . ,Fi,|K|/2T each containing
T keywords, such that ∪ jFi, j = Fi. If any of these files is
returned, this is equivalent to the original file Fi being re-
turned in the basic attack. Note, however, that the server
must now inject |K|/2T · log |K| files. Unfortunately, as
we explore in detail in the following section, the thresh-
old countermeasure can be defeated using fewer injected
files via more-sophisticated attacks.

Note also that the threshold countermeasure does not
affect the binary-search attack with small keyword uni-
verse K′ ⊂ K, as long as |K′| ≤ 2T .

4 Advanced Attacks

In this section, we present more-sophisticated attacks
for when the threshold countermeasure introduced in the
previous section is used. In Section 4.1 we show an at-
tack that uses fewer injected files than a naive modifica-
tion of the binary-search attack, still without any knowl-
edge of the client’s files. Then, in the following section,
we show attacks that reduce the number of injected files
even further, but based on the assumption that the server
has information about some fraction of the client’s files.

4.1 Hierarchical-Search Attack

We noted earlier that the threshold countermeasure does
not affect the binary-search attack with small keyword
universe K′ ⊂ K if |K′| ≤ 2T . We can leverage this to
learn keywords in the entire universe using what we call
a hierarchical search attack. This attack works by first
partitioning the keyword universe into �|K|/T� subsets
containing T keywords each. The server injects files con-
taining the keywords in each subset to learn which subset
the client’s keyword lies in. In addition, it uses the small-
universe, binary-search attack on adjacent pairs of these
subsets to determine the keyword exactly. The algorithm
is presented in Figure 3.

Algorithm F ← Inject Files hierarchical(K)

1: Partition the universe into w = �|K|/T� sub-
sets K1, . . . ,Kw of T keywords each.

2: for i = 1,2, . . . ,w do
3: Generate Fi containing every keyword k ∈ Ki.

4: for i = 1,2, . . . ,w/2 do
5: Fi ← Inject Files(K2i−1 ∪K2i).

6: Output F = {F1, . . . ,Fw,F1, . . . ,Fw/2}.
Algorithm k ← Recover hierarchical(R,K)

1: Parse the search result R as

R = {r1, . . . ,rw,R1, . . . ,Rw/2} ,

corresponding to the results on the files in F
described above.

2: Using the {ri}, identify the subset K2x−1 ∪K2x
the unknown keyword lies in.

3: k ← Recover(Rx,K2x−1 ∪K2x).

Figure 3: The hierarchical-search attack. T is the thresh-
old determining the maximum number of keywords in a
file. R denotes the search results on the injected files.
Inject Files and Recover are from Figure 2.

We now calculate the number of injected files required
by this attack. In Step 3 of Inject Files hierarchical,
the server injects �|K|/T� files, and in Step 5 it injects
�|K|/2T� · �log2T� files. The total number of injected
files is therefore at most

�|K|/2T� · (�log2T�+2) .

In fact, for each i the first file in the set Fi generated
by Inject files(K2i−1 ∪K2i) is the same as F2i−1 and the
server does not need to inject it again. Also, the server
does not need to generate Fw in Step 3 because if the
keyword is not in F1, . . . ,Fw−1 then the server knows it
must be in Fw. So the total number of injected files can

4

USENIX Association 25th USENIX Security Symposium 711

be improved to

�|K|/2T� · (�log2T�+1)−1 .

When the size of the keyword universe is |K|= 5,000
and the threshold is T = 200, the server needs to inject
only 131 files, and the number of injected files grows lin-
early with the size of the keyword universe. We highlight
again that the same injected files can be used to recover
the keywords corresponding to any number of tokens;
i.e., once these files are injected, the server can recover
the keywords of any future searches made by the client.

We remark that an adaptive version of the above at-
tack is also possible. Here, the attacker would first in-
ject �|K|/T�− 1 files to learn what subset the unknown
keyword lies in, and then carry out the small-universe,
binary-search attack on a subset of size T . This requires
only �|K|/T�+ logT − 1 injected files, but has the dis-
advantage of being adaptive and hence requires the SE
scheme to not satisfy forward privacy. This version of
the attack also has the disadvantage of targeting one par-
ticular search query of the client; additional files may
need to be injected to learn the keyword used in some
subsequent search query.

4.2 Attacks Using Partial Knowledge
With the goal of further decreasing the number of in-
jected files required to recover a token in presence of the
threshold countermeasure, we now explore additional at-
tacks that leverage prior information that the server might
have about some of the client’s files; we refer to the
files known to the server as leaked files.2 A similar as-
sumption is used in prior work showing attacks on SE
schemes [10, 4]; previous attacks, however, require the
server to know about 90% of the client’s files to be effec-
tive (see Section 5), whereas our attacks work well even
when the server knows a much smaller fraction of the
client’s files.

Our attacks utilize the frequency of occurrence of the
tokens and keywords in the client’s files. We define the
frequency of a token (resp., keyword) as the fraction of
the client’s files containing this token (resp., keyword).
Similarly, we define the joint frequency of two tokens
(resp., keywords) as the fraction of files containing both
tokens (resp., keywords). The server learns the exact fre-
quency (resp., joint frequency) of a token (resp., pair of
tokens) based on the observed search results. The server
obtains an estimate of the frequencies (resp., joint fre-
quencies) of all the keywords based on the client’s files
that it knows. We let f (t) denote the exact (observed) fre-
quency of token t, and let f (t1, t2) be the joint frequency

2We stress that our attacks only rely on the content of these leaked
files; we do not assume the server can identify the file identifiers corre-
sponding to the leaked files after they have been uploaded to the server.

Algorithm k ← Inject Files Single(t,K)

1: Let K′ be the set of 2T keywords with esti-
mated frequencies closest to f (t).

2: F ← Inject Files(K′).

Algorithm k ← Recover Single(R,K′)

1: If R contains all 0s, output ⊥.
2: Else k ← Recover(R,K′).

Figure 4: Recovering a single keyword using partial file
knowledge. T is the threshold determining the maximum
number of keywords in a file. R denotes the search results
on the injected files. Inject Files and Recover are from
Figure 2.

of tokens t1, t2. We use f ∗(k) to denote the estimated fre-
quency of keyword k, and define f ∗(k1,k2) analogously.
Our attacks use the observation that if the leaked files are
representative of all the client’s files, then f (t) and f ∗(k)
are close when t is the token corresponding to keyword k.

4.2.1 Recovering One Keyword

Say the server obtains a token t sent by the client, hav-
ing observed frequency f (t). The server first constructs
a candidate universe K′ for the keyword corresponding
to t consisting of the 2T keywords whose estimated fre-
quencies are closest to f (t). The server then uses the
small-universe, binary-search attack to recover the key-
word exactly. In this way, the number of injected files is
only �log2T�. The attack is presented in detail in Fig-
ure 4.

Differences from attacks in previous sections. The at-
tack just described is adaptive, in that it targets a par-
ticular token t and injects files whose contents depend
on the results of a search using t. This means the attack
only applies to SE schemes that do not satisfy forward
privacy. It also means that the attack needs to be carried
out again in order to learn the keyword corresponding to
some other token.

Another difference from our previous attacks is that
this attack does not work with certainty. In particular,
if the observed and estimated frequencies are far apart,
or the number of keywords whose estimated frequencies
are close to the observed frequency is larger than 2T , the
server may fail to recover the keyword corresponding to
the token. On the other hand, the server can tell whether
the attack succeeds or not, so will never associate an in-
correct keyword with a token. This also means that if
the attack fails, the attacker can re-run the attack with
a different candidate universe, or switch to using one of
our earlier attacks, in order to learn the correct keyword.

5

712 25th USENIX Security Symposium USENIX Association

(We rely on this feature to design an attack for multiple
tokens in the following section.) This is in contrast to
earlier attacks [10, 4], where the attacker cannot always
tell whether the keyword was recovered correctly.

4.2.2 Recovering Multiple Keywords

To learn the keywords corresponding to m tokens, the
server can repeat the attack above for each token, but
then the number of injected files will be (in the worst
case) m · �log2T�. A natural way to attempt to reduce
the number of injected files is for the server to determine
a candidate universe of size 2T for each token and then
use the union of those candidate universes when injecting
the files. In that case, however, the union would almost
surely contain more than 2T keywords, in which case the
number of keywords in the files produce by the binary-
search attack will exceed the threshold T .

A second approach would be for the server to make the
size of the candidate universe for each token 2T/m, so
the size of their union cannot exceed 2T keywords. Here,
however, if m is large then the candidate universe for
each token is very small and so the probability of the cor-
responding keyword not lying in its candidate universe
increases substantially. Therefore, the recovery rate of
this attack would be low.

Instead, we propose a more-complex attack that recov-
ers multiple tokens by taking into account the joint fre-
quencies for tokens and keywords. Our attack has two
main steps (see Figure 5):

1. First, we recover the keywords corresponding to
a subset of the tokens, namely the n � m tokens
with the highest observed frequencies. We recover
the keywords using the second approach sketched
above, which works (with few injected files) be-
cause n is small. This gives us as a set of tokens
and their associated keywords as “ground truth.”

2. Given the ground truth, we recover the keyword as-
sociated with some other token t ′ using the follow-
ing observation: if k′ is the keyword correspond-
ing to t ′, then the observed joint frequency f (t, t ′)
should be “close” to the estimated joint frequency
f ∗(k,k′) for all pairs (t,k) in our ground-truth set,
where “closeness” is determined by a parameter δ .
By discarding candidate keywords that do not sat-
isfy this property, we are left with a small set K′

of candidate keywords for t ′. If the candidate uni-
verse of keywords for each token is small enough,
then even their union will be small. We then use a
small-universe, binary-search attack to recover the
corresponding keywords exactly.

Note that in the above attack the ability to tell whether a
token is recovered correctly when building the ground

truth is crucial—otherwise the ground-truth set could
contain many incorrect associations.

Parameter selection. Our attack has two parameters: n
and δ . A larger value of n means that the ground-truth
set can potentially be larger, but if n is too large then
there is a risk that the candidate universe Kt (comprising
the 2T/n keywords with estimated frequencies closest
to f (t)) will not contain the true keyword corresponding
to t. In our experiments, we set n heuristically to a value
that achieves good performance.

The value of δ is chosen based on statistical-
estimation theory. The estimated joint frequency is an
empirical average computed from a collection of leaked
files assumed to be sampled uniformly from the set of
all files. Thus, we set δ such that if keywords k,k′ cor-
respond to tokens t, t ′, respectively, then the estimated
joint frequency f ∗(k,k′) is within ±δ · f ∗(k,k′) of the
true value f (t, t ′) at least 99% of the time.

Ground-truth set selection. When building the ground-
truth set, we recover the keywords associated with those
tokens having the highest observed frequencies. We do
so because those keywords can be recovered correctly
with higher probability, as we explain next.

If the leaked files are chosen uniformly from the set of
all files, then using statistical-estimation theory as above
the attacker can compute a value δ such that at least 99%
of the time it holds that | f ∗(k)− f (t)| ≤ ε · f ∗(k), where
k denotes the (unknown) keyword corresponding to t.
Thus, if the attacker sets the candidate universe Kt to be
the set of all keywords whose estimated frequencies are
within distance ε · f ∗(k) of f (t), the candidate universe
will include the keyword corresponding to t at least 99%
of the time. The problem with taking this approach is
that the set Kt constructed this way may be too large.

If we assume a Zipfian distribution [3] for the keyword
frequencies, however, then the size of Kt as constructed
above is smallest when f (t) is largest. (This is a con-
sequence of the fact that the Zipfian distribution places
high probability on a few items and low probability on
many items.) In particular, then, the set of 2T/n key-
words with estimated frequencies closest to f (t) (as cho-
sen by our algorithm), will “cover” all keywords within
distance ε · f ∗(k) of f (t) from f (t) – or, equivalently, the
candidate universe will contain the true keyword k – with
high probability.

5 Experiments

We simulate the attacks from Section 4. (We do not run
any simulations for the binary-search attack described in
Section 3, since this attack succeeds with probability 1,
injecting a fixed number of emails.) We compare our
attacks to our own implementation of the attacks by Cash

6

USENIX Association 25th USENIX Security Symposium 713

t = {t1, . . . , tm} is the set of m tokens whose keywords we wish to recover.
Algorithm k ← Attack Multiple Tokens(t,K)

Build ground truth set G.
1: Sort tokens in t according to their exact frequencies f (t). Let t1 denote the n tokens with highest observed

frequencies.
2: for each token t in t1 do
3: Set its candidate universe Kt as the set of 2T

n keywords with estimated frequencies f ∗(k) nearest to f (t).

4: Define K′ = ∪t∈t1Kt and inject files generated by F1 ← Inject Files(K′).
5: for each token t in t1 do
6: Let Rt be the search result of token t on files F1.
7: if Rt is not all 0s then
8: kt ← Recover(Rt ,K′).
9: Add (t,kt) to G.

Recover the remaining tokens, let t2 be the set of unrecovered tokens.
10: for each token t ′ ∈ t2 do
11: Set its candidate universe Kt ′ as the set of 2T keywords with estimated frequencies f ∗(k) nearest to f (t ′).
12: for each keyword k′ ∈ Kt ′ do
13: for each token/keyword pair (t,k) ∈ G do
14: If | f (t, t ′)− f ∗(k,k′)|> δ · f ∗(k,k′), remove k′ from candidate universe Kt ′ .

15: Set K′′ = ∪t ′∈t2Kt ′ .
16: if |K′′| ≤ 2T then
17: F2 ← Inject Files(K′′).
18: for each token t ′ ∈ t2 do
19: Let Rt ′ be the search result of token t ′ on files F2.
20: kt ′ ← Recover(Rt ′ ,K′′)

21: else
22: F2 ← Inject Files hierarchical(K′′).
23: for each token t ′ ∈ t2 do
24: Let Rt ′ be the search result of token t ′ on files F2.
25: kt ′ ← Recover hierarchical(Rt ′ ,K′′)

26: Output k that includes all recovered keywords.

Figure 5: Recovering multiple keywords using partial file knowledge. T is the threshold determining the maximum
number of keywords in a file; δ is a parameter. Inject Files and Recover are from Figure 2.

et al. [4] (CGPR15). We do not compare with the attacks
of Islam et al. [10] (IKK12), since their results are strictly
dominated by those of CGPR15.

5.1 Setup
For our experiments we use the Enron email dataset [1],
consisting of 30,109 emails from the “sent mail” folder
of 150 employees of the Enron corporation that were sent
between 2000–2002. We extracted keywords from this
dataset as in CGPR15: words were first stemmed us-
ing the standard Porter stemming algorithm [18], and we
then removed 200 stop words such as “to,” “a,” etc. Do-
ing so results in approximately 77,000 keywords in total.
In our experiments, we chose the top 5,000 most frequent

keywords as our keyword universe (as in CGPR15).
We assumed the threshold countermeasure with T =

200. As discussed earlier, only 3% of the files contained
more than this many keywords.

We could not find real-world query datasets for email.
Therefore, in our experiments we choose the client’s
queries uniformly from the keyword universe, as in
CGPR15. (However, our attacks do not use any informa-
tion about the distribution of the queries.) Leaked files
are chosen uniformly from the base set of 30,109 emails,
and the percentage of leaked files was varied from 1%
to 100%. For each value of the file-leakage percentage,
we repeat the attack on 100 uniform sets of queries (con-
taining either one token or 100 tokens) and 10 uniformly
sampled sets of leaked files of the appropriate size; we

7

714 25th USENIX Security Symposium USENIX Association

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

10
20
30
40
50
60
70
80
90
100

R
ec

ov
er

y
ra

te
(%

)
Our attack
CGPR15

Figure 6: Recovering the keyword corresponding to a
single token. Probability of recovering the correct key-
word as a function of the percentage of files leaked.

report the average. We do not include error bars in our
figures, but have observed that the standard deviation in
our experiments is very small (less than 3% of the aver-
age).

5.2 Recovery of a Single Token
The performance of our attack for recovering the key-
word associated with a single token (described in Sec-
tion 4.2.1) is displayed in Figure 6. The server only needs
to inject �log2T� = 9 files in order to carry out the at-
tack. It can be observed that our attack performs quite
well even with only a small fraction of leaked files, e.g.,
recovering the keyword about 70% of the time once only
20% of the files are leaked, and achieving 30% recovery
rate even when given only 1% of the files.

Neither the IKK12 attack nor the CGPR15 attack ap-
plies when the server is given the search results of only a
single token. To provide a comparison with our results,
we run the CGPR15 attack by giving it the search results
of 100 tokens (corresponding to uniformly chosen key-
words) and then measure the fraction of keywords recov-
ered. As shown in Figure 6, the CGPR15 attack recov-
ers a keyword with probability less than 20% even when
95% of the client’s files are leaked. Of course, our attack
model is stronger than the one considered in CGPR15.

5.3 Recovery of Multiple Tokens
We have also implemented our attack from Section 4.2.2
which can be used to recover the keywords correspond-
ing to multiple tokens. In our experiments, we target the
recovery of the keywords associated with m = 100 to-
kens; we choose n = 10, and set δ as described in Sec-
tion 4.2.2.

Figure 7a tabulates the fraction of keywords recovered
by our attack, and compares it to the fraction recovered

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

10
20
30
40
50
60
70
80
90
100

R
ec

ov
er

y
ra

te
(%

)

Our attack
CGPR15

(a)

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

5

10

15

20

25

30

35

40

45

50

N
um

be
r

of
in

je
ct

ed
fil

es

(b)

Figure 7: Recovering the keywords corresponding to 100
tokens. (a) Fraction of keywords recovered and (b) num-
ber of files injected as a function of the percentage of
files leaked.

by the CGPR15 attack. (As noted in the previous sec-
tion, the CGPR15 attack inherently requires search re-
sults for multiple tokens; this explains why the results
for the CGPR15 attack in Figure 7a are almost identi-
cal to the results for their attack in Figure 6.) Both at-
tacks do well when the fraction of leaked files is large,
however the recovery rate of the CFPR15 attack drops
dramatically as the fraction of leaked files decreases. In
contrast, our attack continues to perform well, recovering
65% of the keywords given access to 50% of the client’s
files, and still recovering 20% of the keywords when only
10% of the client’s files have been leaked. We stress that
in our attack the server knows which keywords have been
recovered correctly and which have not, something that
is not the case for prior attacks.

Figure 7b shows the number of files that need to be
injected in order to carry out our attack. The number of
files injected never exceeds 40, and in many cases it is
even less than that. We also highlight that the number of
files injected to recover the keywords associated with 100

8

USENIX Association 25th USENIX Security Symposium 715

tokens is more than an order-of-magnitude smaller than
100× the number of files injected to recover the keyword
associated with a single token in the previous section.

The number of files injected by our attack first in-
creases with the fraction of leaked files, and then de-
creases; we briefly explain why. The number of files
injected in step 1 of our attack is independent of the
fraction of leaked files. The number of files injected
in step 2 of the attack depends on both the number of
unrecovered tokens (i.e., the size of t2) and the average
size of the candidate universe for each unrecovered to-
ken t ′ (i.e., the size of Kt ′). When the fraction of leaked
files is very small, the estimated joint frequencies are far
from the true frequencies and, in particular, most esti-
mated joint frequencies are 0; thus, many keywords are
removed from Kt ′ and hence the size of Kt ′ is low. The
net result is that the recovery rate is small, but so is the
number of injected files. As the fraction of leaked files
increases, more keywords are included in Kt ′ , leading to
higher recovery rate but also more injected files. When
the fraction of leaked files becomes very high, however,
the estimated frequencies are very close to the true fre-
quencies and so more keywords are recovered in step 1
of the attack. This leaves fewer unrecovered tokens in
step 2, leading to fewer injected files overall even as the
recovery rate remains high.

6 Ineffectiveness of Keyword Padding

Prior work [10, 4] suggests keyword padding as another
potential countermeasure for attacks that exploit the file-
access pattern. The basic idea is to distort the real fre-
quency of each keyword k by randomly associating files
that do not contain that keyword with k; this is done at
setup time, when the client uploads its encrypted files to
the server. One version of the countermeasure [4] en-
sures that the number of files returned in response to any
search result is a multiple of an integer λ . A stronger ver-
sion of the countermeasure [10] involves performing the
padding in such a way that for any keyword k there are
at least α −1 other keywords having the same frequency.
These countermeasures defeat the attacks in prior work,
but we show that they have little effect on our attacks.

We remark that keyword padding seems difficult to ap-
ply in the dynamic setting, where new files are uploaded
after the initial setup done by the client. The dynamic
case is not discussed in [10, 4].

6.1 Binary-/Hierarchical-Search Attacks

Even when keyword padding is used, our binary-search
and hierarchical-search attacks will recover the key-
word k corresponding to some token t unless one of the

injected files that does not contain k is returned in re-
sponse to the search using t. We show that the proba-
bility of this bad event is small, focusing on the binary-
search attack for concreteness. Say � of the files con-
tain k and that, after keyword padding, an additional
β · � random and independently chosen files (in expec-
tation) that do not contain k are returned in response to
the search using t. (By setting parameters appropriately,
this roughly encompasses both the countermeasures de-
scribed above.) Now consider some file injected as part
of the binary-search attack that does not contain k. The
probability that this file is chosen as one of the spuri-
ous files returned in response to the search using t is
β�/(F − �), where F is the total number of files (includ-
ing the injected files). Since �log |K|� files are injected,
the overall probability that the bad event occurs is at most

1−
(

1− β�
(F − �)

)�log |K|�
.

In fact, this is an over-estimate since if k is uniform then
on average only half the injected files contain k.

For the Enron dataset with |K| = 5,000, F = 30,109,
�= 560, and β = 0.6, and assuming half the injected files
contain the keyword in question, the probability that the
binary-search attack succeeds is 0.93. (In fact, β = 0.6
is quite high, as this means that more than 1/3 of the files
returned in response to a query do not actually contain
the searched keyword.) With β = 0.6 the IKK12 and
CGPR15 attacks recover no keywords at all.

6.2 Attacks with Partial File Leakage

Although our attacks with partial file leakage use in-
formation about keyword frequencies and joint frequen-
cies, they are still not significantly affected by the
padding countermeasures. The reason is that although
the padding ensures that a given frequency no longer suf-
fices to uniquely identity a keyword, the frequency of any
particular keyword doesn’t change very much. Thus, the
exact frequency and the estimated frequency of any key-
word remain close even after the padding is done, and
the underlying keyword is still likely to be included in
the candidate universe of a target token. As long as this
occurs, the search step recovers the token with high prob-
ability as discussed in the previous section. This is even
more so the case with regard to joint frequencies, since
these do not change unless two keywords are both asso-
ciated with the same random file that contains neither of
those keywords, something that happens with low prob-
ability.

To validate our argument, we implement the padding
countermeasure proposed in [4] and repeat the experi-
ments using our attacks. As shown in Figures 8 and 9,

9

716 25th USENIX Security Symposium USENIX Association

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

30

40

50

60

70

80

90

100

R
ec

ov
er

y
ra

te
(%

)
Our attack, no padding
Our attack, β = 0.2

Our attack, β = 0.4

Our attack, β = 0.6

Figure 8: Recovering the keyword corresponding to a sin-
gle token when keyword padding is used.

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

10
20
30
40
50
60
70
80
90
100

R
ec

ov
er

y
ra

te
(%

)

Our attack, no padding
Our attack, β = 0.2

Our attack, β = 0.4

Our attack, β = 0.6

Figure 9: Recovering the keywords corresponding to 100
tokens when keyword padding is used.

the recovery rate of our attacks degrades only slightly
when keyword padding is used.

Figure 10 compares the effectiveness of our attack to
the CGPR15 attack when keyword padding is used. The
recovery rate of the CGPR15 attack drops dramatically in
the presence of this countermeasure. In particular, it re-
covers only 57% of the tokens even with 100% file leak-
age when β = 0.2, and recovers nothing even with 100%
file leakage when β = 0.6. In contrast, our attack still
recovers almost the same number of keywords as when
no padding is used.

7 Extensions to Conjunctive SE

SE schemes supporting conjunctive queries allow the
client to request all files containing some collection of
keywords k1,k2, . . . ,kd . The naive way to support con-
junctive queries is to simply have the client issue queries
for each of these keywords individually; the server can
compute the set of file identifiers Si containing each key-
word ki and then take their intersection to give the fi-
nal result. Such an approach leaks more information
than necessary: specifically, it leaks each of S1, . . . ,Sd
rather than the final result ∩Si alone. We refer to ∩Si as
the ideal access-pattern leakage for a conjunctive query,
and show attacks based only on such ideal leakage. We
remark, however, that no known efficient SE scheme
achieves ideal leakage. For example, the scheme by Cash
et al. [6] leaks S1,S1∩S2,S1∩S3, . . . ,S1∩Sd . Such addi-
tional leakage can only benefit our attacks.

Throughout this section, we assume the threshold
countermeasure is not used and so injected files can con-
tain any number of keywords. (Our attacks here could
be generalized as done previously in case the threshold
countermeasure is used.)

7.1 Queries with Two Keywords

We first present a non-adaptive attack to recover the key-
words used in a conjunctive query involving two key-
words. As in the non-adaptive attacks in prior sections,
the attacker can recover the keywords corresponding to
any future queries after injecting some initial set of files.

The idea is the following. Say the conjunctive search
query involves keywords k1 and k2, and we can parti-
tion the universe of keywords into two sets K1 and K2
with k1 ∈ K1 and k2 ∈ K2. We can then use a variant of
the binary-search attack in which we inject files gener-
ated by Inject Files(K1), where we additionally include
all keywords in K2. Since these files always contain k2,
the search results of the conjunctive query on these in-
jected files is exactly the same as the search results of k1
on these files, and we can thus recover k1 as before. We
can proceed analogously to recover k2.

The problem with the above is that we do not know,
a priori, how to partition K into sets K1,K2 as required.
Instead, we generate a sequence of log |K| partitions
{(Ki

1,K
i
2)} such that for some partition i it holds that

k1 ∈ Ki
1 and k2 ∈ Ki

2. This is done by simply letting Ki
1 be

the set of all keywords whose ith bit is 0, and Ki
2 be the

complement. Since k1 and k2 are distinct, they must dif-
fer on at least one position, say i, and satisfy the desired
separation property on the ith partition. By repeating the
attack described earlier for each partition, we obtain an
attack using log2 |K|+ log |K| injected files (after remov-
ing duplicates). The attack is described in detail in Fig-
ure 11.

Given ideal access-pattern leakage, the above attack
above only works for conjunctive queries involving two
keywords. For conjunctive searches using the SE scheme
of Cash et al. [6], though, the above attack can be ex-
tended to work for conjunctive queries involving any
number of keywords since the pairwise intersections are
leaked as described earlier.

10

USENIX Association 25th USENIX Security Symposium 717

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

10
20
30
40
50
60
70
80
90
100

R
ec

ov
er

y
ra

te
(%

)
Our attack
CGPR15

(a) β = 0.2

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

10
20
30
40
50
60
70
80
90
100

R
ec

ov
er

y
ra

te
(%

)

Our attack
CGPR15

(b) β = 0.4

1 10 20 30 40 50 60 70 80 90 100
Leakage percentage (%)

10
20
30
40
50
60
70
80
90
100

R
ec

ov
er

y
ra

te
(%

)

Our attack
CGPR15

(c) β = 0.6

Figure 10: Recovering the keywords corresponding to
100 tokens when keyword padding is used, plotted for
different β .

7.2 Queries with Multiple Keywords

The attack in Section 7.1 only works for conjunctive
queries involving two keywords, and uses O(log2 |K|) in-
jected files. Here we present a non-adaptive attack that
can recover conjunctive queries involving any number of
keywords using only O(log |K|) injected files, and still
assuming only ideal access-pattern leakage. In contrast

Let q be a conjunctive query with two keywords.
Algorithm F ← Inject Files Disjoint(K1,K2)

1: F ← Inject Files(K1).
2: Include all keywords in K2 in every file in F.

Algorithm F ← Inject Files Conjunctive(K)

1: for i = 1,2, . . . , log |K| do
2: Let Ki

1 contain keywords whose ith bit is 0, and
let Ki

2 = K \Ki
1.

3: Generate file Fi
1 that contains all keywords in Ki

1
and file Fi

2 that contains all keywords in Ki
2.

4: Fi
1 ← Inject Files Disjoint(Ki

1,K
i
2).

5: Fi
2 ← Inject Files Disjoint(Ki

2,K
i
1).

6: Output F = {Fi
1,F

i
2,F

i
1,F

i
2, for all i}.

Algorithm k ← Recover Conjunctive(q,K,F)
1: Let Rq = {ri

1,r
i
2,R

i
1,R

i
2} for i = 1, . . . , log |K| be

the search result of query q on the files F de-
scribed above.

2: Find i such that neither Fi
1 nor Fi

2 is in the search
result (i.e., ri

1 = ri
2 = 0).

3: k1 ← Recover(Ri
1,K

i
1).

4: k2 ← Recover(Ri
2,K

i
2).

5: Output (k1,k2).

Figure 11: Non-adaptive attack for a conjunctive query
involving two keywords.

to the previous attack, however, this attack does not al-
ways succeed.

Consider a conjunctive query q involving d keywords.
The basic idea is to inject n files, each containing L key-
words selected uniformly and independently from the
keyword universe. If parameters are set appropriately,
the search result on q will include some of the injected
files with high probability. By definition, each of those
files contains all d keywords involved in the query, and
hence the intersection of those files also contains all
those keywords. We claim that when parameters are
set appropriately, the intersection contains no additional
keywords. Thus, the server recovers precisely the d key-
words involved in the query by simply taking the inter-
section of the injected files returned in response to the
query. The following theorem formalizes this idea.

Theorem 1. Let L = (1
2)

1/d |K| and n = (2+ ε)d log |K|
with ε ≥ 0. Then the success probability of the attack is
roughly e−1/|K|ε/4

.

Proof. Fix some conjunctive query q involving d key-
words. The probability that any particular injected file
matches the query is approximately (L/|K|)d = 1/2
since each of the d keywords is included in the file with

11

718 25th USENIX Security Symposium USENIX Association

probability roughly L/|K|. Since each file is generated
independently, the expected number of files that match
the query is n/2; moreover, the number n′ of files that
match the query follows a binomial distribution and so
the Chernoff bound implies

Pr
[∣∣∣n′ − n

2

∣∣∣≥ θ
√

n
2

]
≤ e−θ 2/2.

Setting θ = ε
√

n
2(2+ε) , we have

Pr
[
n′ ≤

(
1+

ε
4

)
d log |K|

]
≤ e−

θ2
2 .

Thus, n′ > (1+ ε
4)d log |K| with overwhelming probabil-

ity.
The probability that any other keyword is in all these

n′ files is extremely low. Specifically, for any fixed key-
word not involved in the query, the probability that it lies
in all n′ files is (L/|K|)n′ . Thus, the probability that no
other keyword lies in all n′ files is

(
1−

(
L
|K|

)n′
)|K|−d

≈
(

1− 1
|K|1+ε/4

)|K|

(assuming d � |K|). The above simplifies to e−1/|K|ε/4
.

Note that for any ε > 0 the bound given by the theorem
approaches 1 as |K| tends to infinity. We experimentally
verified the bound in the theorem for |K| = 5,000 and
d = 3. For example, setting ε = 1 we obtain an attack
in which the server injects n = 110 files with L = 3,969
keywords each, and recovers all keywords involved in
the conjunctive query with probability 0.97. For com-
pleteness, we remark that the server can tell whether it
correctly recovers all the keywords or not, assuming d is
known.

7.3 An Adaptive Attack
We can further reduce the number of injected files using
an adaptive attack. The idea is to recover the keywords
involved in the query one-by-one, starting with the lexi-
cographically largest, using an adaptive binary search for
each keyword. The server first injects a file containing
the first |K|/2 keywords. There are two possibilities:

1. If this file is in the search result for the query, the
server learns that all the keywords involved in the
query have index at most |K|/2. It will next inject a
file containing the first |K|/4 keywords.

2. If this file is not in the search result for the query, the
server learns that at least one keyword involved in
the query has index greater than |K|/2. It will next
inject a file containing the first 3|K|/4 keywords.

Proceeding in this way, the server learns the lexicograph-
ically largest keyword using log |K| injected files. Once
that keyword kd is recovered, the server repeats this at-
tack but with kd always included in the injected files to
learn the next keyword, and so on. See Figure 12.

Let q be a conjunctive query with keyword k1, . . . ,kd .
Algorithm k ← Attack Conjunctive(q,K)

1: Initialize k = /0.
2: for i = d, . . . ,1 do
3: Set Ki = K \k, set b = |Ki|/2.
4: for j = 2, . . . , log |Ki| do
5: Inject F that contains the first b keywords

in Ki and all keywords in k.
6: Let Rq be the search result of query q on F .
7: if Rq = 1 then
8: b = b−|Ki|/2 j.
9: else

10: b = b+ |Ki|/2 j.

11: Inject F that contains the first b keywords in Ki
and all keywords in k.

12: Let Rq be the search result of query q on F .
13: if Rq = 1 then
14: Recover ki as the bth keyword in Ki.
15: else
16: Recover ki as the (b+1)th keyword in Ki.

17: k = k∪{ki}.

Figure 12: An adaptive attack for conjunctive queries in-
volving d keywords.

The number of injected files is d log |K|. We remark
that d need not be known in advance, since the attacker
can determine d during the course of the attack. It is
also worth observing that the number of injected files is
essentially optimal for a deterministic attack with suc-
cess probability 1, because the search results on d log |K|
files contain at most d log |K| bits of information, which
is roughly the entropy of a conjunctive search involving
d keywords from a universe of size |K|.

8 Additional (Potential) Countermeasures

In this section, we briefly discuss some other potential
countermeasures against our attacks.

Semantic filtering. One may be tempted to think that the
files injected by our attacks will not “look like” normal
English text, and can therefore be filtered easily by the
client. We argue that such an approach is unlikely to pre-
vent our attacks. First, although as described our attacks
inject files containing arbitrary sets of keywords, the

12

USENIX Association 25th USENIX Security Symposium 719

server actually has some flexibility in the choice of key-
words; e.g., the binary-search attack could be modified
to group sets of keywords that appear naturally together.
Second, within each injected file, the server can decide
the order and number of occurrences of the keywords,
can choose variants of the keywords (adding “-ed” or “-
s,” for example), and can freely include non-keywords
(“a,” “the,” etc.) There are several tools (e.g., [21]) that
can potentially be adapted to generate grammatically cor-
rect text from a given set of keywords by ordering key-
words based on n-grams trained from leaked files and
simple grammatical rules. A detailed exploration is be-
yond the scope of our paper.

Batching updates. As mentioned in Section 2, even if
the client shuffles the file identifiers and pads all files to
the same length, the server can identify an injected file
based on the time at which it is inserted by the client.
This suggests a (partial) countermeasure that can be used
in dynamic SE schemes that support updates: rather than
uploading each new file as it arrives, the client should
wait until there are several (say, B) new files and then
upload this “batch” of B files at once. Assuming only
one of those files was injected by the server, this means
the server only learns that the injected file corresponds to
one of B possibilities.

This countermeasure can be trivially circumvented if
the server can inject B files before any other new files ar-
rive. (If the server additionally has the ability to mount
chosen-query attacks—something we have not otherwise
considered in this paper—then the total number of in-
jected files remains the same.) Even if the server can in-
ject only B′ < B identical3 files into a single “batch,” the
server knows that if fewer than B′ files from this batch are
returned in response to some query, then the injected files
do not match that query. Finally, even if the server can
only inject a single file per “batch,” the server can inject
the same file repeatedly and with high confidence deter-
mine based on the search results whether the file matches
some query. We leave a more complete analysis of this
countermeasure for future work.

9 Conclusions

Our paper shows that file-injection attacks are devastat-
ing for query privacy in searchable encryption schemes
that leak file-access patterns. This calls into question
the utility of searchable encryption, and raises doubts
as to whether existing SE schemes represent a satisfac-
tory tradeoff between their efficiency and the leakage
they allow. Nevertheless, we briefly argue that search-
able encryption may still be useful in scenarios where

3The files need not be identical; they only need to contain an iden-
tical set of keywords.

file-injection attacks are not a concern, and then suggest
directions for future research.

We have argued that file-injection attacks would be
easy to carry out in the context of searching email. But
in “closed systems,” where a client is searching over
records generated via some other process, file-injection
attacks may not be possible or may be much more diffi-
cult to carry out. Additionally, there may be settings—
e.g., when all files have the same length because they
share some particular format—where even though the
server can inject files, it may not be able to associate
file identifiers with specific files it has injected. It is
worth noting also that there may be applications of SE
in which the server is trusted (and so, in particular, can
be assumed not to carry out file-injection attacks), and
the threat being defended against is an external attacker
who compromises the server.4

Our work and previous work [10, 4] demonstrate that
leaking file-access patterns in their entirety is dangerous,
and can be exploited by an attacker to learn a signifi-
cant amount of sensitive information. We suggest, there-
fore, that future research on searchable encryption focus
on reducing or eliminating this leakage rather than ac-
cepting it as the default. Our work also highlights the
need to design efficient schemes satisfying forward pri-
vacy. Addressing these challenges may require exploring
new directions, such as interactive protocols [17] or mul-
tiple servers. It would also be of interest to explore lower
bounds on the efficiency that searchable encryption can
achieve as a function of how much about the file-access
pattern is leaked.

References
[1] Enron email dataset. https://www.cs.cmu.edu/~./enron/.

Accessed: 2015-12-14.

[2] Pmail. https://github.com/tonypr/Pmail, 2014.

[3] ADAMIC, L. A., AND HUBERMAN, B. A. Zipfs law and the
internet. Glottometrics 3, 1 (2002), 143–150.

[4] CASH, D., GRUBBS, P., PERRY, J., AND RISTENPART, T.
Leakage-abuse attacks against searchable encryption. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 668–679.

[5] CASH, D., JAEGER, J., JARECKI, S., JUTLA, C. S.,
KRAWCZYK, H., ROSU, M.-C., AND STEINER, M. Dynamic
searchable encryption in very-large databases: Data structures
and implementation. IACR Cryptology ePrint Archive 2014
(2014), 853.

[6] CASH, D., JARECKI, S., JUTLA, C., KRAWCZYK, H., ROŞU,
M.-C., AND STEINER, M. Highly-scalable searchable symmet-
ric encryption with support for boolean queries. In Advances in
Cryptology–CRYPTO 2013. Springer, 2013, pp. 353–373. Full
version available at http://eprint.iacr.org.

4Though even here one must be careful since an external attacker
might have the ability to inject files, and/or be able to learn file-
access patterns from the client-server communication (e.g., based on
file lengths) without compromising the server.

13

720 25th USENIX Security Symposium USENIX Association

[7] CHANG, Y.-C., AND MITZENMACHER, M. Privacy preserving
keyword searches on remote encrypted data. In Applied Cryptog-
raphy and Network Security (2005), Springer, pp. 442–455.

[8] CURTMOLA, R., GARAY, J., KAMARA, S., AND OSTROVSKY,
R. Searchable symmetric encryption: improved definitions and
efficient constructions. In Proceedings of the 13th ACM confer-
ence on Computer and communications security (2006), ACM,
pp. 79–88.

[9] GOH, E.-J., ET AL. Secure indexes. IACR Cryptology ePrint
Archive 2003 (2003), 216.

[10] ISLAM, M. S., KUZU, M., AND KANTARCIOGLU, M. Access
pattern disclosure on searchable encryption: Ramification, attack
and mitigation. In 19th Annual Network and Distributed System
Security Symposium, NDSS 2012, San Diego, California, USA,
February 5-8, 2012 (2012).

[11] KAMARA, S., AND PAPAMANTHOU, C. Parallel and dynamic
searchable symmetric encryption. In Financial cryptography and
data security. Springer, 2013, pp. 258–274.

[12] KAMARA, S., PAPAMANTHOU, C., AND ROEDER, T. Dynamic
searchable symmetric encryption. In the ACM Conference on
Computer and Communications Security, CCS’12, Raleigh, NC,
USA, October 16-18, 2012 (2012), pp. 965–976.

[13] LAU, B., CHUNG, S., SONG, C., JANG, Y., LEE, W., AND
BOLDYREVA, A. Mimesis aegis: A mimicry privacy shield–
a systems approach to data privacy on public cloud. In 23rd
USENIX Security Symposium (USENIX Security 14) (2014),
pp. 33–48.

[14] LIU, C., ZHU, L., WANG, M., AND TAN, Y.-A. Search pattern
leakage in searchable encryption: Attacks and new construction.
Information Sciences 265 (2014), 176–188.

[15] NAVEED, M. The fallacy of composition of oblivious ram and
searchable encryption. Tech. rep., Cryptology ePrint Archive,
Report 2015/668, 2015.

[16] NAVEED, M., PRABHAKARAN, M., AND GUNTER, C. A. Dy-
namic searchable encryption via blind storage. In Security and
Privacy (SP), 2014 IEEE Symposium on (2014), IEEE, pp. 639–
654.

[17] POPA, R. A., LI, F. H., AND ZELDOVICH, N. An ideal-security
protocol for order-preserving encoding. In Security and Privacy
(SP), 2013 IEEE Symposium on (2013), IEEE, pp. 463–477.

[18] PORTER, M. F. An algorithm for suffix stripping. Program 14, 3
(1980), 130–137.

[19] SONG, D. X., WAGNER, D., AND PERRIG, A. Practical tech-
niques for searches on encrypted data. In Security and Privacy,
2000. S&P 2000. Proceedings. 2000 IEEE Symposium on (2000),
IEEE, pp. 44–55.

[20] STEFANOV, E., PAPAMANTHOU, C., AND SHI, E. Practical dy-
namic searchable encryption with small leakage. In NDSS (2014),
vol. 14, pp. 23–26.

[21] UCHIMOTO, K., ISAHARA, H., AND SEKINE, S. Text gener-
ation from keywords. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1 (2002), Asso-
ciation for Computational Linguistics, pp. 1–7.

14

USENIX Association 25th USENIX Security Symposium 721

Investigating Commercial Pay-Per-Install and the
Distribution of Unwanted Software

Kurt Thomas� Juan A. Elices Crespo� Ryan Rasti� Jean-Michel Picod� Cait Phillips�

Marc-André Decoste� Chris Sharp� Fabio Tirelo� Ali Tofigh� Marc-Antoine Courteau�

Lucas Ballard� Robert Shield� Nav Jagpal� Moheeb Abu Rajab� Panayiotis Mavrommatis�

Niels Provos� Elie Bursztein� Damon McCoy†∗

�Google †New York University ∗International Computer Science Institute

Abstract
In this work, we explore the ecosystem of commercial
pay-per-install (PPI) and the role it plays in the prolif-
eration of unwanted software. Commercial PPI enables
companies to bundle their applications with more pop-
ular software in return for a fee, effectively commodi-
tizing access to user devices. We develop an analysis
pipeline to track the business relationships underpinning
four of the largest commercial PPI networks and clas-
sify the software families bundled. In turn, we measure
their impact on end users and enumerate the distribution
techniques involved. We find that unwanted ad injectors,
browser settings hijackers, and “cleanup” utilities dom-
inate the software families buying installs. Developers
of these families pay $0.10–$1.50 per install—upfront
costs that they recuperate by monetizing users without
their consent or by charging exorbitant subscription fees.
Based on Google Safe Browsing telemetry, we estimate
that PPI networks drive over 60 million download at-
tempts every week—nearly three times that of malware.
While anti-virus and browsers have rolled out defenses
to protect users from unwanted software, we find evi-
dence that PPI networks actively interfere with or evade
detection. Our results illustrate the deceptive practices of
some commercial PPI operators that persist today.

1 Introduction

In recent years, unwanted software has risen to the
forefront of threats facing users. Prominent strains in-
clude ad injectors that laden a victim’s browser with ad-
vertisements, browser settings hijackers that sell search
traffic, and user trackers that silently monitor a victim’s
browsing behavior. Estimates of the incident rate of
unwanted software installs on desktop systems are just
emerging: prior studies suggest that ad injection affects
as many as 5% of browsers [34] and that deceptive exten-
sions escaping detection in the Chrome Web Store affect
over 50 million users [17].

Despite the proliferation of unwanted software, the
root source of installs remains unclear. One potential ex-
planation is commercial pay-per-install (PPI), a moneti-
zation scheme where software developers bundle several
third-party applications as part of their installation pro-
cess in return for a payout. We differentiate this from
blackmarket pay-per-install [4] as commercial PPI re-
lies on a user consent dialogue to operate aboveboard.
Download portals are a canonical example, where care-
lessly installing any of the top applications may leave a
system bloated with search toolbars, anti-virus free tri-
als, and registry cleaners [16]. Unfortunately, this all too
common user experience is the profit vehicle for a collec-
tion of private and publicly companies that commoditize
software bundling [15]. While earnings in this space are
nebulous, one of the largest commercial PPI outfits re-
ported $460 million in revenue in 2014 [31].

In this work, we explore the ecosystem of commercial
PPI and the role it plays in distributing the most noto-
rious unwanted software families. The businesses profit-
ing from PPI operate affiliate networks to streamline buy-
ing and selling installs. We identify a total of 15 PPI af-
filiate networks headquartered in Israel, Russia, and the
United States. We select four of the largest to investigate,
monitoring each over a year long period from January 8,
2015–January 7, 2016 in order to track the software fam-
ilies paying for installs, their impact on end users, and
the deceptive distribution practices involved.

We find that commercial PPI distributes roughly 160
software families each week, 59% of which at least one
anti-virus engine on VirusTotal [36] flags as unwanted.
For our study, we use this labeling to classify unwanted
software. The families with the longest PPI distribu-
tion campaigns include ad injectors, like Crossrider, and
scareware that dupes victims into paying a subscription
fee for resolving “dangerous” registry settings, a hair’s
length shy of ransomware. We find that PPI networks
support unwanted software as first-class partners: down-

1

722 25th USENIX Security Symposium USENIX Association

loaders will actively fingerprint a victim’s machine in
order to detect hostile anti-virus or virtualized environ-
ments, in turn dynamically selecting offers that go un-
detected. Software developers pay between $0.10–1.50
per install for these services, where price is dictated by
geographic demand.

Via Safe Browsing telemetry, we measure the impact
of commercial pay-per-install on end users across the
globe. On an average week, Safe Browsing generates
over 60 million warnings related to unwanted software
delivered via PPI—three times that of malware. Despite
these protections, estimates of unwanted software inci-
dent rates provided by the Chrome Cleanup Tool [5] indi-
cate there are tens of millions of installs on user systems.
Of the top 15 families installed, we find 14 distribute via
commercial PPI.

Thousands of PPI affiliates drive these weekly down-
loads through a battery of distribution practices. We find
54% of sites that link to PPI bundles host content related
to freeware, videos, or software cracks. For the long tail
of other sites where users are not expecting an installer,
PPI networks provide affiliates with “promotional tools”
such as butter bars that warn a user their Flash player
is out of date, in turn delivering a PPI bundle. In or-
der to avoid detection by Safe Browsing, affiliates churn
through domains every 7 hours or actively cloak against
Safe Browsing scans. Our findings illustrate the decep-
tive behaviors present in the commercial PPI ecosystem
and the virulent impact it has on end users.

In summary, we frame our contributions as follows:

• We present the first investigation of commercial
PPI’s internal operations and its relation to un-
wanted software.

• We estimate that commercial PPI drives over 60
million download attempts every week.

• We find that 14 of the top 15 unwanted software
families distribute via commercial PPI.

• We show that commercial PPI installers and distrib-
utors knowingly attempt to evade user protections.

2 Commercial Pay-Per-Install

For the purposes of this study, we define commercial
pay-per-install (PPI) as the practice of software develop-
ers bundling several third-party applications in return for
a fee. We present an example bundle in Figure 1, where
clicking on “accept” results in a user installing eight of-
fers through a single radio dialogue. Some of these offers
may be unwanted software, where at least one anti-virus
engine on VirusTotal marks the application as potentially
unwanted, adware, spyware, or a generic category. In
contrast to blackmarket pay-per-install which illegally

Figure 1: Sample prompt bundling eight commercial pay-per-
install offers. Each offer is downloaded and automatically
installed upon a user accepting the “Express Install” option.
Users may have no knowledge of the behaviors of the bundled
offers.

sells access to compromised hosts, deceptive commercial
PPI outfits rely on this prompt to nominally satisfy user
consent requirements. To simplify the process of buying
and selling installs, commercial PPI operates as an affili-
ate network. We outline this structure and enumerate the
major networks in operation during our study.

2.1 PPI Affiliate Structure

The pay-per-install affiliate structure consists of adver-
tisers, publishers, and PPI affiliate networks. Figure 2
presents the typical business role each plays.

Advertiser: In the pay-per-install lingo, advertisers are
software owners that pay third-parties to distribute their
binaries or extensions. Restrictions on what software ad-
vertisers can distribute falls entirely to the discretion of
PPI affiliate network operators and their ability (and will-
ingness) to police abuse. As highlighted in Figure 2, ad-
vertisers include developers of unwanted software like
Conduit, Wajam, or Shopperz that recuperate PPI in-
stallation fees by monetizing end users via ad injection,
browser settings hijacking, or user tracking. Irrespective
of the application’s behavior, PPI networks set a mini-
mum bid price per install that advertisers only pay out
upon a successful install. Advertisers may also restrict
the geographic regions they bid on.

Publisher: Publishers (e.g., affiliates) are the creators or
distributors of popular software applications (irrespec-
tive of copyright ownership). An example would be a
website hosting VLC player as shown in Figure 2. PPI
networks re-wrap a publisher’s application in a down-
loader that installs the original binary in addition to mul-
tiple advertiser binaries. This separation of monetization
from distribution allows publishers to focus solely on
garnering an audience and driving installs through any
means. Consequently, advertisers may have no knowl-
edge of the deceptive techniques that publishers employ
to obtain installs, nor what their binary is installed along-
side. Upon a successful install, the publisher receives a
fraction of the advertiser’s bid. We differentiate this from
direct distribution licenses such as Java’s agreement to
bundle the Ask Toolbar [18], as there is no ambiguity be-

2

USENIX Association 25th USENIX Security Symposium 723

Figure 2: Pay-Per-Install (PPI) business model. Advertisers
paying for installs supply their binaries to a PPI affiliate net-
work (�). The PPI network cultivates a set of publishers—
affiliates with popular software applications seeking additional
monetization (�). The PPI network re-wraps the publisher’s
software with a customized downloader that the publisher then
distributes (�). When end users launch this downloader, it in-
stalls the publisher’s software alongside multiple advertiser bi-
naries (�). The PPI network is paid by the advertisers and the
publisher receives a commission.

tween the advertiser and publisher around what packages
are co-bundled and the source of installs.

PPI Affiliate Network: PPI affiliate networks serve as
a bridge between the specialized roles of advertisers and
publishers. The PPI network manages all business rela-
tionships with advertisers, provides publishers with cus-
tom downloaders, and handles all payments to publish-
ers for successful installs. When a publisher gains ac-
cess to an end user’s system, the PPI network determines
which offers to install. As we show in Section 3, this en-
tails fingerprinting an end user’s system to determine any
risk associated with anti-virus as well as to support geo-
targeted installations. Similarly, the PPI network dictates
the level of user consent when it installs an advertiser’s
binary, where consent forms a spectrum between silent
installs to opt-out dialogues. In some cases, advertisers
can customize the installation dialogue and thus play a
role in user consent.

Reselling: With multiple PPI affiliate networks in op-
eration, various PPI operators will aggregate their pub-
lishers’ install traffic and resell it to larger PPI affiliate
networks. These smaller PPI operators create value for
their affiliates by providing promotional tools in the form
of landing pages, banner ads, butter bars (e.g., “Your
Flash player is out of date”), and generic installers for
media players and games—described later in Section 6.
These tools simplify the process of monetizing web traf-

PPI Affiliate Network First Seen Reseller

AirInstaller 09/2011
Amonetize 01/2012
InstallCore 04/2011
InstallMonetizer 06/2010
InstallMonster 06/2013
Installaxy 06/2014 �

Installerex 12/2013 �

NetCashRevenue 01/2014 �

OpenCandy 04/2008
Outbrowse 11/2012
PerInstallBucks 06/2013 �

PerInstallCash 04/2011 �

Purebits 06/2013 �

Solimba 08/2013
Somoto 10/2010

Table 1: List of 15 PPI affiliate networks, an estimate of when
they first started operating, and whether they resell installs.

fic where a victim is not primed to download a bun-
dle. It is worth noting that these resellers do not operate
their own downloader; they rely on sub-affiliate tracking
provided by larger PPI networks that effectively enables
two-tiered affiliate distribution.

2.2 Identifying PPI Networks

In contrast to blackmarket pay-per-install [4], the affili-
ate networks driving commercial PPI are largely private
companies with venture capital backing such as Install-
Monetizer and OpenCandy [8, 9]. Registering as a pub-
lisher with these PPI networks is simple: a prospective
affiliate submits her name, website, and an estimate of
the number of daily installs she can deliver. Given this
porous registration process, underground forums contain
extensive discussions on dubious distribution techniques
and which PPI affiliate networks offer the best conver-
sion rates and payouts. We tracked these conversations
on blackhatworld.com and pay-per-install.com, enumer-
ating over 50 commercial PPI affiliate programs that ex-
clusively deal with Windows installs. While there are
networks that target Mac and mobile installs, we focus
our work on the relationship between commercial PPI
and unwanted software families that disproportionately
impact Windows users as identified by previous stud-
ies [17, 34].

2.3 Acquiring PPI Downloader Samples

As part of our initial investigation of PPI, we successfully
acquired downloaders for fifteen distinct PPI networks.
We list each in Table 1. These networks have been in
operation for an average of 2–3 years, with the oldest
program dating back to 2008 as gleaned from crawl logs
provided by archive.org. Based on a preliminary black-

3

724 25th USENIX Security Symposium USENIX Association

Figure 3: PPI monitoring infrastructure. We collect offers and prices from four PPI networks on a regular basis (�). We then
execute the offer binaries in a sandbox to observe network requests, file system changes, and running processes (�). We annotate
each binary with any known VirusTotal labels (�) before finally clustering binaries into families (�).

box test of each downloader, we found six of the fif-
teen PPI downloaders were merely resellers for other PPI
networks in our list. Of the remaining nine, we elect
four of the largest—Amonetize, InstallMonetizer, Open-
Candy, and Outbrowse—as the basis of our investigation
into the role of PPI in unwanted software distribution.
We based our initial selection criteria on the complex-
ity of the offer protocols and from preliminary statistics
reported by Safe Browsing on which PPI networks deliv-
ered the largest number of downloads. We confirm later
in Section 5 that these four PPI networks are in fact rep-
resentative, large operators. We also explore the impact
of the PPI ecosystem as a whole on end users.

3 Monitoring the PPI Ecosystem

Using the PPI downloader samples we acquire for
Amonetize, InstallMonetizer, OpenCandy, and Out-
browse, we develop a pipeline to track the offers (e.g.,
advertiser binaries) that each PPI network distributes as
well as the regional price per install. We outline our
pipeline in Figure 3. We begin by simulating each PPI
downloader’s protocol to fetch all possible offers on an
hourly basis. We analyze each binary in a sandboxed en-
vironment, ultimately clustering the offers into software
families based on the behavioral patterns we observe. We
discuss the construction of our pipeline and its limita-
tions.

3.1 PPI Downloader Protocol

All four PPI downloaders we study rely on a three-stage
protocol for dynamically fetching advertiser binaries. To
start, a downloader fingerprints a client’s device to de-
termine the operating system and default browser. The
downloader reports these parameters to the PPI server
as part of a request for all available offers as shown in
Figure 4. In our example, the request embeds the exact

version of the client’s OS and service pack; the Chrome,
Firefox, and Internet Explorer version if any are present;
whether the system is 32-bit or 64-bit; and finally poten-
tially unique identifiers including a MAC address and a
machine identifier such as HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Cryptography.

We provide a typical offer response in Figure 5. Each
offer contains a unique product identifier, download
URL, and additional metadata that dictates how the in-
stall process unfolds. Depending on the PPI network,
the response will include anywhere from 5–50 offers, fil-
tered by regional requirements imposed by the PPI server
based on the client’s IP address.

In the second stage, the downloader verifies that none
of the RegKey or AntivirusesRegKeys are present
in the device’s registry. This approach serves to prevent
multiple installations of the same advertiser’s binary as
well as to avoid anti-virus disrupting the installation of
an offer. If a client’s machine satisfies the offer crite-
ria, the downloader will display the offer and execute the
binary with the command line options specified by the
PPI server if accepted. These parameters sometimes re-
veal the intent of the advertiser (e.g., replacing the de-
fault search provider) as well as evasive actions such as
remaining dormant for 20 days to prevent unwanted soft-
ware symptoms (e.g., injected ads) from manifesting im-
mediately after an installation. If a client’s system does
not satisfy the criteria, the downloader simply tests an-
other potential offer until all options are exhausted. In
total, the downloader will display offers for anywhere
from 1–10 advertiser binaries (potentially all as one ex-
press install dialogue): the maximum is dictated by the
PPI network.

In the final stage, the downloader reports all success-
fully installed offers along with the publisher’s affiliate
id for compensation.

4

USENIX Association 25th USENIX Security Symposium 725

http://srv.desk-top-app.info/Installer/
Flow?os=6.1&ospv=-1&iev=9.11&ffv=&
chromev=46.0&macaddress=00:00:00...
&systembit=32&machineguid=b1420e...

Figure 4: Example PPI network request for Outbrowse con-
taining the components that make up a device fingerprint.

{
"SleepAfterInstall": 1800000,
"ExeURL": "http://example.com/file7",
"AntivirusesRegKeys": "[

{"RegKey32": "...\\McAfee..."}],
"RegKey": ...,
"PostRegKey": ...,
"ProductID": 10001,
"CommandLine": "-defaultsearch=true",
"RunInAggressiveInstaller": "1",

}

Figure 5: Example PPI network response for Outbrowse con-
taining an offer and associated metadata.

3.2 Developing Longitudinal Milkers

In order to track bundled offers, we develop milkers that
replay the first stage of each PPI network’s offer pro-
tocol and decode the response. This is largely a time-
intensive manual process of blackbox testing each PPI
downloader, determining the PPI server’s domain (or
those it cycles through), and re-implementing the pro-
tocol into a standalone module that generates a network
request with the expected downloader User-Agent and
custom headers. We provide a sample of the PPI server
domains contacted by downloaders in Table 2.

For all requests, we present a device fingerprint associ-
ated with a Windows 7 system with Chrome and Internet
Explorer installed while randomizing unique identifiers
such as the device’s MAC address and machine ID. Upon
receiving a response, we decode the list of offers and ex-
tract the associated URL of the offer binary. We reiter-
ate that the PPI programs we monitor provide anywhere
from 5–50 potential offers along with their installation
requirements. For each offer, we detect whether we pre-
viously observed the URL of the associated binary. If
the URL is fresh, we download the URL’s content; if the
URL is redundant, we rely on a cached copy in order to
reduce network load on the PPI servers. We note that this
caching methodology may reduce the number of unique
digests we obtain if advertisers were to cycle binaries ref-
erenced by a fixed URL.

We finally store each binary, the offer metadata (e.g.,
registry requirements, advertiser ids), and the timestamp
of execution. We ran our milkers every hour from a col-

PPI Network Sample Domain

Outbrowse srv.desk-top-app.info
Amonetize www.download-way.com
InstallMonetizer www.stsunsetwest.com
OpenCandy api.opencandy.com

Table 2: Sample of PPI server domains contacted by our milk-
ers. In total, we identify 31 domains servicing offer requests
for the four PPI networks we study.

PPI Network Milking Period Offers Unique

Outbrowse 1/08/15–1/07/16 107,595 584
Amonetize 1/08/15–1/07/16 231,327 356
InstallMonetizer 1/11/15–1/07/16 30,349 137
OpenCandy 1/09/15–1/07/16 77,581 134

Total 1/08/15–1/07/16 446,852 1,211

Table 3: Breakdown of PPI networks, milking periods, and the
unique offers appearing in our dataset.

lection of cloud instances hosted in the United States
over a year long period from January 8, 2015–January 7,
2016. During this time, we updated our milker protocols
at most once per PPI network, a reflection of the lack
of external pressure on commercial PPI practices com-
pared to malware. In total, we collected 446,852 offers.
These offers contained 2,841 unique URLs, 1,809 unique
digests, and 1,211 unique product identifiers (as deter-
mined by the ProductID field shown in Figure 5, or
its equivalent for other PPI networks, which are consis-
tent across versions.) We provide a detailed breakdown
of the offers per PPI network in Table 3.

We faced a separate challenge for tracking regional
pricing. In particular, the exact daily prices that advertis-
ers pay per install are available only to publishers deliv-
ering successful installs. Unlike previous investigations
into blackmarket PPI [4], we elected not to register as
commercial PPI affiliates due to potential Terms of Ser-
vice violations. As such, we lack access to per-advertiser
pricing data. Instead, we track the average price per in-
stall across the PPI ecosystem as publicly advertised by
PPI networks and resellers to attract affiliates. In to-
tal, we identify five PPI-related websites that provide a
breakdown of the current price per install paid across 219
regions, with rates varying between $0.01–$2.09. These
sites include cinstaller.com, installmania.
com, cashmylinks.com, perinstallbucks.
com, and truemediaparnter.com. We crawled
and parsed these pages (as allowed by robots.txt) on a
weekly basis from January 8, 2015–January 7, 2016 to
monitor any fluctuations.

5

726 25th USENIX Security Symposium USENIX Association

3.3 Executing and Annotating Offers

We execute all downloaded binaries in a sandboxed en-
vironment similar in flavor to Anubis [2], CWSand-
box [38], and GQ [22], the details of which are covered
in previous work [17, 29, 34]. During execution, we log
all network requests and responses, file system changes,
modified registry keys, and spawned processes. We also
monitor whether the executable changes any preferences
related to Chrome or Internet Explorer such as altering
the default browser, dropping an extension, or modifying
the startup page.

Independent of our dynamic execution environment,
we annotate each binary with third-party intelligence
gathered through VirusTotal at the end of our collection
period. Mechanically, we submit the hash of each binary
to determine which of 61 anti-virus engines report the
binary as malicious or unwanted. We also collect any la-
bels, though the value of these is highly variable: some
reflect generic ‘Adware’ while others contain a family
name potentially unique to an anti-virus engine.

3.4 Clustering and Classifying Offers

At the conclusion of our collection period we classi-
fied all of the advertiser binaries in our dataset into
distinct families. This canonicalization step is neces-
sary to de-duplicate instances where the same advertiser
works with multiple PPI networks or where advertisers
introduce polymorphism due to software updates, sub-
affiliate programs, or to evade detection by anti-virus en-
gines. Classification is a semi-automated process where
we first cluster all binaries based on overlapping registry
key modifications, domains contacted during execution,
process names, or digital certificates used to sign the
advertiser’s software (only 58% of offers were signed).
This approach follows similar strategies for clustering
malware delivered via drive-by downloads [14] and un-
wanted software using code-signing [21]. We also clus-
ter offers based on the registry keys present in the instal-
lation pre-conditions provided by PPI networks during
offer selection. These pre-conditions unambiguously re-
veal all of the registry paths controlled by a single family,
such as Vitruvian which goes by 19 other names includ-
ing LessTabs, SearchSnacks, Linksicle; or Wajam which
installs under 418 unique registry keys. We present a
sample of these pre-conditions in Figure 6. Through
all these clustering techniques, we generate 873 non-
overlapping clusters (of 1,809 possible).

We manually review all clusters active for more than
150 days (e.g., we examine the timestamp of all milked
binaries in a cluster and count the number of distinct
dates) totaling 58 distinct clusters. We derive family
labels based on the most common naming convention

this.bCompExist = g.ami.CheckRegKey(
"Software\\Wajam",
"Software\\WInternetEnhance",
"Software\\WajNEnhance",
"Software\\WWebEnhance",
"Software\\WaWebEnhance",
"Software\\WajIntEnhancer",
"Software\\WajaIntEnhancer",
"Software\\WNEnhancer",
"Software\\WajaInternetEnhance",
"Software\\WInterEnhance",
"Software\\WajNetworkEnhance",
"Software\\WajaNetworkEnhance",
"Software\\WWebEnhancer",
"Software\\WaWebEnhancer",
"Software\\WajWebEnhancer",
"Software\\WajaWebEnhancer",
.....
"Software\\Wajam\\affiliate_id")

Figure 6: Example offer requirements for Wajam via Amon-
etize. It contains 418 registry key checks for Wajam variants.
We cluster offers that contain the same registry checks.

found in VirusTotal for a cluster. If no public name ex-
ists, we fall back to the advertiser name listed in the offer
metadata provided by PPI networks. For all clusters last-
ing less than 150 days, we rely exclusively on the adver-
tiser name. These names serve only to communicate the
major software families commonly found in commercial
PPI and whether they overlap with the largest unwanted
families impacting end users (discussed in Section 5).

3.5 Limitations

Our investigation of the PPI ecosystem faces a number
of limitations. First, our pipeline runs exclusively from
United States IP addresses. This potentially biases our
perspective of PPI offers in the event advertisers dis-
tribute exclusively to non-US territories. As we demon-
strate later in Section 4, the US is the highest paid region
for installs, which makes it one of the most interesting
to analyze. Next, because we do not participate directly
in the PPI ecosystem, we lack exact pricing details per
install. We attempt to extrapolate these values based on
public pricing used to attract affiliates, but we cannot ver-
ify the accuracy of this data other than to corroborate
similar rates cited within the underground. Third, our
family classification faces the same challenges of mal-
ware phylogeny where there is frequent disagreement be-
tween anti-virus naming conventions. We reconcile these
discrepancies for the longest running PPI campaigns at
the expense of overlooking the long tail of brief cam-
paigns. Finally, our perspective of the PPI ecosystem is
restricted to four PPI networks due to the time-intensive

6

USENIX Association 25th USENIX Security Symposium 727

process of building milkers. While there is a risk our
findings are not representative of the entire ecosystem,
we show in Section 4 there is substantial overlap between
the advertisers of each PPI network. This leads us to be-
lieve our sample of PPI networks extends to other unex-
plored commercial PPI operators.

4 Exploring Commercial PPI Offers

We provide a bird’s-eye-view of the business relation-
ships underpinning the commercial PPI ecosystem be-
fore diving into the unwanted software families reliant
on PPI distribution. We find that ad injectors, browser
settings hijackers, and system “clean-up” utilities dom-
inate the advertisers paying for installs. With anti-virus
engines flagging 59% of the weekly software families we
milk per PPI network, we observe at least 20% of PPI ad-
vertisers take advantage of anti-virus and VM detection
provided by PPI downloaders to avoid installing in hos-
tile environments.

4.1 High-Level Metrics

Using the 1,211 product identifiers embedded by PPI net-
works in each offer for accounting purposes, we calcu-
late the total distinct simultaneous offers per PPI network
and the duration that advertisers run each offer. On av-
erage, we observe 25–60 active offers per PPI network
each week, with a fine grained breakdown shown in Fig-
ure 7. The spike around July 2015 for Amonetize rep-
resents a temporary 2x increase in offers distributed by
the PPI network; it is unrelated to any change in our in-
frastructure. The majority of advertisers for Amonetize
and Outbrowse maintain their offers for less than a week
before cycling to a new product as shown in Figure 8. In
contrast, OpenCandy and InstallMonetizer attract adver-
tisers who run the same product for over 15 days.

4.2 Longest Running Campaigns

With over 873 software families classified by our analy-
sis pipeline, we examine which families consistently ap-
pear in the PPI ecosystem and thus sink the most money
into installs. Table 4 provides a detailed breakdown of
the software families with the longest running distribu-
tion campaigns and the PPI networks involved. The
families fall into five categories: ad injectors, browser
settings hijackers, system utilities, anti-virus, and major
brands. We provide sample screenshots of the resulting
user experience after installation in the Appendix.

Ad Injectors: Ad injectors modify a user’s browsing
experience to replace or insert additional advertisements
that otherwise would not appear on a website. Every PPI
network we monitor participates in the distribution of ad
injectors. Of the top eight programs listed by Thomas

�

�

�

� � �
� � � �

�
�

�

�

�

�

�
� �

�
�

�
� �

� � �

0

50

100

150

200

Jan 2015 Apr 2015 Jul 2015 Oct 2015 Jan 2016

O
ffe

rs
 p

er
 w

ee
k

� Amonetize
InstallMonetizer
OpenCandy
Outbrowse

Figure 7: Unique PPI offers operating each week. Amonetize
and Outbrowse cultivate a large number of offers compared to
OpenCandy and InstallMonetizer.

�
�
�
�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�

0%

25%

50%

75%

100%

1 10 100
Offer duration in days (log scale)

Fr
ac

tio
n

of
 o

ffe
rs

� Amonetize
InstallMonetizer
OpenCandy
Outbrowse

Figure 8: Lifetime of PPI offers. Advertisers run the same
offer on OpenCandy and InstallMonetizer for a median of 15
days, while Amonetize and Outbrowse offers quickly churn out
of existence to be replaced by new binaries.

et al. as the largest contributors to ad injection in 2014
for Chrome, Firefox, and Internet Explorer [34], we ob-
serve six currently in the PPI ecosystem. The companies
behind these software products are commercial entities
that span the globe: Wajam is located in Canada, Eorezo
is from France, while Crossrider originates from Israel.
These ad injectors recuperate the initial sunk cost of in-
stalls by monetizing users via display ads and shopping
helpers until a victim finally uninstalls the injector.

Browser Settings Hijackers: Settings hijackers modify
a victim’s default browser behavior, typically to change
the default tab or search engine to a property controlled
by the hijacker. These companies subsequently mone-
tize victims by selling their traffic to search engines and
potentially tracking user behavior. Examples include
Conduit Search (e.g., Search Protect) which came pre-
installed on Lenovo machines in 2014 [3]. We note that
some hijackers also profit by doubling as ad injectors.

7

728 25th USENIX Security Symposium USENIX Association

System Utilities: System utilities attempt to upsell users
using potentially deceptive practices, with some meet-
ing anti-virus definitions of scareware. This category in-
cludes “speedup” utilities like Speedchecker and Uniblue
that present nebulous claims such as “Attention! 2203
items are slowing down your PC” or “your system reg-
istry health status is dangerous.” These families repeat-
edly generate pop-up warnings until a victim either pays
a subscription fee of $30–40 or uninstalls the software.
This scheme is nearly identical to fake anti-virus, but
speedup utilities operate under a veil of legitimacy be-
cause they remove files from a client’s machine, thus
satisfying some notion of system improvement. Conse-
quently, anti-virus engines do not consider these families
to be malicious, only unwanted. Our categorization also
includes cloud backup utilities that repeatedly prompt
victims to upload their files to the cloud. Adhering to
the dialogue requires victims pay a recurring $120 sub-
scription fee.

All five of the top system utility families are them-
selves affiliate programs. Speedchecker promises affil-
iates a 30% commission on subscriptions. Uniblue ad-
vertises a commission of 70%. What emerges is a three-
tiered distribution network where system utility affiliates
register as advertisers on PPI networks and pay an up-
front distribution cost, but reap the commissions on suc-
cessful subscription conversions. It is also possible that
the system utility companies maintain a direct relation-
ship with PPI networks.

Anti-Virus: We observe four anti-virus products dis-
tributed via the PPI ecosystem: AVG, LavaSoft, Co-
modo, and Qihoo. We cannot determine whether these
companies directly purchase installs from commercial
PPI affiliate networks. We note that all four operate af-
filiate programs to outsource installs [1, 7, 24, 37]. As-
suming all of the installs we observed originate from af-
filiates, it is unclear how each anti-virus operator polices
abuse in the face of an increasingly tangled web of pur-
chased installs and potentially dubious distribution prac-
tices. Equally problematic, PPI downloaders simultane-
ously install these anti-virus products alongside browser
settings hijackers and ad injectors—an unenviable user
experience.

Major Brands: We observe a small number of major
software brands including Opera, Skype, and browser
toolbars distributed via PPI. Based on the affiliate codes
embedded in the download URLs for Opera, it appears
that Opera directly interacts with PPI operators to pur-
chase installs rather than relying on intermediate affili-
ates.1 The other three programs all operate affiliate pro-

1For example, we observe Outbrowse specifically referenced in the
target download URL for Opera: net.geo.opera.com/opera/

Category Family Days Networks AV

Ad Injector Wajam 365 A, C, I, O 13
Ad Injector Vopackage 365 A, I, O 42
Ad Injector Youtube Downloader 365 A, I, O 50
Ad Injector Eorezo 365 A, O 32
Ad Injector Crossrider 350 A, I, O 55
Ad Injector Bubble Dock 340 O 8
Ad Injector Nuvision Remarketer 322 A 18
Ad Injector Download Manager 313 A 37
Ad Injector Vitruvian 242 A, I, O 41

Hijacking Browsefox 363 A, C, I, O 49
Hijacking Conduit 327 A, I, O 41
Hijacking CouponMarvel 300 A 3
Hijacking Smartbar 294 A, I, O 45
Hijacking Safer Browser 279 A, I, O 3

Utilities Speedchecker 365 A, O 5
Utilities Uniblue 347 A, C, I, O 49
Utilities OptimizerPro 302 A, C, I, O 29
Utilities My PC Backup 292 A, C, I 2
Utilities Pro PC Cleaner 287 A, I, O 33
Utilities Systweak 249 A, I, O 37

Anti-virus AVG Toolbar 333 A, C 0
Anti-virus LavaSoft Ad-aware 305 C 0
Anti-virus Comodo GeekBuddy 153 A, C, I, O 0
Anti-virus Qihoo 360 144 C, I 0

Brand Opera 340 A, C, I, O 0
Brand Skype 176 C, O 0
Brand Yahoo Toolbar 27 O 5
Brand Aol Toolbar 25 O 4

Table 4: Software families with the longest PPI campaigns. We
annotate each with the type of software, the days the campaign
ran for, the PPI networks involved, and the number of anti-virus
engines that flag the family as unwanted. We abbreviate PPI
networks as [A]monetize, Open[C]andy, [I]nstallMonetizer,
and [O]utbrowse.

grams, yielding a similar distribution pattern to that of
anti-virus, though we cannot rule out direct relationships
with commercial PPI.

4.3 Long Tail of Campaigns

Outside the top 28 longest running PPI campaigns, a
question remains on the mixture of credible and un-
wanted software that makes up the other 845 short lived
campaigns. To explore this, we calculate the fraction
of software families distributed per week by commer-
cial PPI where at least one anti-virus engine in Virus-
Total flags the family as unwanted. Figure 9 presents
our results. On an average week, anti-virus engines label
85% of software families distributed by InstallMonetizer

stable?utm_medium=pb&utm_source=outbrowse&utm_
campaign=2328

8

USENIX Association 25th USENIX Security Symposium 729

�

�

�

� � �
� �

�

�

�
�

�

�

�

�

�
�

�
� �

�
�

�
�

�

�

0%

25%

50%

75%

100%

Jan 2015 Apr 2015 Jul 2015 Oct 2015 Jan 2016

Fr
ac

tio
n

of
 c

am
pa

ig
ns

 fl
ag

ge
d

� Amonetize
InstallMonetizer

OpenCandy
Outbrowse

Figure 9: Fraction of software families found each week in PPI
networks that were flagged by any anti-virus engine in Virus-
Total.

as unwanted, compared to 68% for Amonetize, 57% for
Outbrowse, and 20% for OpenCandy. These trends hold
true for the entirety of our year-long monitoring. Our
findings illustrate that unwanted software dominates both
long and short-lived campaigns. The only exception is
OpenCandy, which predominantly cultivates advertisers
related to games and anti-virus, and to a lesser extent,
system utilities and some ad injectors. As a consequence
though, OpenCandy has the smallest pool of offers (as
discussed previously in Figure 7), while other PPI net-
works deal with a large number of unwanted software
creators and affiliates.

4.4 Contending with Anti-Virus

As discussed in Section 3, each PPI network provides ad-
vertisers with a capability to pre-check whether an anti-
virus engine is present prior to displaying the advertiser’s
offer. This pre-check consists of a blacklist of registry
keys, file paths, and registry strings specified by the ad-
vertiser. We present a sample in Figure 10. To estimate
the fraction of offers that take advantage of this capabil-
ity, we manually collate a list of 58 common anti-virus
tokens that appear in a random sample of pre-check re-
quirements, as well as the names of anti-virus companies
participating in VirusTotal. We then scanned all offer in-
stallation requirements for these tokens.

Of the unique offers in our dataset, 20% take advan-
tage of PPI downloader capabilities that prevent installs
from occurring on clients running an anti-virus engine.
When anti-virus checks are present, we find advertis-
ers target an average of 3.6 AV families. Our findings
suggest that PPI networks support unwanted software
developers as first-class partners. We caution our met-
ric is a strict underestimate in the event PPI download-

g_ami.CheckRegKey(
"Software\\Avast Software"
"Software\\Symantec"
"Software\\KasperskyLAB"
"Software\\Norton"
"Software\\Microsoft\\Microsoft Anti.."
"Software\\Microsoft\\Microsoft Secu.."
"Software\\Malwarebytes"
"Software\\Avira")

g_ami.PathExists(
"%ProgramFiles%\\mcafee"
"%ProgramFiles%\\Microsoft Security..."
"%ProgramFiles%\\Malwarebytes...")

Figure 10: Example of anti-virus checks performed by a PPI
downloader in order to avoid displaying certain offers to clients
running hostile anti-virus engines.

ers scan for side-effects related to anti-virus rather than
the exact brand names. We find the most frequently
targeted brands include ESET, Avast, AVG, McAfee,
Avira, and Symantec. We also observe offers checking
for registry keys related to VirtualBox, VMWare, and
OpenVPN. There are two possible interpretations of this
behavior: advertisers seek to protect themselves from
fraudulent installs on virtualized systems; or advertisers
actively prevent installations on suspected security test-
ing environments. Given the virtualization checks co-
occur with anti-virus evasion, we hypothesize the latter
is more likely. Added to our earlier observation that PPI
downloaders provide a capability to impose a symptom-
free quiet period after installation, a picture emerges of
PPI networks actively supporting unwanted software as
a first-class partner.

4.5 Regional Pricing Per Install

Far and away, installs from the United States fetch the
highest price at roughly $1.50 each. The United King-
dom is the second most lucrative region at roughly $0.80
per install. We find that advertisers pay the highest rates
for installs from North America, Western Europe, and
Japan as shown in Figure 11. Prices outside these re-
gions hover around $0.02–$0.10 per install. This holds
true throughout the entirety of our investigation as shown
in Figure 12 with relatively little volatility in the market.
Despite these lower rates, we show in the next Section
that commercial PPI impacts clients around the globe.

5 Measuring User Impact

Through Safe Browsing, we estimate the virulent im-
pact that the PPI ecosystem has on end users. Begin-
ning in 2014, Safe Browsing added support to warn users
of Chrome and Firefox against downloading PPI-laden

9

730 25th USENIX Security Symposium USENIX Association

Figure 11: Average price per install across all PPI price moni-
toring vantage points. Installs from the United States fetch the
highest price at $1.50 each.

� � � �

� �$0.00

$0.50

$1.00

$1.50

Jan 2015 Apr 2015 Jul 2015 Oct 2015 Jan 2016

Pr
ic

es
 p

er
 w

ee
k

� CN DE GB IN RU US

Figure 12: Weekly average price per install for six regions.
We observe relatively little volatility for US installs and a slight
decline in rates in Europe over time.

software that violates Google’s unwanted software pol-
icy [28]. This policy covers a subset of applications
flagged by anti-virus engines as unwanted. We map these
metrics to the PPI networks we study and find that Safe
Browsing generates over 60 million weekly download
warnings and browser interstitials. Despite these protec-
tions, telemetry Chrome users submit about their systems
indicate there are tens of million of installations of un-
wanted software, with nearly all of the top families con-
temporaneously paying for installs.

5.1 Requests for PPI Downloaders

We rely on two datasets to estimate the volume of weekly
downloads to software monetizing through Amonetize,
InstallMonetizer, OpenCandy, and Outbrowse: (1) pings
reported by browsers integrated with Safe Browsing for
downloaded binaries; and (2) Safe Browsing’s repository
of over 75 million binaries (including benign software).
When a browser integrated with Safe Browsing fetches a
binary from an untrusted source, it generates an API re-

� �

�

� �
� �

� �
�

�

� � �
�

�

� � �
� �

�

�

�

� �

� �
� �

0M

2M

4M

6M

Jun Jul Aug Sep Oct Nov Dec Jan

W
ee

kl
y

do
w

nl
oa

ds

Figure 13: Volume of weekly requests for any of 1.5 million
PPI downloaders. We stress this is a lower bound due to miss-
ing samples.

quest to Google in order to obtain a verdict for whether
the binary is unwanted or malicious. This request con-
tains hosting details about the binary (e.g., URL, IP ad-
dress) and related metadata including a digest of the bi-
nary [27]. In order to map these downloads to digests of
known PPI downloaders, we scan Safe Browsing’s repos-
itory of dynamic execution traces in search of network
requests that match the offer discovery protocol used by
each PPI affiliate network (previously discussed in Sec-
tion 3). From this repository, we identify 1.5 million bi-
naries tied to one of the four PPI networks we study.

We show the total weekly downloads for these 1.5 mil-
lion binaries between June 1, 2015–January 7, 2016 in
Figure 13, irrespective of whether Safe Browsing dis-
played a warning. We caution these estimates of traffic
to PPI networks should serve only as a lower bound as
Safe Browsing’s coverage of all possible binaries is in-
complete. Similarly, due to Safe Browsing displaying
warnings for policy-violating PPI downloaders, opera-
tors have an incentive to quickly cycle binaries and host-
ing pages. Caveats aside, we find publishers for the four
PPI networks drive an average of 3.5 million downloads
per week, though the volume appears to be in decline.
Even as a lower bound, our results illustrate the massive
influence that PPI networks have on unwanted software
distribution.

5.2 PPI Downloader Warnings

In order to obtain a broader perspective of the entire
PPI ecosystem’s impact on end users (not just the four
networks we study), we measure the volume of weekly
warnings generated by Safe Browsing for PPI down-
loaders. Users encounter warnings in one of two ways:
download warnings that trigger for policy-violating PPI
downloaders, and full-page interstitials that appear when
users visit websites commonly distributing PPI-laden
software. Because affiliate publishers attempt to evade
detection (discussed more in Section 6), Safe Browsing

10

USENIX Association 25th USENIX Security Symposium 731

relies on a reputation system called CAMP that builds on
incomplete data [29]. The system starts from a seed set of
3 million PPI downloaders that includes samples for all
fifteen PPI networks we outlined previously in Section 2.
From there, the system scores websites hosting these bi-
naries, common redirect paths, and related binaries. This
expands the coverage of sites and binaries involved in
pay-per-install, but results in a loss of attribution to in-
dividual PPI families. As such, we can only provide an
aggregate impact estimate.

We present the volume of PPI downloader warnings
and page-level interstitials generated by Safe Browsing
between June 1, 2015–January 7, 2016 in Figure 14 and
Figure 15 respectively. On an average week, Safe Brows-
ing raises 35 million download warnings and displays 28
million interstitials. Warnings appear as a bursty pro-
cess, in part due to the arrival of new distribution cam-
paigns and in part due to the ongoing evolutions in the
reputation of websites and binaries. In order to place un-
wanted software in the greater context of threats facing
users, we compare the volume of users encountering PPI
downloaders versus malware. On average, Safe Brows-
ing raises 13.5 million download warnings and 9 million
interstitials to protect users from malware—three times
less than that of unwanted software.

The risk of unwanted software is not localized to any
single region. We provide a breakdown of the geoloca-
tion of users shown a warning related to PPI download-
ers in Table 5. We find that Indian users account for 8%
of warnings, followed in popularity by Brazil, Vietnam,
and the United States. We find no correlation between
the price per install and geographic regions with high in-
cident rates. As such, it appears that PPI networks drive
installs to any possible user, even when the payout hovers
around $0.10 per install.

5.3 Existing Unwanted Installs

For those PPI downloaders that escape detection and
launch on a client’s machine, we estimate the number
of users potentially affected. To do this, we tap into met-
rics kept by the Chrome Cleanup Tool, an opt-in tool that
scans a user’s machine for symptoms induced by pop-
ular ad injectors, browsing settings hijackers, and sys-
tem utilities and removes offending programs [5]. Given
hundreds of potential unwanted software strains, the tool
prioritizes families based on telemetry built into Chrome
and system traces supplied by users who file Chrome
complaints due to undesirable user experiences. As part
of its execution, the tool reports which unwanted soft-
ware families it identifies as well as those successfully
removed. One limitation with the tool is that, for pri-
vacy reasons, no unique device identifier is reported per
execution. Consequently, if the tool fails to remove a un-

�
� �

�

�� � �
�

�
�

�

�
� �� ���

�

�

�

�
�

�

�

�

�

�

�

� �

20M

40M

60M

Jun Jul Aug Sep Oct Nov Dec Jan

W
ee

kl
y

do
w

nl
oa

d
wa

rn
in

gs � malware
unwanted

Figure 14: Breakdown of weekly download warnings dis-
played by Safe Browsing for unwanted software compared to
malware. The bursty behavior results from evasion on the part
of PPI publishers.

��
��

�
�

�
�

�
�

�
��

�
�����

�
��

�
��

�
�

�

��
�

�

20M

40M

60M

Jun Jul Aug Sep Oct Nov Dec Jan

W
ee

kl
y

in
te

rs
tit

ia
l w

ar
ni

ng
s � malware

unwanted

Figure 15: Breakdown of weekly page-level interstitials dis-
played by Safe Browsing for unwanted software compared to
malware. The bursty behavior results from evasion on the part
of PPI publishers.

wanted software strain and a user re-runs the tool, they
will be counted twice. This may cause us to overesti-
mate the number of infections per family. As the Chrome
Cleanup Tool is opt-in, we caution its metrics cover only
a subset of all infected machines. While this precludes
absolute estimates on the number of unwanted software
installs, we can still estimate the relative population of
each software family.

Over the last year, the Chrome Cleanup Tool identi-
fied tens of millions of installations of unwanted soft-
ware. We present the top 15 most popular strains flagged
from January 8, 2015–January 7, 2016 in Table 6. We
measure popularity as the total installs per family divided
by all known unwanted software installs. To map these
families back to the PPI ecosystem, we mark each fam-
ily known to distribute via any of the four PPI networks
we monitor. We arrive at this determination by running
the Chrome Cleanup Tool at the completion of the bi-
nary execution phase of our analysis pipeline (described
in Section 3) to see whether the tool flagged any of the
binary’s components.

11

732 25th USENIX Security Symposium USENIX Association

Country Frac. Downloads Price per install

India 8.2% $0.09
Brazil 7.2% $0.13
Vietnam 6.4% $0.06
United States 6.2% $1.50
Turkey 5.1% $0.11
Thailand 3.3% $0.11
Pakistan 3.2% $0.08
Mexico 2.6% $0.07
Indonesia 2.5% $0.09
Philippines 2.5% $0.08

Table 5: Top 10 countries receiving the largest volume of Safe
Browsing warnings related to unwanted software.

Our results indicate that 14 of the top 15 software fam-
ilies flagged by the Chrome Cleanup Tool simultaneously
pay for installs during our monitoring. Conduit, the top
family, is a browser settings hijacker that accounts for
20.9% of all unwanted software installs reported by the
Chrome Cleanup Tool. Multiplug, the most popular ad
injector, accounts for 5.1% of installs. Our results illus-
trate the virulent affect that unwanted software found in
the PPI ecosystem has on end users. We caution we can-
not definitively say all of these installs stem from PPI2;
there are potentially other sources of installs such as di-
rect downloads via deceptive websites and advertising.
However, paired with millions of Safe Browsing warn-
ings for PPI downloaders, we argue that PPI plays a sub-
stantial role in unwanted software installation levels.

6 Distribution Techniques

We conclude our investigation with an examination of
the affiliates responsible for distributing PPI download-
ers, the landing pages they operate, and the deceptive
practices that they employ to drive installs.

6.1 Estimating PPI Affiliates

We estimate the number of affiliates participating in
Amonetize, InstallMonetizer, OpenCandy, and Out-
browse by scanning for publisher identifiers that each
PPI downloader embeds in offer requests for account-
ing purposes. Based on the dynamic traces of roughly
1.5 million PPI downloaders provided by Safe Browsing
(discussed previously in Section 5), we estimate there are
2,518 publishers in the ecosystem, some of which may
participate in multiple PPI networks and thus should not
be considered unique. We provide a breakdown per PPI
network in Table 7. Drawing these estimates into the

2Once a PPI downloader executes, only symptoms related to the
bundled advertiser software subsist after the installer completes. The
Chrome Cleanup Tool cannot provide us any details for whether un-
wanted software originated from a PPI downloader.

Unwanted Family Popularity PPI Advertiser

Conduit 20.9% �

Elex 13.4% �

Multiplug 5.1% �

Crossrider 4.6% �

Browsefox 3.8% �

My PC Backup 2.8% �

Systweak 2.8% �

Mobogenie 2.4% �

Smartbar 2.2% �

Wajam 1.8% �

AnyProtect 1.7% �

WinZipper 1.5% �

Vopackage 1.2% �

ShopperPro 1.2% �

Vitruvian 1.1% �

Other families 33.5% –

Table 6: Top 15 software families as detected by the Chrome
Cleanup Tool on Windows systems. Popularity is the fraction
of all known unwanted software installs.

broader context of PPI, we find a relatively small ecosys-
tem that consists of hundreds of advertisers paying for
unwanted software installs that a few thousand publish-
ers distribute. Despite the low number of actors in the
space, the end result is still millions of unwanted down-
load attempts on a weekly basis.

6.2 Landing Pages

In order to drive installs, PPI affiliates must present con-
tent that either entices or deceives a victim into down-
loading and executing a PPI downloader. We obtain
a sample of these landing pages from Safe Browsing
which monitors the entire redirect chain behind un-
wanted software delivery [27]. However, for privacy rea-
sons, our analysis is restricted to a two week period after
which these fine-grained details disappear. In total, we
sample the top 15,000 most visited landing pages from
January 18–February 1, 2016 that direct to one of the
four PPI downloaders we monitor. The sites topping this
list include large software companies like utorrent.com,
bittorrent.com, and savefrom.com (a YouTube download-
ing service); download portals like filehippo.com; and
video and media torrent sites like thepiratebay.se that
display deceptive ads that in fact link to PPI download-
ers.

In order to gain a perspective of the category of sites
involved in PPI distribution, we crawl all of the landing
pages in our sample and supply the non-HTML format-
ted text to a topic modeling algorithm similar to Gen-
sim’s implementation of LDA [13]. We present the top
10 topics in Table 8, covering 53.6% of all sampled land-

12

USENIX Association 25th USENIX Security Symposium 733

PPI Network Binary Samples Affiliates

Outbrowse 1,182,910 1,106
Amonetize 237,660 420
OpenCandy 43,677 747
InstallMonetizer 22,879 245

Total 1,487,126 2,518

Table 7: Estimate of unique affiliates per PPI network. These
affiliates drive millions of weekly downloads to PPI networks.

ing pages. Users searching for freeware, video games,
torrents, cracks, and even anti-virus are highly likely to
encounter PPI downloaders. Most of these sites (58%)
cater to an English audience, followed in popularity by
Russian (10%). Our results illustrate that popular down-
load portals (or their contributors) fuel a large segment of
unwanted software distribution, in turn receiving a kick-
back from PPI networks.

6.3 Distribution Pages

After a victim engages with a landing page, PPI affili-
ates redirect the victim to a distribution page that hosts
the PPI downloader. This site may be operated by the af-
filiate or directly by the PPI network, with flavors vary-
ing per PPI network. We find that PPI operators rapidly
churn through distribution pages, likely to avoid un-
wanted software warnings from Safe Browsing due to
an increasingly negative reputation. During the eight
months from June 1, 2015–January 7, 2016, we observed
191,372 distribution pages involved in hosting PPI down-
loaders. We estimate the lifetime of these pages by mea-
suring the time between the first client that reports a
download attempt to Safe Browsing and the last reported
download attempt, irrespective of Safe Browsing raising
a warning. We find the median lifetime of an Amonetize
distribution page is 7 hours, compared to 0.75 hours for
Outbrowse. These two stand in contrast to InstallMon-
etizer and OpenCandy, where distribution pages remain
operational for a median of 152 days and 220 days (the
entire monitoring window) respectively. This longer life-
time results in part from Safe Browsing not warning on
all OpenCandy installs as they do not fall under Google’s
unwanted software policy, and in part due to Outbrowse
and Amonetize controlling distribution pages, simplify-
ing the process of churning through domains.

6.4 Evasion & Cloaking

Even if PPI operators rapidly cycle through distribution
pages, there is a risk that Safe Browsing will scan and
detect the PPI downloader itself. We find anecdotal ev-
idence that PPI networks work to actively evade this
scanning process. For example, when Safe Browsing
first launched its unwanted software detection, it cov-

Site Category Fraction of Sites

Freeware & Shareware 11.8%
Video Games 10.6%
File Sharing & Hosting 7.3%
Online Video 7.0%
Operating Systems 4.3%
Mobile Apps & Add-Ons 3.7%
Hacking & Cracking 2.7%
Photo & Video Software 2.3%
Game Cheats & Hints 2.1%
Antivirus & Malware 1.9%

Other 46.4%

Table 8: Categorization of the top 15,000 pages driving traffic
to PPI downloaders based on topic modeling.

ered only executable files. Shortly after, PPI networks
switched to distributing .zip compressed binaries to avoid
scanning. When Safe Browsing expanded its scanning
coverage, PPI networks moved to more esoteric com-
pression formats including .rar and .ace or doubly com-
pressed files. We also observed PPI networks exploiting
a limitation in Chrome, where files downloaded through
Flash were not subject to Safe Browsing scans. After
a recent Chrome patch to address this, PPI networks
switched to password protecting their compressed files,
providing instructions for victims on how to access the
contents. We provide screenshots of each of these tech-
niques in action in the Appendix. This arms race illus-
trates that PPI networks opt to actively circumvent user
protections rather than ceasing to distribute harmful un-
wanted software. This behavior likely stems from an in-
centive structure within PPI where remaining profitable
entails racing to the bottom of deceptive install tactics.

6.5 Promotional Tools

For affiliates that do not operate download portals or
peer to peer sharing sites, PPI resellers provide decep-
tive “promotional tools” that socially engineer web visi-
tors into running PPI downloaders. These tools fall into
four flavors: butterbars, ad banners, landing pages, and
content unlockers.

Butterbars: PPI resellers like NetCashRevenue provide
a JavaScript stub to website operators that generates a
yellow bar at the top of a page alerting a victim that their
“Flash player is out of date!”. This bar can either initiate
an auto-download upon visiting the page, or require a
victim to click. Either way, the victim receives a PPI
downloader.

Content Lockers: Content lockers present victims with
an enticing video, song, or PDF. In order to view this
content however, a victim must first install a “codec” that

13

734 25th USENIX Security Symposium USENIX Association

is in fact a PPI downloader. Resellers simplify this pro-
cess by providing a drop-in script that handles spoofing
a fake video player and codec alert.

Ad banners & Landing Pages: Resellers will provide
webmasters with ad banners or entire customized landing
pages that spoof popular software downloads including
uTorrent, Java, Flash, and Firefox that are in fact PPI
downloaders.

These techniques highlight that even if the software de-
livered by a PPI downloader appears benign, the distri-
bution practices of affiliates add an additional layer into
the determination of whether software is ultimately un-
wanted. Consequently, advertisers, publishers, and PPI
networks all bear responsibility for the current state of
commercial pay-per-install and its ties to unwanted soft-
ware.

7 Related Work

Blackmarket Pay-Per-Install: Our work is influenced
in part by prior explorations of the blackmarket pay-per-
install ecosystem that sells access to compromised hosts.
Industry reports initially qualitatively described these un-
derground markets as early as 2009 [10,33]. Caballero et
al. performed the first in-depth investigation by infiltrat-
ing the markets and tracking the malware families pay-
ing for installs [4]. Prices per install ranged from $0.02–
$0.18, an order of magnitude less than the prices we ob-
served for commercial PPI. These low rates make black-
market PPI a better bargain for malware distribution over
commercial PPI, though evidence exists of cross-over,
such as the commercial PPI network iBario recently dis-
tributing Sefnit [35]. Other studies have explored the re-
lationships between blackmarket PPI networks and par-
ticular malware families [23, 30]. However, all of these
studies were limited to establishing a link between the
most notorious malware families and their simultane-
ous distribution in blackmarket PPI; none determined
whether PPI was the primary distribution mechanism (as
opposed to social engineering or drive-bys). Our study
went one step further, establishing the volume of weekly
download attempts to commercial PPI downloaders.

Unwanted Software: Unwanted software is not a new
threat. In 2004, Saroiu et al. found at least 5% of
computers connected to the University of Washington’s
campus network were infected with some form of spy-
ware [32]. In 2005, Edelman tracked multiple pur-
ported spyware and adware companies including Claria,
WhenU, and 180Solutions to identify their deceptive in-
stallation methods and their monetization model [11,12].
More recently, Thomas et al. found that 5% of unique
IPs accessing Google websites exhibited symptoms of

ad injection [34], while Jagpal et al. identified millions
of browsers laden unwanted extensions performing ad
injection, search hijacking, and user tracking [17]. Re-
searchers have also explored some of the distribution
techniques involved. In 2006, Moshchuk et al. crawled
and analyzed 21,200 executables from the Internet and
found 13.4% contained spyware [25]. Kammerstetter et
al. repeated a similar study limited to sites purportedly
hosting cracks and key generators, though they found the
majority bundled malware, not unwanted software [19].
Our work explored the commercialization of these dis-
tribution practices as simplified by commercial pay-per-
install affiliate networks.

More recently, Kotzias et al. explored code-signing
techniques of unwanted software that may lead to re-
duced detection [21]. We rely on a similar technique
for clustering advertiser binaries, though we note that
only 58% of the 1,809 unique offer digests we identi-
fied contained a signature; similarly, only 50% of 1.5
million PPI downloaders distributed by publishers con-
tained a signature. This may lead to a bias in analysis
that focus solely on signed unwanted software. Contem-
poraneous with our own study, Kotzias et al. explored
the download graph of unwanted software via Syman-
tec’s WINE database and identified 54% of users were
affected by unwanted software [20]. Similarly, Nelms et
al. explored the role of deceptive advertising in enticing
victims into running PPI downloaders [26]. Combined
with our own work, these three studies present a broad
perspective of the number of users affected by unwanted
software, an insider perspective of how advertisers, af-
filiate networks, and publishers coordinate, and the de-
ceptive practices used to entice downloads via advertise-
ments or free software sites.

8 Conclusion

Our work presented the first deep dive into the busi-
ness practices underpinning the commercial pay-per-
install ecosystem that sells access to user systems for
prices ranging from $0.10–$1.50 per install. Our study
illustrated that PPI affiliate networks supported and dis-
tributed unwanted software ranging from ad injectors,
browser settings hijackers, and system utilities—many
of the top families that victims proactively purge from
their machines with the aid of the Chrome Cleanup Tool.
In aggregate, the PPI ecosystem drove over 60 million
weekly download attempts, with tens of million installs
detected in the last year. As anti-virus and browsers
move to integrate signatures of unwanted software into
their malware removal tools and warning systems, we
showed evidence that commercial PPI networks actively
attempted to evade user protections in order to sustain
their business model. These practices demonstrate that

14

USENIX Association 25th USENIX Security Symposium 735

PPI affiliate networks operated with impunity towards
the interests of users, relying on a user consent dialogue
to justify their actions—though their behaviors may have
changed since the conclusion of our study. We hope that
by documenting these behaviors the security community
will recognize unwanted software as a major threat—one
that affects three times as many users as malware.

In response to deceptive behaviors within the com-
mercial PPI ecosystem, members of the anti-virus in-
dustry, software platforms, and parties profiting from
commercial PPI have formed the Clean Software Al-
liance [6]. The consortium aims to “champions sus-
tainable, consumer-friendly practices within the software
distribution ecosystem.” This includes defining indus-
try standards around deceptive web advertisements, user
consent, software functionality disclosure, and software
uninstallation. These goals reflect a fundamental chal-
lenge of protecting users from unwanted software: it
takes only one deceptive party in a chain of web adver-
tisements, publishers, affiliate networks, and advertisers
for abuse to manifest. It remains to be seen whether
the approach taken by the Clean Software Alliance will
yield the right balance between software monetization
and user advocacy.

Acknowledgments

We thank the Safe Browsing and Chrome Security
team for their insightful feedback in the development
of our study on unwanted software and pay-per-install.
This work was supported in part by the National Sci-
ence Foundation under grants 1619620 and by a gift from
Google. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
sponsors.

References
[1] AVG. Become an AVG affiliate. http://www.avg.com/

affiliate/us-en/become-an-avg-affiliate,
2016.

[2] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek,
Christopher Kruegel, and Engin Kirda. Scalable, behavior-based
malware clustering. In Proceedings of the Network and Dis-
tributed System Security Conference, 2009.

[3] Business Wire. Perion partners with lenovo to create
lenovo browser guard. http://www.businesswire.
com/news/home/20140618005930/en/Perion-
Partners-Lenovo-Create-Lenovo-Browser-
Guard, 2014.

[4] Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson.
Measuring pay-per-install: The commoditization of malware dis-
tribution. In Proceedings of the USENIX Security Symposium,
2011.

[5] Chrome. Chrome cleanup tool. https://www.google.
com/chrome/cleanup-tool/, 2016.

[6] Clean Software Alliance. Sustainable, consumer-friendly prac-
tices. http://www.cs-alliance.org/, 2016.

[7] Comodo. Consumer affiliate. https://www.comodo.com/
partners/consumer-affiliate.php, 2016.

[8] CrunchBase. InstallMonetizer. https://
www.crunchbase.com/organization/
installmonetizer#/entity, 2016.

[9] CrunchBase. OpenCandy. https://www.crunchbase.
com/product/opencandy#/entity, 2016.

[10] Nishant Doshi, Ashwin Athalye, and Eric Chien. Pay-
Per-Install The New Malware Distribution Network.
https://www.symantec.com/content/en/
us/enterprise/media/security_response/
whitepapers/pay_per_install.pdf, 2010.

[11] Ben Edelman. Claria’s misleading installation methods -
ezone.com. http://www.benedelman.org/spyware/
installations/ezone-claria/, 2005.

[12] Ben Edelman. Pushing spyware through search. http://www.
benedelman.org/news/012606-1.html, 2006.

[13] gensim. models.ldamodel – Latent Dirichlet Allocation.
https://radimrehurek.com/gensim/models/
ldamodel.html, 2015.

[14] Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Chris-
tian J Dietrich, Kirill Levchenko, Panayiotis Mavrommatis, Da-
mon McCoy, Antonio Nappa, Andreas Pitsillidis, et al. Manu-
facturing compromise: the emergence of exploit-as-a-service. In
Proceedings of the Conference on Computer and Communica-
tions Security, 2012.

[15] Orr Hirschauge. Conduit diversifies away from ’down-
load valley’. http://www.wsj.com/articles/
SB10001424052702304547704579563281761548844,
2014.

[16] HowToGeek. Here’s what happens when you install the
top 10 download.com apps. http://www.howtogeek.
com/198622/heres-what-happens-when-you-
install-the-top-10-download.com-apps/, 2014.

[17] Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayiotis
Mavrommatis, Niels Provos, Moheeb Abu Rajab, and Kurt
Thomas. Trends and lessons from three years fighting malicious
extensions. In Proceedings of the USENIX Security Symposium,
2015.

[18] Java. What are the ask toolbars? https://www.java.com/
en/download/faq/ask_toolbar.xml, 2015.

[19] Markus Kammerstetter, Christian Platzer, and Gilbert Won-
dracek. Vanity, cracks and malware: Insights into the anti-copy
protection ecosystem. In Proceedings of the ACM Conference on
Computer and Communications Security, 2012.

[20] Platon Kotzias, Leyla Bilge, and Juan Caballero. Measuring
PUP Prevalence and PUP Distribution through Pay-Per-Install
Services. In Proceedings of the USENIX Security Symposium,
2016.

[21] Platon Kotzias, Srdjan Matic, Richard Rivera, and Juan Ca-
ballero. Certified PUP: Abuse in Authenticode Code Signing.
In Proceedings of the 22nd ACM Conference on Computer and
Communication Security, 2015.

[22] Christian Kreibich, Nicholas Weaver, Chris Kanich, Weidong
Cui, and Vern Paxson. Gq: Practical containment for measuring
modern malware systems. In Proceedings of the ACM SIGCOM
Internet Measurement Conference, 2011.

[23] Bum Jun Kwon, Jayanta Mondal, Jiyong Jang, Leyla Bilge, and
Tudor Dumitras. The Dropper Effect: Insights into Malware Dis-
tribution with Downloader Graph Analytics. In Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’15, pages 1118–1129, 2015.

15

736 25th USENIX Security Symposium USENIX Association

[24] LavaSoft. LavaSoft affiliate program. http://affiliates.
lavasoft.com/, 2016.

[25] Alexander Moshchuk, Tanya Bragin, Steven D. Gribble, and
Henry M. Levy. A crawler-based study of spyware in the web.
In Proceedings of the Network and Distributed System Security
Symposium, NDSS 2006, San Diego, California, USA, 2006.

[26] Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mus-
taque Ahamad. Towards Measuring and Mitigating Social En-
gineering Malware Download Attacks. In Proceedings of the
USENIX Security Symposium, 2016.

[27] Niels Provos. All about safe browsing. http:
//blog.chromium.org/2012/01/all-about-
safe-browsing.html, 2012.

[28] Moheeb Abu Rajab. Year one: progress in the fight against
unwanted software. https://googleonlinesecurity.
blogspot.com/2015/12/year-one-progress-in-
fight-against.html, 2015.

[29] Moheeb Abu Rajab, Lucas Ballard, Noé Lutz, Panayiotis
Mavrommatis, and Niels Provos. Camp: Content-agnostic mal-
ware protection. In Proceedings of the Network and Distributed
System Security Conference, 2013.

[30] Christian Rossow, Christian Dietrich, and Herbert Bos. Large-
scale analysis of malware downloaders. In Detection of Intrusions
and Malware, and Vulnerability Assessment: 9th International
Conference, DIMVA 2012, Heraklion, Crete, Greece, July 26-27,
2012, Revised Selected Papers, pages 42–61, 2013.

[31] Ben Fox Rubin. Perion sees soaring 2014 earnings follow-
ing merger. http://www.wsj.com/news/articles/
SB10001424052702304815004579417252707242262,
2014.

[32] Stefan Saroiu, Steven D. Gribble, and Henry M. Levy. Measure-
ment and analysis of spywave in a university environment. In
Proceedings of the 1st Conference on Symposium on Networked
Systems Design and Implementation - Volume 1, NSDI’04, pages
11–11, 2004.

[33] Kevin Stevens. The Underground Economy of the Pay-Per-
Install (PPI) Business. http://www.secureworks.com/
cyber-threat-intelligence/threats/ppi/, 2009.

[34] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jagpal,
Alexandros Kapravelos, Damon McCoy, Antonio Nappa, Vern
Paxson, Paul Pearce, Niels Provos, and Moheeb Abu Rajab. Ad
injection at scale: Assessing deceptive advertisement modifica-
tions. In Proceedings of the IEEE Symposium on Security and
Privacy, 2015.

[35] TrendMicro. On the Actors Behind MEVADE/SEFNIT.
http://www.trendmicro.com/cloud-content/us/
pdfs/security-intelligence/white-papers/
wp-on-the-actors-behind-mevade-sefnit.pdf,
2014.

[36] VirusTotal. VirusTotal. https://www.virustotal.com/,
2016.

[37] China Internet Watch. Qihoo 360 launched its own affiliate
network. http://www.chinainternetwatch.com/
7960/qihoo-360-launched-its-own-affiliate-
network/, 2014.

[38] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward au-
tomated dynamic malware analysis using cwsandbox. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, 2007.

Appendix

16

USENIX Association 25th USENIX Security Symposium 737

(a) Browsing settings hijacker that overrides a victim’s default search,
supplying the traffic to Bing. The search page also displays ads for more
unwanted software.

(b) Scareware that scans a victim’s machine and reports thousands of
urgent system health issues. Fixing these requires that victims pay a
subscription fee.

(c) Ad injector that inserts advertisements into pages a victim visits. In
this case, the ads direct to more unwanted software.

Sample of user experiences for the software bundled via pay-per-install.

17

738 25th USENIX Security Symposium USENIX Association

(a) PPI networks previously instructed victims to download applications via a Flash dialogue in order to
abuse a bug in Chrome that prevented Safe Browsing from inspecting the downloaded file.

(b) PPI network previously instructed victims to download password-protected compressed executables
in order to prevent inspection of the downloaded file by Safe Browsing.

Sample of now defunct techniques employed by PPI networks to deliver PPI downloaders while evading Safe Browsing.

18

USENIX Association 25th USENIX Security Symposium 739

Measuring PUP Prevalence and PUP Distribution through
Pay-Per-Install Services

Platon Kotzias
IMDEA Software Institute &
Universidad Politécnica de

Madrid, Spain
platon.kotzias@imdea.org

Leyla Bilge
Symantec Research Labs
Sofia Antipolis, France

leyla bilge@symantec.com

Juan Caballero
IMDEA Software Institute

Madrid, Spain
juan.caballero@imdea.org

Abstract
Potentially unwanted programs (PUP) such as adware
and rogueware, while not outright malicious, exhibit
intrusive behavior that generates user complaints and
makes security vendors flag them as undesirable. PUP
has been little studied in the research literature despite
recent indications that its prevalence may have surpassed
that of malware.

In this work we perform the first systematic study
of PUP prevalence and its distribution through pay-per-
install (PPI) services, which link advertisers that want to
promote their programs with affiliate publishers willing
to bundle their programs with offers for other software.
Using AV telemetry information comprising of 8 billion
events on 3.9 million real hosts during a 19 month period,
we discover that over half (54%) of the examined hosts
have PUP installed. PUP publishers are highly popular,
e.g., the top two PUP publishers rank 15 and 24 amongst
all software publishers (benign and PUP). Furthermore,
we analyze the who-installs-who relationships, finding
that 65% of PUP downloads are performed by other PUP
and that 24 PPI services distribute over a quarter of all
PUP. We also examine the top advertiser programs dis-
tributed by the PPI services, observing that they are dom-
inated by adware running in the browser (e.g., toolbars,
extensions) and rogueware. Finally, we investigate the
PUP-malware relationships in the form of malware in-
stallations by PUP and PUP installations by malware.
We conclude that while such events exist, PUP distribu-
tion is largely disjoint from malware distribution.

1 Introduction

Potentially unwanted programs (PUP) are a category
of undesirable software that includes adware and rogue

software (i.e., rogueware). While not outright malicious
(i.e., malware), PUP behaviors include intrusive adver-
tising such as ad-injection, ad-replacement, pop-ups, and
pop-unders; bundling programs users want with unde-
sirable programs; tracking users’ Internet surfing; and
pushing the user to buy licenses for rogueware of du-
bious value, e.g., registry optimizers. Such undesirable
behaviors prompt user complaints and have led security
vendors to flag PUP in ways similar to malware.

There exist indications that PUP prominence has
quickly increased over the last years. Already in Q2
2014, AV vendors started alerting of a substantial in-
crease in collected PUP samples [59]. Recently, Thomas
et al. [64] showed that ad-injectors, a popular type of
PUP that injects advertisements into user’s Web surf-
ing, affects 5% of unique daily IP addresses accessing
Google [64]. And, Kotzias et al. [35] measured PUP
steadily increasing since 2010 in (so-called) malware
feeds, to the point where nowadays PUP samples out-
number malware samples in those feeds. Still, the preva-
lence of PUP remains unknown.

A fundamental difference between malware and PUP
is distribution. Malware distribution is dominated
by silent installation vectors such as drive-by down-
loads [22, 53], where malware is dropped through vul-
nerability exploitation. Thus, the owner of the compro-
mised host is unaware a malware installation happened.
In contrast, PUP does not get installed silently because
that would make it malware for most AV vendors. A
property of PUP is that it is installed with the consent
of the user, who (consciously or not) approves the PUP
installation on its host.

In this work, we perform the first systematic study
of PUP prevalence and its distribution through pay-per-
install (PPI) services. PPI services (also called PPI net-

740 25th USENIX Security Symposium USENIX Association

works) connect advertisers willing to buy installs of their
programs with affiliate publishers selling installs. The
PPI services used for distributing PUP are disjoint from
silent PPI services studied by prior work [7]. Silent PPI
services are exclusively used for malware distribution,
while the PPI services we study are majoritarily used for
distributing PUP and benign software. In the analyzed
PPI services, an affiliate publisher owns an original pro-
gram (typically freeware) that users want to install. To
monetize installations of its free program, the affiliate
publisher bundles (or replaces) it with an installer from a
PPI service, which it distributes to users looking for the
original program. During the installation process of the
original program, users are prompted with offers to also
install other software, belonging to advertisers that pay
the PPI service for successful installs of their advertised
programs.

To measure PUP prevalence and its distribution
through PPI services we use AV telemetry information
comprising 8 billion events on 3.9 million hosts during
a 19 month time period. This telemetry contains events
where parent programs installed child programs and we
focus on events where the publishers of either parent or
child programs are PUP publishers. This data enables
us to measure the prevalence of PUP on real hosts and
to map the who-installs-who relationships between PUP
publishers, providing us with a broad view of the PUP
ecosystem.

We first measure PUP prevalence by measuring the
installation base of PUP publishers. We find that pro-
grams from PUP publishers are installed in 54% of the
3.9M hosts examined. That is, more than half the ex-
amined hosts have PUP. We rank the top PUP publishers
by installation base and compare them with benign pub-
lishers. The top two PUP publishers, both of them PPI
services, are ranked 15 and 24 amongst all software pub-
lishers (benign or not). The top PUP publisher is more
popular than NVIDIA, a leading graphics hardware man-
ufacturer. The programs of those two top PUP publishers
are installed in 1M and 533K hosts in our AV teleme-
try dataset, which we estimate to be two orders of mag-
nitude higher when considering all Internet-connected
hosts. We estimate that each top 20 PUP publisher is
installed on 10M–100M hosts.

We analyze the who-installs-who relationships in the
publisher graph to identify and rank top publishers play-
ing specific roles in the ecosystem. This enables us to
identify 24 PPI services distributing PUP in our analyzed
time period. We also observe that the top PUP adver-
tisers predominantly distribute browser add-ons involved

in different types of advertising and by selling software
licenses for rogueware. We measure PUP distribution
finding that 65% of PUP downloads are performed by
other PUP, that the 24 identified PPI services are respon-
sible for over 25% of all PUP downloads, and that adver-
tiser affiliate programs are responsible for an additional
19% PUP downloads.

We also examine the malware-PUP relationships, in
particular how often malware downloads PUP and PUP
downloads malware. We find 11K events (0.03%) where
popular malware families install PUP for monetization
and 5,586 events where PUP distributes malware. While
there exist cases of PUP publishers installing malware,
PUP–malware interactions are not prevalent. Overall, it
seems that PUP distribution is largely disjoint from mal-
ware distribution. Finally, we analyze the top domains
distributing PUP, finding that domains from PPI services
dominate by number of downloads.

Contributions:

• We perform the first systematic study of PUP preva-
lence and its distribution through PPI services using
AV telemetry comprising 8B events on 3.9M hosts
over a 19-month period.

• We measure PUP prevalence on real hosts finding
that 54% have PUP installed. We rank the top PUP
publishers by installation base, finding that the top
two PUP publishers rank 15 and 24 amongst all (be-
nign and PUP) software publishers. We estimate
that the top 20 PUP publishers are each installed on
10M-100M hosts.

• We build a publisher graph that captures the who-
installs-who relationships between PUP publishers.
Using the graph we identify 24 PPI services and
measure that they distribute over 25% of the PUP.

• We examine other aspects of PUP distribution in-
cluding downloads by advertiser affiliate programs,
downloads of malware by PUP, downloads of PUP
by malware, and the domains from where PUP is
downloaded. We conclude that PUP distribution is
largely disjoint from malware distribution.

2 Overview and Problem Statement

This section first introduces the PPI ecosystem (Sec-
tion 2.1), then details the datasets used (Section 2.2), and
finally describes our problem and approach (Section 2.3).

2

USENIX Association 25th USENIX Security Symposium 741

2

Advertisers

Toolbar
Adware

Rogueware

PPI
Service

Affiliate
Publishers

Target
Hosts

Bundle

Payment

Program

1

3

4

Figure 1: Typical transactions in the PPI market. (�)
Advertisers provide software they want to have installed,
and pay a PPI service to distribute it. (�) Affiliate pub-
lishers register with the PPI service, provide their pro-
gram, and receive a bundle of their program with the PPI
installer. (�) Affiliate publishers distribute their bundle
to target users. (�) The PPI service pays affiliate pub-
lishers a bounty for any successful installations they fa-
cilitated.

2.1 Pay-Per-Install Overview

The PPI market, as depicted in Figure 1, consists of three
main actors: advertisers, PPI services/networks, and af-
filiate publishers. Advertisers are entities that want to in-
stall their programs onto a number of target hosts. They
wish to buy installs of their programs. The PPI service
receives money from advertisers for the service of in-
stalling their programs onto the target hosts. They are
called advertisers because they are willing to pay to pro-
mote their programs, which are offered to a large num-
ber of users by the PPI service. Advertiser programs can
be benign, potentially unwanted (PUP), and occasionally
malware.

Affiliate publishers are entities that sell installs to PPI
services. They are often software publishers that own
programs (e.g., freeware) that users may want to install,
and who offer the advertiser programs to those users in-
stalling their programs. This enables affiliate publishers
to monetize their freeware, or to generate additional in-
come on top of the normal business model of their pro-
grams. They can also be website owners that offer visi-

Country Avg Range
United States $1.30 $0.70-$2.00
United Kingdom $0.80 $0.40-$1.50
Australia $0.40 $0.30-$0.50
Canada $0.40 $0.30-$0.50
France $0.28 $0.15-$0.50
Germany $0.25 $0.10-$0.40
New Zealand $0.23 $0.15-$0.35
Ireland $0.19 $0.15-$0.25
Denmark $0.18 $0.15-$0.20
Austria $0.16 $0.15-$0.20
Netherlands $0.16 $0.10-$0.20
Finland $0.15 $0.10-$0.20
Norway $0.15 $0.05-$0.20
Switzerland $0.12 $0.03-$0.20
Spain $0.11 $0.03-$0.20

Table 1: Top 15 countries with the highest average price
per install collected from 3 PPI services [8,9,50] on June
2016.

tors to download an installer from the PPI service, thus
selling installs on the visitor’s machines. Affiliate pub-
lishers are often referred simply as publishers, but we use
publishers to refer to software owners, and affiliate pub-
lishers for those signing up to PPI services.

The PPI service acts as a middle man that buys installs
from affiliate publishers and sells installs to advertisers.
The PPI service credits the affiliate publisher a bounty
for each confirmed installation, i.e., affiliate displays an
offer for an advertised program and the user approves
and successfully installs the advertised program.

Affiliate publishers are paid between $2.00 and $0.01
per install depending on the geographic location. Prices
vary over time based on offer and demand and the cur-
rent price is typically only available to registered affiliate
publishers. Table 1 shows the prices paid to affiliate pub-
lishers for the most demanded countries on June 25th,
2016 by 3 PPI services that publicly list their prices to
attract affiliate publishers. The highest paid country is
the United States with an average install price of $1.30,
followed by the United Kingdom ($0.80), Australia and
Canada ($0.40), and European countries starting at $0.30
for France. The cheapest installs are $0.03–$0.01 for
Asian and African countries (typically part of a “Rest of
the World” region). In comparison, prices paid to affiliate
publishers by silent PPI services that distribute malware
range $0.18-–$0.01 per install [7]. This shows that mal-
ware distribution can be an order of magnitude cheaper
for the most demanded countries.

3

742 25th USENIX Security Symposium USENIX Association

A common PPI model (depicted in Figure 1) is that the
affiliate publisher provides the PPI service with its pro-
gram executable and the PPI service wraps (i.e., bundles)
the affiliate’s program with some PPI installer software,
and returns the bundle/wrapper to the affiliate publisher.
The affiliate publisher is then in charge of distributing the
bundle to users interested in the affiliate’s program. The
distribution can happen through different vectors such
as websites that belong to the affiliate publisher or up-
loading the bundle to download portals such as Down-
load.com [15] or Softonic [61]. When a user executes the
wrapper, the wrapper installs the affiliate’s program and
during this installation it offers the user to install other
advertised programs. If the user downloads and installs
one of the offers, the PPI service pays a bounty to the
affiliate’s account.

An affiliate publisher can register with a PPI service
even it if it does not own programs that users want to
install. Some PPI services look for affiliate website own-
ers whose goal is to convince visitors of their websites to
download and run an installer from the PPI service. Fur-
thermore, some PPI services offer a pre-wrapped soft-
ware model where the PPI service wraps its own software
titles with the advertiser offers, and provides the bundle
to the affiliate publishers [29]. Some PPI services even
allow affiliate publishers to monetize on third-party free
programs (e.g., GNU).

Some download portals such as Download.com run
their own PPI service. When publishers upload their
programs to the portal (e.g., through Upload.com) they
are offered if they want to monetize their programs. If
so, the download portal wraps the original program and
makes the bundle available for download. In this model
the download portal is in charge of distribution.

Another distribution model are affiliate programs
where an advertiser uses affiliate publishers to distribute
its software directly, without a PPI service. This is a one-
to-many distribution model, in contrast with the many-
to-many distribution model of PPI services.

2.2 Datasets

Our paper leverages several datasets to conduct a sys-
tematic investigation about PUP prevalence and distribu-
tion. We analyze WINE’s binary downloads dataset [16]
to trace PUP installations by real users and their par-
ent/child (downloader/downloadee) relationships, the
list of signed malicious executables from the Malsign
project [35] to cluster together executables signed by
different signers that belong to the same publisher,

Dataset Data Count
WINE Events Analyzed 8 B
01/2013 – 07/2014 Events with Parent 90 M

Total number of Machines 3.9 M
All Files 2.6 M
Parent Files 657 K
Child Files 2 M
Signed Files 982 K
Publishers 6 K
Parent Publishers 1.4 K
Child Publishers 6 K
Events with URL 1.1 M
URLs 290 K
FQDNs 13.4 K
ESLDs 7.5 K

Malsign Signed executables 142 K
VirusTotal Reports 12 M

Feed Reports 11 M
WINE Reports 1.1 M
Malsign Reports 142 K

Table 2: Summary of datasets used.

and VirusTotal [67] reports for enriching the previous
datasets with additional file meta-data (e.g., AV detec-
tions, file certificates for samples not in Malsign). Ta-
ble 2 summarizes these datasets.

WINE. The Worldwide Intelligence Network Environ-
ment (WINE) [17] provides researchers a platform to an-
alyze data collected from Symantec customers that opt-
in to the collection. This data consists of anonymous
telemetry reports about security events (e.g., AV detec-
tions, file downloads) on millions of real computers in
active use around the world.

In this work, we focus on the binary downloads dataset
in WINE, which records meta-data about all executable
files (e.g., EXE, DLL) and compressed archives (e.g.,
ZIP, RAR, CAB) downloaded by Windows hosts regard-
less if they are malicious or benign. Each event in the
dataset can correspond to (1) a download of an exe-
cutable file or compressed archive over the network, or
(2) the extraction of a file from a compressed archive.
For our work, we analyze the following fields: the server-
side timestamp of the event, the unique identifier for the
machine where the event happens, the SHA256 hash of
the child file (i.e., downloaded or extracted), the SHA256
hash of the parent process (i.e., downloader program or
decompressing tool), the certificate subject for the parent
and child files if they are signed, and, when available,
the URL from where the child file was downloaded. The
files themselves are not included in the dataset.

4

USENIX Association 25th USENIX Security Symposium 743

We focus our analysis on the 19 months between Jan-
uary 1st 2013 and July 23rd 2014. As our goal is to an-
alyze PUP (i.e., executables from PUP publishers), we
only monitor the downloads of PUP and the files that are
downloaded by PUP, i.e., events where either the child
or the parent is PUP. This data corresponds to 8 billion
events. The details of the data selection methodology are
explained in Section 3. Out of 8 B events, 90 M events
have information about the parent file that installed the
PUP. Those events comprise 2.6 M distinct executables
out of which 982 K (38%) are signed by 6 K publishers.

A subset of 1.1 M events provide information about
the URL the child executable was downloaded from.
These events contain 290 K unique URLs from 13.4 K
fully qualified domain names (FQDNs). To aggregate the
downloads initiated from the same domain owner, we ex-
tract the effective second-level domain (ESLD) from the
FQDN. For example, the ESLD of www.google.com
is the 2LD google.com, however, the ESLD of
www.amazon.co.uk is the 3LD amazon.co.uk
since different entities can request co.uk subdomains.
We extract the ESLDs of the domains by consulting
Mozilla’s public suffix list [54].

Malsign. To cluster executables in the WINE binary
downloads dataset signed by different entities that belong
to the same publisher, we leverage a dataset of 142 K
signed malware and PUP from the Malsign project [35].
This dataset includes the samples and their clustering
into families. The clustering results are based on stati-
cally extracted features from the samples with a focus on
features from the Windows Authenticode signature [39].
These features include: the leaf certificate hash, leaf cer-
tificate fields (i.e., public key, subject common name and
location), the executable’s hash in the signature (i.e., Au-
thentihash), file metadata (i.e., publisher, description, in-
ternal name, original name, product name, copyright,
and trademarks), and the PEhash [68]. From the clus-
tering results we extract the list of publisher names (sub-
ject common name in the certificates) in the same cluster,
which should belong to the same publisher.

VirusTotal. VirusTotal [67] is an online service that
analyzes files and URLs submitted by users. One of
its services is to scan the submitted binaries with anti-
virus products. VirusTotal also offers a web API to
query meta-data on the collected files including the AV
detection rate and information extracted statically from
the files. We use VirusTotal to obtain additional meta-
data about the WINE files, as well as from 11 M mali-
cious/undesirable executables from a feed. In particular,
we obtain: AV detection labels for the sample, first seen

timestamp, detailed certificate information, and values of
fields in the PE header. This information is not available
otherwise as we do not have access to the WINE files
that are not in Malsign, but we can query VirusTotal us-
ing the file hash. We consider that a file is malicious if at
least 4 AV engines in the VT report had a detection label
for it, a threshold also used in prior works to avoid false
positives [35].

2.3 Problem Statement

In this paper we conduct a systematic analysis of PUP
prevalence and its distribution through PPI services. We
split our measurements in two main parts. First, we mea-
sure how prevalent PUP is. This includes what fraction
of hosts have PUP installed, which are the top PUP pub-
lishers, and what is the installation base of PUP publish-
ers in comparison with benign publishers. Then, we mea-
sure the PPI ecosystem including who are the top PPI
services and PUP advertisers, what percentage of PUP
installations are due to PPI services and advertiser affil-
iate programs, what are the relationships between PUP
and malware, and what are the domains from where PUP
is downloaded.

We do not attempt to differentiate what behaviors
make a program PUP or malware, but instead rely on
AV vendors for this. We leverage the prior finding that
the majority of PUP (and very little malware) is prop-
erly signed. In particular, signed executables flagged
by AV engines are predominantly PUP, while malware
rarely obtains a valid code signing chain due to identity
checks implemented by CAs [35]. Using that finding, we
consider PUP any signed file flagged by at least 4 AV en-
gines. Thus, the term PUP in this paper includes different
types of files that AV vendors flag as PUP including un-
desirable advertiser programs, bundles of publisher pro-
grams with PPI installers, and stand-alone PPI installers.

To measure PUP prevalence, we first identify a list of
dominant PUP publishers extracted from the code sign-
ing certificates from the 11M VT reports from the mal-
ware feed (Section 3). Then, we group publisher names
(i.e., subject strings in code signing certificates) from the
same entity into publisher clusters (Section 4). Finally,
we use the WINE binary reputation data to measure the
PUP installation base, as well as the installation base of
individual PUP and benign publisher clusters (Section 5).
Since we focus on signed executables, our numbers con-
stitute a lower bound on PUP and publisher prevalence.

To measure the PPI ecosystem, we build a publisher
graph that captures the who-installs-who relationships

5

744 25th USENIX Security Symposium USENIX Association

among PUP publishers. We use the graph for identifying
PPI services and PUP advertisers (Section 6). Then, we
measure the percentage of PUP installations due to PPI
services and advertiser affiliate programs (Section 7).
Next, we analyze the downloads of malware by PUP and
the downloads of PUP by malware (Section 8). Finally,
we examine the domains from where PUP is downloaded
(Section 9).

3 Identifying PUP Publishers

The first step in our approach is to identify a list of dom-
inant PUP publishers. As mentioned earlier, prior work
has shown that signed executables flagged by AV engines
are predominantly PUP, while malware is rarely properly
signed. Motivated by this finding, we identify PUP pub-
lishers by ranking publishers of signed binaries flagged
by AV vendors, by the number of samples they sign.

For this, we obtain a list of 11M potentially malicious
samples from a “malware” feed and query them in Virus-
Total to collect their VT reports. From these reports,
we keep only executables flagged by at least 4 AV ven-
dors to make sure we do not include benign samples in
our study. We further filter out executables with invalid
signatures, i.e., whose publisher information cannot be
trusted. These filtering steps leave us with 2.5M bina-
ries whose signatures validated at the time of signing.
These include executables whose certificate chain still
validates, those with a revoked certificate, and those with
expired certificates issued by a valid CA.

From each of the 2.5M signed executables left, we ex-
tract the publisher’s subject common name from the cer-
tificate information in its VT report. Hereinafter, we will
refer to the publisher’s subject common name as pub-
lisher name. Oftentimes, publisher names have some
variations despite belonging to the same entity. For ex-
ample, MyRealSoftware could use both “MyRealSoft-
ware S.R.U” and “MyRealSoftware Inc” in the publisher
name. Thus, we perform a normalization on the pub-
lisher names to remove company suffixes such as Inc.,
Ltd. This process outputs a list of 1,440 normalized PUP
publisher names. Table 11 in the Appendix shows the top
20 normalized PUP publisher names by number of sam-
ples signed in the feed. These 20 publishers own 56% of
the remaining signed samples after filtering.

Clearly, our list does not cover all PUP publishers in
the wild. This would not be possible unless we ana-
lyzed all existing signed PUP. However, the fact that we
analyze 2.5M of undesirable/malicious signed samples
gives us confidence that we cover the top PUP publishers.

Those 1,440 PUP publisher names are used to scan the
file publisher field in WINE’s binary downloads dataset
to identify events that involve samples from those PUP
publishers, i.e., where a parent or child file belongs to
the 1,440 PUP publishers. As shown in Table 2, there
are 8 B such events.

Note that at this point we still do not know whether dif-
ferent publisher names (i.e., entries in Table 11) belong
to the same PUP publisher. For example, some popular
publisher names such as Daniel Hareuveni, Stepan Ry-
bin, and Stanislav Kabin are all part of Web Pick Internet
Holdings Ltd, which runs the InstalleRex PPI service.
The process to cluster publisher names that belong to the
same publisher is described in Section 4.

4 Clustering Publishers

PUP authors use certificate polymorphism to evade de-
tection by certification authorities and AV vendors [35].
Two common ways to introduce certificate polymor-
phism are applying small variations to reuse the same
identity / publisher name (e.g. apps market ltd, APPS
Market Inc., Apps market Incorporated) and using multi-
ple identities (i.e., companies or persons) to obtain code
signing certificates. We cluster publisher names that be-
long to the same publisher according to similarities on
the publisher names, domain names in events with URLs,
and Malsign clustering results.

Publisher name similarity. This feature aims to group
together certificates used by the same identity that have
small variations on the publisher name. Since the WINE
binary downloads dataset contains the publisher name for
parent and child files, this feature can be used even when
a signed sample has no VT report and we do not have the
executable (i.e., not in Malsign). The similarity between
two publisher names is computed in two parts: first de-
rive a list of normalized tokens from each publisher name
through four steps and then compute similarity between
the token lists.

To obtain the token list of a publisher name, the first
step is to extract parenthesized strings as separate tokens.
For example, given the publisher name “Start Playing
(Start Playing (KnockApps Limited))” this step produces
3 tokens: “Start Playing”, “Start Playing”, and “Knock-
Apps Limited”. The second step converts each token to
lowercase and removes all non-alphanumeric characters
from the token. The third step removes from the tokens
company extensions (e.g., ltd, limited, inc, corp), geo-
graphical locations (e.g., countries, cities), and the string

6

USENIX Association 25th USENIX Security Symposium 745

Publishers Clusters Singletons Largest Median
6,066 5,074 4,534 103 1

Table 3: Publisher clustering results.

“Open Source Developer”, which appears in code sign-
ing certificates issued to individual developers of open
source projects. Finally, tokens that have less than 3 char-
acters and duplicate tokens are removed.

To compute the similarity between two token lists, for
each pair of publisher names P1 and P2, we calculate
the normalized edit distance among all token pairs (ti, t j)
where ti belongs to P1 and t j to P2. If the edit distance
between P1 and P2 is less than 0.1, we consider these
two publishers to be the same. We selected this thresh-
old after experimenting with different threshold values
over 1,157 manually labeled publisher names. The edit
distance threshold of 0.1 allowed us grouping the 1,157
publisher names into 216 clusters with 100% precision,
81.9% recall, and 86.4% F1 score.

Child download domains. If child executables signed
by different publisher names are often downloaded from
the same domains, that is a good indication that the pub-
lisher names belong to the same entity. To capture this
behavior, we compute the set of ESLDs from where files
signed by the same publisher name have been down-
loaded. Note that we exclude ESLDs that correspond
to file lockers and download portals as they are typically
used by many different publishers. The publisher names
whose Jaccard Index of their ESLD sets is over 0.5 are
put to the same cluster.

Parent download domains. Similarly, if parent files
signed by different publisher names download from a
similar set of domains, this indicates the publisher names
likely belong to the same entity. This feature first com-
putes the set of ESLDs from where parent files signed by
the same publisher name download (excluding file lock-
ers and download portals). Publisher names whose Jac-
card Index is over 0.5 are put to the same cluster.

Malsign clustering. For each Malsign cluster we extract
the list of distinct publisher names used to sign executa-
bles in the cluster, i.e., Subject CN strings extracted from
certificates for files in the cluster. We consider that two
publisher names in the same Malsign cluster belong to
the same publisher.

Final clustering. We group publisher names into the
same cluster if they satisfy at least one of the first 3 fea-
tures explained above or are in the same Malsign cluster.
Table 3 summarizes the clustering, which produces 5,074
clusters from 6,066 publisher names.

5 PUP Prevalence

In this Section, we measure the prevalence of PUP, based
on the number of hosts in the WINE binary downloads
dataset (i.e., WINE hosts) that have installed programs
from PUP publishers. We measure the total number of
WINE hosts affected by PUP, rank PUP publishers by in-
stallation base, and compare the installation base of PUP
publishers to benign publishers.

We first compute the detection ratio (DR) for each
cluster, which is the number of samples signed by pub-
lishers in the cluster flagged by at least 4 AVs, divided
by the total number of samples in the cluster for which
we have a VT report. We mark as PUP those clusters
with DR > 5%, a threshold chosen because is the lowest
that leaves out known benign publishers. From this point
on, when we refer to PUP publishers, we mean the 915
publisher clusters with DR > 5%.

Note that the number of WINE hosts with installed
programs from a publisher cluster constitutes a quite con-
servative lower bound on the number of hosts across
the Internet that have programs installed from that pub-
lisher. It captures only those Symantec customers that
have opted-in to share data and have been sampled into
WINE. If we take into account that Symantec only had
8% of the AV market share in January 2014 [47] and that
only 1

16 of Symantec users that opt-in to share telemetry
are sampled into WINE [6], we estimate that the number
of WINE hosts is two orders of magnitude lower than
the corresponding number of Internet-connected hosts.
Furthermore, we do not count WINE hosts with only un-
signed PUP executables installed.

PUP prevalence. We find 2.1M WINE hosts, out of a to-
tal 3.9M WINE hosts in our time period, with at least one
executable installed from the 915 PUP clusters. Thus,
54% of WINE hosts have PUP installed. This ratio is a
lower bound because we only count signed PUP executa-
bles (i.e., we ignore unsigned PUP executables) and also
because our initial PUP publisher list in Section 3 may
not be complete. Thus, PUP is prevalent: more than half
of the hosts examined have some PUP installed.

Top PUP publishers. Table 4 shows the top 20 PUP
publishers by WINE installation base and details the
cluster name, whether the publisher is a PPI service (this
classification is detailed in Section 6), the number of pub-
lisher names in the cluster, detection ratio, and host in-
stallation base. The number of publishers ranks from sin-
gleton clusters up to 48 publishers for IronSource, an Is-
raeli PPI service. The installation bases for the top 20
PUP publishers range from 200K up to over 1M for Pe-

7

746 25th USENIX Security Symposium USENIX Association

Cluster PPI Pub DR Hosts
1 Perion Network ✓ 5 52% 1.0M
2 Mindspark � 1 85% 533K
3 Bandoo Media � 5 46% 373K
4 Web Pick ✓ 21 79% 346K
5 IronSource ✓ 48 81% 332K
6 Babylon � 1 38% 330K
7 JDI BACKUP � 1 56% 328K
8 Systweak � 3 37% 320K
9 OpenCandy ✓ 1 55% 311K

10 Montiera Technologies � 2 54% 303K
11 Softonic International � 2 70% 292K
12 PriceGong Software � 1 18% 292K
13 Adknowledge ✓ 7 75% 277K
14 Adsology � 2 77% 276K
15 Visual Tools � 2 70% 275K
16 BitTorrent � 1 40% 271K
17 Wajam � 2 87% 218K
18 W3i ✓ 4 93% 216K
19 iBario ✓ 15 84% 208K
20 Tuguu ✓ 14 94% 200K

Table 4: Top 20 PUP publishers by installation base.

rion Network, an Israeli PPI service that bought the op-
erations of the infamous Conduit toolbar in 2013. As
explained earlier, these numbers are a quite conserva-
tive lower bound. We estimate the number of Internet-
connected computers for these publishers to be two or-
ders of magnitude larger, in the range of tens of millions,
and up to a hundred million, hosts. We have found anec-
dotal information that fits these estimates. For example,
an adware developer interviewed in 2009 claimed to have
control over 4M machines [12].

Comparison with benign publishers. Table 5 shows
the top 20 publisher clusters, benign and PUP, in WINE.
The most common publishers are Microsoft and Syman-
tec that are installed in nearly all hosts. The Perion Net-
work / Conduit PPI network ranks 15 overall. That is,
there are only 14 benign software publishers with a larger
installation base than the top PUP publisher. Perion Net-
work is more prevalent than well known publishers such
as Macrovision and NVIDIA. The second PUP publisher
(Mindspark Interactive Network) has the rank 24. This
highlights that top PUP publishers are among the most
widely installed software publishers.

A reader may wonder if we could also compute the in-
stallation base for malware families. Unfortunately, due
to malware being largely unsigned and highly polymor-
phic, we would need to first classify millions of files in
WINE (without having access to the binaries) before we
can perform the ranking.

Cluster PUP Hosts
1 Microsoft � 3.9M
2 Symantec � 3.8M
3 Adobe Systems � 3.5M
4 Google � 3.1M
5 Apple � 1.8M
6 Intel � 1.6M
7 Sun Microsystems � 1.6M
8 Cyberlink � 1.6M
9 GEAR Software � 1.5M

10 Hewlett-Packard � 1.5M
11 Oracle � 1.4M
12 Skype Technologies � 1.3M
13 Mozilla Corporation � 1.0M
14 McAfee � 1.0M
15 Perion Network / Conduit ✓ 1.0M
16 WildTangent � 941K
17 Macrovision Corporation � 802K
18 LEAD Technologies � 775K
19 NVIDIA Corporation � 722K
20 Ask.com � 624K
24 Mindspark Interactive Network ✓ 533K

Table 5: Top publishers by install base (benign and PUP).

6 Classifying Publishers

Among the 5,074 PUP publisher clusters obtained in
Section 4 we want to identify important clusters play-
ing a specific role in the ecosystem. In particular, we
want to identify clusters that correspond to PPI services
and to examine the type of programs distributed by the
dominant advertisers. For this, we first build a publisher
graph that captures the who-installs-who relationships.
Then, we apply filtering heuristics on the publisher graph
to select a subset of publishers that likely hold a specific
role, e.g., PPI service. Finally, we manually classify the
filtered publishers into roles by examining Internet re-
sources, e.g., publisher web pages, PPI forums, and the
Internet Archive [32].

Publisher graph. The publisher graph is a directed
graph where each publisher cluster is a node and an edge
from cluster CA to cluster CB means there is at least
one event where a parent file from CA installed a child
file from CB. Self-edges are excluded, as those indicate
program updates and downloads of additional compo-
nents from the same publisher. Note that an edge cap-
tures download events between parent and child clusters
across all hosts and the 19 months analyzed. Thus, the
publisher graph captures the who-installs-who relation-
ships over that time period, enabling a birds-eye view of
the ecosystem.

8

USENIX Association 25th USENIX Security Symposium 747

Figure 2: Cluster in-degree distribution.

Figure 3: Cluster out-degree distribution.

In-degree and out-degree. We first measure the in-
degree and out-degree of each cluster in the publisher
graph. The in-degree is the count of distinct parent pub-
lisher clusters that install programs from a child pub-
lisher cluster. Intuitively, publishers with a high in-
degree are installed by many other publishers, which in-
dicates that they are buying installs. The out-degree is
the count of distinct child publisher clusters installed by
a parent publisher cluster. Intuitively, publishers with a
high out-degree install many other publishers, which in-
dicates that they are selling installs.

To compute a cluster’s in-degree we filter out 12 be-
nign parent clusters that correspond to tools that down-
load large numbers of executables from different pub-
lishers such as browsers, BitTorrent clients, and Drop-
box. To compute a cluster’s out-degree we exclude be-
nign child publishers (DR < 5%) that are typically de-
pendencies.

Figure 2 shows the in-degree distribution. 57% of the
clusters have no parents (i.e., installed by unsigned files

only). Another 21.5% have one. These are typically in-
stalled only by parents in the same cluster. Only 224
(4.4%) clusters have an in-degree larger than 10. We
call these high in-degree clusters. Figure 3 shows the
out-degree distribution. 572 clusters (11%) have an out-
degree larger than zero and only 133 (2.6%) clusters have
an out-degree larger than 10. We call these high out-
degree clusters.

PPI services. To identify PPI services in the publisher
graph, we first select all PUP publisher clusters with
both high in-degree and high out-degree (i.e., DR ≥
5%∧ ID ≥ 10∧OD ≥ 10), which indicate these publish-
ers are buying and selling installs. This rule reduces the
5,074 clusters to 49 candidate publisher clusters. Next,
we manually classify those 49 clusters through extensive
analysis using PPI forums, publisher websites, and the
Internet Archive. Of those 49 clusters, we classify 22 as
PPI services, 12 as advertisers that run an affiliate pro-
gram, 8 as advertisers without an affiliate program; 3
as download portals (Download.com, BrotherSoft, Soft-
onic), and 4 as PUP publishers that distribute free down-
load tools (e.g., BitTorrent clients). The latter tools in-
flate the out-degree of their publishers and were not in-
cluded in our whitelist of download tools due to the high
DR of their publishers. Our manual analysis also reveals
two additional PPI services (7install and Install Monster)
that were missed by our rule because they do not achieve
high enough in-degree and out-degree, either because of
low popularity or because they appear at the end of our
observation period.

Table 6 summarizes the 24 identified PPI services
sorted by installation base. For each cluster, it shows
the name of the PPI service, in-degree, out-degree, in-
stallation base, detection ratio, and number of publishers
in the cluster. The classification reveals that 3 of the top
5 PUP publishers by installation base in Table 4 are PPI
services. Thus, the most popular PUP publishers are PPI
services. Some of the PPI services identified no longer
work at the time this paper is published, e.g., OneIn-
staller, but their PPI service front-ends are present in the
Internet Archive.

During our manual analysis we keep track of all PPI
services we find advertised on the Internet, e.g., on PPI
forums. In addition to the 24 PPI services in Table 6 we
identify another 12 PPI services, shown in Table 12 in
the Appendix. There are several reasons for which we
do not observe those 12 PPI services in our data. First,
some of them are simply resellers that pay affiliate pub-
lishers to distribute bundles or downloaders for other PPI
services. Second, PPI services may have been launched

9

748 25th USENIX Security Symposium USENIX Association

Cluster PPI Service ID OD Hosts DR Pub.
1 Perion Network/Conduit CodeFuel [10] 168 63 1 M 52% 5
2 Yontoo Sterkly [63] 53 17 601 K 93% 103
3 iBario RevenueHits [56] 62 36 479 K 84% 16
4 Web Pick InstalleRex [27] 65 22 346 K 79% 21
5 IronSource InstallCore [26] 73 112 332 K 81% 48
6 OpenCandy OpenCandy [46] 91 36 311 K 55% 1
7 Adknowledge Adknowledge [20] 53 48 277 K 75% 7
8 W3i NativeX [41] 38 49 216 K 93% 4
9 Somoto BetterInstaller [5] 60 70 209 K 96% 5

10 Firseria Solimba [62] 41 30 209 K 94% 9
11 Tuguu DomaIQ [13] 49 16 200 K 94% 14
12 Download Admin DownloadAdmin [14] 25 16 192 K 73% 2
13 Air Software AirInstaller [3] 33 41 191 K 79% 1
14 Vittalia Internet OneInstaller [45] 27 29 155 K 71% 18
15 Amonetize installPath [31] 50 63 154 K 93% 2
16 SIEN Installbay [25] 34 33 139 K 80% 2
17 OutBrowse RevenYou [57] 22 41 86 K 94% 4
18 Verti Technology Group Verti [66] 17 39 47 K 44% 1
19 Blisbury Smart WebAds [60] 19 30 46 K 77% 2
20 Nosibay Nosibay [44] 19 20 30 K 75% 1
21 ConversionAds ConversionAds [11] 10 38 24 K 72% 1
22 Installer Technology InstallerTech [28] 10 14 11 K 56% 1
23 7install 7install [1] 2 0 75 12% 1
24 Install Monster Install Monster [30] 3 1 9 100% 1

Table 6: PPI services services identified sorted by installation base.

(or gained popularity) after the end of our observation
period (e.g., AdGazelle). Third, some PPI services may
distribute unsigned bundles or downloaders. For exam-
ple, we examined over 30K samples that AV engines la-
bel as belonging to the InstallMonetizer PPI service, of
which only 8% were signed. Finally, some PPI services
may have so low volume that they were not observed in
our initial 11 M sample feed.

Advertisers. To identify advertisers in the publisher
graph, we first select PUP clusters with high in-degree,
low out-degree, and for which at least one parent is one
of the 24 PPI services (i.e., DR ≥ 5%∧ ID ≥ 10∧OD ≤
9∧PPPI > 0). Advertisers pay to have their products in-
stalled (i.e., buy installs) and may not install other pub-
lishers for monetization as they know how to monetize
the machines themselves. Since buying installs costs
money, they need to generate enough income from the
installations to offset that cost. This filtering identifies
77 clusters, which we manually examine to identify the
main product they advertise (they can advertise multiple
ones) and whether they run an affiliate program where
they pay affiliates to distribute their programs. We also
include in this analysis the 20 advertiser clusters manu-
ally identified in the PPI service identification above.

Table 7 shows the top 30 advertiser clusters by instal-
lation base. The table shows the cluster name, whether
it runs an affiliate program, in-degree, out-degree, de-
tection ratio, installation base, the number of parent PPI
service nodes, the number of child PPI service nodes,
the main product they install, and whether they install
browser add-ons (BAO). The latter includes any type of
browser add-ons such as toolbars, extensions, plugins,
browser helper objects, and sidebars.

The data shows that 18 of the 30 top advertisers install
browser add-ons. Those browser add-ons enable moneti-
zation through Web traffic, predominantly through differ-
ent types of advertisement. Common methods are mod-
ifying default search engines to monetize searches (e.g.,
SearchResults, Delta Toolbar, Imminent Toolbar), shop-
ping deals and price comparisons (e.g., PriceGong, Pri-
cePeep, DealPLY, SupremeSavings), and other types of
advertisement such as pay-per-impression and pay-per-
action (e.g., Widgi Toolbar, Inbox Toolbar).

The 12 advertisers that focus on client applications
monetize predominantly through selling licenses and
subscriptions. The main group is 6 publishers adver-
tising rogueware claiming to improve system perfor-
mance (Regclean Pro, Optimizer Pro, SpeedUpMyPC,

10

USENIX Association 25th USENIX Security Symposium 749

Cluster Aff ID OD DR Hosts PPPI CPPI Main Product BAO
1 Xacti � 57 9 22% 563 K 13 1 RebateInformer ✓
2 Mindspark ✓ 62 17 85% 533 K 3 5 Mindspark Toolbar ✓
3 Bandoo Media ✓ 86 108 46% 373 K 7 18 MediaBar ✓
4 Babylon ✓ 83 14 38% 330 K 16 3 Babylon Toolbar ✓
5 JDI Backup Limited ✓ 71 19 56% 328 K 17 3 MyPC Backup �

6 Systweak ✓ 81 24 37% 320 K 7 2 Regclean Pro �

7 Montiera Technologies � 37 2 66% 303 K 8 1 Delta Toolbar ✓
8 PriceGong Software � 12 0 17% 292 K 6 0 PriceGong ✓
9 Adsology ✓ 62 12 77% 276 K 17 1 OptimizerPro �

10 Wajam � 42 5 87% 218 K 11 2 Wajam ✓
11 Visicom Media � 13 2 14% 185 K 4 0 VMN Toolbar ✓
12 Linkury � 46 2 54% 174 K 13 0 SmartBar ✓
13 Uniblue Systems ✓ 64 13 11% 160 K 10 1 SpeedUpMyPC �

14 Search Results � 35 3 79% 159 K 12 2 SearchResults ✓
15 Bitberry Software ✓ 13 64 88% 130 K 1 7 BitZipper �

16 Iminent � 13 1 74% 118 K 4 1 Iminent Toolbar ✓
17 DealPly Technologies � 43 0 93% 108 K 16 0 DealPly ✓
18 Smart PC Solutions ✓ 38 0 32% 106 K 13 0 PC Speed Maximizer �

19 DVDVideoSoft � 15 2 18% 101 K 3 1 Free Studio �

20 Spigot ✓ 17 1 39% 101 K 1 1 Widgi Toolbar ✓
21 Web Cake � 34 2 98% 97 K 16 2 Desktop OS ✓
22 GreTech ✓ 13 1 21% 90 K 3 1 GOM Player �

23 Digital River ✓ 17 0 10% 80 K 1 0 DR Download Manager ✓
24 Widdit ✓ 20 16 27% 79 K 4 2 HomeTab ✓
25 EpicPlay � 12 4 90% 77 K 3 1 EpicPlay �

26 Iobit Information Technology ✓ 18 8 6% 73 K 3 1 Advanced SystemCare �

27 DT Soft � 14 2 22% 68 K 2 1 DAEMON Tools �

28 Innovative Apps � 14 1 68% 60 K 7 0 Supreme Savings ✓
29 Woolik Technologies � 13 9 70% 50 K 4 1 Woolik Search Tool ✓
30 Visual Software Systems ✓ 22 12 62% 42 K 5 3 VisualBee �

Table 7: Top 30 advertiser clusters by installation base. For each publisher cluster it shows: whether we found an
affiliate program (Aff), the in-degree (IN), out-degree (OD), detection ratio (DR), installation base (Hosts), number
of parent PPI services (PPPI), number of child PPI services (CPPI), the main product advertised, and whether that
product is a browser add-on (BAO) including toolbars, extensions, sidebars, and browser helper objects.

Event Type Count
All PUP downloads 40.1M

Unsigned parent 11.5M
Signed parent 28.6M

Benign parent 7.4M
PUP parent 21.2M

PPI 7.3M
Adv. affiliate program 5.5M

Table 8: Analysis of PUP download events.

PC Speed Maximizer, Advanced System Care, DAE-
MON Tools). These rogueware try to convince users to
buy the license for the full version. We also observe mul-
timedia tools (Free Studio, GOM Player), backup tools
(MyPC Backup), game promotion (EpicPlay), compres-
sors (BitZipper), and presentation tools (Visual Bee).

7 PUP Distribution Methods.

This section measures the distribution of PUP through
PPI services and affiliate programs. The relevant data is
provided in Table 8. From the 90 M events with par-
ent information, we first find the events with child files
that are signed by PUP publishers (40.1M events). Then,
we investigate the parents that installed them. In 28.6M
(71%) of these events, parents were signed, therefore
allowing us to go further in our search for finding the
parents who are PPIs. 7.4M (35%) of the these parents
correspond to Web browsers and other benign download
programs such as BitTorrent clients and Dropbox. The
remaining 21.2M (65%) events have a PUP parent. This
indicates that the majority of PUP is installed by other
PUP. In particular, for 7.3M out of 21.2M events (34%)

11

750 25th USENIX Security Symposium USENIX Association

with PUP parent, the parent corresponds to one of the
24 PPI services identified in Table 6. And, for another
5.5M (26%) events the parent corresponds to one of the
21 affiliate programs identified in Section 6. From these
statistics, we can conclude that PUPs are generally in-
stalled by other PUPs and moreover, over 25% of the
PUP download events are sourced by PPI services, and
another 19% by advertisers with affiliate programs.

8 PUP–Malware Relationships

We are interested in understanding if there is any form
of relationship between PUP and malware and if mal-
ware uses the PPI services we identified. In particular
we would like to measure the percentage of PUP that in-
stalls malware or is installed by malware. Here, the obvi-
ous challenge is to accurately label malware in the WINE
dataset. While the majority of properly signed executa-
bles flagged by AV engines are PUP, unsigned executa-
bles flagged by AV engines can be PUP or malware and
there are a few malware that are signed.

To address these issues, we use AVClass, a recently re-
leased malware labeling tool [58]. Given the VT reports
of a large number of executables, AVClass addresses the
most important challenges in extracting malware family
information from AV labels: label normalization, generic
token detection, and alias detection. For each sample, it
outputs a ranking of the most likely family names ranked
by the number of AV engines assigning that family to
the sample. Since AV labels can be noisy [4], we fo-
cus on executables for which the top family AVClass
outputs is in a precomputed list of 70 malware families
that includes prevalent families such as zbot, zeroaccess,
reveton, virut, sality, shylock, and vobfus. Clearly, our
methodology is not 100% accurate, but allows us to gain
insight on the relationships between malware and PUP.

PUP downloading malware. One way malware authors
could relate to PUP could be by signing up as advertis-
ers to PPI services to distribute their malware. To iden-
tify such cases, we look for PUP publishers that down-
load executables from one of the 70 malware families
considered. What we have found out is that there is a
link between 71 of the PUP publisher clusters to mal-
ware. Those publishers distribute malware from 40 fam-
ilies through 5,586 download events. Out of those 71
clusters, 11 are classified as PPI services in Section 6.
Those PPI services generate 35% of the 5,586 malware
downloads by PUP. For example, Perion Network, the
most popular PPI service, downloads instances of zbot,
shylock, and andromeda trojans. We also observe at the

end of 2013 iBario downloading instances of sefnit click-
fraud malware as reported by TrendMicro [38]. Clearly,
5,586 downloads is a low number, which may indicate
that malware favors silent distribution vectors and that
PPI services are careful to avoid malware to preserve
their reputation towards security vendors. We only ob-
serve occasional events spread amongst multiple PPI ser-
vices, possibly due to insufficient checks by those PPI
services. Another factor of influence may be that installs
through these PPIs can be an order of magnitude more
expensive than those from silent PPIs, as shown in Sec-
tion 2.1.

Malware downloading PUP. Malware authors could
also sign up as affiliate publishers to PPI services to
monetize the compromised machines by selling installs.
To capture this behavior, we analyzed PUP downloaded
by samples from the 70 malware families considered.
We found 11K downloads by malware from 25 fami-
lies. These malware samples downloaded executables
from 98 PUP publisher clusters. 88% of these downloads
were generated by 3 malware families: vobfus, badur,
and delf. 7 of the 98 PUP publisher clusters belong to the
PPI services category. For example, we observe zeroac-
cess installing files from the DomaIQ PPI service. Over-
all, malware downloading PUP is a more common event
than PUP downloading malware, but still rare, affecting
only 0.03% of all events where PUP is downloaded.

The conclusion of this analysis is that while PUP–
malware interactions exist, they are not prevalent and
malware distribution seems disjoint from PUP distribu-
tion. Observed malware–PPI service interactions do not
focus on a few misbehaving PPI services, but rather seem
to occasionally affect many PPI services.

9 Domain Analysis

In this section we analyze the 1.1 M events that contain
a URL, and in particular the domains (ESLDs) in those
URLs. The events that contain a URL allow us to identify
publishers that download from and are downloaded from
a domain. Note that the domains we extract from this
dataset are used for hosting and distributing executables
and do not cover all of the domains used by PUP. We
identify 3 main types of domains from our analysis:

• File lockers. Cloud storage services used for
backup or sharing executables between users. They
exhibit a high number of client publishers being
downloaded from them, most of which are benign
(e.g., Microsoft, Adobe, AutoDesk). These ESLDs
also host a front-end website for users.

12

USENIX Association 25th USENIX Security Symposium 751

• Download portals. They also distribute programs
from a high number of publishers, predominantly
free software publishers and their own PPI services.
They also host a front-end website.

• PPI services. Used by PPI services to host their
wrappers and advertised programs. These ESLDs
do not host a front-end website as they are accessed
by PPI installers, rather than humans.

Rank by downloaded publishers. Table 9 shows the
top 20 ESLDs by number of child publishers signing files
downloaded from that ESLD. The 4 tick-mark columns
classify the domain as file locker (FL), download portal
(DP), PPI service (PPI), or other (Oth). Of the 20 ES-
LDs, 15 correspond to file lockers, 2 to download portals,
and another 2 to PPI services. The remaining domain is
file.org, a portal where users can enter a file exten-
sion to find a tool that can open files with that extension.
The publisher behind this portal uses it to promote its
own free file viewer tool, which is offered as the best
tool to handle over 200 file extensions.

If we give a vote to the top 3 publishers downloaded
from each of the 15 file lockers (45 votes), Microsoft gets
13, Adobe 11, Cyberlink 4, and AutoDesk 3. The rest are
popular benign publishers such as Ubisoft, VMWare, and
Electronic Arts. Thus, file lockers predominantly dis-
tribute software from reputable publishers.

For the two download portals, the publishers down-
loaded from them correspond to their own PPI ser-
vice (i.e., bundles signed by “CBS Interactive” from
cnet.com), free software publishers, and PPI services.
For edgecastcdn.net all 67 publishers are part of
the same PPI service run by the Yontoo group. The
domain d3d6wi7c7pa6m0.cloudfront.net be-
longs to the Adknowledge PPI service and distributes
their advertiser programs. Among those advertiser pro-
grams we observe bundles signed by other PPI services,
which may indicate arbitrageurs who try to take advan-
tage of pricing differentials among PPI services [7].

Rank by downloads. Table 10 ranks the top 20 do-
mains by number of downloads. It shows the ESLD,
the type (file locker, download portal, PPI service, ad-
vertiser, other), the cluster that owns the domain, the
number of downloads, the number of publishers of the
downloaded executables, and the number of distinct files
downloaded. We label each domain as belonging to the
cluster that signs most executables downloaded from the
domain. The publisher in the other category is Frostwire,
which distributes a popular free BitTorrent client.

ESLD FL DP PPI Oth Pub
uploaded.net ✓ 366
cnet.com ✓ 142
extabit.com ✓ 128
share-online.biz ✓ 125
4shared.com ✓ 120
rapidgator.net ✓ 90
depositfiles.com ✓ 76
mediafire.com ✓ 73
edgecastcdn.net ✓ 67
chip.de ✓ 53
zippyshare.com ✓ 49
uloz.to ✓ 48
file.org ✓ 47
putlocker.com ✓ 47
d3d6wi7c7pa6m0.cf ✓ 44
turbobit.net ✓ 44
freakshare.com ✓ 41
rapidshare.com ✓ 40
ddlstorage.com ✓ 38
bitshare.com ✓ 38

Table 9: Top 20 ESLDs by number of distinct publish-
ers of downloaded executables. FL means file locker,
DP download portal, PPI pay-per-install service, and
Oth other. For brevity, d3d6wi7c7pa6m0.cf stands for
d3d6wi7c7pa6m0.cloudfront.net.

Table 10 shows that PPI domains dominate in terms
of downloads, but distribute a smaller number of child
publishers compared to file lockers and download portals
that dominate Table 9. It also shows that it is possible to
link download domains to the publishers that own them
based on the signature of files they distribute, despite the
domains being typically registered by privacy protection
services.

10 Discussion

Unsigned PUP. Our work focuses on signed PUP exe-
cutables based on the prior observation that most signed
samples flagged by AV engines are PUP [35]. However,
this means that we will miss PUP publishers if they dis-
tribute only unsigned executables. Also, our PUP preva-
lence measurements are only a lower bound since there
may be hosts with only unsigned PUP installed. In con-
current work, Thomas et al. [65] infiltrate 4 PPI services
observing that only 58% of the advertiser software they
distribute is signed. Thus, we could be missing as much
as 42% of PUP software, but we expect a much smaller
number of hosts will only have unsigned PUP installed.

13

752 25th USENIX Security Symposium USENIX Association

ESLD FL DP PPI Ad Oth Cluster Downl. Pub. Children
conduit.com ✓ Perion Network 138,480 2 727
edgecastcdn.net ✓ Yontoo 106,449 67 1,148
frostwire.com ✓ Frostwire 53,592 1 2,511
ask.com ✓ Ask 40,939 6 125
imgfarm.com ✓ Mindspark 26,498 6 3,209
ilivid.com ✓ Bandoo Media 25,429 5 905
conduit-services.com ✓ Perion Network 21,149 8 1,345
adpk.s3.amazonaws.com ✓ Adpeak 14,513 2 36
airdwnlds.com ✓ Air Software 14,342 1 13,389
ncapponline.info ✓ Web Pick 13,974 11 13,252
uploaded.net ✓ Cyando 10,886 366 7,816
storebox1.info ✓ Web Pick 10,109 13 9,561
oi-installer9.com ✓ Adknowledge 8,360 4 7,892
4shared.com ✓ 4shared 8,222 120 5,649
systweak.com ✓ Systweak 8,104 4 509
mypcbackup.com ✓ JDI Backup Limited 7,837 1 43
greatfilesarey.asia ✓ Web Pick 7,699 8 7,296
incredimail.com ✓ Perion Network 7,408 3 2,571
softonic.com ✓ Softonic 6,980 36 3,869
nicdls.com ✓ Tuguu 6,908 14 1,704

Table 10: Top ESLDs by number of downloads from them. The two rightmost columns are the number of publishers
and files of the downloads.

Affiliate publisher analysis. We have classified pub-
lisher clusters as PPI services and advertisers, but we
have not examined affiliate publisher clusters. One chal-
lenge with affiliate publishers is that when distribution
happens through a stand-alone PPI installer (rather than
bundles) both the advertiser program and the affiliate
publisher program may appear as children of the PPI ser-
vice in the publisher graph. It may be possible to measure
the number of affiliates for some PPI services by analyz-
ing URL parameters of download events. We leave this
analysis to future work.

Other distribution models. We have examined PUP
distribution through PPI services and advertiser affili-
ate programs. However, other distribution models ex-
ist. These include bilateral distribution agreements be-
tween two parties (e.g., Oracle’s Java distributing the
Ask toolbar [34]) and pre-installed PUP (e.g., Superfish
on Lenovo computers [21]). We observe Superfish dis-
tributed through PPI services prior to the Lenovo agree-
ment, which started in September 2014 after our analysis
period had ended. We leave the analysis of such distribu-
tion models to future work.

Observation period. Our observation period covers 19
months from January 2013 to July 2014. Unfortunately,
WINE did not include newer data at the time of our
study. Thus, we miss newer PUP publishers that joined
the ecosystem after our observation period. However, the

vast majority of PUP publishers examined are still alive
at the time of writing.

Internet population. We have measured the installation
base of PUP (and benign) publishers on WINE hosts. We
have also estimated that our measured WINE population
may be two orders of magnitude lower than that of hosts
connected to the Internet. But, we concede that this esti-
mation is rough and could be affected by different factors
such as selection bias.

11 Related Work

PUP. Potentially unwanted programs have received little
attention from academia. In 2005–2007 Edelman stud-
ied the deceptive installation methods by spyware and
other unwanted software [19]. In 2012, Pickard and Mi-
ladinov [52] studied a PUP rogue anti-malware software
concluding that while not malicious, it only detected
0.3% of the malware and its main purpose was convinc-
ing the user to pay the license. Recently, some works
have hinted at the increased prevalence and importance
of PUP. Thomas et al. [64] study ad injectors, a type of
PUP that modifies browser sessions to inject advertise-
ments, finding that 5% of unique daily IP addresses ac-
cessing Google are impacted. In follow up work, Jagpal
et al. [33] design WebEval, a system to identify mali-

14

USENIX Association 25th USENIX Security Symposium 753

cious extensions at the core of ad injection. Kotzias et
al. [35] analyze abuse in Windows Authenticode by ana-
lyzing 356K samples from malware feeds. They find that
PUP has been quickly increasing feeds since 2010, that
the vast majority of properly signed samples are PUP,
and that PUP publishers use high file and certificate poly-
morphism to evade security tools and CA defenses such
as identity validation and revocation.

In concurrent work, Thomas et al. [65] analyze the ad-
vertiser software distributed to US hosts by 4 PPI ser-
vices (OutBrowse, Amonetize, OpenCandy, InstallMon-
etizer). They also use SafeBrowsing data to measure
that PPI services drive over 60 million download events
every week, nearly three times that of malware. Both
works are complementary in their study of PPI services
and measuring users affected by PUP. They use a top-
to-bottom approach of infiltrating a few PPI services
plus SafeBrowsing data, while we perform a bottom-to-
top approach starting from files installed on end hosts.
We analyze 19 months from January 2013 to July 2014,
while they analyze 12 months from August 2015 to July
2016. By examining download events on 3.9M WINE
hosts in different countries, our approach enables us to
measure PUP prevalence and achieves a broader cover-
age of the PPI ecosystem. We observe 23 PPI services
including 3 of the 4 in their study. The missing PPI
service is InstallMonetizer, which distributes mostly un-
signed installers.

Also in concurrent work, Nelms et al. [42] analyzed
web-based social engineering attacks that use deceiving
advertisements to convince users to download unwanted
software. They find that most programs distributed this
way are bundles of free software with PUP.

Malware distribution. Prior work has studied malware
distribution through different vectors, which differs from
our focus on PUP distribution. Moschuk et al. [40] crawl
18M URLs finding that 5.9% were drive-by downloads
and 13.4% lead to spyware. Provos et al. [53] study the
prevalence of distribution through drive-by downloads.
Grier et al. [22] analyze the commoditization of drive-
by downloads and compare malware distribution through
different vectors, concluding that drive-by downloads
dominate. Caballero et al. [7] study malware distribution
through PPI services. The PPI services we study differ
in that installations are not silent and are mostly used by
PUP and benign software. Kwon et al. [36] recently use
WINE data to investigate malware distribution through
downloaders. Their work differs in that they do not dis-
tinguish malware from PUP and in that they analyze file
download graphs for individual machines. Instead, we

analyze download relationships between publishers on
aggregate over 3.9M machines over a 19 month time pe-
riod, focusing on PUP distribution through PPI services
and affiliate programs.

12 Conclusion

We have performed the first systematic study of PUP
prevalence and its distribution through PPI services. By
using AV telemetry comprising of 8 billion events on 3.9
million hosts over 19 months, we have found that over
half (54%) of the examined hosts have PUP installed.
The top PUP publishers are highly popular; the top PUP
publisher ranks 15 amongst all software publishers (be-
nign or not). We have built the publisher graph that cap-
tures the who-installs-who relationships between PUP
publishers. We have identified that 65% of the PUP is in-
stalled by other PUP and that 24 PPI services distribute
over 25% of the PUP and advertiser affiliate programs
an additional 19%. We have examined the PUP-malware
relationships finding 11K events where popular malware
families install PUP for monetization and 5,586 events
where PUP distributes malware. PUP-malware interac-
tions are not prevalent and seem to occasionally affect
most top PPI services. We conclude that PUP distribu-
tion is largely disjoint from malware distribution.

13 Acknowledgments

We thank Richard Rivera for his help with the cluster-
ing. This research was partially supported by the Re-
gional Government of Madrid through the N-GREENS
Software-CM project S2013/ICE-2731 and by the Span-
ish Government through the Dedetis Grant TIN2015-
7013-R. All opinions, findings and conclusions, or rec-
ommendations expressed herein are those of the authors
and do not necessarily reflect the views of the sponsors.

References

[1] 7install. https://web.archive.
org/web/20160306081435/http:
//7install.com/.

[2] AdGazelle. http://adgazelle.com/.

[3] AirSoftware. https://airinstaller.
com/.

15

754 25th USENIX Security Symposium USENIX Association

[4] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao,
F. Jahanian, and J. Nazario. Automated Classifica-
tion And Analysis Of Internet Malware. In Interna-
tional Symposium on Recent Advances in Intrusion
Detection, Queensland, Australia, September 2007.

[5] BetterInstaller. http://betterinstaller.
somotoinc.com/.

[6] L. Bilge and T. Dumitras. Before We Knew It: An
Empirical Study of Zero-day Attacks in the Real
World. In ACM Conference on Computer and Com-
munications Security, 2012.

[7] J. Caballero, C. Grier, C. Kreibich, and V. Paxson.
Measuring pay-per-install: The commoditization of
malware distribution. In USENIX Security, 2011.

[8] CashMyLinks. http://www.cashmylinks.
com/.

[9] Cinstaller. http://cinstaller.com/.

[10] CodeFuel. 7 reasons codefuel beats all other
pay per install companies, 2015. http://
www.codefuel.com/blog/7-reasons-
perion-codefuel-beats-all-other-
pay-per-install-companies/.

[11] ConversionAds. https://web.archive.
org/web/20160217095842/http:
//www.conversionads.com/.

[12] S. Davidoff. Interview with an adware au-
thor, 2009. http://philosecurity.
org/2009/01/12/interview-with-an-
adware-author.

[13] DomaIQ. http://www.domaiq.com/en/.

[14] Download Admin. https://web.archive.
org/web/20140208040640/http:
//www.downloadadmin.com/.

[15] Download.com. http://www.download.
com/.

[16] T. Dumitraş and D. Shou. Toward a Stan-
dard Benchmark for Computer Security Research:
The Worldwide Intelligence Network Environment
(WINE). In EuroSys Workshop on Building Analy-
sis Datasets and Gathering Experience Returns for
Security, April 2011.

[17] T. Dumitras and P. Efstathopoulos. The Prove-
nance Of Wine. In European Dependable Comput-
ing Conference, May 2012.

[18] EarnPerInstall. https://web.archive.
org/web/20160419013909/http:
//www.earnperinstall.com/.

[19] B. Edelman. Spyware Installation Methods.
http://www.benedelman.org/spyware/
installations/.

[20] M. Geary. Adknowledge apps distribution op-
portunities, 2013. http://ppitalk.com/
showthread.php/49-Adknowledge-
Apps-Distribution-Opportunities.

[21] D. Goodin. Lenovo pcs ship with man-in-the-
middle adware that breaks https connections, 2015.
http://arstechnica.com/security/
2015/02/lenovo-pcs-ship-with-man-
in-the-middle-adware-that-breaks-
https-connections/.

[22] Grier et al. Manufacturing Compromise: The
Emergence Of Exploit-as-a-service. In ACM Con-
ference on Computer and Communications Secu-
rity, Raleigh, NC, October 2012.

[23] GuppyGo. http://www.guppygo.com/.

[24] Installaxy. https://web.archive.
org/web/20151105011933/http:
//installaxy.com/.

[25] InstallBay. http://www.visibay.com/
installbay.

[26] InstallCore. https://www.installcore.
com/.

[27] InstalleRex. https://installerex.com/.

[28] Installertech. http://www.
installertech.com/.

[29] InstallMonetizer. http://www.
installmonetizer.com/.

[30] InstallMonster. http://installmonster.
ru/en.

[31] installPath. http://www.installpath.
com.

[32] Internet Archive WayBack Machine. https://
archive.org/web/.

[33] N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis,
N. Provos, M. A. Rajab, and K. Thomas. Trends
and Lessons from Three Years Fighting Malicious
Extensions. In USENIX Security Symposium, 2015.

16

USENIX Association 25th USENIX Security Symposium 755

[34] O. Java. What are the Ask Toolbars?
https://www.java.com/en/download/
faq/ask_toolbar.xml.

[35] P. Kotzias, S. Matic, R. Rivera, and J. Caballero.
Certified PUP: Abuse in Authenticode Code Sign-
ing. In ACM Conference on Computer and Com-
munication Security, 2015.

[36] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Du-
mitras. The Dropper Effect: Insights into Malware
Distribution with Downloader Graph Analytics. In
ACM SIGSAC Conference on Computer and Com-
munications Security, 2015.

[37] Mediakings. https://web.archive.org/
web/20140517213640/http://media-
kings.com/.

[38] T. Micro. On the actors behind mevade/sefnit,
2014. http://www.trendmicro.com/
cloud-content/us/pdfs/security-
intelligence/white-papers/wp-
on-the-actors-behind-mevade-
sefnit.pdf.

[39] Microsoft. Windows authenticode portable exe-
cutable signature format, Mar. 21 2008. http:
//download.microsoft.com/download/
9/c/5/9c5b2167-8017-4bae-9fde-
d599bac8184a/Authenticode_PE.docx.

[40] A. Moschuk, T. Bragin, S. D. Gribble, and H. Levy.
A Crawler-based Study of Spyware in the Web. In
Network and Distributed System Security Sympo-
sium, San Diego, CA, 2006.

[41] NativeX. http://nativex.com/.

[42] T. Nelms, R. Perdisci, M. Antonakakis, and
M. Ahamad. Towards Measuring and Mitigating
Social Engineering Malware Download Attacks. In
USENIX Security Symposium, August 2016.

[43] Net Cash Revenue. http://
netcashrevenue.com/.

[44] Nosibay. http://www.nosibay.com/.

[45] Oneinstaller. https://web.archive.
org/web/20150220020855/http:
//oneinstaller.com/.

[46] Open Candy. http://opencandy.com/.

[47] Opswat Antivirus and Threat Report, Jan-
uary 2014. https://www.opswat.com/
resources/reports/antivirus-
january-2014.org/.

[48] PayPerInstall. http://payperinstall.
com/.

[49] Perinstallbox. http://www.setupbundle.
com/index.php.

[50] PerInstallBucks. https://
perinstallbucks.com/.

[51] PerInstallCash. http://www.
perinstallcash.com/.

[52] C. Pickard and S. Miladinov. Rogue software: Pro-
tection against potentially unwanted applications.
In Malicious and Unwanted Software (MALWARE),
2012 7th International Conference on, pages 1–8.
IEEE, 2012.

[53] N. Provos, P. Mavrommatis, M. A. Rajab, and
F. Monrose. All Your Iframes Point To Us. In
USENIX Security Symposium, San Jose, CA, July
2008.

[54] Public Suffix List. https://publicsuffix.
org/.

[55] Purebits. http://purebits.net/.

[56] RevenueHits. https://web.archive.
org/web/20130805140617/http:
//www.revenuehits.com/.

[57] RevenYou. http://www.revenyou.com/.

[58] M. Sebastián, R. Rivera, P. Kotzias, and J. Ca-
ballero. AVClass: A Tool for Massive Malware La-
beling. In International Symposium on Research in
Attacks, Intrusions and Defenses, September 2016.

[59] P. Security. Malware still generated at a
rate of 160,000 new samples a day in Q2
2014. http://www.pandasecurity.
com/mediacenter/press-releases/
malware-still-generated-rate-
160000-new-samples-day-q2-2014/.

[60] Smart WebAds. http://www.smartwebads.
com/.

[61] Softonic. www.softonic.com.

[62] Solimba. https://solimba.com/.

17

756 25th USENIX Security Symposium USENIX Association

[63] Sterkly. http://www.sterkly.com/.

[64] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jag-
pal, A. Kapravelos, D. McCoy, A. Nappa, V. Pax-
son, P. Pearce, N. Provos, and M. A. Rajab. Ad
Injection at Scale: Assessing Deceptive Advertise-
ment Modifications. In IEEE Symposium on Secu-
rity and Privacy, May 2015.

[65] K. Thomass, J. A. E. Crespo, R. Rastil, J.-
M. Picodi, L. Ballard, M. A. Rajab, N. Provos,
E. Bursztein, and D. Mccoy. Investigating Com-
mercial Pay-Per-Install and the Distribution of Un-
wanted Software. In USENIX Security Symposium,
Aug. 2016.

[66] Verti. http://www.
vertitechnologygroup.com.

[67] VirusTotal. http://www.virustotal.
com/.

[68] G. Wicherski. pehash: A novel approach to fast
malware clustering. In 2nd USENIX Workshop
on Large-Scale Exploits and Emergent Threats
(LEET), 2009.

A Additional Results

Rank Publisher Samples
1 Popeler System 326,530 13.2%
2 Daniel Hareuveni 138,159 5.6%
3 Start Now 117,930 4.8%
4 Mail.Ru 117,920 4.8%
5 Softonic International 69,233 2.8%
6 Bon Don Jov 68,937 2.8%
7 Stepan Rybin 68,390 2.8%
8 WeDownload 66,332 2.7%
9 Payments Interactive 41,128 1.7%

10 Tiki Taka 37,072 1.5%
11 Stanislav Kabin 36,893 1.5%
12 Safe Software 36,602 1.5%
13 Vetaform Developments 36,001 1.5%
14 Outbrowse 35,832 1.4%
15 appbundler.com 34,895 1.4%
16 Rodion Veresev 34,696 1.4%
17 Mari Mara 31,031 1.3%
18 Firseria 29,940 1.2%
19 Give Away software 26,541 1.1%
20 Jelbrus 23,457 0.9%

Table 11: Top 20 publishers in the feed of 11M samples
by number of samples and percentage over all samples
signed and flagged by at least 4 AV engines.

PPI Service Reseller
1 AdGazelle [2]
2 EarnPerInstall [18]
3 GuppyGo [23]
4 Installaxy [24] ✓
5 InstallMonetizer [29]
6 MediaKings [37]
7 NetCashRevenue [43] ✓
8 PayPerInstall [48]
9 PerInstallBox [49]

10 PerInstallBucks [50] ✓
11 PerInstallCash [51]
12 PureBits [55] ✓

Table 12: PPI services found through manual analysis
on PPI forums and other Internet resources that are not
present in our dataset. The reseller data comes from [65].

18

USENIX Association 25th USENIX Security Symposium 757

UNVEIL: A Large-Scale, Automated Approach to Detecting Ransomware

Amin Kharraz
Northeastern University
mkharraz@ccs.neu.edu

Sajjad Arshad
Northeastern University

arshad@ccs.neu.edu

Collin Mulliner
Northeastern University

collin@mulliner.org

William Robertson
Northeastern University

wkr@ccs.neu.edu

Engin Kirda
Northeastern University

ek@ccs.neu.edu

Abstract

Although the concept of ransomware is not new (i.e.,
such attacks date back at least as far as the 1980s), this
type of malware has recently experienced a resurgence
in popularity. In fact, in the last few years, a number
of high-profile ransomware attacks were reported, such
as the large-scale attack against Sony that prompted the
company to delay the release of the film “The Interview.”
Ransomware typically operates by locking the desktop
of the victim to render the system inaccessible to the
user, or by encrypting, overwriting, or deleting the user’s
files. However, while many generic malware detection
systems have been proposed, none of these systems have
attempted to specifically address the ransomware detec-
tion problem.

In this paper, we present a novel dynamic analysis sys-
tem called UNVEIL that is specifically designed to de-
tect ransomware. The key insight of the analysis is that
in order to mount a successful attack, ransomware must
tamper with a user’s files or desktop. UNVEIL automat-
ically generates an artificial user environment, and de-
tects when ransomware interacts with user data. In par-
allel, the approach tracks changes to the system’s desk-
top that indicate ransomware-like behavior. Our evalua-
tion shows that UNVEIL significantly improves the state
of the art, and is able to identify previously unknown
evasive ransomware that was not detected by the anti-
malware industry.

1 Introduction

Malware continues to remain one of the most important
security threats on the Internet today. Recently, a specific
form of malware called ransomware has become very
popular with cybercriminals. Although the concept of
ransomware is not new – such attacks were registered as
far back as the end of the 1980s – the recent success of
ransomware has resulted in an increasing number of new

families in the last few years [7, 20, 21, 44, 46]. For ex-
ample, CryptoWall 3.0 made headlines around the world
as a highly profitable ransomware family, causing an es-
timated $325M in damages [45]. As another example,
the Sony ransomware attack [27] received large media
attention, and the U.S. government even took the official
position that North Korea was behind the attack.

Ransomware operates in many different ways, from
simply locking the desktop of the infected computer to
encrypting all of its files. Compared to traditional mal-
ware, ransomware exhibits behavioral differences. For
example, traditional malware typically aims to achieve
stealth so it can collect banking credentials or keystrokes
without raising suspicion. In contrast, ransomware be-
havior is in direct opposition to stealth, since the entire
point of the attack is to openly notify the user that she is
infected.

Today, an important enabler for behavior-based mal-
ware detection is dynamic analysis. These systems ex-
ecute a captured malware sample in a controlled envi-
ronment, and record its behavior (e.g., system calls, API
calls, and network traffic). Unfortunately, malware de-
tection systems that focus on stealthy malware behav-
ior (e.g., suspicious operating system functionality for
keylogging) might fail to detect ransomware because
this class of malicious code engages in activity that ap-
pears similar to benign applications that use encryption
or compression. Furthermore, these systems are cur-
rently not well-suited for detecting the specific behaviors
that ransomware engages in, as evidenced by misclassifi-
cations of ransomware families by AV scanners [10, 39].

In this paper, we present a novel dynamic analysis sys-
tem that is designed to analyze and detect ransomware
attacks and model their behaviors. In our approach, the
system automatically creates an artificial, realistic exe-
cution environment and monitors how ransomware inter-
acts with that environment. Closely monitoring process
interactions with the filesystem allows the system to pre-
cisely characterize cryptographic ransomware behavior.

758 25th USENIX Security Symposium USENIX Association

In parallel, the system tracks changes to the computer’s
desktop that indicates ransomware-like behavior. The
key insight is that in order to be successful, ransomware
will need to access and tamper with a victim’s files or
desktop. Our automated approach, called UNVEIL, al-
lows the system to analyze many malware samples at a
large scale, and to reliably detect and flag those that ex-
hibit ransomware-like behavior. In addition, the system
is able to provide insights into how the ransomware oper-
ates, and how to automatically differentiate between dif-
ferent classes of ransomware.

We implemented a prototype of UNVEIL in Windows
on top of the popular open source malware analysis
framework Cuckoo Sandbox [13]. Our system is imple-
mented through custom Windows kernel drivers that pro-
vide monitoring capabilities for the filesystem. Further-
more, we added components that run outside the sandbox
to monitor the user interface of the target computer sys-
tem.

We performed a long-term study analyzing 148,223
recent general malware samples in the wild. Our large-
scale experiments show that UNVEIL was able to cor-
rectly detect 13,637 ransomware samples from multiple
families in live, real-world data feeds with no false pos-
itives. Our evaluation also suggests that current mal-
ware analysis systems may not yet have accurate behav-
ioral models to detect different classes of ransomware at-
tacks. For example, the system was able to correctly de-
tect 7,572 ransomware samples that were previously un-
known and undetected by traditional AVs, but belonged
to modern file locker ransomware families. UNVEIL was
also able to detect a new type of ransomware that had not
previously been reported by any security company. This
ransomware also did not show any malicious activity in
a modern sandboxing technology provided by a well-
known anti-malware company, while showing heavy file
encryption activity when analyzed by UNVEIL.

The high detection rate of our approach suggests that
UNVEIL can complement current malware analysis sys-
tems to quickly identify new ransomware samples in the
wild. UNVEIL can be easily deployed on any malware
analysis system by simply attaching to the filesystem
driver in the analysis environment.

In summary, this paper makes the following contribu-
tions:

• We present a novel technique to detect ransomware
known as file lockers that targets files stored on a
victim’s computer. Our technique is based on mon-
itoring system-wide filesystem accesses in com-
bination with the deployment of automatically-
generated artificial user environments for triggering
ransomware.

• We present a novel technique to detect ransomware

known as screen lockers. Such ransomware pre-
vents access to the computer system itself. Our
technique is based on detecting locked desktops us-
ing dissimilarity scores of screenshots taken from
the analysis system’s desktop before, during, and
after executing the malware sample.

• We performed a large-scale evaluation to show that
our approach can effectively detect ransomware.
We automatically detected and verified 13,637 ran-
somware samples from a dataset of 148,223 re-
cent general malware. In addition, we found one
previously unknown ransomware sample that does
not belong to any previously reported family. Our
evaluation demonstrates that our technique works
well in practice (achieving a true positive [TP] rate
96.3% at zero false positives [FPs]), and is useful in
automatically identifying ransomware samples sub-
mitted to analysis and detection systems.

The rest of the paper is structured as follows. In Sec-
tion 2, we briefly present background information and
explain different classes of ransomware attacks. In Sec-
tion 3, we describe the architecture of UNVEIL and ex-
plain our detection approaches for multiple types of ran-
somware attacks. In Section 4, we provide more de-
tails about our dynamic analysis environment. In Sec-
tion 5, we present the evaluation results. Limitations of
the approach are discussed in Section 6, while Section 7
presents related work. Finally, Section 8 concludes the
paper.

2 Background

Ransomware, like other classes of malware, uses a num-
ber of strategies to evade detection, propagate, and at-
tack users. For example, it can perform multi-infection
or process injection, exfiltrate the user’s information to
a third party, encrypt files, and establish secure com-
munication with C&C servers. Our detection approach
assumes that ransomware samples can and will use all
of the techniques that other malware samples may use.
In addition, our system assumes that successful ran-
somware attacks perform one or more of the following
activities.
Persistent desktop message. After successfully per-
forming a ransomware infection, the malicious program
typically displays a message to the victim. This “ran-
som note” informs the users that their computer has been
“locked” and provides instructions on how to make a ran-
som payment to restore access. This ransom message can
be generated in different ways. A popular technique is to
call dedicated API functions (e.g., CreateDesktop())
to create a new desktop and make it the default config-

2

USENIX Association 25th USENIX Security Symposium 759

uration to lock the victim out of the compromised sys-
tem. Malware writers can also use HTML or create
other forms of persistent windows to display this mes-
sage. Displaying a persistent desktop message is a clas-
sic action in many ransomware attacks.
Indiscriminate encryption and deletion of the user’s
private files. A crypto-style ransomware attack lists the
victim’s files and aggressively encrypts any private files
it discovers. Access is restricted by withholding the de-
cryption key. Encryption keys can be generated locally
by the malware on the victim’s computer, or remotely
on C&C servers, and then delivered to the compromised
computer. An attacker can use customized destructive
functions, or Windows API functions to delete the origi-
nal user’s files. The attacker can also overwrite files with
the encrypted version, or use secure deletion via the Win-
dows Secure Deletion API.
Selective encryption and deletion of the user’s pri-
vate files based on certain attributes (e.g., size, date
accessed, extension). In order to avoid detection, a sig-
nificant number of ransomware samples encrypt a user’s
private files selectively. In the simplest form, the ran-
somware sample can list the files based on the access
date. In more sophisticated scenarios, the malware could
also open an application (e.g., word.exe) and list re-
cently accessed files. The sample can also inject mali-
cious code into any Windows application to obtain this
type of information (e.g., directly reading process mem-
ory).

In this work, we address all of these scenarios where
an adversary has already compromised a system, and is
able to launch arbitrary ransomware-related operations
on the user’s files or desktop.

3 UNVEIL Design

In this section, we describe our techniques for detect-
ing multiple classes of ransomware attacks. We refer the
reader to Section 4 for details on the implementation de-
tails of the prototype.

3.1 Detecting File Lockers
We first describe why our system creates a unique, ar-
tificial user environment in each malware run. We then
present the design of the filesystem activity monitor and
describe how UNVEIL uses the output of the filesystem
monitor to detect ransomware.

3.1.1 Generating Artificial User Environments

Protecting malware analysis environments against finger-
printing techniques is non-trivial in a real-world deploy-
ment. Sophisticated malware authors exploit static fea-

tures inside analysis systems (e.g., name of a computer)
and launch reconnaissance-based attacks [31] to finger-
print both public and private malware analysis systems.

The static features of analysis environments can be
viewed as the Achilles’ heel of malware analysis sys-
tems. One static feature that can have a significant im-
pact on the effectiveness of the malware analysis systems
is the user data that can be effectively used to fingerprint
the analysis environment. That is, even on bare-metal
environments where classic tricks such as virtualization
checks are not possible, an unrealistic looking user envi-
ronment can be a telltale sign that the code is running in
a malware analysis system.

Intuitively, a possible approach to address such re-
connaissance attacks is to build the user environment in
such a way that the user data is valid, real, and non-
deterministic in each malware run. These automatically-
generated user environments serve as an “enticing target”
to encourage ransomware to attack the user’s data while
at the same time preventing the possibility of being rec-
ognized by adversaries.

In practice, generating a user environment is a non-
trivial problem, especially if this is to be done automati-
cally. This is because the content generator should not al-
low the malware author to fingerprint the automatically-
generated user content located in the analysis environ-
ment, and also determine that it does not belong to a real
user. We elaborate on how we automatically generate
an artificial – yet realistic – user environment for ran-
somware in each malware run in Section 4.1.

3.1.2 Filesystem Activity Monitor

The filesystem monitor in UNVEIL has direct access to
data buffers involved in I/O requests, giving the system
full visibility into all filesystem modifications. Each I/O
operation contains the process name, timestamp, oper-
ation type, filesystem path and the pointers to the data
buffers with the corresponding entropy information in
read/write requests. The generation of I/O requests hap-
pens at the lowest possible layer to the filesystem. For ex-
ample, there are multiple ways to read, write, or list files
in user-/kernel-mode, but all of these functions are ulti-
mately converted to a sequence of I/O requests. When-
ever a user thread invokes an I/O API, an I/O request is
generated and is passed to the filesystem driver. Figure 1
shows a high-level design of UNVEIL in the Windows
environment.

UNVEIL’s monitor sets callbacks on all I/O requests
to the filesystem generated on behalf of any user-mode
processes. We note that for UNVEIL operations, it is de-
sirable to only set one callback per I/O request for perfor-
mance reasons, and that this also maintains full visibility
into I/O operations. In UNVEIL, user-mode process in-

3

760 25th USENIX Security Symposium USENIX Association

teractions with the filesystem are formalized as access
patterns. We consider access patterns in terms of I/O
traces, where a trace T is a sequence of ti such that

ti = 〈P,F,O,E〉 ,
P is the set of user-mode processes,
F is the set of available files,
O is the set of I/O operations, and
E is the entropy of read or write data buffers.

For all of the file locker ransomware samples that we
studied, we empirically observed that these samples is-
sue I/O traces that exhibit distinctive, repetitive patterns.
This is due to the fact that these samples each use a sin-
gle, specific strategy to deny access to the user’s files.
This attack strategy is accurately reflected in the form of
I/O access patterns that are repeated for each file when
performing the attack. Consequently, these I/O access
patterns can be extracted as a distinctive I/O fingerprint
for a particular family. We note that our approach mainly
considers write or delete requests. We elaborate on ex-
tracting I/O access patterns per file in Section 3.1.2.

I/O Data Buffer Entropy. For every read and write re-
quest to a file captured in an I/O trace, UNVEIL computes
the entropy of the corresponding data buffer. Comparing
the entropy of read and write requests to and from the
same file offset serves as an excellent indicator of crypto-
ransomware behavior. This is due to the common strat-
egy to read in the original file data, encrypt it, and over-
write the original data with the encrypted version. The
system uses Shannon entropy [30] for this computation.
In particular, assuming a uniform random distribution of
bytes in a data block d, we have

H (d) =−
n

∑
i=1

log2 n
n

.

Constructing Access Patterns. For each execution,
after UNVEIL generates I/O access traces for the sam-
ple, it sorts the I/O access requests based on file names
and request timestamps. This allows the system to ex-
tract the I/O access sequence for each file in a given run,
and check which processes accessed each file. The key
idea is that after sorting the I/O access requests per file,
repetition can be observed in the way I/O requests are
generated on behalf of the malicious process.

The particular detection criterion used by the system
to detect ransomware samples is to identify write and
delete operations in I/O sequences in each malware run.
In a successful ransomware attack, the malicious process
typically aims to encrypt, overwrite, or delete user files
at some point during the attack. In UNVEIL, these I/O

Calculate
Entropy

Identify
Process

I/O Type

I/O Scheduler

FileSystem
Driver

Physical
Device

I/O
Requests

I/O Monitor
EXIT

file’s data Buffer

UNVEIL

User Mode
Kernel Mode

I/O Monitor
ENTER Record I/O

Request

Identify
File OP

. . .

 Process 1 Process 2 Process 3 Process N

read write delete write

I/O Access Monitor

Figure 1: Overview of the design of I/O access monitor in UN-
VEIL. The module monitors system-wide filesystem accesses
of user-mode processes. This allows UNVEIL to have full visi-
bility into interactions with user files.

request patterns raise an alarm, and are detected as suspi-
cious filesystem activity. We studied different file locker
ransomware samples across different ransomware fami-
lies. Our analysis shows that although these attacks can
be very different in their attack strategies (e.g., evasion
techniques, key generation, key management, connect-
ing to C&C servers), they can be categorized into three
main classes of attacks based on their access requests.

Figure 2 shows the high-level access patterns for mul-
tiple ransomware families we studied during our experi-
ments. For example, the access pattern shown to the left
is indicative of Cryptolocker variants that have varying
key lengths and desktop locking techniques. However,
its access pattern remains constant with respect to fam-
ily variants. We observed the same I/O activity for sam-
ples in the CryptoWall family as well. While these fam-
ilies are identified as two different ransomware families,
since they use the same encryption functions to encrypt
files (i.e., the Microsoft CryptoAPI), they have similar
I/O patterns when they attack user files.

As another example, in FileCoder family, the ran-
somware first creates a new file, reads data from a vic-
tim’s file, generates an encrypted version of the original
data, writes the encrypted data buffer to the newly gener-
ated file, and simply unlinks the original user’s file (See
Figure 2.2). In this class of file locker ransomware, the
malware does not wipe the original file’s data from the
disk. For attack approaches like this, victims have a high
chance of recovering their data without paying the ran-
som. In the third approach (Figure 2.3), however, the
ransomware creates a new encrypted file based on the
original file’s data and then securely deletes the orig-
inal file’s data using either standard Windows APIs or
custom overwriting implementations (e.g., such as Cryp-

4

USENIX Association 25th USENIX Security Symposium 761

overwrite

Open

Write

Close

read
File x

Read

File x

Open

Read

Close

File x.locked

Open

Write

Close

encrypt delete
File x

Open

Delete

Close

read
File x

Open

Read

Close

File x.locked

Open

Write

Close

encrypt overwrite
File x

Open

Read

Close

Write

(2)(1) (3)

Figure 2: Strategies differ across ransomware families with respect to I/O access patterns. (1) Attacker overwrites the users’ file
with an encrypted version; (2) Attacker reads, encrypts and deletes files without wiping them from storage; (3) Attacker reads,
creates a new encrypted version, and securely deletes the original files by overwriting the content.

Vault family).

3.2 Detecting Screen Lockers

The second core component of UNVEIL is aimed at de-
tecting screen locker ransomware. The key insight be-
hind this component is that the attacker must display
a ransom note to the victim in order to receive a pay-
ment. In most cases, the message is prominently dis-
played, covering a significant part, or all, of the display.
As this ransom note is a virtual invariant of ransomware
attacks, UNVEIL aims to automatically detect the display
of such notes.

The approach adopted by UNVEIL to detect screen
locking ransomware is to monitor the desktop of the vic-
tim machine, and to attempt to detect the display of a
ransom note. Similar to Grier et al. [15], we take au-
tomatic screenshots of the analysis desktop before and
after the sample is executed. The screenshots are cap-
tured from outside of the dynamic analysis environment
to prevent potential tampering by the malware. This se-
ries of screenshots is analyzed and compared using im-
age analysis methods to determine if a large part of the
screen has suddenly changed between captures. How-
ever, smaller changes in the image such as the location
of the mouse pointer, current date and time, new desk-
top icons, windows, and visual changes in the task bar
should be rejected as inconsequential.

In UNVEIL, we measure the structural similarity
(SSIM) [49] of two screenshots – before and after sample
execution – by comparing local patterns of pixel intensi-
ties in terms of both luminance and contrast as well as the
structure of the two images. Extracting structural infor-
mation is based on the observation that pixels have strong
inter-dependencies – especially when they are spatially
close. These dependencies carry information about the
structure of the objects in the image. After a successful
ransomware attack, the display of the ransom note often

results in automatically identifiable changes in the struc-
tural information of the screenshot (e.g., a large rectan-
gular object covers a large part of the desktop). There-
fore, the similarity of the pre- and post-attack images de-
creases significantly, and can be used as an indication of
ransomware.

In order to avoid false positives, UNVEIL only
takes screenshots resulting from persistent changes (i.e.,
changes that cannot be easily dismissed through user
interaction). The system first removes such transient
changes (e.g., by automatically closing open windows)
before taking screenshots of the desktop. Using this pre-
processing step, ransomware-like applications that are
developed for other purposes such as fake AV are safely
categorized as non-ransomware samples.

UNVEIL also extracts the text within the area where
changes in the structure of the image has occurred. The
system extracts the text inside the selected area and
searches for specific keywords that are highly correlated
with ransom notes (e.g.,<lock, encrypt, desktop,

decryption, key>).
Given two screenshots X and Y , we define the struc-

tural similarity index of the image contents of local win-
dows x j and y j as

LocalSim(x j,y j) =
(2µxµy + c1)(2σxy + c2)(

µ2
x +µ2

y + c1
)(

σ2
x +σ2

y + c2
)

where µx and µy are the mean intensity of x j and y j, and
σx and σy are the standard deviation as an estimate of
x j and y j contrast and σxy is the covariance of x j and
y j. The local window size to compare the content of two
images was set 8× 8. c1 and c2 are division stabilizer
in the SSIM index formula [49]. We define the overall
similarity between the two screenshots X and Y as the
arithmetic mean of the similarity of the image contents
x j and y j at the jth local window where M is the number

5

762 25th USENIX Security Symposium USENIX Association

of local windows of X and Y :

ImgSim(X ,Y) =
1
M

M

∑
j=1

LocalSim(x j,y j) .

Since the overall similarity is always on [0,1], the dis-
tance between X and Y is simply defined as

Dist(X ,Y) = 1− ImgSim(X ,Y) .

Finally, we define a similarity threshold τsim such that
UNVEIL considers the sample a potential screen locking
ransomware if

Dist(X ,Y)> τsim.

UNVEIL then extracts the text within the image and
searches for ransomware-related words within the mod-
ified area. Applying the image similarity test with the
best similarity threshold (see Section 5.2.2) gives us the
highest recall with 100% precision for the entire dataset.

4 UNVEIL Implementation

In this section, we describe the implementation details of
a prototype of UNVEIL for the Windows platform. We
chose Windows for a proof-of-concept implementation
because it is currently the main target of ransomware at-
tacks. We elaborate on how UNVEIL automatically gen-
erates artificial, but realistic user environments for each
analysis run, how the system-wide monitoring was im-
plemented, and how we deployed the prototype of our
system.

4.1 Generating User Environments
In each run, the user environment is made up of sev-
eral forms of content such as digital images, videos, au-
dio files, and documents that can be accessed during a
user Windows Session. The user content is automatically-
generated according to the following process:

For each file extension from a space of possible exten-
sions, a set of files are generated where the number of
files for each extension is sampled from a uniform ran-
dom distribution for each sample execution. Each set of
files collectively forms a document space for the sample
execution environment. From a statistical perspective,
document spaces generated for each sample execution
should be indistinguishable from real user data. As an
approximation to this ideal, randomly-selected numbers
of files are generated per extension for each run accord-
ing to the process described above.

In the following, we describe the additional properties
that a document space should have in order to complicate
programmatic approaches that ransomware samples can

potentially use to identify the automatically-generated
user environment.
Valid Content. The user content generator creates
real files with valid headers and content using standard
libraries (e.g., python-docx, python-pptx, OpenSSL).
Based on empirical observation, we created four file cat-
egories that a typical ransomware sample tries to find
and encrypt: documents, keys and licenses, file archives,
and media. Document extensions include txt, doc(x),
ppt(x), tex, xls(x), c, pdf and py. Keys and license
extensions include key, pem, crt, and cer. Archive ex-
tensions include zip and rar files. Finally, media exten-
sions include jp(e)g, mp3, and avi. For each sample
execution, a subset of extensions are randomly selected
and are used to generate user content across the system.

In order to generate content that appears meaningful,
we collected approximately 100,000 sentences by query-
ing 500 English words in Google. For each query, we
collected the text from the first 30 search results to create
a sentence list. We use the collected sentences to gen-
erate the content for the user files. We used the same
technique to create a word list to give a name to the user
files. The word list allows us to create files with variable
name lengths that do not appear random. Clearly, the
problem with random content and name generation (e.g.,
xteyshtfqb.docx) is that the attacker could program-
matically calculate the entropy of the file names and con-
tents to detect content that has been generated automat-
ically. Hence, by generating content that appears mean-
ingful, we make it difficult for the attacker to fingerprint
the system and detect our generated files.

File Paths. Note that the system is also careful to
randomly generate the supposed victim’s directory struc-
ture. For example, directory names are also generated
based on meaningful words. Furthermore, the system
also associates files of certain types with standard loca-
tions in the Windows directory structure for those file
types (e.g., the system does not create document files
in a directory with image files, but rather under My
Documents). The path length of user files is also non-
deterministic and is generated randomly. In addition,
each folder may have a set of sub-folders. Consequently,
the generated paths to user files have variable depths rel-
ative to the root folder.

Time Attributes. Another non-determinism strategy
used by our approach is to generate files with different
creation, modification, and access times. The file time
attributes are sampled from a distribution of likely times-
tamps when creating the file. When the system creates
files with different time attributes, the time attributes of
the containing folders are also updated automatically. In
this case, the creation time of the folder is the minimum
of all creation times of files and folders inside the folder,
while the modification and access times are the maxi-

6

USENIX Association 25th USENIX Security Symposium 763

mum of the corresponding timestamps.
While we have not observed ransomware samples that

have attempted to use fingerprinting heuristics of the
content of the analysis environment, the nondeterminism
strategies used by UNVEIL serve as a basis for making
the analysis resilient to fingerprinting by design.

4.2 Filesystem Activity Monitor
Several techniques have been used to monitor sample
filesystem activity in malware analysis environments.
For example, filesystem activity can be monitored by
hooking a list of relevant filesystem API functions or
relevant system calls using the System Service Descrip-
tor Table (SSDT). Unfortunately, these approaches are
not suitable for UNVEIL’s detection approach for sev-
eral reasons. First, API hooking can be bypassed by
simply copying a DLL containing the desired code and
dynamically loading it into the process’ address space
under a different name. Stolen code [17, 19] and slid-
ing calls [19] are other examples of API hooking evasion
that are common in the wild. Furthermore, ransomware
can use customized cryptosystems instead of the stan-
dard APIs to bypass API hooking while encrypting user
files. Hooking system calls via the SSDT also has other
technical limitations. For example, it is prevented on 64-
bit systems due to Kernel Patch Protection (KPP). Fur-
thermore, most SSDT functions are undocumented and
subject to change across different versions of Windows.

Therefore, instead of API or system call hooking, UN-
VEIL monitors filesystem I/O activity using the Windows
Filesystem Minifilter Driver framework [34], which is
a standard kernel-based approach to achieving system-
wide filesystem monitoring in multiple versions of Win-
dows. The prototype consists of two main components
for I/O monitoring and retrieving logs of the entire sys-
tem with approximately 2,800 SLOC in C++. In Win-
dows, I/O requests are represented by I/O Request Pack-
ets (IRPs). UNVEIL’s monitor sets callbacks on all I/O
requests to the filesystem generated on behalf of user-
mode processes. Basing UNVEIL’s filesystem monitor
on a minifilter driver allows it to be located at the closest
possible layer to the filesystem with access to nearly all
objects of the operating system.

4.3 Desktop Lock Monitor
To identify desktop locking ransomware, screenshots are
captured from outside of the dynamic analysis environ-
ment to prevent potential tampering by the malware.
For dissimilarity testing, a python script implements the
Structural Similarity Image Metric (SSIM) as described
in Section 3.2. UNVEIL first converts the images to float-
ing point data, and then calculates parameters such as

mean intensity µ using Gaussian filtering of the images’
contents. We also used default values (k1 = 0.01 and
k2 = 0.03) to obtain the values of c1 and c2 to calculate
the structural similarity score in local windows presented
in Section 3.2.

The system also employs Tesseract-OCR [38], an
open source OCR engine, to extract text from the se-
lected areas of the screenshots. To perform the anal-
ysis on the extracted text within images, we collected
more than 10,000 unique ransom notes from different
ransomware families. We first clustered ransom notes
based on the family type and the visual appearance of
the ransom notes. For each cluster, we then extracted the
ransom texts in the corresponding ransom notes and per-
formed pre-filtering to remove unnecessary words within
the text (e.g., articles, pronouns) to avoid obvious false
positive cases. The result is a word list for each family
cluster that can be used to identify ransom notes and fur-
thermore label notes belonging to a known ransomware
family.

5 Evaluation

We evaluated UNVEIL with two experiments. The goal
of the first experiment is to demonstrate that the system
can detect known ransomware samples, while the goal
of the second experiment is to demonstrate that UNVEIL
can detect previously unknown ransomware samples.

5.1 Experimental Setup

The UNVEIL prototype is built on top of Cuckoo Sand-
box [13]. Cuckoo provides basic services such as sam-
ple submission, managing multiple VMs, and perform-
ing simple human interaction tasks such as simulating
user input during an analysis. However, in principle, UN-
VEIL could be implemented using any dynamic analysis
system (e.g., BitBlaze [5], VxStream Sandbox [37]).

We evaluated UNVEIL using 56 VMs running Win-
dows XP SP3 on a Ganeti cluster based on Ubuntu 14.04
LTS. While Windows XP is not required by UNVEIL, it
was chosen because it is well-supported by Cuckoo sand-
box. Each VM had multiple NTFS drives. We took anti-
evasion measures against popular tricks such as changing
the IP address range and the MAC addresses of the VMs
to prevent the VMs from being fingerprinted by malware
authors. Furthermore, we permitted controlled access to
the Internet via a filtered host-only adapter. In particu-
lar, the filtering allowed limited IRC, DNS, and HTTP
traffic so samples could communicate with C&C servers.
SMTP traffic was redirected to a local honeypot to pre-
vent spam, and network bandwidth was limited to miti-
gate potential DoS attacks.

7

764 25th USENIX Security Symposium USENIX Association

Family Type Samples

Cryptolocker crypto 33 (1.5%)
CryptoWall crypto 42 (2.0%)
CTB-Locker crypto 77 (3.6%)
CrypVault crypto 21 (1.0%)
CoinVault crypto 17 (0.8%)
Filecoder crypto 19 (0.9%)
TeslaCrypt crypto 39 (1.8%)
Tox crypto 71 (3.3%)
VirLock locker 67 (3.2%)
Reveton locker 501 (23.6%)
Tobfy locker 357 (16.8%)
Urausy locker 877 (41.3%)

Total Samples - 2,121

Table 1: The list of ransomware families used in the first ex-
periment.

The operating system image inside the malware anal-
ysis system included typical user data such as saved so-
cial networking credentials and a valid browsing history.
For each operating system image, multiple users were
defined to run the experiments. We also ran a script that
emulated basic user activity while the malware sample
was running on the system, such as launching a browser
and navigating to multiple websites, or clicking on the
desktop. This interaction was randomly-generated, but
was constant across runs. Each sample was executed in
the analysis environment for 20 minutes. As described in
Sections 3.1 and 3.2, user environments were generated
for each run, filesystem I/O traces were recorded, and
pre- and post-execution screenshots were captured. After
each execution, the VM was rolled back to a clean state
to prevent any interference across executions. All ex-
periments were performed according to well-established
experimental guidelines [40] for malware experiments.

5.2 Ground Truth (Labeled) Dataset

In this experiment, we evaluated the effectiveness of UN-
VEIL on a labeled dataset, and ran different screen locker
samples to determine the best threshold value τsim for the
large-scale experiment.

We collected ransomware samples from public repos-
itories [1, 3] and online forums that share malware sam-
ples [2, 32]. We also received labeled ransomware sam-
ples from two well-known anti-malware companies. In
total, we collected 3,156 recent samples. In order to
make sure that those samples were indeed active ran-
somware, we ran them in our test environment. We con-
firmed 2,121 samples to be active ransomware instances.
After each run, we checked the filesystem activity of
each sample for any signs of attacks on user data. If we
did not see any malicious filesystem activity, we checked
whether running the sample displayed a ransom note.

Table 1 describes the ransomware families we used in
this experiment. We note that the dataset covers the ma-
jority of the current ransomware families in the wild. In

Run OP Proc FName Offset Entropy

CryptoWall 3 read explorer.exe document.cad [0,4096) 5.21
write explorer.exe document.cad [0,4096) 7.04
· · ·

CryptoWall 4 read explorer.exe project.cad [0,4096) 5.21
write explorer.exe project.cad [0,4096) 7.11
· · ·
rename explorer.exe t67djkje.elkd8

Table 2: An example of I/O access in UNVEIL for CryptoWall
3.0 and CryptoWall 4.0.

Application OP Description

CrypVault read read low entropy buffer from original file
write write high entropy buffer to a new file
· · ·
write overwrite the buffer of the original file
delete read attributes, delete the original file

CryptoWall4 read read low entropy buffer
write overwrite with high entropy buffer
· · ·
rename read attributes, rename the files

SDelete write overwrite data buffer
· · ·
delete read attributes, delete the file

7-zip read read data buffer from original file
write write data buffer to a new file
· · ·

Table 3: I/O accesses for deletion and compression mecha-
nisms in benign/malicious applications. Benign programs can
generate I/O access requests similar to ransomware attacks, but
since they are not designed to deny access to the original files,
their I/O sequence patterns are different from ransomware at-
tacks.

addition to the labeled ransomware dataset, we also cre-
ated a dataset that consisted of non-ransomware samples.
These samples were submitted to the Anubis analysis
platform [16], and consisted of a collection of benign as
well as malicious samples. We selected 149 benign ex-
ecutables including applications that have ransomware-
like behavior such as secure deletion, encryption, and
compression. A short list of these applications are pro-
vided in Table 5. We also tested 384 non-ransomware
malware samples from 36 malware families to evalu-
ate the false positive rate of UNVEIL. Table 2 shows
an example of I/O traces for CryptoWall 3.0 and Cryp-
toWall 4.0 where the victim’s file is first read and then
overwritten with an encrypted version. The I/O access
patterns of CryptoWall 4.0 samples to overwrite the con-
tent of the files are identical since they use the same cryp-
tosystem. The main difference is that the filenames and
extensions are modified with random characters, proba-
bly to minimize the chance of recovering the files based
on their names in the Master File Table (MFT) in the
NTFS filesystem.

8

USENIX Association 25th USENIX Security Symposium 765

5.2.1 Filesystem Activity of Benign Applications
with Potential Ransomware-like Behavior

One question that arises is whether benign applications
such as encryption or compression programs might gen-
erate similar I/O request sequences, resulting in false
positives. Note that with benign applications, the original
file content is treated carefully since the ultimate goal is
to generate an encrypted version of the original file, and
not to restrict access to the file. Therefore, the default
mechanism in these applications is that the original files
remain intact even after encryption or compression. If
automatic deletion is deliberately activated by the user
after the encryption, it can potentially result in a false
positive (see Figure 2.2). However, in our approach, we
assume that the usual default behavior is exhibited and
the original data is preserved. We believe that this is a
reasonable assumption, considering that we are building
an analysis system that will mainly analyze potentially
suspicious samples captured and submitted for analysis.
Nevertheless, we investigated the I/O access patterns of
benign programs, shown in Table 3. The I/O traces indi-
cate that these programs exhibit distinguishable I/O ac-
cess patterns as a result of their default behavior.

Benign applications might not necessarily perform en-
cryption or deletion on user files, but can change the
content of the files. For example, updating the content
of a Microsoft PowerPoint file (e.g., embedding images
and media) generates I/O requests similar to ransomware
(see Figure 2.1). However, the key difference here is that
such applications usually generate I/O requests for a sin-
gle file at a time and repetition of I/O requests does not
occur over multiple user files. Also, note that benign ap-
plications typically do not arbitrarily encrypt, compress
or modify user files, but rather need sophisticated input
from users (e.g., file names, keys, options, etc.). Hence,
most applications would simply exit, or expect some in-
put when executed in UNVEIL.

5.2.2 Similarity Threshold

We performed a precision-recall analysis to find the best
similarity threshold τsim for desktop locking detection.
The best threshold value to discriminate between similar
and dissimilar screenshots should be defined in such a
way that UNVEIL is be able to detect screen locker ran-
somware while maintaining an optimal precision-recall
rate. Figure 3 shows empirical precision-recall results
when varying τsim. As the figure shows, with τsim = 0.32,
more than 97% of the ransomware samples across both
screen and file locker samples are detected with 100%
precision. In the second experiment, we used this simi-
larity threshold to detect screen locker ransomware in a
malware feed unknown to UNVEIL.

t = 0.32

Figure 3: Precision-recall analysis of the tool. The threshold
value τsim = 0.32 gives the highest recall with 100% precision.

Evaluation Results

Total Samples 148,223
Detected Ransomware 13,637 (9.2%)
Detection Rate 96.3%
False Positives 0.0%
New Detection 9,872 (72.2%)

Table 4: UNVEIL detection results. 72.2% of the ransomware
samples detected by UNVEIL were not detected by any of AV
scanners in VirusTotal at the time of the first submission. 7,572
(76.7%) of the newly detected samples were destructive file
locker ransomware samples.

5.3 Detecting Zero-Day Ransomware
The main goal of the second experiment is to evaluate the
accuracy of UNVEIL when applied to a large dataset of
recent real-world malware samples. We then compared
our detection results with those reported by AV scanners
in VirusTotal.

This dataset was acquired from the daily malware feed
provided by Anubis [16] to security researchers. The
samples were collected from May 18th 2015 until Febru-
ary 12th 2016. The feed is generated from the Anubis
submission queue, which is fed in turn by Internet users
and security companies. Hence, before performing the
experiment, we filtered the incoming Anubis samples by
removing those that were not obviously executable (e.g.,
PDFs, images). After this filtering step, the dataset con-
tained 148,223 distinct samples. Each sample was then
submitted to UNVEIL to obtain I/O access traces and pre-
/post-execution desktop image dissimilarity scores.

5.3.1 Detection Results

Table 4 shows the evaluation results of the second experi-
ment. With the similarity threshold τsim = 0.32, UNVEIL
labeled 13,637 (9.2% of the dataset) samples in the Anu-

9

766 25th USENIX Security Symposium USENIX Association

bis malware feed as being ransomware; these included
both file locker and desktop locker samples.

Evaluation of False Positives. As we did not have a la-
beled ground truth in the second experiment, we cannot
provide an accurate precision-recall analysis, and verify-
ing the detection results is clearly challenging. For ex-
ample, re-running samples while checking for false pos-
itives is not feasible in all cases since samples may have
become inactive at the time of re-analysis (e.g., the C&C
server might have been taken down).

Hence, we used manual verification of the detection
results. That is, for the samples that were detected
as screen locker ransomware, we manually checked the
post-attack screenshots that were reported taken by UN-
VEIL. The combination of structural similarity test and
the OCR technique to extract the text provides a reliable
automatic detection for this class of ransomware. We
confirmed that UNVEIL correctly reported 4,936 samples
that delivered a ransom note during the analysis.

Recall that UNVEIL reports a sample as a file locker
ransomware if the I/O access pattern follows one of the
three classes of ransomware attacks described in Fig-
ure 2. For file locker ransomware samples, we used
the I/O reports for each sample. We listed all the I/O
activities on the first five user files during that run and
looked for suspicious I/O activity such as requesting
write and/or delete operations. Note that the detection
approach used in UNVEIL is only based on the I/O ac-
cess pattern. We do not check for changes in entropy in
the detection phase and it is only used for our evaluation.

If we find multiple write or delete I/O requests to the
first five generated user files and also a significant in-
crease in the entropy between read and write data buffers
at a given file offset, or the creation of new high entropy
files, we confirmed the detection as a true positive. The
creation of multiple new high entropy files based on user
files is a reliable sign of ransomware in our tests. For
example, the malware sample that uses secure deletion
techniques may overwrite files with low entropy data.
However, the malicious program first needs to generate
an encrypted version of the original files. In any case,
generating high entropy data raises an alarm in our eval-
uation.

By employing these two approaches and analyzing the
results, we did not find any false positives. There were
a few cases that had significant change in the structure
of the images. Our closer investigation revealed that
the installed program generated a large installation page,
showed some unreadable characters in the window, and
did not close even if the button was clicked (i.e., non-
functional buttons). In another case, the program gen-
erated a large setup window, but it did not proceed due
to a crash. These cases produce a higher dissimilarity

score than the threshold value. However, since the ex-
tracted text within those particular windows did not con-
tain any ransomware-related contents, UNVEIL safely
categorized them as being non-ransomware samples.

Evaluation of False Negatives. Determining false
negative rates is a challenge since manually checking
148,223 samples is not feasible. In the following, we
provide an approximation of false negatives for UNVEIL.

In our tests on the labeled dataset, false negatives
mainly occurred in samples that make persistent changes
on the desktop, but since the dissimilarity score of pre-
/post-attack is less that τsim = 0.32, it is not detected as
ransomware by UNVEIL. Our analysis of labeled sam-
ples from multiple ransomware families (see Section5.2)
shows that these cases were mainly observed in samples
with a similarity score between the interval [0.18, 0.32).
This is because for lower similarity scores, changes in
the screenshots are negligible or small (e.g., Windows
warning/error messages). Consequently, in order to in-
crease the chance of catching false negative cases, we
selected all the samples where their dissimilarity score
was between [0.18, 0.32). This decreases the size of po-
tential desktop locker ransomware that were not detected
by UNVEIL to 4,642 samples. We manually checked the
post-attack screenshots of these samples, and found 377
desktop locker ransomware that UNVEIL was not able
to detect. Our analysis shows that the false negatives in
desktop locker ransomware resulted from samples in one
ransomware family that generated a very transparent ran-
som note with a dissimilarity score between [0.27, 0.31]
that was difficult to read.

For file locker ransomware, we first removed the sam-
ples that were not detected as malware by any of the
AV scanners in VirusTotal after multiple resubmissions
in consecutive days (see Section 5.3.2). By applying this
approach, we were able to reduce the number of sam-
ples to check by 47%. Then, we applied a similar ap-
proach we used as described above. We listed the first
five user files generated for that sample run and checked
whether any process requested write access to those files.
We also checked the entropy of multiple data buffers. If
we identified write access with a significant increase in
the entropy of data buffers compared to the entropy of
data buffer in the read access for those files, we report it
as a false negative.

Our test shows that UNVEIL does not have any false
negatives in file locker ransomware samples. Conse-
quently, we conclude that UNVEIL is able to detect mul-
tiple classes of ransomware attacks with a low false pos-
itive rate (FPs = 0.0% at a TP = 96.3%).

10

USENIX Association 25th USENIX Security Symposium 767

5.3.2 Early Warning

One of the design goals of UNVEIL is to be able to auto-
matically detect previously unknown (i.e., zero-day) ran-
somware. In order to run this experiment, we did the fol-
lowing. Once per day over the course of the experiment,
we built a malware dataset that was concurrently submit-
ted to UNVEIL and VirusTotal. If a sample was detected
as ransomware by UNVEIL, we checked the VirusTotal
(VT) detection results. In cases where a ransomware
sample was not detected by any VT scanner, we reported
it as a new detection.

In addition, we also measured the lag between a
new detection by UNVEIL and a VT detection. To
that end, we created a dataset from the newly detected
samples submitted on days {1,2, . . . ,n − 1,n} and re-
submitted these samples to see whether the detection re-
sults changed. We considered the result of all 55 VT
scanners in this experiment. Since the number of scan-
ners is relatively high, we defined a VT detection ratio ρ
as the ratio of the total number of scanners that identified
the sample as ransomware or malware to the total num-
ber of scanners checked by VT. ρ is therefore a value on
the interval [0,1] where zero means that the sample was
not detected by any of the 55 VT scanners, and 1 means
that all scanners reported the sample as malware or ran-
somware. Since there is no standard labeling scheme for
malware in the AV industry, a scanner can label a sample
using a completely different name from another scanner.
Consequently, to avoid biased results, we consider the
labeling of a sample using any name as a successful de-
tection.

In our experiment, we submitted the detected samples
every day to see how the VT detection ratio ρ changes
over time. The distribution of ρ for each submission is
shown in Figure 4. Our analysis shows that ρ does not
significantly change after a small number of subsequent
submissions. For the first submission, 72.2% of the ran-
somware samples detected by UNVEIL were not detected
by any of the 55 VT scanners. After a few submissions,
ρ does not change significantly, but generally was con-
centrated either towards small or very large ratios. This
means that after a few re-submissions, either only a few
scanners detected a sample, or almost all the scanners
detected the sample.

5.4 Case Study: Automated Detection of a
New Ransomware Family

In this section, we describe a new ransomware family,
called SilentCrypt, that was detected by UNVEIL during
the experiments. After our system detected these sam-
ples and submitted them to VirusTotal, several AV ven-
dors picked up on them and also started detecting them a

Figure 4: Evolution of VT scanner reports after six submis-
sions. 72.2% of the samples detected by UNVEIL were not
detected by any of AV scanners in the first submission. After
a few re-submissions, the detection results do not change sig-
nificantly. The detection results tend to be concentrated either
towards small or very large detection ratios. This means that a
sample is either detected by a relatively small number of scan-
ners, or almost all of the scanners.

couple of days later, confirming the malice of the sample
that we automatically detected.

This family uses a unique and effective method to fin-
gerprint the runtime environment of the analysis system.
Unlike other malware samples that check for specific ar-
tifacts such as registry keys, background processes, or
platform-specific characteristics, this family checks the
private files of a user to determine if the code is run-
ning in an analysis environment. When the sample is
executed, it first checks the number of files in the user’s
directories, and sends this list to the C&C server before
starting the attack.

Multiple online malware analysis systems such as
malwr.com, Anubis, and a modern sandboxing technol-
ogy provided by a well-known, anti-malware company
did not register any malicious activity for this sample.
However, the sample showed heavy encryption activity
when analyzed by UNVEIL.

An analysis of the I/O activity of this sample re-
vealed that this family first waited for several minutes
before attacking the victim’s files. Figure 5 shows the
three main I/O activities of one of the samples in this
family. The sample traverses the current user’s main
directories, and creates a list of files and folders. If
the sample receives permission to attack from the C&C
server, it begins encrypting the targeted files. To con-
firm UNVEIL’s alerts, we conducted a manual investi-
gation over several days. Our analysis concluded that
the malicious activity is started only if user activity is
detected. Unlike other ransomware samples that imme-

11

768 25th USENIX Security Symposium USENIX Association

0 100 200 300 400 500 600

0.00

0.05

0.10

0.15

0.20

0.25

0.30

QUERY OP

0 100 200 300 400 500 600

0.00

0.05

0.10

0.15

0.20

0.25

READ OP

0 100 200 300 400 500 600

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

WRITE OP

D
i
s
t
r
i
b

u
t
i
o

n
(
%

)

Analysis Time (Sec)

Userspace file fingerprinting

Creating a

list of files

Periodic file encryption

Sleep Time

Sleep Time

Sleep Time

Figure 5: I/O activities of a previously unknown ransomware
family detected by UNVEIL. The sample first performs victim
file fingerprinting to ensure that the running environment is not
a bare user environment.

diately attack a victim’s files when they are executed,
this family only encrypt files that have recently been
opened by the user while the malicious process is mon-
itoring the environment. That is, the malicious process
reads the file’s data and overwrites it with encrypted data
if the file is used. The file name is then updated to
"filename.extension.locked forever" after it has
been encrypted.

UNVEIL was able to detect this family of ransomware
automatically because it was triggered after the system
accessed some of the generated user files as a part of the
user activity emulation scripts. Once we submitted the
sample to VirusTotal, the sample was picked up by other
AV vendors (5/55) after five days with different labels.
A well-known, sandboxing-based security company con-
firmed our findings that the malware sample was a new
threat that they had not detected before. We provide
an anonymous video of a sample from this ransomware
family in [6].

6 Discussion and Limitations

The evaluation in Section 5 demonstrates that UNVEIL
achieves good, practical, and useful detection results on
a large, real-world dataset. Unfortunately, malware au-
thors continuously observe defensive advances and adapt
their attacks accordingly. In the following, we discuss
limitations of UNVEIL and potential evasion strategies.

There is always the possibility that attackers will find
ways to fingerprint the automatically generated user en-
vironment and avoid it. However, this comes at a high
cost, and increases the difficulty bar for the attacker. For
example, in desktop-locking ransomware, malware can

use heuristics to look for specific user interaction be-
fore locking the desktop (e.g., waiting for multiple login
events or counting the number of user clicks). However,
implementing these approaches can potentially make de-
tection easier since these approaches require hooking
specific functions in the operating system. The presence
of these hooking behaviors are themselves suspicious
and are used by current malware analysis systems to de-
tect different classes of malware. Furthermore, these ap-
proaches delay launching the attack which increases the
risk of being detected by AV scanners on clients before a
successful attack occurs.

Another possibility is that a malware might only en-
crypt a specific part of a file instead of aggressively en-
crypting the entire file, or simply shuffle the file content
using a specific pattern that makes the files unreadable.
Although we have not seen any sample with these behav-
iors, developing such ransomware is quite possible. The
key idea is that in order to perform such activities, the
malicious program should open the file with write per-
mission and manipulate at least some data buffers of the
file content. In any case, if the malicious program ac-
cesses the files, UNVEIL will still see this activity. There
is no real reason for benign software to touch automat-
ically generated files with write permission and modify
the content. Consequently, such activities will still be
logged. Malware authors might use other techniques to
notify the victim and also evade the desktop lock mon-
itor. As an example, the ransomware may display the
ransom note via video or audio files rather than locking
the desktop. As we partially discussed, these approaches
only make sense if the malware is able to successfully
encrypt user files first. In this case, UNVEIL can identify
those malicious filesystem access as discussed in Sec-
tion 3.1.2.

We also believe that the current implementation of text
extraction to detect desktop locker ransomware can be
improved. We observed that the change in the structure
of the desktop screen-shots is enough to detect a large
number of current ransomware attacks since UNVEIL ex-
ploits the attacker’s goal which is to ensure that the vic-
tims see the ransom note. However, we believe that the
text extraction module can be improved to detect possible
evasion techniques an attacker could use to generate the
ransom note (e.g., using uncommon words in the ransom
text).

Clearly, there is always the possibility that an attacker
will be able to fingerprint the dynamic analysis environ-
ment. For example, stalling code [26] has become in-
creasingly popular to prevent the dynamic analysis of a
sample. Such code takes longer to execute in a virtual en-
vironment, preventing execution from completing during
an analysis. Also, attackers can actively look for signs
of dynamic analysis (e.g., signs of execution in a VM

12

USENIX Association 25th USENIX Security Symposium 769

such as well-known hard disk names). Note that UN-
VEIL is agnostic as to the underlying dynamic analysis
environment. Hence, as a mitigation, UNVEIL can use
a sandbox that is more resistant to these evasion tech-
niques(e.g., [26, 48]). The main contribution of UNVEIL
is not the dynamic analysis of malware, but rather the in-
troduction of new techniques for the automated, specific
detection of ransomware during dynamic analysis.

UNVEIL runs within the kernel, and aims to detect
user-level ransomware. As a result, there is the risk that
ransomware may run at the kernel level and thwart some
of the hooks UNVEIL uses to monitor the filesystem.
However, this would require the ransomware to run with
administrator privileges to load kernel code or exploit a
kernel vulnerability. Currently, most ransomware runs
as user-level programs because this is sufficient to carry
out ransomware attacks. Kernel-level attacks would re-
quire more sophistication, and would increase the diffi-
culty bar for the attackers. Also, if additional resilience
is required, the kernel component of UNVEIL could be
moved outside of the analysis sandbox.

7 Related Work

Many approaches have been proposed to date that have
aimed to improve the analysis and detection of mal-
ware. A number of approaches have been proposed
to describe program behavior from analyzing byte pat-
terns [29, 43, 41, 50] to transparently running programs
in malware analysis systems [4, 23, 22, 47]. Early steps
to analyze and capture the main intent of a program fo-
cused on analysis of control flow. For example, Kruegel
et al. [28] and Bruschi et al. [9] showed that by mod-
eling programs based on their instruction-level control
flow, it is possible to bypass some forms of obfuscation.
Similarly, Christodorescu et al. [12] used instruction-
level control flow to design obfuscation-resilient detec-
tion systems. Later work focused on analyzing and
detecting malware using higher-level semantic charac-
terizations of their runtime behavior derived from se-
quences of system call invocations and OS resource ac-
cesses [24, 25, 11, 33, 42, 51].

Similar to our use of automatically-generated user
content, decoys have been used in the past to detect se-
curity breaches. For instance, the use of decoy resources
has been proposed to detect insider attacks [8, 52]. Re-
cently, Juels et al. [18] used honeywords to improve the
security of hashed passwords. The authors show that de-
coys can improve the security of hashed passwords since
the attempt to use the decoy password for logins results
in an alarm. In other work, Nikiforakis et al. [35] used
decoy files to detect illegally obtained data from file host-
ing services.

There have also been some recent reports on the ran-
somware threat. For example, security vendors have re-
ported on the threat of potential of ransomware attacks
based on the number of infections that they have ob-
served [46, 7, 44, 36]. A first report on specific ran-
somware families was made by Gazet where the author
analyzed three ransomware families including Krotten

and Gpcode [14]. The author concluded that while these
early families were designed for massive propagation,
they did not fulfill the basic requirements for mass extor-
tion (e.g., sufficiently long encryption keys). Recently,
Kharraz et al. [21] analyzed 15 ransomware families and
provided an evolution-based study of ransomware at-
tacks. They performed an analysis of charging methods
and the use of Bitcoin for monetization. They proposed
several high-level mitigation strategies such as the use of
decoy resources to detect suspicious file access. Their
assumption is that every filesystem access to delete or
encrypt decoy resources is malicious and should be re-
ported. However, they did not implement any concrete
solution to detect or defend against these attacks.

We are not aware of any systems that have been pro-
posed in the literature that specifically aim to detect ran-
somware in the wild. In particular, in contrast to exist-
ing work on generic malware detection, UNVEIL detects
behavior specific to ransomware (e.g., desktop locking,
patterns of filesystem accesses).

8 Conclusions

In this paper we presented UNVEIL, a novel approach
to detecting and analyzing ransomware. Our system is
the first in the literature to specifically identify typical
behavior of ransomware such as malicious encryption of
files and locking of user desktops. These are behaviors
that are difficult for ransomware to hide or change.

The evaluation of UNVEIL shows that our approach
was able to correctly detect 13,637 ransomware samples
from multiple families in a real-world data feed with zero
false positives. In fact, UNVEIL outperformed all ex-
isting AV scanners and a modern industrial sandboxing
technology in detecting both superficial and technically
sophisticated ransomware attacks. Among our findings
was also a new ransomware family that no security com-
pany had previously detected before we submitted it to
VirusTotal.

9 Acknowledgements

This work was supported by the National Science Foun-
dation (NSF) under grant CNS-1409738, and Secure
Business Austria.

13

770 25th USENIX Security Symposium USENIX Association

References

[1] Minotaur Analysis - Malware Repository. minota
uranalysis.com.

[2] Malware Tips - Your Security Advisor.
http://malwaretips.com/forums/viru
s-exchange.104/.

[3] MalwareBlackList - Online Repository of Mali-
cious URLs. http://www.malwareblacklist.c
om.

[4] Proof-of-concept Automated Baremetal Malware
Analysis Framework. https://code.google.com
/p/nvmtrace/.

[5] BitBlaze Malware Analysis Service.
http://bitblaze.cs.berkeley.edu/, 2016.

[6] SilentCrypt: A new ransomware family. https:

//www.youtube.com/watch?v=qiASKA4BMck,
2016.

[7] AJJAN, A. Ransomware: Next-Generation Fake
Antivirus. http://www.sophos.com/en-us/me
dialibrary/PDFs/technicalpapers/Sophos

RansomwareFakeAntivirus.pdf, 2013.

[8] BOWEN, B. M., HERSHKOP, S., KEROMYTIS,
A. D., AND STOLFO, S. J. Baiting inside attackers
using decoy documents. Springer, 2009.

[9] BRUSCHI, D., MARTIGNONI, L., AND MONGA,
M. Detecting self-mutating malware using control-
flow graph matching. In Detection of Intru-
sions and Malware & Vulnerability Assessment.
Springer, 2006, pp. 129–143.

[10] CATALIN CIMPANU. Breaking Bad Ransomware
Completely Undetected by VirusTotal. http:

//http://news.softpedia.com/news/brea
king-bad-ransomware-goes-completely-u

ndetected-by-virustotal-493265.shtml,
2015.

[11] CHRISTODORESCU, M., JHA, S., AND KRUEGEL,
C. Mining specifications of malicious behavior. In
Proceedings of the 1st India software engineering
conference (2008), ACM, pp. 5–14.

[12] CHRISTODORESCU, M., JHA, S., SESHIA, S. A.,
SONG, D., AND BRYANT, R. E. Semantics-aware
malware detection. In Security and Privacy, 2005
IEEE Symposium on (2005), IEEE, pp. 32–46.

[13] CUCKOO FOUNDATION. Cuckoo Sandbox: Auto-
mated Malware Analysis. www.cuckoosandbox.o
rg, 2015.

[14] GAZET, A. Comparative analysis of various ran-
somware virii. Journal in Computer Virology 6, 1
(February 2010), 77–90.

[15] GRIER, C., BALLARD, L., CABALLERO, J.,
CHACHRA, N., DIETRICH, C. J., LEVCHENKO,
K., MAVROMMATIS, P., MCCOY, D., NAPPA, A.,
PITSILLIDIS, A., ET AL. Manufacturing com-
promise: the emergence of exploit-as-a-service.
In Proceedings of the 2012 ACM conference on
Computer and communications security (2012),
pp. 821–832.

[16] INTERNATIONAL SECURE SYSTEM LAB. Anubis
- Malware Analysis for Unknown Binaries. https:
//anubis.iseclab.org/, 2015.

[17] JASHUA TULLY. An Anti-Reverse Engineering
Guide. http://www.codeproject.com/Article
s/30815/An-Anti-Reverse-Engineering-G

uide#StolenBytes, 2008.

[18] JUELS, A., AND RIVEST, R. L. Honeywords:
Making password-cracking detectable. In Proceed-
ings of the 2013 ACM SIGSAC conference on Com-
puter & communications security (2013), ACM,
pp. 145–160.

[19] KAWAKOYA, Y., IWAMURA, M., SHIOJI, E., AND
HARIU, T. Api chaser: Anti-analysis resistant mal-
ware analyzer. In Research in Attacks, Intrusions,
and Defenses. Springer, 2013, pp. 123–143.

[20] KEVIN SAVAGE, PETER COOGAN, HON
LAU. the Evolution of Ransomware. http:

//www.symantec.com/content/en/us/enter
prise/media/security response/whitep

apers/the-evolution-of-ransomware.pdf,
2015.

[21] KHARRAZ, A., ROBERTSON, W., BALZAROTTI,
D., BILGE, L., AND KIRDA, E. Cutting the
Gordian Knot: A Look Under the Hood of Ran-
somware Attacks. In Conference on Detection of
Intrusions and Malware & Vulnerability Assess-
ment (DIMVA) (07 2015).

[22] KIRAT, D., VIGNA, G., AND KRUEGEL, C. Bare-
box: efficient malware analysis on bare-metal. In
Proceedings of the 27th Annual Computer Security
Applications Conference (2011), ACM, pp. 403–
412.

[23] KIRAT, D., VIGNA, G., AND KRUEGEL, C. Bare-
cloud: Bare-metal analysis-based evasive malware
detection. In 23rd USENIX Security Symposium
(USENIX Security 14) (2014), USENIX Associa-
tion, pp. 287–301.

14

USENIX Association 25th USENIX Security Symposium 771

[24] KIRDA, E., KRUEGEL, C., BANKS, G., VIGNA,
G., AND KEMMERER, R. Behavior-based spyware
detection. In Usenix Security (2006), vol. 6.

[25] KOLBITSCH, C., COMPARETTI, P. M.,
KRUEGEL, C., KIRDA, E., ZHOU, X.-Y.,
AND WANG, X. Effective and efficient malware
detection at the end host. In USENIX security
symposium (2009), pp. 351–366.

[26] KOLBITSCH, C., KIRDA, E., AND KRUEGEL, C.
The power of procrastination: detection and mit-
igation of execution-stalling malicious code. In
Proceedings of the 18th ACM conference on Com-
puter and communications security (2011), ACM,
pp. 285–296.

[27] KREBS, B. FBI: North Korea to Blame for Sony
Hack. http://krebsonsecurity.com/2014/
12/fbi-north-korea-to-blame-for-sony-h

ack/, 2014.

[28] KRUEGEL, C., KIRDA, E., MUTZ, D., ROBERT-
SON, W., AND VIGNA, G. Polymorphic worm de-
tection using structural information of executables.
In Recent Advances in Intrusion Detection (2006),
Springer, pp. 207–226.

[29] LI, W.-J., WANG, K., STOLFO, S. J., AND HER-
ZOG, B. Fileprints: Identifying file types by n-
gram analysis. In Information Assurance Work-
shop, 2005. IAW’05. Proceedings from the Sixth
Annual IEEE SMC (2005), IEEE, pp. 64–71.

[30] LIN, J. Divergence measures based on the shannon
entropy. IEEE Transactions on Information theory
37 (1991), 145–151.

[31] LINDORFER, M., KOLBITSCH, C., AND COM-
PARETTI, P. M. Detecting environment-sensitive
malware. In Recent Advances in Intrusion Detec-
tion (2011), Springer, pp. 338–357.

[32] MALWARE DON’T NEED COFFEE. Guess
who’s back again ? Cryptowall 3.0. http:

//malware.dontneedcoffee.com/2015/01/gu
ess-whos-back-again-cryptowall-30.html,
2015.

[33] MARTIGNONI, L., STINSON, E., FREDRIKSON,
M., JHA, S., AND MITCHELL, J. C. A lay-
ered architecture for detecting malicious behaviors.
In Recent Advances in Intrusion Detection (2008),
Springer, pp. 78–97.

[34] MICROSOFT, INC. File System Minifilter Drivers.
https://msdn.microsoft.com/en-us/li
brary/windows/hardware/ff540402%28v=

vs.85%29.aspx, 2014.

[35] NIKIFORAKIS, N., BALDUZZI, M., ACKER,
S. V., JOOSEN, W., AND BALZAROTTI, D. Ex-
posing the lack of privacy in file hosting services.
In Proceedings of the 4th USENIX conference on
Large-scale exploits and emergent threats (LEET)
(March 2011), LEET 11, USENIX Association.

[36] O’GORMAN, G., AND MCDONALD,
G. Ransomware: A Growing Menance.
http://www.symantec.com/connect/blo
gs/ransomware-growing-menace, 2012.

[37] PAYLOAD SECURITY INC,. Payload Security.
https://www.hybrid-analysis.com, 2016.

[38] RAY SMITH. Tesseract Open Source OCR Engine
. https://github.com/tesseract-ocr/tesse
ract, 2015.

[39] REAQTA INC,. HyraCrypt Ransomware.
https://reaqta.com/2016/02/hydracrypt-
ransomware/, 2016.

[40] ROSSOW, C., DIETRICH, C. J., GRIER, C.,
KREIBICH, C., PAXSON, V., POHLMANN, N.,
BOS, H., AND VAN STEEN, M. Prudent practices
for designing malware experiments: Status quo and
outlook. In Security and Privacy (SP), 2012 IEEE
Symposium on (2012), IEEE, pp. 65–79.

[41] SCHULTZ, M. G., ESKIN, E., ZADOK, E., AND
STOLFO, S. J. Data mining methods for detec-
tion of new malicious executables. In Security and
Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on (2001), IEEE, pp. 38–49.

[42] STINSON, E., AND MITCHELL, J. C. Character-
izing bots remote control behavior. In Detection of
Intrusions and Malware, and Vulnerability Assess-
ment. Springer, 2007, pp. 89–108.

[43] SUNG, A. H., XU, J., CHAVEZ, P., AND MUKKA-
MALA, S. Static analyzer of vicious executables
(save). In Computer Security Applications Confer-
ence, 2004. 20th Annual (2004), IEEE, pp. 326–
334.

[44] SYMANTEC, INC. Internet Security Threat Report.
http://www.symantec.com/security respons

e/publications/threatreport.jsp, 2014.

[45] THE CYBER THREAT ALLIANCE. Lucrative Ran-
somware Attacks: Analysis of Cryptowall Version
3 Threat. http://cyberthreatalliance.org/c
ryptowall-report.pdf, 2015.

[46] TRENDLABS. An Onslaught of Online Banking
Malware and Ransomware. http://apac.trend

15

772 25th USENIX Security Symposium USENIX Association

micro.com/cloud-content/apac/pdfs/secur
ity-intelligence/reports/rpt-cashing-i

n-on-digital-information.pdf, 2013.

[47] VASUDEVAN, A., AND YERRABALLI, R. Co-
bra: Fine-grained malware analysis using stealth
localized-executions. In Security and Privacy, 2006
IEEE Symposium on (2006).

[48] VIGNA, G. From Anubis and Wepawet to
Llama. http://info.lastline.com/blog/from
-anubis-and-wepawet-to-llama, June 2014.

[49] WANG, Z., BOVIK, A. C., SHEIKH, H. R., AND
SIMONCELLI, E. P. Image quality assessment:
from error visibility to structural similarity. Im-
age Processing, IEEE Transactions on 13, 4 (2004),
600–612.

[50] XU, J.-Y., SUNG, A. H., CHAVEZ, P., AND
MUKKAMALA, S. Polymorphic malicious exe-
cutable scanner by api sequence analysis. In Hybrid
Intelligent Systems, 2004. HIS’04. Fourth Interna-
tional Conference on (2004), IEEE, pp. 378–383.

[51] YIN, H., SONG, D., EGELE, M., KRUEGEL, C.,
AND KIRDA, E. Panorama: capturing system-wide
information flow for malware detection and anal-
ysis. In Proceedings of the 14th ACM conference
on Computer and communications security (2007),
ACM, pp. 116–127.

[52] YUILL, J., ZAPPE, M., DENNING, D., AND
FEER, F. Honeyfiles: deceptive files for intru-
sion detection. In Information Assurance Work-
shop, 2004. Proceedings from the Fifth Annual
IEEE SMC (2004), IEEE, pp. 116–122.

A Benign Applications Used in Experi-
ment One

Application Main Capability Version

7-zip Compression 15.06
Winzip Compression 19.5
WinRAR Compression 5.21
DiskCryptor Encryption 1.1.846.118
AESCrypt Encryption —
Eraser Shredder 6.2.0.2969
SDelete Shredder 1.61

Table 5: The list of benign applications that generate
similar I/O access patterns to ransomware.

16

USENIX Association 25th USENIX Security Symposium 773

Towards Measuring and Mitigating
Social Engineering Software Download Attacks

Terry Nelms1,2, Roberto Perdisci3,1, Manos Antonakakis1, and Mustaque Ahamad1,4

1Georgia Institute of Technology
2Damballa, Inc.

3University of Georgia
4New York University Abu Dhabi

tnelms@gatech.edu, perdisci@cs.uga.edu, manos@gatech.edu, mustaq@cc.gatech.edu

Abstract
Most modern malware infections happen through the
browser, typically as the result of a drive-by or social en-
gineering attack. While there have been numerous stud-
ies on measuring and defending against drive-by down-
loads, little attention has been dedicated to studying so-
cial engineering attacks.

In this paper, we present the first systematic study
of web-based social engineering (SE) attacks that suc-
cessfully lure users into downloading malicious and un-
wanted software. To conduct this study, we collect and
reconstruct more than two thousand examples of in-the-
wild SE download attacks from live network traffic. Via a
detailed analysis of these attacks, we attain the following
results: (i) we develop a categorization system to identify
and organize the tactics typically employed by attackers
to gain the user’s attention and deceive or persuade them
into downloading malicious and unwanted applications;
(ii) we reconstruct the web path followed by the victims
and observe that a large fraction of SE download attacks
are delivered via online advertisement, typically served
from “low tier” ad networks; (iii) we measure the char-
acteristics of the network infrastructure used to deliver
such attacks and uncover a number of features that can
be leveraged to distinguish between SE and benign (or
non-SE) software downloads.

1 Introduction
Most modern malware infections happen via the

browser, typically triggered by social engineering [9] or
drive-by download attacks [33]. While numerous studies
have focused on measuring and defending against drive-
by downloads [14,17,28,38], malware infections enabled
by social engineering attacks remain notably understud-
ied [31].

Moreover, as recent defenses against drive-by down-
loads and other browser-based attacks are becoming
harder to circumvent [18, 24, 32, 36, 40], cyber-criminals
increasingly aim their attacks against the weakest link,

namely the user, by leveraging sophisticated social en-
gineering tactics [27]. Because social engineering (SE)
attacks target users, rather than systems, current defense
solutions are often unable to accurately detect them.
Thus, there is a pressing need for a comprehensive study
of social engineering downloads that can shed light on
the tactics used in modern attacks. This is important not
only to inform better technical defenses, but may also al-
low us to gather precious information that may be used
to better train users against future SE attacks.

In this paper, we present a study of real-world SE
download attacks. Specifically, we focus on studying
web-based SE attacks that unfold exclusively via the web
and that do not require “external” triggers such as email
spam/phishing, etc. An example of such attacks is de-
scribed in [9]: a user is simply browsing the web, vis-
iting an apparently innocuous blog, when his attention
is drawn to an online ad that is subtly crafted to mimic
a warning about a missing browser plugin. Clicking on
the ad takes him to a page that reports a missing codec,
which is required to watch a video. The user clicks on
the related codec link, which results in the download of
malicious software.

To conduct our study, we collect and analyze hundreds
of successful in-the-wild SE download attacks, namely
SE attacks that actually result in a victim downloading
malicious or unwanted software. We harvest these at-
tacks by monitoring live web traffic on a large academic
network. Via a detailed analysis of our SE attack dataset,
we attain the following main results: (i) we develop a
categorization system to identify and organize the tactics
typically employed by attackers to gain a user’s atten-
tion and deceive or persuade them into downloading ma-
licious and unwanted applications; (ii) we reconstruct the
web path (i.e., sequence of pages/URLs) followed by SE
victims and observe that a large fraction of SE attacks are
delivered via online advertisement (e.g., served via “low
tier” ad networks); (iii) we measure the characteristics of
the network infrastructure (e.g., domain names) used to

774 25th USENIX Security Symposium USENIX Association

deliver such attacks, and uncover a number of features
that can be leveraged to distinguish between SE and be-
nign (i.e., “non-SE”) software downloads.

Our findings show that a large fraction of SE attacks
(almost 50%) are accomplished by repackaging existing
benign applications. For instance, users often download
free software that comes as a bundle including the soft-
ware actually desired by the user plus some Adware or
other Potentially Unwanted Programs (PUPs). This con-
firms that websites serving free software are often in-
volved (willingly or not) in distributing malicious or un-
wanted software [4, 7].

The second most popular category of attacks is related
to alerting or urging the user to install an application that
is supposedly needed to complete a task. For instance,
the user may be warned that they are running an outdated
or insecure version of Adobe Flash or Java, and are of-
fered to download a software update. Unfortunately, by
downloading these supposed updates, users are infected.
Similarly, users may stumble upon a page that suppos-
edly hosts a video of interest. This page may then inform
the user that a specific video codec is needed to play the
desired video. The user complies by downloading the
suggested software, thus causing an infection (see Sec-
tion 3 for details).

Another example of an SE download attack is rep-
resented by fake anti-viruses (FakeAVs) [35]. In this
case, a web page alerts the user that their machine is in-
fected and that AV software is needed to clean up the
machine. In a way similar to the SE attack examples
reported above, the user may be persuaded to down-
load (in some cases after a payment) the promoted soft-
ware, which will infect the user’s machine. However,
while FakeAVs have been highly popular among attack-
ers in the recent past, our study of in-the-wild SE mal-
ware downloads finds that they represent less than 1%
of modern SE attacks. This sharp decline in the num-
ber of FakeAV attacks within the last few years is con-
sistent with the recent development of technical counter-
measures against this class of attacks [5] and increased
user awareness [6].

As mentioned earlier, a large fraction of SE download
attacks (more than 80%) are initiated via advertisements,
and that the “entry point” to these attacks is represented
by only a few low-tier advertisement networks. For in-
stance, we found that a large fraction of the web-based
SE attacks described above are served primarily via two
ad networks: onclickads.net and adcash.com.

By studying the details of SE download attacks, we
also discover a number of features that aid in the detec-
tion of SE download attacks on live web traffic. We train
a classifier using these features and measure its effective-
ness at detecting SE downloads.

Summary of Contributions:

• We present the first systematic study of modern
web-based SE download attacks. For instance, our
analysis of hundreds of SE download attack in-
stances reveals that most such attacks are enabled
by online advertisements served through a handful
of “low tier” ad networks.

• To assist the process of understanding the origin
of SE download attacks, we develop a categoriza-
tion system that expresses how attackers typically
gain a user’s attention, and what are the most com-
mon types of deception and persuasion tactics used
to trick victims into downloading malicious or un-
wanted applications. This makes it easier to track
what type of attacks are most prevalent and may
help to focus user training programs on specific user
weaknesses and particularly successful deception
and persuasion tactics currently used in the wild.

• Via extensive measurements, we find that the most
common types of SE download attacks include fake
updates for Adobe Flash and Java, and that fake
anti-viruses (FakeAVs), which have been a popu-
lar and effective infection vector in the recent past,
represent less than 1% of all SE downloads we ob-
served in the wild. Furthermore, we find that ex-
isting defenses, such as traditional anti-virus (AV)
scanners, are largely ineffective against SE down-
loads.

• Based on our measurements, we then identify a set
of features that allow for building a statistical clas-
sifier that is able to accurately detect ad-driven SE
download attacks with 91% true positives and only
0.5% false positives.

2 Study Overview
Our study of SE download attacks is divided in mul-

tiple parts. To better follow the results discussed in the
following sections, we now present a brief summary of
their content.

In Section 3, we analyze the range of deception and
persuasion tactics employed by the attackers to victimize
users, and propose a categorization system to systematize
the in-the-wild SE tactics we observed.

In Section 4, we discuss how we collect software
downloads (including malicious ones) from live network
traffic and reconstruct their download path. Namely, we
trace back the sequence of pages/URLs visited by a user
before arriving to a URL that triggers the download of
an executable file (we focus on Windows portable exe-
cutable files). We then analyze the collected software
download events, and label those downloads that result

2

USENIX Association 25th USENIX Security Symposium 775

from SE attacks. This labeled dataset is used in the fol-
lowing sections to enable a detailed analysis of the char-
acteristics of the SE download attacks.

We analyze our dataset of in-the-wild SE download
attacks in Section 5. Specifically, we measure how the
SE attack tactics are distributed, according to the catego-
rization system proposed in Section 3, and highlight the
most popular successful SE malware attacks. According
to our dataset, the majority of SE attacks are promoted
via online advertisement. Therefore, in Section 5 we
also present an analysis of the network-level properties
of ad-based SE malware attacks, and contrast them with
properties of ad-driven benign software downloads.

In Section 6, we focus on detecting ad-based SE down-
load attacks. We first show that anti-virus products de-
tect only a small fraction of all SE attacks, leaving most
“fresh” SE download events undetected. We then devise
a number of statistical features that can be extracted from
the network properties of ad-driven software download
events, and show that they allow us to build an accurate
SE attack classifier, which could be used to detect and
stop SE download attacks before they infect their vic-
tims.

Finally, we discuss possible limitations of our SE at-
tacks study and detection approach in Sections 7, and
contrast our work to previously published research in
Section 8.

3 SE Download Attacks
In this section, we analyze the range of deception and

persuasion tactics employed by the attackers to victim-
ize users (Section 3.1). We also provide some concrete
examples of SE download attacks, to highlight how real
users may fall victim to such attacks (Section 3.2).

SE Attacks Dataset. Our analysis is based on a dataset
consisting of 2,004 real-world SE download attacks. We
collected these attacks by monitoring the network traf-
fic of a large academic network (authorized by our orga-
nization’s IRB), passively reconstructing the download
of executable binary files and tracing back the brows-
ing path followed by the users to reach the file down-
load event. We then analyzed the observed file down-
load events to identify possible malware, adware or PUP
downloads. Finally, we performed an extensive manual
analysis of the suspicious downloads to identify and la-
bel those downloads that were triggered by SE attacks,
and to precisely reconstruct the attack scenarios. A de-
tailed description of our dataset collection and labeling
approach is provided in Section 4. Furthermore, in Sec-
tion 5 we measure properties of the collected attacks,
such as what types of SE attacks are the most prevalent,
and provide information on the network-level character-
istics of SE download distribution operations.

In the following, we will focus on analyzing our SE
download attack dataset with the goal of categorizing the
different types of deception and persuasion tactics used
by attackers to lure victims into downloading malicious
and unwanted software.

3.1 Categorizing SE Download Tactics
The dataset of 2,004 SE download attacks that we re-

constructed and labeled via extensive manual analysis ef-
forts (detailed in Section 4) gives us an excellent oppor-
tunity to study the wide range of depiction and persua-
sion tactics employed by the attackers. To better under-
stand how SE attacks work, we develop a categorization
system that aims to provide a systematization of the tech-
niques used by successful SE download attacks. Specifi-
cally, we categorize different SE attacks according to; (1)
the ways the adversaries get the user’s attention and (2)
the type of deception and persuasion tactics employed.
Our categorization of SE attacks is summarized in Fig-
ure 1.
Gaining the user’s attention. The first step in a SE at-
tack is to get the user’s attention. This is accomplished
for example by leveraging online advertisement (ad),
search engine optimization (SEO) techniques or by post-
ing messages (and clickable links) on social networks,
forums, and other sites that publish user-generated con-
tent.

As we will show in Section 5, the most popular of
these methods is ads. On-line advertisement allows the
attacker to easily “publish” their deception/persuasion
ad on a site that is likely already popular among the
targeted victims. In addition, ads help hide the decep-
tion/persuasion campaign and attack infrastructure (i.e.,
hide it from users as well as security researchers), sim-
ply because SE ads are exposed only to targeted users via
search keywords, the user’s cookies, etc.

Another method employed to attract the user’s atten-
tion is search. For instance, search engines can be abused
via black hat SEO attacks to pollute the search results
with harmful links. In addition, in our categorization of
SE attacks we use a generic definition of “search” that
does not only include search engines; anytime a user
perform a query to locate specific content on a website,
we classify it as a search event. For instance, we have
observed users that become victims of SE attacks while
simply searching for content within a website that hosts
video streaming (e.g., movies, video clips, etc.).

Attackers also use web posts to attract the user’s atten-
tion. We define a web post as content that has been added
to a website by a visitor and is now available for display
to others. For instance, many of the web posts used in the
SE download attacks we observed were located within
groups of legitimate posts about a topic of interest. The
majority of such web posts were related to content (e.g.,

3

776 25th USENIX Security Symposium USENIX Association

Ad Web PostSearch

User Attention

Persuasion

ImpersonateRepackageDecoy Invent Entice Comply

Deception

Alarm

Figure 1: Categorization of SE downloads on the web.

clickable links) such as free software, books, music and
movies.

It is not uncommon for these three techniques (ads,
search, and web posts) to be combined. For instance, at-
tackers will use search and ads in combination to get the
user’s attention. Targeted search engine ads related to
the search terms entered by users are often displayed be-
fore the real search results, thus increasing the likelihood
of a click. This common search engine feature is often
abused by attackers. Also, users may search for certain
specific terms on web forums, social network sites, etc.,
and may fall victim to targeted web posts.

Deception and persuasion tactics. After an attacker
gains the user’s attention, they must convince them to
download and install their malicious or unwanted soft-
ware. This typically involves combining a subset of the
deception and persuasion techniques summarized in Fig-
ure 1. As one scrolls from left to right in the figure,
the techniques move from deception towards persuasion.
Notice that none of the techniques we list involve only
deception or only persuasion; instead, the different tech-
niques vary in their levels of each. We now provide a de-
scription of the deception and persuasion classes shown
in Figure 1. We will then present examples of real-world
SE download attacks that make use of a combination of
these techniques.
(1) Decoy: Attackers will purposely place decoy “click-

able” objects, such as a hyperlink, at a location on a
web page that will attract users to it and away from
the actual object desired (or searched) by the user.
An image of a “flashy” download button (e.g., deliv-
ered as an ad banner) on a free download site located
prior to the actual download link desired by the user
is an example of this technique.

(2) Repackage: To distribute malicious and unwanted
software, attackers may group benign and PUP (or
malware) executables together, and present them to
the user as a single application. An example tech-
nique from this class is adware bundled with a be-
nign application and served as a single software
download on a free software distribution website.

(3) Impersonate: Using specific images, words and col-
ors can make an executable appear as if it was a

known popular benign application. Also, claiming
that a software provides desirable features or ser-
vices (though it does not supply them) is a way to
convince the user to download and install the appli-
cation. Malicious executables pretending to be an
Adobe Flash Player update, e.g., by using logos or
icons similar to the original Adobe products and key-
words such as “adobe” and “flash,” is an example of
impersonation techniques from this class.

(4) Invent: Creating a false reality for the user may
compel them to download a malicious or unwanted
executable. For example, alerting the user stat-
ing that their machine is infected with malware and
instructing them to download (malicious) clean-up
software (e.g., a fake AV) is an example of the invent
tactic.

(5) Alarm: Using fear and trepidation aims to scare
the user into downloading (malicious) software that
promises to safeguard them. For instance, an online
ad claiming that the user’s browser is out-of-date and
vulnerable to exploitation is an example of alarm
techniques.

(6) Entice: Attackers often attempt to attract users to
download a malicious or unwanted executable by of-
fering features, content or advantages. As an exam-
ple, a user may be shown an ad for a system opti-
mization utility stating that it will “speedup” their
PC, but hides malicious software.

(7) Comply: A user may be (apparently) required to in-
stall an (malicious) application before she can con-
tinue. For instance, a user visiting a video stream-
ing website may be prompted to install a necessary
“codec” before she can watch a free movie. As the
user is motivated to watch the movie, she complies
with the codec installation request, thus getting in-
fected with malware.

It is important to note that none of the SE attacks in our
study fall into a single class. Instead the in-the-wild SE
attacks we collected often use techniques across two or
more of the above classes to trick the user into infecting
their machine. Labeling a download using these classes
involves understanding the motivations employed to con-
vince a user to install the malicious software. These are

4

USENIX Association 25th USENIX Security Symposium 777

typically easy to identify by examining the words and
images used in an attack. For instance, an attack that im-
personates will claim to be software that it is not, such
as Adobe Flash Player. On the other hand, an attack that
entices a user will often use words like “free” and de-
scribe all the benefits of installing the software. Entice
and impersonate are not mutually exclusive and are used
together in some SE attacks. Allowing an SE attack to
be assigned to more than one class simplifies the label-
ing process because all perception/deception tactics can
be included, not just the one believed to be the primary
tactic.

3.2 Examples of In-The-Wild SE Attacks
In this section, we present two examples from our

dataset of reconstructed SE download attacks, and clas-
sify their SE tactics using our categorization system (see
Figure 1). To aid in our discussion we define the nota-
tion “attention:deception/persuasion,” where the atten-
tion string refers to how attackers attempt to attract users’
attention, and the deception/persuasion string refers to
the combination of the deception/persuasion techniques
used to trigger the malware download. For example, if an
SE attack relies on an ad and uses alarm and imperson-
ate deception/persuasion tactics, then we label the attack
using our notation as “ad:alarm+impersonate.”

Attack 1. A user searches for “Gary Roberts free pics”
using a popular search engine. A page hosted on a com-
promised website is returned as a top result. The page
contains various content referring to “Gary Roberts”, but
this content is incoherent and likely only present for
blackhat search engine optimization (SEO). However,
the user never sees the content because the javascript
code located at the top of the served page immediately
closes the document, and then reopens it to inject a script
that redirects the user to a page that says “gary-roberts-
free-pics is ready for download. Your file download
should automatically start within seconds. If it doesn’t,
click to restart the download.” But the downloaded file
does not contain any pictures, and instead carries mali-
cious code that is later flagged as malware by some AV
vendors.

Using our categorization system we classify this at-
tack as “search:entice+decoy+impersonate.” Search is
the method of gaining the users attention. In this exam-
ple this is obvious because the SE page appeared in the
results page provided by a search engine. The entice part
of the attack is the offering of “free” pics of the subject of
interest. Decoy is due to the fact that blackhat SEO was
used to elevate the SE page in the search results above
other legitimate pages. Lastly, what the user downloads
is not pics of Gary Roberts; instead, it is a malicious ex-
ecutable impersonating what the user wants (e.g., Gary

Figure 2: SE ad for Ebola early warning system.

Roberts free pictures).

Attack 2. A user is watching an episode of “Agents of
Shield” on a free video website when they are presented
with an ad. The ad, similar to the one shown in Fig-
ure 2, presents the user with the option of downloading
an early warning system for Ebola. However, the down-
loaded file does not provide information about an Ebola
outbreak; instead, it infects the user’s system with mali-
cious software.

We classify this attack as “ad:alarm+impersonate” us-
ing our categorization system. The user’s attention is
gained through an ad, in which their fear of Ebola is used
to alarm the user into downloading a tracking system.
Unfortunately, what the user downloads only imperson-
ates a tracking systems, and instead contains malicious
code.

4 Collecting and Labeling SE Attacks
In this section we discuss in detail how we collected

and labeled our dataset of 2,004 SE download attacks.
We will then present an analysis of the prevalence and
characteristics of the collected attacks in Section 5.

4.1 Data Collection Approach
To collect and reconstruct SE download attacks, we

monitor all web traffic at the edge of a large network (this
study was authorized by our organization’s Institutional
Review Board). Using deep packet inspection, we pro-
cess the network traffic in real-time, reconstructing TCP
connections, analyzing the content of HTTP responses
and recording all traffic related to the download of exe-
cutable files (Windows executables).

While monitoring the traffic, we maintain a buffer
of all recent HTTP transactions (i.e., request-response
pairs) that occurred in the past few minutes. When an
HTTP transaction that carries the download of an exe-
cutable file is found, we passively reconstruct and store a
copy of the file itself. In addition, we trigger a dump of
the traffic buffer, recording all the web traffic generated

5

778 25th USENIX Security Symposium USENIX Association

by the same client that initiated the file download dur-
ing the past few minutes before the download started. In
other words, we store all HTTP traffic a client generated
up to (and including) the executable file download.

We then process these HTTP transaction captures us-
ing the trace-back algorithm presented in [30]. The trace-
back algorithm builds a graph where each node is an
HTTP transaction. Given two nodes T1 and T2, they are
connected by an edge if T2 was “likely referred to” by T1.
For instance, a directed edge is drawn from T1 to T2 if the
user clicked on a link in T1’s page and as a consequence
the browser loaded T2. Then, starting from the download
node, the algorithm walks backwards along this graph to
trace back the most likely path (i.e., sequence of HTTP
transactions) that brought the user to initiate the down-
load event. For more details, we refer the reader to [30].

These reconstructed download paths are later analyzed
to identify and categorize SE download attacks. It is im-
portant to note that we do not claim automatic download
path traceback as a contribution of this paper. Instead,
our focus is on the collection, analysis, and categoriza-
tion of SE download attacks, and on the detection and
mitigation of ad-based SE infections. Automatic down-
load traceback is just one of the tools we use to aid in our
analysis.

We deployed the data collection process described
above on a large academic network serving tens of thou-
sands users for a period of two months. To avoid un-
necessarily storing the download traces related to fre-
quent software updates for popular benign software, we
compiled a conservative whitelist consisting of 128 do-
main names owned by major software vendors (e.g., Mi-
crosoft, Adobe, Google, etc.). Therefore, executable files
downloaded from these domains were excluded from our
dataset.

Overall, during our two month deployment, we col-
lected a total of 35,638 executable downloads. The pro-
cess we used to identify the downloads due to SE attacks
is described in the following sections.

4.2 Automatic Data Filtering
Even though we filter out popular benign software up-

dates up front, we found that the majority of executable
downloads observed on a network are updates to (more
or less popular) software already installed on systems.
As we are interested in new infections caused by web-
based SE attacks, we aim to automatically identify and
filter out such software updates.

To this end, we developed a set of conservative heuris-
tics that allow us to identify and filter out most soft-
ware update events based on an analysis of their respec-
tive download path. First, we examine the length of the
download path. The intuition is that software updates

tend to come from very short download paths, which of-
ten consist of a single HTTP request to directly fetch
a new executable file from a software vendor’s web-
site (or one of its mirrors). Conversely, the download
path related to SE download attacks usually consists of a
number of navigation steps (e.g., the may user navigate
through different pages before stumbling upon a mali-
cious SE advertisement).

For the next step in the analysis, we review the user-
agent string observed in the HTTP requests on the down-
load path. The user-agent string appearing in software
update requests is typically not the one used by the
client’s browser (similar observations were made by the
authors of [30]), because the user-agent found in these
requests often contains the name of the software that
is being updated (e.g., Java or Acrobat reader). Since
web-based SE attacks happen to users browsing the web,
HTTP requests on the download path typically carry the
user-agent string of the victim’s browser.

Therefore, to automatically identify and filter out up-
date downloads we use the following heuristics. If the
download path contains a single HTTP transaction (the
update request itself), and the user-agent string does not
indicate that the request has been made by a browser, we
filter out the event from our dataset.

Overall, the conservative filtering approach outlined
above allowed us to reduce the number of download
paths to be further analyzed. Specifically, we were able
to reduce our download traces dataset by 61%, leaving us
with a total of 13,762 that required further analysis and
labeling.

4.3 Analysis of Software Download Events
After filtering, our dataset consists of 13,762 software

download events (i.e., the downloaded executable files
and related download paths) that required further detailed
analysis and labeling. As our primary goal is to create a
high quality dataset of labeled SE download attacks, we
aim to manually analyze and perform a detailed recon-
struction of the attacks captured by our archive of soft-
ware download events.

To aid in the manual analysis process and reduce the
cost of this time-consuming effort, we leveraged unsu-
pervised learning techniques. Specifically, we identify
a number of statistical features that allow us to discover
clusters of download events that are similar to each other.
For instance, we aim to group different downloads of the
same benign software by different clients. At the same
time, we also aim to group together similar download
events triggered by the same SE attack campaign.

To identify and automatically clusters similar down-
load events, we developed a set of statistical features. We
would like to emphasize that none of the features we de-
scribe below is able to independently yield high-quality

6

USENIX Association 25th USENIX Security Symposium 779

clustering results. Rather, it is the combination of these
features that allows us to obtain high quality clusters of
related software download events.

Notice also that the purpose of this clustering process
is simply to reduce the time needed to manually analyze
the software download events we collected. By using a
conservative clustering threshold (discussed below) and
by manually reviewing all obtained clusters, we mini-
mize the impact of possible noise in the results.

To perform the clustering, we leverage a number of
simple statistical features, some of which (e.g., URL
similarity, domain name similarity, etc.) are commonly
used to find the similarity between network-level events.
Notice, however, that our main goal in this clustering
process is not to design novel features; rather, we simply
aim to reduce the manual analysis and labeling efforts
needed to produce a high-quality dataset of in-the-wild
SE download attacks.

We now describe our clustering features:
(1) Filename Similarity: Benign executable files dis-

tributed by the same organization (e.g., an applica-
tion distributed by a given vendor or software distri-
bution site) tend to have similar filenames. Notice
that often this also holds for SE attack campaigns,
because the files distributed by the same campaign
often follow a consistent “theme” to aid in the de-
ception of the end users. For instance, the malware
files distributed by a fake Flash Player upgrade at-
tack campaign (see Section 3) may all include the
word “Adobe” in the filename to convince the user
that the downloaded file is legitimate.

(2) File Size Similarity: Benign files that are identical
or variants (i.e., different versions) of the same soft-
ware are usually very close in size. Similarly, SE
campaigns typically infect victims with a variant of
the same malware family. While the malware file’s
size may vary due to polymorphism, the size dif-
ference is typically small, compared to the total file
size.

(3) URL Structure Similarity: A benign website that
serves software downloads will often host all of its
executable files at the same or very similar struc-
tured URLs. In a similar way, SE campaigns of-
ten use malware distribution “kits” and go weeks or
even months before a noticeable change in the struc-
ture of their URL paths is observed. This is unlike
malicious URLs, which frequently change to avoid
blacklisting.

(4) Domain Name Similarity: While the domain names
used to distributed malware files belonging to the
same SE attack campaign may change, some cam-
paigns will reuse some keywords in their domains
that are meant to deceive the user. For instance,
the domains used in a Fake AV malware campaign

may contain the keyword “security” to convince the
user of its legitimacy. Also, download events related
to (different versions of) the same benign software
are often distributed via a handful of stable domain
names.

(5) Shared Domain Predecessor: SE attacks that share
a common node (or predecessor) in the download
path are often related. For instance, an SE mal-
ware campaign may exploit an ad network with weak
anti-abuse practices. Therefore, while the final do-
main in the download path from which the malware
is actually downloaded may change (e.g., to avoid
blacklisting), the malware download paths of differ-
ent users that fall victim to the same SE campaign
may share a node related to the abused ad network,
for example. On the other hand, in case of benign
downloads both the download and “attention grab-
bing” domain tend to be stable, as the main goal is
quality of service towards the end user.

(6) Shared Hosting: While domains involved in mal-
ware distribution tend to change frequently, SE mal-
ware campaigns often reuse (parts of) the same host-
ing infrastructure (e.g., some IPs). The intuition is
that hosting networks that tolerate abuse (knowingly
or otherwise) are a rare and costly resource. On the
other hand, domain names are significantly easier to
obtain and can be used as crash-and-burn resource
from the adversary. One the benign downloads side,
legitimate software distribution websites are usually
stable and do not change hosting very frequently, for
quality of service reasons.

(7) HTTP Response Header Similarity: The headers
in an HTTP response are the result of the installed
server-side software and configuration of the web
server. The set of response headers and their asso-
ciated values offer a lot of variation. However, most
of the web servers for a benign site tend to have
common configurations so they respond with simi-
lar headers. Also, some SE campaigns use the same
platform for their attacks and do not change their
server-side configurations even when they move to
new domains.

For each of the 13,762 downloads we compute a fea-
ture vector based on the features listed above, and cal-
culate the pairwise distance between these feature vec-
tors. We then apply an agglomerative hierarchical clus-
tering algorithm to the obtained distance matrix. Finally,
we cut the dendrogram output by the hierarchical clus-
tering algorithm to obtain the final clusters of download
events. To cut the dendrogram we chose a conserva-
tive cut height to error on the side of not grouping re-
lated downloads and significantly reduce the possibility
of grouping unrelated ones. This process produced 1,205
clusters, thus resulting in an order of magnitude reduc-

7

780 25th USENIX Security Symposium USENIX Association

tion in the number of items that require manual inspec-
tion. In the following section we explain how we ana-
lyzed and labeled these clusters.

4.4 Labeling SE Download Attacks
After clustering similar software download events, we

manually examine each cluster to distinguish between
those that are related SE download attack campaigns,
and clusters related to other types of software download
events, including benign downloads, malware downloads
triggered by drive-by downloads, and (benign or mali-
cious) software updates. This labeling process allows
us to focus our attention on studying SE download at-
tacks, and to exclude other types of benign and malicious
downloads (notice that because in this paper we are pri-
marily interested on SE attacks, we exclude non-SE mal-
ware attacks from our study).

To perform the cluster labeling, each cluster was man-
ually reviewed by randomly sampling 10% of the down-
load events grouped in the cluster, and then performing
a detailed manual analysis of the events in this sample
set. For small clusters (e.g. clusters with < 50 events)
we sampled a minimum of 5 download events. For clus-
ters containing less than 5 download traces, we reviewed
all of the events. As discussed earlier, our clustering pro-
cess uses a conservative cut height. The net effect is that
the clusters tend to be “pure,” thus greatly reducing the
possibility of errors during the cluster labeling process.
At the same time, some groups of download events that
are similar to each other may be split into smaller clus-
ters. However, this does not represent a significant prob-
lem for our labeling process. The only effect of having a
larger number of highly compact clusters is to create ad-
ditional manual work, since a random sample of events
from each cluster is manually analyzed.

In addition to manually reviewing the download paths
contained in the clusters, to assist our labeling we also
make use of antivirus (AV) labels for the downloaded ex-
ecutable files. To increase AV detections we “aged” the
downloads in our dataset for a period of two months, be-
fore scanning them with more than 40 AV engines using
virustotal.com. Notice that AV labels are mainly
used for confirmation purposes. The actual labeling of
SE attacks is performed via an extensive review of each
download path (i.e., sequence of pages/URLs visited to
arrive to the executable file download). If we suspect a
cluster is malicious (based on our manual analysis), hav-
ing one or more AV hits offers additional confirmation,
but is not required if we have strong evidence that the
download was triggered by an SE attack.
Updates: Even though the heuristics we described in
Section 4.2 filter out the vast majority of software up-
dates, our heuristics are quite conservative and therefore
some update events may still remain. To determine if

a download event is related to a (malware or benign) up-
date, we examine the length of the download path and the
time between requests. If the length of the total down-
load path is < 4 or the time between requests is < 1 sec-
ond, we consider the download event for detailed manual
review. In this case, we analyze the HTTP transactions
that precede the download by examining the content for
artifacts, such as text and clickable buttons, that are indi-
cators of human interaction. If none are found we label
the download as an update.
Drive-by: Next we look for drive-by download indica-
tors. To assist our labeling, we borrow some of the fea-
tures proposed in [30]. Notice that the labeling of drive-
by downloads is not a contribution of our paper. This
is only a means to an end. The novel contributions of
this paper are related to studying the characteristics of
SE download attacks.

To label drive-by attacks, we look for “exploitable
content,” such as pdf, flash, or java code on the path to
a malware download. Browser plugins and extensions
that process this type of content often expose vulnera-
bilities that are exploited by attackers. If we suspect the
download event under analysis is a drive-by, we reverse
engineer the content of the HTTP transactions that pre-
cede the suspected attack. This typically requires deob-
fuscating javascript and analyzing potentially malicious
javascript code. For instance, if we identify code that
checks for vulnerable versions of browser software and
plugins (an indication of “drive-by kits”), we label the
download as drive-by. We identify and label 26 drive-by
downloads.
Social Engineering: If the cluster is not labeled as
update or drive-by, we further examine the download
events to determine if the they are due to SE attacks. For
this analysis, we inspect the content of all HTTP trans-
actions on the download path. This content was saved at
the time of the download and does not require revisiting
of the URLs on the download path. Because SE down-
loads are attacks on the user, they are initiated by a user-
browser interaction (e.g., clicking a link). Therefore, our
goal is to identify the page on the download path con-
taining the link likely clicked by the user that ultimately
initiated the executable file download. By manually re-
viewing the web content included in the download path,
we attempt to determine if deception or questionable per-
suasion tactics were used to trick the user into download-
ing the executable file (see Section 3). In case of positive
identification of such tactics, we label the cluster as so-
cial engineering; otherwise, we label it as “likely” be-
nign.

Notice that the analysis and labeling of SE download
attacks is mainly based on the identification of decep-
tion tactics to trick a user to download an executable file.
However, we also use AV scanning for confirmation pur-

8

USENIX Association 25th USENIX Security Symposium 781

poses. By doing so, we found that the majority of the
clusters we label as social engineering contained one or
more of downloaded files that were labeled as malicious
by some AVs. This provides additional confirmation of
our labeling of SE download attacks.

Overall, among 1,205 clusters in our dataset, we la-
beled 136 clusters as social engineering. In aggregate,
these clusters included a total of of 2,004 SE download
attacks. In Section 3 we analyzed these SE download at-
tacks and developed a categorization system that allows
us to organize these attacks based on the deception and
persuasion tactics used to attack the user. In the next sec-
tion, we measure the popularity of these tactics based on
the data we collected.

5 Measuring SE Download Attacks
In this section we measure the popularity of the tac-

tics attackers employ to gain the user’s attention and
of the deception and persuasion techniques that con-
vince users to (unknowingly) download malicious and
unwanted software. In addition, we measure properties
of ad-based SE download attacks, which can be used to
inform the development of effective defenses against SE
attacks that leverage ad campaigns.

5.1 Popularity of SE Download Attacks
Table 1 shows the number and percentage of SE down-

load attacks for each tactic employed by the attackers to
gain the user’s attention. Over 80% of the SE attacks we
observed used ads displayed on websites visited by the
user. An additional 7% employed both search and ad,
whereby the user first queries a search engine and is then
presented with targeted ads based on the search terms.
The popularity of ads in SE download attacks is likely
due to the fact that they are a very efficient way for at-
tackers to reach a large audience, thus maximizing the
number of potential victims. Furthermore, well-crafted
targeted ads are naturally highly effective at attracting a
user’s attention.

Table 1: Popularity of SE techniques for gaining atten-
tion.

User’s Attention Total Percentage
Ad 1,616 80.64%
Search+Ad 146 7.29%
Search 127 6.34%
Web Post 115 5.74%

Gaining the user’s attention is not sufficient for an SE
download attack to succeed. A user must also be tricked
into actually “following the lead” and downloading the
malicious or unwanted software. Table 2 shows the pop-
ularity of the deception and persuasion techniques we ob-
served in our dataset of SE download attacks. The most

popular combination of deception and persuasion tech-
niques is repackage+entice, making up over 48% of the
observations. In most of these cases, the user is offered
some type of “free” software of interest (e.g., a game or
utility). Unfortunately, while the free software itself may
not be malicious, it is often bundled with malicious ap-
plications such as adware or PUPs.

Table 2: Popularity of SE techniques for tricking the user.

Trick Total Percentage
Repackage+Entice 972 48.50%
Invent+Impersonate+Alarm 434 21.66%
Invent+Impersonate+Comply 384 19.16%
Repackage+Decoy 155 7.74%
Impersonate+Decoy 46 2.30%
Impersonate+Entice+Decoy 12 0.60%
Invent+Comply 4 0.20%
Impersonate+Alarm 1 0.05%

The next two most popular combinations of deception
and persuasion tactics are invent+impersonate+alarm
and invent+impersonate+comply, comprising 22% and
19% of the SE downloads we observed. An example of
invent+impersonate+alarm is a Fake Java update attack,
whereby the user is shown an ad that states “WARN-
ING!!! Your Java Version is Outdated and has Security
Risks, Please Update Now!” and uses images (e.g., logos
or icons) related to Java (notice that this and all other ex-
amples we use throughout the paper represent real-world
cases of successful SE attacks from our dataset). Ads
like this are typically presented to users while they are
visiting legitimate websites. In this example, the attacker
is inventing the scenario that the user’s Java VM is out-
of-date, alarming them with “WARNING!!!” displayed
in a pop-up ad, and then impersonating a Java update
that must be installed to resolve the issue. Notice that
this is different from repackage+entice, in that the real
Java software update is never delivered (only the mal-
ware is). Furthermore, the attacker leverages alarming
messages about a well-known software to more aggres-
sively “push” the user to download and install malicious
software.

The difference between invent+impersonate+alarm
and invent+impersonate+comply is in the persuasion
component; i.e., alarm vs. comply. Alarm leverages
fear (e.g., the computer may be compromised) to compel
the user to download and install malicious software. On
the other hand, comply leverages a pretend requirement
necessary to complete a desired user task. For instance,
a user may be presented with an ad on a video stream-
ing website that says “Please Install Flash Player Pro To
Continue. Top Video Sites Require The Latest Adobe
Flash Player Update.” In this example, the attacker is in-
venting the need to install “Flash Player Pro” and tells
the user they must comply before they can continue with
watching the desired video. Unfortunately, this results

9

782 25th USENIX Security Symposium USENIX Association

0%# 10%# 20%# 30%# 40%# 50%# 60%# 70%# 80%# 90%# 100%#

Impersonate+Alarm#

Impersonate+En;ce+Decoy#

Impersonate+Decoy#

Repackage+Decoy#

Invent+Impersonate+Comply#

Invent+Impersonate+Alarm#

Repackage+En;ce#

Ad# SearchGAd# Search# Webpost#

Figure 3: How attackers gain the user’s attention per de-
ception/persuasion technique.

in the user downloading malicious software that simply
impersonates a popular benign application and offers no
actual utility to the user.

Table 3: Popularity of different “scam” tactics in the
Ad:Invent+Impersonate subclasses.

Alarm Comply
Fake Flash 68% 20%
Fake Java 30% 0%
Fake AV 1% 0%
Fake Browser 1% 0%
Fake Player 0% 80%

Table 3 shows the popularity of different “scam” tac-
tics in the invent+impersonate subclasses alarm and
comply. Fake Flash and Java updates are the two most
popular in the alarm class. In this same class we also ob-
serve Fake Browser updates and Fake AV alerts, but they
are much less common, each comprising only about 1%
of our observations. Fake Flash updates are also common
in the comply class; however, the most popular scam tac-
tic is telling the user they must update or install a new
video player before they can continue. In these Fake
Player attacks, images that resemble Adobe Flash Player
are often used, but the terms “Adobe” or “Flash” are not
directly mentioned. Therefore in Table 3 we distinguish
between explicit Fake Flash and Fake Player.

Figure 3 shows how attackers gain the user’s attention
for each of the observed deception and persuasion tech-
niques. For instance, ads are the most common way used
to attract users’ attention for repackage+entice, compris-
ing 75% of our observations. Search and web posts
contribute the remaining 25%. All observations for in-
vent+impersonate+alarm, invent+impersonate+comply,
impersonate+alarm and impersonate+decoy rely exclu-
sively on ads to gain the user’s attention. At the
other extreme, none of our observations for imperson-
ate+entice+decoy use ads. This is likely due to the
fact that this combination of deception and persuasion

techniques is more effective when the user’s attention is
gained through search and web posts. However, notice
that this comprises less than 1% of all SE downloads in
our dataset (see Table 2).

5.2 Ad-based SE Download Delivery Paths
As shown in Table 1, the majority of SE attacks we ob-

served use online ads to attract users’ attention. To better
understand these attacks, we examine the characteristics
of their ad delivery path. We begin by reconstructing the
web path (i.e., the sequence of URLs) followed by the
victims to arrive to the download URL (see Section 4).
Then, we identify the first ad-related node on the web
path using a set of regular expressions derived from the
Adblock Plus rules [1]. We define the set of nodes (i.e.,
HTTP transactions) on the web path beginning at the first
ad node and ending at the download node as the ad de-
livery path.

Table 4: Top five ad entry point domains.

Comply Alarm Entice
26% onclickads.net 16% adcash.com 20% doubleclick.net
10% adcash.com 7% onclickads.net 16% google.com
10% popads.net 7% msn.com 12% googleadservices.com

7% putlocker.is 6% yesadsrv.com 11% msn.com
3% allmyvideos.net 4% yu0123456.com 8% coupons.com

Table 4 shows the top 5 “entry point” domain names
on the ad delivery paths (i.e., the first domain on
the ad paths) for the comply, alarm and entice attack
classes. Almost 50% of the ad entry points for the
comply class begin with one of the following domains:
onclickads.net, adcash.com or popads.net.
By investigating these domains, we found that they have
also been abused by adware in the past. Specifically,
these domains are the source of pop-up ads injected into
the user’s browsing experience by several well known ad-
ware programs and ad-injecting extensions [43].

Table 4 also shows that the top two ad entry points for
the alarm class are the same as the comply class, though
in reverse ranking. The third domain is msn.com, which
has a good reputation. However, this domain is appearing
at the top of the ranking probably because it sometimes
redirects (via syndication) to less reputable ad networks,
which in turn direct the user to an SE download. Notice
also that the top entry domains in the entice class all have
very good reputations (doubleclick.net is owned
by Google). This is likely due to the fact that the majority
of downloads in this class are for legitimate software that
is simply bundled with “less aggressive” PUPs.

Besides performing an analysis of the “entry point” to
the ad delivery path, we also analyze the last node on
the path, namely the HTTP transaction that delivers the
download. Table 5 shows the most popular SE download
domains for the comply, alarm and entice classes. We

10

USENIX Association 25th USENIX Security Symposium 783

Table 5: Top five ad-driven SE download domains.

Comply Alarm Entice
17% softwaare.net 7% downloaddabs.com 41% imgfarm.com

5% newthplugin.com 4% downloaddado.com 17% coupons.com
5% greatsoftfree.com 4% whensoftisupdated.net 11% shopathome.com
4% soft-dld.com 3% safesystemupgrade.org 5% crusharcade.com
3% younplugin.com 3% onlinelivevideo.org 3% ilivid.com

found that the domains listed for the comply and entice
classes serve mostly adware and PUPs.

To better understand the network-level properties of
SE downloads, we also measure the “age” of these
domains by leveraging a large passive DNS database
(pDNS-DB) that stores historic domain name resolu-
tions. Specifically, we define the domain age as the
difference in days from the time the domain was first
queried (i.e., first recorded in the pDNS-DB) to the day
of the download. All the domains in Table 5 that are part
of the comply and alarm classes are less than 200 days
old, with the majority being less than 90 days. On the
other hand, the domains in Table 5 for the entice class are
all at least several years old. This is because most of the
downloads in this class are for legitimate software that
is simply bundled with adware or PUPs. For instance,
we find a large variety of “free” software ads that direct
users to the domain imgfarm.com for download. This
is the reason that over 40% of the downloads in the entice
class are from that domain.

The “middle of path” domains, namely the ones be-
tween the ad entry point and the download domain itself,
tend to be a mix of recent and old domains. In fact, the
most popular comply and alarm class “middle of path”
domains are a 50/50 split of recent and old. However,
this is not the case for the entice class, for which most
domains are several years old. At the same time, the ma-
jority of ad delivery paths for all three classes include at
least one middle domain name with an age that is less
than 200 days.

5.3 Ad-Driven Benign Downloads
As mentioned earlier, more than 80% of the SE down-

load attacks we observed use ads to gain the user’s atten-
tion (see Table 1). Based on common experience, it may
seems unlikely that many benign software downloads
would result from clicking on an ad. As a result, one
may think that if software is downloaded after clicking
on an ad, that software is unlikely to be benign. Some-
what surprisingly, we found that this may not necessarily
be the case, as we explain below.

First, to automatically identify ad-driven benign soft-
ware downloads, we first derive a set of ad detection reg-
ular expressions from the rules used by the popular Ad-
Block Plus browser extension [1]. We match these reg-
ular expressions against the nodes on the reconstructed
download path for each benign download (the down-

load labeling process is described in Section 4.4). If
an AdBlock rule matches the download path, we label
that benign software download as ad-driven. We find
that around 7% of all benign software downloads are ad-
driven. Even though the percentage is low compared to
SE downloads, in absolute terms this number is signif-
icant because the vast majority of software downloads
observed in a network are benign. In fact, by consid-
ering the overall number of confirmed malware and be-
nign software downloads and how many of these down-
loads are ad-driven, we find that if a software download
is reached by clicking on an ad there is a 40% chance
that that software is benign.

Table 6: Ad-based benign download popularity.

Category Percentage
Games 32%
Utilities 30%
Music 15%
Business 11%
Video 8%
Graphics 2%
Social 2%

To further understand what type of benign software
downloads are ad-driven, we investigate through manual
analysis 100 randomly selected samples of benign soft-
ware download events. Table 6 shows the type of soft-
ware that is represented in our sample and their relative
popularity. Games and utilities are the most popular cat-
egories, comprising 62% of all downloads. For example,
the game “Trion Worlds” is the most popular with 17
downloads, followed by “Spotify” with 10 downloads.

6 Detecting SE Download Attacks
In this section, we measure the antivirus (AV) detec-

tion rate for SE downloads and group them into broad
malware classes using AV labels. Also, we show that it
is possible to accurately detect SE download attacks by
constructing a statistical classifier that uses features de-
rived from the SE attack measurements we presented in
Section 5.

6.1 Antivirus Detection
To assess how AV products cope with SE downloads,

we scan each SE download sample in our dataset with
more than 40 AV engines (using VirusTotal.com). We
scanned each of the samples on the day we collected
them. Then, we also “aged” the samples for a period
of one month, and rescanned them with the same set of
AV engines. If at least one of the top five AV vendors
(w.r.t. market share) and a minimum of two others detect
it, we label the executable as malicious.

We first group malicious downloads into three broad
classes, namely malware, adware and PUP. These

11

784 25th USENIX Security Symposium USENIX Association

0%# 10%# 20%# 30%# 40%# 50%# 60%# 70%# 80%# 90%# 100%#

Repackage+En7ce#

Invent+Impersonate+Alarm#

Invent+Impersonate+Comply#

PUP# Adware# Malware# Undetected#

Figure 4: AV detections one month after download.

classes are meant to roughly indicate the potential “ag-
gressiveness” of the malicious software. We assign these
class labels based on a conservative set of heuristics that
consist of matching keywords on the labels provided by
the AVs. For instance, to identify adware we look for the
string “adware” as well as the names of several popular
adware applications (e.g., “amonetize,” etc.). Similarly,
for the PUP class we look for the strings such as “PUP”,
“PUA” and popular PUP application names. If both PUP
and adware match, we label the sample based on a ma-
jority voting rule (across the different AV vendor labels).
In the case of a tie, we conservatively label the sample
as PUP. The remaining samples are labeled as malware,
and manually reviewed for verification purposes.

Figure 4 shows the percentage of attacks that
result in the download of malware, adware, and
PUP, respectively. We show a breakdown for
the top three deception/persuasion categories, which
in aggregate represent more than 95% of all ad-
driven SE attacks. The majority of malicious
downloads in the invent+impersonate+comply and in-
vent+impersonate+alarm deception/persuasion tactics
belong to the adware class. A smaller percentage of
downloads in these categories, 3.2% and 2.4% respec-
tivley, are labeled as malware. For repackage+entice the
majority of downloads are labeled as PUP; no malware
is found in this deception/persuasion category.

Notice that the relatively small percentage of malware
is likely due to the fact that our heuristics for grouping
malicious downloads into broad classes is very conserva-
tive, because it requires only a single AV label to contain
an “adware” or “PUP” string to label the sample as be-
longing to the adware or PUP classes (see Section 4.4).
In addition, adware is simply much more prevalent than
malware, making the malware set size look relatively
small compared to the rest of the dataset. Lastly, notice
that only 70%− 75% of all malicious executables were
labeled by the AVs, even after “aging” and rescanning the

samples. The remaining 25%−30% is therefore labeled
as undetected in Figure 4.

Table 7 shows the AV detection rate on the day of
download for malware, adware and PUPs. Namely, we
consider all SE download samples that were detected by
AVs after aging and rescanning (i.e., after one month),
and show the percentage of these samples that were also
detected on the day we first observed them being down-
loaded. As can be seen, the detection rate in this case
is quite small, thus confirming the reactive nature of AV
detection.

Table 7: Zero day AV detections.

Malware Adware PUP
Invent+Impersonate+Comply 0% 0% 6.9%
Invent+Impersonate+Alarm 5.9% 11.6% 26.9%
Repackage+Entice NA 28.7% 34.4%

6.2 SE Detection Classifier
Guided by our measurements around SE attacks that

we presented in Section 5, we devise a set of statistical
features that can be used to accurately detect ad-driven
SE downloads. We focus on ad-driven attacks because
they are responsible for more than 80% of all SE down-
loads we observed (see Table 1).

Problem Definition. Given an executable file down-
load event observed on the network, we first automati-
cally reconstruct its download path, i.e., the sequence of
pages/URLs the user visited to arrive to the HTTP trans-
action carrying the file, as explained in Section 4. Then,
given a set of labeled ad-driven SE download events
(Section 4.4) and also ad-driven benign software down-
loads (Section 5.3), we first translate the download path
of each event into a vector of statistical features. Finally,
we use the obtained labeled dataset of feature vectors to
train a statistical classifier using the Random Forest [10]
algorithm that can detect future ad-driven SE download
attacks and distinguish them from benign ad-driven soft-
ware downloads.

Statistical Features. We now present the set of detec-
tion features we derived and the intuitions behind their
utility. In the following, we assume to be given as input
the download path related to a software download event
observed on the network, which we translate into a fea-
ture vector. Notice that no single feature by itself enables
accurate detection; it’s their combination that allows us
to reach high accuracy.

• Ad-Driven (binary feature). We check whether the
download path contains an ad-related URL. This
feature is computed by matching AdBlock [1] rules
against the sequence of URLs on the download path.
Intuition: while the majority of SE downloads are

12

USENIX Association 25th USENIX Security Symposium 785

promoted via advertisement (Section 5), only 7%
of benign downloads result from clicking on an ad
(Section 5.3).

• Minimum Ad Domain Age. We measure the age
of each domain on the ad path, namely the sub-
sequence of the download path consisting of ad-
related domains, and use the minimum age across
these domains. Intuition: ad-serving domains that
consistently direct users to malicious ads are of-
ten blacklisted, so they move to new domains. In
essence, this feature is a way of (approximately)
measuring the reputation of the ad path. Our mea-
surements show that the majority of ad paths for the
comply, alarm and entice attack classes all have do-
mains less than one year in age. For benign down-
load paths, this is true in only less than 5% of the
cases.

• Maximum Ad Domain Popularity. Using our
dataset (Section 4), we fist consider all ad-related
domains involved in the download paths observed
in the past (i.e., in the training set). Then, for each
domain, we count the number of distinct download
paths on which the domain appeared, for both ad-
driven SE attacks and the benign download paths.
If the domain is found in more than 1% of the be-
nign download paths, it is discarded. Otherwise, we
compute the number of distinct SE attack paths in
which the domain appeared. Finally, given all ad-
related domains in the download path we are cur-
rently considering, we take maximum number of
times a domain along this path appeared in an SE at-
tack path. Intuition: some ad networks, and the do-
mains from which they serve ads, are more abused
than others, e.g., due to scarce policing of ad-related
fraud and abuse in lower-tier ad networks. There-
fore, they tend to appear more frequently in the
download path of SE downloads. For instance, Ta-
ble 4 in Section 5.2 shows the popularity of ad entry
points for SE downloads.

• Download Domain Age. We measure the number
of days between the download event and the first
time we observed a DNS query to the effective sec-
ond level domain for the download URL (final node
of the web path) using a large historic passive DNS
database. Intuition: the vast majority of benign
downloads are delivered from domains that have
been active for a long time because it takes time for
a website to establish itself and attract visitors. On
the other hand, SE domains are often “young” as
they change frequently to avoid blacklisting. Our
data shows that the download domain of over 80%
of the invent+impersonate SE subcategories comply

and alarm are less than one year in age, whereas for
benign download this only holds in 5% of the cases.

• Download Domain Alexa Rank. We measure the
Alexa rank of the domain that served the software
download. We compute this features using the ef-
fective second level domain for the download URL
and the Alexa top 1 million list. Intuition: malicious
executables are more likely to be hosted on unpopu-
lar domains because of their need of avoiding black-
listing. Conversely, benign software downloads are
often hosted on popular domains. For instance,
measurements on our data show that over 60% of
the benign downloads are from domains with an
Alexa rank in the top 100,000. On the other hand,
the more “aggressive” SE downloads, such as those
from the alarm class, are primarily delivered from
very unpopular domains (very few are in the top 1
million). At the same time, the domains involved
in SE attacks that trigger the download of PUP fall
somewhere between, in terms of domain popularity.

6.3 Evaluating the SE Detection Classifier
In this section, we present the results of the evalua-

tion of our SE detection classifier. We start by describing
the composition of the training and test dataset, and then
present an analysis of the false and true positives.
Datasets. To measure the effectiveness of the SE classi-
fier, we use two separate datasets. The first dataset, D1,
which we use to train the classifier, consists of the soft-
ware downloads described and measured in Sections 4
and 5. Specifically, this dataset includes 1,556 SE down-
load paths (we consider all ad-driven SE attacks from
the dataset described in Section 4), and 11,655 benign
download paths.

The second dataset, D2, consists of new executable
downloads (and their reconstructed download paths) that
we collected from the same deployment network in the
three months following the completion of the measure-
ments we presented in Section 5. Notice also that, D2
was collected after the feature engineering phase and af-
ter building our detection classifier. Namely, both the
feature engineering and the training of the classifier were
completed with no access to the data in D2. Overall, D2
contains 1,338 ad-driven SE downloads, and 9,760 be-
nign downloads paths. We label D2 following the steps
outlined in Section 4.4.
Classification Results. After training our SE detection
classifier using dataset D1 and the Random Forest learn-
ing algorithm, we test the classifier on dataset D2.

Table 8 reports the confusion matrix for the classifica-
tion results. The classifier correctly identified over 91%
of the ad-driven SE downloads. Furthermore, it has a
very low false positive rate of 0.5%.

13

786 25th USENIX Security Symposium USENIX Association

Table 8: Confusion matrix for the SE detection classifier.

Predicted Class
Benign Ad-Based SE

Benign 99.5% 0.5%
Ad-Based SE 8.8% 91.2%

Table 9: SE Subclass Performance.

True Positives
Repackage+Entice 65%
Invent+Impersonate+Alarm 98%
Invent+Impersonate+Comply 90%

Figure 9 shows a breakdown of the classifi-
cation results for the subclasses of ad-based SE
downloads. The invent+impersonate+alarm and in-
vent+impersonate+comply categories have 98% and
90% true positive rates, respectfully. The lower perfor-
mance for repackage+entice is due to downloads of legit-
imate software bundled with PUPs from well established
domains. Because these domains are “mixed use,” and
have high popularity or Alexa ranking, they make the de-
tection task more difficult.

Feature Importance. We estimate feature importance
by performing forward feature selection [20]. The sin-
gle feature that provides the largest information gain is
download domain age. Using only that feature we have
a 69% true positive rate and a 6% false positive rate. By
adding maximum ad domain popularity, we obtain a true
positive rate above 80% with less than 3% false positives.
As we add other features (using the forward search), both
the true positives and false positives continue to improve.
Thus, all the features help achieve high accuracy.

7 Discussion
In this paper, we focus exclusively on successful web-

based SE download attacks (we consider the attacks we
collected and study successful because they actually trig-
ger the delivery of malicious software to the victim’s
machine). Social engineering attacks carried over dif-
ferent channels (e.g., email) and that have different ob-
jectives (e.g., phishing attacks to steal personal informa-
tion, rather than malware infections) are not part of our
measurements, and are therefore also not reflected in the
categories of SE tactics we described in Section 3. How-
ever, we believe ours is an important contribution. In
fact, as defenses for drive-by downloads continue to im-
prove (e.g., through the hardening of browser software
and operating system defenses) we expect the attackers
to increasingly make use of web-based SE attacks for
malware propagation. Therefore, the reconstruction and
analysis of SE download attacks is important because
in-the-wild SE attack samples could be used to better
train users and mitigate the impact of future attacks; thus,
complementing automatic attack detection solutions.

Our study relies on visibility over HTTP traffic and

deep packet inspection. One might think that the in-
ability to analyze HTTPS traffic represents a significant
limitation. However, it is important to take into ac-
count the following considerations. When a user browses
from an HTTPS to an HTTP site, they are often redi-
rected through an unsecured intermediate URL, so that
the Referer field can be populated with the domain
and other information related to the origin site [3]. Alter-
natively, the origin site can set its referrer policies [2]
to achieve the same result without need of intermedi-
ate redirections. As an example, even though many
of the searches performed using search engines such
as Google, Yahoo and Bing occurred over HTTPS, we
were able to identify the search engines as the origin of
web paths because the related domain names appeared
in the Referer field of the subsequent HTTP trans-
actions. Furthermore, modern enterprise networks com-
monly employ SSL man-in-the-middle (MITM) proxies
that decrypt traffic for inspection. Therefore, our SE at-
tack detection system could be deployed alongside SSL
MITM proxies.

Throughout the study, we use the term malicious to
describe the software downloaded as the result of an SE
attack. However, there exist many shades of malicious-
ness and some malicious software (e.g., ransomware,
botnets, etc.) are more “aggressive” than others (e.g.,
adware and PUPs). Therefore, in several parts of the
analysis we broke down our results by distinguishing be-
tween malware, adware and PUPs. As shown in Sec-
tion 6.1, only a relatively small percentage of the SE
downloads collected for our measurements were catego-
rized by our AV-label-based heuristics as malware. The
majority were labeled as adware or PUP. However, we
should notice that AV labels are known to be noisy and
that our labeling heuristics are very conservative (see
Section 4.4). Furthermore, over 25% of the malicious
downloads remained unlabeled due to lack of AV detec-
tion (Section 6.1). Therefore, it is possible that the num-
ber of malware is somewhat higher than reflected in Sec-
tion 6.1. However, the categorization system, network-
level properties and detection results for SE attacks that
deliver adware apply to attacks that result in malware
downloads as well.

While the software downloads and traffic we collected
for our study were collected from a single academic
network, we should consider that the deployment net-
work was very large, serving tens of thousands diverse
users, consisting of users from different ages, cultures
and backgrounds.

Because our SE detection classifier is designed to de-
tect ad-based SE download attacks, an attacker could
evade the system by using tactics other than online ads
to attract the user’s attention (e.g., search or web post, as
discussed in Section 3). However, advertisements are the

14

USENIX Association 25th USENIX Security Symposium 787

predominant tactic used by attackers because they allow
them to “publish” their SE attacks on sites that already
popular with the targeted victims. In addition, ads are
only shown to the users that “match” their delivery crite-
ria, thus reducing exposure to others (including security
researchers) that could result in the discovery and miti-
gation of these attack vectors.

Another way an attacker may try to evade detection,
is to specifically attempt to evade our statistical features
(see Section 6.2). For instance, to evade the download
domain age and domain Alexa rank features, the attacker
could host the malicious files on a free file sharing site.
This could result in a download domain with an age > 1
year and a high Alexa ranking. However, the ad-driven,
minimum ad domain age and maximum ad domain pop-
ularity features, which are harder for the attacker to con-
trol, could still allow to identify most attacks. For exam-
ple, simply knowing that a software download resulted
from an online ad puts its probability of being malicious
at more than 50%, according to the real-world data we
collected (see Section 5.3). Furthermore, if hosting ma-
licious downloads on free hosting sites became popu-
lar, then a Free File Hosting feature could be added to
our feature set, as it is unlikely that many ad-driven be-
nign software downloads are served from free file hosting
sites.

8 Related Work
Social engineering is primarily an attack on users, not

systems. The fundamental concepts that are employed to
exploit the user are rooted in modern psychology, specif-
ically in the study of persuasion [13] and deception [41].
SE attacks have been studied in [21, 27]. While these
works study SE tactics in general, they do not focus on
SE download attacks. To the best of our knowledge, the
only systematic study on SE malware is [8], which dis-
cusses the psychological and technical ploys adopted by
SE attacks and some trends in SE malware. However, [8]
focuses on malware that spreads via e-mail and on SE
tactics used by malware to lure the user to activate (i.e.,
run) the malicious code. In addition, the data analyzed
in [8] is limited to malware attack case studies and statis-
tics published by others in the VirusBulletin journal un-
til 2010. In contrast, we focus on web-based SE down-
loads, and on reconstructing and analyzing how users are
tricked into downloading malicious software in the first
place. Also, our analysis is based on recent real-world
instances of successful SE attacks collected from a live
network.

Malware downloads have been studied in a number
of works [11, 22, 34, 39]. For instance, [34, 39] use a
content-agnostic detection approach that relies on com-
puting a reputation score for the domains/IPs from which
malware downloads are served. However, [34, 39] are

generic malware download detection systems that offer
no understanding of what caused a malware download
in the first place. In other words, they cannot identify
the origin of the attack, but only its side effects (i.e., only
the malware download even itself), and therefore offer no
clue on whether an infection was caused by a SE attack.
Other works focus on the properties of malware drop-
pers [11, 22], whereby already infected machines down-
load malware updates or new malware strains. In con-
trast, we study how users fall victim to web-based SE
download attacks, and design a detection system that can
accurately detect ad-driven SE downloads.

Researchers have also separately examined specific
types of SE malware attacks, such FakeAVs [15, 16, 19,
25,37]. Our work is different because we propose a gen-
eral approach to studying, measuring and classifying SE
download attacks on the web. We do not limit ourselves
to specific attack types such as Fake AVs. Therefore, our
work has broader applications, and also provides mit-
igation against generic ad-based SE download attacks,
which represent a large percentage of all SE download
attacks we observed in the wild.

Other works have focused on traffic redirection chains
to understand and detect malicious websites and at-
tack delivery [23, 26, 38]. Among these systems, Mad-
Tracer [23] studies malicious advertisement, including
ad chains that deliver malware downloads. This is done
by crawling popular websites, and using a supervised
classifier trained on data labeled by leveraging domain
name blacklists (e.g., Google SafeBrowsing). While part
of our work, namely our ad-driven SE download detec-
tion system, also leverages some properties of advertise-
ment chains to detect ad-driven malicious downloads, it
is important to notice that we focus specifically on in-
the-wild SE download attacks and are able to identify a
large variety of SE download attacks. For instance, [23]
only reports fake anti-viruses (AVs) as malware deliv-
ered via ad-based scams. Instead, in our study we find
many other types of SE-driven downloads that leverage
a variety of deception and persuasion tactics. In fact,
our measurements show that fake AVs represent only a
small fraction (less than 1%) of all SE attacks. In addi-
tion, rather than actively looking (or crawling) for possi-
ble malware downloads on popular websites, we collect
live SE attacks by directly witnessing successful attacks
against users in a large academic network. This allows
us to collect successful SE attacks, rather than possible
attacks as done in [23].

In our work, we use a combination of web traffic re-
construction and analysis to trace back the origin of the
attacks, namely the SE tactic that tricked the user into
downloading malicious software. Researchers have stud-
ied web traffic reconstruction in [12, 29, 30, 42]. Among
these, the closest to our work is WebWitness [30], a re-

15

788 25th USENIX Security Symposium USENIX Association

cently proposed incident investigation system that aims
to provide context to malicious downloads by recon-
structing the path taken by the user to download exe-
cutable files. WebWitness is able to classify the cause of
a malicious download as drive-by, social engineering or
update. In [30], the main focus is on studying drive-by
downloads and developing a new defense against drive-
by download attacks. However, social engineering at-
tacks are not studied. WebWitness is able to separate
drive-by downloads from social engineering downloads
once an oracle identifies a download as malicious, and is
not able to independently detect SE attack. Although we
utilize WebWitness’ trace-back algorithm, our contribu-
tions are very different from [30], because we study SE
download attacks in depth, focusing on their collection,
analysis and categorization, as wells as the detection and
mitigation of ad-based SE-driven infections.

9 Conclusion
In this paper, we presented the first systematic study

of social engineering (SE) attacks that trigger software
downloads. To this end, we collected and reconstructed
more than two thousand examples of in-the-wild SE
download attacks captured at a large academic network.
We performed a detailed analysis and measurements on
the collected data, and developed a categorization system
to identify and organize the tactics typically employed
by attackers to make SE download attacks successful.
Furthermore, by measuring the characteristics of the net-
work infrastructure used to deliver such SE attacks, we
were able to engineer a number of features that can be
leveraged to distinguish between SE and benign (or non-
SE) software downloads with a true positive rate of 91%
at a false positive rate of only 0.5%.

References
[1] AdBlock Plus. https://adblockplus.org/.

[2] ReferrerPolicies. https://www.w3.org/TR/referrer-
policy/#referrer-policy-origin.

[3] Protecting privacy with referrers, 2010. https://
www.facebook.com/notes/facebook-engineering/
protecting-privacy-with-referrers/
392382738919/.

[4] The download.com debacle: What CNET needs to do to make it
right, 2011. https://www.eff.org/deeplinks/2011/
12/downloadcom-debacle-what-cnet-needs-do-
make-it-right.

[5] Huge decline in fake av following credit card processing shakeup,
2011. http://krebsonsecurity.com/2011/08/
huge-decline-in-fake-av-following-credit-
card-processing-shakeup/.

[6] Fake virus alert malware (fakeav) information and what
to do, 2013. http://helpdesk.princeton.edu/kb/
display.plx?ID=1080.

[7] Heres what happens when you install the top 10 download.com
apps, 2015. http://www.howtogeek.com/198622/
heres-what-happens-when-you-install-

the-top-10-download.com-apps/?PageSpeed=
noscript.

[8] ABRAHAM, S., AND CHENGALUR-SMITH, I. An overview of
social engineering malware: Trends, tactics, and implications.
Technology in Society 32, 3 (2010), 183 – 196.

[9] BOTT, E. Social engineering in action: how web ads can lead to
malware, 2011.

[10] BREIMAN, L. Random forests. Mach. Learn. 45, 1 (Oct. 2001).

[11] CABALLERO, J., GRIER, C., KREIBICH, C., AND PAXSON, V.
Measuring pay-per-install: The commoditization of malware dis-
tribution. In Proceedings of the 20th USENIX Conference on Se-
curity (Berkeley, CA, USA, 2011), SEC’11, USENIX Associa-
tion, pp. 13–13.

[12] CHEN, K. Z., GU, G., ZHUGE, J., NAZARIO, J., AND HAN,
X. Webpatrol: Automated collection and replay of web-based
malware scenarios. In Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security (New
York, NY, USA, 2011), ASIACCS ’11, ACM, pp. 186–195.

[13] CIALDINI, R. B. Influence: Science and Practice, 5th ed. Pear-
son Education, 2000.

[14] COVA, M., KRUEGEL, C., AND VIGNA, G. Detection and
analysis of drive-by-download attacks and malicious javascript
code. In Proceedings of the 19th International Conference on
World Wide Web (New York, NY, USA, 2010), WWW ’10, ACM,
pp. 281–290.

[15] DIETRICH, C. J., ROSSOW, C., AND POHLMANN, N. Ex-
ploiting visual appearance to cluster and detect rogue software.
In Proceedings of the 28th Annual ACM Symposium on Ap-
plied Computing (New York, NY, USA, 2013), SAC ’13, ACM,
pp. 1776–1783.

[16] DUMAN, S., ONARLIOGLU, K., ULUSOY, A. O., ROBERTSON,
W., AND KIRDA, E. Trueclick: Automatically distinguishing
trick banners from genuine download links. In Proceedings of the
30th Annual Computer Security Applications Conference (New
York, NY, USA, 2014), ACSAC ’14, ACM, pp. 456–465.

[17] GRIER, C., BALLARD, L., CABALLERO, J., CHACHRA, N.,
DIETRICH, C. J., LEVCHENKO, K., MAVROMMATIS, P., MC-
COY, D., NAPPA, A., PITSILLIDIS, A., PROVOS, N., RAFIQUE,
M. Z., RAJAB, M. A., ROSSOW, C., THOMAS, K., PAXSON,
V., SAVAGE, S., AND VOELKER, G. M. Manufacturing com-
promise: The emergence of exploit-as-a-service. In Proceedings
of the 2012 ACM Conference on Computer and Communications
Security (New York, NY, USA, 2012), CCS ’12, ACM, pp. 821–
832.

[18] GRIER, C., TANG, S., AND KING, S. T. Secure web browsing
with the op web browser. In Proceedings of the 2008 IEEE Sym-
posium on Security and Privacy (Washington, DC, USA, 2008),
SP ’08, IEEE Computer Society, pp. 402–416.

[19] KIM, D. W., YAN, P., AND ZHANG, J. Detecting fake anti-
virus software distribution webpages. Comput. Secur. 49, C (Mar.
2015), 95–106.

[20] KOHAVI, R., AND JOHN, G. H. Wrappers for feature subset
selection. Artificial Intelligence 97, 12 (1997), 273 – 324. Rele-
vance.

[21] KROMBHOLZ, K., HOBEL, H., HUBER, M., AND WEIPPL, E.
Advanced social engineering attacks. J. Inf. Secur. Appl. 22, C
(June 2015), 113–122.

[22] KWON, B. J., MONDAL, J., JANG, J., BILGE, L., AND DUMI-
TRAS, T. The dropper effect: Insights into malware distribution
with downloader graph analytics. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Se-
curity (New York, NY, USA, 2015), CCS ’15, ACM, pp. 1118–
1129.

16

USENIX Association 25th USENIX Security Symposium 789

[23] LI, Z., ZHANG, K., XIE, Y., YU, F., AND WANG, X. Knowing
your enemy: Understanding and detecting malicious web adver-
tising. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security (New York, NY, USA, 2012), CCS
’12, ACM, pp. 674–686.

[24] LU, L., YEGNESWARAN, V., PORRAS, P., AND LEE, W. Blade:
An attack-agnostic approach for preventing drive-by malware
infections. In Proceedings of the 17th ACM Conference on
Computer and Communications Security (New York, NY, USA,
2010), CCS ’10, ACM, pp. 440–450.

[25] MAVROMMATIS, P., BALLARD, L., PROVOS, N., INC, G., AND
ZHAO, X. The nocebo effect on the web: An analysis of fake
anti-virus distribution. In In USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET (2010).

[26] MEKKY, H., TORRES, R., ZHANG, Z.-L., SAHA, S., AND
NUCCI, A. Detecting malicious http redirections using trees of
user browsing activity. In INFOCOM, 2014 Proceedings IEEE
(April 2014), pp. 1159–1167.

[27] MITNICK, K. D., AND SIMON, W. L. The Art of Deception:
Controlling the Human Element of Security, 1st ed. John Wiley
& Sons, Inc., New York, NY, USA, 2002.

[28] NAPPA, A., RAFIQUE, M. Z., AND CABALLERO, J. Driving
in the cloud: An analysis of drive-by download operations and
abuse reporting. In Proceedings of the 10th International Con-
ference on Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment (Berlin, Heidelberg, 2013), DIMVA’13, Springer-
Verlag, pp. 1–20.

[29] NEASBITT, C., PERDISCI, R., LI, K., AND NELMS, T. Click-
miner: Towards forensic reconstruction of user-browser inter-
actions from network traces. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security
(New York, NY, USA, 2014), CCS ’14, ACM, pp. 1244–1255.

[30] NELMS, T., PERDISCI, R., ANTONAKAKIS, M., AND
AHAMAD, M. Webwitness: Investigating, categorizing, and
mitigating malware download paths. In Proceedings of the
24th USENIX Conference on Security Symposium (Berkeley, CA,
USA, 2015), SEC’15, USENIX Association, pp. 1025–1040.

[31] POWER, R., AND FORTE, D. Social engineering: attacks have
evolved, but countermeasures have not. Computer Fraud and Se-
curity 2006, 10 (2006), 17 – 20.

[32] PROJECT, T. C. Out-of-process iframes (OOPIFs).
https://www.chromium.org/developers/design-
documents/oop-iframes.

[33] PROVOS, N., MCNAMEE, D., MAVROMMATIS, P., WANG, K.,
AND MODADUGU, N. The ghost in the browser analysis of web-
based malware. In Proceedings of the First Conference on First

Workshop on Hot Topics in Understanding Botnets (Berkeley,
CA, USA, 2007), HotBots’07, USENIX Association, pp. 4–4.

[34] RAJAB, M. A., BALLARD, L., LUTZ, N., MAVROMMATIS, P.,
AND PROVOS, N. Camp: Content-agnostic malware protection.

[35] RAJAB, M. A., BALLARD, L., MAVROMMATIS, P., PROVOS,
N., AND ZHAO, X. The nocebo effect on the web: An analysis
of fake anti-virus distribution. In Proceedings of the 3rd USENIX
Conference on Large-scale Exploits and Emergent Threats: Bot-
nets, Spyware, Worms, and More (Berkeley, CA, USA, 2010),
LEET’10, USENIX Association, pp. 3–3.

[36] REIS, C., AND GRIBBLE, S. D. Isolating web programs in mod-
ern browser architectures. In Proceedings of the 4th ACM Eu-
ropean Conference on Computer Systems (New York, NY, USA,
2009), EuroSys ’09, ACM, pp. 219–232.

[37] STONE-GROSS, B., ABMAN, R., KEMMERER, R. A.,
KRUEGEL, C., STEIGERWALD, D. G., AND VIGNA, G. The
underground economy of fake antivirus software. In In Proc. (on-
line) WEIS 2011 (2011).

[38] STRINGHINI, G., KRUEGEL, C., AND VIGNA, G. Shady paths:
Leveraging surfing crowds to detect malicious web pages. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security (New York, NY, USA, 2013),
CCS ’13, ACM, pp. 133–144.

[39] VADREVU, P., RAHBARINIA, B., PERDISCI, R., LI, K., AND
ANTONAKAKIS, M. Measuring and detecting malware down-
loads in live network traffic. In Computer Security ESORICS
2013, J. Crampton, S. Jajodia, and K. Mayes, Eds., vol. 8134 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2013, pp. 556–573.

[40] WANG, H. J., GRIER, C., MOSHCHUK, A., KING, S. T.,
CHOUDHURY, P., AND VENTER, H. The multi-principal os
construction of the gazelle web browser. In Proceedings of the
18th Conference on USENIX Security Symposium (Berkeley, CA,
USA, 2009), SSYM’09, USENIX Association, pp. 417–432.

[41] WHALEY, B. Toward a general theory of deception, 1982. Mil-
iary Deception and Strategic Surprise.

[42] XIE, G., ILIOFOTOU, M., KARAGIANNIS, T., FALOUTSOS, M.,
AND JIN, Y. Resurf: Reconstructing web-surfing activity from
network traffic. In IFIP Networking Conference, 2013 (2013),
IEEE, pp. 1–9.

[43] XING, X., MENG, W., LEE, B., WEINSBERG, U., SHETH,
A., PERDISCI, R., AND LEE, W. Understanding malvertising
through ad-injecting browser extensions. In Proceedings of the
24th International Conference on World Wide Web (New York,
NY, USA, 2015), WWW ’15, ACM, pp. 1286–1295.

17

USENIX Association 25th USENIX Security Symposium 791

Specification Mining for Intrusion Detection
in Networked Control Systems

Marco Caselli
University of Twente
m.caselli@utwente.nl

Emmanuele Zambon
University of Twente & SecurityMatters B.V.

emmanuele.zambon@secmatters.com

Johanna Amann
ICSI

johanna@icir.org

Robin Sommer
ICSI & LBNL
robin@icir.org

Frank Kargl
Ulm University

frank.kargl@uni-ulm.de

Abstract

This paper discusses a novel approach to specification-
based intrusion detection in the field of networked con-
trol systems. Our approach reduces the substantial hu-
man effort required to deploy a specification-based in-
trusion detection system by automating the development
of its specification rules. We observe that networked
control systems often include comprehensive documen-
tation used by operators to manage their infrastructures.
Our approach leverages the same documentation to auto-
matically derive the specification rules and continuously
monitor network traffic. In this paper, we implement this
approach for BACnet-based building automation systems
and test its effectiveness against two real infrastructures
deployed at the University of Twente and the Lawrence
Berkeley National Laboratory (LBNL). Our implementa-
tion successfully identifies process control mistakes and
potentially dangerous misconfigurations. This confirms
the need for an improved monitoring of networked con-
trol system infrastructures.

1 Introduction

Starting from Denning’s seminal work in 1986 [9], in-
trusion detection has evolved into a number of different
approaches. Among them, anomaly-based intrusion de-
tection and, most recently, specification-based intrusion
detection have gained attention for their potential to de-
tect previously unknown attacks (e.g., zero-day attacks).

A specification-based intrusion detection sys-
tem (IDS) leverages functional specifications of a
system to model its properties, or features, creating a
reference of correct behavior. Differently from anomaly-
based IDSs, behavior of features is not derived by a
learning phase (prone to false positives) but directly
extracted from documentation. This ensures the quality
of the generated models and improves detection. Several
research efforts in the literature confirm the accuracy of

specification-based intrusion detection [62]. However,
these approaches assume manual (human) analyses,
often focused just on network protocol documentations.

Scaling a specification-based approach to an entire in-
frastructure faces three key challenges. First, targeted
systems do not always have consistent features, and thus
constraints, that allow to describe functional rules (e.g.,
common networks do not usually guarantee stable com-
munication patterns or message timing). Second, even
when such constraints are present, bridging the semantic
gap between infrastructure properties and the low-level
features actually observable by an IDS remains hard [22].
Third, deploying a specification-based intrusion detec-
tion requires an explicit and unambiguous description of
the features’ behaviors, as well as substantial human ef-
fort in crafting the related specification rules.

This work aims to fill this last challenge by automating
specification-based intrusion detection to a fairly high
degree. We propose an approach to automatically mine
IDSs’ specification rules from available documentation.
Our approach works under the following assumptions:

• Documentation about monitored systems must be
available. No specification-based intrusion detec-
tion would be possible without relying on correct
information that describes an infrastructure’s com-
ponents, mechanisms and constraints. Documenta-
tion should be provided in an electronic form to al-
low automated knowledge extraction.

• Information retrieved from the documentation must
be linkable to what an IDS can observe. On a net-
work, information about components, mechanisms
and constraints need to map to features monitored
by the IDS (e.g., information on a whitelist of net-
work services should link to the correct IP address).

We do not claim that these principles can be gener-
ically applied to any system. However, we observe
that environments such as Networked Control Systems

792 25th USENIX Security Symposium USENIX Association

(NCSs) [20] suit this approach. NCSs are “systems
whose constituents such as sensors, actuators, and con-
trollers are distributed over a network, and their corre-
sponding control-loops are formed through a network
layer” [30]. Examples of NCSs include: industrial con-
trol systems [65], building automation systems [42] and
in-vehicle networks [31]. NCSs generally have the prop-
erties discussed above. Communications over these net-
works are quite stable [22] (e.g., neither the number of
devices nor the way data is shared change regularly).
Moreover, automation guarantees the presence of control
algorithms and consequently the existence of consistent
features that will eventually become the core of the spec-
ification rules. These features and their constraints also
represent the most attractive target for an attacker who
wants to manipulate the controlled processes [14].

The two assumptions defined above hold for NCSs.
Information related to system features are often docu-
mented in configuration files, reference books and man-
uals (e.g., “Substation Configuration Language” files
for industrial control systems, “Protocol Implementation
Conformance Statement” for building automation sys-
tems, CAN matrixes and corresponding documentation
for in-vehicle networks). Linkability is generally guar-
anteed by the absence of encryption and by the verbosity
of the adopted protocols.

In this paper, we design and discuss a specification-
based network intrusion detection system (NIDS) for
BACnet-based building automation systems to demon-
strate and investigate our concept. First, we present
specification-based intrusion detection in §2. Then, we
introduce building automation and BACnet in §3. We
outline our approach in §4. Details of the approach in
the context of building automation systems are discussed
in §5 to §7. Finally, we examine the general applicability
of our work in §8.

2 State of the Art

Ko et al. introduce specification-based intrusion detec-
tion in [34]. The authors describe their approach towards
automated detection of Unix privileged program misuses
and suggest to “specify programs’ intended behavior” by
modeling their normal execution beforehand. The pro-
posed solution works through the definition of a Program
Policy Specification Language aiming to formally define
programs’ operations by simple predicate logic and reg-
ular expressions. Later works such as [13] resume and
improve the proposed ideas. Ko et al. improve their in-
troductory research in [35] by defining a formal frame-
work used to define and detail security-relevant behav-
ior of Unix programs. In [33], the framework gets in-
tegrated into a comprehensive specification-based IDS,
called SHIM. SHIM merges several different detection

approaches that apply to both network communications
and operating system activities. Its use, together with
machine learning techniques, was shown to be an effec-
tive solution towards the development of automated in-
trusion response strategies [3]. From the previous works,
Sekar et al. continue developing the research field by
proposing complementary approaches in [52] (based on
the use of the Auditing Specification Language) and [54]
(based on a custom language called “Regular Expres-
sions for Events” or REE). The same authors, present
in [53] a hybrid approach aiming to increase the in-
formation of a specification-based IDS with the use of
anomaly-based intrusion detection techniques. The au-
thors use Extended Finite State Automata (EFSA) to
model and detail network protocol behavior. Then they
refine the set of monitored features via a learning phase
exploiting statistical analyses on the traffic traces.

Over the years, researchers customized specification-
based intrusion detection to fit different infrastructures
such as mobile ad hoc networks [60, 44, 23, 56, 61, 19]
and WLANs [16]. Furthermore, specification-based
IDSs were developed for specific use cases both for
network-based (e.g., VoIP technologies [59], carrier Eth-
ernet [26]) and host-based security (e.g., kernel dynamic
data structures [48], mobile operating systems [7]).

Specification-based intrusion detection has gained
a main role in NCSs. Works such as [8], [27],
and [37] present specification-based IDSs for Mod-
bus, Zigbee and DNP3 respectively. Hadeli et al. no-
tably apply a semi-automated specification approach
to substation automation systems employing MMS and
GOOSE [21]. The authors leverage operator input to
parse infrastructure-related documentation and derive se-
curity checks. Ultimately, Berthier et al. take this ap-
proach a step forward by modeling not just employed
protocols (in this case C12.22) but smart-meter security
constraints and policies as well [4]. This research shows
the feasibility and effectiveness of modeling high-level
infrastructure properties.

State-of-the-art research on specification-based intru-
sion detection assumes that protocol and system docu-
mentation is readily available when designing and con-
figuring the IDS. Few thoughts are spent on where and
how to retrieve this information, especially not in an au-
tomated way. Moreover, all the aforementioned works
do not explore the possibility of autonomously extracting
the information needed to build the related IDSs from
documentation, instead relying on human evaluation and
translation to rules. This possibility would allow to ef-
ficiently apply specification-based approaches to entire
infrastructures. As discussed in the introduction, our re-
search focuses on this key aspect of specification-based
intrusion detection with the aim of making its develop-
ment more time-effective and accurate.

2

USENIX Association 25th USENIX Security Symposium 793

Figure 1: Building automation network layout

3 Case Study: Building Automation

Building automation systems (BASs) or building man-
agement systems (BMSs) are networked infrastructures
controlling operations and services within a building (or
a group of buildings). Among other uses, building au-
tomation systems can monitor and control HVAC (heat-
ing, ventilation, and air conditioning), lighting, energy
consumption, and physical security and safety [42].

A building automation network usually follows a hier-
archical layout [28] (Figure 1). At the bottom, sensors
and actuators directly connect to the monitored phys-
ical processes and send information back and forth to
building automation controllers. Controllers communi-
cate with servers and distributed control systems (DCSs)
to coordinate high-level control procedures and policies.
Finally, operators can access and manage building au-
tomation components connecting through their worksta-
tions and human-machine interfaces (HMIs).

In the last decade, the employment of building au-
tomation solutions has constantly increased (both for
commercial and residential buildings) and its market
share is expected to grow in the following years [39]. De-
spite numerous benefits (e.g., energy efficiency, “smart
homes”, etc.) building automation makes several new
threat scenarios not just feasible but realistic [24, 17,
18, 47]. Nevertheless, only few solutions have been
proposed to improve building automation system secu-
rity [18, 6, 45].

3.1 BACnet
The “Building Automation and Control Network” (BAC-
net) protocol [1] facilitates building automation system
communication for a wide array of different devices and
different settings. While exact statistics of the prolifera-
tion of BACnet are difficult to come by, already back in
2003 there were more than 28,000 BACnet installations
in 82 countries [28].

Figure 2: BACnet interaction example

BACnet has a layered protocol architecture, similar to
the ISO/OSI model. The BACnet protocol has an appli-
cation layer, containing the actual application data pay-
load as well as a network layer that abstracts the differ-
ences of the network architectures supported by BACnet
and implements its own routing protocol. Underneath the
network layer, BACnet also specifies how it can be used
with different types of data links.

The BACnet application layer rests on two important
core concepts: objects and services (Figure 2). A Build-
ing Automation and Control System (BACS)1 includes
one or more BACnet objects that are used to represent
its functions. Objects are of a specific type, like An-

alog Input or Analog Output. BACnet supports a
wide range of high-level object types like Calendars,
Date Value objects, or Credential Data Input ob-
jects. BACnet users and vendors can define “proprietary”
objects as well to serve specific functionalities. Ob-
ject types have different attributes that are called prop-
erties, which are extensible for specific purposes. The
second core concept of the BACnet application layer
are services. While objects describe the different func-
tions that are implemented by a BACS, services define
how to communicate with the BACS, offering function-
ality such as reading object information from a device.
Their names reflect the semantics of the operation (e.g.,
ReadProperty).

Individual BACSs typically only support a small se-
lection of possible objects and services. Manufactur-
ers use a “Protocol Implementation Conformance State-
ment” (PICS) to describe which objects and services are
implemented by a specific device. The BACnet standard
implies that all BACSs shall have a PICS identifying “all
of the portions of BACnet that are implemented” [1]. In-
formation in PICS includes: a brief description of the de-

1In the remainder of this paper, we will refer to any controller im-
plementing BACnet as BACS.

3

794 25th USENIX Security Symposium USENIX Association

vice; a list of supported BACnet Interoperability Build-
ing Blocks (BIBBs) that define classes of BACnet ser-
vices supported by a device; and a list of supported stan-
dard and proprietary BACnet objects and properties with
their characteristics.

To complete device descriptions, operators may take
advantage of configuration files such as “Engineering
Data Exchange” (EDE) files [2]. Generally, operators
compile these documents to represent internal character-
istics of a deployed BACS. EDE files include detail infor-
mation on devices’ BACnet implementations (e.g., which
BACnet objects a device is currently using) and value
constraints (e.g., in Figure 2, Present Value of Analog
Value 7 must be less than 5.0).

3.2 Attacks on BACnet

BACnet defines a limited security architecture providing
peer and operator authentication along with data confi-
dentiality and integrity (“Clause 24 — Network Secu-
rity” [1]). However, none of this is implemented in avail-
able products [43]. This leaves BACnet infrastructures
vulnerable to numerous cyber-threats [24, 63, 58, 29].

We categorize attacks on BACnet into three main
groups: snooping, denial of service (DoS), and process
control subverting. This categorization derives from the
list of BACnet protocol threats described in [24].

Snooping attacks concern stealing information about
a specific building automation system. To achieve this
goal, these attacks require access to the building automa-
tion system network. Once inside, attackers can take
advantage of BACnet services such as ReadProperty

and ReadPropertyMultiple to gain knowledge of the
BACS. This includes device models, locations, status,
and information on their BACnet support (e.g., which
BACnet services and objects they implement). Attackers
may need this information to understand the infrastruc-
ture and pave the way to further intrusions. However,
snooping attacks do not disrupt any process of the build-
ing automation system.

Differently, DoS attacks try to interfere with control
processes by making controllers unreachable for opera-
tors. This category only considers DoS attacks that are
performed through the use of BACnet routing features
(e.g., malicious modifications to the BACnet routing ta-
bles) and leaves other kinds of DoS out of its scope.
As for the snooping attacks, DoS attacks need malicious
users to have access to the network. Moreover, this kind
of attacks requires information about the network layout.
Attackers can achieve their goal by sending BACnet mes-
sages, such as Initialize-Routing-Table, to modify
a BACS’ routing tables. In this way, operators lose vis-
ibility on single devices or even entire sections of the
building automation system.

Finally, process control subverting includes those at-
tacks that directly modify control processes and, con-
sequently, interfere with physical operation. This kind
of attacks requires more skilled attackers with sufficient
knowledge about the building automation system func-
tioning. In this scenario, attackers exploit specific con-
trollers by using several different BACnet services, such
as WriteProperty or DeleteObject, to change the
BACSs’ structures and operations. This leads to a loss
of control by the operators and, consequently, leads to
risks for components and people.

3.3 Evaluation Environments

For this work, we analyzed two different building au-
tomation installations over more than two months of con-
stant operation. The first building automation system
belongs to the University of Twente in the Netherlands
and is in charge of supervising utilities and services pro-
vided to the university campus. Its duties encompass en-
ergy consumption control, HVAC, and room monitoring
and management (e.g., pressure and temperature control,
shading, etc.). The second building automation system
belongs to the Lawrence Berkeley National Laboratory
(LBNL) and supervises several services on its premises.
The LBNL process control focuses mostly on room mon-
itoring and energy consumption for the Lab facilities.
Both infrastructures deal with hundreds of BACSs from
several different vendors.

The IDS we deployed at the University of Twente
linked to a SPAN port on a switch directly connected
with the SCADA servers monitoring the whole building
automation system. The same switch is responsible for
routing most of the traffic of the building automation net-
work. This allowed us to capture and analyze most of the
BACnet messages exchanged by BACSs. Differently, at
LBNL we could monitor only a subset of the building au-
tomation system by linking to a switch in charge of con-
necting BACSs inside one building. However, this was
sufficient to automatically gather the information needed
for our approach to craft the specification rules.

The two infrastructures generally showed similar traf-
fic patterns. Several BACSs shared the same sets of ob-
jects and used the same kind of messages to exchange
information. Furthermore, both UT’s and LBNL’s traf-
fic samples included numerous BACnet routing mes-
sages (e.g., Who-Is, I-Am, Who-Has, and I-Have) or-
ganizing communication paths within the two networks.
However, the two infrastructures presented some dif-
ferences related to communication and control strate-
gies (e.g., all BACSs deployed at UT used confirmed
services thus requiring acknowledgments from mes-
sage recipients while some devices at LBNL used just
unconfirmed ones). Particularly, the employment of

4

USENIX Association 25th USENIX Security Symposium 795

BACSs from different vendors led operators to employ
individual procedures implemented through the use of
ConfirmedPrivateTransfer BACnet services. Such
services are used to invoke proprietary or non-standard
routines in remote BACSs.

3.4 Setting and Threat Model
The reason to develop a network-based IDS is twofold.
First, a network-based solution is easier to deploy than
host-based ones. Secondly, this setup allows us to have
minimum impact on NCS processes. Once deployed,
we assume that our system is able to capture real-time
traffic of the monitored building automation system in
a completely passive fashion and to retrieve documen-
tation publicly available on the Internet. This allows
to gather the information we need to build specification
rules and implement effective detection.

On the other side, we assume attackers can gain full
access to the network as well. We consider this hap-
pening in a way that is similar to standard IT environ-
ments (e.g., phishing, software vulnerability exploita-
tion). Tools such as Shodan [40] show how easy it is
to find building automation networks exposing their de-
vices to the Internet. Once inside, attackers can obtain
a convenient viewpoint on the building automation con-
trol processes. Two key factors support this assumption.
First, most building automation protocols take advan-
tage of broadcast communications to exchange informa-
tion among devices (e.g., routing notifications). This al-
ready allows attackers to easily observe a large part of
the traffic. Secondly, the hierarchical structure of com-
mon building automation networks steers valuable infor-
mation messages towards servers and DCSs. By gaining
access to one of these servers, attackers can observe most
of the traffic within the building automation system.

Within a building automation network, attackers may
use attacks outlined in §3.2 to gain knowledge on, or
subvert, the correct functioning of the building automa-
tion system. In this last scenario, any safety feedback in
place can usually be overridden [49]. Therefore, attack-
ers can put infrastructure components under stress, pos-
sibly threatening human safety when it comes to devices
such as electrical equipment.

4 Specification Mining Approach

Our approach works towards automated development of
specification rules for network security monitoring. Set-
ting up and customizing a specification-based IDS for a
particular infrastructure requires a large amount of infor-
mation about the monitored system, implying a substan-
tial manual effort in gathering and refining the specifi-
cation rules. As details of the infrastructures are often

Figure 3: Specification-mining approach

described within specs and configuration files, especially
in many NCS environments, the process of collecting this
information—and, consequently, the development of the
actual IDS—can be automated to a fairly high degree
through the following steps (see also Figure 3):

(1) System Discovery gathers information about the
monitored NCS. In this step, our system analyzes the net-
work traffic in order to: 1) identify devices communicat-
ing on the network (e.g., models, brands); and 2) deter-
mine role and purpose of each identified device (e.g., a
device is a controller, an HMI, etc.). Every time the sys-
tem collects enough information about a specific device
it proceeds with the next step.

(2) Feature Lookup implements a set of information
retrieval techniques to gather knowledge about devices
identified during System Discovery. The purpose of this
step is to: 1) find verified information (e.g., specs, con-
figuration files) about the infrastructure’s devices; and
2) select features and constraints from the retrieved doc-
uments and arrange results in a structured form.

A successful Feature Lookup relies on the assump-
tions of availability and linkability outlined in the in-
troduction. The assumption of availability implies the
existince of documents about infrastructures and compo-
nents that are automatically retrievable. This requires the
information to be provided in electronic form and being
suitable for parsing. Also, this assumption includes an
assurance on the authenticity of the retrieved informa-
tion (e.g., by the use of reliable sources, by the employ-
ment of secure retrieval techniques). The assumption of
linkability guarantees that the information derived by the
retrieved documentation can be checked by the system
against observations within the traffic (e.g., messages,
variables, etc.). Particularly, after the identification of
network devices and the successful retrieval of their re-
lated constraints from the documentation, the assump-
tion of linkability enables assigning effective specifica-
tion rules to the right targets.

(3) Rule Definition uses the knowledge obtained in
the Feature Lookup to craft the specification rules. To
achieve this goal, the system needs to: 1) select identi-
fied information from Feature Lookup; 2) translate this
information to specification rules.

5

796 25th USENIX Security Symposium USENIX Association

We focus our specification-based intrusion detection on
controllers (e.g., BACSs for building automation sys-
tems, Programmable Logic Controllers or PLCs for
ICSs, Electronic Control Units or ECUs for in-vehicular
networks). This decision comes from the key role these
components have within NCSs: Controllers are involved
in any monitoring and control operation of the infrastruc-
ture either autonomously or accessed by operators. Fur-
thermore, controllers are likely targets for attackers (as
illustrated in §3.2).

We observe that NCS controllers share a number of
properties. First, every controller employs a limited set
of variables to fulfill its function. These variables can
go from simple memory addresses to complex objects
but often have predetermined types. Moreover, all con-
trollers use a limited set of methods (or services) to ac-
cess and manipulate variables of other controllers. Fi-
nally, each variable can assume a limited range of val-
ues according to its type or the physical characteristic it
represents. We leverage these shared properties to define
a set of general constraints, or abstract rules, checking
NCS variables’ types, values and access methods. These
abstract rules are the seeds we use to automatically gen-
erate specialized specification rules. To achieve this, we
define a mechanism that maps information retrieved in
the Feature Lookup step to the abstract rules. This pro-
cess automatically completes the abstract rules and, as a
result, customizes detection for the monitored NCS.

Once a rule is defined, it becomes active and, thus,
part of the detection mechanism. During detection, an
active rule verifies if its related constraint is fulfilled or
not. When this last condition becomes true, the system
triggers an alert for the user.

Having presented the phases in a generic way, we now
describe our experimental setup and, then, how we have
instantiated them to build a specification-based IDS for
BACnet-based building automation systems.

Implementation background We implement our ap-
proach using the Python programming language [51]
and Bro [46]. Bro is a network traffic analyzer em-
ployed in different domains such as network security
monitoring and performance measurement. The sys-
tem comes with comprehensive built-in functionalitiy
for traffic analysis and supports several network proto-
cols ranging from standard (e.g., HTTP, FTP) to domain-
specific (e.g., Modbus [41], DNP3 [10]). Bro provides a
Turing-complete scripting language that allows users to
select and analyze network events (e.g., connection es-
tablishments). We choose to describe specification rules
through the “Bro scripting language” because of its ef-
ficiency and expressiveness. We developed a BACnet
parser for Bro using Spicy [55], a parser generator whose
specification language allows users to define a protocol’s

syntax and semantics at a high level. We publish the
BACnet parsing code for Spicy, as well as the Python
scripts , as open source software.2 However, we cannot
open-source the Bro code containing the rule checks due
to privacy agreements with the two building automation
system sites.

5 System Discovery

To identify BACSs we implement three different tech-
niques that we term: “BACnet Device Object anal-
ysis”, “BACnet Address linking”, “BACnet Property
set fingerprinting”. The first technique directly fol-
lows from the protocol standard and relies on the
mandatory presence of a Device object in every BACS
device. The Device object defines “a standardized
object whose properties represent the externally vis-
ible characteristics of a BACnet device”. Among
these properties there are: Object Name, Vendor Name,
Vendor Identifier, Model Name, Firmware Re-

vision, Application Software Version, Loca-

tion, and Description. Most of these prop-
erties are set by vendors and provide informa-
tion on a device’s identity (e.g., Model Name) and
role (e.g., Description). BACnet services such as
ReadProperty and ReadPropertyMultiple can ac-
cess those properties. As these services are widely em-
ployed by user interfaces and logging servers to automat-
ically update data related to infrastructure’s components,
information on Device objects regularly passes through
the network and, thus, is available to System Discovery.
As the Object Identifier property of a Device ob-
ject is a parameter that uniquely identifies a device in a
BACnet network, a message such as the one in Figure 4
allows us to identify a BACS and understand its purpose.
In the Wireshark screenshot example, BACS with identi-
fier “17001” is a “Blue ID S10 Controller”.

For BACnet objects of other types, since no infor-
mation can be extracted from the IP address (multiple
BACnet devices may share the same IP address), a fur-
ther parameter allows to identify message sources and
destinations: the BACnet address. As for the Device

object’s Object Identifier, the BACnet address (to-
gether with the Network Identifier) is unique within
a BACnet network. In the “BACnet Address linking”
technique, the BACnet address bridges the gap between
a known Device object and any BACnet object included
in the same BACS. Figure 5 shows an example of this
analysis. When “device 4001” is known (as a result of
the previous technique), any message carrying both the
related Device object’s Object Identifier and the

2https://github.com/specification-mining-paper-

usenix-2016/specification-mining

6

USENIX Association 25th USENIX Security Symposium 797

Figure 4: “BACnet Device Object analysis” example

(a) I-Am message

(b) ReadProperty message

Figure 5: “BACnet Address linking” example

BACnet Address allows us to link the two parameters
(Figure 5a). Any later message then carrying the BACnet
address along with a further object (e.g., “Analog Value
171”) enables linking to the corresponding device (Fig-
ure 5b). This technique works well because I-Am mes-
sages pass the network frequently to ensure visibility of
all BACnet objects.3

Finally, if no information can be extracted from
Device objects or BACnet addresses, System Discov-
ery can benefit from observations of the BACnet prop-
erties. As discussed in §3.1, the BACnet property set is

3The technique can also directly use messages carrying Device ob-
ject information if the source BACnet address is present in the header.
However, for this kind of messages, having the BACnet Address fields
is not mandatory.

Table 1: University of Twente - BACS device list

of devices Vendor Model Role

5 Kieback&Peter DDC4000 DCS
15 Priva HX 80E Router
7 Priva Compri HX Controller
25 Priva Compri HX 3 Controller
36 Priva Compri HX 4 Controller
12 Priva Compri HX 6E Controller
85 Priva Compri HX 8E Controller
2 Priva Blue ID S10 Controller
16 Priva Comforte CX HMI
2 Delta Controls eBCON Controller
3 Siemens PXG80-N Controller
3 Siemens PXC64-U Controller
3 Siemens PXC128-U Controller
3 Siemens PXR11 Controller
3 Siemens PXC00-U + PXA30-RS Controller
1 Unknown Unknown -

Table 2: LBNL - BACS device list

of devices Vendor Model Role

23 Automated Logic LGR Router/Gateway
14 Automated Logic ME Controller
11 Automated Logic SE Controller
159 Automated Logic ZN Controller
1 Automated Logic WebCTRL HMI
9 Johnson NAE Controller
1 Johnson NIE Controller
4 Paragon Controls Inc. EQ Controller
4 Sierra BTU Meter Energy meter
4 Sierra FFP Controller
1 Tracer UC400 Controller
2 Niagara AX Station SCADA server
7 Unknown Unknown -

extensible. Every object of a BACS has a set of stan-
dard and proprietary properties that form a “fingerprint”
of that object and device. The third technique assumes
that two objects sharing the same fingerprint are likely to
be of the same kind. During System Discovery, it is pos-
sible to create a database of identified fingerprints each
one pointing to the corresponding BACS (identified with
the previous two techniques). Whenever an unknown ob-
ject presents a property set already in the database, the
system infers the most likely related device.

Experiments Previous work by us shows that tradi-
tional fingerprinting techniques are usually ineffective on
most NCSs [5]. In our tests, tools such as Nmap [38] and
P0f [64] were able to identify just a limited number of
Windows and Linux workstations. The techniques pre-
sented above proved more effective. Thanks to frequent
ReadPropertyMultiple, our system was able to gather
information on most BACSs. Moreover, BACnet address
linking and BACnet property set fingerprinting allowed
the system to link most of the observed BACnet objects
to identified devices. At the end of System Discovery,
we gathered information on ∼15k BACnet objects be-
longing to the 445 devices shown in Tables 1 and 2.

Thanks to the information from the operators, we

7

798 25th USENIX Security Symposium USENIX Association

know that we correctly identified 98.2% of the BACSs
actually deployed (445 out of 453 devices). Eight devices
did not link to any useful BACnet message or identifi-
able property set. However, these devices convey almost
no information over the network (a few hundreds BAC-
net messages over two months of capturing compared to
an average of tens of thousands) and did not involve any
notable equipment. Identifying the aforementioned 445
devices took just a few hours of monitoring.

6 Feature Lookup

Searching for documentation on identified BACSs is pos-
sible because the two assumptions of availability and
linkability hold for BACnet-based building automation
systems. Verified information about BACSs is avail-
able within PICSs and EDE files. This information in-
cludes BACSs’ vendors, models and even refers to spe-
cific BACnet objects, thus is linkable to what we ob-
served over System Discovery.

Feature Lookup targets both online and offline doc-
umentation. On the one hand, we use Google APIs to
search and retrieve publicly available documents such as
PICSs on the Internet. On the other hand, we retrieve
EDE files from private repositories in the installations.
Both cases allow for document authenticity. In the for-
mer case, we narrow the search to a subset of reliable
sources such as vendors’ websites and reputable third
parties (e.g., BACnet International Laboratories4). In the
latter case, we assume a secure connection to a trusted
dataset managed by the operators.

Once a BACS links to one or more of these documents,
our system parses the documents looking for useful in-
formation. According to BACnet specifications, a PICS
has a standard template and we observe that most PICSs
are closely modeled to it. Figure 6 shows three extracts
from the PICS of the “Blue ID S10 Controller” men-
tioned in the previous section.

As outlined in §3.1, each PICS provides a description
of the related BACS and the BIBBs it implements (Fig-
ure 6a). Moreover, PICSs include information about sup-
ported BACnet objects and properties, as well as their
characteristics (Figures 6b and 6c).

EDE files also follow a standard template but they
use a simpler “comma-separated values” (CSV) format.
Each EDE file presents details of a specific BACS (Fig-
ure 7 shows an extract of Device 4001 EDE file). Data
includes all implemented BACnet objects (e.g., “device
4001” owns “Analog Value 171”, “Multi-state Value 15”,
etc.) and their descriptions. Furthermore, EDE files in-
clude information about Present Value properties with

4http://www.bacnetinternational.org/

(a) PICS excerpt 1

(b) PICS excerpt 2

(c) PICS excerpt 3

Figure 6: PICS example

Figure 7: EDE file example

value ranges (e.g., “Analog Value 171” can vary from
min-present-value 0 to max-present-value 100).

Experiments The program we implemented to search
for online documentation uses the outputs of System
Discovery (vendors and models) and further keywords
such as “PICS” to retrieve information about identified
BACSs. The system ranks Google results coming from
public repositories (e.g., www.bacnetinternational.net)
and the web by quantifying the presence of the key-
words in document titles. For example, the “Blue ID
S10 Controller” links to a PDF document titled “BAC-
net PICS Blue ID S10 Controller.pdf” (Figure 6). With
this technique we identified a PICS for 99.3% of the de-

8

USENIX Association 25th USENIX Security Symposium 799

vices deployed in the two building automation systems
(442 out of 445 among the devices identified in the Sys-
tem Discovery step). Two ‘Siemens PXR11’ and one
‘Paragon Controls Inc. EQ’ were the only devices that
did not link to any PICS. However, we could not find the
related PICSs even by a manual search either.

Offline research targeted specific devices directly.
While online documentation always provides general in-
formation about BACSs of a certain kind (e.g., all “Blue
ID S10 Controller”), offline repositories provide detailed
information related only to devices deployed in the mon-
itored building automation system. For this reason, in-
stead of vendors and models we searched through the
available documents using device Object Instances.
For example, starting from “Device object 4001” from
System Discovery, we found an EDE file titled “Con-
troller 4001 EDE.csv”. While LBNL did not provide
any configuration file, operators from the University of
Twente shared with us 10 files of this kind. While they
confirmed that there was indeed an EDE file for every de-
ployed device, they could not grant us unlimited access
to all of them due to information sensitivity. For this rea-
son, the operators chose the 10 files based on roles and
purposes of the related devices. Each file we obtained
described a BACS identified over System Discovery.

The aforementioned privacy concerns refer to the ini-
tial manual analysis we had to perform over the EDE
files and would not hamper the applicability of our ap-
proach. In an ideal deployment, one would have a se-
cure connection between the IDS and the machine stor-
ing the EDE files, without any human activity involved
for retrieval operations and processing. However, both
University of Twente and LBNL operators store infras-
tructure documentation on computers also used for other
purposes than building automation, and direct connec-
tions to those resources were infeasible.

Finally, we implemented two programs to parse PICSs
and EDE files respectively. In the first case, the program
goes from document’s top to bottom guided by the dia-
gram shown in Figure 8. For every available PICS, the
program first selects all implemented BIBBs and BAC-
net objects (Figures 6a and 6b). Each object can be cre-
atable/deletable and this information follows the object
as a “yes/no” or equivalent symbols (Figure 6b). Finally,
for every object, the script selects a list of properties that
can be writable or not (Figure 6c). Figure 9 shows pars-
ing results of the “Blue ID S10 Controller” coming from
the PICS showed in Figure 6.

Most of the retrieved PICS did not have any infor-
mation about property values. Instead, this information
was included in the EDE files. A further program went
through all EDE files selecting Present Value mini-
mum and maximum values for every listed object. This
new information was structured as shown in Figure 10.

Figure 8: PICS parsing diagram

Figure 9: Parsing PICS example results

Figure 10: Parsing EDE example results

7 Rule Definition and Detection

Next we describe how the information gathered in previ-
ous steps is used to define specification rules. In §4, we
motivated our focus on variables’ types, values and re-
lated access methods as basis for our specification rules.
From this, we derive three abstract rules: 1) a “Type”
rule checks if a variable of a specific type is allowed;
2) a “Value” rule checks which values a variable may
assume; and 3) a “Method” rule checks which methods
can be used to access a specific variable. All rules have
the same structure: each element (type, value, method)
is evaluated against a set of allowed possibilities. For ex-
ample, in the “Type” rule, a variable’s type is evaluated
against all the allowed types of variable a controller may
implement (Algorithm 1).

We use a Python program to automate the process of
mapping information retrieved over Feature Lookup to
the abstract rules. In the following, we discuss how we
map these abstract rules into specification rules for mon-
itoring for each type.

Type Rule: The “Type” rule checks which BACnet ob-
jects and properties each BACS can use. This informa-
tion comes from the PICSs (Figures 6b and 6c) and, thus,
is included in the results of Feature Lookup (Figure 9).
Therefore, a script selects allowed objects and properties
of each identified BACS and transforms the “Type” rule
into the two specification rules shown in Algorithm 2.

In the case of the “Blue ID S10 Controller”, the

9

800 25th USENIX Security Symposium USENIX Association

Algorithm 1 Abstract “Type” rule

1: if Variabletype /∈ ControllerAllowedVariableTypes then
2: Alert(“Variable type not permitted”)
3: end if

Algorithm 2 BACnet “Type” rules

1: if BACnet Object /∈ ControllerAllowedObjectTypes then
2: Alert(“Forbidden Object”)
3: end if

1: if BACnet Property /∈ ControllerObjectAllowedPropertyTypes then
2: Alert(“Forbidden Property”)
3: end if

ControllerAllowedObjectTypes set contains objects Accumu-
lator, Analog Input, etc. In the same way, the
ControllerAccumulatorAllowedPropertyTypes set of a “Blue ID S10
Controller” contains properties Object Identifier,
Object Name, etc. Whenever the system captures a
BACnet message including an object and some prop-
erty, the two rules check object and property types re-
spectively and alert if these types are not included in the
defined sets. This allows the system to detect snooping
attacks and any other attack dealing with unexpected ob-
jects and properties.

Value Rule: The “Value” rule checks which values
BACnet properties may assume. This information comes
from the EDE files (Figures 7 and 10) and, thus, is auto-
matically mapped to the concrete rule as shown in Algo-
rithm 3.

Algorithm 3 BACnet “Value” rule

1: if BACnet Property value /∈ Controller(Object,Property)AllowedPropertyValues then
2: Alert(“Forbidden Value”)
3: end if

For example, when it comes to “Device 4001”, the sys-
tem alerts if “Analog Value 171” is below 0 or above 100.
This rule protects the infrastructure against process con-
trol subverting scenarios, and thus attacks attempting to
modify parameters of the physical and control processes.

Method Rule: The “Method” rule validates the BAC-
net services each BACS can use. This information comes
from the PICSs in the form of a list of BIBBs (Figures 6a)
and is included in the results of Feature Lookup (Fig-
ure 9). BIBBs can be replaced with corresponding ser-
vices by a simple lookup operation. Therefore, Algo-
rithm 4 checks if a BACnet service belongs to the set of
allowed services.

In the case of the “Blue ID S10 Controller”, the
ControllerAllowedServices includes services from BIBBs
DS RP A (ReadProperty Request), DS RP B

Algorithm 4 BACnet “Method” rule

1: if BACnet Service /∈ ControllerAllowedServices then
2: Alert(“Forbidden Service”)
3: end if

(ReadProperty Response), etc. This rule allows the
system to detect attackers misusing BACnet services to
fulfill their goals.

Furthermore, we use the “Method” rule to check
which BACnet object is creatable/deletable and which
BACnet property is writable. Following the standard,
we compile three sets of BACnet services with services
that create objects, that delete objects, and that write
properties respectively. Then, the system uses the infor-
mation from Feature Lookup to define checks on non-
creatable/deletable objects and non-writable properties
by using Algorithm 5.

Algorithm 5 BACnet additional “Method” rules

1: if BACnet Service ∈ CreateObjectServices then
2: Alert(“Forbidden object creation”)
3: end if

1: if BACnet Service ∈ DeleteObjectServices then
2: Alert(“Forbidden object deletion”)
3: end if

1: if BACnet Service ∈ WritePropertyServices then
2: Alert(“Forbidden property writing”)
3: end if

For example, the first two rules alert the presence
of services attempting to create or delete Accumulator

objects belonging to a “Blue ID S10 Controller”.
The third rule reports any service attempting to write
to a non-writable property, such as Accumulator’s
Object Identifier.

Experiments Our system filled the abstract rules with
the information coming from Feature Lookup crafting
hundreds of specification rules. To improve efficiency
we arrange the specification rules in an order that avoids
meaningless checks (e.g., we do not want to check a
BACnet property if we already know that the BACnet
object it belongs to is not allowed). For every captured
BACnet message, the system checks if the BACnet ser-
vice is allowed; then, if involved BACnet objects can be
used, created or deleted; then, if involved BACnet prop-
erties are allowed and writable. Finally, the system ex-
amines properties’ actual values. Only a small set of
specification rules are of this last type due to the limited
number of EDE files that operators provided us with.

As outlined in §3.3, we tested our approach against
more than two months of real traffic. Over the two
months of capturing, our system triggered 237 unique
alerts; 226 at the University of Twente and 11 at LBNL.

10

USENIX Association 25th USENIX Security Symposium 801

Table 3: Detection results

Abstract Rule Specification Rule # Alerts

Type Rule Forbidden object 2
Forbidden property 234

Value Rule Forbidden value 0

Method Rule

Forbidden service 0
Forbidden object creation 0
Forbidden object deletion 0
Forbidden property writing 1

Figure 11: Unexpected object ReadProperty Request

The two results differ because of the different views
we achieved over the two infrastructures (as already de-
scribed, at LBNL we could monitor only a subset of the
building automation system and thus a subset of the traf-
fic). Table 3 shows the three abstract rules, the corre-
sponding specification rules and whether or not a rule
raised an alert.

We did not find any evidence of malicious activities
over the time span of the captures. However, our ap-
proach still provided interesting insights. At the Univer-
sity of Twente, the system raised alerts on two BACSs
using forbidden objects. Both cases involved a “pro-
prietary” object never described within the PICS. Ac-
cording to the available documentation, the two devices
(two Siemens controllers PXC128-U) should not include
anything that was not defined within the BACnet stan-
dard. Nevertheless, a device probed the two controllers
(Figure 11) and received back correct BACnet responses
about an unknown object. A meeting with the operators
revealed that this object is vendor-defined and gathers in-
formation on parameters of the BACSs recognizable and
understandable by vendors only. Operators confirmed
that vendors have access to the building automation sys-
tem to monitor their devices, and use of an unknown
BACnet object happens even though the documentation
does not mention this possibility because of its internal
nature. However, operators did not know that involved
BACSs provide specific functionalities and attackers can
potentially exploit such circumstances.

Detection on BACnet properties provided the highest
number of alerts (all alerts at LBNL were of this kind).
Our system generated several alerts on ReadProperty

and ReadPropertyMultiple messages attempting to
retrieve non-existing properties. As a matter of
fact, these properties were not defined by the PICSs
and, for most cases, we could eventually confirm the

(a) Unexpected property ReadProperty Request

(b) ReadProperty Response confirmation of the alert

Figure 12: Unexpected property read operation

non-existence of these properties by observing some
BACnet errors carried in the responses to those read re-
quests (Figure 12).

A BACS asking for unimplemented properties is not
necessarily a violation of the specs. In fact, all PICSs
define what a BACS implements without defining what
other BACSs may ask for. A situation in which a BACS
sends back a BACnet-error response to warn about a
non-existing property (Figure 12b) is in line with the
specs and should be of no harm for the system. However,
the reason to alert on situations of this kind is twofold.
First, this situation may be of interest from a security per-
spective. Despite being handled by the BACnet protocol,
these circumstances may hide a “network discovery” sce-
nario where an attacker tries to gain knowledge of the in-
frastructure by randomly probing BACSs. As described
in §3.2, snooping is one plausible attack in building au-
tomation systems. Secondly, the same situation shows a
common side-effect of the joint use of different BACnet
software solutions. As servers and workstations do not
usually know in advance which BACSs they will con-
nect to, predefined BACnet discovery messages exist in
order to gather general information of building automa-
tion components. These messages do not consider which
BACnet properties are defined for each device and sim-
ply use large sets of them. This consequently generates
several error responses on the network.

To dig deeper into property-related issues, we ex-
tended the “unknown property” specification rule to also
check if properties enforced by PICSs were always im-
plemented. Therefore, we created a further instance of
“Type” rule checking all BACnet error messages to de-
tect missing properties that were supposed to be used by
the BACSs. The system revealed several messages re-
porting “unknown-property” errors about properties de-
clared to be part of devices’ BACnet implementations.

11

802 25th USENIX Security Symposium USENIX Association

Figure 13: Unexpected property write request

All these mismatches between implementation and spec-
ification are particularly relevant for what concerns inter-
operability. In fact, software solutions that define their
interactions with a BACS based on its public documen-
tation can incur into inconsistencies caused by incorrect
or lacking implementations.

Finally, the system triggered an alert correspond-
ing to an unexpected write operation on a BACnet
property supposed to be readable only. A Priva con-
troller received a BACnet WriteProperty request on
the Exception schedule of an object Schedule (Fig-
ure 13). Despite what we knew from the related PICS,
the BACS sent back a SimpleACK message, acknowl-
edging the success of the operation (the actual writing
was confirmed by later read operations). These kinds
of situations are especially dangerous due to the unpre-
dictability of their results. As no indication is provided
by the vendor, the write operation can either succeed or
fail, and may generate a response or not (even indepen-
dently from the actual modification of the value within
the property). Meeting with the operators revealed that
this write operation was due to a human mistake during
the configuration of the Priva controller. However, the
same situation could fit the “process control subverting”
scenario described in §3.2.

8 Discussion

Performed experiments confirm the feasibility of the ap-
proach within building automation systems and pave the
way for its application to different domains.

8.1 Analysis of the Results
By construction, our IDS is able to detect events that do
not match the specifications coming from retrieved doc-
umentation. This aspect leads to two considerations:

• On the one hand, an alert raised by the system does
not necessarily refer to a security-relevant event
as the related mismatches may not directly harm
the monitored devices. However, all findings re-
vealed network activities otherwise invisible to op-
erators. Over the two months of analysis, every alert

identified either an actual mismatch between device
documentation and implementation (e.g., unimple-
mented BACnet Properties) or an operator mistake
(e.g., the unexpected writing operation). As already
discussed, these issues can cause significant gaps in
the knowledge operators have about their infrastruc-
tures and may potentially lead to dangerous miscon-
figurations of the involved systems. The meeting
with the operators at the University of Twente con-
firmed that employed HMIs were not able to signal
any of the misconfigurations found or even notify
the users on generated BACnet errors. As a result,
the University of Twente asked to deploy our sys-
tem into the building automation system continu-
ously and let operators receive notifications of the
generated alerts. So while our datasets did not in-
clude actual attacks, we were able to reliably detect
notable deviations from the specifications at zero
false-positives. This result is in line with the work
of Uppuluri et al. [62] showing that specification-
based intrusion detection works towards optimal de-
tection rate while substantially decreasing the num-
ber of false positives compared to anomaly-based
detection.

• On the other hand, our approach does not necessar-
ily detect all possible attacks threatening the mon-
itored infrastructure. In fact, any attack operating
within the boundaries defined by employed spec-
ifications would not be caught by our IDS. How-
ever, our solution substantially narrows down what
a malicious user can do and covers most of the at-
tack scenarios defined within the categories listed
in §3.2. Furthermore, our solution does not exclude
the use of other approaches such as pure anomaly-
based intrusion detection either improving the ob-
tained rule set or working in parallel.

Each one of the implemented phases effectively
achieved the defined goals. Thanks to the numerous read
operations, System Discovery took just a few hours of
network sniffing to gather all the information needed to
describe the whole set of BACSs. With this information,
our approach was able to rapidly and automatically iden-
tify available sources of information and craft effective
specification rules.

Feature Lookup focused just on structured documents
such as PICSs and EDE files. In some of the tests, we
further extended online research to documents such as
BACS user manuals. Our system was able to down-
load 10 manuals related to components deployed in the
monitored infrastructures. However, we decided to not
further employ manuals because an analysis showed
they were fullly overlappig with the information found
in the PICSs. Nevertheless, one way to improve our

12

USENIX Association 25th USENIX Security Symposium 803

specification-mining approach is to enable handling het-
erogeneous documentation and, especially, unstructured
information. To this regard, we observe that Feature
Lookup should abstract from domain-specific parsing
scripts and generalize the process of mining and struc-
turing infrastructure features. Correctly selecting infor-
mation can take advantage of standard data mining and
natural language processing. Our work did not present a
general approach to this activity. However, works such
as [57, 15, 50] may fulfill this goal. With more general
techniques capable of extracting knowledge from het-
erogeneous documentation, the effort of deploying the
system completely converges on mapping retrieved in-
formation to the abstract rules. According to the mon-
itored infrastructures, operators should identify the re-
lated concepts of variable type, value and access method
and, eventually, let the system interpret data coming from
Feature Lookup and instantiate the specification rules.

Even without such a general approach, our solution
drastically reduced the time needed to deploy intrusion
detection into a BACnet-based building automation sys-
tem. Obtaining the same set of specification rules by
hand would have required substantial effort, making it
infeasible for larger infrastructures. Furthermore, the ob-
tained system comes with the intrinsic capability to up-
date according to the changes of the monitored infras-
tructure. In fact, whenever new BACSs are deployed, our
system transparently reads the new information over the
network and goes through the three steps all over again.
In the end, this solution makes the implemented system
directly applicable to any other BACnet infrastructure
with no further effort on configuration or deployment.

The proposed approach works likewise for different
building automation technologies. As discussed, this
would mostly require a modification of the mapping pro-
cess linking retrieved information and abstract rules but
would leave the core concept unchanged. Other build-
ing automation infrastructures such as KNX [32] and
LonWorks [11] also meet the requirements of availabil-
ity and linkability. These widely used protocols present
characteristics similar to the ones observed for BACnet.
Moreover, both KNX and LonWorks promote and sup-
port the use of documents describing protocol implemen-
tation details (although not as formal as BACnet PICS).

To show the generality of our approach beyond
building automation systems we outline how the same
specification-mining technique applies to two different
domains of NCSs, namely ICS and in-vehicle networks.

8.2 Industrial Control Systems

ICS is a term generally used to indicate several types
of control systems (e.g., Supervisory Control And Data
Acquisition or “SCADA”) used in industrial production

for monitoring and controlling physical processes. ICSs
work over several domains such as energy, water treat-
ment, manufacturing, etc. and embrace a wide family of
technologies. Among them, Modbus [41], MMS [25],
IEC104 [12], and DNP3 [10] are some of the most used
protocols and standards deployed for industrial control.

Specification-based intrusion detection for ICSs is not
new. Works such as [4] show the effectiveness of this
approach applied to electrical grids. However, applying
a set of specification rules to a real deployment still re-
quires manually crafting all parameters on specific needs.
Again, our research can improve the use of specification-
based intrusion detection by leveraging available infor-
mation of the deployments. For example, in the smart
grid scenario, we would focus on Programmable Logic
Controllers (PLCs) and Remote Terminal Units (RTUs),
as these play a main role in the infrastructure. We
would analyze variables handled by these controllers,
their types, values and access methods and then use the
abstract rules defined in §7.

Regarding the assumption of §6, verified information
about the smart gird is available within configuration
files that use the “Substation Configuration Language”
(SCL). SCL files usually provide formal representations
of modeled data and communication services. The infor-
mation included in these files is linkable thanks to the in-
cluded detail descriptions of the involved infrastructures
(e.g., “Substation Configuration Description” files). Be-
sides SCL files, operators usually store additional doc-
umentation describing physical and control processes as
in the building automation use case. An IDS can lever-
age this documentation to gather further information and
derive specification rules.

The three steps of the approach remain unchanged.
System discovery will passively gather data about de-
vices communicating over the ICS network. According
to the verbosity of the involved protocols, an IDS will
eventually collect enough information to identify infras-
tructure components and start the Feature Lookup step.
Once information about PLCs and RTUs functioning is
retrieved, Rule Definition will use it to define the actual
specification rules.

8.3 In-Vehicle Networks

Similar argumentation can be applied to communication
of Electronic Control Units (ECUs) over automotive bus
systems like the “Controller Area Network” (CAN) or
FlexRay found in all of today’s cars.

CAN is a network where connected ECUs communi-
cate by means of small messages with a payload of only
8 bytes. CAN uses content-based addressing where mes-
sages only carry a 11 (or 21) bit message identifier, and
receiving ECUs will select messages relevant to them

13

804 25th USENIX Security Symposium USENIX Association

based on this message identifier. Message identifiers
also serve as prioritization, as the employed CSMA/CR
medium access scheme will always grant priority to the
message with the lowest message identifier avoiding col-
lisions on the bus. Transport layer protocols such as
ISO-TP allow for transfer of longer messages fragmented
into smaller network packets and more complex forms of
addressing crossing gateways connecting multiple CAN
segments.

In order to maintain and manage the assignment and
semantics of message identifiers, the design phase of an
automotive network involves setup of a so-called CAN-
Matrix that lists exactly which ECU is supposed to sent
which message identifier, which ECUs will receive mes-
sages of certain type and also the payload syntax and se-
mantics. This design is done using sophisticated tools
like Vector Informatics CANOe.5 The data provided by
such tools is a perfect data source for specification-based
IDS and for our approach, so the criteria of availabil-
ity is met. linkability is more of a concern, as messages
per se do not contain information on their source or type
and a recipient needs to know (part of) the CAN matrix
to identify how to decode a certain message ID. How-
ever, with the CAN matrix, we do have information on
the types of ECUs available and can therefore conduct
System discovery. This information can then be used
to conduct Feature Lookup. A lot of relevant informa-
tion (which messages are supposed to be seen on which
bus segment) is again contained in the CAN matrix. Un-
fortunately, documentation in vehicular networks is not
as standardized as the PICSs are in BACnet. So feature
lookup would probably require more detailed investiga-
tions and more complex document parsing. Rule defini-
tion is then straightforward. However, having no source
or destination addresses in packets, one would have to
focus on message IDs, bus segments, and payload for
detection.

While specification-based intrusion detection has been
proposed many times especially for CAN-based net-
works [36, 31], a structured approach to rule-mining is
missing in this domain so far and we see this as a promis-
ing field of application for our approach.

9 Conclusion

As networked control technologies are rapidly emerg-
ing, the need for securing these systems faces the key
challenge of quickly scaling up to a multitude of het-
erogeneous devices. Our research aims to automate the
deployment of effective security solutions, as well to
adapt them in parallel with the monitored systems’ life-
cycle. More concretely, we present a novel approach to

5http://vector.com/vi_canoe_en.html

specification-based intrusion detection for NCSs. While
state-of-the-art solutions exploit manually-crafted spec-
ification rules, we discuss the feasibility of automati-
cally mining these rules from available documentation.
The tests performed on real building automation systems
show the effectiveness of the obtained systems and con-
firm the time improvement in their development and de-
ployment.

10 Acknowledgments

The authors would like to explicitly thank Dina
Hadžiosmanović and Andreas Peter for the insightful
discussions that gave rise to this research. Furthermore,
the authors would like to acknowledge the work of Geert
Jan Laanstra, Henk Hobbelink, Vincent Stoffer and Chris
Weyandt at the University of Twente and the Lawrence
Berkeley National Laboratory.

This research has been partially supported by the Eu-
ropean Commission through project FP7-SEC-607093-
PREEMPTIVE funded by the 7th Framework Program.
This work has also been supported by the U.S. National
Science Foundation under Award CNS-1314973. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors or orig-
inators, and do not necessarily reflect the views of the
sponsors.

References
[1] ANSI/ASHRAE STANDARD 135-2012. A data communica-

tion protocol for building automation and control networks, 2012.

[2] BACNET INTEREST GROUP EUROPE. Engineering data ex-
change template for BACnet systems - “description of the EDE
data fields”, 2007.

[3] BALEPIN, I., MALTSEV, S., ROWE, J., AND LEVITT, K. N.
Using specification-based intrusion detection for automated re-
sponse. In Recent Advances in Intrusion Detection, 6th Interna-
tional Symposium, RAID 2003, Pittsburgh, PA, USA, September
8-10, Proceedings (2003), pp. 136–154.

[4] BERTHIER, R., AND SANDERS, W. H. Specification-based
intrusion detection for advanced metering infrastructures. In
17th IEEE Pacific Rim International Symposium on Dependable
Computing, PRDC 2011, Pasadena, CA, USA, December 12-14
(2011), pp. 184–193.

[5] CASELLI, M., HADŽIOSMANOVIĆ, D., ZAMBON, E., AND
KARGL, F. On the feasibility of device fingerprinting in in-
dustrial control systems. In Critical Information Infrastructures
Security - 8th International Workshop, CRITIS 2013, Amster-
dam, The Netherlands, September 16-18, Revised Selected Pa-
pers (2013), pp. 155–166.

[6] ČELEDA, P., KREJČÍ, R., AND KRMÍČEK, V. Flow-based se-
curity issue detection in building automation and control net-
works. In Information and Communication Technologies - 18th
EUNICE/ IFIP WG 6.2, 6.6 International Conference, EUNICE
2012, Budapest, Hungary, August 29-31, Proceedings (2012),
pp. 64–75.

14

USENIX Association 25th USENIX Security Symposium 805

[7] CHAUGULE, A., XU, Z., AND ZHU, S. A specification based
intrusion detection framework for mobile phones. In Applied
Cryptography and Network Security - 9th International Confer-
ence, ACNS 2011, Nerja, Spain, June 7-10, Proceedings (2011),
pp. 19–37.

[8] CHEUNG, S., DUTERTRE, B., FONG, M., LINDQVIST, U.,
SKINNER, K., AND VALDES, A. Using model-based intrusion
detection for SCADA networks. In Proceedings of the SCADA
Security Scientific Symposium, Miami Beach, Florida, USA, 7
December (2007), pp. 1–12.

[9] DENNING, D. E. An intrusion-detection model. In Proceedings
of the 1986 IEEE Symposium on Security and Privacy, Oakland,
California, USA, April 7-9 (1986), pp. 118–133.

[10] DIST-1815-WG. IEEE standard for electric power systems
communications-distributed network protocol (DNP3), 2012.
https://standards.ieee.org/findstds/standard/

1815-2012.html.

[11] ECHELON CORPORATION. LonTalk protocol specification
v3.0, 1994. http://www.enerlon.com/JobAids/Lontalk%

20Protocol%20Spec.pdf.

[12] EQUIPMENT, IEC TELECONTROL. Systems—part 5-104:
Transmission protocols - network access for IEC 60870-5-101
using standard transport profiles.

[13] FORREST, S., HOFMEYR, S. A., SOMAYAJI, A., AND
LONGSTAFF, T. A. A sense of self for Unix processes. In IEEE
Symposium on Security and Privacy, Oakland, CA, USA, May 6-8
(1996), pp. 120–128.

[14] FOVINO, I. N., CARCANO, A., MUREL, T. D. L., TROM-
BETTA, A., AND MASERA, M. Modbus/DNP3 state-based intru-
sion detection system. In 24th IEEE International Conference on
Advanced Information Networking and Applications, AINA 2010,
Perth, Australia, April 20-13 (2010), pp. 729–736.

[15] GILDEA, D., AND JURAFSKY, D. Automatic labeling of seman-
tic roles. Computational Linguistics 28, 3 (2002), 245–288.

[16] GILL, R., SMITH, J., AND CLARK, A. J. Specification-based in-
trusion detection in WLANs. In 22nd Annual Computer Security
Applications Conference (ACSAC 2006), Miami Beach, Florida,
USA, 11-15 December (2006), pp. 141–152.

[17] GRANZER, W., KASTNER, W., NEUGSCHWANDTNER, G.,
AND PRAUS, F. Security in networked building automation sys-
tems. Tech. rep., 2005.

[18] GRANZER, W., PRAUS, F., AND KASTNER, W. Security in
building automation systems. IEEE Trans. Industrial Electron-
ics 57, 11 (2010), 3622–3630.

[19] GRÖNKVIST, J., HANSSON, A., AND SKÖLD, M. Evaluation
of a specification-based intrusion detection system for AODV. In
The Sixth Annual Mediterranean Ad Hoc Networking Workshop
(2007), pp. 121–128.

[20] GUPTA, R. A., AND CHOW, M. Networked control system:
Overview and research trends. IEEE Trans. Industrial Electronics
57, 7 (2010), 2527–2535.

[21] HADELI, H., SCHIERHOLZ, R., BRAENDLE, M., AND
TUDUCE, C. Leveraging determinism in industrial control sys-
tems for advanced anomaly detection and reliable security config-
uration. In Proceedings of 12th IEEE International Conference
on Emerging Technologies and Factory Automation, ETFA 2009,
Palma de Mallorca, Spain, September 22-25 (2009), pp. 1–8.

[22] HADŽIOSMANOVIĆ, D., BOLZONI, D., ETALLE, S., AND
HARTEL, P. H. Challenges and opportunities in securing indus-
trial control systems. In Complexity in Engineering, COMPENG
2012, Aachen, Germany, June 11-13 (2012), pp. 1–6.

[23] HASSAN, H. M., MAHMOUD, M., AND EL-KASSAS, S. Secur-
ing the AODV protocol using specification-based intrusion de-
tection. In Q2SWinet’06 - Proceedings of the Second ACM Work-
shop on Q2S and Security for Wireless and Mobile Networks, Ter-
romolinos, Spain, October 2 (2006), pp. 33–36.

[24] HOLMBERG, D. G., AND EVANS, D. BACnet Wide Area Net-
work Security Threat Assessment. US Department of Commerce,
National Institute of Standards and Technology NIST, 2003.

[25] ISO. Industrial automation systems – manufacturing message
specification – part 2: Protocol specification, 2003.

[26] JIEKE, P., REDOL, J., AND CORREIA, M. Specification-based
intrusion detection system for carrier ethernet. In WEBIST 2007 -
Proceedings of the Third International Conference on Web Infor-
mation Systems and Technologies, Volume IT, Barcelona, Spain,
March 3-6 (2007), pp. 426–429.

[27] JOKAR, P., NICANFAR, H., AND LEUNG, V. C. M.
Specification-based intrusion detection for home area networks
in smart grids. In IEEE Second International Conference on
Smart Grid Communications, SmartGridComm 2011, Brussels,
Belgium, October 17-20 (2011), pp. 208–213.

[28] KASTNER, W., NEUGSCHWANDTNER, G., SOUCEK, S., AND
NEWMAN, M. H. Communication systems for building automa-
tion and control. Proceedings of the IEEE 93, 6 (2005), 1178–
1203.

[29] KAUR, J., TONEJC, J., WENDZEL, S., AND MEIER, M. Secur-
ing BACnet’s pitfalls. In ICT Systems Security and Privacy Pro-
tection - 30th IFIP TC 11 International Conference, SEC 2015,
Hamburg, Germany, May 26-28, Proceedings (2015), pp. 616–
629.

[30] KIM, K., AND KUMAR, P. R. The importance, design and
implementation of a middleware for networked control systems.
Springer Lecture Notes in Control and Information Sciences 406,
1 (2010), 1–29.

[31] KLEBERGER, P., OLOVSSON, T., AND JONSSON, E. Security
aspects of the in-vehicle network in the connected car. In IEEE
Intelligent Vehicles Symposium (IV), 2011, Baden-Baden, Ger-
many, June 5-9 (2011), pp. 528–533.

[32] KNX ASSOCIATION. KNX Standard, 2011. https://www.

knx.org.

[33] KO, C., BRUTCH, P., ROWE, J., TSAFNAT, G., AND LEVITT,
K. N. System health and intrusion monitoring using a hierarchy
of constraints. In Recent Advances in Intrusion Detection, 4th
International Symposium, RAID 2001 Davis, CA, USA, October
10-12, Proceedings (2001), pp. 190–204.

[34] KO, C., FINK, G., AND LEVITT, K. N. Automated detection
of vulnerabilities in privileged programs by execution monitor-
ing. In 10th Annual Computer Security Applications Conference,
ACSAC 1994, Orlando, FL, USA, 5-9 December (1994), pp. 134–
144.

[35] KO, C., RUSCHITZKA, M., AND LEVITT, K. N. Execution
monitoring of security-critical programs in distributed systems:
A specification-based approach. In IEEE Symposium on Security
and Privacy, Oakland, CA, USA, May 4-7 (1997), pp. 175–187.

[36] LARSON, U. E., NILSSON, D. K., AND JONSSON, E. An ap-
proach to specification-based attack detection for in-vehicle net-
works. In IEEE Intelligent Vehicles Symposium (IV), 2008, Eind-
hoven, the Netherlands, June 4-6 (2008), pp. 220–225.

[37] LIN, H., SLAGELL, A. J., MARTINO, C. D., KALBARCZYK,
Z., AND IYER, R. K. Adapting Bro into SCADA: Building a
specification-based intrusion detection system for the DNP3 pro-
tocol. In Cyber Security and Information Intelligence, CSIIRW
’13, Oak Ridge, TN, USA, January 8-10 (2013), p. 5.

15

806 25th USENIX Security Symposium USENIX Association

[38] LYON, G. F. Nmap network scanning: The official Nmap project
guide to network discovery and security scanning. Insecure,
2009. https://nmap.org/.

[39] MANYIKA, J., CHUI, M., BUGHIN, J., DOBBS, R., BISSON,
P., AND MARRS, A. Disruptive technologies: Advances that
will transform life, business, and the global economy. Tech. rep.,
2013.

[40] MATHERLY, J. C. SHODAN: the computer search engine, Jun
2016. http://www.shodanhq.com/.

[41] MODBUS-IDA. Modbus application protocol specification
v1.1b3, 2012. http://www.modbus.org.

[42] NATIONAL JOINT APPRENTICESHIP & TECHNICAL COMMIT-
TEE. Building Automation: Control Devices and Applications.
American Technical Publishers, Inc., 2008.

[43] NEWMAN, M. BACnet: The Global Standard for Building Au-
tomation and Control Networks. Momentum Press, 2013.

[44] ORSET, J., ALCALDE, B., AND CAVALLI, A. R. An EFSM-
based intrusion detection system for ad hoc networks. In Au-
tomated Technology for Verification and Analysis, Third Inter-
national Symposium, ATVA 2005, Taipei, Taiwan, October 4-7,
Proceedings (2005), pp. 400–413.

[45] PAN, Z., HARIRI, S., AND AL-NASHIF, Y. B. Anomaly based
intrusion detection for building automation and control networks.
In 11th IEEE/ACS International Conference on Computer Sys-
tems and Applications, AICCSA 2014, Doha, Qatar, November
10-13 (2014), pp. 72–77.

[46] PAXSON, V. Bro: A system for detecting network intruders in
real-time. In Proceedings of the 7th USENIX Security Sympo-
sium, San Antonio, TX, USA, January 26-29 (1998).

[47] PEACOCK, M. D., AND JOHNSTONE, M. N. An analysis of
security issues in building automation systems.

[48] PETRONI, N. L., FRASER, T., WALTERS, A., AND ARBAUGH,
W. A. An architecture for specification-based detection of se-
mantic integrity violations in kernel dynamic data. In Proceed-
ings of the 15th USENIX Security Symposium, Vancouver, BC,
Canada, July 31 - August 4 (2006).

[49] SALSBURY, T. I. The smart building. In Springer Handbook of
Automation. Springer, 2009, pp. 1079–1093.

[50] SANEIFAR, H., BONNIOL, S., LAURENT, A., PONCELET, P.,
AND ROCHE, M. Terminology extraction from log files. In
Database and Expert Systems Applications, 20th International
Conference, DEXA 2009, Linz, Austria, August 31 - September 4,
Proceedings (2009), pp. 769–776.

[51] SANNER, M. F. Python: a programming language for software
integration and development. J Mol Graph Model 17, 1 (1999),
57–61. https://www.python.org/.

[52] SEKAR, R., CAI, Y., AND SEGAL, M. A specification-based
approach for building survivable systems. In Proceedings of the
National Information Systems Security Conference (NISSC’98)
(1998), pp. 338–347.

[53] SEKAR, R., GUPTA, A. K., FRULLO, J., SHANBHAG, T., TI-
WARI, A., YANG, H., AND ZHOU, S. Specification-based
anomaly detection: A new approach for detecting network intru-
sions. In Proceedings of the 9th ACM Conference on Computer
and Communications Security, CCS 2002, Washington, DC, USA,
November 18-22 (2002), pp. 265–274.

[54] SEKAR, R., AND UPPULURI, P. Synthesizing fast intrusion pre-
vention/detection systems from high-level specifications. In Pro-
ceedings of the 8th USENIX Security Symposium, Washington,
D.C., August 23-26 (1999).

[55] SOMMER, R., AMANN, J., AND HALL, S. Spicy: A unified deep
packet inspection framework dissecting all your data. Tech. rep.,
ICSI, 2015. TR-15-004.

[56] SONG, T., KO, C., TSENG, C. H., BALASUBRAMANYAM,
P., CHAUDHARY, A., AND LEVITT, K. N. Formal reasoning
about a specification-based intrusion detection for dynamic auto-
configuration protocols in ad hoc networks. In Formal Aspects
in Security and Trust, Third International Workshop, FAST 2005,
Newcastle upon Tyne, UK, July 18-19, Revised Selected Papers
(2005), pp. 16–33.

[57] STRZALKOWSKI, T. Natural language information retrieval. Inf.
Process. Manage. 31, 3 (1995), 397–417.

[58] SZLÓSARCZYK, S., WENDZEL, S., KAUR, J., MEIER, M.,
AND SCHUBERT, F. Towards suppressing attacks on and im-
proving resilience of building automation systems - an approach
exemplified using BACnet. In Sicherheit 2014: Sicherheit, Schutz
und Zuverlässigkeit, Beiträge der 7. Jahrestagung des Fachbere-
ichs Sicherheit der Gesellschaft für Informatik e.V. (GI), 19.-21.
März 2014, Wien, Österreich (2014), pp. 407–418.

[59] TRUONG, P., NIEH, D., AND MOH, M. Specification-based in-
trusion detection for H.323-based voice over IP. In Proceedings
of the Fifth IEEE International Symposium on Signal Processing
and Information Technology (ISSPIT 2005), Athens, Greece, De-
cember 18-21 (2005), pp. 387–392.

[60] TSENG, C., BALASUBRAMANYAM, P., KO, C., LIMPRASIT-
TIPORN, R., ROWE, J., AND LEVITT, K. N. A specification-
based intrusion detection system for AODV. In Proceedings of
the 1st ACM Workshop on Security of ad hoc and Sensor Net-
works, SASN 2003, Fairfax, Virginia, USA (2003), pp. 125–134.

[61] TSENG, C. H., SONG, T., BALASUBRAMANYAM, P., KO, C.,
AND LEVITT, K. N. A specification-based intrusion detection
model for OLSR. In Recent Advances in Intrusion Detection, 8th
International Symposium, RAID 2005, Seattle, WA, USA, Septem-
ber 7-9, Revised Papers (2005), pp. 330–350.

[62] UPPULURI, P., AND SEKAR, R. Experiences with specification-
based intrusion detection. In Recent Advances in Intrusion Detec-
tion, 4th International Symposium, RAID 2001 Davis, CA, USA,
October 10-12, Proceedings (2001), pp. 172–189.

[63] WENDZEL, S., KAHLER, B., AND RIST, T. Covert channels
and their prevention in building automation protocols: A pro-
totype exemplified using BACnet. In 2012 IEEE International
Conference on Green Computing and Communications, Confer-
ence on Internet of Things, and Conference on Cyber, Physical
and Social Computing, GreenCom/iThings/CPSCom 2012, Be-
sancon, France, November 20-23 (2012), pp. 731–736.

[64] ZALEWSKI, M. P0f: Passive OS fingerprinting tool, 2006.
lcamtuf.coredump.cx/p0f3/.

[65] ZHANG, P. Industrial Control Technology: A Handbook for En-
gineers and Researchers. William Andrew Inc., 2008.

16

USENIX Association 25th USENIX Security Symposium 807

Optimized Invariant Representation of Network Traffic for Detecting
Unseen Malware Variants

Karel Bartos
Cisco Systems, Inc.

Czech Technical University in Prague,
Faculty of Electrical Engineering

Michal Sofka
Cisco Systems, Inc.

Czech Technical University in Prague,
Faculty of Electrical Engineering

Vojtech Franc
Czech Technical University in Prague,

Faculty of Electrical Engineering

Abstract

New and unseen polymorphic malware, zero-day attacks,
or other types of advanced persistent threats are usually
not detected by signature-based security devices, fire-
walls, or anti-viruses. This represents a challenge to
the network security industry as the amount and vari-
ability of incidents has been increasing. Consequently,
this complicates the design of learning-based detection
systems relying on features extracted from network data.
The problem is caused by different joint distribution of
observation (features) and labels in the training and test-
ing data sets. This paper proposes a classification sys-
tem designed to detect both known as well as previously-
unseen security threats. The classifiers use statistical
feature representation computed from the network traf-
fic and learn to recognize malicious behavior. The rep-
resentation is designed and optimized to be invariant to
the most common changes of malware behaviors. This
is achieved in part by a feature histogram constructed
for each group of HTTP flows (proxy log records) of a
user visiting a particular hostname and in part by a fea-
ture self-similarity matrix computed for each group. The
parameters of the representation (histogram bins) are op-
timized and learned based on the training samples along
with the classifiers. The proposed classification system
was deployed on large corporate networks, where it de-
tected 2,090 new and unseen variants of malware sam-
ples with 90% precision (9 of 10 alerts were malicious),
which is a considerable improvement when compared to
the current flow-based approaches or existing signature-
based web security devices.

1 Introduction

Current network security devices classify large amounts
of the malicious network traffic and report the results
in many individually-identified incidents, some of which
are false alerts. On the other hand, a lot of malicious traf-

fic remains undetected due to the increasing variability
of malware attacks. As a result, security analysts might
miss severe complex attacks because the incidents are not
correctly prioritized or reported.

The network traffic can be classified at different lev-
els of detail. Approaches based on packet inspection
and signature matching [15] rely on a database of known
malware samples. These techniques are able to achieve
results with high precision (low number of false alerts),
but their detection ability is limited only to the known
samples and patterns included in the database (limited
recall). Moreover, due to the continuous improvements
of network bandwidth, analyzing individual packets is
becoming intractable on high-speed network links. It
is more efficient to classify network traffic based on
flows representing groups of packets (e.g. NetFlow [1]
or proxy logs [26]). While this approach has typically
lower precision, it uses statistical modeling and behav-
ioral analysis [8] to find new and previously unseen ma-
licious threats (higher recall).

Statistical features calculated from flows can be used
for unsupervised anomaly detection, or in supervised
classification to train data-driven classifiers of malicious
traffic. While the former approach is typically used to
detect new threats, it suffers from lower precision which
limits its practical usefulness due to large amount of false
alerts. Data-driven classifiers trained on known mali-
cious samples achieve better efficacy results, but the re-
sults are directly dependent on the samples used in the
training. Once a malware changes the behavior, the sys-
tem needs to be retrained. With continuously rising num-
ber of malware variants, this becomes a major bottleneck
in modern malware detection systems. Therefore, the ro-
bustness and invariance of features extracted from raw
data plays the key role when classifying new malware.

The problem of changing malware behavior can be
formalized by recognizing that a joint distribution of the
malware samples (or features) differs for already known
training (source) and yet unseen testing (target) data.

808 25th USENIX Security Symposium USENIX Association

This can happen as a result of target evolving after the
initial classifier or detector has been trained. In super-
vised learning, this problem is solved by domain adapta-
tion. Under the assumption that the source and target
distributions do not change arbitrarily, the goal of the
domain adaptation is to leverage the knowledge in the
source domain and transfer it to the target domain. In
this work, we focus on the case where the conditional
distribution of the observation given labels is different,
also called a conditional shift.

The domain adaptation (or knowledge transfer) can
be achieved by adapting the detector using importance
weighting such that training instances from the source
distribution match the target distribution [37]. Another
approach is to transform the training instances to the do-
main of the testing data or to create a new data represen-
tation with the same joint distribution of observation and
labels [4]. The challenging part is to design a meaning-
ful transformation that transfers the knowledge from the
source domain and improves the robustness of the detec-
tor on the target domain.

In this paper, we present a new optimized invari-
ant representation of network traffic data that enables
domain adaptation under conditional shift. The rep-
resentation is computed for bags of samples, each of
which consists of features computed from network traf-
fic logs. The bags are constructed for each user and con-
tain all network communication with a particular host-
name/domain. The representation is designed to be in-
variant under shifting and scaling of the feature values
and under permutation and size changes of the bags. This
is achieved by combining bag histograms with an invari-
ant self similarity matrix for each bag. All parameters of
the representation are learned automatically for the train-
ing data using the proposed optimization approach.

The proposed invariant representation is applied to de-
tect malicious HTTP traffic. We will show that the clas-
sifier trained on malware samples from one category can
successfully detect new samples from a different cate-
gory. This way, the knowledge of the malware behavior
is correctly transferred to the new domain. Compared
to the baseline flow-based representation or widely-used
security device, the proposed approach shows consider-
able improvements and correctly classifies new types of
network threats that were not part of the training data.

This paper has the following major contributions:

• Classifying new malware categories – we propose
a supervised method that is able to detect new types
of malware categories from a limited amount of
training samples. Unlike classifying each category
separately, which limits the robustness, we propose
an invariant training from malware samples of mul-
tiple categories.

• Bag representation of samples – Instead of classi-
fying flows individually, we propose to group flows
into bags, where each bag contains flows that are re-
lated to each other (e.g. having the same user and
target domain). Even though the concept of group-
ing flows together has been already introduced in
the previously published work (e.g. in [32]), these
approaches rely on a sequence of flow-based fea-
tures rather than on more complex representation.

• Features describing the dynamics of the samples
– To enforce the invariant properties of the represen-
tation, we propose to use a novel approach, where
the features are derived from the self-similarity of
flows within a bag. These features describe the dy-
namics of each bag and have many invariant proper-
ties that are useful when finding new malware vari-
ants and categories.

• Learning the representation from the training
data – To optimize the parameters of the representa-
tion, we propose a novel method that combines the
process of learning the representation with the pro-
cess of learning the classifier. The resulting repre-
sentation ensures easier separation of malicious and
legitimate communication and at the same time con-
trols the complexity of the classifier.

• Large scale evaluation – We evaluated the pro-
posed representation on real network traffic of mul-
tiple companies. Unlike most of the previously pub-
lished work, we performed the evaluation on highly
imbalanced datasets as they appear in practice (con-
sidering the number of malicious samples), with
most of the traffic being legitimate, to show the po-
tential of the approach in practice. This makes the
classification problem much harder. We provided a
comparison with state-of-the-art approaches and a
widely-used signature-based web security device to
show the advantages of the proposed approach.

2 Related Work

Network perimeter can be secured by a large variety
of network security devices and mechanisms, such as
host-based or network-based Intrusion Detection Sys-
tems (IDS) [36]. We briefly review both systems, focus-
ing our discussion on network-based IDS, which are the
most relevant to the presented work.

Host-based IDS systems analyze malicious code and
processes and system calls related to OS information.
Traditional and widely-used anti-virus software or spy-
ware scanners can be easily evaded by simple transfor-
mations of malware code. To address this weakness,
methods of static analysis [30], [38] were proposed.

2

USENIX Association 25th USENIX Security Symposium 809

Static analysis, relying on semantic signatures, concen-
trates on pure investigation of code snippets without ac-
tually executing them. These methods are more resilient
to changes in malware codes, however they can be easily
evaded by obfuscation techniques. Methods of dynamic
analysis [29], [34], [42] were proposed to deal with the
weaknesses of static analysis, focusing on obtaining re-
liable information on execution of malicious programs.
The downside of the dynamic analysis is the necessity
to run the codes in a restricted environment which may
influence malware behavior or difficulty of the analysis
and tracing the problem back to the exact code location.
Recently, a combination of static and dynamic analysis
was used to analyze malicious browser extensions [20].

Network-based IDS systems are typically deployed on
the key points of the network infrastructure and moni-
tor incoming and outgoing network traffic by using static
signature matching [15] or dynamic anomaly detection
methods [8]. Signature-based IDS systems evaluate each
network connection according to the predefined malware
signatures regardless of the context. They are capable of
detecting well-known attacks, but with limited amount of
detected novel intrusions. On the other hand, anomaly-
based IDS systems are designed to detect wide range of
network anomalies including yet undiscovered attacks,
but at the expense of higher false alarm rates [8].

Network-based approaches are designed to detect ma-
licious communication by processing network packets
or logs. An overview of the existing state-of-the-art
approaches is shown in Table 1. The focus has been
on the traffic classification from packet traces [5], [28],
[39], [41], as this source provides detailed information
about the underlying network communication. Due to
the still increasing demands for larger bandwidth, an-
alyzing individual packets is becoming intractable on
high-speed network links. Moreover, some environments
with highly confidential data transfers such as banks or
government organizations do not allow deployment of
packet inspection devices due to the legal or privacy rea-
sons. The alternative approach is the classification based
on network traffic logs, e.g. NetFlow [1], DNS records,
or proxy logs. The logs are extracted at the transport
layer and contain information only from packet headers.

Methods introduced in [12] and [23] apply features
extracted from NetFlow data to classify network traf-
fic into general classes, such as P2P, IMAP, FTP, POP3,
DNS, IRC, etc. A comparison and evaluation of these ap-
proaches can be found in a comprehensive survey [24].
A combination of host-based statistics with SNORT rules
to detect botnets was introduced in [16]. The authors
showed that it is possible to detect malicious traffic using
statistical features computed from NetFlow data, which
motivated further research in this field. An alternative
approach for classification of botnets from NetFlow fea-

tures was proposed in [6]. The authors of [33] have used
normalized NetFlow features to cluster flow-based sam-
ples of network traffic into four predefined categories.
As opposed to our approach, the normalization was per-
formed to be able to compare individual features with
each other. In our approach, we extended this idea and
use normalization to be able to compare various malware
categories. While all these approaches represent rele-
vant state-of-the-art, network threats evolve so rapidly
that these methods are becoming less effective due to the
choice of features and the way they are used.

One of the largest changes in the network security
landscape is the fact that HTTP(S) traffic is being used
not only for web browsing, but also for other types of
services and applications (TOR, multimedia streaming,
remote desktop) including lots of malicious attacks. Ac-
cording to recent analysis [18], majority of malware sam-
ples communicate via HTTP. This change has drawn
more attention to classifying malware from web traf-
fic. In [25], the authors proposed an anomaly detec-
tion system composed of several techniques to detect at-
tacks against web servers. They divide URIs into groups,
where each group contains URIs with the same resource
path. URIs without a query string or with return code
outside of interval [200, 300] are considered as irrele-
vant. The system showed the ability to detect unseen
malware samples and the recall will be compared with
our proposed approach in Section 8. In [40], the au-
thors introduced a method for predicting compromised
websites using features extracted from page content and
Alexa Web Information Service.

Having sufficient amount of labeled malware samples
at disposal, numerous approaches proposed supervised
learning methods to achieve better efficacy. Clasifying
DGA malware from DNS records based on connections
to non-existent domains (NXDomains) was proposed in
[2]. Even though several other data sources were used
to detect malware (such as malware executions [3] or
JavaScript analysis [22]), the most relevant work to our
approach uses proxy logs [9], [17], [27], [44], [32].

In all these methods, proxy log features are extracted
from real legitimate and malicious samples to train a
data-driven classifier, which is used to find new mali-
cious samples from the testing set. There are five core
differences between these approaches and our approach:
(1) we do not classify individual flows (in our case proxy
log records), but sets of related flows called bags, (2)
we propose a novel representation based on features de-
scribing the dynamics of each bag, (3) the features are
computed from the bags and are invariant against various
changes an attacker could implement to evade detection,
(4) parameters of the proposed representation are learned
automatically from the input data to maximize the detec-
tion performance, (5) the proposed classification system

3

810 25th USENIX Security Symposium USENIX Association

Approach Type Method Features Target class Testing Data Malicious Mal:All
Type Year All samples samples ratio

Wang [41] U anomaly detection packet payload worms, exploits packets 2003 531,117 N/A N/A
Kruegel [25] U anomaly detection URL query parameters web malware proxy logs 2003 1,212,197 11 1:100k
Gu [16] U clustering host statistics+SNORT botnet NetFlow 2007 100,000k 5,842k 1:17
Bilge [6] S random forest flow size, time botnets NefFlow 2011 78,000,000 36 1:2.2M
Antonakakis [2] S multiple NXDomains dga malware DNS data 2011 360,700 8008 1:45
Bailey [3] S hierarch. clustering state changes malware executions 2007 4,591 4,591 1:1
Kapravelos [22] S similarity of trees abstract syntax tree web malware JavaScript 2012 20,918,798 186,032 1:112
Choi [9] S SVM + RAkEL URL lexical, host, dns malicious flows proxy logs 2009 72,000 32,000 1:2
Zhao [44] S active learning URL lexical + host malicious flows proxy logs 2009 1,000,000 10,000 1:100
Huang [17] S SVM URL lexical phishing proxy logs 2011 12,193 10,094 1:1
Ma [27] S multiple URL lexical + host malicious flows proxy logs 2011 2,000,000 6,000 1:333
Invernizzi [18] U graph clustering proxy log fields mw downloads proxy logs 2012 1,219 324 1:4
Soska [40] S random forests content of web pages infected websites web pages 2014 386,018 49,347 1:8
Nelms [32] S heuristics web paths mw downloads proxy logs 2014 N/A 150 N/A
Our approach S learned repr.+SVM learned bag dynamics malicious flows proxy logs 2015 15,379,466 43,380 1:355

Table 1: Overview of the existing state-of-the-art approaches focusing on classification of malicious traffic (U = unsu-
pervised, S = supervised). In contrast to the existing work, our approach proposes novel and optimized representation
of bags, describing the dynamics of each legitimate or malicious sample. The approach is evaluated on latest real
datasets with a realistic ratio of malicious and background flows (proxy log records).

was deployed on corporate networks and evaluated on
imbalanced datasets (see Table 1) as they appear in prac-
tice to show the expected efficacy on these networks.

3 Formalization of the Problem

The paper deals with the problem of creating a robust
representation of network communication that would be
invariant against modifications an attacker can imple-
ment to evade the detection systems. The representa-
tion is used to classify network traffic into positive (ma-
licious) or negative (legitimate) category. The labels for
positive and negative samples are often very expensive to
obtain. Moreover, sample distribution typically evolves
in time, so the probability distribution of training data
differs from the probability distribution of test data. This
complicates the training of classifiers which assume that
the distributions are the same. In the following, the prob-
lem is described in more detail.

Each sample is represented as an n-dimensional fea-
ture vector x ∈ Rn. Samples are grouped into bags, with
every bag represented as a matrix X = (x1, . . . ,xm) ∈
Rn×m, where m is the number of samples in the bag and
n is the number of features. The bags may have different
number of samples. A single category yi can be assigned
to each bag from the set Y = {y1, . . . ,yN}. Only a few
categories are included in the training set. The proba-
bility distribution on training and testing bags for cate-
gory y j will be denoted as PL(X |y j) and PT (X |y j), re-
spectively. Moreover, the probability distribution of the
training data differs from the probability distribution of
the testing data, i.e. there is a domain adaptation problem
[7] (also called a conditional shift [43]):

PL(X |y j) �= PT (X |y j), ∀y j ∈ Y . (1)

The purpose of the domain adaptation is to apply
knowledge acquired from the training (source) domain
into test (target) domain. The relation between PL(X |yi)
and PT (X |yi) is not arbitrary, otherwise it would not be
possible to transfer any knowledge. Therefore there is a
transformation τ , which transforms the feature values of
the bags onto a representation, in which PL(τ(X)|yi) ≈
PT (τ(X)|yi). The goal is to find this representation, al-
lowing to classify individual bag represented as X into
categories Y = {y1, . . . ,yN} under the above mentioned
conditional shift.

Numerous methods for transfer learning have been
proposed (since the traditional machine learning meth-
ods cannot be used effectively in this case), including
kernel mean matching [14], kernel learning approaches
[11], maximum mean discrepancy [19], or boosting [10].
These methods try to solve a general data transfer with
relaxed conditions on the similarity of the distributions
during the transfer. The downside of these methods is
the necessity to specify the target loss function and avail-
ability of large amount of labeled data.

This paper proposes an effective invariant representa-
tion that solves the classification problem with a covari-
ate shift (see Equation 1). Once the data are transformed,
the new feature values do not rely on the original distri-
bution and they are not influenced by the shift. The pa-
rameters of the representation are learned automatically
from the data together with the classifier as a joint opti-
mization process. The advantage of this approach is that
the parameters are optimally chosen during training to
achieve the best classification efficacy for the given clas-
sifier, data, and representation.

4

USENIX Association 25th USENIX Security Symposium 811

4 Invariant Representation

The problem of domain adaptation outlined in the pre-
vious section is addressed by the proposed representa-
tion of bags. The new representation is calculated with a
transformation that consists of three steps to ensure that
the new representation will be invariant under scaling
and shifting of the feature values and under permutation
and size changes of the bags.

4.1 Scale Invariance
As stated in Section 3, the probability distribution of bags
from the training set can be different from the test set. In
the first step, the representation of bags is transformed
to be invariant under scaling of the feature values. The
traditional representation X of a bag that consists of a set
of m samples {x1, . . . ,xm} can be written in a form of a
matrix:

X =

x1
...

xm

=

x11 x12 . . . x1n
...

xm1 xm2 . . . xmn

 , (2)

where xlk denotes k-th feature value of l-th sample. This
form of representation of samples and bags is widely
used in the research community, as it is straightforward
to use and easy to compute. It is a reasonable choice in
many applications with a negligible shift in the source
and target probability distributions. However, in the net-
work security domain, the dynamics of the network en-
vironment causes changes in the feature values and the
shift becomes more prominent. As a result, the perfor-
mance of the classification algorithms using the tradi-
tional representation is decreased.

In the first step, the representation is improved by
making the matrix X to be invariant under scaling of the
feature values. Scale invariance guarantees that even if
some original feature values of all samples in a bag are
multiplied by a common factor, the values in the new
representation remain unchanged. To guarantee the scale
invariance, the matrix X is scaled locally onto the interval
[0,1] as follows:

X̃ =

x̃11 . . . x̃1n
...

x̃m1 . . . x̃mn

 x̃lk =

xlk −minl(xlk)

maxl(xlk)−minl(xlk)
(3)

4.2 Shift Invariance
In the second step, the representation is transformed to
be invariant against shifting. Shift invariance guaranties
that even if some original feature values of all samples
in a bag are increased/decreased by a given amount, the

values in the new representation remain unchanged. Let
us define a translation invariant distance function d :R×
R → R for which the following holds: d(u,v) = d(u+
a,v+a).

Let xpk, xqk be k-th feature values of p-th and q-th
sample from bag matrix X . Then the distance between
these two values will be denoted as d(xpk,xqk) = sk

pq.
The distance d(xpk,xqk) is computed for pairs of k-th
feature value for all sample pairs, ultimately forming a
so called self-similarity matrix Sk. Self-similarity matrix
is a symmetric positive semidefinite matrix, where rows
and columns represent individual samples and (i, j)-th
element corresponds to the distance between i-th and j-
th sample. Self-similarity matrix has been already used
thanks to its properties in several applications (e.g. in
object recognition [21] or music recording [31]). How-
ever, only a single self-similarity matrix for each bag has
been used in these approaches. This paper proposes to
compute a set of similarity matrices, one for every fea-
ture. More specifically, a per-feature set of self-similarity
matrices S = {S1,S2, . . . ,Sn} is computed for each bag,
where

Sk =

sk
11 sk

12 . . . sk
1m

...
sk

m1 sk
m2 . . . sk

mm

 . (4)

The element sk
pq = d(xpk,xqk) is a distance between fea-

ture values xpk and xqk of k-th feature. This means that
the bag matrix X with m samples and n features will be
represented with n self-similarity matrices of size m×m.
The matrices are further normalized by local feature scal-
ing described in Section 4.1 to produce a set of matrices
S̃ .

The shift invariance makes the representation robust
to the changes where the feature values are modified by
adding or subtracting a fixed value. For example, the
length of a malicious URL would change by including
an additional subdirectory in the URL path. Or, the num-
ber of transfered bytes would increase when an addi-
tional data structure is included in the communication
exchange.

4.3 Permutation and Size Invariance

Representing bags with scaled matrices {X̃} and sets of
locally-scaled self-similarity matrices {S̃ } achieves the
scale and shift invariance. Size invariance ensures that
the representation is invariant against the size of the bag.
In highly dynamic environments, the samples may occur
in a variable ordering. Permutation invariance ensures
that the representation should also be invariant against
any reordering of rows and columns of the matrices. The
final step of the proposed transformation is the transi-
tion from the scaled matrices X̃ , S̃ (introduced in Sec-

5

812 25th USENIX Security Symposium USENIX Association

tions 4.1 and 4.2 respectively) to normalized histograms.
For this purpose, we define for each bag:

zX
k := vector of values from k-th column of matrix X̃

zS
k :=column-wise representation of upper triangular

matrix created from matrix S̃k ∈ S̃ .

This means that zX
k ∈ Rm is a vector created from val-

ues of k-th feature of X̃ , while zS
k ∈ Rr,r = (m− 1) · m

2
is a vector that consists of all values of upper triangular
matrix created from matrix S̃k. Since S̃k is a symmetric
matrix with zeros along the main diagonal, zS

k contains
only values from upper triangular matrix of S̃k.

A normalized histogram of vector z=(z1, . . . ,zd)∈Rd

is a function φ : Rd ×Rb+1 →Rb parametrized by edges
of b bins θ = (θ0, . . . ,θb) ∈ Rb+1 such that φ(z;θ) =
(φ(z;θ0,θ1), . . . ,φ(z;θb−1,θb)) where

φ(z,θi,θi+1) =
1
d

d

∑
j=1

[[z j ∈ [θi−1,θi)]]

is the value of the i-th bin corresponding to a portion of
components of z falling to the interval [θi−1,θi).

Each column k of matrix X̃ (i.e. all bag values of k-th
feature) is transformed into a histogram φ(zX

k ,θ
X
k) with

predefined number of b bins and θ X
k bin edges. Such his-

tograms created from the columns of matrix X̃ will be
denoted as feature values histograms, because they carry
information about the distribution of bag feature values.
On the other hand, histogram φ(zS

k ,θ S
k) created from

values of self-similarity matrix S̃ j ∈ S̃ will be called fea-
ture differences histograms, as they capture inner feature
variability within bag samples.

Overall, each bag is represented as a concatenated fea-
ture map φ(X̃ ;S̃ ;θ) : Rn×(m+r) → R2·n·b as follows:

(
φ(zX

1 ,θ
X
1), . . . ,φ(z

X
n ,θ

X
n),φ(z

S
1 ,θ S

1), . . . ,φ(z
S
n ,θ S

n)
)

(5)

where n is the number of the original flow-based fea-
tures, m is the number of flows in the bag, and b is the
number of bins. The whole transformation from input
network flows to the final feature vector is depicted in
Figure 1. As you can see, two types of invariant his-
tograms are created from values of each flow-based fea-
ture. At the end, both histograms are concatenated into
the final bag representation φ(X̃ ;S̃ ;θ).

5 Learning Optimal Histogram Represen-
tation

The bag representation φ(X̃ ;S̃ ;θ) proposed in Section 4
has the invariant properties, however it heavily depends
on the number of bins b and their edges θ defining the

web logs

...

vector of flow 1

... ...

vector of flow N

flow 1

...

flow N

us
er

:h
os

tn
am

e

1

2

feature values

locally-scaled
self-similarity

matrix

...
3

feature
differences
histogram

4

...

ba
g

fe
at

ur
e

1

fe
at

ur
e

M

...

5

feature values
histogram

combined final
feature vector

Figure 1: Graphical illustration of the individual steps
that are needed to transform the bag (set of flows with the
same user and hostname) into the proposed invariant rep-
resentation. First, the bag is represented with a standard
feature vector (1). Then feature values histograms of lo-
cally scaled feature values are computed for each feature
separately (2). Next, the locally-scaled self-similarity
matrix is computed for each feature (3) to capture inner
differences. This matrix is then transformed into feature
differences histogram (4), which is invariant on the num-
ber or the ordering of the samples within the bag. Finally,
feature values and feature differences histograms of all
features are concatenated into resulting feature vector.

width of the histogram bins. These parameters that were
manually predefined in Section 4 C influence the clas-
sification performance. Incorrectly chosen parameters b
and θ leads to suboptimal efficacy results. To define the
parameters optimally, we propose a novel approach of
learning these parameters automatically from the training
data in such a way to maximize the classification separa-
bility between positive and negative samples.

When creating histograms in Section 4 C, the input
instances are vectors zX

k and zS
k , where k ∈ {1, . . . ,n}.

The algorithm transforms the input instances into a con-
catenated histogram φ(X̃ ;S̃ ;θ). To keep the nota-
tion simple and concise, we will denote the input in-
stances simply as z = (z1, . . . ,zn) ∈ Rn×m (instead of
z = (zX

1 , . . . ,z
X
n ,z

S
1 , . . . ,zS

n)), which is a sequence of n
vectors each of dimension m.

The input instance z is represented via a feature
map φ : Rn×m → Rn·b defined as a concatenation of the
normalized histograms of all vectors in that sequence,
that is, φ(z;θ) = (φ(z1;θ 1), . . . ,θ(zn;θ n)), where θ =
(θ 1, . . . ,θ n) denotes bin edges of all normalized his-
tograms stacked to a single vector.

We aim at designing a classifier h : Rn×m ×Rn+1 ×
Rn(b+1) → {−1,+1} working on top of the histogram
representation, that is

6

USENIX Association 25th USENIX Security Symposium 813

h(z;w,w0,θ) = sign(〈φ(z,w)〉+w0)

= sign

(
n

∑
i=1

b

∑
j=1

φ(zi,θi, j−1,θi, j)wi, j +w0

)
. (6)

The classifier (6) is linear in the parameters (w,w0) but
non-linear in θ and z. We are going to show how to learn
parameters (w,w0) and implicitly also θ via a convex op-
timization.

Assume we are given a training set of examples
{(z1,y1), . . . ,(zm,ym)} ∈ (Rn×m ×{+1,−1})m. We fix
the representation φ such that the number of bins b is
sufficiently large and the bin edges θ are equally spaced.
We find the weights (w,w0) by solving

min
w∈Rb·p,w0∈R

[
γ

n

∑
i=1

b−1

∑
j=1

|wi, j −wi, j+1|

+
1
m

m

∑
i=1

max
{

0,1− yi〈φ(zi;θ),w〉}

]
. (7)

The objective is a sum of two convex terms. The second
term is the standard hinge-loss surrogate of the training
classification error. The first term is a regularization en-
couraging weights of neighboring bins to be similar. If
it happens that j-th and j+ 1 bin of the i-the histogram
have the same weight, wi, j = wi, j+1 = w, then these bins
can be effectively merged to a single bin because

wi, jφ(zi;θi, j−1,θi, j)+wi, j+1φ(zi;θi, j,θi, j+1)

= 2wφ(zi;θi, j−1,θi, j+1) . (8)

The trade-off constant γ > 0 can be used to control the
number of merged bins. A large value of γ will result
in massive merging and consequently in a small number
of resulting bins. Hence the objective of the problem (7)
is to minimize the training error and to simultaneously
control the number of resulting bins. The number of bins
influences the expressive power of the classifier and thus
also the generalization of the classifier. The optimal set-
ting of λ is found by tuning its value on a validation set.

Once the problem (7) is solved, we use the result-
ing weights w∗ to construct a new set of bin edges θ ∗

such that we merge the original bins if the neighboring
weights have the same sign (i.e. if w∗

i, jw
∗
i, j+1 > 0). This

implies that the new bin edges θ ∗ are a subset of the orig-
inal bin edges θ , however, their number can be signifi-
cantly reduced (depending on γ) and they have different
widths unlike the original bins. Having the new bins de-
fined, we learn a new set of weights by the standard SVM
algorithm

min
w∈Rn,w0∈R

[
λ
2
‖w‖2 +

1
m

m

∑
i=1

max
{

0,1− yi〈φ(zi;θ∗),w〉}

]
.

hxxp://brucegarrod.com/images/logos.gif?645ed3=65778750
hxxp://brucegarrod.com/images/logos.gif?64647e=59213934
hxxp://brucegarrod.com/images/logos.gif?23dfd3=11755295
hxxp://brucegarrod.com/images/logos.gif?3a7d2=1916560
hxxp://brucegarrod.com/images/logos.gif?3b54a=1944144

hxxp://sevgikresi.net/logof.gif?8134c8=846765
hxxp://sevgikresi.net/logof.gif?25aa74=22216212
hxxp://sevgikresi.net/logof.gif?4fa0c=1630780
hxxp://sevgikresi.net/logof.gif?a1d1c8=42420000
hxxp://sevgikresi.net/logof.gif?87ddc=1788312

(45, 47, 45, 47, 45) (55, 55, 55, 53, 53)

1

Malicious Bag - Sality v1 Malicious Bag - Sality v2

2

3
-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

(45, 47, 45, 47, 45)

(0.4, 0, 0, 0.6, 0.4, 0, 0, 0.6)(0.6, 0, 0, 0.4, 0.4, 0, 0, 0.6)4

hF

hShS

hF

Figure 2: Illustration of the proposed representation ap-
plied on two versions of malware Sality. First, two bags
of flows are created (1), one bag for each Sality sample.
Next, flow-based feature vectors are created for each bag
(2). For illustrative purposes, only a single feature is used
- URL length. In the third step, histograms of feature
values φ(zX

k ,θ
X
k) and feature differences φ(zS

k ,θ S
k) are

created (3) as described in Section 4.3. Only four bins
for each histogram were used. Finally, all histograms
are concatenated into the final feature vector (4). Even
though the malware samples are from two different ver-
sions, they have the same histogram of feature differ-
ences φ(zS

k ,θ S
k). Since φ(zX

k ,θ
X
k) is not invariant against

shift, you can see that half of the values of φ(zX
k ,θ

X
k) are

different. Still, φ(zX
k ,θ

X
k) values may play an important

role when separating malware samples from other legiti-
mate traffic.

Note that we could add the quadratic regularizer λ
2 ‖w‖2

to the objective of (7) and learn the weights and the rep-
resentation in a single stage. However, this would re-
quire tuning two regularization parameters (λ and γ) si-
multaneously which would be order of magnitude more
expensive than tuning them separately in the two stage
approach.

6 Malware Representation Example

This Section illustrates how the proposed representation
(nonoptimized version) is calculated for two real-world
examples of malicious behavior. Namely, two versions
of a polymorphic malware Sality are compared. Sality
[13] is a malware family that has become a dynamic and
complex form of malicious infection. It utilizes poly-
morphic techniques to infect files of Widows machines.
Signature-based systems or classifiers trained on a spe-
cific malware type often struggles with detecting new
variants of this kind of malware. Note that most of the
conclusions to the discussion that follows can be drawn
for many other malware threats.

7

814 25th USENIX Security Symposium USENIX Association

Figure 2 shows how the two Sality samples are repre-
sented with the proposed approach. First, the input flows
are grouped into two bags (one bag for each Sality sam-
ple), because all flows of each bag have the same user and
the same hostname (1). For the sake of simplicity, only
URLs of the corresponding flows are displayed. Next,
88 flow-based feature vectors are computed for each bag
(2). To simplify illustration, we use only a single fea-
ture – URL length. After this step, each Sality sample
is represented with one feature vector of flow-based val-
ues. Existing approaches use these vectors as the input
for the subsequent detection methods. As we will show
in Section 7, these feature values are highly variable for
malware categories. Classification models trained with
such feature values loose generalization capability.

To enhance the robustness of the flow-based features,
the proposed approach computes histograms of feature
values φ(zX

k ,θ
X
k) and feature differences φ(zS

k ,θ S
k) (3)

as described in Section 4.3. To make the illustration sim-
ple, only four bins for each histogram were used. Finally,
all histograms are concatenated into the final feature vec-
tor (4). It can be seen that even though the malware
samples are from two different versions, they have the
same histogram of feature differences φ(zS

k ,θ S
k). Since

the histogram of feature values φ(zX
k ,θ

X
k) is not invariant

against shift, half of the values of φ(zX
k ,θ

X
k) are different.

The number of histogram bins and their sizes are then
learned from the data by the proposed algorithm (see
Section 5). The proposed representation describes inner
dynamics of flows from each bag, which is a robust indi-
cator of malware samples, as we will show in the analy-
sis of various malware families in Section 8. In contrast
to the existing methods that use flow-based features or
general statistics such as mean or standard deviation, the
proposed representation reflects properties that are much
more difficult for an attacker to evade detection.

7 Evasion Possibilities

This section discusses evasion options for an attacker
when trying to evade a learning-based classification sys-
tem. According to the recent work [35], the essential
components for an evasion are: (1) the set of features
used by the classifier, (2) the training dataset used for
training, (3) the classification algorithm with its parame-
ters. Without the knowledge of the features, the attacker
is faced with major challenges and there is not any known
technique for addressing them [35].

Acquire knowledge of classification algorithm with its
parameters or the training data is hard if not impossi-
ble. Therefore, in the following analysis, we assume that
only the features are known to the attacker. When clas-
sifying HTTP traffic from proxy logs, it is actually not
difficult to create a set of common features widely used

in practice. These features are the baseline flow-based
features, such as those described in Table 3. When the
attacker performs a mimicry attack, selected features of
malicious flows are modified to mimic legitimate traffic
(or flows marked as benign by the classifier).

In the following, we will analyze the case when the
attacker performs a mimicry attack to evade detection
by modifying flow attributes, such as URLs, bytes, and
inter-arrival times. Other flow attributes can be altered in
a similar way with analogical results. All modifications
are divided into two groups, depending on whether the
proposed representation is invariant against them.

The proposed representation is invariant to the follow-
ing changes.

• Malicious code, payload, or obfuscation – The ad-
vantage of all network-based security approaches is
that they extract features from headers of network
communication rather than from the content. As
a result, any changes to the payload including the
usage of pluggable transports designed to bypass
Deep Packet Inspection (DPI) devices will have no
effect on the features. Some pluggable transports
(e.g. ScrambleSuit) are able to change its net-
work fingerprint (packet length distribution, num-
ber of bytes, inter-arrival times, etc.). Since the pro-
posed representation mainly relies on the dynamics
of URLs of flows in the bag, such changes will not
negatively impact the efficacy, which is a great ad-
vantage against DPI devices.

• Server or hostname – The representation operates
at the level of bags, where each bag is a set of flows
with the same user and hostname/domain. If an at-
tacker changes an IP address or a hostname of the
remote server (because the current one has been
blacklisted), the representation will create a new
bag with similar feature values as in the previous
bag with the original IP address or hostname, which
is a great advantage against feeds and blacklists that
need to be updated daily and are always behind.

• URL path or filename – Straightforward and easy
way of evading existing classifiers using flow-based
features or URL patterns is the change in path or
filename from sample to sample. Since the variabil-
ity of these features remains constant within each
bag, these changes will also have no effect on the
proposed representation.

• Number of URL parameters, their names or val-
ues – This is an alternative to URL path changes.

• Encoded URL content – Hiding information in the
URL string represents another way to exfiltrate sen-
sitive data. When the URL is encrypted and en-
coded (e.g. with base64), it changes the URL length

8

USENIX Association 25th USENIX Security Symposium 815

and may globally influence other features as well.
As the proposed representation is invariant against
shifting, changing the URL length will not change
the histograms of feature differences.

• Number of flows – Another option for an attacker
to hide in the background traffic is increasing or re-
ducing the number of flows related to the attack.
Such modification of the attack does not affect the
representation, as long as there are enough flows to
create the feature vectors.

• Time intervals between flows – This feature has
been used in many previous approaches for its de-
scriptive properties. It is an alternative way to
the proposed representation how to model a rela-
tionship between individual flows. Our analysis
revealed that current malware samples frequently
modify the inter-arrival time to remain hidden in the
background traffic – see Figure 3 for details. There-
fore, we do not rely on this unstable feature that can
be also influenced by network delays or failures.

• Ordering of flows – An attacker can easily change
the ordering of flows to evade detection based on
patterns or predefined sequences of flows. For the
proposed representation the ordering of flows does
not matter.

The proposed representation is not invariant to the fol-
lowing changes.

• Static behavior – The representation does not
model malware behaviors, where all flows associ-
ated with a malware are identical. Such behavior
has no dynamics and can be classified with flow-
based approaches with comparable results. In our
dataset, only 10% of flows were removed because
of this constrain.

• Multiple behaviors in a bag – In case more behav-
iors are associated with a bag, such as when a target
hostname is compromised and communicates with
a user with legitimate and malicious flows at once,
the representation does not guarantee the invariance
against the attacker’s changes. Such bags contain a
mixture of legitimate and malicious flows and their
combination could lead to a different representation.
Note that there wasn’t any malware sample in our
data that would satisfy this condition, since the le-
gitimate traffic has to be authentic (not artificially
injected) to confuse the representation.

• Encrypted HTTPS traffic – Most features pre-
sented in this paper are computed from URLs or
other flow fields, that are not available in encrypted
HTTPS traffic. In this case, only a limited set

Category
Samples Signatures

Flows Bags Recall
Training Positives 132,756 5,011 0.15
Click-fraud mw 12,091 819 0.29
DGA malware 8,629 397 0.58
Dridex 8,402 264 0.12
IntallCore 17,317 1,332 0.00
Monetization 3,107 135 0.00
Mudrop 37,142 701 0.00
Poweliks 11,648 132 0.00
Zeus 34,420 1,275 0.19
Testing Positives 43,380 2,090 0.02
Training Negatives 862,478 26,825
Testing Negatives 15,379,466 240,549

Table 2: Number of flows and bags of malware cate-
gories and legitimate background traffic used for train-
ing and testing the proposed representation and classifier.
Right-most column shows the amount of bags that were
found and blocked by an existing signature-based device.
Majority of the malicious bags from the test were missed,
as the device, relying on a static database of signatures,
was not able to catch evolving versions and new types of
the malicious behaviors.

of flow-based features can be used, which reduces
the discriminative properties of the representation.
However, majority of malware communication is
still over HTTP protocol, because switching to
HTTPS would harm the cyber-criminals’ revenues
due to problems with signed certificates [18].

• Real-time changes and evolution – In case a mal-
ware sample for a given user and hostname would
start changing its behavior dynamically and fre-
quently, the bag representation will vary in time.
Such inconsistency would decrease the efficacy re-
sults and enlarge the time to detect. However, creat-
ing such highly dynamic malware behavior requires
a considerable effort, therefore we do not see such
samples very often in the real network traffic.

We conclude our analysis with the observation, that
attackers change flow features very frequently (see Fig-
ure 3). The goal of the proposed representation is to be
invariant against most of the changes to successfully de-
tect new, previously unseen malware variants.

8 Experimental Evaluation

The proposed approach was deployed on the top of proxy
logs exporters in companies of various types and sizes
to detect unseen malware samples. The system archi-
tecture is shown in Figure 4. Collector connected to a

9

816 25th USENIX Security Symposium USENIX Association

Normalized Entropy of Feature Values for 32 Malware Categories

Features
1 2 3 4 5 6 7 8 9 10 11 12 13 14

M
al

w
ar

e
C

at
eg

or
ie

s

5

10

15

20

25

30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Flow-based features (columns) are chang-
ing for most of the malware categories (rows). The
figure uses normalized entropy to show the variability
of each feature within each malware category. Yellow
color denotes that the feature value is changed very of-
ten, while blue color means that the feature has the
same values for all samples of the given category. Fea-
tures: 1-URL, 2-interarrival time, 3-URL query values,
4-URL path, 5-number of flows, 6-number of down-
loaded bytes, 7-server IP address, 8-hostname, 9-URL
path length, 10-URL query names, 11-filename, 12-
filename length, 13-number of URL query parameters,
14-number of uploaded bytes. Malware categories:
1-Click-fraud (amz), 2-Asterope family 1, 3-Asterope
family 2, 4-Beden, 5-Click-fraud, 6-DGA, 7-Dridex, 8-
Exfiltration, 9-InstallCore, 10-Mudrop Trojan Dropper,
11-Monetization, 12-Zeus, 13-Mudrop, 14-MultiPlug,
15-mixture of unknown malware, 16-Click-fraud (track-
ing), 17-Poweliks family 1, 18-Poweliks family 2, 19-
Qakbot Trojan, 20-Rerdom Trojan, 21-Ramnit worm,
22-RVX, 23-Sality, 24-Threats related to a traffic direc-
tion system (TDS) 1, 25-TDS 2, 26-TDS 3, 27-Tinba
Trojan, 28-C&C tunneling, 29-Upatre, 30-Vawtrak, 31-
Vittalia, 32-Zbot. Details about the malware categories
are given in Section 8.

proxy server stores incoming and outgoing network traf-
fic in form of proxy log records. The proxy logs represent
information about individual HTTP/HTTPS connections
or flows. Each 5-minute interval, the proxy logs are sent
to the detection engine, where the proposed method de-
tects the malicious behaviors. Report created from the
malicious behaviors is then displayed on a console to an
operator. The next section provides the specification of
datasets and malware categories, followed by the results
from the experimental evaluation. Next section provides
the specification of datasets and malware categories, fol-
lowed by the results from the experimental evaluation.

8.1 Specification of the Datasets
The data was obtained from several months (January -
July 2015) of real network traffic of 80 international

Intranet (LAN)

Proxy Server

Collector
(Proxy Logs)

Firewall

Detection
Engine

Reporting
Console

Internet

Public IPs

Figure 4: Overview of the system architecture. Collector
connected to a proxy server stores incoming and outgo-
ing network traffic in form of proxy log records. Each
5-minute interval, the proxy logs are sent to the detec-
tion engine and the results are displayed to an operator
on the reporting console.

companies of various sizes in form of proxy logs [26].
The logs contain HTTP/HTTPS flows, where one flow is
one connection defined as a group of packets from a sin-
gle host and source port with a single server IP address,
port, and protocol. Summary of the datasets used in the
evaluation is described in Table 2.

Malware samples will be referred as positive bags,
where one positive bag is a set of records (connections)
with the same source towards the same destination. The
bags not labeled as malicious are considered as legiti-
mate/negative. Each bag should contain at least 5 flows
to be able to compute a meaningful histogram representa-
tion. Training dataset contains 5k malicious (8 malware
families) and 27k legitimate bags, while testing dataset
is consist of 2k malicious (� 32 malware families) and
241k legitimate bags (more than 15 million flows). Posi-
tive samples for training were acquired using many types
of publicly available feeds, services, and blacklists, while
the results on the testing data were analyzed manually by
security experts. Each HTTP flow consists of the follow-
ing fields: user name, srcIP, dstIP, srcPort, dstPort, pro-
tocol, number of bytes, duration, timestamp, user agent,
and URL. From these flow fields, we extracted 115 flow-
based features typically used in the prior art (Table 3).

This means that training and testing data are com-
posed of completely different malware bags from dif-
ferent malware families, which makes the classification
problem much harder. This scenario simulates the fact
that new types of threats are created to evade detection.
The benchmarking signature-based network security de-
vice (widely used in many companies) was able to de-
tect only 2% of the malicious bags from the testing set.
Training a classifier for each category separately is an
easier task, however such classifiers are typically over-
fitted to a single category and cannot detect further vari-
ations without retraining.

10

USENIX Association 25th USENIX Security Symposium 817

Dimension 1
-100 -80 -60 -40 -20 0 20 40 60 80 100

D
im

en
si

on
 2

-80

-60

-40

-20

0

20

40

60

80
Projection of Feature Vectors of the Flow-Based Representation into 2D

Legitimate
Malicious

Figure 5: Graphical projection of feature vectors of the
baseline flow-based representation into two dimensions
using t-SNE transformation. Feature vectors from 32
different malware categories are displayed. Due to high
variability of flow-based feature values, legitimate and
malicious samples are scattered without any clear sep-
aration. The results show that the flow-based represen-
tation is suitable for training classifiers specialized on a
single malware category, which often leads to classifiers
with high precision and low recall.

Dimension 1
-60 -40 -20 0 20 40 60 80

D
im

en
si

on
 2

-50

-40

-30

-20

-10

0

10

20

30

40

50
Projection of Feature Vectors of the Proposed Representation into 2D

Malicious
Legitimate

Figure 6: Graphical projection of feature vectors of the
proposed representation into two dimensions using t-
SNE transformation. Thanks to the invariant properties,
malicious bags from various categories are grouped to-
gether, as they have similar dynamics modeled by the
representation. Most of the legitimate bags are concen-
trated on the left-hand side, far from the malicious bags.
This shows that training a classifier with the proposed
representation will achieve higher recall with compara-
ble precision.

Features applied on URL, path, query, filename
length; digit ratio
lower/upper case ratio; ratio of digits
vowel changes ratio
ratio of a character with max occurrence
has a special character
max length of consonant/vowel/digit stream
number of non-base64 characters
has repetition of parameters
Other Features
number of bytes from client to server
number of bytes from server to client
length of referer/file extension
number of parameters in query
number of ’/’ in path/query/referer

Table 3: List of selected flow-based features extracted
from proxy logs. We consider these features as base-
line (as some features were used in previously published
work), and compare it with the proposed representation.

Table 4 from Appendix A describes an important fact
about the URLs from individual malicious bags. As you
can see, URLs within each malicious bag are similar to
each other (as opposed to most of legitimate bags). This
small non-zero variability of flow-based feature values is
captured by the proposed representation using both types
of histograms. The variability is very general but also

descriptive feature, which increases the robustness of the
representation to further malware changes and variants.

8.2 Evaluation on Real Network Traffic

This section shows the benefits of the proposed approach
of learning the invariant representation for two-class
classification problem in network security. Feature vec-
tors described in Section 8.1 correspond to input feature
vectors {x1, . . . ,xm} defined in Section 3. These vectors
are transformed into the proposed representation of his-
tograms φ(X̃ ;S̃ ;θ), as described in Section 4. We have
evaluated two types of invariant representations. One
with predefined number of equidistant bins (e.g. 16, 32,
etc.) computed as described in Section 4, and one when
the representation is learned together with the classifier
to maximize the separability between malicious and le-
gitimate traffic (combination of Section 4 and 5). For the
representation learning, we used 256 bins as initial (and
most detailed) partitioning of the histograms. During the
learning phase, the bins were merged together, creating
12.7 bins per histogram on average.

Both approaches are compared with the baseline flow-
based representation used in previously published work,
where each sample corresponds to a feature vector com-
puted from one flow. Results of a widely used signature-
based security device are also provided (see Table 2)
to demonstrate that the positive samples included in the
evaluation pose a real security risk, as majority of them

11

818 25th USENIX Security Symposium USENIX Association

feature x

fe
at

ur
e

y
lambda=0.00010, trnerr=2.4%, tsterr=14.8%

feature
50 100 150 200 250 300 350 400

w
ei
gh
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

feature x

fe
at

ur
e

y

lambda=0.01000, trnerr=10.4%, tsterr=13.5%

feature
50 100 150 200 250 300 350 400

w
ei
gh
t

-1

-0.5

0

0.5

1

Figure 7: Visualization of the proposed method of learn-
ing the invariant representation on 2-dimensional syn-
thetic data. Figures in the left row show the decision
boundaries of two class classifier learned from the bins
for two different values of parameter λ (0.0001, 0.01)
which controls the number of emerging bins (the corre-
sponding weights are shown in the right row). With in-
creasing λ the data are represented with less bins and the
boundary becomes smoother and less over-fitted to the
training data.

was not detected. Maximum number of flows for each
bag was 100, which ensures that the computational cost
is controlled and does not exceed predefined limits.

Two-dimensional projection of the feature vectors for
the flow-based and the proposed representation is illus-
trated in Figures 5 and 6 respectively. Bags from 32 mali-
cious categories are displayed with red circles, while the
legitimate bags are denoted with green circles. The pro-
jections show that the flow-based representation is suit-
able for training classifiers specialized on a single mal-
ware category. In case of the proposed representation,
malicious bags from various categories are grouped to-
gether and far from the legitimate traffic, which means
that the classifiers will have higher recall and compara-
ble precision with the flow-based classifiers.

Next, we will show the properties of the proposed
method of learning the representation to maximize the
separation between positive and negative samples (see
Section 5 for details). Figure 7 visualizes the proposed
method on synthetic 2-dimensional input data. The input
2D point (x,y)∈R2 is represented by 4-dimensional fea-
ture vector (x2,y2,x+ y,x− y). Each of the 4 features is
then represented by a histogram with 100 bins (i.e. each
feature is represented by 100 dimensional binary vector
will all zeros but a single one corresponding to the active
bin). Figures in the top row show the decision bound-
aries of two-class classifiers learned from data. The bot-

feature index
50 100 150 200 250

w
ei

gh
t v

al
ue

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
found 130 bins

Figure 8: Weights (blue bars) and derived bins of a his-
togram (red line) for a standard SVM and one of the in-
variant features. Since the bins are equidistant and pre-
defined at the beginning, the resulting histogram (defined
by the red line) has complicated structure, leading most
probably to complex boundary and over-fitted results (as
shown in Figure 7 on the left hand side).

feature index
50 100 150 200 250

w
ei

gh
t v

al
ue

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

found 18 bins

Figure 9: Weights (blue bars) and derived bins of a his-
togram (red line) for the proposed bin optimization. In
this case, the weights show a clear structure and the de-
rived histogram has only 18 bins. The decision boundary
is in this case smoother and the classifier trained from
this representation will be more robust. Green dashed
lines also show how the histogram bins would look like
if they are positioned equidistantly (16 bins).

tom row shows the weights of the linear classifier corre-
sponding to the bins (in total 400 weights resulting from
100 bins for each out of 4 features). The columns corre-
spond to the results obtained for different setting of the
parameter λ which controls the number of emerging bins
and thus also the complexity of the decision boundary.
With increasing λ the data are represented with less bins
and the boundary becomes smoother. Figure 7 shows the
principle of the proposed optimization process. The bins
of the representation are learned in such a way that it
is much easier for the classifier to separate negative and
positive samples and at the same time control the com-

12

USENIX Association 25th USENIX Security Symposium 819

False Positive Rate
0 0.2 0.4 0.6 0.8 1

Tr
ue

 P
os

iti
ve

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curve for Test Data

flow-based
bag mean
bag variance
bag combined
optimized bag combined

False Positive Rate
10-5 10-4 10-3 10-2 10-1 100

Tr
ue

 P
os

iti
ve

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curve for Test Data - Log Scale

flow-based
bag mean
bag variance
bag combined
optimized bag combined

Figure 10: ROC curves of SVM classifier on test data for five types of representations (logarithmic scale on the right).
Flow-based representation shows very unsatisfactory results showing that flow-based approach cannot be applied in
practice to detect unseen malware variants. The combination of feature values with feature differences histogram (bag
combined) led to significantly better efficacy results. These results were further exceeded when the parameters of the
invariant representation were learned automatically from the training data (optimized bag combined).

plexity of the classifier.
Figures 8 and 9 show the bins and weights learned

from the training set of real network traffic. The blue ver-
tical lines represent learned weights associated with 256
bins of a histogram computed on a single input feature.
The red lines show new bins derived from the weights by
merging those neighboring bins which have the weights
with the same sign. Figure 8 shows the weights and the
derived bins for a standard SVM which has no incentive
to have similar weights. The histogram derived from the
SVM weights reduces the number of bins from 256 to
130. Figure 9 shows the results for the proposed method
which enforces the similar weights for neighboring bins.
In this case, the weights exhibit a clear structure and the
derived histogram has only 18 bins. The decision bound-
ary is in this case smoother and the classifier trained from
this representation will be more robust.

Next, a two-class SVM classifier was evaluated on five
representations: baseline flow-based, per-feature his-
tograms of values φ(zX

k ,θ
X
k) (bag mean), per-feature his-

tograms of feature differences φ(zS
k ,θ S

k) (bag variance),
the combination of both (bag combined), and the combi-
nation of both with bin optimization (optimized bag com-
bined). The training and testing datasets were composed
of bags described in Table 2.

The results on testing data are depicted in Figure 10.
Note that positive bags in the testing set are from dif-
ferent malware categories than bags from the training
set, which makes the classification problem much harder.
The purpose of this evaluation is to compare flow-based
representation, which is used in most of previously pub-
lished work, with the proposed invariant representation.
Flow-based representation shows very unsatisfactory re-
sults, mainly due to the fact that the classifier was based
only on the values of flow-based features that are not

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision-Recall Curve for Testing Data

bag combined (256 bins)
bag combined (128 bins)
bag combined (64 bins)
bag combined (16 bins)
bag combined (8 bins)
optimized bag combined

Figure 11: Precision-recall curve of SVM classifier
trained on the proposed representation with different
number of histogram bins for each feature. All classifiers
are outperformed by the classifier, where the parameters
of the invariant representation are learned automatically
from the data (optimized bag combined). The classifier
achieved 90% precision (9 of 10 alerts were malicious)
and 67% recall on previously unseen malware families.

robust across different malware categories (as shown in
Section 7). The classifier based on combined bag rep-
resentation performed significantly better. These results
were further exceeded when the parameters of the invari-
ant representation were learned automatically from the
training data (optimized bag combined), which is shown
in Figure 10 with logarithmic scale.

Precision-recall curve is depicted in Figure 11 to com-
pare the efficacy results of classifiers based on the pro-
posed representation with predefined number of bins per
feature (8, 16, 64, 128, and 256 bins) with the same rep-
resentation, but when the parameters are learned from the
training data (using bin optimization from Section 5).

13

820 25th USENIX Security Symposium USENIX Association

Overall, the results show the importance of combin-
ing both types of histograms introduced in Section 4 to-
gether, allowing the representation to be more descrip-
tive and precise without sacrificing recall. But most im-
portantly, when the parameters of the representation are
trained to maximize the separability between malicious
and legitimate samples, the resulting classifier performs
in order of a magnitude better than a classifier with man-
ually predefined parameters.

9 Conclusion

This paper proposes a robust representation suitable for
classifying evolving malware behaviors. It groups sets
of network flows into bags and represents them using a
the combination of invariant histograms of feature val-
ues and feature differences. The representation is de-
signed to be invariant under shifting and scaling of the
feature values and under permutation and size changes
of the bags. The proposed optimization method learns
the parameters of the representation automatically from
the training data, allowing the classifiers to create robust
models of malicious behaviors capable of detecting pre-
viously unseen malware variants and behavior changes.

The proposed representation was deployed on corpo-
rate networks and evaluated on real HTTP network traf-
fic with more than 43k malicious samples and more than
15M samples overall. The comparison with a baseline
flow-based approach and a widely-used signature-based
web security device showed several key advantages of
the proposed representation. First, the invariant proper-
ties of the representation result in the detection of new
types of malware. More specifically, the proposed clas-
sifier trained on the optimized representation achieved
90% precision (9 of 10 alerts were malicious) and de-
tected 67% of malware samples of previously unseen
types and variants. Second, multiple malware behav-
iors can be represented in the same feature space while
current flow-based approaches necessitate training a sep-
arate detector for each malware family. This way, the
proposed system considerably increases the capability of
detecting new variants of threats.

References
[1] Cisco netflow. http://www.cisco.com/warp/public/732/tech/netflow.

[2] ANTONAKAKIS, M., PERDISCI, R., NADJI, Y., VASILOGLOU,
N., ABU-NIMEH, S., LEE, W., AND DAGON, D. From throw-
away traffic to bots: Detecting the rise of dga-based malware. In
Proceedings of the 21st USENIX Conference on Security Sympo-
sium (Berkeley, CA, USA, 2012), Security’12, USENIX Associ-
ation, pp. 24–24.

[3] BAILEY, M., OBERHEIDE, J., ANDERSEN, J., MAO, Z., JAHA-
NIAN, F., AND NAZARIO, J. Automated classification and anal-
ysis of internet malware. In Recent Advances in Intrusion Detec-
tion, C. Kruegel, R. Lippmann, and A. Clark, Eds., vol. 4637 of

Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2007, pp. 178–197.

[4] BEN-DAVID, S., BLITZER, J., CRAMMER, K., PEREIRA, F.,
ET AL. Analysis of representations for domain adaptation. Ad-
vances in neural information processing systems 19 (2007), 137.

[5] BERNAILLE, L., TEIXEIRA, R., AKODKENOU, I., SOULE, A.,
AND SALAMATIAN, K. Traffic classification on the fly. ACM
SIGCOMM ’06 36, 2 (Apr. 2006), 23–26.

[6] BILGE, L., BALZAROTTI, D., ROBERTSON, W., KIRDA, E.,
AND KRUEGEL, C. Disclosure: Detecting botnet command and
control servers through large-scale netflow analysis. In Proceed-
ings of the 28th Annual Computer Security Applications Confer-
ence (New York, NY, USA, 2012), ACSAC ’12, ACM, pp. 129–
138.

[7] BLITZER, J., MCDONALD, R., AND PEREIRA, F. Domain adap-
tation with structural correspondence learning. In Proceedings of
the 2006 conference on empirical methods in natural language
processing (2006), Association for Computational Linguistics,
pp. 120–128.

[8] CHANDOLA, V., BANERJEE, A., AND KUMAR, V. Anomaly
detection: A survey. ACM Comput. Surv. 41 (July 2009), 15:1–
15:58.

[9] CHOI, H., ZHU, B. B., AND LEE, H. Detecting malicious web
links and identifying their attack types. In Proceedings of the 2Nd
USENIX Conference on Web Application Development (Berkeley,
CA, USA, 2011), WebApps’11, USENIX Association, pp. 11–
11.

[10] DAI, W., YANG, Q., XUE, G.-R., AND YU, Y. Boosting for
transfer learning. In Proceedings of the 24th international con-
ference on Machine learning (2007), ACM, pp. 193–200.

[11] DUAN, L., TSANG, I. W., AND XU, D. Domain transfer mul-
tiple kernel learning. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 34, 3 (2012), 465–479.

[12] ERMAN, J., ARLITT, M., AND MAHANTI, A. Traffic classifi-
cation using clustering algorithms. In Proceedings of the 2006
SIGCOMM Workshop on Mining Network Data (New York, NY,
USA, 2006), MineNet ’06, ACM, pp. 281–286.

[13] FALLIERE, N. Sality: Story of a peer-to-peer viral network. Rap-
port technique, Symantec Corporation (2011).

[14] GRETTON, A., SMOLA, A., HUANG, J., SCHMITTFULL, M.,
BORGWARDT, K., AND SCHÖLKOPF, B. Covariate shift by ker-
nel mean matching. Dataset shift in machine learning 3, 4 (2009),
5.

[15] GRIFFIN, K., SCHNEIDER, S., HU, X., AND CHIUEH, T.-C.
Automatic generation of string signatures for malware detec-
tion. In Proceedings of the 12th International Symposium on Re-
cent Advances in Intrusion Detection (Berlin, Heidelberg, 2009),
RAID ’09, Springer-Verlag, pp. 101–120.

[16] GU, G., PERDISCI, R., ZHANG, J., LEE, W., ET AL. Botminer:
Clustering analysis of network traffic for protocol-and structure-
independent botnet detection. In USENIX Security Symposium
(2008), vol. 5, pp. 139–154.

[17] HUANG, H., QIAN, L., AND WANG, Y. A svm-based technique
to detect phishing urls. Information Technology Journal 11, 7
(2012), 921–925.

[18] INVERNIZZI, L., MISKOVIC, S., TORRES, R., SAHA, S., LEE,
S., MELLIA, M., KRUEGEL, C., AND VIGNA, G. Nazca: De-
tecting malware distribution in large-scale networks. In Proceed-
ings of the Network and Distributed System Security Symposium
(NDSS) (2014).

14

USENIX Association 25th USENIX Security Symposium 821

[19] IYER, A., NATH, S., AND SARAWAGI, S. Maximum mean dis-
crepancy for class ratio estimation: Convergence bounds and ker-
nel selection. In Proceedings of the 31st International Conference
on Machine Learning (ICML-14) (2014), pp. 530–538.

[20] JAGPAL, N., DINGLE, E., GRAVEL, J.-P., MAVROMMATIS, P.,
PROVOS, N., RAJAB, M. A., AND THOMAS, K. Trends and
lessons from three years fighting malicious extensions. In 24th
USENIX Security Symposium (USENIX Security 15) (Washing-
ton, D.C., Aug. 2015), USENIX Association, pp. 579–593.

[21] JUNEJO, I. N., DEXTER, E., LAPTEV, I., AND PEREZ, P. View-
independent action recognition from temporal self-similarities.
Pattern Analysis and Machine Intelligence, IEEE Transactions
on 33, 1 (2011), 172–185.

[22] KAPRAVELOS, A., SHOSHITAISHVILI, Y., COVA, M.,
KRUEGEL, C., AND VIGNA, G. Revolver: An automated
approach to the detection of evasive web-based malware. In
USENIX Security (2013), Citeseer, pp. 637–652.

[23] KARAGIANNIS, T., PAPAGIANNAKI, K., AND FALOUTSOS, M.
Blinc: Multilevel traffic classification in the dark. In Proceedings
of the 2005 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (New York,
NY, USA, 2005), SIGCOMM ’05, ACM, pp. 229–240.

[24] KIM, H., CLAFFY, K., FOMENKOV, M., BARMAN, D.,
FALOUTSOS, M., AND LEE, K. Internet traffic classification de-
mystified: Myths, caveats, and the best practices. In Proceedings
of the 2008 ACM CoNEXT Conference (New York, NY, USA,
2008), CoNEXT ’08, ACM, pp. 11:1–11:12.

[25] KRUEGEL, C., AND VIGNA, G. Anomaly detection of web-
based attacks. In Proceedings of the 10th ACM Conference on
Computer and Communications Security (New York, NY, USA,
2003), CCS ’03, ACM, pp. 251–261.

[26] LOU, W., LIU, G., LU, H., AND YANG, Q. Cut-and-pick trans-
actions for proxy log mining. In Advances in Database Tech-
nology EDBT 2002, C. Jensen, S. altenis, K. Jeffery, J. Pokorny,
E. Bertino, K. Bhn, and M. Jarke, Eds., vol. 2287 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2002, pp. 88–
105.

[27] MA, J., SAUL, L. K., SAVAGE, S., AND VOELKER, G. M.
Learning to detect malicious urls. ACM Trans. Intell. Syst. Tech-
nol. 2, 3 (May 2011), 30:1–30:24.

[28] MOORE, D., SHANNON, C., BROWN, D. J., VOELKER, G. M.,
AND SAVAGE, S. Inferring internet denial-of-service activity.
ACM Trans. Comput. Syst. 24, 2 (May 2006), 115–139.

[29] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring multiple
execution paths for malware analysis. In Security and Privacy,
2007. SP ’07. IEEE Symposium on (May 2007), pp. 231–245.

[30] MOSER, A., KRUEGEL, C., AND KIRDA, E. Limits of static
analysis for malware detection. In Computer Security Applica-
tions Conference, 2007. ACSAC 2007. Twenty-Third Annual (Dec
2007), pp. 421–430.

[31] MÜLLER, M., AND CLAUSEN, M. Transposition-invariant self-
similarity matrices. In In Proceedings of the 8th International
Conference on Music Information Retrieval (ISMIR) (2007),
pp. 47–50.

[32] NELMS, T., PERDISCI, R., ANTONAKAKIS, M., AND
AHAMAD, M. Webwitness: Investigating, categorizing, and mit-
igating malware download paths. In 24th USENIX Security Sym-
posium (USENIX Security 15) (Washington, D.C., Aug. 2015),
USENIX Association, pp. 1025–1040.

[33] PORTNOY, L., ESKIN, E., AND STOLFO, S. Intrusion detection
with unlabeled data using clustering. In In Proceedings of ACM
CSS Workshop on Data Mining Applied to Security (DMSA-2001
(2001), pp. 5–8.

[34] RIECK, K., HOLZ, T., WILLEMS, C., DSSEL, P., AND LASKOV,
P. Learning and classification of malware behavior. In Detec-
tion of Intrusions and Malware, and Vulnerability Assessment,
D. Zamboni, Ed., vol. 5137 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2008, pp. 108–125.

[35] RNDIC, N., AND LASKOV, P. Practical evasion of a learning-
based classifier: A case study. In Security and Privacy (SP), 2014
IEEE Symposium on (May 2014), pp. 197–211.

[36] SCARFONE, K., AND MELL, P. Guide to intrusion detection
and prevention systems (idps) recommendations of the national
institute of standards and technology. Nist Special Publication
800, 94 (2007).

[37] SHIMODAIRA, H. Improving predictive inference under covari-
ate shift by weighting the log-likelihood function. Journal of sta-
tistical planning and inference 90, 2 (2000), 227–244.

[38] SONG, D., BRUMLEY, D., YIN, H., CABALLERO, J., JAGER,
I., KANG, M., LIANG, Z., NEWSOME, J., POOSANKAM, P.,
AND SAXENA, P. Bitblaze: A new approach to computer secu-
rity via binary analysis. In Information Systems Security, R. Sekar
and A. Pujari, Eds., vol. 5352 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2008, pp. 1–25.

[39] SONG, H., AND TURNER, J. Toward advocacy-free evaluation of
packet classification algorithms. Computers, IEEE Transactions
on 60, 5 (May 2011), 723–733.

[40] SOSKA, K., AND CHRISTIN, N. Automatically detecting vul-
nerable websites before they turn malicious. In 23rd USENIX Se-
curity Symposium (USENIX Security 14) (San Diego, CA, Aug.
2014), USENIX Association, pp. 625–640.

[41] WANG, K., AND STOLFO, S. Anomalous payload-based net-
work intrusion detection. In Recent Advances in Intrusion Detec-
tion, E. Jonsson, A. Valdes, and M. Almgren, Eds., vol. 3224 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2004, pp. 203–222.

[42] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,
E. Panorama: Capturing system-wide information flow for mal-
ware detection and analysis. In Proceedings of the 14th ACM
Conference on Computer and Communications Security (New
York, NY, USA, 2007), CCS ’07, ACM, pp. 116–127.

[43] ZHANG, K., SCHÖLKOPF, B., MUANDET, K., AND WANG, Z.
Domain adaptation under target and conditional shift. In Proceed-
ings of the 30th International Conference on Machine Learning
(ICML-13) (2013), S. Dasgupta and D. Mcallester, Eds., vol. 28,
JMLR Workshop and Conference Proceedings, pp. 819–827.

[44] ZHAO, P., AND HOI, S. C. Cost-sensitive online active learning
with application to malicious url detection. In Proceedings of
the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (New York, NY, USA, 2013), KDD
’13, ACM, pp. 919–927.

A Examples of Bags

15

822 25th USENIX Security Symposium USENIX Association

Asterope
hxxp://194.165.16.146:8080/pgt/?ver=1.3.3398&id=126&r=12739868&os=6.1—2—8.0.7601.18571&res=4—1921—466&f=1

hxxp://194.165.16.146:8080/pgt/?ver=1.3.3398&id=126&r=15425581&os=6.1—2—8.0.7601.18571&res=4—1921—516&f=1

hxxp://194.165.16.146:8080/pgt/?ver=1.3.3398&id=126&r=27423103&os=6.1—2—8.0.7601.18571&res=4—1921—342&f=1

hxxp://194.165.16.146:8080/pgt/?ver=1.3.3753&id=126&r=8955018&os=6.1—2—8.0.7601.18571&res=4—1921—319&f=1

Click-fraud, malvertising-related botnet
hxxp://directcashfunds.com/opntrk.php?tkey=024f9730e23f8553c3e5342568a70300&Email=name.surname@company.com

hxxp://directcashfunds.com/opntrk.php?tkey=c1b6e3d50632d4f5c0ae13a52d3c4d8d&Email=name.surname@company.com

hxxp://directcashfunds.com/opntrk.php?tkey=7c9a843ce18126900c46dbe4be3b6425&Email=name.surname@company.com

hxxp://directcashfunds.com/opntrk.php?tkey=c1b6e3d50632d4f5c0ae13a52d3c4d8d&Email=name.surname@company.com

DGA
hxxp://uvyqifymelapuvoh.biz/s531ka.ji5

hxxp://uvyqifymelapuvoh.biz/rl59c281.x19

hxxp://uvyqifymelapuvoh.biz/seibpn6.2m0

hxxp://uvyqifymelapuvoh.biz/3854f.u17

Dridex
hxxp://27.54.174.181/8qV578&$o@HU6Q6S/gz$J0l=iTTH 28%2CM/we20%3D

hxxp://27.54.174.181/C4GyRx%7E@RY6x /M&N=sq/bW ra4OTJ

hxxp://27.54.174.181/gPvh+=GO/9RPPfk0%2CzXOYU%20/Vq8Ww/+a m%7Ez

hxxp://27.54.174.181/qE0my4KIz48Cf3H8wG%7Evpz=iJ%26fqMl%24m/46JoELp=GJww%3D%26Ib+Ar.y3 iu%2D1E/sso

InstallCore Monetization
hxxp://rp.any-file-opener.org/?pcrc=1559319553&v=2.0 hxxp://utouring.net/search/q/conducing

hxxp://rp.any-file-opener.org/?pcrc=1132521307&v=2.0 hxxp://utouring.net/go/u/1/r/1647

hxxp://rp.any-file-opener.org/?pcrc=1123945956&v=2.0 hxxp://utouring.net/go/u/0/r/2675

hxxp://rp.any-file-opener.org/?pcrc=1075608192&v=2.0 hxxp://utouring.net/search/f/1/q/refiles

Poweliks
hxxp://31.184.194.39/query?version=1.7&sid=793&builddate=114&q=nitric+oxide+side+effects&ua=Mozilla%2F5 . . . &lr=7&ls=0

hxxp://31.184.194.39/query?version=1.7&sid=793&builddate=114&q=weight+loss+success+stories&ua=Mozilla%2F5 . . . &lr=0&ls=0

hxxp://31.184.194.39/query?version=1.7&sid=793&builddate=114&q=shoulder+pain&ua=Mozilla%2F5 . . . &lr=7&ls=2

hxxp://31.184.194.39/query?version=1.7&sid=793&builddate=114&q=cheap+car+insurance&ua=Mozilla%2F5 . . . &lr=7&ls=2

Zeus
hxxp://130.185.106.28/m/IbQFdXVjiriLva4KHeNpWCmThrJBn3f34HNwsLVVsUmLXtsumSSPe/zzXtIu9SzwjI9zKlxdE . . . 3RqvGzKN5

hxxp://130.185.106.28/m/IbQJFUVjgZn4vx4KHeNpWCmThrJBn3f34HNwsLVVsUmLfkoPaSS+S+zzXtIu9SzwjI9zKlxdE . . . 3vKwmk0oUi

hxxp://130.185.106.28/m/IbQJFUVjiJwJBX4KHeNpWCmThrJBn3f34HNwsLVVsUmKH7ue2STvSkzzXtIu9SzwjI9zKlxdE . . . 3vKwmk0oUi

hxxp://130.185.106.28/m/IbQNtVVji5/7Yp4KHeNpWCmThrJBn3f34HNwsLVVsUmLz4sO6YRvOjzzXtIu9SzwjI9zKlxdE . . . 3zB9057quqv

Legitimate traffic 1
hxxp://www.cnn.com/.element/ssi/auto/4.0/sect/MAIN/markets wsod expansion.html

hxxp://www.cnn.com/.a/1.73.0/assets/sprite-s1dced3ff2b.png

hxxp://www.cnn.com/.element/widget/video/videoapi/api/latest/js/CNNVideoBootstrapper.js

hxxp://www.cnn.com/jsonp/video/nowPlayingSchedule.json?callback=nowPlayingScheduleCallbackWrapper& =1422885578476

Legitimate traffic 2
hxxp://ads.adaptv.advertising.com/a/h/7g doK40WLPMYHbkD9G2u7HSXjqzIaa7Bqhslod+u7iQl . . . &context=fullUrl%3Dpandora.com

hxxp://ads.adaptv.advertising.com/crossdomain.xml

hxxp://ads.advertising.com/411f1e96-3bde-4d85-b17e-63749e5f0695.js

hxxp://ads.adaptv.advertising.com/applist?placementId=297920&key=&d.vw=1&orgId=8656&hostname=data.rtbfy.com

Table 4: Example URLs of flows from several malicious bags and from two legitimate bags. The URLs within each
malicious bag are similar to each other while the URLs within legitimate bags differ. The small non-zero variability
of flow-based feature values is captured by the proposed representation using histograms of features and feature self-
similarity matrices. Such transformation of the feature values makes the representation robust to malware changes and
unseen variants.

16

USENIX Association 25th USENIX Security Symposium 823

Authenticated Network Time Synchronization

Benjamin Dowling
Queensland University of Technology

b1.dowling@qut.edu.au

Douglas Stebila
McMaster University

stebilad@mcmaster.ca

Greg Zaverucha
Microsoft Research

gregz@microsoft.com

Abstract

The Network Time Protocol (NTP) is used by many
network-connected devices to synchronize device time
with remote servers. Many security features depend on the
device knowing the current time, for example in deciding
whether a certificate is still valid. Currently, most services
implement NTP without authentication, and the authen-
tication mechanisms available in the standard have not
been formally analyzed, require a pre-shared key, or are
known to have cryptographic weaknesses. In this paper
we present an authenticated version of NTP, called ANTP,
to protect against desynchronization attacks. To make
ANTP suitable for large-scale deployments, it is designed
to minimize server-side public key operations by infre-
quently performing a key exchange using public key cryp-
tography, then relying solely on symmetric cryptography
for subsequent time synchronization requests; moreover,
it does so without requiring server-side per-connection
state. Additionally, ANTP ensures that authentication
does not degrade accuracy of time synchronization. We
measured the performance of ANTP by implementing it
in OpenNTPD using OpenSSL. Compared to plain NTP,
ANTP’s symmetric crypto reduces the server throughput
(connections/second) for time synchronization requests
by a factor of only 1.6. We analyzed the security of ANTP
using a novel provable security framework that involves
adversary control of time, and show that ANTP achieves
secure time synchronization under standard cryptographic
assumptions; our framework may also be used to analyze
other candidates for securing NTP.

Keywords: time synchronization, Network Time Pro-
tocol (NTP), provable security, network security

1 Introduction

The Network Time Protocol (NTP) is one of the Internet’s
oldest protocols, dating back to RFC 958 [15] published
in 1985. In the simplest NTP deployment, a client device

sends a single UDP packet to a server (the request), who
responds with a single packet containing the time (the
response). The response contains the time the request was
received by the server, as well as the time the response
was sent, allowing the client to estimate the network delay
and set their clock. If the network delay is symmetric, i.e.,
the travel time of the request and response are equal, then
the protocol is perfectly accurate. Accuracy means that
the client correctly synchronizes its clock with the server
(regardless of whether the server clock is accurate in the
traditional sense, e.g., synchronized with UTC).

The importance of accurate time for security. There
are many examples of security mechanisms which (often
implicitly) rely on having an accurate clock:
• Certificate validation in TLS and other protocols.

Validating a public key certificate requires confirm-
ing that the current time is within the certificate’s
validity period. Performing validation with a slow
or inaccurate clock may cause expired certificates to
be accepted as valid. A revoked certificate may also
validate if the clock is slow, since the relying party
will not check for updated revocation information.

• Ticket verification in Kerberos. In Kerberos, authen-
tication tickets have a validity period, and proper
verification requires an accurate clock to prevent
authentication with an expired ticket.

• HTTP Strict Transport Security (HSTS) policy du-
ration. HSTS [10] allows website administrators to
protect against downgrade attacks from HTTPS to
HTTP by sending a header to browsers indicating
that HTTPS must be used instead of HTTP. HSTS
policies specify the duration of time that HTTPS
must be used. If the browser’s clock jumps ahead,
the policy may expire re-allowing downgrade attacks.
A related mechanism, HTTP Public Key Pinning [7]
also relies on accurate client time for security.

For clients who set their clocks using NTP, these se-
curity mechanisms (and others) can be attacked by a

824 25th USENIX Security Symposium USENIX Association

network-level attacker who can intercept and modify NTP
traffic, such as a malicious wireless access point or an
insider at an ISP. In practice, most NTP servers do not
authenticate themselves to clients, so a network attacker
can intercept responses and set the timestamps arbitrarily.
Even if the client sends requests to multiple servers, these
may all be intercepted by an upstream network device
and modified to present a consistently incorrect time to
a victim. Such an attack on HSTS was demonstrated by
Selvi [28], who provided a tool to advance the clock of
victims in order to expire HSTS policies. Malhotra et
al. [12] present a variety of attacks that rely on NTP being
unauthenticated, further emphasizing the need for authen-
ticated time synchronization. (Confidentiality, however,
is not a requirement for time synchronization, since all
time synchronization is public. Similarly, client-to-server
authentication is not a goal.)

NTP security today. Early versions of NTP had no
standardized authentication method. NTPv3 added an
authentication method using pre-shared key symmetric
cryptography. An extension field in the NTP packet added
a cryptographic checksum, computed over the packet.
In NTPv3 negotiation of keys and algorithms must be
done out-of-band. For example, NIST offers a secure
time server, and (symmetric) keys are transported from
server to client by postal mail [21]. Establishing pre-
shared symmetric keys with billions of client PCs and
other NTP-synchronizing devices would be impractical.
NTPv4 introduced a public key authentication mechanism
called Autokey which has not seen widespread adoption;
and unfortunately, Autokey uses small 32-bit seeds that
can be easily brute forced to then forge packets. A more
recent proposal is the Network Time Security (NTS) pro-
tocol [31], which we discuss in §2.3.

Most NTP servers do not support NTP authentica-
tion, and NTP clients in desktop and laptop operating
systems will set their clocks based on unauthenticated
NTP responses. On Linux and OS X, by default the
client either polls a server periodically, or creates an NTP
request when the network interface is established. In
both cases the system clock will be set to any time spec-
ified by the NTP response. On Windows, by default
clients will synchronize their clock every nine hours (us-
ing time.microsoft.com), and ignore responses that
would change the clock by more than 15 hours. These two
defaults reduce the opportunity for a man-in-the-middle
(MITM) attacker to change a victim clock and the amount
by which it may be changed, but cumulative small-scale
changes can build over time to large-scale time inaccu-
racies. Teichel et al. used this technique when attacking
time-synchronization secured by TESLA-like protocols
[33]. In Windows domains (a network of computers, of-
ten in an enterprise), the domain controller provides the
time with an authenticated variant of NTPv3 [14].

1.1 Contributions

We present the ANTP protocol for authenticated network
time synchronization, along with results on its perfor-
mance and security. ANTP protocol messages are trans-
ported in the extension fields of NTP messages. ANTP
allows a server to authenticate itself to a client using pub-
lic key certificates and public key exchange, and provides
cryptographic assurance using symmetric cryptography
that no modification of the packets has occurred in transit.
Like other authenticated time synchronization protocols
using public keys [31], we assume an out-of-band method
for certificate validation exists, as certificate validation
requires an accurate clock. We follow the direction set
by the IETF Informational document “Security Require-
ments of Time Protocols in Packet-Switched Networks”
(RFC 7384) [20] to determine what cryptographic, com-
putational, and storage properties ANTP should achieve.

ANTP has three phases. In the negotiation phase, the
client and server agree on which cryptographic algorithms
to use; this phase would be carried out quite infrequently,
on the order of monthly or less. In the key exchange
phase, the client and server use public key cryptography
to establish a symmetric key that the server will use to
authenticate later time synchronization responses; this
phase would also be carried out infrequently, say monthly.
In the time synchronization phase, the client sends a time
synchronization request, and the server replies with an
NTP response that is symmetrically authenticated using
the key established in the key exchange phase; this may
be done frequently, perhaps daily or more often. No-
tably, the server need not keep per-client state: the server
offloads any such state to the client by encrypting and
authenticating it under a long-term symmetric key, and
the client sends that ciphertext back to the server with
each subsequent request.

The time synchronization phase of ANTP can be run in
a “no-cryptographic-latency” mode: here, the server sends
two response packets, the first being the unauthenticated
NTP packet, and the second being the same NTP packet
(with unchanged timestamps) along with the ANTP ex-
tensions providing authentication. The client measures
the roundtrip time based on the unauthenticated response,
but does not update its clock until authenticating the re-
sponse. In this way, no time synchronization inaccuracy is
added by the time required to compute the authentication
tag over the outgoing timestamp. Since the latency of
ANTP’s time synchronization phase is nearly as fast as
unauthenticated simple NTP time synchronization (only
21 microseconds slower at 50% load in our implementa-
tion as reported below), we make this mode optional since
plain ANTP may be sufficiently accurate for general use.

ANTP performance. Performance constraints on time
synchronization protocols are driven by the fact that time

USENIX Association 25th USENIX Security Symposium 825

Phase Throughput Latency within LAN (µs) Latency across US (ms)
50% load 90% load 50% load 90% load

ANTP – Negotiation – RSA 58 240 186 ± 26 202 ± 44 76.3 ± 0.1 77.5 ± 0.1
ANTP – Negotiation – ECDH 146 808 172 ± 35 233 ± 133 75.3 ± 0.1 75.3 ± 0.1

ANTP – Key Exchange – RSA 1 754 891 ± 125 997 ± 348 75.8 ± 0.2 76.9 ± 0.5
ANTP – Key Exchange – ECDH 13 210 197 ± 56 344 ± 142 74.7 ± 0.2 75.4 ± 0.4

ANTP – Time Synchronization 175 644 168 ± 35 230 ± 160 73.5 ± 0.1 73.7 ± 0.1

ANTP – All 3 phases – RSA – 2255 ± 587 2646 ± 345 226.6 ± 6.2 258.0 ± 35
ANTP – All 3 phases – ECDH – 1325 ± 499 2252 ± 1172 231.8 ± 10.5 223.3 ± 6.7

NTP 291 926 147 ± 34 181 ± 136 72.4 ± 0.1 74.0 ± 0.1

Table 1: Performance results for each phase of ANTP (top), a complete 3-phase execution of ANTP (middle), and NTP
(bottom). Throughput: mean completed phases per second. Latency: mean and standard deviation of the latency of
server responses at either 50% or 90% server load on a local area network (reported in microseconds) and across the
United States (between Virginia and California) (reported in milliseconds). All are computed over 5 trials, top and
bottom over 100 seconds each; see Section 4.2 for details.

servers are heavily loaded, and must provide responses
promptly. ANTP’s design allows it to achieve high per-
formance while maintaining high security. The frequently
performed time synchronization phase uses only symmet-
ric cryptography, making it only slightly more expensive
than simple NTP time synchronization. Since the ses-
sion key established in the key exchange phases is reused
across many time synchronization phases, expensive pub-
lic key operations are amortized, and can be separately
load-balanced. And, as noted above, ANTP offloads state
to clients, leaving the server stateless.

We implemented ANTP in OpenNTPD’s [34] imple-
mentation of NTP, using OpenSSL’s libcrypto library
(but not SSL/TLS) [35] for cryptographic computations.
Table 1 reports the performance of our implementation,
compared with unauthenticated simple NTP. ANTP does
decrease throughput and increase latency, but the im-
pact is quite reasonable. On a single core of a server,
ANTP can support 175k authenticated time synchroniza-
tion phase connections per second, a factor of 1.6 fewer
than the 291k unauthenticated simple NTP connections
per second. Latency for time synchronization (over a 1
gigabit per second local area network) at 50% load in-
creases from 147 microseconds for unauthenticated sim-
ple NTP to 168 microseconds for ANTP’s time synchro-
nization phase. The other two phases, negotiation and
key exchange, will be performed far less frequently on
average by clients. Throughput of negotiation phases is
bandwidth-, not CPU-, limited. For exchange, we imple-
mented methods: 2048-bit RSA key transport and static-
ephemeral elliptic curve Diffie–Hellman key exchange
using the NIST P-256 curve; as expected, both of these
are substantially more expensive than time synchroniza-
tion phases, but are also performed far less frequently.

Protocol Auth. Security Server Round
type operations trips

NTPv0–v2 — — — 1

NTPv3 sym. key no proof 1 hash 1
sym. key

NTPv4 pub. key flaws 2
n pub. key, 4

Autokey (§. 2.3) 1
n +1 sym. key

tlsdate [3] pub. key relies 2
n pub. key† 4

on TLS 5
n +7 sym. key† stateful

NTS [31] pub. key ProVerif 3
n pub. key, 4

proof [32] 2
n +2 sym. key

ANTP pub. key proof 1
n pub. key, 3

(Fig. 3) (Sec. 6) 6
n +2 sym. key

Table 2: Comparison of time synchronization proto-
cols. Server operations per time synchronization in-
cludes public key decryptions, symmetric key encryp-
tions/decryptions, and hashes/KDFs/MACs. a

n + b de-
notes a operations that can be amortized over n time
synchronizations plus b operations per time sync.
† tlsdate operation counts vary based on ciphersuite.

Details of our implementation and testing methodology,
as well as more results, appear in Section 4.

ANTP compares well with other authentication meth-
ods for NTP, as seen in Table 2. ANTP uses fewer amor-
tized public key operations compared to NTPv4 Autokey
and NTS and has fewer rounds. NTPv3 using symmet-
ric key operations is more lightweight, but is highly re-
stricted in that it only supports symmetric authentication
via pre-established symmetric keys, making it unsuitable
for deployment with billions of devices.

Because ANTP is designed-for-purpose, it is also more

826 25th USENIX Security Symposium USENIX Association

efficient than applying general purpose security protocols
to NTP. For example, one might consider simply applying
TLS or DTLS to NTP packets to obtain authentication.
Unfortunately, TLS and DTLS do not achieve full state-
lessness as is desirable for high throughput applications
that need to resist denial of service attacks. TLS and
DTLS both require that the server maintain state during
the initial handshake (which requires 3 round trips) and
during session resumption handshakes (which requires 2
round trips). While the server can offload state between
the initial handshake and the session resumption using
session tickets, there is no standardized mechanism to
do so during the handshakes. DTLS servers also must
maintain mappings between clients and sessions, as UDP
does not provide this functionality. ANTP avoids these
problems by having the server offload state at every step.
ANTP is also much more efficient in terms of communi-
cation size, as TLS/DTLS have a variety of extensions
that consume substantial bandwidth.

ANTP security. ANTP’s design is supported by a thor-
ough analysis of its cryptographic security using the prov-
able security paradigm. To do so, we extend existing
frameworks for key exchange and secure channels [5, 11]
to develop a novel framework that handles protocols
where time plays a central role. The adversary in our
security analysis is a network attacker capable of delet-
ing, reordering, editing, and creating messages between
parties. Since our model is about time synchronization,
parties in our model have local clocks, and the adver-
sary is given complete control over the initialization of
all clocks, as well as the ability to increment the time
of parties not involved in a protocol run. This allows
us to model the ability of an adversary to delay packet
transmission: this is particularly important in the case of
NTP, where delaying packets asymmetrically can cause
the client to synchronize to an inaccurate time. This dif-
fers from previous security frameworks that model time,
such as ones introduced by Schwenk [27] (which uses a
global time counter to model timestamps) and Basin et
al. [4] (where the adversary cannot influence the offset or
rate-of-change of the party clocks.)

We then show that ANTP achieves secure time syn-
chronization as defined by our model, under standard as-
sumptions on the security of the cryptographic primitives
(key encapsulation mechanism, hash function, authenti-
cated encryption, message authentication code, and key
derivation function) used to construct the protocol.

2 Network Time Protocols

Here we review the two most commonly deployed time
synchronization protocols, NTP and SNTP, as well as a
recent proposal called Network Time Security [31].

2.1 The Network Time Protocol

The Network Time Protocol (NTP) was developed by
Mills in 1985 [15], and revised in 1988, 1989, 1992 and
2010 (NTPv1 [9], NTPv2 [16], NTPv3 [17] and NTPv4
[18] respectively). NTP is designed to synchronize the
clocks of machines directly connected to hardware clocks
(known as primary servers) to machines without hard-
ware clocks (known as secondary servers). NTP protects
against Byzantine traitors by querying multiple servers,
selecting a majority clique and updating the local clock
with the majority offset. This assumes the attacker can
only influence some minority of the queried servers.

2.2 The Simple Network Time Protocol

The Simple Network time Protocol (SNTP) is a variant
of NTP that uses an identical message format [17] but
only queries a single server when requesting time syn-
chronization. Windows and OS X by default synchro-
nize using a single time source (time.windows.com and
time.apple.com respectively). Our construction lends
itself well to SNTP, as it authenticates time samples from
a single server. Security analysis is also easier as we can
avoid the more complex sorting and filtering algorithms of
NTP, and client and server behaviours are simpler. Note
that SNTP and NTP client request messages are the same.

SNTP has three distinct stages: (1) the creation and
transmission of req by the client; (2) the processing of
req by the server, and transmission of resp; and (3) the
processing of resp and clock update by the client. An
abstraction of the protocol behaviour can be found in
Figure 1, including the client’s clock update procedure.
Though the format of NTP packets is identical for both
client and server NTP messages, we use req to indicate a
NTP packet in client mode, and resp to indicate a NTP
packet in server mode, omitting packet content details.

1. The client creates an SNTP req packet, sets
transmit timestamp (t1) to Now() and sends the
message.1

2. The server creates an SNTP resp packet
with all fields identical to the received req,
but signalling Server mode. The server
sets originate timestamp to the value
transmit timestamp from req. The server
also sets receive timestamp (t2) to Now()
immediately after receipt of req, and sets
transmit timestamp (t3) to Now() immediately
before sending the message to the client.

3. Upon receiving resp, the client notes the cur-
rent time from Now() and saves it as t4.
If resp.originate timestamp is not equal to

1Now() denotes a party reading its local clock’s current time.

USENIX Association 25th USENIX Security Symposium 827

Client Server

t1 ← Now()

req← t1
req−→ t2 ← Now()

...
t3 ← Now()

t4 ← Now()
resp←− resp← t2‖t3

RTT ← (t4 − t1)− (t3 − t2)
θ̃3 ← RTT/2
offset ← 1

2 (t2 + t3 − t1 − t4)
time ← Now()+offset

Figure 1: Simple Network Time Protocol (SNTP). Now()
denotes the procedure that outputs the local machine’s
current time. RTT denotes the total round-trip delay the
client observes and θ̃3 denotes the approximation of the
propagation time from server to client. The time of the
server receiving req is denoted t2 and sending resp is t3.
Note that offset = t3 + θ̃3 − t4, which we will use in our
correctness analysis of ANTP.

req.transmit timestamp, the client aborts the
protocol run. The client calculates the total round-
trip time RTT and the local clock offset offset as in
Figure 1.

(The rest of the fields in the NTP packets are irrele-
vant for calculating the local clock offset and correcting
the local clock for a single-source time synchronization
protocol. These extra fields in the NTP packet are used
primarily for ranking multiple distinct time sources.)

From this, we can compute a bound of the amount of
error that is introduced to the clock update procedure via
asymmetric packet delay when the packets are unmod-
ified. Asymmetric packet delay is the scenario where
the propagation time from client to server is not equal
to the propagation time from server to client. Let θ1 be
the propagation time from client to server, θ2 the server
processing time and θ3 the propagation time from server
to client. θ3 is approximated in SNTP by θ̃3 =

RTT
2 , where

RTT = (t4 − t1)− (t3 − t2) = θ1 +θ3.
The actual offset is offsetactual = t3 +θ3 − t4. The ap-

proximated offset is computed as offset = 1
2 (t2 + t3 −

t1 − t4). When θ1 = θ3, then offset = t3 + θ̃3 − t4 and
offset = offsetactual . In the worst possible case, packet
delivery is instantaneous, and the entire roundtrip time
is asymmetric delay. The client approximates the off-
set as above, and thus the error introduced this way is
1
2 |(θ1 −θ3)| ≤ RTT .

The error that a passive adversary with the ability to
delay packets can introduce does not exceed the RTT:
clients can abort the protocol run when RTT grows too
large, giving them some control over the worst-case error.

2.3 NTP Security and Other Related Work
In terms of security, early versions of NTP (NTP to
NTPv2) had no standardized authentication method.

NTPv3 symmetric key authentication. NTPv3 pre-
sented a method for authenticating time synchronization –
using pre-shared key symmetric cryptography. NTPv3’s
added additional extension fields to the NTP packet, con-
sisting of a 32-bit key identifier, and a 64-bit crypto-
graphic checksum. The specification of NTPv3 describes
the checksum as the encryption of the NTP packet with
DES, but notes that other algorithms could be negotiated.
The distribution of keys and negotiation of algorithms
was considered outside the scope of NTP.

NTPv4 Autokey public key authentication. NTPv4 in-
troduced a method for using public key cryptography for
authentication, known as the Autokey protocol. Autokey
is designed to prevent inaccurate time synchronization by
authenticating the server to the client, and verifying no
modification of the packet has occurred in transit. Au-
tokey is designed to work over the top of authenticated
NTPv3. Autokey uses MD5 and a variety of Schnorr-
like [26] identification schemes to prevent malicious at-
tacks, but as an analysis of Autokey by Röttger shows
[23], there are multiple weaknesses inherent in the Au-
tokey protocol, including use of small seed values (32 bits)
and allowing insecure identification schemes to be negoti-
ated. The size of the seed allows a MITM adversary with
sufficient computational power to generate all possible
seed values and use the cookie to authenticate adversarial-
chosen NTP packets. This weakness alone allows an
attacker in control of the network to break authentication
of time synchronization, thus NTP with the Autokey pro-
tocol is not a secure time synchronization protocol [30].
Mills describes his experiments on demonstrating reliabil-
ity and accuracy of network time synchronization using
NTPv2 implementations [19], but does not offer a formal
security analysis of NTP. Mills does show that honest
deployment of NTP in networks can offer time synchro-
nization accuracy to within a few tens of milliseconds
after only a few synchronizations. ANTP was originally
intended as a means to addressing the vulnerabilities in
the Autokey protocol, but with many changes to mini-
mize public key and symmetric key operations, message
bandwidth. While inspiration for ANTP is the Autokey
protocol, the design diverged significantly enough to con-
sider it a separate protocol design.

Network Time Security draft-12. The Network Time
Security protocol (NTS) [31] is an IETF Internet-Draft
that uses public key infrastructure in order to secure time
synchronization protocols such as NTP and the Precision
Time Protocol (PTP) [1]. However, NTS is costly in
terms of server-side public key operations, is a four round-
trip protocol, requires clients to manage public/private

828 25th USENIX Security Symposium USENIX Association

key pairs and digital certificates, and does not have an
equivalent to ANTP’s no-cryptographic-latency feature.

We note NTS is a work-in-progress and future revisions
may be updated to address these issues. We discovered in
draft-06 a flaw in the Association Phase that would allow
MITM adversaries to perform downgrade attacks and
communicated our findings to the authors. This has since
been fixed and the following is an overview of draft-12.

NTS evolved as an attempt to fix the weaknesses in
Autokey and has inherited many design choices from
the Autokey protocol, in particular protocol flow and
key derivation strategy using secret server seeds. Sim-
ilarly to the Autokey protocol, NTS servers reuse the
randomness server seed used to generate a shared secret
key (referred to as a cookie) for each client by cookie =
HMAC(server seed,Hash(client public key certificate)),
encrypting this value and a client-chosen nonce with the
client public key, authenticating the server by digitally
signing the cookie with the server private key. Note that
the client public key certificate in NTS serves to ensure
the confidentiality and uniqueness of the cookie for each
client using a different public key certificate. It does not
serve to authenticate the client to the server. In ANTP
clients do not need a certificate, only the server.

In the Association Phase NTS requires the server digi-
tally sign the server assoc message, which (in draft-12)
includes the client’s selection of hash and public key en-
cryption algorithms in addition to a client nonce. The
server must compute costly public key operations over
these values for each association phase. As a result, a
NTS server requires three public key operations per client
to establish a shared secret cookie.
NTS draft-06 attack. Here we briefly describe our
downgrade attack on NTS draft-06 and below. Figure 2
shows the NTS draft-06 Association Phase, which differs
to the previously described draft-12. (This is analogous
to the Negotiation Phase in ANTP.) In assocc, the client
sends the highest version of NTS that it supports, in addi-
tion to lists of hash and public key encryption algorithms.
The server responds with a signature over the server host-
name, the negotiated version, and the negotiated hash
and public key encryption algorithms. This does not
contain the server’s received values of the client’s sup-
ported version and algorithms, so it is straightforward
for a MITM attacker to strip assocc of strong hash and
public key encryption algorithms. If the client supports
weak algorithms, this can translate into a full break of
time-synchronization security by recovery of the cookie,
similarly to attacks on weak Diffie-Hellman groups in
TLS [2].
tlsdate. Another solution for synchronizing time is
Appelbaum’s tlsdate [3], which uses timestamps in the
nonces of TLS handshakes to fetch the time. However,
this requires stateful servers, is not as accurate as cur-

rent solutions and will no longer function when servers
transition to TLS 1.3 (as the proposed protocol no longer
includes timestamps in the nonces).

3 Authenticated NTP

In this section we present the Authenticated Network Time
Protocol (ANTP): a new variant of NTP designed to allow
an SNTP client to authenticate a single NTP server and
output a time counter within some accuracy margin of
the server time counter. Our new protocol ANTP allows
an ANTP server to authenticate itself to an ANTP client,
as well as provide cryptographic assurances that no mod-
ification of the packets has occurred in transit. ANTP
messages, much like Autokey and NTS, are included in
the extension fields of NTP messages. We summarize the
novel features of ANTP below:
• The client is capable of authenticating the server,

and all messages from the server. Replay attacks are
explicitly prevented for the client.

• The server does not need to keep state for each client.
• The server does only one public key operation per

client in order to generate a shared secret key.
• The shared secret key can be used for multiple time

synchronization attempts by the same client.
• The client has a “no-cryptographic-latency” option

to avoid additional error in the approximation of θ̃3
due to cryptographic operations.

3.1 Protocol Description

ANTP is divided into four separate phases. A detailed
protocol flow can be found in Figure 3, and exact message
formatting can be found in the full version [6].
• Setup: The server chooses a long term key s for

the authenticated encryption algorithm. This is used
to encrypt and authenticate offloaded server state
between phases.

• Negotiation Phase: The client and server communi-
cate supported algorithms; the server sends its certifi-
cate and state C1, an authenticated encryption (using
s) of the hash of the message flow. The value C1 will
be later used to authenticate negotiation.

• Key Exchange Phase: The client uses a key encap-
sulation mechanism (KEM) based on the server’s
public key from its certificate to establish a shared
key with the server. The client sends the KEM ci-
phertext and encrypted state C1 to the server. The
server derives the shared key k, then encrypts it (us-
ing s) to compute C2. The server replies with a MAC
(for key confirmation) and offloaded state C2 (for use
in the next phase).

USENIX Association 25th USENIX Security Symposium 829

Client Server

Association phase

assocc ← versc‖namec‖ �Hashc‖ �Encc
assocc−→ (versn,Hash,Enc)← negotiate(assocc,verss, �Hashs, �Encs)

σ ← Sign(sks,versn‖names‖Hash‖Enc)
assocs←− assocs ← versn‖names‖Hash‖Enc‖σ‖certs

Figure 2: A description of the Network Time Security draft-06 Association Phase. vers is the NTS version indicator;
namec and names are the hostnames of the client and server respectively.

• Time Synchronization Phase: The client sends a
time synchronization request and includes offloaded
server state C2. The server recovers shared key k
from C2 and uses it to authenticate the response,
which the client verifies. The client can also re-
quest “no-cryptographic-latency” time synchroniza-
tion, where the server will immediately reply without
authentication, and then send a second message with
authentication.

3.2 Design Rationale and Discussion

Of the security properties discussed in RFC 7384 [20],
ANTP achieves the following: protection against manipu-
lation, spoofing, replay and delay attacks; authentication
of the server (if ANTP is applied in a chain, implicit
authentication of primary server); key freshness; avoids
degradation of time synchronization; minimizes compu-
tational load; minimizes per-client storage requirements
of the server. The following properties from [20] are
only partly addressed by ANTP, which we explain in fur-
ther detail below: resistance against the rogue master,
cryptographic DoS, and time-protocol DoS attacks.

Stateless server. While storage costs are gener-
ally not an issue, synchronizing state between multiple
servers implementing a high-volume network endpoint
like time.windows.com is still expensive and compli-
cated to deploy. For reliability and performance these
servers are often in multiple data centres, spread across
multiple geographic regions. In ANTP the server regen-
erates per-client state as needed. Our construction uses
authenticated encryption (AE) in a similar manner to TLS
Session Tickets [24] for session resumption, where the
server authenticates and encrypts its per-client state using
a long-term symmetric key, then sends the ciphertext to
the client for storage. The client responds with the cipher-
text in order for the server to decrypt and recover state.
The server periodically refreshes the long-term secret key
for the AE scheme (the intervals are dependent on the
security requirements of the AE scheme).

No-cryptographic-latency mode. In SNTP, the accu-
racy is bounded by the total roundtrip time of the time

synchronization phase. If we build a secure authentication
protocol over SNTP, then the total accuracy of the new au-
thenticated protocol is also bound by the total round-trip
time of the time synchronization phase.

Since cryptographic computations over the synchro-
nization messages adds asymmetrically to propagation
time, it introduces error in the approximation of propa-
gation time θ̃3, so authentication operations degrade the
accuracy of the transmit timestamp in the resp. As
noted above, ANTP includes a “no-cryptographic-latency”
mode to reduce error due to authentication: during the
Time Synchronization Phase, at the client’s option, the
server will immediately process a resp as in Figure 1
and sends it to the client, without authentication. The
server subsequently creates an ANTP ServerResp mes-
sage, and sends the resp with ServerResp in the NTP
extension fields of the saved resp. A client can then use
the time when receiving the initial resp to set its clock,
but only after verifying authentication with the ANTP
ServerResp, aborting if authentication fails, if either
message wasn’t received, or if messages were received in
incorrect order. Here, cryptographic processing time does
not introduce asymmetric propagation time. (The TESLA
broadcast authentication protocol of Perrig et al. [22] de-
lays authentication as well, to improve efficiency rather
than accuracy as in ANTP.)

Efficient cryptography. Public key operations are com-
putationally expensive, especially in the case of a server
servicing a large pool of NTP clients. ANTP only re-
quires a single public key operation per-client to ensure
authentication and confidentiality of the premaster secret
key material. The client can reuse the shared secret key
on multiple subsequent time synchronization requests
with that server. ANTP uses a key encapsulation mech-
anism for establishing the shared secret key. We allow
either static-ephemeral elliptic curve Diffie-Hellman key
exchange or key transport using RSA public key encryp-
tion. While one might ordinarily avoid use of RSA or
static-ephemeral DH for key exchange since they do not
provide forward secrecy, this is not a concern for ANTP
since we do not need confidentiality as the contents of the
messages (time synchronization data) are public.

830 25th USENIX Security Symposium USENIX Association

Client Server
supported algorithms �algC supported algorithms �algS

long-term secret s
certificate certS for the KEM keypair (pkS,skS)

Negotiation phase

α ← in-progress
nc ←${0,1}256

m1 ← �algC‖nc
m1−→ (KDF,Hash,KEM,MAC)← negotiate(�algC, �algS)

h ← Hash(m1‖ �algS‖certS)
C1 ← AuthEncs(01‖h‖KDF‖Hash‖KEM‖MAC)

Verify certS
m2←− m2 ← �algS‖certS‖C1

pkS ← parse(cert)

Key exchange phase

(KDF,Hash,KEM,MAC)← negotiate(�algC, �algS)

h ← Hash(m1‖ �algS‖certS)
(e, pms)← KEM.Encap(pks)

m3 ←C1‖e
m3−→ b‖h‖KDF‖Hash‖KEM‖MAC← AuthDecs(C1)

If b �= 01, then α ← reject and abort
pms ← KEM.Decap(skS,e)

k ← KDF(pms,⊥,“ANTP”, len) k ← KDF(pms,⊥,“ANTP”, len)
C2 ← AuthEncs(02‖k‖KDF‖Hash‖KEM‖MAC)
τ1 ←MAC(k,h‖m3‖C2)

Verify τ1 =MAC(k,h‖m3‖C2)
m4←− m4 ←C2‖τ1

If verify fails, then α ← reject and abort

Time synchronization phase p = 1, . . . ,n

α ← in-progress
nc2 ←${0,1}256

t1 ← Now()

m5 ← t1‖nc2‖C2
m5−→ t2 ← Now()

b‖k‖KDF‖Hash‖KEM‖MAC← AuthDecs(s,C2)
If b �= 02, then α ← reject or abort
t3 ← Now()[

m∗
6←−
]

m∗
6 ← t1‖t2‖t3

τ2 ←MAC(k,m5‖t1‖t2‖t3)
t4 ← Now()

m6←− m6 ← t1‖t2‖t3‖τ2
RTT ← (t4 − t1)− (t3 − t2)
If RTT > E, then α ← reject and abort
Verify τ2 =MAC(k,m5‖t1‖t2‖t3)
If verify fails, then α ← reject and abort
offset = 1

2 (t3 + t2 − t1 − t4)
timep ← Now()+offset
α ← acceptp
If p = n, then terminate

Figure 3: Authenticated NTP (ANTPE), where E is a fixed upper bound on the desired accuracy. The pre-determined
negotiation function negotiate takes as input two ordered lists of algorithms and returns a single algorithm. n denotes
the maximum number of synchronization phases, and p denotes the current synchronization phase. [m∗

6] indicates an
optional message sent based on a “no-cryptographic-latency” flag present in m5, omitted in this figure. Note that if
KEM.Decap or AuthDec fails for any ANTP server, the server simply stops processing the message, aborts, and allows
the client to time-out. If certificate validation fails, the client aborts the protocol run. Each of the messages contains an
identifier flag to prevent confusion between MACs. The protocol in the figure is an abstraction: messages m1 . . .m4 and
the cryptographic components of m5 and m6 are sent as extensions of NTP messages, and detailed message structure
can be found in the full version [6]. Authenticated Encryption schemes are not negotiated as they are entirely opaque to
the client.

USENIX Association 25th USENIX Security Symposium 831

Key freshness and reuse. ANTP allows multiple time
synchronization phases for each session using the same
shared secret key k but with a new nonce in each Time
Synchronization Phase to prevent replay attacks and en-
sure uniqueness of the protocol flow. This reuse can
continue until either the client restarts the negotiation
phase or the server rotates public keys or authenticated
encryption keys.
Denial of service attacks. Against a man-in-the-middle,
some types of denial-of-service (DoS) attacks are unavoid-
able, as the adversary may always drop messages.

Amplification attacks can be of concern. Unauthenti-
cated SNTP has a roughly 1:1 ratio of attacker work to
server work, in that one attack packet causes one packet
in response, and a small computational effort is required
by the server. In ANTP, the cryptographic operations
do allow some amplification of work. Based on the ex-
perimental results in Table 1, the negotiation and time
synchronization phases have less than a 1:2 ratio of at-
tacker work to server work. As for the key exchange
phase, the server performs a public key operation while a
malicious client may not. However, a server under attack
can temporarily stop responding to key exchange requests
while still responding to time synchronization requests,
and since most honest clients will perform key exchange
infrequently, their service will not be denied.

Another amplification can be caused by the no-
cryptographic-latency feature, since two response packets
are sent for each request. This mode can be turned off
during attack, the server indicating with a flag that it does
not (currently) support this feature.

Finally, in the negotiation phase the server’s response
is also considerably larger than the client request (be-
cause it includes a certificate), but, like the key exchange
phase, the negotiation phase may be temporarily disabled
without denying service to clients who already have estab-
lished a premaster secret. Another option is to replace the
server certificate chain with a URL where the client can
download it. Depending on the size of the certificate(s)
this could reduce the bandwidth amplification consider-
ably. This last mitigation requires detailed analysis, which
we leave to future work.
Certificate validation. When using digital certificates to
authenticate public keys, the synchronization of the issuer
and the relying party is an underlying assumption. This
serves to highlight a significant problem – how do you
securely authenticate time using public key infrastructure
without previously having time synchronization with the
issuer? For our construction this must be done once, and
we assume that the client has some out-of-band method
for establishing the trustworthiness of public keys, per-
haps using OCSP [25] with nonces to ensure freshness of
responses, by the user manually setting the time for first
certificate validation, or shipping a trusted certificate with

the operating system. Since certificate validity periods
typically range from months to years, if the user is assured
of time synchronization with the issuer to be within range
of hours or days and that range sits comfortably within
the certificate validation period, this is a viable solution.

ANTP to NTP downgrade. ANTP servers are also NTP
servers, since ANTP is implemented as an NTP extension.
This eases deployment; older clients can continue using
NTP, while newer clients can use ANTP. However, a net-
work adversary can drop the ANTP extension from the
request, and the server will respond with NTP (having in-
terpreted the request as NTP). For this reason, clients that
send an ANTP request must only update their clock based
on a valid ANTP response, and ignore NTP responses.
For similar reasons, clients are not recommended to im-
plement a fall back from ANTP to NTP.

4 Implementation and Performance

Here we describe our instantiation of ANTP in terms of
cryptographic primitives used as well as its implementa-
tion and results on its performance.2

4.1 Instantiation and Implementation

We instantiate ANTP using the following cryptographic
algorithms. We use AES128-GCM as the symmetric
encryption algorithm for the server to encrypt and de-
crypt state, SHA-256 as the hash algorithm, and HMAC-
SHA256 as the MAC and key derivation function. We sup-
port two key encapsulation mechanisms, RSA key trans-
port and static-ephemeral elliptic curve Diffie-Hellman:
• RSA key transport: In KeyGen, the public key and

secret key are a 2048-bit RSA key pair. Encap is
defined by selecting a key pms←${0,1}128 and en-
crypting pms using the RSA public key with RSA-
PKCS#1.5 encryption; Decap performs decryption
with the corresponding RSA secret key. The shared
secret is k ← KDF(pms,⊥,“ANTP”, len).

• Static-ephemeral elliptic curve Diffie–Hellman: Let
P be the generator (base point) of the NIST-P256
elliptic curve group of prime order q. In KeyGen,
the secret key is sk←$Zq and the public key is
pk = sk · P, where · denotes scalar–point multi-
plication. In Encap, select r←$Zq and compute
c ← r ·P and pms ← X(r · pk), where X(Q) gives
the x-coordinate of elliptic curve point Q. In Decap,
compute pms ← X(sk · c). The shared secret is k ←
KDF(pms,⊥,“ANTP”‖c, len). This is the ECIES-
KEM [29] which is IND-CCA secure under the el-

2Our implementation code and benchmarking tools can be found at
https://github.com/DowlingBJ/AuthenticatedNTP.

832 25th USENIX Security Symposium USENIX Association

liptic curve discrete logarithm assumption in the ran-
dom oracle model [8].

We implemented ANTP by extending OpenNTPD ver-
sion 1.92 [34]. Our implementation relies on OpenSSL
version 1.0.2f [35] for its cryptographic components; no-
tably, this version includes a high-speed assembly imple-
mentation of the NIST P-256 curve; AES-GCM encryp-
tion/decryption uses the AES-NI instruction.

4.2 Performance

Methodology. We collected performance measurements
for each of the negotiation, key exchange, and time syn-
chronization phases. We wanted to know the maximum
number of connections per second that could be supported
in each phase, as well as the latency a client would ex-
perience for a typical server. For comparison we also
collected performance measurements for unauthenticated
NTP time synchronization phases.

Our throughput and LAN latency experiments were
carried out in the following environment on our local area
network. We had two machines acting as clients, and
a single server machine running ANTP. The server had
an Intel Core i7-4770 (Haswell) processor with 4 cores
running at 3.4 GHz with 15.6 GiB of RAM; we used two
similar client machines, which in our experiments were
always sufficient to saturate the server. The clients and
server were connected over an isolated 1 gigabit LAN.
The server was running Linux Mint 17.2 with no other
software installed.

Our latency experiments across the US were carried
out between two Amazon AWS m4.2xlarge instances,
the server in the US East (N. Virginia) region and the
client in the US West 1 (N. California) region. These
instances each had eight virtual CPUs, each of which
was an Intel Xeon E5-2676 v3 (Haswell) core running at
2.4 GHz, with 32 GiB of RAM, and 1 Gbps of dedicated
bandwidth; the instances were running Ubuntu 14.04 with
no other software installed.

It is important to note that OpenNTPD is not multi-
threaded, so the OpenNTPD server process runs on a
single core, regardless of the number of cores on the
machine. As the key exchange phase is CPU bound, in a
threaded server implementation we expect key exchange
phase throughput to increase linearly with the number of
CPU cores until bandwidth is saturated.

For testing throughput (connections/second), we used
our own multi-threaded UDP flooding benchmarking tool
that sends static packets and collects the number of re-
sponses, the average latency of those responses, and the
number of dropped packets. We tuned the number of
queries per second to ensure that the server’s (single) core
had around 95% utilization, and that more client packets
were sent than being processed, but not so many more that

performance became degraded (i.e., the server dropped
less than 1% of packets being received per second).

For testing individual phase latency, we again used our
UDP benchmarking tool, this time measuring latency of
a subset of connections while maintaining a particular
background ANTP load at the server (either 50% or 90%
of supported throughput), to measure the latency a client
would experience at an unloaded or loaded server.

For testing total protocol runtime, we instrumented
the OpenNTPD client to report the runtime of a single
complete (all three phases) ANTP synchronization, again
with background ANTP load as above.
Results – individual phases.

Table 1 shows the results of each phase. Results re-
ported are the average of 5 trials to prevent outlier results.
For throughput and individual phase latency, each trial
was run for 100 seconds. For throughput, Table 1 reports
the number of response packets received at the client
machine.

Negotiation phases. The lower throughput of RSA and
ECDH negotiation messages (compared to NTP) is due
to larger message size of ANTP messages, as network
bandwidth was saturated for this measurement. Latency
for ECDH negotiation at 90% load is higher compared to
RSA negotiation at 90% load; at that load level, a much
larger number of ECDH packets are being sent than RSA
packets, so CPU load in the ECDH is higher even though
they have the same bandwidth consumption, leading to
higher latency for ECDH negotiation.

Key exchange phases. As expected, server key ex-
change throughput is higher when ECC is used for pub-
lic key operations compared to RSA. This difference is
explained by the relative costs of the underlying crypto-
graphic operations: using OpenSSL’s speed command
for benchmarking individual crypto operations, the run-
time of ECC NIST P-256 point multiplication is 8.62×
faster than RSA 2048 private key operations, whereas we
observe a 7.54× improvement in throughput for ANTP’s
ECDH key exchange over ANTP’s RSA key exchange.
Latency on the local network for RSA key exchange is
approximately 2.9× that of ECDH key exchange at 90%
load.

Time synchronization phases. While ANTP time syn-
chronization phases are more computationally intensive
than unauthenticated NTP, throughput is reduced by only
a factor of approximately 1.6. Since this phase is CPU
bound, we expect a multi-threaded server implementation
to increase ANTP throughput. Latency increase on the
local network for ANTP at 50% load is only about 14%
and at 90% load is about 27%.
Results and extrapolation – all 3 phases. Since each
client makes a full 3-phase time synchronization (negoti-
ation, followed by key exchange, followed by time syn-
chronization) relatively infrequently, it does not make

USENIX Association 25th USENIX Security Symposium 833

sense to measure server throughput for complete 3-phase
time synchronizations. We did measure latency of a 3-
phase time synchronization to note the performance that
a client would perceive on its initial synchronization. As
expected, the total runtime of a client exceeds the sum of
the latencies from each individual phase due to the client
performing its own cryptographic operations.

It is interesting to note that latency slows as the server
approaches load capacity. Future work on OpenNTPD
and other NTP servers could include optimizations to re-
duce latency and improve time synchronization accuracy
under increasing load.

We can extrapolate from the individual phase results
the client pool that ANTP could feasibly support running
on the same hardware. For example, Windows by de-
fault polls time servers every 9 hours [13]. Assuming
this is true for all clients (and that the clients synchronize
uniformly across the period) 175,644 time synchroniza-
tion requests per second would correspond to a pool of
5,755,502,592 clients.

ANTP clients would choose how often to restart the ne-
gotiation phase and we recommend doing so periodically
to ensure the attack window from exposure of the symmet-
ric key is limited. If keys are re-exchanged monthly, this is
a ratio of 1:1:1440 for expected negotiation, key exchange,
and time synchronization messages, which increases to
1:1:8640 if clients re-exchanged every 6 months. From
these or other expected ratios, one could extrapolate the
expected performance impact of using ANTP over NTP.

5 Security Framework

In this section we introduce our new time synchronization
provable security framework for analyzing time synchro-
nization protocols such as ANTP, NTP, and the Precision
Time Protocol. It builds on both the Bellare–Rogaway
model [5] for authenticated key exchange and the Jager
et al. framework for authenticated and confidential chan-
nel establishment [11]. Neither of those models however
includes time.

Our framework models time as a counter that each
party separately maintains, as the goal of the protocol is
to synchronize these disparate counters. Additionally, the
adversary in our execution environment has the ability to
initialize each protocol run with a new time counter in-
dependent of the party’s own counter, and controls when
protocol runs can increment their counter, effectively giv-
ing the adversary complete control of both the latency of
the network and the computation time of the parties.

5.1 Execution Environment
There are np parties P1, . . . ,Pnp , each of whom is a proto-
col participant. Each party generates a long-term key-pair

(ski, pki), and can run up to ns instances of the protocol
which are referred to as sessions. We denote the sth ses-
sion of a party Pi as πs

i . Note that each session πs
i has

access to the long-term key pair of the party Pi. In ad-
dition, we denote with T and Tc the full transcript and
server-session maintained client transcript Tc.

Per-Session Variables. The following variables are
maintained by each session:
• ρ ∈ {client,server}: the role of the party.
• id ∈ {1, ...,np}: the identity of the party.
• pid ∈ {1, . . . ,np}: the believed identity of the part-

ner.
• α ∈ {accept,reject,in-progress}: the session

status.
• k ∈ {0,1}128: the session key.
• Tc ∈ {{0,1}∗, /0}: if ρ = server, the transcript of

client messages, otherwise Tc = /0.
• T ∈ {0,1}∗: the transcript of messages sent and re-

ceived.
• time ∈ N: a counter maintained by the session.

Adversary Interaction. The adversary schedules and
controls all interactions between protocol participants.
The adversary has control of all communication, able to
create, delete, reorder or modify messages at will. The
adversary can compromise long-term and session keys.
Additionally, the adversary is able to set the clock of
a party to an arbitrary time when a session begins and
control the rate at which time progresses during the exe-
cution of a session. The following queries model normal
execution with adversary control of time:
• Create(i,r, t): The adversary activates a new session

with party Pi, initializing πs
i .ρ = r and πs

i .time = t.
Note that if πs

i .ρ = client, then πs
i responds with

the first message of the protocol run.
• Send(i,s,m,�∆): The adversary sends a message m

to a session πs
i . Party Pi processes the message m

and responds according to protocol specification,
updating per-session variables and outputting some
message m∗ if necessary. During message process-
ing, the party may execute multiple calls to a dis-
tinguished Now() procedure, modelling the party
reading its current time from memory; immediately
before the �th such call to the Now() procedure, the
session’s πs

i .time variable is incremented by ∆�.
These queries model compromise of secret data:

• Reveal(i,s): The adversary receives the session key
k of the session πs

i .
• Corrupt(i): The adversary receives the long-term

secret-key ski of the party Pi.
The following query allows additional adversary control
of the clock:

834 25th USENIX Security Symposium USENIX Association

• Tick(i,s,∆): The adversary increments the counter
πs

i .time by ∆.
The vector �∆ in Send is necessary due to subtleties

in the security framework: An adversary cannot issue
Tick queries to a session during the processing of a Send
query, but a party may read its clock multiple times while
processing a message and thus expect to receive differ-
ent clock times. The vector �∆ in the Send query allows
adversary control of this clock rate.

Note that our model assumes that during execution
of a session, the clocks between two parties advance at
the same rate, otherwise it does not make sense for two
parties to try to synchronize their clocks at all. This im-
plicitly assumes that the parties are in the same reference
frame. Additionally, while computer clocks may progress
at different rates, we are assuming that, over a relatively
short period of time, like the few seconds for an execu-
tion of the protocol, the difference in clock rate will be
negligible. This will be formalized in Definitions 3 and
4 with the condition that the adversary advances the time
of matching sessions symmetrically: a Tick(j, t,∑�

i=1 ∆l)
must be issued if session π t

j matching πs
i exists when

Send(i,s,m,�∆) is issued.
Security Experiment. The time synchronization secu-
rity experiment is played between a challenger C who
implements all np parties according to the execution en-
vironment and protocol specification, and an adversary
A. After the challenger generates the long-term key pairs,
the adversary receives the list of public keys and interacts
with the challenger using the queries described above.
Eventually the adversary terminates.

5.2 Security Definitions
The goal of the adversary, formalized in this section, is to
break time synchronization security by causing any client
session to complete a session with a time counter such that
|πs

i .time−π t
j.time| > δ , (where π t

j is the partner of the
session πs

i such that π t
j.id = πs

i .pid, and δ is an accuracy
margin) or cause a session πs

i to accept a protocol run
without having a matching session π t

j. The adversary
controls the initialization of the party’s clock in each
session, and the rate at which the clock advances during
each session, with the restriction that during execution
of a session the adversary must advance the party and its
peer at the same rate.

5.2.1 Matching Conversations and Authentication

Authentication is defined similarly to the approach of Bel-
lare and Rogaway [5], by use of matching conversations.
We use the variant of matching conversations employed
by Jager et al. [11], and modify the definition to reflect
client authentication of stateless servers.

Definition 1 (Matching Conversations). We say a session
πs

i matches a session π t
j if πs

i .ρ �= π t
j.ρ and πs

i .T prefix-
matches π t

j.T . For two transcripts T and T ′, we say that
T is a prefix of T ′ if |T | �= 0 and T ′ is identical to T for
the first |T | messages in T ′. Two transcripts T and T ′

prefix-match if T is a prefix of T ′, or T ′ is a prefix of T .

Prefix-matching prevents an adversary from trivially
winning the experiment by dropping the last protocol
message after a session has accepted. Note that since
our focus is clients authenticating stateless servers, our
authentication definition is one-sided.

Definition 2 (Stateless Server Authentication). We say
that a session πs

i accepts maliciously if:
• πs

i .α = accept;
• πs

i .ρ = client;
• no Reveal(i,s) or Reveal(j, t) queries were issued

before πs
i .α ← accept and π t

j matches πs
i ;

• no Reveal(j, t ′) queries were issued before πs
i .α ←

accept and π t ′
j .Tc = π t

j.Tc;
• no Corrupt(j) query was ever issued before πs

i .α ←
accept, where j = πs

i .pid;
but there exists no session π t

j such that πs
i matches π t

j.
We define Advauth

T (A) as the probability of A forcing
any session πs

i of time synchronization protocol T to
accept maliciously.

In the above definition, the first Reveal condition pre-
vents A from trivially winning the experiment by access-
ing the session key of the Test session. Similarly the
Corrupt condition prevents A from trivially winning by
decrypting the premaster secret with the session partner’s
public key. The possibility exists for an adversary to triv-
ially win the experiment by replaying client messages to
a second session and querying the second session with
Reveal. Disallowing Reveal queries in general is clearly
too restrictive, so we prevent this in the second Reveal
condition by disallowing Reveal queries to server sessions
with matching client transcripts.

5.2.2 Correct and Secure Time Synchronization

The goal of a time synchronization protocol is to ensure
that the difference between the two parties’ clocks is
within a specified bound. A protocol is δ -correct if that
difference can be bounded in honest executions of the
protocol, and δ -accurate secure if that difference can be
bounded even in the presence of an adversary.

Definition 3 (δ -Correctness). A protocol T satisfies δ -
correctness if, in the presence of a passive adversary that
faithfully delivers all messages and increments in each
partner session symmetrically, then the client and server’s

USENIX Association 25th USENIX Security Symposium 835

clocks are within δ of each other. More precisely, in the
presence of a passive adversary, for all sessions πs

i where
• πs

i .α = accept;
• πs

i .ρ = client;

• whenever A queries Send(i,s,m,�∆) or
Send(j, t,m′, �∆′), A also queries Tick(j, t,∑�

i=1 ∆�)
or Tick(i,s,∑�

i=1 ∆′
�), respectively; and

• whenever A queries Tick(i,s,∆), or Tick(j, t,∆′),
A also queries Tick(j, t,∆) or Tick(j, t,∆′), respec-
tively;

we must also have that |πs
i .time−π t

j.time| ≤ δ .

Definition 4 (δ -Accurate Secure Time Synchronization).
We say that an adversary A breaks the δ -accuracy of a
time synchronization protocol if when A terminates, there
exists a session πs

i with partner id πs
i .pid = j such that:

• πs
i .α = accept;

• πs
i .ρ = client

• A made no Corrupt(j) query before πs
i .α ←

accept;
• A made no Reveal(i,s) or Reveal(j, t) query before

πs
i .α ← accept and π t

j matches πs
i ;

• while πs
i .α = in-progress and A queried

Send(i,s,m,�∆) or Send(j, t,m′, �∆′) (where πs
i

matches π t
j), then A also queried Tick(j, t,∑�

i=1 ∆�)

or Tick(i,s,∑∆
i=1 ∆′

�), respectively;
• while πs

i .α = in-progress and A queried
Tick(i,s,∆), or Tick(j, t,∆′) (where πs

i matches π t
j),

then A also queried Tick(j, t,∆) or Tick(i,s,∆′), re-
spectively; and

• |πs
i .time−π t

j.time|> δ .
The probability an adversary A has in breaking δ -
accuracy of a time synchronization protocol T is denoted
Advtime

T ,δ (A).

5.3 Multi-Phase Protocols

Our construction in Section 3 has a single run of the ne-
gotiation and key exchange phases, followed by multiple
time synchronization executions reusing the negotiated
cryptographic algorithms and shared secret key. To model
the security of such multi-phase time synchronization pro-
tocols, we further extend our framework so that a single
session can include multiple time synchronization phases.
The differences from the model described in the previous
section are detailed below.

Per-Session Variables. The following variables are
added or changed:
• n ∈ N: the number of time synchronization phases

allowed in this session.

• timep, for p ∈ {1, . . . ,n}: the time recorded at the
conclusion of phase p.

• α ∈ {acceptp,rejectp,in-progressp}, for p ∈
{1, . . . ,n}: the status of the session. Note that, when
phase p concludes and α ← acceptp is set, the party
also sets timep ← time.

Adversary Interaction. The adversary can direct the
client to run an additional time synchronization phase
with a new Resync query, and the client will respond
according the protocol specification. The Create query in
this setting is also changed:
• Create(i,r, t,n): Proceeds as for Create(i,r, t), and

also sets πs
i .n ← n.

• Resync(i,s,�∆) - The adversary indicates to a ses-
sion πs

i to begin the next time synchronization phase.
Party Pi responds according to protocol specifica-
tion, updating per-session variables and outputting
some message m∗ if necessary. During message
processing, immediately before the �th call to the
Now() procedure, the session’s πs

i .time variable is
incremented by ∆�.

The goal of the adversary is also slightly different to ac-
count for the possibility of breaking time synchronization
of any given time synchronization phase: the adversary’s
goal is to cause a client session to have any phase where
its time is desynchronized from the server’s. In partic-
ular, for there to be some client instance πs

i and some
phase p such that |πs

i .timep −π t
j.timep|> δ where π t

j is
the partner of session πs

i . Again the adversary in general
controls clock ticks and can tick parties at different rates,
however must tick clocks at the same rate when phases
have switched back to being in-progress.

Definition 5 (δ -Accurate Secure Multi-Phase Time Syn-
chronization). We say that an adversary A breaks the
δ -accuracy of a multi-phase time synchronization proto-
col if when A terminates, there exists a phase p session
πs

i with partner id πs
i .pid = j such that:

• πs
i .ρ = client

• πs
i .α = acceptq for some q ≥ p;

• A did not make a Corrupt(j) query before πs
i .α ←

acceptp was set;
• A did not make a Reveal(i,s) or Reveal(j, t) query

before πs
i .α ← acceptp was set and π t

j matches πs
i ;

• while πs
i .α = in-progress and A queried

Send(i,s,m,�∆) or Send(j, t,m′, �∆′), then A also
queried Tick(j, t,∑�

i=1 ∆�) or Tick(i,s,∑�
i=1 ∆′

�), re-
spectively;

• while πs
i .α = in-progress and A queried

Tick(i,s,∆), or Tick(j, t,∆′), then A also queried
Tick(j, t,∆) or Tick(i,s,∆′), respectively; and

• |πs
i .timep −π t

j.timep|> δ .

836 25th USENIX Security Symposium USENIX Association

The probability an adversary A has in breaking δ -
accuracy of multi-phase time synchronization protocol
T is denoted Advmulti-time

T ,δ (A).

6 Security of ANTP

Here we present ANTP correctness and security theorems.

6.1 Correctness
Theorem 1 (Correctness of ANTP). Fix E ∈ N. ANTPE
is an E-correct time synchronization protocol as defined
in Definition 3.

Proof. When analyzing ANTP in terms of correctness,
we can restrict analysis to data that enters the clock-update
procedure as input, as the rest of the protocol is designed
to ensure authentication and does not influence the ses-
sion’s time counter. This allows us to narrow our focus to
SNTP, which is the time synchronization core of ANTP.

We first focus on a single time synchronization phase.
At the beginning of the time synchronization phase of
ANTP, the client will send an NTP request (req) which
contains t1, the time the client sent req. Note that the
adversary is restricted to delivering the messages faith-
fully as a passive adversary, and also must increment the
time of each protocol participant symmetrically. The ad-
versary otherwise has complete control over the passage
of time. Thus θ1, θ2, θ3 are non-negative but otherwise
arbitrary values selected by the adversary (where θ1 is
the propagation time from client to server, θ2 is server
processing time and θ3 is propagation time from server
to client). Thus the client computes the round-trip time
of the protocol as: RTT = (t4 − t1)− (t3 − t2) = θ1 +θ3
and approximates the server-to-client propagation time as
θ̃3 =

1
2 (θ1 +θ3).

When the client-to-server and server-to-client propa-
gation times are equal (θ1 = θ3) then θ̃3 = θ3, and the
values t3 and t2 allow the client to exactly account for θ2.
The time counter is updated by time+offset = t3+ θ̃3−t4,
and upon completion the client’s clock is exactly synchro-
nized with the server’s clock.

When θ1 �= θ3, we have that θ3 − θ̃3 = 1
2 (θ3 − θ1),

so the statistics t1, ..., t4 do not allow the client to ex-
actly account for client-to-server propagation time θ3;
the client’s updated time may be off by up to 1

2 (θ3 −θ1).
Fortunately, we can bound this value by E: we know
that 1

2 (θ3 −θ1)≤ 1
2 (θ1 +θ3), and furthermore we know

that ANTPE will only accept time synchronization when
1
2 (θ1 + θ3) ≤ E, so in sessions that accept (assuming a
passive adversary) we have that the client’s clock is at
most 1

2 (θ3 −θ1)≤ E different from the server’s clock.
Now moving to the multi-phase setting, we note that

this analysis of the correctness of ANTP applies to each

separate time synchronization phase: since the client’s
(t1, t4) values are only used to calculate the total round-
trip time of the time synchronization phase, thus if the
rate-of-time for both client and server during the phase is
the same, each phase is also E-accurate in the presence
of a passive adversary, even if the adversary dramatically
changes the rate-of-time for partners between time syn-
chronization phases.

6.2 Security
Security of a single 3-phase execution of ANTP in the
sense of Definition 4 is given by Theorem 2 below. Secu-
rity of multiple phases in the sense of Definition 5 follows
with a straightforward adaptation.

Intuitively, the bound on the possible error that an A
can introduce without altering packets is as in Section 3.
It follows then that if all messages are securely authenti-
cated, and the only inputs to the clock-update procedure
are either: authenticated via messages, or the round trip
delay RTT; then any attacker can only introduce at most E
error into the clock-update procedure (where E ≥ RTT).

Theorem 2 (Security of ANTP). Fix E ∈ N and let λ be
the length of the nonces in m1 and m5 (in our instantiation,
λ = 256). Assuming the key encapsulation mechanism
KEM (with keyspace KEM.K) is IND-CCA-secure, the
message authentication code MAC is EUF-CMA-secure,
the hash function Hash is collision-resistant, and the key
derivation function KDF and authenticated encryption
scheme AE are secure, then ANTPE is a E-accurate se-
cure time synchronization protocol as in Definition 4. In
particular, there exist algorithms B3, . . . ,B8, described in
the proof of the theorem, such that, for all adversaries A,
we have

Advtime
ANTPE ,E(A)≤

n2
pn2

s

2λ−2 +n2
pn2

s

(
Advcoll

Hash(BA
3)

+Advauth-enc
AE (BA

4)+Advind-cca
KEM (BA

5)

+Advkdf
KDF(BA

6)+Advauth-enc
AE (BA

7)

+Adveuf-cma
MAC (BA

8)
)

where np and ns are the number of parties and sessions
created by A during the experiment.

The standard definitions for security of the un-
derlying primitives and the corresponding advantages
Advauth-enc

AE (A), Advind-cca
KEM (A), Advcoll

Hash(A), Adveuf-cma
MAC

(A), and Advkdf
KDF(A) are given in the full version [6].

Proof. From Theorem 1, ANTPE is an E-correct time
synchronization protocol in the sense of Definition 3.
Thus all passive adversaries have probability 0 of break-
ing E-accuracy of ANTPE . If we show that the advantage

USENIX Association 25th USENIX Security Symposium 837

Advauth
ANTPE

(A) of any adversary A of breaking authentica-
tion security (i.e., to accept without session matching) of
ANTPE is small, then it follows that the advantage of any
active adversary A in breaking E-accuracy of ANTPE is
similarly small. In other words, it immediately is the case
that Advtime

ANTPE ,E(A)≤ Advauth
ANTPE

(A).
We now focus on bounding Advauth

ANTPE
(A). In order to

show that an active adversary has negligible probability
in breaking ANTPE authentication, we use a proof struc-
tured as a sequence of games. We let Pr(breaki) denote
the probability that the adversary causes some session to
accept maliciously in game i. We iteratively change the
security experiment, and demonstrate that the changes
are either failure events with negligible probability of
occurring or that if the changes are distinguishable we
can construct an adversary capable of breaking an un-
derlying cryptographic assumption. Since the client will
only accept synchronization if all three phases are prop-
erly authenticated, the advantage of an active adversary is
negligible given our cryptographic assumptions.

Game 0. This is the original time synchronization game
described in § 4: Advauth

ANTPE
(A) = Pr(break0).

Game 1. In this game, we abort the simulation if
any nonce is used in two different sessions by client
instances. There are at most 2nsnp nonces used by
client instances, each λ bits. The probability that a
collision occurs among these values is (2nsnp)

2/2λ , so:

Pr(break0)≤ Pr(break1)+
n2

s n2
p

2λ−2 .

Game 2. Here, we guess the first client session to accept
maliciously, aborting if incorrect. We select randomly
from two indices (i,s)←${1, . . . ,np}× {1, . . . ,ns} and
abort if πs

i is not the first session to accept maliciously.
Now the challenger responds to Reveal(i,s) queries (if
πs

i .α = accept) by aborting the game, as it follows that
the guessed session cannot accept maliciously. There are
at most npns client sessions, and we guess the first session
to accept maliciously with probability at least 1/npns, so
Pr(break1)≤ npns Pr(break2).

Game 3. Here we guess the partner session to
πs

i , by selecting from two indices (j, t)←${1, . . . ,np}×
{1, . . . ,ns} and abort if π t

j is not the partner session to πs
i .

Now, the challenger answers Corrupt(j) and Reveal(j, t)
queries before πs

i .α ← accept by aborting the game, as it
follows that the guessed session cannot accept maliciously.
There are at most npns server sessions, and we guess the
partner of the first session to accept maliciously with prob-
ability at least 1/npns, so Pr(break2)≤ npns Pr(break3).

Game 4. Here we abort if a hash collision occurs,
by computing all hash values honestly and aborting if
there exists two evaluations (in,Hash(in)),(în,Hash(în))
such that in �= în but Hash(in) = Hash(în). The simula-
tor interacts with a Hash-collision challenger, outputting

the collision if found. Thus: Pr(break3) ≤ Pr(break4)+
Advcoll

Hash(BA
3).

Game 5. In this game, we abort if in server session π t
j

the ciphertext received in m3 is not equal to the ciphertext
sent in m1 but the output of AuthDecs is not ⊥.

We construct an algorithm BA
4 that simulates Game

4 identically, except to interact with an AE challenger
in the following way: When Pj needs to run AuthEnc
or AuthDec, BA

4 uses its oracles to compute the required
value. In server session π t

j, when BA
4 receives a ciphertext

in m3 that was not equal to the ciphertext sent in m1 but the
output of the AuthDec oracle is not ⊥, this corresponds to
a ciphertext forgery, and thus: Pr(break4)≤ Pr(break5)+
Advauth-enc

AE (BA
4).

Game 6. In this game, sessions πs
i and π t

j compute
the session key k by applying KDF to a random secret
pms′ ←$KEM.K, rather than the pms that was encapsu-
lated using KEM.Encap and transmitted in ciphertext e.
Any algorithm used to distinguish Game 5 from Game 6
can be used to construct an algorithm capable of distin-
guishing KEM encrypted values via plaintext, thus break-
ing IND-CCA security of the key encapsulation mecha-
nism.

We construct a simulator BA
5 that interacts with a KEM

challenger. BA
5 activates party Pj with the public key pk

received from the challenger. BA
5 responds identically to

queries from A as in Game 5, except as follows:
• BA

5 computes the KEM ciphertext e for the session
πs

i by obtaining a challenge (e, pms) from its KEM
challenger.

• BA
5 computes πs

i .k ← KDF(pms, . . .)
• In any Pj session where m3 contains the challenge

ciphertext above, BA
5 computes the session key as

k ← KDF(pms, . . .).
• In any other Pj session where m3 does not contain

the challenge ciphertext above, BA
5 queries the ci-

phertext to its Decap oracle to obtain the premaster
secret and uses that as its input to KDF to compute
the session key k.

• BA
5 never needs to answer a Corrupt(j) query be-

cause of Game 3.
When the random bit b sampled by the KEM ind-cca chal-
lenger is 0, pms is truly the decapsulation of the ciphertext
e, in which case BA

5 perfectly simulates of Game 5. When
b = 1, pms is random and independent of e, in which case
BA

5 perfectly simulates Game 6. Observe that BA
5 never

asks the challenge ciphertext e to its decapsulation oracle.
An adversary capable of distinguishing Game 5 from

Game 6 can therefore be used to break IND-CCA security
of KEM, so Pr(break5)≤ Pr(break6)+Advind-cca

KEM (BA
5).

Game 7. In this game, we replace the secret key k in
sessions πs

i and π t
j with a uniformly random value k′ from

838 25th USENIX Security Symposium USENIX Association

{0,1}lKDF where lKDF is the length of the KDF output, in-
stead of being computed honestly via k ←KDF(pms, . . .).

In Game 6, we replaced the premaster secret value
pms with a uniformly random value from KEM.K. Thus,
any algorithm that can distinguish Game 6 from Game
7 can distinguish the output of KDF from random. We
explicitly construct such a simulator BA

6 that interacts
with a KDF challenger, and proceeds identically to Game
6, except: when computing k for πs

i , BA
6 queries the KDF

challenger with pms; and when computing k for π t
j, BA

6
sets π t

j.k = πs
i .k. When the random bit b sampled by

the KDF challenger is 0, k = KDF(pms, . . .), and BA
6

provides a perfect simulation of Game 6. When b = 1,
k←${0,1}lKDF and BA

6 provides a perfect simulation of
Game 7.

An adversary capable of distinguishing Game 6 from
Game 7 can therefore distinguish the output of KDF from
random, so Pr(break6)≤ Pr(break7)+Advkdf

KDF(BA
6).

Game 8. In this game, in session π t
j we replace the con-

tents of the ciphertext C2 sent in m3 with a random string
of the same length, and abort if the ciphertext received in
m5 is not equal to the ciphertext sent in m3 but the output
of the AuthDecs algorithm is not ⊥.

We construct an algorithm BA
7 that interacts with

an AE challenger in the following way: BA
7 acts ex-

actly as in game 7 except for sessions run by party Pj.
In session π t

j, for the computation of C2, BA
7 picks a

uniformly random binary string z′ of length equal to
z = k‖KDF‖Hash‖KEM‖MAC and submits (z,z′) to its
AuthEnc oracle. For all other computations that Pj in-
volving AuthEncs or AuthDecs, BA

7 submits the query its
respective AuthEnc or AuthDec oracle.

When the random bit b sampled by the AE challenger
is 0, C2 contains the encryption of z, so BA

7 provides a
perfect simulation of Game 7. When b = 1, C2 contains
the encryption of z′, so BA

7 provides a perfect simula-
tion of Game 8. An adversary capable of distinguish-
ing Game 7 from Game 8 can therefore break the con-
fidentiality of AE and guess b. Additionally, if BA

7 re-
ceives a ciphertext in m5 that was not equal to the ci-
phertext sent in m3 but the output of the AuthDec or-
acle is not ⊥, this corresponds to a ciphertext forgery,
and thus BA

7 has broken the integrity of AE. Thus,
Pr(break7)≤ Pr(break8)+Advauth-enc

AE (BA
7).

The effect of Game 8 is that, in the target session and
its partner, the key used in the MAC computations is
independent of the values transmitted.

Game 9. In this game, we abort when the session πs
i ac-

cepts maliciously. We do this by constructing a simulator
BA

8 that interacts with the MAC challenger, but computes
τ1 and τ2 for π t

j by querying h‖m3‖C2 and m5‖t1‖t2‖t3
to the MAC challenger. BA

8 verifies MAC tags for πs∗
i∗

by again querying h‖m3‖C2 and m5‖t1‖t2‖t3 to the MAC

challenger and ensuring the MAC challenger’s output is
equal to the tag to be verified. Note that now that the
key k is substituted for the key maintained by the MAC
challenger: k was already uniformly random and indepen-
dent of the protocol run, and by Game 2 and Game 3, the
simulator already responds to Reveal queries to πs

i and π t
j

by aborting the security experiment. Thus these changes
to the game are indistinguishable. When πs

i .α ← accept,
BA

8 checks Pj to see if there is a matching session. Since
by Game 1 all protocol flows are unique (by unique
nonces), if Pj has no matching session the adversary
must have produced a valid MAC tag τ̂1 or τ̂2 such that
MAC(k,h‖m3‖C2) = τ̂1 or MAC(k,m5‖t1‖t2‖t3) = τ̂2
and (by Game 8) the key k is uniformly random. BA

8 sub-
mits the appropriate pair (h‖m3‖C2, τ̂1), (m5‖t1‖t2‖t3, τ̂2)
to the MAC challenger and aborts. Thus, Pr(break8) ≤
Pr(break9)+Adveuf-cma

MAC (BA
8).

Analysis of Game 9. We now show that an active adver-
sary has a probability negligibly close to 0 of forcing a
client session πs∗

i∗ to accept maliciously in Game 9.
We briefly summarize the changes in games.

1. Nonces no longer collide for honest parties. Each
transcript πs

i .T will have unique honest matching
session π t

j.
2. Guess target session; C aborts if Reveal(i,s) query

asked.
3. Guess partner session; C aborts if Corrupt(j) or

Reveal(j, t) query asked.
4. Hash values no longer collide for honest parties.

Note h is now unique for each negotiation phase,
via Game 1.

5. C1 is not forged in session π t
j.

6. Replace premaster secret pms in target session πs
i

with a random value, rather than key encapsulated in
KEM ciphertext e. Note k is unique and computed
via shared secret data.

7. Replace k with uniformly random data of same
length when computing τ . Thus verification of τ
in Time Synchronization and Key Exchange phases
is done via a uniformly random key, independent of
the protocol run.

8. C2 is not forged in session π t
j and contains random

data.
9. MAC tags in session πs

i are not forged.
After all of the game changes, πs

i is a target session
where: no Reveal(i,s) or Reveal(j, t) queries were is-
sued before πs

i .α ← accept; no Corrupt(j) query was
ever issued before πs

i .α ← accept, where πs
i .pid = j;

and πs
i only accepts if τ1 =MAC(k,h‖m3‖C2) and τ2 =

MAC(k,m5‖t1‖t2‖t3). By unforgeability these tags can-
not be generated by A and by Game 1 the protocol flow
of each session is unique. τ1 and τ2 verification will

USENIX Association 25th USENIX Security Symposium 839

thus only occur if πs
i .T = π t

j.T , as τ1 is over all mes-
sages in the negotiation and key exchange phase, and τ2
is over all messages in the time synchronization phase
and thus πs

i will only accept if π t
j.T prefix-matches πs

i .T .
Thus, no client session accepts maliciously in Game 9:
Pr(break9) = 0.

Summing all of the probabilities yields the desired
bound, showing that ANTPE is a E-accurate secure time
synchronization protocol.

6.3 Multi-Phase Security
Multi-phase security of ANTPE can be established in a
similar way to single-phase security as in the previous
section, with minor changes to the games in the proof
to enable guessing of the first phase session to accept
maliciously.

Theorem 3 (Multi-Phase Security of ANTP). Fix E,n ∈
N. Under the same assumptions as in Theorem 2, ANTPE
is a E-accurate secure multi-phase time synchronization
protocol as defined in Definition 5. In particular, there
exist algorithms B3, . . . ,B8 described in the proof of The-
orem 2, such that, for all adversaries A, we have that

Advmulti-time
ANTPE ,E(A)≤

n2
pn2

s

2λ−2 +n2
pn2

s n
(

Advcoll
Hash(BA

3)

+Advauth-enc
AE (BA

4)+Advind-cca
KEM (BA

5)

+Advkdf
KDF(BA

6)+Advauth-enc
AE (BA

7)

+Adveuf-cma
MAC (BA

8)
)

where np, ns, n are the maximum number of parties, ses-
sions and phases created by A during the experiment.

Proof. The proof for Theorem 3 is identical to the proof
to Theorem 2 except as follows.

A new game is inserted between Game 3 and Game
4 that guesses the first time synchronization phase p ∈
{1, . . . ,n} that the target session πs

i will accept mali-
ciously: by Theorem 2, we know that a session πs

i will
not accept maliciously for time synchronization phase
p = 1, so by this step we know that πs

i matches π t
j up to

and including phase p−1.
We also edit the final game (MAC challenger) so that

B aborts if πs
i accepts maliciously in phase p. We do this

by editing the final game in the following way: When pro-
cessing m5 for π t

j in the guessed phase p (we indicate this
with m5p) B will also compute τ2p by querying the MAC
challenger with m5p‖t1p‖t2p‖t3p, and verifies the τ2p for
πs

i by querying the MAC challenger with m5p‖t1p‖t2p‖t3p
and accepting only if the output from the MAC challenger
matches the τp in m6p. Following the same structure as
the proof to Theorem 2, we have that k is a uniformly
random key generated independently from the protocol

run and this change is indistinguishable. Verification of τ
will only occur if πs

i .T = π t
j.T up to phase p, as τ1 is over

all messages in the negotiation and key exchange phase,
and τp is over all messages in phase p.

7 Discussion

In this work we introduced a new authenticated time syn-
chronization protocol called ANTP, designed to securely
synchronize the time of a client and server, using public
key infrastructure. Our design allows a server to perform
a single public key operation per client during the infre-
quently performed key exchange phase, and then use only
faster symmetric key operations for each subsequent time
synchronization request from that client. This efficient
design means that the throughput of ANTP time syn-
chronization phases is reduced by a factor of only 1.6×
compared to NTP. Our protocol has been designed such
that servers sharing the same long-term secret can han-
dle different phases of the same client for load-balancing
purposes. Furthermore, the server need not even store
per-client state, instead securely offloading storage of that
state to the client.

ANTP is accompanied by a provable security analy-
sis showing that it provides secure time synchronization
within user-specified accuracy bounds. The analysis is
carried out in a new provable security framework. A novel
aspect of our new framework, when compared with the
long line of work on authentication definitions, is that
our framework models an adversary with the ability to
control the flow of time, meaning the adversary can initial-
ize different parties’ clocks to different times, and even
control the rate at which their clocks are advanced. The
security framework can be used for the analysis of other
time synchronization protocols such as the Network Time
Security (NTS) protocol and the Precision Time Protocol
(PTP).

Several interesting open problems in the area of secure
time synchronization remain. Since ANTP uses public
keys, it inherits problems associated with public key in-
frastructure, such as the dangers of certificate authority
compromise. All existing time synchronization proto-
cols that rely on public keys, including ours, need to
initially validate the certificate of the time server, specifi-
cally that it is within its validity period. While nonces can
be combined with OCSP responses to check freshness,
this cannot completely solve the “first-boot” problem. A
detailed study of denial of service attacks against secure
time synchronization protocols including ANTP would
also be worthwhile, giving detailed consideration to both
the cost of cryptographic operations in practice and the
bandwidth amplification afforded by directing protocol
responses to a victim.

840 25th USENIX Security Symposium USENIX Association

Acknowledgements
We thank Gleb Sechenov at the Queensland University of
Technology for assistance in setting up the network for
the experiments. B.D. and D.S. were supported in part
by Australian Research Council (ARC) Discovery Project
grant DP130104304. Part of this work performed while
B.D. was an intern at Microsoft Research and while D.S.
was at QUT.

References
[1] IEEE Std 1588 for a Precision Clock Synchronization Protocol for

Networked Measurement and Control Systems Networked Mea-
surement and Control Systems. Tech. rep., IEEE Instrumentation
and Measurement Society, 2008.

[2] ADRIAN, D., BHARGAVAN, K., DURUMERIC, Z., GAUDRY, P.,
GREEN, M., HALDERMAN, J. A., HENINGER, N., SPRINGALL,
D., THOMÉ, E., VALENTA, L., VANDERSLOOT, B., WUSTROW,
E., BÉGUELIN, S. Z., AND ZIMMERMANN, P. Imperfect forward
secrecy: How diffie-hellman fails in practice. In ACM CCS 15
(Oct. 2015), I. Ray, N. Li, and C. Kruegel:, Eds., ACM Press,
pp. 5–17.

[3] APPELBAUM, J. tlsdate, 2015. https://github.com/

ioerror/tlsdate.

[4] BASIN, D., CAPKUN, S., SCHALLER, P., AND SCHMIDT, B.
Formal reasoning about physical properties of security protocols.
ACM Trans. Inf. Syst. Secur. 14, 2 (Sept. 2011), 16:1–16:28.

[5] BELLARE, M., AND ROGAWAY, P. Random oracles are practical:
A paradigm for designing efficient protocols. In ACM CCS 93
(Nov. 1993), V. Ashby, Ed., ACM Press, pp. 62–73.

[6] DOWLING, B., STEBILA, D., AND ZAVERUCHA, G. Authenti-
cated network time synchronization. Cryptology ePrint Archive,
Report 2015/171, 2015. http://eprint.iacr.org/2015/

171.

[7] EVANS, C., PALMER, C., AND SLEEVI, R. Public Key Pinning
Extension for HTTP. RFC 7469 (Proposed Standard), Apr. 2015.

[8] GALINDO, D., MARTIN, S., AND VILLAR, J. L. Evaluating
elliptic curve based KEMs in the light of pairings. Cryptology
ePrint Archive, Report 2004/084, 2004. http://eprint.iacr.
org/2004/084.

[9] HEDRICK, C. Routing Information Protocol. RFC 1058 (Historic),
June 1988.

[10] HODGES, J., JACKSON, C., AND BARTH, A. HTTP Strict Trans-
port Security (HSTS). RFC 6797 (Proposed Standard), Nov. 2012.

[11] JAGER, T., KOHLAR, F., SCHÄGE, S., AND SCHWENK, J. On
the security of TLS-DHE in the standard model. In CRYPTO 2012
(Aug. 2012), R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of
LNCS, Springer, Heidelberg, pp. 273–293.

[12] MALHOTRA, A., COHEN, I. E., BRAKKE, E., , AND GOLDBERG,
S. Attacking the Network Time Protocol. In NDSS 2016 (Feb.
2016), Internet Society.

[13] MICROSOFT CORPORATION. Windows Time Service Tools
and Settings. Microsoft Developer Network, May 2012. https:
//msdn.microsoft.com/de-de/library/cc773263%28v=

ws.10%29.aspx#w2k3tr_times_tools_uhlp.

[14] MICROSOFT CORPORATION. [MS-W32T]: W32Time Remote
Protocol. Microsoft Developer Network, May 2014. https:

//msdn.microsoft.com/en-us/library/cc249627.aspx.

[15] MILLS, D. Network Time Protocol (NTP). RFC 958, Sept. 1985.

[16] MILLS, D. Network Time Protocol (version 2) specification and
implementation. RFC 1119 (Internet Standard), Sept. 1989.

[17] MILLS, D. Network Time Protocol (Version 3) Specification,
Implementation and Analysis. RFC 1305 (Draft Standard), Mar.
1992.

[18] MILLS, D., MARTIN, J., BURBANK, J., AND KASCH, W. Net-
work Time Protocol Version 4: Protocol and Algorithms Specifi-
cation. RFC 5905 (Proposed Standard), June 2010.

[19] MILLS, D. L. On the accuracy and stablility of clocks synchro-
nized by the network time protocol in the internet system. ACM
SIGCOMM Computer Communication Review 20, 1 (1989), 65–
75.

[20] MIZRAHI, T. Security Requirements of Time Protocols in Packet
Switched Networks. RFC 7384 (Informational), Oct. 2014.

[21] NATIONAL INSTITUTE FOR STANDARDS AND TECHNOLOGY
(NIST). The NIST Authenticated NTP Service. http://www.

nist.gov/pml/div688/grp40/auth-ntp.cfm.
[22] PERRIG, A., CANETTI, R., TYGAR, J., AND SONG, D. The

TESLA broadcast authentication protocol. RSA CryptoBytes 5,
Summer (2002).

[23] RÖTTGER, S. Analysis of the NTP Autokey Protocol. Masters
Thesis, Technische Universität Braunschweig, Feb. 2012. http:
//zero-entropy.de/autokey_analysis.pdf.

[24] SALOWEY, J., ZHOU, H., ERONEN, P., AND TSCHOFENIG,
H. Transport Layer Security (TLS) Session Resumption with-
out Server-Side State. RFC 5077 (Proposed Standard), Jan. 2008.

[25] SANTESSON, S., MYERS, M., ANKNEY, R., MALPANI, A.,
GALPERIN, S., AND ADAMS, C. X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP. RFC
6960 (Proposed Standard), June 2013.

[26] SCHNORR, C.-P. Efficient identification and signatures for smart
cards. In CRYPTO’89 (Aug. 1990), G. Brassard, Ed., vol. 435 of
LNCS, Springer, Heidelberg, pp. 239–252.

[27] SCHWENK, J. Modelling time, or a step towards reduction-
based security proofs for OTP and kerberos. Cryptology ePrint
Archive, Report 2013/604, 2013. http://eprint.iacr.org/
2013/604.

[28] SELVI, J. Bypassing HTTP Strict Transport Security. In Black
Hat Europe (2014). https://www.blackhat.com/docs/eu-

14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-

Transport-Security-wp.pdf.
[29] SHOUP, V. ISO/IEC 18033-2:2006: Information technology –

security techniques – encryption algorithms – part 2: Asymmetric
ciphers. Tech. rep., 2006. See also http://shoup.net/iso/

std6.pdf.
[30] SIBOLD, D., AND RÖTTGER, S. Analysis of NTP’s Autokey

Protocol, 2012. https://www.ietf.org/proceedings/83/

slides/slides-83-tictoc-1.pdf.
[31] SIBOLD, D., RÖTTGER, S., AND TEICHEL, K. Net-

work Time Security. IETF Internet-Draft, Jan. 2016.
https://tools.ietf.org/html/draft-ietf-ntp-

network-time-security-12.
[32] TEICHEL, K., SIBOLD, D., AND MILIUS, S. First Results of a

Formal Analysis of the Network Time Security Specification. In
Security Standardisation Research. Springer, 2015, pp. 218–245.

[33] TEICHEL, K., SIBOLD, D., AND MILIUS, S. An Attack Possi-
bility on Time Synchronization Protocols Secured with TESLA-
Like Mechanisms, 2016. https://www8.cs.fau.de/staff/

milius/AttackPossibilityTimeSyncTESLA.pdf.
[34] THE OPENBSD PROJECT. OpenNTPD version 5.7p4, Mar. 2015.

http://www.openntpd.org/.
[35] THE OPENSSL PROJECT. OpenSSL version 1.0.2f, Jan. 2016.

https://www.openssl.org/.

USENIX Association 25th USENIX Security Symposium 841

fTPM: A Software-only Implementation of a TPM Chip

Himanshu Raj∗, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah Cox,
Paul England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser, Dennis Mattoon,

Magnus Nystrom, David Robinson, Rob Spiger, Stefan Thom, and David Wooten
Microsoft

Abstract: Commodity CPU architectures, such as
ARM and Intel CPUs, have started to offer trusted com-
puting features in their CPUs aimed at displacing dedi-
cated trusted hardware. Unfortunately, these CPU archi-
tectures raise serious challenges to building trusted sys-
tems because they omit providing secure resources out-
side the CPU perimeter.

This paper shows how to overcome these challenges
to build software systems with security guarantees sim-
ilar to those of dedicated trusted hardware. We present
the design and implementation of a firmware-based TPM
2.0 (fTPM) leveraging ARM TrustZone. Our fTPM is the
reference implementation of a TPM 2.0 used in millions
of mobile devices. We also describe a set of mechanisms
needed for the fTPM that can be useful for building more
sophisticated trusted applications beyond just a TPM.

1 Introduction

In recent years, commodity CPU architectures have
started to offer built-in features for trusted computing.
TrustZone on ARM [1] and Software Guard Extensions
(SGX) [25] on Intel CPUs offer runtime environments
strongly isolated from the rest of the platform’s soft-
ware, including the OS, applications, and firmware. With
these features, CPU manufacturers can offer platforms
with a set of security guarantees similar to those pro-
vided via dedicated security hardware, such as secure co-
processors, smartcards, or hardware security tokens.

Unfortunately, the nature of these features raises se-
rious challenges for building secure software with guar-
antees that match those of dedicated trusted hardware.
While runtime isolation is important, these features omit
many other secure resources present in dedicated trusted
hardware, such as storage, secure counters, clocks, and
entropy. These omissions raise an important question:
Can we overcome the limitations of commodity CPU se-

∗Currently with ContainerX.

curity features to build software systems with security
guarantees similar to those of trusted hardware?

In this work, we answer this question by implement-
ing a software-only Trusted Platform Module (TPM) us-
ing ARM TrustZone. We demonstrate that the low-level
primitives offered by ARM TrustZone and Intel SGX can
be used to build systems with high-level trusted comput-
ing semantics. Second, we show that these CPU security
features can displace the need for dedicated trusted hard-
ware. Third, we demonstrate that these CPU features can
offer backward compatibility, a property often very use-
ful in practice. Google and Microsoft already offer op-
erating systems that leverage commodity TPMs. Build-
ing a backwards compatible TPM in software means that
no changes are needed to Google and Microsoft operat-
ing systems. Finally, we describe a set of mechanisms
needed for our software-only TPM that can also be use-
ful for building more sophisticated trusted applications
beyond just a TPM.

This paper presents firmware-TPM (fTPM), an end-
to-end implementation of a TPM using ARM TrustZone.
fTPM provides security guarantees similar, although not
identical, to a discrete TPM chip. Our implementation
is the reference implementation used in all ARM-based
mobile devices running Windows including Microsoft
Surface and Windows Phone, comprising millions of mo-
bile devices. fTPM was the first hardware or software
implementation to support the newly released TPM 2.0
specification. The fTPM has much better performance
than TPM chips and is fully backwards compatible: no
modifications are required to the OS services or applica-
tions between a mobile device equipped with a TPM chip
and one equipped with an fTPM; all modifications are
limited only to firmware and drivers.

To address the above question, this paper starts with
an analysis of ARM TrustZone’s security guarantees. We
thoroughly examine the shortcomings of the ARM Trust-
Zone technology needed for building secure services,
whether for fTPM or others. We also examine Intel’s

1

842 25th USENIX Security Symposium USENIX Association

SGX and show that many of TrustZone’s shortcomings
remain present.

We present three approaches to overcome the limi-
tations of ARM TrustZone: (1) provisioning additional
trusted hardware, (2) making design compromises that
do not affect TPM’s security and (3) slightly changing
the semantics of a small number of TPM 2.0 commands
to adapt them to TrustZone’s limitations. Based on these
approaches, our implementation uses a variety of mech-
anisms, such as cooperative checkpointing, fate sharing,
and atomic updates, that help the fTPM overcome the
limitations of commodity CPU security features. This
paper demonstrates that these limitations can be over-
come or compensated for when building a software-only
implementation of a dedicated trusted hardware compo-
nent, such as a TPM chip. The fTPM has been deployed
in millions of mobile devices running legacy operating
systems and applications originally designed for discrete
TPM chips.

Finally, this paper omits some low-level details of our
implementation and a more extensive set of performance
results. These can be found in the fTPM technical re-
port [44].

2 Trusted Platform Module: An Overview

Although TPMs are more than a decade old, we are see-
ing a resurgence of interest in TPMs from both industry
and the research community. TPMs have had a mixed
history, in part due to the initial perception that the pri-
mary use for TPMs would be to enable digital rights
management (DRM). TPMs were seen as a mechanism
to force users to give up control of their own machines
to corporations. Another factor was the spotty security
record of some the early TPM specifications: TPM ver-
sion 1.1 [52] was shown to be vulnerable to an unsophis-
ticated attack, known as the PIN reset attack [49]. Over
time, however, TPMs have been able to overcome their
mixed reputation, and are now a mainstream component
available in many commodity desktops and laptops.

TPMs provide a small set of primitives that can offer
a high degree of security assurance. First, TPMs offer
strong machine identities. A TPM can be equipped with
a unique RSA key pair whose private key never leaves
the physical perimeter of a TPM chip. Such a key can ef-
fectively act as a globally unique, unforgeable machine
identity. Additionally, TPMs can prevent undesired (i.e.,
malicious) software rollbacks, can offer isolated and se-
cure storage of credentials on behalf of applications or
users, and can attest the identity of the software running
on the machine. Both industry and the research commu-
nity have used these primitives as building blocks in a
variety of secure systems. This section presents several
such systems.

2.1 TPM-based Secure Systems in
Industry

Microsoft. Modern versions of the Windows OS use
TPMs to offer features, such as BitLocker disk en-
cryption, virtual smart cards, early launch anti-malware
(ELAM), and key and device health attestations.

BitLocker [37] is a full-disk encryption system that
uses the TPM to protect the encryption keys. Because
the decryption keys are locked by the TPM, an attacker
cannot read the data just by removing a hard disk and
installing it in another computer. During the startup
process, the TPM releases the decryption keys only af-
ter comparing a hash of OS configuration values with a
snapshot taken earlier. This verifies the integrity of the
Windows OS startup process. BitLocker has been of-
fered since 2007 when it was made available in Windows
Vista.

Virtual smart cards [38] use the TPM to emulate the
functionality of physical smart cards, rather than requir-
ing the use of a separate physical smart card and reader.
Virtual smart cards are created in the TPM and offer sim-
ilar properties to physical smart cards – their keys are not
exportable from the TPM, and the cryptography is iso-
lated from the rest of the system.

ELAM [35] enables Windows to launch anti-malware
before any third-party drivers or applications. The anti-
malware software can be first- or third-party (e.g., Mi-
crosoft Windows Defender or Symantec Endpoint Pro-
tection). Finally, Windows also uses the TPM to con-
struct attestations of cryptographic keys and device boot
parameters [36]. Enterprise IT managers use these attes-
tations to assess the health of devices they manage. A
common use is to gate access to high-value network re-
sources based on its attestations.

Google. Modern versions of Chrome OS [22] use
TPMs for a variety of tasks, including software and
firmware rollback prevention, protecting user data en-
cryption keys, and attesting the mode of a device.

Automatic updates enable a remote party (e.g.,
Google) to update the firmware or the OS of devices
that run Chrome OS. Such devices are vulnerable to “re-
mote rollback attacks”, where a remote attacker replaces
newer software, through a difficult-to-exploit vulnerabil-
ity, with older software, with a well-known and easy-to-
exploit vulnerability. Chrome devices use the TPM to
prevent software updates to versions older than the cur-
rent one.

eCryptfs [14] is a disk encryption system used by
Chrome OS to protect user data. Chrome OS uses the
TPM to rate limit password guessing on the file system
encryption key. Any attempt to guess the AES keys re-
quires the use of a TPM, a single-threaded device that

2

USENIX Association 25th USENIX Security Symposium 843

is relatively slow. This prevents parallelized attacks and
limits the effectiveness of password brute-force attacks.

Chrome devices can be booted into one of four dif-
ferent modes, corresponding to the state of the devel-
oper switch and the recovery switch at power on. These
switches may be physically present on the device, or they
may be virtual, in which case they are triggered by cer-
tain key presses at power on. Chrome OS uses the TPM
to attest the device’s current mode to any software run-
ning on the machine, a feature used for reporting policy
compliance.

More details on the additional ways in which Chrome
devices make use of TPMs are described in [22].

2.2 TPM-Based Secure Systems in
Research

The research community has proposed many uses for
TPMs in recent years.

• Secure VMs for the cloud: Software stacks in typi-
cal multi-tenant clouds are large and complex, and thus
prone to compromise or abuse from adversaries includ-
ing the cloud operators, which may lead to leakage of
security-sensitive data. CloudVisor [58] and Credo [43]
are virtualization-approaches that protect the privacy and
integrity of customer’s VMs on commodity cloud infras-
tructure, even when the virtual machine monitor (VMM)
or the management VM becomes compromised. These
systems require TPMs to attest to cloud customers the
secure configuration of the hosts running their VMs.

• Secure applications, OSs and hypervisors:
Flicker [33], TrustVisor [32], Memoir [41] lever-
age the TPM to provide various (but limited) forms
of runtimes with strong code and data integrity and
confidentiality. Code running in these runtimes is
protected from the rest of the OS. These systems have
small TCBs because they exclude the bulk of the OS.

• Novel secure functionality: Pasture [30] is a secure
messaging and logging library that provides secure of-
fline data access. Pasture leverages the TPM to pro-
vide two safety properties: access-undeniability (a user
cannot deny any offline data access obtained by his de-
vice without failing an audit) and verifiable-revocation
(a user who generates a verifiable proof of revocation
of unaccessed data can never access that data in the fu-
ture). These two properties are essential to an offline
video rental service or to an offline logging and revo-
cation service.

Policy-sealed data [47] relies on TPMs to provide a
new abstraction for cloud services that lets data be sealed
(i.e., encrypted to a customer-defined policy) and then
unsealed (i.e., decrypted) only by hosts whose configu-

rations match the policy.
cTPM [9] extends the TPM functionality across sev-

eral devices as long as they are owned by the same user.
cTPM thus offers strong user identities (across all of her
devices), and cross-device isolated secure storage.

Finally, mobile devices can leverage a TPM to offer
new trusted services [19, 31, 28]. One example is trusted
sensors whose readings have a high degree of authen-
ticity and integrity. Trusted sensors enable new mobile
apps relevant to scenarios in which sensor readings are
very valuable, such as finance (e.g., cash transfers and
deposits) and health (e.g., gather health data) [48, 56].
Another example is enforcing driver distraction regula-
tions for in-car music or navigation systems [28].

2.3 TPM 2.0: A New TPM Specification

The Trusted Computing Group (TCG) recently defined
the specification for TPM version 2.0 [54]. This newer
TPM is needed for two key reasons. First, the crypto
algorithms in TPM 1.2 [55] have become inadequate. For
example, TPM 1.2 only offers SHA-1 and not SHA-2;
SHA-1 is now considered weak and cryptographers are
reluctant to use it. Another example is the introduction
of ECC with TPM 2.0.

The second reason is the lack of an universally-
accepted reference implementation of the TPM 1.2 spec-
ification. As a result, different TPM 1.2 implementations
exhibit slightly different behaviors. The lack of a refer-
ence implementation also keeps the TPM 1.2 specifica-
tion ambiguous. It can be difficult to specify the exact
behavior of cryptographic protocols in English. Instead,
with TPM 2.0 the specification is the same as the refer-
ence implementation. The specification consists of sev-
eral documents describing the behavior of the codebase,
and these documents are derived directly from the TPM
2.0 codebase, thereby ensuring uniform behavior.

Recently, TPM manufacturers have started to release
discrete chips implementing TPM 2.0. Also, at least one
manufacturer has released a firmware upgrade that can
update a TPM 1.2 chip into one that implements both
TPM 2.0 and TPM 1.2. Note that although TPM 2.0 sub-
sumes the functionality of TPM 1.2, it is not backwards
compatible. A BIOS built to use a TPM 1.2 would not
work with a TPM 2.0-only chip. A list of differences
between the two versions is provided by the TCG [53].

3 Modern Trusted Computing Hardware

Recognizing the increasing demand for security, mod-
ern CPUs have started to incorporate trusted computing
features, such as ARM TrustZone [1] and Intel Software
Guard Extensions (SGX) [25]. This section presents

3

844 25th USENIX Security Symposium USENIX Association

the background on ARM TrustZone (including its short-
comings); this background is important to the design of
fTPM. Later, Section 12 will describe Intel’s SGX and
its shortcomings.

3.1 ARM TrustZone

ARM TrustZone is ARM’s hardware support for trusted
computing. It is a set of security extensions found
in many recent ARM processors (including Cortex A8,
Cortex A9, and Cortex A15). ARM TrustZone provides
two virtual processors backed by hardware access con-
trol. The software stack can switch between the two
states, referred to as “worlds”. One world is called se-
cure world (SW), and the other normal world (NW).
Each world acts as a runtime environment with its own
resources (e.g., memory, processor, cache, controllers,
interrupts). Depending on the specifics of an individual
ARM SoC, a single resource can be strongly partitioned
between the two worlds, can be shared across worlds,
or assigned to a single world only. For example, most
ARM SoCs offer memory curtaining, where a region of
memory can be dedicated to the secure world. Similarly,
processor, caches, and controllers are often shared across
worlds. Finally, I/O devices can be mapped to only one
world, although on certain SoCs this mapping can be dy-
namically controlled by a trusted peripheral.

• Secure monitor: The secure monitor is an ARM pro-
cessor mode that enables context switching between the
secure and normal worlds. A special register determines
whether the processor core runs code in the secure or
non-secure worlds. When the core runs in monitor mode
the processor is considered secure regardless of the value
of this register.

An ARM CPU has separate banks of registers for each
of the two worlds. Each of the worlds can only access
their separate register files; cross-world register access is
blocked. However, the secure monitor can access non-
secure banked copies of registers. The monitor can thus
implement context switches between the two worlds.

• Secure world entry/exit: By design, an ARM plat-
form always boots into the secure world first. Here, the
system firmware can provision the runtime environment
of the secure world before any untrusted code (e.g., the
OS) has a chance to run. For example, the firmware allo-
cates secure memory for TrustZone, programs the DMA
controllers to be TrustZone-aware, and initializes any se-
cure code. The secure code eventually yields to the nor-
mal world where untrusted code can start executing.

The normal world uses a special ARM instruction
called smc (secure monitor call) to transfer control into
the secure world. When the CPU executes the smc in-
struction, the hardware switches into the secure monitor,

which performs a secure context switch into the secure
world. Hardware interrupts can trap directly into the
secure monitor code, which enables flexible routing of
those interrupts to either world. This allows I/O devices
to map their interrupts to the secure world if desired.

• Curtained memory: At boot time, the software run-
ning in the secure monitor can allocate a range of phys-
ical addresses to the secure world only, creating the ab-
straction of curtained memory – memory inaccessible to
the rest of the system. For this, ARM adds an extra con-
trol signal for each of the read and write channels on the
main memory bus. This signal corresponds to an extra
bit (a 33rd-bit on a 32-bit architecture) called the non-
secure bit (NS-bit). These bits are interpreted whenever
a memory access occurs. If the NS-bit is set, an access
to memory allocated to the secure world fails.

3.2 Shortcomings of ARM TrustZone

Although the ARM TrustZone specification describes
how the processor and memory subsystem are protected
in the secure world and provides mechanisms for secur-
ing I/O devices, the specification is silent on how many
other resources should be protected. This has led to frag-
mentation – SoCs offer various forms of protecting dif-
ferent hardware resources for TrustZone, or no protec-
tion at all. While there may be major differences between
the ARM SoCs offered by different vendors, the observa-
tions below held across all the major SoCs vendors when
products based on this work shipped.

• No Trusted Storage: Surprisingly, the ARM Trust-
Zone specification offers no guidelines on how to imple-
ment secure storage for TrustZone. The lack of secure
storage drastically reduces the effectiveness of Trust-
Zone as trusted computing hardware.

Naively, one might think that code in TrustZone could
encrypt its persistent state and store it on untrusted stor-
age. However, encryption alone is not sufficient because
(1) one needs a way to store the encryption keys securely,
and (2) encryption cannot prevent rollback attacks.

• Lack of Secure Entropy and Persistent Counters:
Most trusted systems make use of cryptography. How-
ever, the TrustZone specification is silent on offering a
secure entropy source or a monotonically increasing per-
sistent counter. As a result, most SoCs lack an entropy
pool that can only be read from the secure world, and
a counter that can persist across reboots and cannot be
incremented by the normal world.

• Lack of virtualization: Sharing the processor across
two different worlds in a stable manner can be done using
virtualization techniques. Although ARM offers virtual-
ization extensions [2], the ARM TrustZone specification

4

USENIX Association 25th USENIX Security Symposium 845

does not mandate them. As a result, many ARM-based
SoCs used in mobile devices today lack virtualization
support. Virtualizing commodity operating systems on
an ARM platform lacking hardware-assistance for virtu-
alization is challenging.

• Lack of secure clock and other peripherals: Secure
systems often require a secure clock. While TrustZone
can protect memory, interrupts, and certain system buses
on the SoC, this protection does extend to the ARM pe-
ripheral bus. It is hard to reason about the security guar-
antees of a peripheral if its controller can be programmed
by the normal world, even when its interrupts and mem-
ory region are mapped into the secure world. Malicious
code could program the peripheral in a way that could
make it insecure. For example, some peripherals could
be put in “debug mode” to generate arbitrary readings
that do not correspond to the ground truth.

• Lack of access: Most SoC hardware vendors do not
provide access to their firmware. As a result, many de-
velopers and researchers are unable to find ways to de-
ploy their systems or prototypes to TrustZone. In our
experience, this has seriously impeded the adoption of
TrustZone as a trusted computing mechanism.

SoC vendors are reluctant to give access to their
firmware. They argue that their platforms should be
“locked down” to reduce the likelihood of “hard-to-
remove” rootkits. Informally, SoC vendors also per-
ceive firmware access as a threat to their competitiveness.
They often incorporate proprietary algorithms and code
into their firmware that takes advantage of the vendor-
specific features offered by the SoC. Opening firmware
to third parties could expose more details about these fea-
tures to their competitors.

4 High-Level Architecture

Leveraging ARM TrustZone, we implement a trusted ex-
ecution environment (TEE) that acts as a basic operat-
ing system for the secure world. Figure 1 illustrates our
architecture, and our system’s trusted computing base
(TCB) is shown in the shaded boxes.

At a high-level, the TEE consists of a monitor, a dis-
patcher, and a runtime where one or more trusted ser-
vices (such as the fTPM) can run one at a time. The TEE
exposes a single trusted service interface to the normal
world using shared memory. Our system’s TCB com-
prises the ARM SoC hardware, the TEE layers, and the
fTPM service.

By leveraging the isolation properties of ARM Trust-
Zone, the TEE provides shielded execution, a term
coined by previous work [5]. With shielded execution,
the TEE offers two security guarantees:

ARM SoC Hardware

Commodity OS
Linux/Windows

fTPM

TEE Monitor

Normal World Secure World

TEE Dispatcher

Other secure services
TEE Runtime

Figure 1: The architecture of the fTPM. This diagram
is not to scale.

• Confidentiality: The whole execution of the fTPM
(including its secrets and execution state) is hidden from
the rest of the system. Only the fTPM’s inputs and out-
puts, but no intermediate states, are observable.
• Integrity: The operating system cannot affect the be-

havior of the fTPM, except by choosing to refuse exe-
cution or to prevent access to system’s resources (DoS
attacks). The fTPM’s commands are always executed
correctly according to the TPM 2.0 specification.

4.1 Threat Model and Assumptions

A primary assumption is that the commodity OS running
in the Normal World is untrusted and potentially com-
promised. This OS could mount various attacks to code
running in TrustZone, such as making invalid calls to
TrustZone (or setting invalid parameters), not respond-
ing to requests coming from TrustZone, or responding
incorrectly. In handling these attacks, it is important to
distinguish between two cases: (1) not handling or an-
swering TrustZone’s requests, or (2) acting maliciously.

The first class of attacks corresponds to refusing ser-
vice, a form of Denial-of-Service attacks. DoS attacks
are out of scope according to the TPM 2.0 specifica-
tion. These attacks cannot be prevented as long as an un-
trusted commodity OS has access to platform resources,
such as storage or network. For example, a compromised
OS could mount various DoS attacks, such as erasing all
storage, resetting the network card, or refusing to call the
smc instruction. Although our fTPM will remain secure
(e.g., preserves confidentiality and integrity of its data) in
the face of these attacks, the malicious OS could starve
the fTPM leaving it inaccessible.

However, the fTPM must behave correctly when the
untrusted OS makes incorrect requests, returns unusual
values (or fails to return at all), corrupts data stored on
stable storage, injects spurious exceptions, or sets the
platform clock to an arbitrary value.

At the hardware level, we assume that the ARM SoC
(including ARM TrustZone) itself is implemented cor-
rectly, and is not compromised. An attacker cannot

5

846 25th USENIX Security Symposium USENIX Association

mount hardware attacks to inspect the contents of the
ARM SoC, nor the contents of RAM memory on the plat-
form. However, the adversary has full control beyond the
physical boundaries of the processor and memory. They
may read the flash storage and arbitrarily alter I/O includ-
ing network traffic or any sensors found on the mobile
device. In other work, we address the issue of physical
attacks on the memory of a mobile device [10].

We defend against side-channel attacks that can be
mounted by malicious software. Cache collision attacks
are prevented because all caches are flushed when the
processor context switches to and from the Secure World.
Our fTPM implementation’s cryptography library uses
constant time cryptography and several other timing at-
tack preventions, such as RSA blinding [27]. However,
we do not defend against power analysis or other side-
channel attacks that require physical access to hardware
or hardware modifications.

We turn our focus on the approaches taken to over-
come TrustZone’s shortcomings in the fTPM.

5 Overcoming TrustZone Shortcomings

We used three approaches to overcome the shortcomings
of ARM TrustZone’s technology.

• Approach #1: Hardware Requirements. Providing
secure storage to TEE was a serious concern. One option
was to store the TEE’s secure state in the cloud. We dis-
missed this alternative as not viable because of its drastic
impact on device usability. TPMs are used to measure
the boot software (including the firmware) on a device.
A mobile device would then require cloud connectivity
at boot time in order to download the fTPM’s state and
start measuring the boot software.

Instead, we imposed additional hardware require-
ments on device manufacturers to ensure a minimum
level of hardware support for the fTPM. Many mobile
devices already come equipped with an embedded Multi-
Media Controller (eMMC) storage controller that has an
(off-SoC) replay-protected memory block (RPMB). The
RPMB’s presence, combined with encryption, ensures
that TEE can offer storage that meets the needs of all the
fTPM’s security properties. Thus, our first hardware re-
quirement for TEE is an eMMC controller with support
for RPMB.

Second, we require the presence of hardware fuses ac-
cessible only from the secure world. A hardware fuse
provides write-once storage. At provisioning time (be-
fore being released to a retail store), manufacturers pro-
vision our mobile devices by setting the secure hardware
fuses with a secure key unique per device. We also re-
quire an entropy source accessible from the secure world.

The TEE uses both the secure key and the entropy source
to generate cryptographic keys at boot time.

Section 6 provides in-depth details of these three hard-
ware requirements.

• Approach #2: Design Compromises. Another big
concern was long-running TEE commands. Running in-
side TrustZone for a long time could jeopardize the sta-
bility of the commodity OS. Generally, sharing the pro-
cessor across two different worlds in a stable manner
should be done using virtualization techniques. Unfor-
tunately, many of the targeted ARM platforms lack vir-
tualization support. Speaking to the hardware vendors,
we learned that it is unlikely virtualization will be added
to their platforms any time soon.

Instead, we compromised and require that no TEE
code path can execute for long periods of time. This
translates into an fTPM requirement – no TPM 2.0 com-
mand can be long running. Our measurements of TPM
commands revealed that only one TPM 2.0 command is
long running: generating RSA keys. Section 7 presents
the compromise made in the fTPM design when an RSA
key generation command is issued.

• Approach #3: Modifying the TPM 2.0 Semantics.
Lastly, we do not require the presence of a secure clock
from the hardware vendors. Instead, the platform only
has a secure timer that ticks at a pre-determined rate.
We thus determined that the fTPM cannot offer any TPM
commands that require a clock for their security. Fortu-
nately, we discovered that some (but not all) TPM com-
mands can still be offered by relying on a secure timer
albeit with slightly altered semantics. Section 8 will de-
scribe all these changes in more depth.

6 Hardware Requirements

6.1 eMMC with RPMB
eMMC stands for embedded Multi-Media Controller,
and refers to a package consisting of both flash memory
and a flash memory controller integrated on the same sil-
icon die [11]. eMMC consists of the MMC (multimedia
card) interface, the flash memory, and the flash memory
controller. Later versions of the eMMC standard offer
a replay-protected memory block (RPMB) partition. As
the name suggests, RPMB is a mechanism for storing
data in an authenticated and replay-protected manner.

RPMB’s replay protection utilizes three mechanisms:
an authentication key, a write counter, and a nonce.

RPMB Authentication Key: A 32-byte one-time pro-
grammable authentication key register. Once written,
this register cannot be over-written, erased, or even read.
The eMMC controller uses this authentication key to
compute HMACs (SHA-256) to protect data integrity.

6

USENIX Association 25th USENIX Security Symposium 847

Programming the RPMB authentication key is done by
issuing a specially formatted dataframe. Next, a result
read request dataframe must be also issued to check that
the programming step succeeded. Access to the RPMB
is prevented unless the authentication key has been pro-
grammed. Any write/read requests will return a special
error code indicating that the authentication key has yet
to be programmed.

RPMB Write Counter: The RPMB partition also
maintains a counter for the number of authenticated write
requests made to RPMB. This is a 32-bit counter ini-
tially set to 0. Once it reaches its maximum value, the
counter will no longer be incremented and a special bit
will be turned on in all dataframes to indicate that the
write counter has expired. The correct counter value
must be included in each dataframe written to the con-
troller.

Nonce: RPMB allows a caller to label its read re-
quests with 16-byte nonces that are reflected in the read
responses. These nonces ensure that reads are fresh.

6.1.1 Protection against replay attacks

To protect writes from replay attacks, each write includes
a write counter value whose integrity is protected by
an authentication key (the RPMB authentication key), a
shared secret provisioned into both the secure world and
the eMMC controller. The read request dataframe that
verifies a write operation returns the incremented counter
value, whose integrity is protected by the RPMB authen-
tication key. This ensures that the write request has been
successful.

The role of nonces in read operations protects them
against replay attacks. To ensure freshness, whenever a
read operation is issued, the request includes a nonce and
the read response includes the nonce signed with RPMB
authentication key.

6.2 Secure World Hardware Fuses

We required a set of hardware fuses that can be read from
the secure world only. These fuses are provisioned with
a hard-to-guess, unique-per-device number. This number
is used as a seed in deriving additional secret keys used
by the fTPM. Section 9 will describe in-depth how the
seed is used in deriving secret fTPM keys, such as the
secure storage key (SSK).

6.3 Secure Entropy Source

The TPM specification requires a true random number
generator (RNG). A true RNG is constructed by having
an entropy pool whose entropy is supplied by a hardware

oscillator. The secure world must manage this pool be-
cause the TEE must read from it periodically.

Generating entropy is often done via some physical
process (e.g., a noise generator). Furthermore, an en-
tropy generator has a rate of entropy that specifies how
many bits of entropy are generated per second. When the
platform is first started, it can take some time until it has
gathered “enough” bits of entropy for a seed.

We require the platform manufacturer to provision an
entropy source that has two properties: (1) it can be man-
aged by the secure world, and (2) its specification lists a
conservative bound on its rate of entropy; this bound is
provided as a configuration variable to the fTPM. Upon
a platform start, the fTPM waits to initialize until suf-
ficient bits of entropy are generated. For example, the
fTPM would need to wait at least 25 seconds to initialize
if it requires 500 bits of true entropy bits from a source
whose a rate is 20 bits/second.

Alerted to this issue, the TPM 2.0 specification has
added the ability to save and restore any accumulated but
unused entropy across reboots. This can help the fTPM
reduce the wait time for accumulating entropy.

7 Design Compromises

7.1 Background on Creating RSA Keys

Creating an RSA key is a resource-intensive operation
for two reasons. First, it requires searching for two large
prime numbers, and such a search is theoretically un-
bounded. Although many optimizations exist on how
to search RSA keys efficiently [40], searching for keys
is still a lengthy operation. Second, the search must
be seeded with a random number, otherwise an attacker
could attempt to guess the primes the search produced.
Thus the TPM cannot create an RSA key unless the en-
tropy source has produced enough entropy to seed the
search.

The TPM can be initialized with a primary storage
root key (SRK). The SRK’s private portion never leaves
the TPM and is used in many TPM commands (such as
TPM seal and unseal). Upon TPM initialization, our
fTPM waits to accumulate the entropy required to seed
the search for large prime numbers. The fTPM also cre-
ates RSA keys upon receiving a create RSA keys com-
mand1.

TPM 2.0 checks whether a number is prime using the
Miller-Rabin probabilistic primality test [40]. If the test
fails, the candidate number is not a prime. However,
upon passing, the test offers a probabilistic guarantee
– the candidate is likely a prime with high probability.
The TPM repeats this test a couple of times to increase

1This corresponds to the TPM 2.0 TPM2 Create command.

7

848 25th USENIX Security Symposium USENIX Association

the likelihood the candidate is prime. Choosing a com-
posite number during RSA key creation has catastrophic
security consequences because it allows an attacker to
recover secrets protected by that key. TPM 2.0 repeats
the primality test five times for RSA-1024 keys and four
times for all RSA versions with longer keys. This re-
duces the likelihood of choosing a false prime to a prob-
ability lower than 2−100.

7.2 Cooperative Checkpointing
Our fTPM targets several different ARM platforms (from
smartphones to tablets) that lack virtualization support,
and the minimal OS in our TEE lacks a preemptive
scheduler. Therefore, we impose a requirement on ser-
vices running in the TEE that the transitions to TEE and
back must be short to ensure that the commodity OS re-
mains stable. Unfortunately, creating an RSA key is a
very long process, often taking in excess of 10 seconds
on our early hardware tablets.

Faced with this challenge, we added cooperative
checkpointing to the fTPM. Whenever a TPM command
takes too long, the fTPM checkpoints its state in mem-
ory, and returns a special error code to the commodity
OS running in the Normal World.

Once the OS resumes running in the Normal World,
the OS is free to call back the TPM command and in-
struct the fTPM to resume its execution. These “resume”
commands continue processing until the command com-
pletes or the next checkpoint occurs. Additionally, the
fTPM also allows all commands to be cancelled. The
commodity OS can cancel any TPM command even
when in the command is in a checkpointed state. Cooper-
ative checkpointing lets us bypass the lack of virtualiza-
tion support in ARM, yet continue to offer long-running
TPM commands, such as creating RSA keys.

8 Modifying TPM 2.0 Semantics

8.1 Secure Clock
TPMs use secure clocks for two reasons. The first use is
to measure lockout durations. Lockouts are time periods
when the TPM refuses service. Lockout are very impor-
tant to authorizations (e.g., checking a password). If a
password is incorrectly entered more than k times (for a
small k), the TPM enters lockout and refuses service for
a pre-determined period of time. This thwarts dictionary
attacks – guessing a password incorrectly more than k
times puts the TPM in lockout mode.

The second use of a secure clock in TPMs is for time-
bound authorizations, such as the issuing an authoriza-
tion valid for a pre-specified period of time. For exam-
ple, the TPM can create a key valid for an hour only. At

TEE increments
volatile clock
+
If (volatile_clock-persisted_clock) > 4ms

persist volatile_clock

Secure WorldNormal World

Figure 2: fTPM clock update.

the end of an hour, the key becomes unusable.

8.1.1 Requirements of the TPM 2.0 Specification

A TPM 2.0 requirement is the presence of a clock with
millisecond granularity. The TPM uses this clock only to
measure intervals of time for time-bound authorizations
and lockouts. The volatile clock value must be persisted
periodically to a specially-designated non-volatile entry
called NVClock. The periodicity of the persistence is a
TPM configuration variable and cannot be longer than
222 milliseconds (˜70 minutes).

The combination of these properties ensures that the
TPM clock offers the following two guarantees: 1. the
clock advances while the TPM is powered, 2. the clock
never rolls backwards more than NVClock update peri-
odicity. The only time when the clock can roll backward
is when the TPM loses power right before persisting the
NVClock value. Upon restoring power, the clock will be
restored from NVClock and thus rolled back. The TPM
also provides a flag that indicates the clock may have
been rolled back. This flag is cleared when the TPM can
guarantee the current clock value could not have been
rolled back.

Given these guarantees, the TPM can measure time
only while the platform is powered up. For example, the
TPM can measure one hour of time as long as the plat-
form does not reboot or shutdown. However, the clock
can advance slower than wall clock but only due to a re-
boot. Even in this case time-bound authorizations are se-
cure because they do not survive reboots by construction:
in TPM 2.0, a platform reboot automatically expires all
time-bound authorizations.

8.1.2 Fate Sharing

The main difficulty in building a secure clock in the
fTPM is that persisting the clock to storage requires the
cooperation of the (untrusted) OS. The OS could refuse
to perform any writes that would update the clock. This
would make it possible to roll back the clock arbitrarily
just by simply rebooting the platform.

8

USENIX Association 25th USENIX Security Symposium 849

The fate sharing model suggests that it is acceptable to
lose the clock semantics of the TPM as long as the TPM
itself becomes unusable. Armed with this principle, we
designed the fTPM’s secure clock to be the first piece of
functionality the fTPM executes on all commands. The
fTPM refuses to provide any functionality until the clock
is persisted. Figure 2 illustrates how the fTPM updates
its clock when the TEE is scheduled to run.

The fTPM implementation does not guarantee that the
clock cannot be rolled back arbitrarily. For example,
an OS can always refuse to persist the fTPM’s clock
for a long time, and then reboot the platform effectively
rolling back the clock. However, fate sharing guarantees
that the fTPM services commands if and only if the clock
behaves according to the TPM specification.

8.2 Dark Periods

The diversity of mobile device manufacturers raised an
additional challenge for implementing the fTPM. A mo-
bile device boot cycle starts by running firmware devel-
oped by one (of the many) hardware manufacturers, and
then boots a commodity OS. The fTPM must provide
functionality throughout the entire boot cycle. In partic-
ular, both Chrome and Windows devices issue TPM Un-
seal commands after the firmware finishes running, but
before the OS starts booting. These commands attempt
to unseal the decryption keys required for decrypting the
OS loader. At this point, the fTPM cannot rely on exter-
nal secure storage because the firmware has unloaded its
storage drivers while the OS has yet to load its own. We
refer to this point as a “dark period”.

TPM Unseal uses storage to record a failed unseal at-
tempt. After a small number of failed attempts, the TPM
enters lockout and refuses service for a period of time.
This mechanism rate-limits the number of attempts to
guess the unseal authorization (e.g., Windows lets users
enter a PIN number to unseal the OS loader using Bit-
Locker). The TPM maintains a counter of failed at-
tempts and requires persisting it each time the counter
increments. This eliminates the possibility of an attacker
brute-forcing the unseal authorization and rebooting the
platform without persisting the counter. Figures 3, 4,
and 5 illustrate three timelines: a TPM storing its failed
attempts counter to stable storage, a TPM without stable
storage being attacked with by a simple reboot, and the
fTPM solution to dark periods based on the dirty bit.

8.2.1 Modifying the Semantics of Failed Tries

We address the lack of storage during a dark period by
making a slight change in how the TPM 2.0 interprets
the failed tries counter. At platform boot time, before
entering any possible dark periods, the fTPM persists

Guess PIN
1st time

Failed
Attempts++

Guess PIN
2nd time

Failed
Attempts++

Guess PIN
3rd time

Failed
Attempts++

Lockout
Period

TPM
w/ storage

Figure 3: TPM with storage (no dark period). TPM
enters lockout if adversary makes too many guess at-
tempts. This sequence of steps is secure.

Guess PIN
1st time

Failed
Attempts++

Guess PIN
2nd time

Failed
Attempts++

Guess PIN
3rd time

Failed
Attempts++

TPM
without
storage

Guess PIN
4th timeReboot

Dark period
entered here

Figure 4: TPM during a dark period (no stable stor-
age). Without storing the failed attempts counter, the ad-
versary can simply reboot and avoid TPM lockout. This
sequence of steps is insecure.

Guess PIN
1st time

Failed
Attempts++

Guess PIN
2nd time

Failed
Attempts++

Guess PIN
3rd time

Failed
Attempts++

fTPM

Reboot

Lockout
Period

Set Dirty
Bit

Dark period
entered here

Figure 5: fTPM during a dark period (no stable stor-
age). fTPM sets the dirty bit before entering a dark pe-
riod. If reboot occurs during the dark period, fTPM en-
ters lockout automatically. This sequence of steps is se-
cure.

a dirty bit. If for any reason the fTPM is unable to persist
the dirty bit, it refuses to offer service. If the dark pe-
riod is entered and the unseal succeeds, the OS will start
booting successfully and load its storage drivers. Once
storage becomes available again, the dirty bit is cleared.
However, the dirty bit remains uncleared should the mo-
bile device reboot during a dark period. In this case,
when the fTPM initializes and sees that the bit is dirty,
the fTPM cannot distinguish between a legitimate device
reboot (during a dark period) and an attack attempting
to rollback the failed tries counter. Conservatively, the
fTPM assumes it is under attack, the counter is imme-
diately incremented to the maximum number of failed
attempts, and the TPM enters lockout.

This change in semantics guarantees that an attack
against the counter remains ineffective. The trade-off is
that a legitimate device reboot during a dark period puts
the TPM in lockout. The TPM cannot unseal until the
lockout duration expires (typically several minutes).

Alerted to this problem, the TPM 2.0 designers have
added a form of the dirty bit to their specification, called

9

850 25th USENIX Security Symposium USENIX Association

the non-orderly or unorderly bit (both terms appear in the
specification). Unfortunately, they did not adopt the idea
of having a small number of tries before the TPM enters
lockout mode. Instead, the specification dictates that the
TPM enters lockout as soon as a failed unsealed attempt
cannot be recorded to storage. Such a solution impacts
usability because it locks the TPM as soon as the user
has entered an incorrect PIN or password.

9 Providing Storage to Secure Services

The combination of encryption, the RPMB, and hard-
ware fuses is sufficient to build trusted storage for the
TEE. Upon booting the first time, TEE generates a sym-
metric RPMB key and programs it into the RPMB con-
troller. The RPMB key is derived from existing keys
available on the platform. In particular, we construct a
secure storage key (SSK) that is unique to the device and
derived as following:

SSK := KDF(HF,DK,UUID) (1)

where KDF is a one-way key derivation function, HF
is the value read from the hardware fuses, DK is a de-
vice key available to both secure and normal worlds, and
UUID is the device’s unique identifier.

The SSK is used for authenticated reads and writes of
all TEE’s persistent state (including the fTPM’s state) to
the device’s flash memory. Before being persisted, the
state is encrypted with a key available to TrustZone only.
Encryption ensures that all fTPM’s state remains confi-
dential and integrity protected. The RPMB’s authenti-
cated reads and writes ensure that fTPM’s state is also
resilient against replay attacks.

9.1 Atomic Updates
TEE implements atomic updates to the RPMB partition.
Atomic updates are necessary for fTPM commands that
require multiple separate write operations. If these writes
are not executed atomically, TEE’s persistent state could
become inconsistent upon a failure that leaves the secure
world unable to read its state.

The persisted state of the fTPM consists of a sequence
of blocks. TEE stores two copies of each block: one rep-
resenting the committed version of the state block and
one its shadow (or uncommitted) version. Each block id
X has a corresponding block whose id is X +N, where
N is the size of fTPM’s state. The TEE also stores a bit
vector in its first RPMB block. Each bit in this vector in-
dicates which block is committed: if the i bit is 0 then the
ith block committed id is X , otherwise is X +N. In this
way, all pending writes to shadow blocks are committed
using a single atomic write operation of the bit vector.

0 1 0 0 … … …
Bit Vector 1st copy of blocks 2nd copy of blocks

Figure 6: RMPB blocks. Bit vector mechanism used for
atomic updates.

Allocating the first RPMB entry to the bit vector lim-
its the size of the RPMB partition to 256KB (the cur-
rent eMMC specification limits the size of a block to 256
bytes). If that size is insufficient, an extra layer of indi-
rection can extend the bit vector mechanism to support
up to 512MB (256∗8∗256∗8 = 1,048,576 blocks).

Figure 6 illustrates the bit vector mechanism for
atomic updates. On the left, the bit vector shows which
block is committed (bit value 0) and which block is
shadow (bit value 1). The committed blocks are shown
in solid color.

In the future, we plan to improve the fTPM’s perfor-
mance by offering transactions to fTPM commands. All
writes in a transaction are cached in memory and per-
sisted only upon commit. The commit operation first up-
dates the shadow version of changed blocks, and then up-
dates the metadata in a single atomic operation to make
shadow version for updated blocks the committed ver-
sion. A command that updates secure state must either
call commit or abort before returning. Abort is called
implicitly if commit fails, where shadow copy is rolled
back to the last committed version, and an error code is
returned. In this scenario, the command must implement
rollback of any in-memory data structure by itself.

10 Performance Evaluation

This paper answers two important questions on perfor-
mance2:

1. What is the overhead of long-running fTPM com-
mands such as create RSA keys? The goal is to shed light
on the fTPM implementation’s performance when seek-
ing prime numbers for RSA keys.

2. What is the performance overhead of typical fTPM
commands, and how does it compare to the performance
of a discrete TPM chip? TPM chips have notoriously
slow microcontrollers [33]. In contrast, fTPM com-
mands execute on full-fledged ARM cores.

10.1 Methodology
To answer these questions, we instrumented four off-the-
shelf commodity mobile devices equipped with fTPMs
and three machines equipped with discrete TPMs. We
keep these devices’ identities confidential, and refer to

2The fTPM technical report presents additional results of the per-
formance evaluation [44].

10

USENIX Association 25th USENIX Security Symposium 851

fTPM Device Processor Type
Device # fTPM1 1.2 GHz Cortex-A7
Device # fTPM2 1.3 GHz Cortex-A9
Device # fTPM3 2 GHz Cortex-A57
Device # fTPM4 2.2 GHz Cortex-A57

Table 1: Description of fTPM-equipped devices used
the evaluation.

them as fTPM1 through fTPM4, and dTPM1 through
dTPM3. All mobile devices are commercially available
both in USA and the rest of the world and can be found in
the shops of most cellular carriers. Similarly, the discrete
TPM 2.0 chips are commercially available. Table 1 de-
scribes the characteristics of the mobile ARM SoC pro-
cessors present in the fTPM-equipped devices. The only
modifications made to these devices’ software is a form
of device unlock that lets us load our own test harness
and gather the measurement results. These modifications
do not interfere with the performance of the fTPM run-
ning on the tablet.

Details of TPM 2.0 Commands. To answer the ques-
tions raised by our performance evaluation, we created
a benchmark suite in which we perform various TPM
commands and measure their duration. We were able
to use timers with sub-millisecond granularity for all our
measurements, except for device fTPM2. Unfortunately,
device fTPM2 only exposes a timer with a 15-ms gran-
ularity to our benchmark suite, and we were not able to
unlock its firmware to bypass this limitation.

Each benchmark test was run ten times in a row. Al-
though this section presents a series of graphs that an-
swer our performance evaluation questions, an interested
reader can find all the data gathered in our benchmarks
in the fTPM technical report [44].

• Create RSA keys: This TPM command creates an
RSA key pair. When this command is issued, a TPM
searches for prime numbers, creates the private and pub-
lic key portions, encrypts the private portion with a root
key, and returns both portions to the caller. We used
2048-bit RSA keys in all our experiments. We chose
2048-bit keys because they are the smallest key size still
considered secure (1024-bit keys are considered insecure
and their use has been deprecated in most systems).

• Seal and unseal: The TPM Seal command takes in a
byte array, attaches a policy (such as a set of Platform
Configuration Register (PCR) values), encrypts with its
own storage key, and returns it to the caller. The TPM
Unseal command takes in an encrypted blob, checks the
policy, and decrypts the blob if the policy is satisfied by
the TPM state (e.g., the PCR values are the same as at
seal time). We used a ten-byte input array to Seal, and
we set an empty policy.

0

5

10

15

20

25

fTPM1 fTPM2 fTPM3 fTPM4 dTPM1 dTPM2 dTPM3

Co
m

m
an

d
Du

ra
tio

n
(s

ec
on

ds
)

Figure 7: Latency of create RSA-2048 keys on various
fTPM and dTPM platforms.

• Sign and verify: These TPM commands correspond
to RSA sign and verify. We used a 2048-bit RSA key for
RSA operations and SHA-256 for integrity protection.

• Encryption and decryption: These TPM commands
correspond to RSA encryption and decryption. We used
a 2048-bit RSA key for RSA operations, OAEP for
padding, and SHA-256 for integrity protection.

• Load: This TPM command loads a previously-
created RSA key into the TPM. This allows subsequent
command, such as signing and encryption, to use the
preloaded key. We used a 2048-bit RSA key in our TPM
Load experiments.

10.2 Overhead of RSA Keys Creation
Figure 7 shows the latency of a TPM create RSA-2048
keys command across all our seven devices. As expected,
creating RSA keys is a lengthy command taking several
seconds on all platforms. These long latencies justify
our choice of using cooperative checkpointing (see Sec-
tion 7) in the design of the fTPM to avoid leaving the OS
suspended for several seconds at a time.

Second, the performance of creating keys can be quite
different across devices. fTPM2 takes a much longer
time than all other devices equipped with an fTPM. This
is primarily due to the variations in the firmware perfor-
mance across these devices – some manufacturers spend
more time optimizing the firmware running on their plat-
forms than others. Even more surprisingly, the discrete
TPM 2.0 chips also have very different performance
characteristics: dTPM3 is much faster than dTPM1 and
dTPM2. Looking at the raw data (shown in [44]), we
believe that dTPM3 searches for prime numbers in the
background, even when no TPM command is issued, and
maintains a cache of prime numbers.

Figure 7 also shows that the latency of creating keys
has high variability due to how quickly prime numbers
are found. To shed more light into the variability of
finding prime numbers, we instrumented the fTPM code-
base to count the number of prime candidates considered
when creating an RSA 2048 key pair. For each test, all
candidates are composite numbers (and thus discarded)

11

852 25th USENIX Security Symposium USENIX Association

0

25

50

75

100

1 10 100 1000 10000
of Candidate Primes

First Prime
Second Prime

Figure 8: Performance of searching for primes.

0

100

200

300

400

500

fTPM1 fTPM2 fTPM3 fTPM4 dTPM1 dTPM2 dTPM3

Co
m

m
an

d
Du

ra
tio

n
(m

ill
ise

co
nd

s)

Figure 9: Performance of TPM seal command.

0

500

1,000

1,500

fTPM1 fTPM2 fTPM3 fTPM4 dTPM1 dTPM2 dTPM3

Co
m

m
an

d
Du

ra
tio

n
(m

ill
ise

co
nd

s)

Figure 10: Performance of TPM unseal command.

0
200
400
600
800

1,000
1,200

fTPM1 fTPM2 fTPM3 fTPM4 dTPM1 dTPM2 dTPM3

Co
m

m
an

d
Du

ra
tio

n
(m

ill
ise

co
nd

s)

Figure 11: Performance of TPM sign command.

except for the last number. We repeated this test 1,000
times. We plot the cumulative distribution function of
the number of candidates for each of the two primes (p
and q) in Figure 8. These results demonstrate the large
variability in the number of candidate primes considered.
While, on average, it takes about 200 candidates until
a prime is found (the median was 232 and 247 candi-
dates for p and q, respectively), sometimes a single prime
search considers and discards thousands of candidates
(the worst case was 3,145 and 2,471 for p and q, respec-
tively).

10.3 Comparing fTPMs to dTPMs

Figures 9–15 show the latencies of several common TPM
2.0 commands. The main result is that fTPMs are much
faster than their discrete counterparts. On average, the
slowest fTPM is anywhere between 2.4X (for decryp-

0

50

100

150

fTPM1 fTPM2 fTPM3 fTPM4 dTPM1 dTPM2 dTPM3

Co
m

m
an

d
Du

ra
tio

n
(m

ill
ise

co
nd

s)

Figure 12: Performance of TPM verify command.

0

200

400

600

800

1,000

fTPM1 fTPM2 fTPM3 fTPM4 dTPM1 dTPM2 dTPM3

Co
m

m
an

d
Du

ra
tio

n
(m

ill
ise

co
nd

s)

Figure 13: Performance of TPM encrypt command.

0

200

400

600

800

fTPM1 fTPM2 fTPM3 fTPM4 dTPM1 dTPM2 dTPM3

Co
m

m
an

d
Du

ra
tio

n
(m

ill
ise

co
nd

s)

Figure 14: Performance of TPM decrypt command.

0

200

400

600

800

1,000

fTPM1 fTPM2 fTPM3 fTPM4 dTPM1 dTPM2 dTPM3

Co
m

m
an

d
Du

ra
tio

n
(m

ill
ise

co
nd

s)

Figure 15: Performance of TPM load command.

tion) and 15.12X (for seal) faster than the fastest dTPM.
This is not surprising because fTPMs run their code on
ARM Cortex processors, whereas discrete chips are rele-
gated to using much slower microprocessors. The fTPM
technical report illustrates these vast performance im-
provements in even greater detail [44].

These performance results are encouraging. Tradi-
tionally, TPMs have not been used for bulk data crypto-
graphic operations due to their performance limitations.
With firmware TPMs however, the performance of these
operations is limited only by processor speed and mem-
ory bandwidth. Furthermore, fTPMs could become even
faster by taking advantage of crypto accelerators. Over
time, we anticipate that crypto operations will increas-
ingly abandon the OS crypto libraries in favor of the
fTPM. This provides increased security as private keys
never have to leave TrustZone’s secure perimeter.

12

USENIX Association 25th USENIX Security Symposium 853

10.4 Evaluation Summary

In summary, our evaluation shows that (1) the firmware
TPM has better performance than discrete TPM chips,
and (2) creating RSA keys is a lengthy operation with
high performance variability.

11 Security Analysis

The fTPM’s security guarantees are not identical to those
of a discrete TPM chip. This section examines these dif-
ferences in greater depth.

On- versus off-chip. Discrete TPM chips connect to
the CPU via a serial bus; this bus represents a new attack
surface because it is externally exposed to an attacker
with physical access to the main board. Early TPM chips
were attached to the I2C bus, one of the slower CPU
buses, that made it possible for an attacker to intercept
and issue TPM commands [49]. Modern TPM specifica-
tions have instructed the hardware manufacturers to at-
tach the TPM chip to a fast CPU bus and to provide a
secure platform reboot signal. This signal must guaran-
tee that the TPM reboots (e.g., resets its volatile registers)
if and only if the platform reboots.

In contrast, by running in the device’s firmware, the
fTPM sidesteps this attack surface. The fTPM has no
separate bus to the CPU. The fTPM reads its state from
secure storage upon initialization, and stores all its state
in the CPU and the hardware-protected DRAM.

Memory attacks. By storing its secrets in DRAM,
the fTPM is vulnerable to a new class of physical at-
tacks – memory attacks that attempt to read secrets from
DRAM. There are different avenues to mount memory
attacks, such as cold boot attacks [23, 39], attaching a
bus monitor to monitor data transfers between the CPU
and system RAM [21, 17, 18], or mounting DMA at-
tacks [6, 8, 42].

In contrast, discrete TPM chips do not make use of the
system’s DRAM and are thus resilient to such attacks.
However, there is a corresponding attack that attempts
to remove the chip’s physical encasing, expose its inter-
nal dies, and thus read its secrets. Previous research has
already demonstrated the viability of such attacks (typi-
cally referred to as decapping the TPM), although they
remain quite expensive to mount in practice [26].

The fTPM’s susceptibility to memory attacks has led
us to investigate inexpensive counter-measures. Sentry
is a prototype that demonstrates how the fTPM can be-
come resilient to memory attacks. Sentry retrofits ARM-
specific mechanisms designed for embedded systems but
still present in today’s mobile devices, such as L2 cache
locking or internal RAM [10]. Note that in constrast with
TrustZone, Intel SGX [25] provides hardware encryption

of DRAM, which protects against memory attacks.

Side-channel attacks. Given that certain resources
are shared between the secure and normal worlds, great
care must be given to side-channel attacks. In contrast, a
discrete TPM chip is immune to side-channel attacks that
use caching, memory, or CPU because these resources
are not shared with the untrusted OS.

a. Caches, memory, and CPU: The ARM Trust-
Zone specification takes great care to reduce the likeli-
hood of cache-based side-channel attacks for shared re-
sources [1]. Cache-based side-channel attacks are diffi-
cult because caches are always invalidated during each
transition to and from the secure world. Memory is stat-
ically partitioned between the two worlds at platform
initialization time; such a static partitioning reduces the
likelihood of side-channel attacks. Finally, the CPU also
invalidates all its registers upon each crossing to and
from the secure world.

b. Time-based attacks: The TPM 2.0 specification
takes certain precautions against time-based attacks. For
example, the entire cryptography subsystem of TPM 2.0
uses constant time functions – the amount of computa-
tion needed by a cryptographic function does not depend
on the function’s inputs. This makes the fTPM imple-
mentation as resilient to time-based side-channel attacks
as its discrete chip counterpart.

12 Discussion

Most of ARM TrustZone’s shortcomings stem from the
nature of this technology: it is a standalone CPU-based
security mechanism. CPU extensions alone are insuffi-
cient in many practical scenarios. As described earlier
in Section 3.2, trusted systems need additional hardware
support, such as support for trusted storage, secure coun-
ters, and secure peripherals.

Unfortunately, CPU designers continue to put forward
CPU extensions aimed at building trusted systems that
suffer from similar limitations. This section’s goal is to
describe these limitations in the context of a new, up-
and-coming technology called Intel Software Guard Ex-
tensions (SGX). In the absence of additional hardware
support for trusted systems, our brief discussion of SGX
will reveal shortcomings similar to those of TrustZone.

12.1 Intel SGX Shortcomings
Intel SGX [25] is a set of extensions to Intel processors
designed to build a sandboxing mechanism for running
application-level code isolated from the rest of the sys-
tem. Similar to ARM TrustZone’s secure world, with In-
tel SGX applications can create enclaves protected from
the OS and the rest of the platform software. All memory

13

854 25th USENIX Security Symposium USENIX Association

allocated to an enclave is hardware encrypted (unlike the
secure world in ARM). Unlike ARM TrustZone, SGX
does not offer any I/O support; all interrupts are handled
by the untrusted code.

SGX has numerous shortcomings for trusted systems
such as the fTPM:
1. Lack of trusted storage. While code executing inside
an enclave can encrypt its state, encryption cannot pro-
tect against rollback attacks. Currently, the Intel SGX
specification lacks any provision to rollback protection
against persisted state.
2. Lack of a secure counter. A secure counter is im-
portant when building secure systems. For example, a
rollback-resilient storage system could be built using en-
cryption and a secure counter. Unfortunately, it is diffi-
cult for a CPU to offer a secure counter without hardware
assistance beyond the SGX extensions (e.g., an eMMC
storage controller with an RPMB partition).
3. Lack of secure clock. SGX leaves out any specifi-
cation of a secure clock. Again, it is challenging for the
CPU to offer a secure clock without extra hardware.
4. Side-channel dangers. SGX enclaves only protect
code running in ring 3. This means that an untrusted
OS is responsible for resource management tasks, which
opens up a large surface for side-channel attacks. Indeed,
recent work has demonstrated a number of such attacks
against Intel SGX [57].

13 Related Work

Previous efforts closest to ours are Nokia OnBoard cre-
dentials (ObC), Mobile Trusted Module (MTM), and
previous software implementations of TPMs. ObC [29]
is a trusted execution runtime environment leveraging
Nokia’s implementation of ARM TrustZone. ObC can
execute programs written in a modified variant of the
LUA scripting language or written in the underlying run-
time bytecode. Different scripts running in ObC are
protected from each other by the underlying LUA in-
terpreter. A more recent similar effort ported the .NET
framework to TrustZone [45, 46] using techniques simi-
lar to ObC.

While the fTPM serves as the reference implementa-
tion of a firmware TPM for ARM TrustZone, ObC is a
technology proprietary to Nokia. Third-parties need their
code signed by Nokia to allow it to run inside TrustZone.
In contrast, the fTPM offers TPM 2.0 primitives to any
application. While TPM primitives are less general than
a full scripting language, both researchers and industry
have already used TPMs in many secure systems demon-
strating its usefulness. Recognizing the TPM platform’s
flexibility, ObC appears to have recently started to offer
primitives more compatible with those of the TPM spec-
ification [15].

The Mobile Trusted Module (MTM) [51] is a specifi-
cation similar to a TPM but aimed solely at mobile de-
vices. Previous work investigated possible implementa-
tions of MTM for mobile devices equipped with secure
hardware, such as ARM TrustZone, smartcards, and Java
SecureElements [12, 13]. These related works acknowl-
edged upfront that the limitations of ARM TrustZone for
implementation MTM remain future work [12]. Unfortu-
nately, MTMs have not gone past the specification stage
in the Trusted Computing Group. As a result, we are un-
aware of any systems that make use of MTMs. If MTMs
were to become a reality, our techniques would remain
relevant in building a firmware MTM.

A more recent article presents a high-level description
of the work needed to implement TPM 2.0 both in hard-
ware and in software [34]. Like the fTPM, the article
points out the need of using a replay-protected memory
block partition to protect against replay attacks. How-
ever, this article appeared much later, after the fTPM was
launched in mobile devices. It is unclear whether any im-
plementation of their architecture exists.

IBM has been maintaining a software implementation
of TPM 1.2 [24]. An independent effort implemented
a TPM 1.2 emulator without leveraging any secure hard-
ware [50]. This emulator was aimed at debugging scenar-
ios and testbeds. We are unaware of efforts to integrate
any of these earlier implementations into mobile devices.

Another area of related work is building virtualized
TPM implementations. Virtual TPMs are needed in vir-
tualized environments where multiple guest operating
systems might want to share the physical TPM without
having to trust each other. Several designs of virtual
TPMs have been proposed [7, 16].

Finally, a recent survey describes additional efforts in
building trusted runtime execution environments for mo-
bile devices based on various forms of hardware, includ-
ing physically uncloneable functions, smartcards, and
embedded devices [4]. A recent industrial consortium
called GlobalPlatform [20] has also started to put to-
gether a standard for trusted runtime execution environ-
ments on various platforms, including ARM [3].

14 Conclusions

This paper demonstrates that the limitations of CPU-
based security architectures, such as ARM TrustZone,
can be overcome to build software systems with secu-
rity guarantees similar to those of dedicated trusted hard-
ware. We use three different approaches to overcome
these challenges: requiring additional hardware support,
making design compromises without affecting security,
and slightly changing command semantics.

This paper describes a software-only implementation
of a TPM chip. Our software-only TPM requires no

14

USENIX Association 25th USENIX Security Symposium 855

application-level changes or changes to OS components
(other than drivers). Our implementation is the reference
implementation of TPM 2.0 used in millions of smart-
phones and tablets.

Acknowledgements We would like to thank Andrew
Baumann, Weidong Cui, Roxana Geambasu, Jaeyeon
Jung, and Angelos Keromytis for feedback on earlier
drafts of this paper. We are also grateful to Jiajing Zhu
for her help with the TPM 2.0 simulator, and numerous
other collaborators who contributed to the firmware TPM
effort. Finally, we would like to thank the anonymous re-
viewers for their feedback on the submission.

References
[1] ARM Security Technology – Building a Secure System using

TrustZone Technology. ARM Technical White Paper, 2005-2009.
[2] Virtualization is Coming to a Platform Near You. ARM Technical

White Paper, 2010-2011.
[3] ARM. GlobalPlatform based Trusted Execution Environ-

ment and TrustZone Ready. http://community.arm.
com/servlet/JiveServlet/previewBody/8376-
102-1-14233/GlobalPlatform%20based%
20Trusted%20Execution%20Environment%20and%
20TrustZone%20Ready%20-%20Whitepaper.pdf.

[4] ASOKAN, N., EKBERG, J.-E., KOSTIANEN, K., RAJAN, A.,
ROZAS, C., SADEGHI, A.-R., SCHULZ, S., AND WACHS-
MANN, C. Mobile Trusted Computing. Proceedings of IEEE
102, 1 (2014), 1189–1206.

[5] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding Ap-
plications from an Untrusted Cloud with Haven. In Proc. of 11th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI) (Broomfield, CO, 2014).

[6] BECHER, M., DORNSEIF, M., AND KLEIN, C. N. FireWire - all
your memory are belong to us. In Proc. of CanSecWest Applied
Security Conference (2005).

[7] BERGER, S., CCERES, R., GOLDMAN, K. A., PEREZ, R.,
SAILER, R., AND VAN DOORN, L. vtpm: Virtualizing the trusted
platform module. In Proc. of the 15th USENIX Security Sympo-
sium (2006).

[8] BOILEAU, A. Hit by a Bus: Physical Access Attacks with
Firewire. In Proc. of 4th Annual Ruxcon Conference (2006).

[9] CHEN, C., RAJ, H., SAROIU, S., AND WOLMAN, A. cTPM:
A Cloud TPM for Cross-Device Trusted Applications. In Proc.
of 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (Seattle, WA, 2014).

[10] COLP, P., ZHANG, J., GLEESON, J., SUNEJA, S., DE LARA,
E., RAJ, H., SAROIU, S., AND WOLMAN, A. Protecting Data
on Smartphones and Tablets from Memory Attacks. In Proc. of
20th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) (Istan-
bul, Turkey, 2015).

[11] DATALIGHT. What is eMMC. http://www.datalight.
com/solutions/technologies/emmc/what-is-
emmc.

[12] DIETRICH, K., AND WINTER, J. Implementation Aspects of
Mobile and Embedded Trusted Computing. Proc. of 2nd Interna-
tional Conference on Trusted Computing and Trust in Informa-
tion Technologies (TRUST), LNCS 5471 (2009), 29–44.

[13] DIETRICH, K., AND WINTER, J. Towards Customizable, Ap-
plication Specific Mobile Trusted Modules. In Proc. of 5th ACM

Workshop on Scalable Trusted Computing (STC) (Chicago, IL,
2010).

[14] ECRYPTFS. eCryptfs – The enterprise cryptographic filesystem
for Linux. http://ecryptfs.org/.

[15] EKBERG, J.-E. Mobile information security with new standards:
GlobalPlatform/TCG/Nist-root-of-trust. Cyber Security and Pri-
vacy, EU Forum, 2013.

[16] ENGLAND, P., AND LÖSER, J. Para-virtualized tpm sharing.
Proc. of 1st International Conference on Trusted Computing and
Trust in Information Technologies (TRUST), LNCS 4968 (2008),
119–132.

[17] EPN SOLUTIONS. Analysis tools for DDR1, DDR2, DDR3,
embedded DDR and fully buffered DIMM modules. http:
//www.epnsolutions.net/ddr.html. Accessed: 2014-
12-10.

[18] FUTUREPLUS SYSTEM. DDR2 800 bus analysis
probe. http://www.futureplus.com/download/
datasheet/fs2334_ds.pdf, 2006.

[19] GILBERT, P., JUNG, J., LEE, K., QIN, H., SHARKEY, D.,
SHETH, A., AND COX, L. P. YouProve: Authenticity and Fi-
deltiy in Mobile Sensing. In Proc. of 10th International Confer-
ence on Mobile Systems, Applications, and Services (MobiSys)
(Lake District, UK, 2012).

[20] GLOBALPLATFORM. Technical Overview. http://www.
globalplatform.org/specifications.asp.

[21] GOGNIAT, G., WOLF, T., BURLESON, W., DIGUET, J.-P.,
BOSSUET, L., AND VASLIN, R. Reconfigurable hardware for
high-security/high-performance embedded systems: The SAFES
perspective. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 16, 2 (2008), 144–155.

[22] GOOGLE. The Chromium Projects. http://www.
chromium.org/developers/design-documents/
tpm-usage.

[23] HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N., CLARK-
SON, W., PAUL, W., CALANDRINO, J. A., FELDMAN, A. J.,
APPELBAUM, J., AND FELTEN, E. W. Lest we remember: Cold
boot attacks on encryption keys. In Proc. of the 17th USENIX
Security Symposium (2008).

[24] IBM. Software TPM Introduction. http://ibmswtpm.
sourceforge.net/.

[25] INTEL. Intel Software Guard Extensions Programming Ref-
erence. https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf,
2014.

[26] JACKSON, W. Engineer shows how to crack a ’secure’
TPM chip. http://gcn.com/Articles/2010/02/02/
Black-Hat-chip-crack-020210.aspx, 2010.

[27] KOCKER, P. C. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In Proc. of 16th Annual
International Cryptology Conference (CRYPTO) (Santa Barbara,
CA, 1996).

[28] KOSTIAINEN, K., ASOKAN, N., AND EKBERG, J.-E. Practi-
cal Property-Based Attestation on Mobile Devices. Proc. of 4th
International Conference on Trusted Computing and Trust in In-
formation Technologies (TRUST), LNCS 6470 (2011), 78–92.

[29] KOSTIAINEN, K., EKBERG, J.-E., ASOKAN, N., AND
RANTALA, A. On-board Credentials with Open Provisioning. In
Proc. of the 4th International Symposium on Information, Com-
puter, and Communications Security (ASIA CCS) (2009).

[30] KOTLA, R., RODEHEFFER, T., ROY, I., STUEDI, P., AND
WESTER, B. Pasture: Secure Offline Data Access Using Com-
modity Trusted Hardware. In Proc. of 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI) (Hol-
lywoood, CA, 2012).

[31] LIU, H., SAROIU, S., WOLMAN, A., AND RAJ, H. Software
Abstractions for Trusted Sensors. In Proc. of 10th International

15

856 25th USENIX Security Symposium USENIX Association

Conference on Mobile Systems, Applications, and Services (Mo-
biSys) (Lake District, UK, 2012).

[32] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA, A.,
GLIGOR, V., AND PERRIG, A. TrustVisor: Efficient TCB Re-
duction and Attestation. In Proc. of IEEE Symposium on Security
and Privacy (Oakland, CA, May 2010).

[33] MCCUNE, J. M., PARNO, B., PERRIG, A., REITER, M. K.,
AND ISOZAKI, H. Flicker: An Execution Infrastructure for TCB
Minimization. In Proc. of the ACM European Conference on
Computer Systems (EuroSys) (Glasgow, UK, 2008).

[34] MCGILL, K. N. Trusted Mobile Devices: Requirements for a
Mobile Trusted Platform Module. Johns Hopkings Applied Phys-
ical Laboratory Technical Digest 32, 2 (2013).

[35] MICROSOFT. Early launch antimalware. http:
//msdn.microsoft.com/en-us/library/windows/
desktop/hh848061(v=vs.85).aspx.

[36] MICROSOFT. HealthAttestation CSP. https://msdn.
microsoft.com/en-us/library/dn934876%28v=
vs.85%29.aspx?f=255&MSPPError=-2147217396.

[37] MICROSOFT. Help protect your files with BitLocker Driver En-
cryption. http://windows.microsoft.com/en-us/
windows-8/using-bitlocker-drive-encryption.

[38] MICROSOFT. Understanding and Evaluating Virtual
Smart Cards. http://www.microsoft.com/en-
us/download/details.aspx?id=29076.

[39] MÜLLER, T., AND SPREITZENBARTH, M. FROST - foren-
sic recovery of scrambled telephones. In Proc. of the Interna-
tional Conference on Applied Cryptography and Network Secu-
rity (ACNS) (2013).

[40] NIST. Digital Signature Standard (DSS). http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

[41] PARNO, B., LORCH, J. R., DOUCEUR, J. R., MICKENS, J.,
AND MCCUNE, J. M. Memoir: Practical State Continuity for
Protected Modules. In Proc. of IEEE Symposium on Security and
Privacy (Oakland, CA, 2011).

[42] PIEGDON, D. R. Hacking in physically addressable memory -
a proof of concept. Presentation to the Seminar of Advanced
Exploitation Techniques, 2006.

[43] RAJ, H., ROBINSON, D., TARIQ, T., ENGLAND, P., SAROIU,
S., AND WOLMAN, A. Credo: Trusted Computing for Guest
VMs with a Commodity Hypervisor. Tech. Rep. MSR-TR-2011-
130, Microsoft Research, 2011.

[44] RAJ, H., SAROIU, S., WOLMAN, A., AIGNER, R.,
JEREMIAH COX, A. P. E., FENNER, C., KINSHUMANN, K.,
LOESER, J., MATTOON, D., NYSTROM, M., ROBINSON, D.,
SPIGER, R., THOM, S., AND WOOTEN, D. fTPM: A Firmware-
based TPM 2.0 Implementation. Tech. Rep. MSR-TR-2015-84,
Microsoft, 2015.

[45] SANTOS, N., RAJ, H., SAROIU, S., AND WOLMAN, A. Trusted
Language Runtime (TLR): Enabling Trusted Applications on
Smartphones. In Proc. of 12th Workshop on Mobile Computing
Systems and Applications (HotMobile) (Phoenix, AZ, 2011).

[46] SANTOS, N., RAJ, H., SAROIU, S., AND WOLMAN, A. Using
ARM TrustZone to Build a Trusted Language Runtime for Mo-
bile Applications. In Proc. of 19th International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS) (Salt Lake City, UT, 2014).

[47] SANTOS, N., RODRIGUES, R., GUMMADI, K. P., AND
SAROIU, S. Policy-Sealed Data: A New Abstraction for Build-
ing Trusted Cloud Services. In Proc. of the 21st USENIX Security
Symposium (Bellevue, WA, 2012).

[48] SAROIU, S., AND WOLMAN, A. I Am a Sensor and I Approve
This Message. In Proc. of 11th International Workshop on Mo-
bile Computing Systems and Applications (HotMobile) (Annapo-
lis, MD, 2010).

[49] SPARKS, E., AND SMITH, S. W. TPM Reset Attack. http:

//www.cs.dartmouth.edu/˜pkilab/sparks/.
[50] STRASSER, M., AND STAMER, H. A Software-Based Trusted

Platform Module Emulator. Proc. of 1st International Confer-
ence on Trusted Computing and Trust in Information Technolo-
gies (TRUST), LNCS 4968 (2008), 33–47.

[51] TRUSTED COMPUTING GROUP. Mobile Trusted Module Speci-
fication. http://www.trustedcomputinggroup.org/
resources/mobile_phone_work_group_mobile_
trusted_module_specification.

[52] TRUSTED COMPUTING GROUP. TCPA Main Specification
Version 1.1b. http://www.trustedcomputinggroup.
org/files/resource_files/64795356-1D09-
3519-ADAB12F595B5FCDF/TCPA_Main_TCG_
Architecture_v1_1b.pdf.

[53] TRUSTED COMPUTING GROUP. TPM 2.0 Library Specification
FAQ. http://www.trustedcomputinggroup.org/
resources/tpm_20_library_specification_faq.

[54] TRUSTED COMPUTING GROUP. TPM Library Specifica-
tion. http://www.trustedcomputinggroup.org/
resources/tpm_library_specification.

[55] TRUSTED COMPUTING GROUP. TPM Main Speci-
fication Level 2 Version 1.2, Revision 116. http:
//www.trustedcomputinggroup.org/resources/
tpm_main_specification.

[56] WOLMAN, A., SAROIU, S., AND BAHL, V. Using Trusted Sen-
sors to Monitor Patients’ Habits. In Proc. of 1st USENIX Work-
shop on Health Security and Privacy (HealthSec) (Washington,
DC, 2010).

[57] XU, Y., CUI, W., AND PEINADO, M. Controlled-Channel At-
tacks: Deterministic Side Channels for Untrusted Operating Sys-
tems. In Proc. of the 36th IEEE Symposium on Security and Pri-
vacy (Oakland) (2015).

[58] ZHANG, F., CHEN, J., CHEN, H., AND ZANG, B. CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-tenant Cloud
with Nested Virtualization. In Proc. of Symposium on Operating
Systems Principles (SOSP) (Cascais, Portugal, 2011).

16

USENIX Association 25th USENIX Security Symposium 857

Sanctum: Minimal Hardware Extensions for Strong Software Isolation

Victor Costan, Ilia Lebedev, and Srinivas Devadas
victor@costan.us, ilebedev@mit.edu, devadas@mit.edu

MIT CSAIL

Abstract
Sanctum offers the same promise as Intel’s Software

Guard Extensions (SGX), namely strong provable isola-
tion of software modules running concurrently and shar-
ing resources, but protects against an important class of
additional software attacks that infer private information
from a program’s memory access patterns. Sanctum shuns
unnecessary complexity, leading to a simpler security
analysis. We follow a principled approach to eliminat-
ing entire attack surfaces through isolation, rather than
plugging attack-specific privacy leaks. Most of Sanctum’s
logic is implemented in trusted software, which does not
perform cryptographic operations using keys, and is easier
to analyze than SGX’s opaque microcode, which does.

Our prototype targets a Rocket RISC-V core, an open
implementation that allows any researcher to reason about
its security properties. Sanctum’s extensions can be
adapted to other processor cores, because we do not
change any major CPU building block. Instead, we
add hardware at the interfaces between generic building
blocks, without impacting cycle time.

Sanctum demonstrates that strong software isolation
is achievable with a surprisingly small set of minimally
invasive hardware changes, and a very reasonable over-
head.

1 Introduction

Today’s systems rely on an operating system kernel, or
a hypervisor (such as Linux or Xen, respectively) for
software isolation. However each of the last three years
(2012-2014) witnessed over 100 new security vulnerabili-
ties in Linux [1, 11], and over 40 in Xen [2].

One may hope that formal verification methods can
produce a secure kernel or hypervisor. Unfortunately,
these codebases are far outside our verification capabili-
ties: Linux and Xen have over 17 million [6] and 150,000
[4] lines of code, respectively. In stark contrast, the seL4

formal verification effort [26] spent 20 man-years to cover
9,000 lines of code.

Given Linux and Xen’s history of vulnerabilities and
uncertain prospects for formal verification, a prudent sys-
tem designer cannot include either in a TCB (trusted com-
puting base), and must look elsewhere for a software
isolation mechanism.

Fortunately, Intel’s Software Guard Extensions (SGX)
[5, 36] has brought attention to the alternative of provid-
ing software isolation primitives in the CPU’s hardware.
This avenue is appealing because the CPU is an unavoid-
able TCB component, and processor manufacturers have
strong economic incentives to build correct hardware.

Unfortunately, although the SGX design includes a vast
array of defenses against a variety of software and physi-
cal attacks, it fails to offer meaningful software isolation
guarantees. The SGX threat model protects against all
direct attacks, but excludes “side-channel attacks”, even
if they can be performed via software alone.

Furthermore, our analysis [13] of SGX reveals that it
is impossible for anyone but Intel to reason about SGX’s
security properties, because significant implementation
details are not covered by the publicly available docu-
mentation. This is a concern, as the myriad of security
vulnerabilities [16, 18, 39, 50–54] in TXT [22], Intel’s
previous attempt at securing remote computation, show
that securing the machinery underlying Intel’s processors
is incredibly challenging, even in the presence of strong
economic incentives.

Our main contribution is a software isolation scheme
that addresses the issues raised above: Sanctum’s isolation
provably defends against known software side-channel at-
tacks, including cache timing attacks and passive address
translation attacks. Sanctum is a co-design that com-
bines minimal and minimally invasive hardware modi-
fications with a trusted software security monitor that
is amenable to rigorous analysis and does not perform
cryptographic operations using keys.

We achieve minimality by reusing and lightly modi-

1

858 25th USENIX Security Symposium USENIX Association

fying existing, well-understood mechanisms. For exam-
ple, our per-enclave page tables implementation uses the
core’s existing page walking circuit, and requires very
little extra logic. Sanctum is minimally invasive because
it does not require modifying any major CPU building
block. We only add hardware to the interfaces between
blocks, and do not modify any block’s input or output.
Our use of conventional building blocks limits the effort
needed to validate a Sanctum implementation.

We demonstrate that memory access pattern attacks
by malicious software can be foiled without incurring
unreasonable overheads. Sanctum cores have the same
clock speed as their insecure counterparts, as we do not
modify the CPU core critical execution path. Using a
straightforward page-coloring-based cache partitioning
scheme with Sanctum adds a few percent of overhead in
execution time, which is orders of magnitude lower than
the overheads of the ORAM schemes [21, 43] that are
usually employed to conceal memory access patterns.

All layers of Sanctum’s TCB are open-sourced
at https://github.com/pwnall/sanctum and unen-
cumbered by patents, trade secrets, or other similar intel-
lectual property concerns that would disincentivize secu-
rity researchers from analyzing it. Our prototype targets
the Rocket Chip [29], an open-sourced implementation of
the RISC-V [47, 49] instruction set architecture, which
is an open standard. Sanctum’s software stack bears the
MIT license.

To further encourage analysis, most of our security
monitor is written in portable C++ which, once rigorously
analyzed, can be used across different CPU implemen-
tations. Furthermore, even the non-portable assembly
code can be reused across different implementations of
the same architecture.

2 Related Work

Sanctum’s main improvement over SGX is preventing
software attacks that analyze an isolated container’s mem-
ory access patterns to infer private information. We are
particularly concerned with cache timing attacks [7], be-
cause they can be mounted by unprivileged software shar-
ing a computer with the victim software.

Cache timing attacks are known to retrieve crypto-
graphic keys used by AES [8], RSA [10], Diffie-Hellman
[27], and elliptic-curve cryptography [9]. While early
attacks required access to the victim’s CPU core, recent
sophisticated attacks [35, 56] target the last-level cache
(LLC), which is shared by all cores in a socket. Re-
cently, [37] demonstrated a cache timing attack that uses
JavaScript code in a page visited by a web browser.

Cache timing attacks observe a victim’s memory ac-
cess patterns at cache line granularity. However, recent
work shows that private information can be gleaned even

from the page-level memory access pattern obtained by a
malicious OS that simply logs the addresses seen by its
page fault handler [55].

XOM [30] introduced the idea of having sensitive code
and data execute in isolated containers, and placed the
OS in charge of resource allocation without trusting it.
Aegis [44] relies on a trusted security kernel, handles
untrusted memory, and identifies the software in a con-
tainer by computing a cryptographic hash over the initial
contents of the container. Aegis also computes a hash of
the security kernel at boot time and uses it, together with
the container’s hash, to attest a container’s identity to a
third party, and to derive container keys. Unlike XOM
and Aegis, Sanctum protects the memory access patterns
of the software executing inside the isolation containers
from software threats.

Sanctum only considers software attacks in its threat
model (§ 3). Resilience against physical attacks can be
added by augmenting a Sanctum processor with the coun-
termeasures described in other secure architectures, with
associated increased performance overheads. Aegis pro-
tects a container’s data when the DRAM is untrusted
through memory encryption and integrity verification;
these techniques were adopted and adapted by SGX. As-
cend [20] and GhostRider [32] use Oblivious RAM [21]
to protect a container’s memory access patterns against
adversaries that can observe the addresses on the memory
bus. An insight in Sanctum is that these overheads are
unnecessary in a software-only threat model.

Intel’s Trusted Execution Technology (TXT) [22] is
widely deployed in today’s mainstream computers, due
to its approach of trying to add security to a successful
CPU product. After falling victim to attacks [51, 54]
where a malicious OS directed a network card to access
data in the protected VM, a TXT revision introduced
DRAM controller modifications that selectively block
DMA transfers, which Sanctum also does.

Intel’s SGX [5, 36] adapted the ideas in Aegis and
XOM to multi-core processors with a shared, coherent
last-level cache. Sanctum draws heavy inspiration from
SGX’s approach to memory access control, which does
not modify the core’s critical execution path. We reverse-
engineered and adapted SGX’s method for verifying an
OS-conducted TLB shoot-down. At the same time, SGX
has many security issues that are solved by Sanctum,
which are stated in this paper’s introduction.

Iso-X [19] attempts to offer the SGX security guaran-
tees, without the limitation that enclaves may only be
allocated in a DRAM area that is carved off exclusively
for SGX use, at boot time. Iso-X uses per-enclave page
tables, like Sanctum, but its enclave page tables require
a dedicated page walker. Iso-X’s hardware changes add
overhead to the core’s cycle time, and do not protect
against cache timing attacks.

2

USENIX Association 25th USENIX Security Symposium 859

SecureME [12] also proposes a co-design of hardware
modifications and a trusted hypervisor for ensuring soft-
ware isolation, but adapts the on-chip mechanisms gener-
ally used to prevent physical attacks, in order to protect
applications from an untrusted OS. Just like SGX, Se-
cureME is vulnerable to memory access pattern attacks.

The research community has brought forward various
defenses against cache timing attacks. PLcache [28, 46]
and the Random Fill Cache Architecture (RFill, [34])
were designed and analyzed in the context of a small
region of sensitive data, and scaling them to protect a
potentially large enclave without compromising perfor-
mance is not straightforward. When used to isolate entire
enclaves in the LLC, RFill performs at least 37%-66%
worse than Sanctum.

RPcache [28, 46] trusts the OS to assign different hard-
ware process IDs to mutually mistrusting entities, and its
mechanism does not directly scale to large LLCs. The
non-monopolizable cache [15] uses a well-principled par-
titioning scheme, but does not completely stop leakage,
and relies on the OS to assign hardware process IDs.
CATalyst [33] trusts the Xen hypervisor to correctly tame
Intel’s Cache Allocation Technology into providing cache
pinning, which can only secure software whose code and
data fits into a fraction of the LLC.

Sanctum uses very simple cache partitioning [31] based
on page coloring [24, 45], which has proven to have rea-
sonable overheads. It is likely that sophisticated schemes
like ZCache [40] and Vantage [41] can be combined with
Sanctum’s framework to yield better performance.

3 Threat Model

Sanctum isolates the software inside an enclave from
other software on the same computer. All outside soft-
ware, including privileged system software, can only inter-
act with an enclave via a small set of primitives provided
by the security monitor. Programmers are expected to
move the sensitive code in their applications into enclaves.
In general, an enclave receives encrypted sensitive infor-
mation from outside, decrypts the information and per-
forms some computation on it, and then returns encrypted
results to the outside world.

We assume that an attacker can compromise any op-
erating system and hypervisor present on the computer
executing the enclave, and can launch rogue enclaves.
The attacker knows the target computer’s architecture and
micro-architecture. The attacker can analyze passively
collected data, such as page fault addresses, as well as
mount active attacks, such as direct or DMA memory
probing, and cache timing attacks.

Sanctum’s isolation protects the integrity and privacy
of the code and data inside an enclave against any practi-
cal software attack that relies on observing or interacting

with the enclave software via means outside the inter-
face provided by the security monitor. In other words,
we do not protect enclaves that leak their own secrets
directly (e.g., by writing to untrusted memory) or by tim-
ing their operations (e.g., by modulating their completion
times). In effect, Sanctum solves the security problems
that emerge from sharing a computer among mutually
distrusting applications.

This distinction is particularly subtle in the context of
cache timing attacks. We do not protect against attacks
like [10], where the victim application leaks information
via its public API, and the leak occurs even if the vic-
tim runs on a dedicated machine. We do protect against
attacks like Flush+Reload [56], which exploit shared hard-
ware resources to interact with the victim via methods
outside its public API.

Sanctum also defeats attackers who aim to compromise
an OS or hypervisor by running malicious applications
and enclaves. This addresses concerns that enclaves pro-
vide new attack vectors for malware [14, 38]. We assume
that the benefits of meaningful software isolation out-
weigh enabling a new avenue for frustrating malware
detection and reverse engineering [17].

Lastly, Sanctum protects against a malicious computer
owner who attempts to lie about the security monitor run-
ning on the computer. Specifically, the attacker aims to
obtain an attestation stating that the computer is running
an uncompromised security monitor, whereas a different
monitor had been loaded in the boot process. The un-
compromised security monitor must not have any known
vulnerability that causes it to disclose its cryptographic
keys. The attacker is assumed to know the target com-
puter’s architecture and micro-architecture, and is allowed
to run any combination of malicious security monitor, hy-
pervisor, OS, applications and enclaves.

We do not prevent timing attacks that exploit bottle-
necks in the cache coherence directory bandwidth or in
the DRAM bandwidth, deferring these to future work.

Sanctum does not protect against denial-of-service
(DoS) attacks by compromised system software: a ma-
licious OS may deny service by refusing to allocate any
resources to an enclave. We do protect against malicious
enclaves attempting to DoS an uncompromised OS.

We assume correct underlying hardware, so we do not
protect against software attacks that exploit hardware bugs
(fault-injection attacks), such as rowhammer [25, 42].

Sanctum’s isolation mechanisms exclusively target soft-
ware attacks. § 2 mentions related work that can harden a
Sanctum system against some physical attacks. Further-
more, we consider software attacks that rely on sensor
data to be physical attacks. For example, we do not ad-
dress information leakage due to power variations, be-
cause software would require a temperature or current
sensor to carry out such an attack.

3

860 25th USENIX Security Symposium USENIX Association

Non-sensitive code and data

User

Supervisor

Hypervisor

Machine

Hypervisor

Host Application
Enclave

Security Monitor
Measurement Root

Enclave multiplexing

Operating System

Enclave management

Enclave syscall shims Sanctum-aware runtime
Sensitive code and data

Enclave setup

Figure 1: Software stack on a Sanctum machine; The
blue text represents additions required by Sanctum. The
bolded elements are in the software TCB.

4 Programming Model Overview

By design, Sanctum’s programming model deviates from
SGX as little as possible, while providing stronger secu-
rity guarantees. We expect that application authors will
link against a Sanctum-aware runtime that abstracts away
most aspects of Sanctum’s programming model. For ex-
ample, C programs would use a modified implementation
of the libc standard library. Due to space constraints,
we describe the programming model assuming that the
reader is familiar with SGX as described in [13].

The software stack on a Sanctum machine, shown in
Figure 1, resembles the SGX stack with one notable ex-
ception: SGX’s microcode is replaced by a trusted soft-
ware component, the security monitor, which is pro-
tected from compromised system software, as it runs at
the highest privilege level (machine level in RISC-V).

We relegate the management of computation resources,
such as DRAM and execution cores, to untrusted system
software (as does SGX). In Sanctum, the security moni-
tor checks the system software’s allocation decisions for
correctness and commits them into the hardware’s config-
uration registers. For simplicity, we refer to the software
that manages resources as an OS (operating system), even
though it may be a combination of a hypervisor and a
guest OS kernel.

An enclave stores its code and private data in parts of
DRAM that have been allocated by the OS exclusively for
the enclave’s use (as does SGX), which are collectively
called the enclave’s memory. Consequently, we refer
to the regions of DRAM that are not allocated to any
enclave as OS memory. The security monitor tracks
DRAM ownership, and ensures that no piece of DRAM
is assigned to more than one enclave.

Each Sanctum enclave uses a range of virtual mem-
ory addresses (EVRANGE) to access its memory. The
enclave’s memory is mapped by the enclave’s own page ta-

Host application
space

Host application
space

EVRANGE A

Enclave A Virtual
Address Space

Physical Memory

Enclave A region

Enclave A page tables

Enclave A region

Enclave B region

Enclave B page tables

OS region

OS region

OS page tables

Host application
space

Host application
space

EVRANGE B

Enclave B Virtual
Address Space

Figure 2: Per-enclave page tables

bles, which are stored in the enclave’s memory (Figure 2).
This makes private the page table dirty and accessed bits,
which can reveal memory access patterns at page granu-
larity. Exposing an enclave’s page tables to the untrusted
OS leaves the enclave vulnerable to attacks such as [55].

The enclave’s virtual address space outside EVRANGE
is used to access its host application’s memory, via the
page tables set up by the OS. Sanctum’s hardware exten-
sions implement dual page table lookup (§ 5.2), and make
sure that an enclave’s page tables can only point into the
enclave’s memory, while OS page tables can only point
into OS memory (§ 5.3).

Sanctum supports multi-threaded enclaves, and en-
claves must appropriately provision for thread state data
structures. Enclave threads, like their SGX cousins, run at
the lowest privilege level (user level in RISC-V), meaning
a malicious enclave cannot compromise the OS. Specif-
ically, enclaves may not execute privileged instructions;
address translations that use OS page tables generate page
faults when accessing supervisor pages.

The per-enclave metadata used by the security monitor
is stored in dedicated DRAM regions (metadata regions),
each managed at the page level by the OS, and each in-
cludes a page map that is used by the security monitor to
verify the OS’ decisions (much like the EPC and EPCM
in SGX, respectively). Unlike SGX’s EPC, the metadata
region pages only store enclave and thread metadata. Fig-
ure 3 shows how these structures are weaved together.

Sanctum considers system software to be untrusted, and
governs transitions into and out of enclave code. An en-
clave’s host application enters an enclave via a security
monitor call that locks a thread state area, and transfers
control to its entry point. After completing its intended
task, the enclave code exits by asking the monitor to un-
lock the thread’s state area, and transfer control back to
the host application.

Enclaves cannot make system calls directly: we cannot
trust the OS to restore an enclave’s execution state, so the

4

USENIX Association 25th USENIX Security Symposium 861

Enclave memory

Thread 2 state

Thread 1 stack

Thread 1 fault
handler stack

Application code

Application data

Runtime code

Syscall proxying

Enclave entry
Fault handler

Enclave exit

Page tables

Runtime code

Metadata Region

Thread 1 state
⋮ Measurement hash

DRAM region bitmap
First mailbox
Mailbox count

Debugging enclave?
Initialized?

Running thread count

Enclave info

Page Map

C1C000 Thread
C1C000 Thread

⋮ ⋮

C1C000 Thread

TypeEnclave
Invalid0

C1C000

⋮

C1C000

⋮

C1C000

Thread

⋮

Enclave
Enclave

⋮

Page Map Entries

Mailboxes

AEX state valid?

Host application SP
Host application PC

Enclave page table
base

Lock

AEX state (R0 … R31)
Fault state (R0 … R31)
Fault handler SP

Entry point (PC)
Entry stack pointer (SP)
Fault handler PC

⋮

⋮

⋮

Thread 2 state

Thread state

Enclave info

Figure 3: Enclave layout and data structures

enclave’s runtime must ask the host application to proxy
syscalls such as file system and network I/O requests.

Sanctum’s security monitor is the first responder for
interrupts: an interrupt received during enclave execution
causes an asynchronous enclave exit (AEX), whereby the
monitor saves the core’s registers in the current thread’s
AEX state area, zeroes the registers, exits the enclave, and
dispatches the interrupt as if it was received by the code
entering the enclave.

Unlike SGX, resuming enclave execution after an AEX
means re-entering the enclave using its normal entry point,
and having the enclave’s code ask the security monitor to
restore the pre-AEX execution state. Sanctum enclaves
are aware of asynchronous exits so they can implement
security policies. For example, an enclave thread that
performs time-sensitive work, such as periodic I/O, may
terminate itself if it ever gets preempted by an AEX.

The security monitor configures the CPU to dispatch
all faults occurring within an enclave directly to the en-
clave’s designated fault handler, which is expected to be
implemented by the enclave’s runtime (SGX sanitizes
and dispatches faults to the OS). For example, a libc

runtime would translate faults into UNIX signals which,
by default, would exit the enclave. It is possible, though
not advisable for performance reasons (§ 6.3), for a run-
time to handle page faults and implement demand paging

securely, and robust against the attacks described in [55].
Unlike SGX, we isolate each enclave’s data throughout

the system’s cache hierarchy. The security monitor flushes
per-core caches, such as the L1 cache and the TLB, when-
ever a core jumps between enclave and non-enclave code.
Last-level cache (LLC) isolation is achieved by a simple
partitioning scheme supported by Sanctum’s hardware
extensions (§ 5.1).

Sanctum’s strong isolation yields a simple security
model for application developers: all computation that
executes inside an enclave, and only accesses data inside
the enclave, is protected from any attack mounted by soft-
ware outside the enclave. All communication with the
outside world, including accesses to non-enclave memory,
is subject to attacks.

We assume that the enclave runtime implements the
security measures needed to protect the enclave’s com-
munication with other software modules. For example,
any algorithm’s memory access patterns can be protected
by ensuring that the algorithm only operates on enclave
data. The runtime can implement this protection simply
by copying any input buffer from non-enclave memory
into the enclave before computing on it.

The enclave runtime can use Native Client’s approach
[57] to ensure that the rest of the enclave software only
interacts with the host application via the runtime to miti-
gate potential security vulnerabilities in enclave software.

The lifecycle of a Sanctum enclave closely resembles
the lifecycle of its SGX equivalent. An enclave is created
when its host application performs a system call asking
the OS to create an enclave from a dynamically loadable
module (.so or .dll file). The OS invokes the security
monitor to assign DRAM resources to the enclave, and
to load the initial code and data pages into the enclave.
Once all the pages are loaded, the enclave is marked as
initialized via another security monitor call.

Our software attestation scheme is a simplified version
of SGX’s scheme, and reuses a subset of its concepts.
The data used to initialize an enclave is cryptographically
hashed, yielding the enclave’s measurement. An enclave
can invoke a secure inter-enclave messaging service to
send a message to a privileged attestation enclave that can
access the security monitor’s attestation key, and produces
the attestation signature.

5 Hardware Modifications

5.1 LLC Address Input Transformation
Figure 4 depicts a physical address in a toy computer with
32-bit virtual addresses and 21-bit physical addresses,
4,096-byte pages, a set-associative LLC with 512 sets and
64-byte lines, and 256 KB of DRAM.

The location where a byte of data is cached in the

5

862 25th USENIX Security Symposium USENIX Association

DRAM Region
Index

Cache
Line Offset

5 0611
Page Offset

1214

Cache Set Index

DRAM Stripe
Index

151720 18
Cache Tag

Address bits used by 256 KB of DRAM

Address bits covering the maximum addressable physical space of 2 MB

Physical page number (PPN)

Figure 4: Interesting bit fields in a physical address

0KB 256KB

No cache address shift - 8 x 4 KB stripes per DRAM region

1-bit cache address shift - 4 x 8 KB stripes per DRAM region

2-bit cache address shift - 2 x 16 KB stripes per DRAM region

3-bit cache address shift - a DRAM region is one 32 KB stripe

Region 0 Region 1 Region 2 Region 3
Region 4 Region 5 Region 6 Region 7

Figure 5: Address shift for contiguous DRAM regions

LLC depends on the low-order bits in the byte’s physical
address. The set index determines which of the LLC lines
can cache the line containing the byte, and the line offset
locates the byte in its cache line. A virtual address’s low-
order bits make up its page offset, while the other bits are
its virtual page number (VPN). Address translation leaves
the page offset unchanged, and translates the VPN into
a physical page number (PPN), based on the mapping
specified by the page tables.

We define the DRAM region index in a physical ad-
dress as the intersection between the PPN bits and the
cache index bits. This is the maximal set of bits that im-
pact cache placement and are determined by privileged
software via page tables. We define a DRAM region to
be the subset of DRAM with addresses having the same
DRAM region index. In Figure 4, for example, address
bits [14 . . .12] are the DRAM region index, dividing the
physical address space into 8 DRAM regions.

In a typical system without Sanctum’s hardware exten-
sions, DRAM regions are made up of multiple continuous
DRAM stripes, where each stripe is exactly one page
long. The top of Figure 5 drives this point home, by
showing the partitioning of our toy computer’s 256 KB
of DRAM into DRAM regions. The fragmentation of

DRAM Region
Index

Cache
Line OffsetS2

Address Translation Unit

Page OffsetVirtual Page Number (VPN)
5 061112

14151718

31

Physical address

Cache Tag

Virtual Address

Physical Page
Number (PPN)

12

5 0611

DRAM Region
IndexS2

20

S1

S1

12141520 1718

Address bits used by 256 KB of DRAM

Cache Unit
Input

Cache Set Index

Cache
Address
Shifter

Figure 6: Cache address shifter, 3 bit PPN rotation

DRAM regions makes it difficult for the OS to allocate
contiguous DRAM buffers, which are essential to the effi-
cient DMA transfers used by high performance devices.
In our example, if the OS only owns 4 DRAM regions,
the largest contiguous DRAM buffer it can allocate is 16
KB.

We observed that, up to a certain point, circularly shift-
ing (rotating) the PPN of a physical address to the right
by one bit, before it enters the LLC, doubles the size of
each DRAM stripe and halves the number of stripes in a
DRAM region, as illustrated in Figure 5.

Sanctum takes advantage of this effect by adding a
cache address shifter that circularly shifts the PPN to
the right by a certain amount of bits, as shown in Figures
6 and 7. In our example, configuring the cache address
shifter to rotate the PPN by 3 yields contiguous DRAM
regions, so an OS that owns 4 DRAM regions could hy-
pothetically allocate a contiguous DRAM buffer covering
half of the machine’s DRAM.

The cache address shifter’s configuration depends on
the amount of DRAM present in the system. If our exam-
ple computer could have 128 KB - 1 MB of DRAM, its
cache address shifter must support shift amounts from 2
to 5. Such a shifter can be implemented via a 3-position
variable shifter circuit (series of 8-input MUXes), and a
fixed shift by 2 (no logic). Alternatively, in systems with
known DRAM configuration (embedded, SoC, etc.), the
shift amount can be fixed, and implemented with no logic.

5.2 Page Walker Input
Sanctum’s per-enclave page tables require an enclave page
table base register eptbr that stores the physical address
of the currently running enclave’s page tables, and has
similar semantics to the page table base register ptbr
pointing to the operating system-managed page tables.
These registers may only be accessed by the Sanctum
security monitor, which provides an API call for the OS

6

USENIX Association 25th USENIX Security Symposium 863

CPU Die
Tile

Core

L1 Cache

LLC
LLC Cache

Slice
LLC Cache

Slice
LLC Cache

Slice
LLC Cache

Slice

Coherence
Manager

Coherence
Manager

TileLinkIO Network

Coherence
Manager

Coherence
Manager

Cache
Address
Shifter

Tile

Core

L1 Cache

Cache
Address
Shifter

Tile

Core

L1 Cache

Cache
Address
Shifter

Tile

Core

L1 Cache

Cache
Address
Shifter

TileLinkIO to MemIO Converter

Cache
Address

Un-Shifter

Cache
Address

Un-Shifter

Cache
Address

Un-Shifter

Cache
Address

Un-Shifter

DMA
Transfer

Filter

Cached
TileLinkIO

Device

Cache
Address
Shifter

Memory Controller DRAM

Figure 7: Sanctum’s cache address shifter and DMA
transfer filter logic in the context of a Rocket uncore

to modify ptbr, and ensures that eptbr always points to
the current enclave’s page tables.

The circuitry handling TLB misses switches between
ptbr and eptbr based on two registers that indicate the
current enclave’s EVRANGE, namely evbase (enclave
virtual address space base) and evmask (enclave virtual
address space mask). When a TLB miss occurs, the cir-
cuit in Figure 8 selects the appropriate page table base
by ANDing the faulting virtual address with the mask
register and comparing the output against the base regis-
ter. Depending on the comparison result, either eptbr or
ptbr is forwarded to the page walker as the page table
base address.

5.3 Page Walker Memory Accesses
In modern high-speed CPUs, address translation is per-
formed by a hardware page walker that traverses the
page tables when a TLB miss occurs. The page walker’s
latency greatly impacts the CPU’s performance, so it is
implemented as a finite-state machine (FSM) that reads
page table entries by issuing DRAM read requests using
physical addresses, over a dedicated bus to the L1 cache.

Unsurprisingly, page walker modifications require a lot
of engineering effort. At the same time, Sanctum’s secu-
rity model demands that the page walker only references
enclave memory when traversing the enclave page tables,
and only references OS memory when translating the OS
page tables. Fortunately, we can satisfy these require-
ments without modifying the FSM. Instead, the security
monitor configures the circuit in Figure 9 to ensure that

0

1

0

1

0

1

0

1

EPTBR

PTBR

AND
EVMASK

TLB Miss
Virtual Address

EQ
EVBASE

FSM Input:
Page Table Base

EDRBMAP

DRBMAP FSM Input:
DRAM Region Bitmap

EPARBASE

PARBASE FSM Input:
Protected Address Base

EPARMASK

PARMASK FSM Input:
Protected Address Mask

Address Range Check

Figure 8: Page walker input for per-enclave page tables

DRAM
Region
Bitmap

DRAM Region
Index Selector

6-bit
Region Index

FSM Input:
Valid bit

DRAM Fetch Result:
Valid Bit

DRAM Fetch Result:
Address Bits

FSM Input:
Address Bits

AND

AND
Protected

 Address Mask

Protected
Address Base

AND

NOTEQ

64
bits

Figure 9: Hardware support for per-enclave page tables:
check page table entries fetched by the page walker.

the page tables only point into allowable memory.
Sanctum’s security monitor must guarantee that ptbr

points into an OS DRAM region, and eptbr points into
a DRAM region owned by the enclave. This secures the
page walker’s initial DRAM read. The circuit in Figure 9
receives each page table entry fetched by the FSM, and
sanitizes it before it reaches the page walker FSM.

The security monitor configures the set of DRAM
regions that page tables may reference by writing to a
DRAM region bitmap (drbmap) register. The sanitiza-
tion circuitry extracts the DRAM region index from the
address in the page table entry, and looks it up in the
DRAM region bitmap. If the address does to belong to
an allowable DRAM region, the sanitization logic forces
the page table entry’s valid bit to zero, which will cause
the page walker FSM to abort the address translation and
signal a page fault.

Sanctum’s security monitor and its attestation key are
stored in DRAM regions allocated to the OS. For security
reasons, the OS must not be able to modify the monitor’s

7

864 25th USENIX Security Symposium USENIX Association

code, or to read the attestation key. Sanctum extends
the page table entry transformation described above to
implement a Protected Address Range (PAR) for each set
of page tables.

Each PAR is specified using a base register (parbase)
register and a mask register (parmask) with the same
semantics as the variable Memory Type Range registers
(MTRRs) in the x86 architecture. The page table en-
try sanitization logic in Sanctum’s hardware extensions
checks if each page table entry points into the PAR by
ANDing the entry’s address with the PAR mask and com-
paring the result with the PAR base. If a page table entry
is seen with a protected address, its valid bit is cleared,
forcing a page fault.

The above transformation allows the security monitor
to set up a memory range that cannot be accessed by other
software, and which can be used to securely store the
monitor’s code and data. Entry invalidation ensures no
page table entries are fetched from the protected range,
which prevents the page walker FSM from modifying the
protected region by setting accessed and dirty bits.

All registers above are replicated, as Sanctum maintains
separate OS and enclave page tables. The security monitor
sets up a protected range in the OS page tables to isolate
its own code and data structures (most importantly its
private attestation key) from a malicious OS.

Figure 10 shows Sanctum’s logic inserted between the
page walker and the cache unit that fetches page table
entries.

5.4 DMA Transfer Filtering
We whitelist a DMA-safe DRAM region instead of fol-
lowing SGX’s blacklist approach. Specifically, Sanctum
adds two registers (a base, dmarbase and an AND mask,
dmarmask) to the DMA arbiter (memory controller). The
range check circuit shown in Figure 8 compares each
DMA transfer’s start and end addresses against the al-
lowed DRAM range, and the DMA arbiter drops transfers
that fail the check.

6 Software Design

Sanctum’s chain of trust, discussed in § 6.1, diverges sig-
nificantly from SGX. We replace SGX’s microcode with
a software security monitor that runs at a higher privilege
level than the hypervisor and the OS. On RISC-V, the
security monitor runs at machine level. Our design only
uses one privileged enclave, the signing enclave, which
behaves similarly to SGX’s Quoting Enclave.

6.1 Attestation Chain of Trust
Sanctum has three pieces of trusted software: the mea-
surement root, which is burned in on-chip ROM, the se-
curity monitor (§ 6.2), which must be stored alongside

Enclave
Page Table
Registers

L1
I-Cache

ALU

Decode, Arbitration,
Stall Detection

Register
File

L1
I-TLB

PC Generation

Instruction Queue

Branch
Target Buffer

Program Counter

Page
Walker

Scoreboard

Sign ExtendControl
Registers

Bypass Bypass Bypass

IDIVIMUL

Data Queue

Branch

Exception
Generator

L1
D-Cache

L1
D-TLB

Replay
Decision Crossbar

Sign extension

Page
Entry

Transform

Figure 10: Sanctum’s page entry transformation logic in
the context of a Rocket core

the computer’s firmware (usually in flash memory), and
the signing enclave, which can be stored in any untrusted
storage that the OS can access.

We expect the trusted software to be amenable to rig-
orous analysis: our implementation of a security monitor
for Sanctum is written with verification in mind, and has
fewer than 5 kloc of C++, including a subset of the stan-
dard library and the cryptography for enclave attestation.

6.1.1 The Measurement Root

The measurement root (mroot) is stored in a ROM at the
top of the physical address space, and covers the reset vec-
tor. Its main responsibility is to compute a cryptographic
hash of the security monitor and generate a monitor at-
testation key pair and certificate based on the monitor’s
hash, as shown in Figure 11.

The security monitor is expected to be stored in non-
volatile memory (such as an SPI flash chip) that can re-
spond to memory I/O requests from the CPU, perhaps
via a special mapping in the computer’s chipset. When
mroot starts executing, it computes a cryptographic hash
over the security monitor. mroot then reads the proces-
sor’s key derivation secret, and derives a symmetric key
based on the monitor’s hash. mroot will eventually hand

8

USENIX Association 25th USENIX Security Symposium 865

Tamper-Resistant Hardware

monitor

mroot

Key
Derivation

Key
Derivation

Secret

Monitor
Symmetric

Key

Security
Monitor Code

Measurement
Root Code

measures Monitor
Hash

Monitor
Attestation

Key

Processor
Attestation

Key

Monitor
Attestation
Certificate

Measurement

Public Key

RSA Key
Generation

CSPRNG

Untrusted non-volatile (flash) memory

Monitor
Symmetric

Key

Monitor
Attestation

Key

Monitor
Attestation
Certificate

Monitor
Attestation
Certificate

Authenticated
Encryption

Encrypted
Monitor

Attestation Key

Signing
Enclave

Measurement

signs

Security
Monitor Code

Figure 11: Sanctum’s root of trust is a measurement
root routine burned into the CPU’s ROM. This code reads
the security monitor from flash memory and generates an
attestation key and certificate based on the monitor’s hash.
Asymmetric key operations, colored in blue, are only
performed the first time a monitor is used on a computer.

down the key to the monitor.
The security monitor contains a header that includes

the location of an attestation key existence flag. If the
flag is not set, the measurement root generates a monitor
attestation key pair, and produces a monitor attestation
certificate by signing the monitor’s public attestation key
with the processor’s private attestation key. The monitor
attestation certificate includes the monitor’s hash.
mroot generates a symmetric key for the security mon-

itor so it may encrypt its private attestation key and store
it in the computer’s SPI flash memory chip. When writing
the key, the monitor also sets the monitor attestation key
existence flag, instructing future boot sequences not to re-
generate a key. The public attestation key and certificate
can be stored unencrypted in any untrusted memory.

Before handing control to the monitor, mroot sets a
lock that blocks any software from reading the processor’s
symmetric key derivation seed and private key until a reset

occurs. This prevents a malicious security monitor from
deriving a different monitor’s symmetric key, or from
generating a monitor attestation certificate that includes a
different monitor’s measurement hash.

The symmetric key generated for the monitor is simi-
lar in concept to the Seal Keys produced by SGX’s key
derivation process, as it is used to securely store a se-
cret (the monitor’s attestation key) in untrusted memory,
in order to avoid an expensive process (asymmetric key
attestation and signing). Sanctum’s key derivation pro-
cess is based on the monitor’s measurement, so a given
monitor is guaranteed to get the same key across power
cycles. The cryptographic properties of the key derivation
process guarantee that a malicious monitor cannot derive
the symmetric key given to another monitor.

6.1.2 The Signing Enclave

In order to avoid timing attacks, the security monitor does
not compute attestation signatures directly. Instead, the
signing algorithm is executed inside a signing enclave,
which is a security monitor module that executes in an en-
clave environment, so it is protected by the same isolation
guarantees that any other Sanctum enclave enjoys.

The signing enclave receives the monitor’s private attes-
tation key via an API call. When the security monitor re-
ceives the call, it compares the calling enclave’s measure-
ment with the known measurement of the signing enclave.
Upon a successful match, the monitor copies its attesta-
tion key into enclave memory using a data-independent
sequence of memory accesses, such as memcpy. This way,
the monitor’s memory access pattern does not leak the
private attestation key.

Sanctum’s signing enclave authenticates another en-
clave on the computer and securely receives its attestation
data using mailboxes (§ 6.2.5), a simplified version of
SGX’s local attestation (reporting) mechanism. The en-
clave’s measurement and attestation data are wrapped into
a software attestation signature that can be examined by a
remote verifier. Figure 12 shows the chain of certificates
and signatures in an instance of software attestation.

6.2 Security Monitor

The security monitor receives control after mroot finishes
setting up the attestation measurement chain.

The monitor provides API calls to the OS and enclaves
for DRAM region allocation and enclave management.
The monitor guards sensitive registers, such as the page
table base register (ptbr) and the allowed DMA range
(dmarbase and dmarmask). The OS can set these regis-
ters via monitor calls that ensure the register values are
consistent with the current DRAM region allocation.

9

866 25th USENIX Security Symposium USENIX Association

Signing
Enclave

Mailbox

Processor
Tamper-Resistant

Hardware

Processor
Key

Manufacturer Root Key

Processor
Endorsement

Certificate

PrivPKPubPK

Attestation
Signature

Manufacturer
Certificate Authority

PrivRKPubRK

Signs

Signs

Key Exchange
Message 1

Measurement

DataEnclave

Verifier

Trusts

Hash of

Hash of

Key Exchange
Message 2

Protected
Monitor DRAM

Monitor
Key

Monitor
Attestation
Certificate

PrivMKPubMK

Signs

Monitor
Measurement

Data PrivMK

Includes
Only revealed to
signing enclave

Secure
inter-enclave

communication

Measurement

Figure 12: The certificate chain behind Sanctum’s soft-
ware attestation signatures

6.2.1 DRAM Regions

Figure 13 shows the DRAM region allocation state tran-
sition diagram. After the system boots up, all DRAM
regions are allocated to the OS, which can free up DRAM
regions so it can re-assign them to enclaves or to itself. A
DRAM region can only become free after it is blocked by
its owner, which can be the OS or an enclave. While a
DRAM region is blocked, any address translations map-
ping to it cause page faults, so no new TLB entries will be
created for that region. Before the OS frees the blocked
region, it must flush all the cores’ TLBs, to remove any
stale entries for the region.

OWNED BLOCKED FREE
block
DRAM
region

free
DRAM
region

assign DRAM region

Figure 13: DRAM region allocation states and API calls

Security Monitor data

⋮

DRAM region metadata System info

CPU core metadata

Cache address shift

DRAM region mask
DRAM size

DRAM region shift

Running enclave
thread state area

Running enclave ID

Block clock value at
last TLB flush

Running enclave
thread ID

System info

Block clock

Core 1 metadata

DRAM region 1
metadata
DRAM region 2
metadata

⋮

Core 2 metadata

Block clock value when
region blocked

Owner value when
region blocked

Owner (enclave ID | OS
| BLOCKED | FREE)

Number of thread state
pages in this region

Lock

mroot header

mroot header

Attestation key set?
Encrypted private
attestation key

Figure 14: Security monitor data structures

The monitor ensures that the OS performs TLB shoot-
downs, using a global block clock. When a region is
blocked, the block clock is incremented, and the current
block clock value is stored in the metadata associated with
the DRAM region (shown in Figure 3). When a core’s
TLB is flushed, that core’s flush time is set to the current
block clock value. When the OS asks the monitor to free a
blocked DRAM region, the monitor verifies that no core’s
flush time is lower than the block clock value stored in the
region’s metadata. As an optimization, freeing a region
owned by an enclave only requires TLB flushes on the
cores running that enclave’s threads. No other core can
have TLB entries for the enclave’s memory.

The region blocking mechanism guarantees that when
a DRAM region is assigned to an enclave or the OS, no
stale TLB mappings associated with the DRAM region
exist. The monitor uses the MMU extensions described
in § 5.2 and § 5.3 to ensure that once a DRAM region
is assigned, no software other than the region’s owner
may create TLB entries pointing inside the DRAM region.
Together, these mechanisms guarantee that the DRAM
regions allocated to an enclave cannot be accessed by the
operating system or by another enclave.

6.2.2 Metadata Regions

Since the security monitor sits between the OS and en-
clave, and its APIs can be invoked by both sides, it is
an easy target for timing attacks. We prevent these at-
tacks with a straightforward policy that states the security
monitor is never allowed to access enclave data, and is
not allowed to make memory accesses that depend on
the attestation key material. The rest of the data handled
by the monitor is derived from the OS’ actions, so it is
already known to the OS.

A rather obvious consequence of the policy above is
that after the security monitor boots the OS, it cannot
perform any cryptographic operations that use keys. For
example, the security monitor cannot compute an attesta-
tion signature directly, and defers that operation to a sign-

10

USENIX Association 25th USENIX Security Symposium 867

non-
existent LOADING INITIALIZEDcreate

enclave
init

enclave

delete enclave

enter
enclave

load page,
PTE,thread

Figure 15: Enclave states and enclave management API
calls

ing enclave (§ 6.1.2). While it is possible to implement
some cryptographic primitives without performing data-
dependent accesses, the security and correctness proofs
behind these implementations are non-trivial. For this
reason, Sanctum avoids depending on any such imple-
mentation.

A more subtle aspect of the access policy outlined
above is that the metadata structures that the security mon-
itor uses to operate enclaves cannot be stored in DRAM
regions owned by enclaves, because that would give the
OS an indirect method of accessing the LLC sets that
map to enclave’s DRAM regions, which could facilitate a
cache timing attack.

For this reason, the security monitor requires the OS to
set aside at least one DRAM region for enclave metadata
before it can create enclaves. The OS has the ability to
free up the metadata DRAM region, and regain the LLC
sets associated with it, if it predicts that the computer’s
workload will not involve enclaves.

Each DRAM region that holds enclave metadata is
managed independently from the other regions, at page
granularity. The first few pages of each region contain
a page map that tracks the enclave that tracks the usage
of each metadata page, specifically the enclave that it is
assigned to, and the data structure that it holds.

Each metadata region is like an EPC region in SGX,
with the exception that our metadata regions only hold
special pages, like Sanctum’s equivalent of SGX’s Secure
Enclave Control Structure (SECS) and the Thread Control
Structure (TCS). These structures will be described in the
following sections.

The data structures used to store Sanctum’s metadata
can span multiple pages. When the OS allocates such a
structure in a metadata region, it must point the monitor to
a sequence of free pages that belong to the same DRAM
region. All the pages needed to represent the structure are
allocated and released in one API call.

6.2.3 Enclave Lifecycle

The lifecycle of a Sanctum enclave is very similar to that
of its SGX counterparts, as shown in Figure 15.

The OS creates an enclave by issuing a create enclave
call that creates the enclave metadata structure, which is
Sanctum’s equivalent of the SECS. The enclave metadata

structure contains an array of mailboxes whose size is es-
tablished at enclave creation time, so the number of pages
required by the structure varies from enclave to enclave.
§ 6.2.5 describes the contents and use of mailboxes.

The create enclave API call initializes the enclave meta-
data fields shown in Figure 3, and places the enclave in
the LOADING state. While the enclave is in this state,
the OS sets up the enclave’s initial state via monitor calls
that assign DRAM regions to the enclave, create hardware
threads and page table entries, and copy code and data
into the enclave. The OS then issues a monitor call to
transition the enclave to the INITIALIZED state, which
finalizes its measurement hash. The application hosting
the enclave is now free to run enclave threads.

Sanctum stores a measurement hash for each enclave
in its metadata area, and updates the measurement to ac-
count for every operation performed on an enclave in the
LOADING state. The policy described in § 6.2.2 does
not apply to the secure hash operations used to update
enclave’s measurement, because all the data used to com-
pute the hash is already known to the OS.

Enclave metadata is stored in a metadata re-
gion (§ 6.2.2), so it can only be accessed by the security
monitor. Therefore, the metadata area can safely store
public information with integrity requirements, such as
the enclave’s measurement hash.

While an OS loads an enclave, it is free to map the
enclave’s pages, but the monitor maintains its page ta-
bles ensuring all entries point to non-overlapping pages
in DRAM owned by the enclave. Once an enclave is
initialized, it can inspect its own page tables and abort if
the OS created undesirable mappings. Simple enclaves
do not require specific mappings. Complex enclaves are
expected to communicate their desired mappings to the
OS via out-of-band metadata not covered by this work.

Our monitor ensures that page tables do not overlap
by storing the last mapped page’s physical address in
the enclave’s metadata. To simplify the monitor, a new
mapping is allowed if its physical address is greater than
that of the last, constraining the OS to map an enclave’s
DRAM pages in monotonically increasing order.

6.2.4 Enclave Code Execution

Sanctum closely follows the threading model of SGX
enclaves. Each CPU core that executes enclave code
uses a thread metadata structure, which is our equivalent
of SGX’s TCS combined with SGX’s State Save Area
(SSA). Thread metadata structures are stored in a DRAM
region dedicated to enclave metadata in order to prevent
a malicious OS from mounting timing attacks against
an enclave by causing AEXes on its threads. Figure 16
shows the lifecycle of a thread metadata structure.

The OS turns a sequence of free pages in a metadata

11

868 25th USENIX Security Symposium USENIX Association

FREE

INITIALIZED RUNNING

free
thread

enter
enclave

release
thread

load
thread

exit
enclave

AEX

resume
thread

ASSIGNED

assign
thread

accept
thread

Figure 16: Enclave thread metadata structure states and
thread-related API calls

region into an uninitialized thread structure via an allocate
thread monitor call. During enclave loading, the OS uses
a load thread monitor call to initialize the thread structure
with data that contributes to the enclave’s measurement.
After an enclave is initialized, it can use an accept thread
monitor call to initialize its thread structure.

The application hosting an enclave starts executing en-
clave code by issuing an enclave enter API call, which
must specify an initialized thread structure. The monitor
honors this call by configuring Sanctum’s hardware exten-
sions to allow access to the enclave’s memory, and then
by loading the program counter and stack pointer registers
from the thread’s metadata structure. The enclave’s code
can return control to the hosting application voluntarily,
by issuing an enclave exit API call, which restores the
application’s PC and SP from the thread state area and
sets the API call’s return value to ok.

When performing an AEX, the security monitor atomi-
cally tests-and-sets the AEX state valid flag in the current
thread’s metadata. If the flag is clear, the monitor stores
the core’s execution state in the thread state’s AEX area.
Otherwise, the enclave thread was resuming from an AEX,
so the monitor does not change the AEX area. When the
host application re-enters the enclave, it will resume from
the previous AEX. This reasoning avoids the complexity
of SGX’s state stack.

If an interrupt occurs while the enclave code is ex-
ecuting, the security monitor’s exception handler per-
forms an AEX, which sets the API call’s return value to
async exit, and invokes the standard interrupt handling
code. After the OS handles the interrupt, the enclave’s
host application resumes execution, and re-executes the
enter enclave API call. The enclave’s thread initialization
code examines the saved thread state, and seeing that the
thread has undergone an AEX, issues a resume thread API
call. The security monitor restores the enclave’s registers
from the thread state area, and clears the AEX flag.

6.2.5 Mailboxes

Sanctum’s software attestation process relies on mail-
boxes, which are a simplified version of SGX’s local attes-
tation mechanism. We could not follow SGX’s approach

empty fullsend message

read message

accept message
accept

message

Figure 17: Mailbox states and security monitor API calls
related to inter-enclave communication

because it relies on key derivation and MAC algorithms,
and our timing attack avoidance policy (§ 6.2.2) states
that the security monitor is not allowed to perform cryp-
tographic operations that use keys.

Each enclave’s metadata area contains an array of mail-
boxes, whose size is specified at enclave creation time,
and covered by the enclave’s measurement. Each mailbox
goes through the lifecycle shown in Figure 17.

An enclave that wishes to receive a message in a mail-
box, such as the signing enclave, declares its intent by
performing an accept message monitor call. The API
call is used to specify the mailbox that will receive the
message, and the identity of the enclave that is expected
to send the message.

The sending enclave, which is usually the enclave wish-
ing to be authenticated, performs a send message call
that specifies the identity of the receiving enclave, and
a mailbox within that enclave. The monitor only deliv-
ers messages to mailboxes that expect them. At enclave
initialization, the expected sender for all mailboxes is an
invalid value (all zeros), so the enclave will not receive
messages until it calls accept message.

When the receiving enclave is notified via an out-of-
band mechanism that it has received a message, it issues
a read message call to the monitor, which moves the
message from the mailbox into the enclave’s memory. If
the API call succeeds, the receiving enclave is assured
that the message was sent by the enclave whose identity
was specified in the accept message call.

Enclave mailboxes are stored in metadata re-
gions (§ 6.2.2), which cannot be accessed by any software
other than the security monitor. This guarantees the pri-
vacy, integrity, and freshness of the messages sent via the
mailbox system.

Our mailbox design has the downside that both the
sending and receiving enclave need to be alive in DRAM
in order to communicate. By comparison, SGX’s local
attestation can be done asynchronously. In return, mail-
boxes do not require any cryptographic operations, and
have a much simpler correctness argument.

6.2.6 Multi-Core Concurrency

The security monitor is highly concurrent, with fine-
grained locks. API calls targeting two different enclaves
may be executed in parallel on different cores. Each

12

USENIX Association 25th USENIX Security Symposium 869

DRAM region has a lock guarding that region’s metadata.
An enclave is guarded by the lock of the DRAM region
holding its metadata. Each thread metadata structure also
has a lock guarding it, which is acquired when the struc-
ture is accessed, but also while the metadata structure
is used by a core running enclave code. Thus, the enter
enclave call acquires a slot lock, which is released by an
enclave exit call or by an AEX.

We avoid deadlocks by using a form of optimistic lock-
ing. Each monitor call attempts to acquire all the locks it
needs via atomic test-and-set operations, and errors with
a concurrent call code if any lock is unavailable.

6.3 Enclave Eviction
General-purpose software can be enclaved without source
code changes, provided that it is linked against a runtime
(e.g., libc) modified to work with Sanctum. Any such
runtime would be included in the TCB.

The Sanctum design allows the operating system to
over-commit physical memory allocated to enclaves, by
collaborating with an enclave to page some of its DRAM
regions to disk. Sanctum does not give the OS visibility
into enclave memory accesses, in order to prevent private
information leaks, so the OS must decide the enclave
whose DRAM regions will be evicted based on other
activity, such as network I/O, or based on a business
policy, such as Amazon EC2’s spot instances.

Once a victim enclave has been decided, the OS asks
the enclave to block a DRAM region (cf. Figure 13),
giving the enclave an opportunity to rearrange data in
its RAM regions. DRAM region management can be
transparent to the programmer if handled by the enclave’s
runtime. The presented design requires each enclave to
always occupy at least one DRAM region, which contains
enclave data structures and the memory management code
described above. Evicting all of a live enclave’s memory
requires an entirely different scheme that is deferred to
future work.

The security monitor does not allow the OS to forcibly
reclaim a single DRAM region from an enclave, as do-
ing so would leak memory access patterns. Instead, the
OS can delete an enclave, after stopping its threads, and
reclaim all its DRAM regions. Thus, a small or short-
running enclave may well refuse DRAM region manage-
ment requests from the OS, and expect the OS to delete
and restart it under memory pressure.

To avoid wasted work, large long-running enclaves
may elect to use demand paging to overcommit their
DRAM, albeit with the understanding that demand paging
leaks page-level access patterns to the OS. Securing this
mechanism requires the enclave to obfuscate its page
faults via periodic I/O using oblivious RAM techniques,
as in the Ascend processor [20], applied at page rather
than cache line granularity, and with integrity verification.

This carries a high overhead: even with a small chance
of paging, an enclave must generate periodic page faults,
and access a large set of pages at each period. Using an
analytic model, we estimate the overhead to be upwards
of 12ms per page per period for a high-end 10K RPM
drive, and 27ms for a value hard drive. Given the number
of pages accessed every period grows with an enclave’s
data size, the costs are easily prohibitive. While SSDs
may alleviate some of this prohibitive overhead, and will
be investigated in future work, currently Sanctum focuses
on securing enclaves without demand paging.

Enclaves that perform other data-dependent communi-
cation, such as targeted I/O into a large database file, must
also use the periodic oblivious I/O to obfuscate their ac-
cess patterns from the operating system. These techniques
are independent of application business logic, and can be
provided by libraries such as database access drivers.

7 Security Argument

Our security argument rests on two pillars: the enclave
isolation enforced by the security monitor, and the guar-
antees behind the software attestation signature. This
section outlines correctness arguments for each of these
pillars.

Sanctum’s isolation primitives protect enclaves from
outside software that attempts to observe or interact with
the enclave software via means outside the interface pro-
vided by the security monitor. We prevent direct attacks
by ensuring that the memory owned by an enclave can
only be accessed by that enclave’s software. More subtle
attacks are foiled by also isolating the structures used to
access the enclave’s memory, such as the enclave’s page
tables and the caches that hold enclave data.

7.1 Protection Against Direct Attacks
The correctness proof for Sanctum’s DRAM isolation can
be divided into two sub-proofs that cover the hardware
and software sides of the system. First, we need to prove
that the page walker modifications described in § 5.2 and
§ 5.3 behave according to their descriptions. Thanks to
the small sizes of the circuits involved, this sub-proof
can be accomplished by simulating the circuits for all
logically distinct input cases. Second, we must prove
that the security monitor configures Sanctum’s extended
page walker registers in a way that prevents direct attacks
on enclaves. This part of the proof is significantly more
complex, but it follows the same outline as the proof for
SGX’s memory access protection presented in [13].

The proof revolves around a main invariant stating that
all TLB entries in every core are consistent with the pro-
gramming model described in § 4. The invariant breaks
down into three cases that match [13], after substituting
DRAM regions for pages.

13

870 25th USENIX Security Symposium USENIX Association

7.2 Protection Against Subtle Attacks
Sanctum also protects enclaves from software attacks that
attempt to exploit side channels to obtain information
indirectly. We focus on proving that Sanctum protects
against the attacks mentioned in § 2, which target the page
fault address and cache timing side-channels.

The proof that Sanctum foils page fault attacks is cen-
tered around the claims that each enclave’s page fault han-
dler and page tables and page fault handler are isolated
from all other software entities on the computer. First,
all the page faults inside an enclave’s EVRANGE are
reported to the enclave’s fault handler, so the OS cannot
observe the virtual addresses associated with the faults.
Second, page table isolation implies that the OS cannot
access an enclave’s page tables and read the access and
dirty bits to learn memory access patterns.

Page table isolation is a direct consequence of the claim
that Sanctum correctly protects enclaves against direct
attacks, which was covered above. Each enclave’s page
tables are stored in DRAM regions allocated to the en-
clave, so no software outside the enclave can access these
page tables.

The proof behind Sanctum’s cache isolation is straight-
forward but tedious, as there are many aspects involved.
We start by peeling off the easier cases, and tackle the
most difficult step of the proof at the end of the section.
Our design assumes the presence of both per-core caches
and a shared LLC, and each cache type requires a sep-
arate correctness argument. Per-core cache isolation is
achieved simply by flushing per-core caches at every tran-
sition between enclave and non-enclave mode. To prove
the correctness of LLC isolation, we first show that en-
claves do not share LLC lines with outside software, and
then we show that the OS cannot indirectly reach into an
enclave’s LLC lines via the security monitor.

Showing that enclaves do not share LLC lines with out-
side software can be accomplished by proving a stronger
invariant that states at all times, any LLC line that can
potentially cache a location in an enclave’s memory can-
not cache any location outside that enclave’s memory. In
steady state, this follows directly from the LLC isolation
scheme in § 5.1, because the security monitor guarantees
that each DRAM region is assigned to exactly one enclave
or to the OS.

Last, we focus on the security monitor, because it is the
only piece of software outside an enclave that can access
the enclave’s DRAM regions. In order to claim that an
enclave’s LLC lines are isolated from outside software,
we must prove that the OS cannot use the security mon-
itor’s API to indirectly modify the state of the enclave’s
LLC lines. This proof is accomplished by considering
each function exposed by the monitor API, as well as
the monitor’s hardware fault handler. The latter is con-
sidered to be under OS control because in a worst case

scenario, a malicious OS could program peripherals to
cause interrupts as needed to mount a cache timing attack.

7.3 Operating System Protection
Sanctum protects the operating system from direct attacks
against malicious enclaves, but does not protect it against
subtle attacks that take advantage of side-channels. Our
design assumes that software developers will transition all
sensitive software into enclaves, which are protected even
if the OS is compromised. At the same time, a honest
OS can potentially take advantage of Sanctum’s DRAM
regions to isolate mutually mistrusting processes.

Proving that a malicious enclave cannot attack the host
computer’s operating system is accomplished by first
proving that the security monitor’s APIs that start exe-
cuting enclave code always place the core in unprivileged
mode, and then proving that the enclave can only access
OS memory using the OS-provided page tables. The first
claim can be proven by inspecting the security monitor’s
code. The second claim follows from the correctness
proof of the circuits in § 5.2 and § 5.3. Specifically, each
enclave can only access memory either via its own page
tables or the OS page tables, and the enclave’s page tables
cannot point into the DRAM regions owned by the OS.

These two claims effectively show that Sanctum en-
claves run with the privileges of their host application.
This parallels SGX, so all arguments about OS security
in [13] apply to Sanctum as well. Specifically, malicious
enclaves cannot DoS the OS, and can be contained using
the mechanisms that currently guard against malicious
user software.

7.4 Security Monitor Protection
The security monitor is in Sanctum’s TCB, so the system’s
security depends on the monitor’s ability to preserve its
integrity and protect its secrets from attackers. The moni-
tor does not use address translation, so it is not exposed
to any attacks via page tables. The monitor also does
not protect itself from cache timing attacks, and instead
avoids making any memory accesses that would reveal
sensitive information.

Proving that the monitor is protected from direct attacks
from a malicious OS or enclave can be accomplished in
a few steps. First, we invoke the proof that the circuits
in § 5.2 and § 5.3, are correct. Second, we must prove
that the security monitor configures Sanctum’s extended
page walker registers correctly. Third, we must prove that
the DRAM regions that contain monitor code or data are
always allocated to the OS.

Since the monitor is exposed to cache timing attacks
from the OS, Sanctum’s security guarantees rely on proofs
that the attacks would not yield any information that the
OS does not already have. Fortunately, most of the secu-

14

USENIX Association 25th USENIX Security Symposium 871

rity monitor implementation consists of acknowledging
and verifying the OS’ resource allocation decisions. The
main piece of private information held by the security
monitor is the attestation key. We can be assured that the
monitor does not leak this key, as long as we can prove
that the monitor implementation only accesses the key
when it is provided to the signing enclave (§ 6.1.2), that
the key is provided via a data-independent memory copy
operation, such as memcpy, and that the attestation key is
only disclosed to the signing enclave.

7.5 The Security of Software Attestation
The security of Sanctum’s software attestation scheme
depends on the correctness of the measurement root and
the security monitor. mroot’s sole purpose is to set up
the attestation chain, so the attestation’s security requires
the correctness of the entire mroot code. The monitor’s
enclave measurement code also plays an essential role in
the attestation process, because it establishes the identity
of the attested enclaves, and is also used to distinguish be-
tween the signing enclave and other enclaves. Sanctum’s
attestation also relies on mailboxes, which are used to se-
curely transmit attestation data from the attested enclave
to the signing enclave.

8 Performance Evaluation

While we propose a high-level set of hardware and soft-
ware to implement Sanctum, we focus our evaluation on
the concrete example of a 4-core RISC-V system gener-
ated by Rocket Chip [29]. Sanctum conveniently isolates
concurrent workloads from one another, so we can exam-
ine its overhead via individual applications on a single
core, discounting the effect of other running software.

8.1 Experiment Design
We use a Rocket-Chip generator modified to model Sanc-
tum’s additional hardware (§ 5) to generate a 4-core 64-bit
RISC-V CPU. Using a cycle-accurate simulator for this
machine, coupled with a custom Sanctum cache hierarchy
simulator, we compute the program completion time for
each benchmark, in cycles, for a variety of DRAM region
allocations. The Rocket chip has an in-order single issue
pipeline, and does not make forward progress on a TLB or
cache miss, which allows us to accurately model a variety
of DRAM region allocations efficiently.

We use a vanilla Rocket-Chip as an insecure baseline,
against which we compute Sanctum’s overheads. To pro-
duce the analysis in this section, we simulated over 250
billion instructions against the insecure baseline, and over
275 billion instructions against the Sanctum simulator.
We compute the completion time for various enclave con-
figurations from the simulator’s detailed event log.

Our cache hierarchy follows Intel’s Skylake [23] server
models, with 32KB 8-way set associative L1 data and
instruction caches, 256KB 8-way L2, and an 8MB 16-
way LLC partitioned into core-local slices. Our cache hit
and miss latencies follow the Skylake caches. We use a
simple model for DRAM accesses and assume unlimited
DRAM bandwidth, and a fixed cycle latency for each
DRAM access. We also omit an evaluation of the on-chip
network and cache coherence overhead, as we do not
make any changes that impact any of these subsystems.

Using the hardware model above, we benchmark the
integer subset of SPECINT 2006 [3] benchmarks (unmod-
ified), specifically perlbench, bzip2, gcc, mcf, gobmk,
hmmer, sjeng, libquantum, h264ref, omnetpp, and
astar base. This is a mix of memory and compute-
bound long-running workloads with diverse locality.

We simulate a machine with 4GB of memory that is
divided into 64 DRAM regions by Sanctum’s cache ad-
dress indexing scheme. Scheduling each benchmark on
Core 0, we run it to completion, while the other cores are
idling. While we do model its overheads, we choose not
to simulate a complete Linux kernel, as doing so would in-
vite a large space of parameters of additional complexity.
To this end, we modify the RISC-V proto kernel [48] to
provide the few services used by our benchmarks (such as
filesystem io), while accounting for the expected overhead
of each system call.

8.2 Cost of Added Hardware
Sanctum’s hardware changes add relatively few gates
to the Rocket chip, but do increase its area and power
consumption. Like SGX, we avoid modifying the core’s
critical path: while our addition to the page walker (as
analyzed in the next section) may increase the latency of
TLB misses, it does not increase the Rocket core’s clock
cycle, which is competitive with an ARM Cortex-A5 [29].

As illustrated at the gate level in Figures 8 and 9, we es-
timate Sanctum to add to Rocket hardware 500 (+0.78%)
gates and 700 (+1.9%) flip-flops per core. Precisely, 50
gates for cache index calculation, 1000 gates and 700 flip-
flops for the extra address page walker configuration, and
400 gates for the page table entry transformations. DMA
filtering requires 600 gates (+0.8%) and 128 flip-flops
(+1.8%) in the uncore. We do not make any changes to
the LLC, and exclude it from the percentages above (the
LLC generally accounts for half of chip area).

8.3 Added Page Walker Latency
Sanctum’s page table entry transformation logic is de-
scribed in § 5.3, and we expect it can be combined with
the page walker FSM logic within a single clock cycle.

Nevertheless, in the worst case, the transformation
logic would add a pipeline stage between the L1 data

15

872 25th USENIX Security Symposium USENIX Association

%
 c

om
pl

et
io

n
tim

e
in

cr
ea

se
ov

er
 in

se
cu

re
 b

as
el

in
e

hmmer omnetpp sjeng perlbench h264ref bzip2
libquantum astar gcc gobmk mcf

0
%

4
%

8
%

12
 % overhead due to reduced LLC

page miss overhead
enclave enter/exit overhead
overhead due to private cache flushes

Figure 18: Detail of enclave overhead with a DRAM
region allocation of 1/4 of LLC sets.

cache and the page walker. This logic is small and com-
binational, and significantly simpler than the ALU in the
core’s execute stage. In this case, every memory fetch
issued by the page walker would experience a 1-cycle
latency, which adds 3 cycles of latency to each TLB miss.

The overheads due to additional cycles of TLB miss
latency are negligible, as quantified in Figure 18 for
SPECINT benchmarks. All TLB-related overheads con-
tribute less than 0.01% slowdown relative to completion
time of the insecure baseline. This overhead is insignif-
icant relative to the overheads of cache isolation: TLB
misses are infrequent and relatively expensive, several
additional cycles makes little difference.

8.4 Security Monitor Overhead
Invoking Sanctum’s security monitor to load code into an
enclave adds a one-time setup cost to each isolated pro-
cess, relative to running code without Sanctum’s enclave.
This overhead is amortized by the duration of the compu-
tation, so we discount it for long-running workloads.

Entering and exiting enclaves is more expensive than
hardware context switches: the security monitor must
flush TLBs and L1 caches to avoid leaking private infor-
mation. Given an estimated cycle cost of each system
call in a Sanctum enclave, and in an insecure baseline,
we show the modest overheads due to enclave context
switches in Figure 18. Moreover, a sensible OS is ex-
pected to minimize the number of context switches by
allocating some cores to an enclave and allowing them
to execute to completion. We therefore also consider this
overhead to be negligible for long-running computations.

8.5 Overhead of DRAM Region Isolation
The crux of Sanctum’s strong isolation is caching DRAM
regions in distinct sets. When the OS assigns DRAM re-
gions to an enclave, it confines it to a part of the LLC. An
enclaved thread effectively runs on a machine with fewer
LLC sets, impacting its performance. Note, however, that
Sanctum does not partition private caches, so a thread can
utilize its core’s entire L1/L2 caches and TLB.

%
 c

om
pl

et
io

n
tim

e
in

cr
ea

se
ov

er
 in

se
cu

re
 b

as
el

in
e

hmmer astar sjeng h264ref gcc bzip2
libquantum omnetpp gobmk perlbench mcf

0 % 0 % 0 % 0.1 % 0.6 %
2.2 % 1.6 % 2 % 2.8 %

13.4 %
11.2 %

0
%

5
%

10
 %

15
 %

20
 % enclave with entire LLC

enclave with 1/2 of LLC sets
enclave with 1/4 of LLC sets
enclave with 1/8 of LLC sets

Figure 19: Overhead of enclaves of various size relative
to an ideal insecure baseline.

Figure 19 shows the completion times of the SPECINT
workloads, each normalized to the completion time of
the same benchmark running on an ideal insecure OS
that allocates the entire LLC to the benchmark. Sanctum
excels at isolating compute-bound workloads operating
on sensitive data. SPECINT’s large, multi-phase work-
loads heavily exercise the entire memory hierarchy, and
therefore paint an accurate picture of a worst case for our
system. mcf, in particular, is very sensitive to the avail-
able LLC size, so it incurs noticeable overheads when
being confined to a small subset of the LLC. Figure 18
further underlines that the majority of Sanctum’s enclave
overheads stem from a reduction in available LLC sets.

We consider mcf’s 23% decrease in performance when
limited to 1/8th of the LLC to be a very pessimistic view
of our system’s performance, as it explores the case where
the enclave uses a quarter of CPU power (a core), but
1/8th of the LLC. For a reasonable allocation of 1/4 of
DRAM regions (in a 4-core system), enclaves add under
3% overhead to most memory-bound benchmarks (with
the exception of mcf and bzip, which rely on a very large
LLC), and do not encumber compute-bound workloads.

9 Conclusion

Sanctum shows that strong provable isolation of concur-
rent software modules can be achieved with low overhead.
This approach provides strong security guarantees against
an insidious software threat model including cache timing
and memory access pattern attacks. With this work, we
hope to enable a shift in discourse in secure hardware
architecture away from plugging specific security holes
to a principled approach to eliminating attack surfaces.

Acknowledgements: Funding for this research was
partially provided by the National Science Foundation
under contract number CNS-1413920.

References
[1] Linux kernel: CVE security vulnerabilities, versions

and detailed reports. http://www.cvedetails.com/

16

USENIX Association 25th USENIX Security Symposium 873

product/47/Linux-Linux-Kernel.html?vendor_

id=33, 2014. [Online; accessed 27-April-2015].

[2] XEN: CVE security vulnerabilities, versions and detailed
reports. http://www.cvedetails.com/product/

23463/XEN-XEN.html?vendor_id=6276, 2014. [On-
line; accessed 27-April-2015].

[3] SPEC CPU 2006. Tech. rep., Standard Performance Eval-
uation Corporation, May 2015.

[4] Xen project software overview. http://wiki.xen.org/
wiki/Xen_Project_Software_Overview, 2015. [On-
line; accessed 27-April-2015].

[5] ANATI, I., GUERON, S., JOHNSON, S. P., AND SCAR-
LATA, V. R. Innovative technology for CPU based attesta-
tion and sealing. In HASP (2013).

[6] ANTHONY, S. Who actually develops
linux? the answer might surprise you.
http://www.extremetech.com/computing/

175919-who-actually-develops-linux, 2014.
[Online; accessed 27-April-2015].

[7] BANESCU, S. Cache timing attacks. [Online; accessed
26-January-2014].

[8] BONNEAU, J., AND MIRONOV, I. Cache-collision timing
attacks against AES. In Cryptographic Hardware and
Embedded Systems-CHES 2006. Springer, 2006, pp. 201–
215.

[9] BRUMLEY, B. B., AND TUVERI, N. Remote timing
attacks are still practical. In Computer Security–ESORICS.
Springer, 2011.

[10] BRUMLEY, D., AND BONEH, D. Remote timing attacks
are practical. Computer Networks (2005).

[11] CHEN, H., MAO, Y., WANG, X., ZHOU, D., ZEL-
DOVICH, N., AND KAASHOEK, M. F. Linux kernel vul-
nerabilities: State-of-the-art defenses and open problems.
In Asia-Pacific Workshop on Systems (2011), ACM.

[12] CHHABRA, S., ROGERS, B., SOLIHIN, Y., AND

PRVULOVIC, M. SecureME: a hardware-software ap-
proach to full system security. In international conference
on Supercomputing (ICS) (2011), ACM.

[13] COSTAN, V., AND DEVADAS, S. Intel SGX explained.
Cryptology ePrint Archive, Report 2016/086, Feb 2016.

[14] DAVENPORT, S. SGX: the good, the bad and the down-
right ugly. Virus Bulletin (2014).

[15] DOMNITSER, L., JALEEL, A., LOEW, J., ABU-
GHAZALEH, N., AND PONOMAREV, D. Non-
monopolizable caches: Low-complexity mitigation of
cache side channel attacks. Transactions on Architecture
and Code Optimization (TACO) (2012).

[16] DUFLOT, L., ETIEMBLE, D., AND GRUMELARD, O. Us-
ing CPU system management mode to circumvent operat-
ing system security functions. CanSecWest/core06 (2006).

[17] DUNN, A., HOFMANN, O., WATERS, B., AND WITCHEL,
E. Cloaking malware with the trusted platform module.
In USENIX Security Symposium (2011).

[18] EMBLETON, S., SPARKS, S., AND ZOU, C. C. SMM
rootkit: a new breed of os independent malware. Security
and Communication Networks (2010).

[19] EVTYUSHKIN, D., ELWELL, J., OZSOY, M., PONO-
MAREV, D., ABU GHAZALEH, N., AND RILEY, R. Iso-X:
A flexible architecture for hardware-managed isolated exe-
cution. In Microarchitecture (MICRO) (2014), IEEE.

[20] FLETCHER, C. W., DIJK, M. V., AND DEVADAS, S. A
secure processor architecture for encrypted computation
on untrusted programs. In Workshop on Scalable Trusted
Computing (2012), ACM.

[21] GOLDREICH, O. Towards a theory of software protec-
tion and simulation by oblivious RAMs. In Theory of
Computing (1987), ACM.

[22] GRAWROCK, D. Dynamics of a Trusted Platform: A
building block approach. Intel Press, 2009.

[23] INTEL CORPORATION. Intel R© 64 and IA-32 Architectures
Optimization Reference Manual, Sep 2014. Reference no.
248966-030.

[24] KESSLER, R. E., AND HILL, M. D. Page placement
algorithms for large real-indexed caches. Transactions on
Computer Systems (TOCS) (1992).

[25] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H.,
LEE, D., WILKERSON, C., LAI, K., AND MUTLU, O.
Flipping bits in memory without accessing them: An ex-
perimental study of DRAM disturbance errors. In ISCA
(2014), IEEE Press.

[26] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRON-
ICK, J., COCK, D., DERRIN, P., ELKADUWE, D., EN-
GELHARDT, K., KOLANSKI, R., NORRISH, M., ET AL.
seL4: Formal verification of an OS kernel. In SIGOPS
symposium on Operating systems principles (2009), ACM.

[27] KOCHER, P. C. Timing attacks on implementations of
diffie-hellman, RSA, DSS, and other systems. In Advances
in Cryptology (CRYPTO) (1996), Springer.

[28] KONG, J., ACIICMEZ, O., SEIFERT, J.-P., AND ZHOU,
H. Deconstructing new cache designs for thwarting soft-
ware cache-based side channel attacks. In workshop on
Computer security architectures (2008), ACM.

[29] LEE, Y., WATERMAN, A., AVIZIENIS, R., COOK, H.,
SUN, C., STOJANOVIC, V., AND ASANOVIC, K. A 45nm
1.3 ghz 16.7 double-precision GFLOPS/W RISC-V pro-
cessor with vector accelerators. In European Solid State
Circuits Conference (ESSCIRC) (2014), IEEE.

17

874 25th USENIX Security Symposium USENIX Association

[30] LIE, D., THEKKATH, C., MITCHELL, M., LINCOLN, P.,
BONEH, D., MITCHELL, J., AND HOROWITZ, M. Ar-
chitectural support for copy and tamper resistant software.
SIGPLAN Notices (2000).

[31] LIN, J., LU, Q., DING, X., ZHANG, Z., ZHANG, X.,
AND SADAYAPPAN, P. Gaining insights into multicore
cache partitioning: Bridging the gap between simulation
and real systems. In HPCA (2008), IEEE.

[32] LIU, C., HARRIS, A., MAAS, M., HICKS, M., TIWARI,
M., AND SHI, E. GhostRider: A Hardware-Software
System for Memory Trace Oblivious Computation. In
ASPLOS (2015).

[33] LIU, F., GE, Q., YAROM, Y., MCKEEN, F., ROZAS, C.,
HEISER, G., AND LEE, R. B. CATalyst: Defeating last-
level cache side channel attacks in cloud computing. In
HPCA (Mar 2016).

[34] LIU, F., AND LEE, R. B. Random fill cache architecture.
In Microarchitecture (MICRO) (2014), IEEE.

[35] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE,
R. B. Last-level cache side-channel attacks are practical.
In Security and Privacy (2015), IEEE.

[36] MCKEEN, F., ALEXANDROVICH, I., BERENZON, A.,
ROZAS, C. V., SHAFI, H., SHANBHOGUE, V., AND SAV-
AGAONKAR, U. R. Innovative instructions and software
model for isolated execution. HASP (2013).

[37] OREN, Y., KEMERLIS, V. P., SETHUMADHAVAN, S.,
AND KEROMYTIS, A. D. The spy in the sandbox
– practical cache attacks in javascript. arXiv preprint
arXiv:1502.07373 (2015).

[38] RUTKOWSKA, J. Thoughts on intel’s upcoming software
guard extensions (part 2). Invisible Things Lab (2013).

[39] RUTKOWSKA, J., AND WOJTCZUK, R. Preventing and
detecting xen hypervisor subversions. Blackhat Briefings
USA (2008).

[40] SANCHEZ, D., AND KOZYRAKIS, C. The ZCache: De-
coupling ways and associativity. In Microarchitecture
(MICRO) (2010), IEEE.

[41] SANCHEZ, D., AND KOZYRAKIS, C. Vantage: scalable
and efficient fine-grain cache partitioning. In SIGARCH
Computer Architecture News (2011), ACM.

[42] SEABORN, M., AND DULLIEN, T. Exploiting the
DRAM rowhammer bug to gain kernel privileges. http:
//googleprojectzero.blogspot.com/2015/03/

exploiting-dram-rowhammer-bug-to-gain.html,
Mar 2015. [Online; accessed 9-March-2015].

[43] STEFANOV, E., VAN DIJK, M., SHI, E., FLETCHER,
C., REN, L., YU, X., AND DEVADAS, S. Path oram:
An extremely simple oblivious ram protocol. In SIGSAC
Computer & communications security (2013), ACM.

[44] SUH, G. E., CLARKE, D., GASSEND, B., VAN DIJK,
M., AND DEVADAS, S. AEGIS: architecture for tamper-
evident and tamper-resistant processing. In international
conference on Supercomputing (ICS) (2003), ACM.

[45] TAYLOR, G., DAVIES, P., AND FARMWALD, M. The TLB
slice - a low-cost high-speed address translation mecha-
nism. SIGARCH Computer Architecture News (1990).

[46] WANG, Z., AND LEE, R. B. New cache designs for
thwarting software cache-based side channel attacks. In In-
ternational Symposium on Computer Architecture (ISCA)
(2007).

[47] WATERMAN, A., LEE, Y., AVIZIENIS, R., PATTERSON,
D. A., AND ASANOVIC, K. The RISC-V instruction
set manual volume II: Privileged architecture version 1.7.
Tech. Rep. UCB/EECS-2015-49, EECS Department, Uni-
versity of California, Berkeley, May 2015.

[48] WATERMAN, A., LEE, Y., AND CELIO, CHRISTOPHER,
E. A. RISC-V proxy kernel and boot loader. Tech. rep.,
EECS Department, University of California, Berkeley,
May 2015.

[49] WATERMAN, A., LEE, Y., PATTERSON, D. A., AND

ASANOVIC, K. The RISC-V instruction set manual,
volume i: User-level ISA, version 2.0. Tech. Rep.
UCB/EECS-2014-54, EECS Department, University of
California, Berkeley, May 2014.

[50] WECHEROWSKI, F. A real SMM rootkit: Reversing and
hooking BIOS SMI handlers. Phrack Magazine (2009).

[51] WOJTCZUK, R., AND RUTKOWSKA, J. Attacking intel
trusted execution technology. Black Hat DC (2009).

[52] WOJTCZUK, R., AND RUTKOWSKA, J. Attacking SMM
memory via intel CPU cache poisoning. Invisible Things
Lab (2009).

[53] WOJTCZUK, R., AND RUTKOWSKA, J. Attacking intel
TXT via SINIT code execution hijacking, 2011.

[54] WOJTCZUK, R., RUTKOWSKA, J., AND TERESHKIN,
A. Another way to circumvent intel R© trusted execution
technology. Invisible Things Lab (2009).

[55] XU, Y., CUI, W., AND PEINADO, M. Controlled-channel
attacks: Deterministic side channels for untrusted operat-
ing systems. In Oakland (May 2015), IEEE.

[56] YAROM, Y., AND FALKNER, K. E. Flush+reload: a high
resolution, low noise, l3 cache side-channel attack. IACR
Cryptology ePrint Archive (2013).

[57] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH,
R., ORMANDY, T., OKASAKA, S., NARULA, N., AND

FULLAGAR, N. Native client: A sandbox for portable,
untrusted x86 native code. In Security and Privacy (2009),
IEEE.

18

USENIX Association 25th USENIX Security Symposium 875

Ariadne: A Minimal Approach to State Continuity

Raoul Strackx
iMinds-DistriNet, KU Leuven,

3001 Leuven, Belgium
raoul.strackx@cs.kuleuven.be

Frank Piessens
iMinds-DistriNet, KU Leuven,

3001 Leuven, Belgium
frank.piessens@cs.kuleuven.be

Abstract
Protected-module architectures such as Intel SGX pro-
vide strong isolation guarantees to sensitive parts of ap-
plications while the system is up and running. Unfor-
tunately systems in practice crash, go down for reboots
or lose power at unexpected moments in time. To deal
with such events, additional security measures need to
be taken to guarantee that stateful modules will either re-
cover their state from the last stored state, or fail-stop
on detection of tampering with that state. More specifi-
cally, protected-module architectures need to provide a
security primitive that guarantees that (1) attackers can-
not present a stale state as being fresh (i.e. rollback pro-
tection), (2) once a module accepted a specific input, it
will continue execution on that input or never advance,
and (3) an unexpected loss of power must never leave the
system in a state from which it can never resume execu-
tion (i.e. liveness guarantee).

We propose Ariadne, a solution to the state-continuity
problem that achieves the theoretical lower limit of re-
quiring only a single bit flip of non-volatile memory per
state update. Ariadne can be easily adapted to the plat-
form at hand. In low-end devices where non-volatile
memory may wear out quickly and the bill of materials
(BOM) needs to be minimized, Ariadne can take optimal
use of non-volatile memory. On SGX-enabled proces-
sors, Ariadne can be readily deployed to protect stateful
modules (e.g., as used by Haven and VC3).

1 Introduction

Computing devices have become ever more diverse,
ranging from cloud computing platforms and super com-
puters to embedded systems used in Internet of Things
(IoT) applications. The familiar multi-level approach
to security where a more privileged layer has full con-
trol over software running on top, is ill-suited for many
of these applications; clients of cloud providers may

fear rogue employees or government subpoenas targeting
their provider that may reside in a different country [7].
On embedded devices paging and privilege layers may
be too power/energy expensive to be applied.

Protected-module architectures (PMAs) take another,
non-hierarchical approach. After almost a decade of re-
search [5,6,8,9,11–13,22,27,28,30,31,41,45,48,49], two
key primitives have emerged: isolation and key deriva-
tion. The isolation mechanism ensures that a protected
module is completely isolated from any other piece of
code running on the system, including other protected
modules. Only when the instruction pointer points to
a memory location within the module, can a module’s
memory regions be accessed. All other attempts from
different locations are blocked by the architecture. Only
a module’s entry points are an exception and can be ac-
cessed from any location. Once an entry point is called,
the instruction pointer points within the module’s mem-
ory region and it’s secrets can be accessed.

A key derivation mechanism provides a unique, un-
forgeable key for each protected module. It is usually de-
rived from a platform specific key – that can only be ac-
cessed directly by the platform itself – and the measure-
ment of the module when it was created. This implies
that only identical modules can derive the same crypto-
graphic key. An attacker modifying the module before it
was properly isolated, will cause a variation in the mod-
ule’s measurement and eventually in the cryptographic
key that was derived. This makes it ideal to seal data to a
specific module. Data can be integrity and confidential-
ity protected by the derived key, and stored on disk. As
only the identical module can derive the same key, the
stored sensitive data cannot be accessed by an attacker.

Related work showed that these minimal require-
ments are small enough to be implemented directly in
hardware [31], even for embedded devices [8, 12, 22,
30]. With the arrival of Intel Skylake CPUs in August
2015, equipped with Intel Software Guard eXtensions
(SGX) [3, 18, 29], PMAs are now available on commod-

876 25th USENIX Security Symposium USENIX Association

ity devices.
In parallel, research was conducted on how the secu-

rity properties provided by PMAs can be leveraged to
provide provable security guarantees. Agten et al. [2]
and others in subsequent work [1, 33, 34] showed that by
adding limited security checks at runtime, fully-abstract
compilation can be guaranteed; all security properties
that hold at source-code level, can be guaranteed at
machine-code level too. This makes reasoning about se-
curity properties much easier.

Unfortunately an important security requirement has
received little attention. Many security properties only
hold while the system is up and running. In practice ma-
chines crash, go down for reboots and lose power at un-
expected moments in time. To account for such events,
stateful protected modules must securely store their state.
Parno et al. [32] showed that this is a non-trivial task.
Sealing a module’s state before it is handed over to the
untrusted operating system and written to disk, is insuf-
ficient. Additional security measures need to be taken to
ensure that: (1) a protected module’s state can never be
rolled back to a previous, stale state, (2) once a module
accepted input, it must either (eventually) finish its ex-
ecution or never advance at all and (3) unexpected loss
of power at any moment in time should never result in a
system that cannot be resumed after reboot.

State continuity solutions must take the platform spe-
cifications and use case at hand into account. Existing
solutions [32,46] rely on an uninterruptible power source
(UPS) or risk wearing out non-volatile memory. Such ap-
proaches are acceptable in higher-end applications (e.g.,
in a cloud setting [7, 40]). On other platforms [35, 36]
a UPS may not be available on commercial off-the-shelf
(COTS) devices and may lead to significant increases in
the bill-of-materials (BOM). In such cases wear and tear
on non-volatile memory must be minimized to increase
longevity of the device. We present a proven-secure so-
lution to state-continuity and show that it can be applied
on a large range of platforms.

More specifically, we make following contributions:

• We present Ariadne, a solution to the state-
continuity problem that achieves the mathematical
lower-bound of only a single bit flip per state up-
date.

• We show that Ariadne can be easily adapted to re-
duce wear on EEPROM/NAND flash memory.

• We demonstrate that Ariadne can be applied imme-
diately on the SGX/ME platform, without any hard-
ware modifications. This is particularly important
as SGX modules (called enclaves) are destroyed
when the system is suspended or hibernated. In
addition we compare the use of the Intel Manage-

ment Engine (ME) to the TPM chip to store fresh-
ness information and show that no clear winner ex-
ists; much depends on the use case and the available
hardware.

The remainder of this paper is structured as follows.
In the next section we discuss our attack model and the
security properties we need to provide in detail. Sec-
tion 3 builds upon related work and shows that the state-
continuity problem can be easily reduced to that of state-
continuous storage. Ariadne’s algorithm and its opti-
mizations are discussed in Section 4. We evaluate its
security in Section 5. Two possible implementations are
discussed and evaluated in Section 6. Finally we discuss
related work and conclude in Sections 7 and 8.

2 Problem Definition

2.1 Attack Model
Our goal is to provide state-continuity support to
protected-module architectures, without (significantly)
increasing their attack surface. As such, we assume the
following. First, an attacker is able to compromise the
complete (untrusted) software stack. As untrusted oper-
ating system services are used to store and retrieve mod-
ule states, this implies that these states can be replayed.

Second, an attacker is able to halt execution at any mo-
ment in time because she has complete control over the
system’s power supply, or because she can launch other
attacks leading to similar results. Especially Intel SGX
is vulnerable to such attacks. To protect the system from
malicious or badly behaving enclaves, execution control
is returned to the kernel whenever an interrupt occurs
while an enclave is executing. Regardless of how such
attacks are executed, we will refer to them as “power-
interruption attacks”.

2.2 Security Properties
In order to build a secure and reliable system, it is
paramount that we are able to provide three security
properties. First, we need to provide rollback preven-
tion; an attacker must not be able to provide a stale state
of a module and have it accepted as being fresh. Espe-
cially in DRM/ERM contexts such security guarantees
are important. Consider as an example a document that
should only be printed a limited number of times. Such
limitations can be guaranteed easily by first checking and
decrementing a monotonic counter before the document
is printed.

Second, a module’s execution needs to be continuous.
Once a module accepted input, it needs to eventually fin-
ish its execution based on that input and output all com-

2

USENIX Association 25th USENIX Security Symposium 877

puted results, or it must never advance at all. This prop-
erty is related to rollback-prevention, but is much stricter.
Rollback-prevention may guarantee for example that an
X509 certificate authority (CA) does not provide two dif-
ferent certificates with the same serial number. But in
practice it is also important that every certificate is ac-
counted for; for every serial number the CA should be
able to prove which (if any) unique certificate it signed.
Failure to do so may break trust [17] that it did not pro-
vide rogue certificates.

Third, we must also be able to guarantee liveness of
the system. Unexpected crashes or loss of power at any
moment in time, must not result in a system that will
never be able to recover. Note that this is not an availabil-
ity guarantee. We only consider interrupts in execution
that may occur even if the system is not under attack. We
cannot guarantee availability: a kernel-level attacker can
easily prevent a system from ever resuming its previous
state by erasing the fresh state from disk, enter an endless
crash-reboot cycle, or erasing the system’s boot image.

3 Background: State-Continuous Storage
is Sufficient

Related work [32, 46] already showed that the state-
continuity problem can be reduced to that of state-
continuous storage. We take the same approach. We
first introduce libariadne, a library providing state-
continuous storage in Section 3.1. Sections 3.2 and 3.3
discuss how this library should be used and introduce a
running example.

3.1 libariadne’s Interface
We provide programmers with the libariadne library
that can be linked with a protected module. It provides
an interface of three functions.

The void store state(Blob *blob, String

f format) function stores the provided data in blob

in a file on disk. To enable easy recovery of the fresh
state, we require that f format is a format string which
includes an integer conversion specifier (i.e., “%i”). The
library will internally replace the conversion specifier
with the value of a monotonic counter. Note that this
is only for practical reasons, an attacker changing the
filename may prevent the module from ever being
resumed, but it will never result in a rollback attack.

The Blob *retrieve state(String f format

) function will attempt to read a file with a matching
filename, verify its integrity and freshness and return its
content. When this verification step fails for any reason
NULL is returned.

In case an attacker deletes the fresh data from disk
– or simply when the hard drive got damaged and

needed replacement – the fresh data is permanently
lost. The void purge state(Blob *init, String

format) function can resolve the situation by allow-
ing the programmer to specify an initial, public state of
the module. As this results in a loss of any previously
stored sensitive data, this operation does not violate state
continuity.

3.2 Security Considerations of the
libariadne Library

With libariadne providing state-continuous storage,
protected modules writers can easily guarantee rollback
prevention and continuous execution [32,46] by ensuring
that modules adhere to two principles:
Requirement 1: Store Input Before Processing Before
processing any input, protected modules must store their
current state, with the received input and called entry
point.1

Requirement 2: Only Deterministic Protected Mod-
ules Any source of non-determinism (e.g., rdrand in-
structions) needs to be considered input, and thus fol-
lowing Requirement 1 stored before being used.

These requirements ensure that when a protected-
module is interrupted during execution (e.g., due to a
power failure), it will restart the computation based on
the same input when the module is resumed. Since mod-
ules are deterministic, it will either reach an identical
state as when power was lost, or its execution is inter-
rupted again before it reaches that state.

3.3 Running Example: A PIN-Protected
Secret

Consider a module that protects access to a secret. Only
when a user presents a valid PIN, will the secret be re-
turned. To mitigate brute-force attacks, we need to be
able to guarantee that a user/attacker can make at most
three failed attempts before being locked out indefinitely.

The implementation of the module is presented in list-
ing 1. Whenever the module is loaded in memory, the
on load function is called implicitly, and an attempt
is made to retrieve the last stored state (line 8). If
libariadne’s retrieve state function finds a freshly
stored file, the module’s state is restored and execution
of the last called entry point is restarted. Eventually the
module will end up in the same state as when the module
was interrupted.

If on the other hand no matching file can be found, it
is corrupted, or it is stale, retrieve state will return

1Alternatively we could have opted to state-continuously store the
state only right before the module returns output. Unfortunately this is
hard in practice as any sources of output need to be considered (e.g.,
calls to unprotected memory, and timing and page-fault channels [59]).

3

878 25th USENIX Security Symposium USENIX Association

1#include <libariadne/interface.h>
2

3static int tries left;
4static String pin;
5static String secret;
6

7void on load(void) {
8 Blob ∗blob = retrieve state(”state %i.pkg”);
9

10 if (blob != NULL){
11 // restart computation using state & input in blob
12 ...
13 } else
14 reset();
15}
16

17void entry point reset(void) {
18 Blob ∗blob = new Blob(&reset || tries left || pin ||

secret);
19 purge state(blob, ”state %i.pkg”);
20 pin = ”0000”;
21 secret = ”publicly−known secret”;
22 tries left = 3;
23}
24

25String entry point get secret(String p) {
26 Blob ∗blob = new Blob(&get secret || p || tries left ||

pin || secret);
27 store state(blob, ”state %i.pkg”);
28

29 if (tries left <= 0)
30 return ”Locked out”;
31

32 if (pin == p) {
33 tries left = 3;
34 return secret;
35 } else {
36 −−tries left;
37 return ”Incorrect PIN”;
38 }
39}
40

41bool entry point set pin(String p old, String p new){...}
42bool entry point set secret(String p, String s new){...}

Listing 1: A running example: A PIN-protected secret.
The || operator is used to denote concatenation.

NULL. It is up to the module writers to handle such sit-
uations. In this case the module is reset to a known
good initial state (line 14), at the cost of losing the pro-
tected secret indefinitely. The same reset entry point
can be called when the user exhausted her 3 access at-
tempts. Note that the reset function stores the previous
tries left, pin and secret within the created blob.
While this is not required given that the function will al-

blob cntr MAC
encrypted

Figure 1: Layout of a package. A module’s state and
input is confidentiality and integrity protected. The en-
closed cntr value enables Ariadne to determine fresh-
ness.

ways set these variables to a known-good value, it does
not enable an avenue of attack; Ariadne will always en-
sure that the reset function will be called upon recov-
ery.

When on load successfully retrieved and resumed the
fresh state, the user can attempt to access the secret by
calling the get secret entry point and providing it with
a PIN. When she hasn’t exhausted her number of guesses
yet, the provided PIN p is verified (line 32). When the
correct PIN is provided, the tries left variable is re-
set and the secret is returned. Otherwise tries left is
decremented and an error string is returned. The entry
points set pin and set secret – offering the obvious
functionality to the user – use identical security measures
to protect against brute-force attacks.

4 Ariadne

We describe Ariadne in three steps. In Section 4.1 we
provide a scheme for state-continuous storage based on
a monotonic counter. In Sections 4.2 and 4.3 we propose
alternative counter encodings that will lead to a minimal
approach to state continuity.

We will only focus on state-continuity guarantees for
a single module. Related work [32, 46] showed that sup-
port for an unlimited amount of modules can be added
easily by (1) using a single state-continuous module to
provide secure, state-continuous storage for other mod-
ules and (2) inter-module communication. For complete-
ness, we elaborate in Appendix B.

4.1 State-Continuity based on a Monotonic
Counter

Guaranteeing state continuity based only on a single
monotonic counter to keep track of the fresh state, is a
hard problem. Developers of protected modules may be
tempted to re-use solutions borrowed from anti-replay
security measures, but these are flawed.

Strawman Solutions Generally two approaches are
considered. In one approach the monotonic counter is
incremented first. Afterwards, the state of the module
is confidentiality protected, appended with the counter

4

USENIX Association 25th USENIX Security Symposium 879

value and the whole is integrity protected. Figure 1
displays the resulting package graphically. When the
system crashes, only the package with an encapsulated
counter value equal to the monotonic counter is accepted
as being fresh. This approach has the obvious problem
that a crash before the new package was written to disk,
prevents the system from recovering; liveness cannot be
guaranteed.

Alternatively, first storing the package with the next
counter value before the monotonic counter is incre-
mented also fails. Repeated crashes before the mono-
tonic counter was incremented, enables the creation of
multiple packages with the same counter values but dif-
ferent user input. This enables dictionary-style attacks
and thus breaks rollback prevention and continuity guar-
antees. We elaborate on both attacks in Appendix A.

Key Observations Ariadne relies on two important ob-
servations. First, the isolation guarantees of protected
module architectures ensure that an attacker cannot jump
within the middle of a module. During execution we are
thus able to assemble guarantees that may not hold when
power is lost unexpectedly.

Second, an attacker is extremely restricted in the valid
packages she can get access to. The MAC included in the
package prevents her from crafting her own packages, or
modifying existing ones. To ensure liveness, we need
to write new packages to disk before incrementing the
monotonic counter. An attacker can abuse this behavior
by crashing the system before the counter is incremented.
But this implies that at any moment in time, she has at
most access to packages with an enclosed counter value
smaller than one increment of the monotonic counter.

Ariadne’s key insight is that during recovery from a
crash, we need to store the fresh package and incre-
ment the monotonic counter twice before the encapsu-
lated state is resumed.

A Secure Solution Let’s re-use the PIN-protected
module to describe our solution. Assume that the mod-
ule is up and running. When a user requests access to
the secret by calling get secret (listing 1, line 25), the
input and state of the module is placed in a new blob and
the store state function is called. Listing 2 displays
its implementation. To ensure liveness, a new package is
created with the next counter value and stored on disk.
Finally the monotonic counter is incremented.

When the module needs to be re-loaded in memory,
its on load function is called implicitly (listing 1, line
7) and the retrieve state library function is called to
retrieve its fresh state. A package is read from disk and
only accepted as being fresh iff its MAC value is verified
successfully and its enclosed counter value matches with
the value of the monotonic counter (listing 2, line 13-19).

1#include <libariadne/interface.h>
2

3void store state(Blob ∗blob, String f format){
4 Package ∗pkg = create pkg(blob, hwcntr.value() + 1)
5 hdd.write(pkg, f format, hwcntr.value() + 1);
6 hwcntr.inc();
7}
8

9Blob ∗retrieve state(String f format){
10 Package ∗pkg;
11 Blob ∗blob;
12

13 pkg = hdd.read(f format, hwcntr.value());
14

15 if (pkg == NULL || !auth(pkg, get mac key()))
16 return NULL;
17

18 if (pkg−>cntr != hwcntr.value())
19 return NULL;
20

21 blob = decrypt(pkg, get enc key());
22

23 // ∀pkg ∈ hdd : pkg−> counter ≤ hwcntr.value()+1
24 pkg = create pkg(blob, hwcntr.value() + 1);
25 hdd.write(pkg, f format, hwcntr.value() + 1);
26 hwcntr.inc();
27

28 // ∀pkg ∈ hdd : pkg−> counter ≤ hwcntr.value()
29 pkg = create pkg(blob, hwcntr.value() + 1);
30 hdd.write(pkg, f format, hwcntr.value() + 1);
31 hwcntr.inc();
32

33 // ∀pkg ∈ hdd : pkg−> counter ≤ hwcntr.value()
34 // ∀pkg ∈ hdd : pkg−> counter = hwcntr.value()→

pkg−> contents = blob
35 return blob;
36}
37

38void purge state(Blob ∗ init blob, String f format){
39 hwcntr.inc();
40

41 Package ∗pkg = create pkg(blob, hwcntr.value() + 1);
42 hdd.write(pkg, f format, hwcntr.value() + 1);
43 hwcntr.inc();
44}

Listing 2: Ariadne: State-Continuity based on a
monotonic counter

Now that we determined that the package read from
disk is fresh, we can resume the execution of the mod-
ule. But before doing so, we need to guarantee that no
other packages exist with the same counter value. We al-
ready observed that an attacker may have packages with
an encapsulated counter value of one increment larger
than the monotonic counter. Incrementing the monotonic
counter twice will thus guarantee that all attacker’s pack-

5

880 25th USENIX Security Symposium USENIX Association

ages are seen as stale in the future. Only incrementing
the counter once is not sufficient. We describe an attack
against this scheme in Appendix A.3. To guarantee live-
ness, new packages are written to disk before the mono-
tonic counter is incremented.

To restart a module from a known-good state,
purge state can be called (listing 2, line 38). Similar
to the retrieve state function, we need to guarantee
that when the function returns, there only exists a sin-
gle package that will be accepted as being fresh. Hence,
in this function too we need to increment the monotonic
counter twice. However, since this function can always
be restarted, liveness is no longer a concern. We can
therefore omit storing a new package before we incre-
ment the monotonic counter for the first time (line 39).

Skipping Unprocessed Input A careful reader may
have noticed that it is possible for an attacker to force
the creation of packages with the same enclosed counter
value but with different user input. We will show that
this does not break state continuity.

Let’s use the PIN-protected module again as an exam-
ple. The attempted attack goes as follows: the attacker
calls the get secret function and provides a PIN p. Af-
ter the module assembled a Blob structure containing the
current state of the module, the provided input and the
entry point used (listing 1, line 27), the store state

library function is called. There the attacker crashes
the system right before the monotonic counter is incre-
mented (listing 2, line 6). Since a new package was al-
ready written to disk, she now possesses a package with
enclosed the next value of the monotonic counter and the
provided PIN p.

The attacker now has two options. Neither will break
state continuity. The first option is to resume the system
without any interference. As the newly written package
is not seen as being fresh (the monotonic counter in non-
volatile memory was not yet incremented) PIN guess p
will be discarded. As this guess was never compared
to the real PIN code, the attacker did not learn any new
information and state-continuity remains guaranteed.

Alternatively, the attacker lets the system reboot
but crashes the module immediately after the non-
volatile counter is incremented for the first time in the
retrieve state function (Listing 2, line 26). When
the system now recovers again, the package with PIN
guess p will be seen as being fresh. As no input was
processed by the module after this guess was made,
state-continuity is also guaranteed in this case. As in-
put can only be skipped until the module completes
its retrieve state function, repeated crashes during
retrieve state will also not break state continuity.

4.2 State-Continuity by Flipping Bits
Related work [32,46] relied on the irreversibility of hash
values to keep track of freshness information. In order
to avoid that unexpected loss of power while the hash
value is being updated may lead to corrupted non-volatile
memory, both approaches required a 2-phase commit
protocol. We take a different approach. We use the state-
continuity approach based on monotonic counters in the
previous section, but use a counter encoding that only
requires a single bit flip per state update. In the next sec-
tion we will show that in practical implementations we
can guarantee that these operations can be implemented
atomically, and we thus avoid a need of a 2-phase commit
protocol altogether. As every solution to state-continuity
requires at least a single flip to be recorded, we reached
a theoretical lower limit.

Balanced Gray codes provides such an encoding, with
the additional benefit that every bit is (almost) equally
used. Construction of these codes with arbitrary lengths
is non-trivial. In 2008 a constructive proof of their exis-
tence was presented by Mary Flahive [14] but to the best
of our knowledge never implemented. We present a fast
algorithm with fixed, limited, memory consumption.

4.2.1 Terminology

Gray codes ensure that two adjacent code words differ in
only a single digit. For example:

{00,01,11,10} (1)

and

{000,001,011,010,110,111,101,100} (2)

are two- and three-digit Gray codes, respectively. More-
over, these encodings are cyclic as the same property
applies to the last and first code word. The underlined
digits in encoding 1 and 2 are the transition digits and
show which digit is changed in the next code word. The
transition count of a digit is the number of times that
digit is used. For example, digit 0 in encoding 2 is
used twice.2 The collection of these transition counts
is called the transition spectrum of the Gray code (i.e.,
(2,2) and (2,2,4) for encoding 1 and 2 respectively).
When all transition counts are equal (t.i. 2n/n with n the
length of the Gray code), the encoding is said to be uni-
form or completely balanced. Obviously this can only be
achieved when 2n/n is an integer. In other cases cyclic
balanced Gray Codes can be constructed where the dif-
ference of any pair of transition counts is at most two:

∀0 ≤ i, j < n : |TCn(j)−TCn(i)| ≤ 2 (3)
2We follow the convention that Gray codes start with digit 0 on the

left hand side.

6

USENIX Association 25th USENIX Security Symposium 881

4.2.2 Construction

Let’s use the construction of a 5-bit balanced Gray code
as a running example. The algorithm is displayed in Fig-
ure 2. Balanced Gray Codes of length n are constructed
recursively from n − 2 bit balanced Gray Codes. The
balanced 2 and 3-bit Gray codes of encoding 1 and 2
are used as base cases. Each iteration consists of three
steps. In the first step, a 2n−2 × 22 grid is constructed.
The rows are annotated with all n− 2 digit Gray codes.
The number of columns is fixed for any n and columns
are annotated with 2-digit codes. A given vertex now
represents an n-bit Gray code by concatenating the Gray
code of the row and the column. By construction, two
(toroidally) adjacent vertices will now represent adjacent
Gray codes. Every Hamiltonian cycle found in this grid
now represents an encoding, but care needs to be taken
to ensure that it is balanced.

In the second step we partition the grid such that the
transition counts within each partition can be easily cal-
culated. Partitions are represented as black boxes in Fig-
ure 2. Calculation where a new partition needs to be
started is discussed in Section 4.2.3. For now note that
we will ensure that (1) new partitions will always start at
the first and last row and (2) the number of partitions is
even.

Finally, the Hamiltonian cycle is constructed starting
with Gray code 00000. With the exception of the last two
partitions, each partition is traversed in the same way:
visit every vertex in the column before moving to the next
column. Whenever an edge of a partition is reached, the
horizontal/vertical direction is inverted.

Let’s take the fourth partition – the first partition con-
taining more than one row – as an example. The partition
is started at vertex with Gray code word 01011 when we
were in the third column and going from right to left. The
graph is continued by first traversing all rows down the
current partition. The digit on the edge is the transition
digit used to create the next Gray code. When the par-
tition’s end is reached (vertex 11011), we move to the
next column (vertex 11001) and the rows in the partition
are revisited in reversed order. When the start of the par-
tition is reached again (vertex 01001), the last column is
selected and each row is again traversed. Finally, the end
of the partition is reached (vertex 11000).

The last and second to last partition are constructed
differently as shown in Figure 2. We will show that the
created notch in the last two partitions ensures that each
partition has exactly the same properties.

4.2.3 Computing Partition Sizes

Based on the construction of the Hamiltonian cycle, we
can easily derive the transition counts TCn(i) of each
transition digit i of the resulting n-digit Gray code. We

000

001

011

010

110

111

101

100

01 11 10

2

2

2

2

0

0

1

1

4 43 3

4

4

4

4

4 4

3

3

3

3

3

33

0 0 0

00

1 1 1

1 1

2 2

1

2 2

22

22

0
010 || 11

00

starting point

Figure 2: Balanced n-bit Gray Codes can be constructed
from n−2 balanced Gray Codes

apply a separate reasoning for digits i smaller than n−2
(vertical arrows) and digits n− 2 and n− 1 (horizontal
arrows).

Within a partition vertical arrows are always used 4
times. When a vertical arrow is used as a connecting digit
– connecting two partitions – it is used twice. This totals
the transition counts for these digits to: 4(TCn−2(i)−
mn−2(i))+2mn−2(i) where mn−2(i) is the multiplicity of
digit i; the number of times transition digit i is used as a
connecting digit.

Transition digits n − 2 and n − 1 are represented by
horizontal arrows in Figure 2. For standard partitions
each is used once per partition. The second to last par-
tition uses n− 2 twice, but n− 1 isn’t used. In the last
partition the opposite happens; n− 1 is used twice, but
n− 2 isn’t used. For the entire graph, transition digits
n−2 and n−1 are thus used L times, with L the number

7

882 25th USENIX Security Symposium USENIX Association

of partitions. As each partition is connected to the next
with a connecting digit, we know that L = ∑n−2

i=0 mn−2(i).
The transition counts for the generated Gray code is thus:

TCn(i) =

{
4TCn−2(i)−2mn−2(i) if i < n−2

∑n−2
i=0 mn−2(i) if i ≥ n−2

(4)

Flahive [14] showed that a set of connecting digits can
always be found such that a balanced Gray code is con-
structed.

4.2.4 Generating Balanced Gray Codes

Flahive’s construction guarantees that we will generate
a balanced Gray code when transition digit i is used
as a connecting digit between partitions exactly mn−2(i)
times. Unfortunately implementing it directly is not pos-
sible for large n; keeping track of each partition would
quickly consume too much memory. Instead we only
precompute mn−2(i) for each 0 ≤ i < n − 2 and apply
a greedy algorithm that will exhaust each mi as fast as
possible.

Let’s reuse the construction of a 5-digit balanced Gray
code as an example. Solving equation 4 so that a bal-
anced Gray code is constructed (see equation 3), we get
TCn(i) = (6,6,8,6,6) with mn−2(i) = (1,1,4).

In order to find a graph that fulfills these requirements,
we keep track of the size of the current partition, at which
row and column we are currently at, in which horizontal
and vertical direction we are going and for each transi-
tion digit how many connecting digits are still available.
Starting at vertex 00000 going in a downwards and right
direction (see Figure 2), we calculate (recursively) the
transition digit going downward (t.i. 2). As transition
digit 2 still needs to be used (4 times) as a connecting
digit, we decide to stop the current partition immediately,
revert the vertical direction taken and switch columns in-
stead.

Similarly, at vertex 01011 we determine that 0 would
be used as a transition digit if we do not terminate the
partition. While this transition digit was not yet used as
a connecting digit and it should be used once, we do not
stop the current partition. Indeed, by construction transi-
tion digit 0 is always used as a connecting digit between
the last and first partition.

It is important to note that the metadata (in the order
of KB) used to generate the next Gray codes, can be in-
cluded in the package written do disk. Close examination
of libariadne’s implementation shows that in order to
determine whether a package is fresh, we only need to
compare the package’s counter with the hardware mono-
tonic counter (listing 2, line 18). In other words, we only
need access to the Gray codes’ metadata after we have
already determined that the package is fresh.

4.3 Optimizing for Program-Erase Cycles

Being able to provide state-continuity guarantees by only
flipping a single bit per state update, isn’t just a theoret-
ical result. It enables various additional optimizations.
Let’s assume that we use EEPROM/NAND flash mem-
ory to store the monotonic counter as an example.

EEPROM is 1980s technology that is still used in
some TPM chips [4, 43, 44]. For most applications how-
ever it has been replaced by flash memory (e.g., Intel’s
Management Engine (ME) [37]) because it is cheaper
to manufacture for bigger memory sizes. This how-
ever comes at a cost; while EEPROM is byte accessi-
ble, NAND flash memory needs to be addressed in bigger
units. Read and write operations are page-based of usu-
ally 2KB to 8KB. Erase commands on the hand operate
on blocks of 32-128 pages. [55]

Both EEPROM and flash memory have the disadvan-
tage that they age. Every time the memory is written
to or erased, high voltages are applied that eventually
will damage the device oxide. Eventually memory cells
will be in a stuck-at state, or fail to retain their infor-
mation over longer periods of time. The number of
program/erase (P/E) cycles that can reliably be issued,
depends heavily on the manufacturing process (density,
single/multi-layer cells, etc.), but typically ranges be-
tween 5,000 and 500,000 cycles. [42]

Being provided with different commands to write and
erase memory gives us an opportunity to optimize our en-
coding scheme further. Erasing a block will set all mem-
ory cells to 1, while subsequent write commands will set
the selected cells to 0. This implies that we can keep is-
suing write commands until all bits are zeroed out. This
significantly reduces the number of erase cycles required
and thus increases the memory’s longevity.

Our encoding scheme works in two steps and is dis-
played in Figure 3. First, we apply a Gray code encoding
of the monotonic counter used in Section 4.1. In the sec-
ond step each bit of the resulting Gray code is stored over
b blocks of p pages each containing c memory cells and
encoded as the number of bits set modulo 2. Each bit flip
of the Gray code thus only requires a single write com-
mand to one of the pages, which will only touch a single
memory cell.

At this low level we must also take unexpected loss
of power into consideration; a write/erase command may
be interrupted. For write commands this is a non-issue.
Since they only affect a single memory cell (t.i. 1 bit),
loss of power during their execution will always have a
similar effect as a loss of power before or after the com-
mand was issued. Both cases are handled at the higher
level of the algorithm.

Erase commands in contrast, may not be atomic. Loss
of power may leave a memory block in an inconsistent

8

USENIX Association 25th USENIX Security Symposium 883

n

7869monotonic counter

n-bit Gray code

non-volatile memory

1 0 0 1 0 0 1 10 0 1 0 0 1 1

n

7870monotonic counter

n-bit Gray code

non-volatile memory

1 0 0 1 0 0 1 10 0 0 1 0 0 1 1

next counter value

1111111 1111111 1111111 0000000

c p b

1111111 1111111 1111111 1000000

c p b

1

Figure 3: We optimize for write-limited non-volatile
memory in two steps: (1) encoding the monotonic
counter as an n-bit Gray code and (2) storing each bit
in b blocks of p pages each containing c memory cells.

state and gaps in the bit pattern shown in Figure 3 may
emerge. As memory content is aggregated to a single
bit of a Gray code, such events are at the level of the
Ariadne algorithm similar to a crash of the system before
or after the counter was incremented. We only need to
ensure that each (non-interrupted) write command flips a
bit. This can be achieved easily by keeping a local copy
of non-volatile memory that is read during the recovery
phase.

5 Security Evaluation

Rollback prevention To verify that Ariadne ensures
state-continuous execution, we modeled the execution of
a module ϕ:

ϕ(Stateϕ, Input)→ Stateϕ

and proved that even under attack steps, ϕ is never called
with a stale state, or with the same state with different
input.

More specifically, we modeled the state of a machine
S as a tuple (H,C, t,P,ϕ,g) containing a set of packages
written to disk H and a monotonic counter C. A term t
represents a small program that calls the Ariadne pro-
tected module ϕ in an infinite loop. A set of packages P
is kept representing all packages generated by Ariadne.
Ghost state g keeps track of (gstate,gi), the last module
state and input that was provided to ϕ as input.

Based on the state space S , we built a state machine
with a step relation SM ⊆ S ×S where every step is

either a program step or an attack step:

SM = {(s,s′) ∈ S ×S |program step s s’
∨ inc counter step s s’
∨modify hdd step s s’
∨ crash s s}

Program steps simply take one evaluation step of term t.
Attack steps on the other hand include:

• inc counter step s s’: An attacker may ad-
vance the monotonic counter. This may prevent the
module from ever resuming its state, but it must not
break state continuity.

• modify hdd step s s’: An attacker can modify
the contents of the hard disk drive. When the pro-
gram t reads a package from disk after a crash, it
may not receive the last, fresh package.

• crash s s’: The system may crash at any point in
time. This will immediately reset the program t to
its initial state.

Our proof uses rely-guarantee reasoning [20] to show
that starting from a known good state s0 and taking any
number of steps in SM , we will only take allowed steps.
A step is allowed when the module ϕ is called with as
input state (ϕ(s))(g(s)), the resulting state of the last call
to ϕ . By definition not calling the module (g′(s) = g(s))
or purging the module (g(s′) = (s0, i0)) are also allowed:

A = {(s,s′) ∈ SM|state(g(s′)) = (ϕ(s))(g(s))
∨g′(s) = g(s)

∨g(s′) = (s0, i0)}

In total the proof3 consists of 74 definitions, 74 lem-
mas and totals 4,823 lines. The optimizations proposed
in Sections 4.2 and 4.3 were not modeled.

Liveness property Recall that we also required that an
unexpected crash should never let the system end up in a
state where it could never advance from. This property
is trivially met: the system can only get stuck when it
requires access to a package it did not yet store. Since
Ariadne ensures that the package with the next counter
value is always committed to disk before the counter
in non-volatile memory is updated, such situations can
never occur.

3The proof is available for download at https://distrinet.cs.
kuleuven.be/software/sce/ariadne.html

9

884 25th USENIX Security Symposium USENIX Association

6 Applications

We already showed that by relying only on a monotonic
counter, we can easily optimize our solution, but which
optimizations are best applied, depends heavily on the
platform and the security guarantees required. We pro-
vide two examples, both on the x86 platform.

6.1 TPM NVRAM to Store Freshness In-
formation

On the x86 platform the TPM chip provides an obvious
location to store freshness information: it offers many
security primitives, is already widely available on com-
modity devices and is secure against all but sophisticated
hardware attacks. Especially the latter is important in
a digital rights management (DRM) setting where the
client may not be fully trusted, or when the device may
get physically stolen by an attacker.

6.1.1 Platform Considerations

Using the TPM, we have two options. We could use
the monotonic counters that are directly provided by the
TPM to implement the basic Ariadne algorithm from
Section 4.1. Unfortunately, in order to ensure that “[the
counter does] not wear out in the first 7 years of opera-
tion”, TPM chips may throttle the speed at which it may
be incremented. To comply to the TPMv1.2 specifica-
tion [53], TPMs only “must be able to increment at least
once every 5 seconds.” Fortunately TPMs already report
on their throttling mechanism, but timeouts between in-
crements may render it unacceptable for some use cases.

Alternatively, we could use TPM NVRAM to store
the monotonic counter. While the specification does not
require writing operations to be throttled, many TPM
implementations rely on EEPROM for NVRAM stor-
age [4,43,44], which may cause repeated NVRAM write
operations to “prematurely wear out the TPM.” [53] The
counter encodings presented in Sections 4.2 and 4.3 can
optimize for longevity of this type of memory, but TPM
firmware may need to be updated to report the type of
memory used, their access granularity and the number of
program/erase cycles that are supported.

Independent of whether we use the TPM’s native
monotonic counters or NVRAM, the number of sup-
ported counters is extremely limited. We take the same
approach as related work [32, 46] and introduce an indi-
rection. Only a unique Theseus module will access the
TPM chip directly to store freshness information. Other
modules link to a libariadne n library – a slightly
modified version of libariadne – that uses the The-
seus instance to (state-continuously) store a monotonic
counter. We elaborate on this construct in Appendix B.

Care must be taken that only a single instance of the
Theseus module exists at any point in time. Failure to do
so may enable race conditions on the monotonic counter
and the same module state may be recovered by multi-
ple module instances. From that point on, an attacker is
able to break state continuity trivially by providing dif-
ferent input to the various instances with identical state.
Many protected-module architectures [8, 30, 48] allow
modules to access their module ID; a unique ID per boot
cycle starting at value 0. This makes it trivial to ensure
that only a single (Theseus) module exists; if Theseus at
initialization-time determines that it received an ID dif-
ferent from zero, it could simply abort.

Intel SGX is a particular case that does not provide
such functionality. In this case a static TPM PCR register
could be used instead. When the Theseus module starts,
it could first extend a static PCR (e.g., PCR 8) with a ran-
dom value. As static PCRs can never be set to a specific
value and only be reset by rebooting the platform, any
deviation of the expected resulting value would indicate
that a previous instance may have started already.

6.1.2 Implementation

We implemented4 our prototype on top of Fides [48],
an open-source, hypervisor-based protected-module ar-
chitecture. Table 1 displays the breakdown of the
Theseus module and the libariadne n library. It is
shown that Ariadne’s algorithm is fairly small with only
503 LoCs [56]. The use of balanced Gray codes adds
908 LoCs in total of which 583 LoCs are used to provide
static, precomputed metadata. As could be expected, the
implementation to balance writes to non-volatile mem-
ory is with only 163 LoCs much smaller. Most source
code is required to access the TPM chip (1,934 LoCs),
perform cryptographic computations (3,237 LoCs), or
use basic functions on top of Fides (3,442 LoCs). This
results in a total line count for Theseus of 10,399 LoCs.
libariadne n is with 7,291 LoCs a bit smaller.

6.1.3 Performance Evaluation

To benchmark TPM operations, libariadne n and the
Theseus module, we used a Dell Optiplex 7010 desktop
system. It is equipped with an Intel Core i7-3770 CPU
(Ivy Bridge) running at 3.40GHz, a TPMv1.2 chip and an
SSD drive. It used the generic 3.16.0-31 Linux kernel.

TPM Microbenchmarks We performed benchmarks
of various TPM operations (see Figure 4). To force the
TPM into a defensive mode and protect itself against
possibly wearing out non-volatile memory, we executed

4Our prototype is available for download at https://distrinet.
cs.kuleuven.be/software/sce/ariadne.html

10

USENIX Association 25th USENIX Security Symposium 885

libariadne n C x86-64
Fides tools 1,687 1,755
libcrypto 1,661 1,576
libariadne base 503 0
other 109 0
Total 3,960 3,331

Theseus C x86-64
Fides tools 1,687 1,755
libcrypto 1,661 1,576
libariadne base 503 0
libtpm 1,934 10
libnv optimize 163 0
libgray codes 908 0
other 202 0
Total 7,058 3,341

Table 1: Breakdown of the source code of
libariadne n and Theseus.

every operation 1,050 times. The first 50 timings were
later discarded to avoid recording timing results before
any defense mechanism kicked in. As expected, com-
mands that do not require access to non-volatile memory,
performed well. Polling the TPM for hardware specific
information using a TPM GetCapability command fin-
ished with only 12.00ms (stdev 2.43) per command sig-
nificantly faster than any other command. Reading and
extending a PCR value took with 24.00ms twice as long
(stdev 4.55 and 0.01, resp.).

Other commands such as incrementing a monotonic
counter and reading and writing to TPM NVRAM re-
quire the creation of an OIAP session. For each bench-
mark we created a single authorization session and kept
the session open for the entire benchmark. Creating and
closing a session are thus not included in the measure-
ments, but cost 24.05ms (stdev 0.66) and 23.95ms (stdev
0.01) respectively. Incrementing the same monotonic
counter 1,050 times without any interruption between in-
crements, cost with 95.99ms (stdev 5.79) significantly
more. To determine whether its performance was throt-
tled to protect against wearing out, we re-executed the
same benchmark but with a 5 seconds interval between
increments. As expected given that the TPM reports that
it does not throttle its speed, the new benchmark pro-
vided similar results (95.91ms/inc, stdev 5.41).

We performed similar benchmarks for writing to TPM
NVRAM. Each write command only wrote a single zero
byte and finished in 144.00ms (stdev 4.26). Introducing
a 5 second interval between two write operations did not
increase performance and finished in 143.91ms (stdev
3.96). Even though none of these recorded write opera-
tions actually required physical writes to TPM NVRAM

Figure 4: Microbenchmark results (in ms) of various
TPM, ME and SSD operations.

as the same data was provided in every command, read-
ing from TPM NVRAM performed much better at “only”
84.00ms (stdev 2.11). The extremely slow operation of
our TPM chips is best illustrated by the performance
of the SSD drive. Creating a 1 byte file is with only
8.68 ms (stdev 3.08) significantly faster than accessing
TPM NVRAM.

Incrementing a monotonic counter is much faster than
writing to TPM NVRAM. We attribute this difference to
a wear leveling mechanism within the TPM chip. We
tested the presence of such a mechanism on an unused
Broadcom TPM chip. We allocated 4 regions of 64 bytes
and wrote intermittent 0x00 and 0xff bytes until these
regions failed to retain their contents. Regions broke re-
spectively after 1,450K, 621K, 493K and 301K writes.
Without the presence of a wear leveling mechanism, we
would have expected that all regions would have failed
after an equal amount of write cycles.

In Sections 4.2 and 4.3 we showed that we can mini-
mize the number of program/erase cycles required to im-
plement a counter. Most importantly, we showed that a
2-phase commit protocol to address sudden loss of power
during increments is not required. Using these optimiza-
tions, we expect that we can further reduce the time re-
quired to increment a monotonic counter. We recom-
mend TPM vendors to enable TPM owners to take re-
sponsibility of TPM NVRAM wear leveling and expose
write/erase commands explicitly.

Benchmarking Theseus and libariadne n We im-
plemented a state-continuous module that keeps track of
a virtual counter. The module was advanced 1,050 times,
and we again discarded the first 50 timing results.

When this module accessed TPM NVRAM directly,
advancing the counter took 152.01ms (stdev 3.73) in to-
tal (see Table 2). As expected, updating freshness in-
formation in TPM NVRAM is with 93.68% of the total
time by far the most time-costly operation. Calculating
the next Gray code, creating the package to store on disk

11

886 25th USENIX Security Symposium USENIX Association

(in ms) TPM SSD Comp.
Virt. Cntr. (NVRAM) 142.40 9.36 0.25
Virt. Cntr. (Thesius) 145.68 21.91 0.40

Table 2: Benchmark results of Theseus and
libariadne n

and the overhead introduced by our protected-module ar-
chitecture, is with 0.25ms negligible.

When the same module used the Theseus module to
store freshness information, performance was impacted
marginally. Writing the state update of Theseus to TPM
NVRAM is with 145.68ms still responsible for 86.72%
of the total time required. Communication with the The-
seus module caused the time attributed to computation to
increase to 0.40ms, but remains negligible. Now that not
one but two packages need to be stored on the SSD drive,
time lost due to SSD overhead increased from 9.36ms to
21.91ms.

6.2 Intel ME to Provide State-Continuity
to Intel SGX

In contrast to earlier provided specifications [18], it be-
came clear with the publication of the Intel SGX SDK
[19] in December 2015, that SGX enclaves can easily
access monotonic counters. It appears that these coun-
ters are stored on the management engine (ME) [37], not
on non-volatile memory within the CPU package.

Platform Considerations With Intel ME readily avail-
able on recent Intel systems it is an interesting location
to keep freshness information. Unfortunately it comes
with significant downsides compared to an SGX/TPM
approach, at least from an academic point of view. First,
Intel ME uses a separate processor on the platform con-
trol hub (PCH) running its own kernel and processes
(e.g., Intel AMT, EPID, etc.). SGX enclaves can ac-
cess the ME by calling a platform-specific enclave (PSE)
that uploads a Java applet through the generic Dynamic
Application Loader (DAL) interface [37]. Unfortunately,
this re-introduces a TCB of probably a considerable size.

Second, it is unclear how the ME is protected against
physical attacks, one of the key selling points of Intel
SGX. Related work showed [57] that the ME firmware
is only integrity protected and may be accessed through
physical attacks [52]. It is unclear how sensitive data
stored in the ME is replay protected and whether addi-
tional security measures were added in the last genera-
tion of PCHs.

Unfortunately Intel SGX/ME does not provide a
mechanism for enclaves to determine whether they are
the first/only instance. To protect against forking-attacks,

we must make sure that only a single instance of a
state-continuous enclave is running. Similarly to the
Fides/TPM platform, we could use a PCR register to de-
tect the presence of other enclaves. On systems that lack
a discrete, hardware TPM chip, similar functionality is
provided by the ME engine.

This approach has the obvious disadvantage that two
enclaves need to store their state on disk for every state
update. Benchmarks of the Fides/TPM architecture (Sec-
tion 6.1.3) show that this results in a non-negligible per-
formance impact. This additional overhead could eas-
ily be avoided when a (volatile) in-use bit would be kept
with the ME monotonic counters. When the enclave state
is being recovered, Ariadne should check this bit: when
the counter is not in use, the enclave should set this bit –
using an atomic test and set operation – and continue
its recovery. When the bit is already set, another instance
of the same enclave may still be running and the newly
created instance of the enclave should be destroyed to
prevent forking attacks. The Theseus module described
in Section B uses the same approach.

Benchmarks In the previous section we determined
that on the Fides/TPM architecture at least 99.76% of
Ariadne’s execution time was spent on TPM and disk
accesses. We are thus especially interested in the cost
of ME monotonic counter increments. We performed
microbenchmarks on a recent Dell Inspiron 13 7359
equipped with a Skylake Core i7-6500U processor run-
ning Windows 10. As with TPM benchmarks, we dis-
carded the first 50 calls to account for warm-up time
for each test. Calling an enclave that returned a static
integer value 1,050 times took 0.013ms (stdev 0.003).
When the enclave established a single PSE session and
incremented a monotonic counter upon each call, perfor-
mance decreased to 97.38ms (stdev 21.04) with outliers
ranging between 71.34 and 251.66ms. Time required
to increment an ME monotonic counter is thus compa-
rable to incrementing a monotonic counter in our TPM
chip (95.99ms, see Figure 4). When the ME counter was
only read, not incremented, performance increased signi-
ficantly to 35.21ms (stdev 1.17). This leads us to expect
that the slow operation of counter increments may be at-
tributed to a throttling mechanism to avoid wearing out
ME non-volatile memory.

7 Related Work

Many security architectures have been proposed in recent
years. Some rely on a huge TCB making state continu-
ity a much easier problem to solve. Other architectures
have ignored the problem altogether and are susceptible
to rollback attacks and/or cannot guarantee that the sys-

12

USENIX Association 25th USENIX Security Symposium 887

tem will always be able to advance after power is lost.
State-continuity is a problem that has not gained a lot of
research attention. Only Parno et al. [32] and we in ear-
lier work [46] proposed solutions to the problem. Others
provided more application-specific approaches.

7.1 Systems with a Large TCB
Many systems require state-continuity guarantees in one
way or another. These include early designs of protected-
module architectures such as Terra [15], AppCores [41]
and Proxos [51], but also more conventional systems.
Cloud providers must also ensure that the entire state of
a virtual machine [16, 58] cannot be rolled back. Simi-
larly, applications on modern operating systems must be
restarted from their most recent state.

State-continuity on such platforms can be easily pro-
vided as the kernel and/or hypervisor is trusted to iso-
late disk accesses. It is assumed that an attacker cannot
gain access to previously stored states and thus also can-
not roll back the state. Since this assumption relies on
the correct implementation of the access control logic,
this is hard to guarantee in practice. Interestingly, the
same applies to many formally verified systems such as
seL4 [21], HyperV [24] and XMHF [54]. While the most
privileged layer is verified, the file system’s implementa-
tion usually is not and these systems are still susceptible
to attack. Obviously, such designs can also not defend
against hardware-level attacks where an attacker is able
to physically access the disk to copy and restore stale
states.

7.2 Hardware Modifications
Systems such as XOM [26] try to defend against attack-
ers snooping on memory buses by confidentiality and in-
tegrity protecting data before it is stored in main memory.
Suh et al. [50] show that without anti-replay protection,
stale memory contents could be presented as being fresh.
Their Aegis architecture and subsequent platforms [9,29]
defend against such attacks by including a freshness tag.

Defense mechanisms against memory replay attacks,
do not have to take unexpected loss of power into consid-
eration, nor do they have to consider limitations of non-
volatile memory. This enables very different approaches.

7.3 Protected-Module Architectures
Many protected-module architectures have been pro-
posed over the recent years. [9,22,27,28,30,31,38,41,48]
Interestingly, many do not address the state-continuity
problem. To the best of our knowledge only two pa-
pers directly addressed the problem. Parno et al. [32]
were the first to highlight the problem. They proposed

two mechanisms to provide state-continuity guarantees.
Memoir-Basic uses a cryptographic hash to keep track of
the fresh state. Unfortunately storing this freshness tag in
TPM NVRAM would wear out its memory too quickly
to be of any practical use. The authors acknowledge this
limitation and propose a solution. Memoir-Opt uses a
similar freshness tag, but it relies on TPM PCR registers
to protect the most recent value while the system is up
and running. When power is lost unexpectedly, an unin-
terruptible power source ensures that it is written to TPM
NVRAM.

In earlier work we proposed ICE [46, 47], an alter-
native design that assumes “guarded memory”: volatile
memory within the CPU package that is written to un-
trusted, non-volatile memory when power is lost. By
avoiding TPM/ME accesses for each state update alto-
gether, we achieve better performance results.

Both Memoir and ICE avoid the significantly con-
strained TPM NVRAM and rely on some kind of unin-
terruptible power source to provide state-continuity guar-
antees. While this leads to better performance, these so-
lutions cannot be readily applied in practice. In contrast
Ariadne can be used to protect stateful enclaves against
rollback attacks on commodity devices.

7.4 Special-Purpose Applications

Many applications have been proposed that provide
special-purpose solutions. We can easily provide simi-
lar guarantees, but in a much more general way.

Chun et al. proposed a construct called append-only
memory [10] to prevent nodes in a distributed network
from making conflicting claims to different nodes. A
practical implementation was left as future work. In sub-
sequent work Levin et al. [25] provided similar guaran-
tees by only relying on a trusted incrementer (TrInc) that
is able to locally store attestation request of monotonic
counters.

Schellekens et al. [39] addressed the problem of lim-
ited TPM NVRAM. They show that sensitive data can be
stored in non-volatile memory off-chip. A light-weight
authentication protocol ensures a secure channel between
the trusted module and untrusted, non-volatile memory.
However, a monotonic counter needs to be incremented
for each write instruction and stored in the modified TPM
chip. How this counter can be stored efficiently, is not
discussed. We achieve similar results without requiring
any modification to the TPM chip.

Kotla et al. [23] propose a system to enable offline use
of sensitive data. Once sensitive data is accessed, it can-
not be denied by the user. Alternatively, if the user at-
tests that the data was never accessed, she will no longer
be able to do so in the future. Interestingly, only a very
limited TCB needs to be trusted.

13

888 25th USENIX Security Symposium USENIX Association

The Intel SGX SDK Manual for Windows [19] also
discusses how enclaves can be used to implement
limited-use policies. Their approach is similar to the
inc-then-store discussed in Section A.1. While their ap-
proach guarantees that enclave states cannot be rolled
back, they fail to guarantee continuous execution of an
enclave and liveness of the system. We provide stronger
guarantees in a more general way.

8 Conclusion

Protected module architectures enable protected module
writers to guarantee formally provable security proper-
ties of their code while the system is up and running. But
without support for state-continuity, stateful modules are
prone to rollback attacks.

Existing solutions relied on the irreversibility property
of hash functions and required an uninterruptible power
source or risked wearing out non-volatile TPM NVRAM.

We presented Ariadne, the first solution that achieves
state continuity based on a counter. By relying on bal-
anced Gray codes to encode this counter, we achieved
the theoretical lower limit of requiring only a single bit
flip per state update.

Embedded devices can use Ariadne to minimize their
total bill of materials. On SGX-enabled x86 platforms
Ariadne can be readily applied by relying on the TPM’s
monotonic counters, TPM NVRAM or the management
engine’s monotonic counters. We showed that the choice
depends on the specific TPM chip on the platform, attack
model and use case.

Acknowledgments

This work has been supported in part by the Intel Lab’s
University Research Office, by the Research Fund KU
Leuven, and by the Research Foundation - Flanders
(FWO).

References
[1] AGTEN, P., JACOBS, B., AND PIESSENS, F. Sound modular ver-

ification of C code executing in an unverified context. In Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’15) (Jan. 2015).

[2] AGTEN, P., STRACKX, R., JACOBS, B., AND PIESSENS, F. Se-
cure compilation to modern processors. In Proceedings of the
25th Computer Security Foundations Symposium (Los Alamitos,
CA, USA, 2012), CSF’12, IEEE Computer Society, pp. 171–185.

[3] ANATI, I., GUERON, S., JOHNSON, S., AND SCARLATA, V.
Innovative technology for CPU based attestation and sealing. In
Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy (New York, NY,
USA, 2013), vol. 13 of HASP’13, ACM.

[4] ATMEL. At97sc3204. http://www.atmel.com/images/

atmel-5295s-tpm-at97sc3204-lpc-interface-

datasheet-summary.pdf.

[5] AVONDS, N., STRACKX, R., AGTEN, P., AND PIESSENS, F.
Salus: Non-hierarchical memory access rights to enforce the
principle of least privilege. In Security and Privacy in Com-
munication Networks (SecureComm’13) (Sept. 2013), T. Zia,
A. Zomaya, V. Varadharajan, and M. Mao, Eds., vol. 127 of Lec-
ture Notes of the Institute for Computer Sciences, Social Infor-
matics and Telecommunications Engineering, Springer Interna-
tional Publishing, pp. 252–269.

[6] AZAB, A., NING, P., AND ZHANG, X. SICE: a hardware-level
strongly isolated computing environment for x86 multi-core plat-
forms. In Proceedings of the 18th ACM Conference on Computer
and communications security (2011), CCS’11, ACM.

[7] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding ap-
plications from an untrusted cloud with Haven. In USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’14) (2014).

[8] BRASSER, F., EL MAHJOUB, B., SADEGHI, A.-R., WACHS-
MANN, C., AND KOEBERL, P. Tytan: Tiny trust anchor for tiny
devices. In Proceedings of the 52Nd Annual Design Automation
Conference (New York, NY, USA, 2015), DAC’15, ACM.

[9] CHAMPAGNE, D., AND LEE, R. Scalable architectural support
for trusted software. In Proceedings of the 16th International
Symposium on High Performance Computer Architecture (2010),
HPCA’10, IEEE Computer Society, pp. 1–12.

[10] CHUN, B.-G., MANIATIS, P., SHENKER, S., AND KUBIATOW-
ICZ, J. Attested append-only memory: Making adversaries stick
to their word. In Proceedings of Twenty-first ACM SIGOPS Sym-
posium on Operating Systems Principles (New York, NY, USA,
2007), SOSP’07, ACM, pp. 189–204.

[11] COSTAN, V., LEBEDEV, I., AND DEVADAS, S. Sanctum: Min-
imal hardware extensions for strong software isolation. Cryptol-
ogy ePrint Archive, Report 2015/564, 2015.

[12] EL DEFRAWY, K., AURÉLIEN FRANCILLON, D., AND TSUDIK,
G. SMART: Secure and minimal architecture for (establishing a
dynamic) root of trust. In Proceedings of the Network & Dis-
tributed System Security Symposium (Feb. 2012), NDSS’12.

[13] EVTYUSHKIN, D., ELWELL, J., OZSOY, M., PONOMAREV, D.,
GHAZALEH, N. A., AND RILEY, R. Iso-X: A flexible architec-
ture for hardware-managed isolated execution. In 47th Annual
IEEE/ACM International Symposium on Microarchitecture (Dec.
2014).

[14] FLAHIVE, M. Balancing cyclic R-ary Gray codes II. The Elec-
tronic Journal of Combinatorics 15 (2008), R128.

[15] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M., AND
BONEH, D. Terra: A virtual machine-based platform for trusted
computing. In Operating Systems Review (New York, NY, USA,
2003), vol. 37 of OSR’03, ACM, pp. 193–206.

[16] GARFINKEL, T., AND ROSENBLUM, M. When virtual is harder
than real: security challenges in virtual machine based comput-
ing environments. In Proceedings of the 10th conference on Hot
Topics in Operating Systems (Berkeley, CA, USA, 2005), HO-
TOS’05, USENIX Association, pp. 20–25.

[17] HOOGSTRATEN, H., PRINS, R., NIGGEBRUGGE, D., HEP-
PENER, D., GROENEWEGEN, F., WETTINCK, J., STROOY, K.,
ARENDS, P., POLS, P., KOUPRIE, R., MOORREES, S., VAN
PELT, X., AND HU, Y. Z. Black Tulip - report of the investi-
gation into the DigiNotar certificate authority breach. Tech. rep.,
FoxIT, 2012.

[18] INTEL CORPORATION. Software Guard Extensions Program-
ming Reference, 2013.

14

USENIX Association 25th USENIX Security Symposium 889

[19] INTEL CORPORATION. Intel Software Guard Extensions Evalu-
ation SDK for Windows OS, 2015.

[20] JONES, C. Tentative steps toward a development method for in-
terfering programs. In ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) (New York, NY, USA, 1983),
vol. 5, ACM, pp. 596–619.

[21] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., ET AL. seL4: Formal verifica-
tion of an OS kernel. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (2009), SOSP’09,
ACM.

[22] KOEBERL, P., SCHULZ, S., SADEGHI, A.-R., AND VARAD-
HARAJAN, V. Trustlite: a security architecture for tiny embed-
ded devices. In Proceedings of the Ninth European Conference
on Computer Systems (2014), EuroSys’14, ACM, p. 10.

[23] KOTLA, R., RODEHEFFER, T., ROY, I., STUEDI, P., AND
WESTER, B. Pasture: secure offline data access using commod-
ity trusted hardware. In Proceedings of the 10th USENIX confer-
ence on Operating Systems Design and Implementation (2012),
OSDI’12, USENIX Association, pp. 321–334.

[24] LEINENBACH, D., AND SANTEN, T. Verifying the microsoft
hyper-v hypervisor with vcc. In FM 2009: Formal Methods.
Springer, 2009, pp. 806–809.

[25] LEVIN, D., DOUCEUR, J. R., LORCH, J. R., AND MOSCI-
BRODA, T. Trinc: Small trusted hardware for large distributed
systems. In Proceedings of the 6th USENIX symposium on Net-
worked systems design and implementation (Berkeley, CA, USA,
2009), vol. 9 of NSDI’09, USENIX Association, pp. 1–14.

[26] LIE, D., CHANDRAMOHAN, T., MARK, M., PATRICK, L.,
DAN, B., JOHN, M., AND MARK, H. Architectural support
for copy and tamper resistant software. In Proceedings of the
9th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (2000), vol. 35 of
ASPLOS’00, ACM, pp. 168–177.

[27] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA, A.,
GLIGOR, V., AND PERRIG, A. TrustVisor: Efficient TCB re-
duction and attestation. In Proceedings of the IEEE Symposium
on Security and Privacy (Washington, DC, USA, May 2010),
S&P’10, IEEE Computer Society, pp. 143–158.

[28] MCCUNE, J. M., PARNO, B., PERRIG, A., REITER, M. K.,
AND ISOZAKI, H. Flicker: An execution infrastructure for TCB
minimization. In Proceedings of the ACM European Conference
in Computer Systems (Apr. 2008), EuroSys’08, ACM.

[29] MCKEEN, F., ALEXANDROVICH, I., BERENZON, A., ROZAS,
C. V., SHAFI, H., SHANBHOGUE, V., AND SAVAGAONKAR,
U. R. Innovative instructions and software model for isolated
execution. In Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy
(New York, NY, USA, 2013), HASP’13, ACM, p. 8.

[30] NOORMAN, J., AGTEN, P., DANIELS, W., STRACKX, R.,
HERREWEGE, A. V., HUYGENS, C., PRENEEL, B., VER-
BAUWHEDE, I., AND PIESSENS, F. Sancus: Low-cost trust-
worthy extensible networked devices with a zero-software trusted
computing base. In 22nd USENIX Security Symposium (2013).

[31] OWUSU, E., GUAJARDO, J., MCCUNE, J., NEWSOME, J., PER-
RIG, A., AND VASUDEVAN, A. OASIS: on achieving a sanctuary
for integrity and secrecy on untrusted platforms. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communi-
cations security (2013), CCS’13, ACM, pp. 13–24.

[32] PARNO, B., LORCH, J. R., DOUCEUR, J. R., MICKENS, J.,
AND MCCUNE, J. M. Memoir: Practical state continuity for
protected modules. In Proceedings of the IEEE Symposium on
Security and Privacy (May 2011), S&P’11, IEEE, pp. 379–394.

[33] PATRIGNANI, M., AGTEN, P., STRACKX, R., JACOBS, B.,
CLARKE, D., AND PIESSENS, F. Secure compilation to pro-
tected module architectures. In Transactions on Programming
Languages and Systems (TOPLAS) (New York, NY, USA, Apr.
2015), vol. 37, ACM, pp. 6:1–6:50.

[34] PATRIGNANI, M., CLARKE, D., AND PIESSENS, F. Secure
Compilation of Object-Oriented Components to Protected Mod-
ule Architectures. In Proceedings of the 11th Asian Symposium
on Programming Languages and Systems (APLAS’13) (2013),
C.-c. Shan, Ed., vol. 8301 of Lecture Notes in Computer Science,
Springer International Publishing, pp. 176–191.

[35] RAJ, H., SAROIU, S., WOLMAN, A., AIGNER, R., COX, J.,
ENGLAND, P., FENNER, C., KINSHUMANN, K., LOESER, J.,
MATTOON, D., NYSTROM, M., ROBINSON, D., SPIGER, R.,
THOM, S., AND WOOTEN, D. fTPM: A firmware-based TPM
2.0 implementation. Tech. Rep. MSR-TR-2015-84, Microsoft,
Nov. 2015.

[36] RAJ, H., SAROIU, S., WOLMAN, A., AIGNER, R., COX, J.,
ENGLAND, P., FENNER, C., KINSHUMANN, K., LOESER, J.,
MATTOON, D., NYSTROM, M., ROBINSON, D., SPIGER, R.,
THOM, S., AND WOOTEN, D. fTPM: A firmware-based TPM
2.0 implementation. In Proceedings of the 25th USENIX security
symposium (Aug. 2016), SSYM’16, USENIX Association.

[37] RUAN, X. Platform Embedded Security Technology Revealed:
Safeguarding the Future of Computing with Intel Embedded Se-
curity and Management Engine, 1 ed., vol. 1. Apress, 2014.

[38] SAHITA, R., WARRIER, U., AND DEWAN, P. Protecting Critical
Applications on Mobile Platforms. Intel Technology Journal 13,
2 (June 2009), 16–35.

[39] SCHELLEKENS, D., TUYLS, P., AND PRENEEL, B. Embedded
trusted computing with authenticated non-volatile memory. In
First International Conference on Trusted Computing and Trust
in Information Technologies (TRUST’08) (2008), P. Lipp, A.-R.
Sadeghi, and K.-M. Koch, Eds., Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 60–74.

[40] SCHUSTER, F., COSTA, M., FOURNET, C., GKANTSIDIS, C.,
PEINADO, M., MAINAR-RUIZ, G., AND RUSSINOVICH, M.
VC3: Trustworthy data analytics in the cloud using SGX. In 36th
IEEE Symposium on Security and Privacy (May 2015), IEEE In-
stitute of Electrical and Electronics Engineers.

[41] SINGARAVELU, L., PU, C., HÄRTIG, H., AND HELMUTH,
C. Reducing TCB complexity for security-sensitive applications:
three case studies. In Proceedings of the 1st ACM SIGOPS/Eu-
roSys European Conference on Computer Systems (New York,
NY, USA, 2006), EuroSys’06, ACM, pp. 161–174.

[42] SOLID STATE STORAGE INITIATIVE. NAND flash solid
state storage for the enterprise – an in-depth look at relia-
bility. http://www.vikingtechnology.com/uploads/NV_

DIMM_ROI.pdf.

[43] STMICROELECTRONICS. St19np18-tpm. http://www.bdtic.
com/DownLoad/ST/ST19NP18-TPM.pdf.

[44] STMICROELECTRONICS. St33tpm12lpc. http://

datasheet.octopart.com/ST33ZP24AR28PVSP-

STMicroelectronics-datasheet-16348175.pdf.

[45] STRACKX, R., AGTEN, P., AVONDS, N., AND PIESSENS, F.
Salus: Kernel support for secure process compartments. In En-
dorsed Transactions on Security and Safety (2015), vol. 15, ICST.

[46] STRACKX, R., JACOBS, B., AND PIESSENS, F. ICE: A pas-
sive, high-speed, state-continuity scheme. In Annual Computer
Security Applications Conference (2014), ACSAC’14.

[47] STRACKX, R., JACOBS, B., AND PIESSENS, F. ICE: A pas-
sive, high-speed, state-continuity scheme (extended version). CW
Reports CW672, Department of Computer Science, KU Leuven,
September 2014.

15

890 25th USENIX Security Symposium USENIX Association

[48] STRACKX, R., AND PIESSENS, F. Fides: Selectively hardening
software application components against kernel-level or process-
level malware. In Proceedings of the 19th ACM conference on
Computer and Communications Security (New York, NY, USA,
October 2012), CCS’12, ACM, pp. 2–13.

[49] STRACKX, R., PIESSENS, F., AND PRENEEL, B. Efficient Iso-
lation of Trusted Subsystems in Embedded Systems. In Secu-
rity and Privacy in Communication Networks (SecureComm’10)
(2010), S. Jajodia and J. Zhou, Eds., vol. 50 of Lecture Notes
of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, Springer Berlin Heidelberg.

[50] SUH, G. E., CLARKE, D., GASSEND, B., VAN DIJK, M.,
AND DEVADAS, S. AEGIS: architecture for tamper-evident and
tamper-resistant processing. In Proceedings of the 17th annual
international conference on Supercomputing (New York, NY,
USA, 2003), ICS’03, ACM, pp. 160–171.

[51] TA-MIN, R., LITTY, L., AND LIE, D. Splitting interfaces:
Making trust between applications and operating systems con-
figurable. In Proceedings of the 7th symposium on Operating
systems design and implementation (Berkeley, CA, USA, 2006),
OSDI’06, USENIX Association, pp. 279–292.

[52] TERESHKIN, A., AND WOJTCZUK, R. Introducing ring -3 rootk-
its. In Black Hat USA (July 2009).

[53] TRUSTED COMPUTING GROUP. Design Principles Specification
Version 1.2, 2011.

[54] VASUDEVAN, A., CHAKI, S., JIA, L., MCCUNE, J., NEW-
SOME, J., AND DATTA, A. Design, implementation and veri-
fication of an extensible and modular hypervisor framework. In
Proceedings of the 2013 IEEE Symposium on Security and Pri-
vacy (Washington, DC, USA, 2013), S&P’13, IEEE Computer
Society, pp. 430–444.

[55] WANG, Y., KEI YU, W., XU, S., KAN, E., AND SUH, G. Hiding
information in flash memory. In Security and Privacy (SP), 2013
IEEE Symposium on (May 2013), pp. 271–285.

[56] WHEELER, D. A. SLOCCount. http://www.dwheeler.com/
sloccount/.

[57] WOJTCZUK, R., AND TERESHKIN, A. Attacking intel BIOS. In
Black Hat USA (July 2009).

[58] XIA, Y., LIU, Y., CHEN, H., AND ZANG, B. Defending against
vm rollback attack. In 42nd International Conference on Depend-
able Systems and Networks Workshops (DSN-W) (June 2012).

[59] XU, Y., CUI, W., AND PEINADO, M. Controlled-channel at-
tacks: Deterministic side channels for untrusted operating sys-
tems. In 36th Symposium on Security and Privacy (May 2015).

A State-Continuity Based on a Monotonic
Counter: Strawman Attempts

State continuity is a hard problem. Solutions borrowed
directly from anti-replay defenses fail to provide the re-
quired security guarantees. We discuss three approaches.

A.1 Inc, then Store
Listing 3 displays a first – but flawed – implemen-
tation. Its implementation is straightforward. Recall
the PIN-protected module from Section 3.3. When a
user tries to retrieve the module’s secret, she calls the
get secret entry point and supplies a PIN. Before this

1#include <libariadne/interface.h>
2

3void store state(Blob ∗blob, String f format){
4 hwcntr.inc();
5 hdd.write(create pkg(blob, hwcntr.value()), f format);
6}
7

8Blob ∗retrieve state(String f format){
9 Package ∗pkg = hdd.read(f format, hwcntr.value());

10

11 if (pkg == NULL || !auth(pkg, get mac key()))
12 return NULL;
13

14 if (pkg−>cntr != hwcntr.value())
15 return NULL;
16

17 return decrypt(pkg, get enc key());
18}
19

20void purge state(Blob ∗ init blob, String f format){...}

Listing 3: Incrementing the counter before writing the
package to disk will fail to guarantee liveness.

PIN is checked, the module collects the state of the mod-
ule and passes it together with the provided PIN and
called function, to the store state library function.
There the (hardware) monotonic counter is incremented
first (listing 3, line 4). Afterwards a new package is cre-
ated containing the incremented counter value and writ-
ten to disk.

When the system is rebooted and the module needs
to be reloaded in memory, the on load function is
called implicitly (listing 1, line 7) which in turn calls
the retrieve state library function. Next, the library
searches for the filename of the last package written to
disk. When this package is read and its integrity verified,
the counter value enclosed in the package is compared to
the hardware monotonic counter (listing 3, line 9 - 14).
If both counter values match, the package is determined
fresh. After decryption, it is returned to the on load

module function where the module’s state is restored and
the execution of the called function is restarted (listing 1,
line 11). If the read package from disk is not fresh or it’s
integrity check failed, NULL is returned and the module
is reset losing the stored secret indefinitely.

Attack 1: Breaking Liveness
Unfortunately, the provided scheme is flawed. Imagine
an unexpected loss of power immediately after the mono-
tonic counter was incremented (i.e., after listing 3, line
4). When the module is reloaded, the retrieve state

library function will only accept packages containing a
counter value equal to the hardware counter as being
fresh. But this package was never stored and the sys-

16

USENIX Association 25th USENIX Security Symposium 891

1#include <libariadne/interface.h>
2

3void store state(Blob ∗blob, String f format){
4 hdd.write(create pkg(blob, hwcntr.value() + 1),

f format);
5 hwcntr.inc();
6}
7

8Blob ∗retrieve state(String f format){
9 Package ∗pkg = hdd.read(f format, hwcntr.value());

10

11 if (pkg == NULL || !auth(pkg, get mac key()))
12 return NULL;
13

14 if (pkg−>cntr != hwcntr.value())
15 return NULL;
16

17 return decrypt(pkg, get enc key());
18}
19

20void purge state(Blob ∗ init blob, String f format){...}

Listing 4: Writing a package to disk before incrementing
the monotonic counter will leave the system susceptible
to dictionary-style attacks.

tem ends up in a state from where it can never advance.
As this situation may also occur even when the system is
not under attack, this breaks our liveness requirement.

A.2 Store, then Inc

One may be tempted to quickly fix the design flaw of
the scheme presented in the previous section by ensur-
ing that packages are written to disk before the hardware
monotonic counter is incremented. We will show that
also this design does not guarantee the required security
properties.

Listing 4 displays the updated scheme. When the
module requests the libariadne module to store a new
state, the store state function will first create a new
package with the next counter value and write it to disk
(line 4-5) before she increments the hardware counter.
The retrieve state function is unchanged.

With these changes in place, a package has always
been written to disk that matches the value of the mono-
tonic counter. Therefore the module is always able to
recover its state under benign conditions and liveness of
this scheme is ensured. Unfortunately, this mitigation
enables an attacker to execute a dictionary-style attack.

Attack 2: Dictionary Attack
Let’s reuse the module from Section 3.3 as an example.
Assume that the attack starts when the module still grants

the attacker with three attempts to guess the correct PIN,
and that the monotonic counter has value c. Let’s call
this state s0.

In the preliminary step of the attack, the attacker it-
erates over all entries of her dictionary. For each PIN,
she calls the get secret entry point of the module,
but crashes the system after the new package – enclosed
counter value c+ 1 – has been written to disk (listing 4,
line 4). Since the module could not yet commit to the
new input by incrementing the monotonic counter, the
module will recover its previous state and once again
wait for user input from state s0. At that point, the at-
tacker continues the same process with the next entry in
her dictionary.

When the attacker has reached the end of her dictio-
nary, she finally allows the module to commit to the
provided input by incrementing the monotonic value to
c+1. Afterwards she crashes the system again.

This marks the start of the second step of her attack.
When the module is reloaded in memory, it needs to re-
trieve its state from disk. Its integrity and freshness is
verified before it is used to resume its state. But for
every dictionary entry, the attacker possesses a package
that will be accepted as being authentic and fresh. She
completes her dictionary attack by selecting any package
and let the module recover its state based on the enclosed
guessed PIN. When she learns the PIN is incorrect, she
crashes the system, and selects another “fresh” package.

A.3 Inc once during recovery
In order to defend against dictionary attacks, one must
ensure that no other packages with the same fresh
counter value exist when the module is being resumed.
Incrementing the counter once during recovery does not
provide this guarantee. We show an attack against such
an implementation.

For completeness we show in Listing 5 the (vulnera-
ble) implementation of the state-continuity security mea-
sure. The implementation is identical to that of listing 4,
but lines 23 to 25 were added. The main issue is that
an attacker is able to abuse the creation and storage of
packages during recovery (lines 23 and 24) to keep stale
packages fresh. This enables attacks similar to the dic-
tionary attack of Section A.2. Since the attack is much
harder to grasp completely, we show a simpler version:
an attacker is able to provide a guess of the PIN without
it being (permanently) recorded, breaking rollback pre-
vention.

Attack 3: Oblivious Steps
For simplicity say that the PIN-protected module is in
a state s0 with 3 PIN-guesses left and the monotonic

17

892 25th USENIX Security Symposium USENIX Association

counter is at value 42. The attack is executed in 4 steps.
In step I an authentic package is created. This means that
an attacker provides a guess ‘‘guess’’, but crashes the
module immediately after it wrote the package pkg(43

|| get secret || ‘‘guess’’ || s0) to disk (list-
ing 5, line 5). As the module only increments the mono-
tonic counter after the state is stored successfully, it still
remains at value 42.

Next in step II, the module is recovered to its previ-
ous state, leading to a new package pkg(43 || ...

)5 and an incremented counter (listing 5 lines 23 to 25).
At this moment in time two different packages with en-
closed counter value 43 exist.

In step III the implementation of the retrieve state

is abused to create a (soon-to-be-fresh) package pkg(

44 || ...) as follows: First, the module is
crashed. During recovery the package pkg(43 || ...

) is provided and accepted as being fresh. As the
retrieve state first writes a new package with an in-
cremented counter value (line 24) the required package is
created. Immediately after the package is written to disk,
the module is crashed before the monotonic counter can
be incremented.

In step IV the module is resumed based on the fresh
package pkg(43 || get secret || ‘‘guess’’ ||

s0) and the monotonic counter is incremented to 44. At
this moment the attacker learns the outcome of her guess.
If she guessed wrongly, she can choose to crash the sys-
tem and let the module recover its state from “fresh”
package pkg(44 || ...). As the module didn’t
record her guess, state-continuity is broken.

B State-continuous storage for n modules

libariadne as described in Section 4 provides state-
continuous storage, at the cost of secure, non-volatile
memory. Storing freshness information for every pos-
sible protected module in limited-sized, secure non-
volatile memory (e.g., TPM NVRAM), is practically in-
feasible. We resolve the situation using an indirection.

A protected-module “Theseus” is introduced to the
system and uses – as the only module in the system – the
secure non-volatile memory to store its state. It provides
virtual, monotonic counters to other modules executing
on the system. Its interface is shown in listing 6.

The new counter entry point to the module, creates a
new monotonic counter and protects it with the provided
key. It returns the index of the monotonic counter. To

5We use the notation pkg(43 || ...) here for clarity. We
should have introduced a previous state s−1, entrypoint f and input i
such that f (s−1, i) = s0. Providing such input to the module will have
created the package pkg(43 || f || i || s−1). As f , i and s−1
are irrelevant for the attack, we omit these arguments.

1#include <libariadne/interface.h>
2

3void store state(Blob ∗blob, String f format){
4 Package ∗pkg = create pkg(blob, hwcntr.value() + 1)
5 hdd.write(pkg, f format, hwcntr.value() + 1);
6 hwcntr.inc();
7}
8

9Blob ∗retrieve state(String f format){
10 Package ∗pkg;
11 Blob ∗blob;
12

13 pkg = hdd.read(f format, hwcntr.value());
14

15 if (pkg == NULL || !auth(pkg, get mac key()))
16 return NULL;
17

18 if (pkg−>cntr != hwcntr.value())
19 return NULL;
20

21 blob = decrypt(pkg, get enc key());
22

23 pkg = create pkg(blob, hwcntr.value() + 1);
24 hdd.write(pkg, f format, hwcntr.value() + 1);
25 hwcntr.inc();
26

27 return blob;
28}
29

30void purge state(Blob ∗ init blob, String f format){...}

Listing 5: When the counter is only incremented once
during recovery, an attacker can force the module to keep
stale states fresh, enabling rollback attacks.

1 int new counter(uint64 t key);
2 int counter set in use(int idx, uint64 t key, bool in use);
3 int counter increment(int idx, uint64 t key);
4uint64 t counter value(int idx, uint64 t key);

Listing 6: Theseus’ public interface.

protect against inappropriate use, this (index, key)-pair
will need to be provided for any subsequent operation
on the counter. We assume that communication between
the caller and the Theseus module, is confidentiality, in-
tegrity and anti-replay protected.

An important feature is the ability to mark a counter
to be “in use.” This volatile flag, is used to ensure that
only a single instance of a protected module can be re-
sumed after a crash. Hence, counter increment and
counter value will return an error code if they are
called on a counter that was not previously marked as
“in use”.

18

USENIX Association 25th USENIX Security Symposium 893

The Million-Key Question – Investigating the Origins of RSA Public Keys

Petr Švenda, Matúš Nemec, Peter Sekan, Rudolf Kvašňovský,
David Formánek, David Komárek and Vashek Matyáš

Masaryk University, Czech Republic

Abstract
Can bits of an RSA public key leak information about
design and implementation choices such as the prime
generation algorithm? We analysed over 60 million
freshly generated key pairs from 22 open- and closed-
source libraries and from 16 different smartcards, reveal-
ing significant leakage. The bias introduced by different
choices is sufficiently large to classify a probable library
or smartcard with high accuracy based only on the val-
ues of public keys. Such a classification can be used to
decrease the anonymity set of users of anonymous mail-
ers or operators of linked Tor hidden services, to quickly
detect keys from the same vulnerable library or to ver-
ify a claim of use of secure hardware by a remote party.
The classification of the key origins of more than 10 mil-
lion RSA-based IPv4 TLS keys and 1.4 million PGP keys
also provides an independent estimation of the libraries
that are most commonly used to generate the keys found
on the Internet.

Our broad inspection provides a sanity check and
deep insight regarding which of the recommendations for
RSA key pair generation are followed in practice, includ-
ing closed-source libraries and smartcards1.

1 Introduction

The RSA key pair generation process is a crucial part of
RSA algorithm usage, and there are many existing (and
sometimes conflicting) recommendations regarding how
to select suitable primes p and q [11, 13, 14, 17, 18] to
be later used to compute the private key and public mod-
ulus. Once these primes have been selected, modulus
computation is very simple: n = p · q, with the public
exponent usually fixed to the value 65 537. But can the
modulus n itself leak information about the design and
implementation choices previously used to generate the

1Full details, paper supplementary material, datasets and author
contact information can be found at http://crcs.cz/papers/usenix2016.

primes p and q? Trivially, the length of the used primes
is directly observable. Interestingly, more subtle leakage
was also discovered by Mironov [20] for primes gener-
ated by the OpenSSL library, which unwantedly avoids
small factors of up to 17 863 from p−1 because of a cod-
ing omission. Such a property itself is not a security vul-
nerability (the key space is decreased only negligibly),
but it results in sufficiently significant fingerprinting of
all generated primes that OpenSSL can be identified as
their origin with high confidence. Mironov used this ob-
servation to identify the sources of the primes of factor-
izable keys found by [12]. But can the origins of keys be
identified only from the modulus n, even when n cannot
be factorized and the values of the corresponding primes
are not known?

To answer this question, we generated a large number
of RSA key pairs from 22 software libraries (both open-
source and closed-source) and 16 different cryptographic
smartcards from 6 different manufacturers, exported both
the private and public components, and analysed the ob-
tained values in detail. As a result, we identified seven
design and implementation decisions that directly finger-
print not only the primes but also the resulting public
modulus: 1) Direct manipulation of the primes’ high-
est bits. 2) Use of a specific method to construct strong
or provable primes instead of randomly selected or uni-
formly generated primes. 3) Avoidance of small factors
in p−1 and q−1. 4) Requirement for moduli to be Blum
integers. 5) Restriction of the primes’ bit length. 6) Type
of action after candidate prime rejection. 7) Use of an-
other non-traditional algorithm – functionally unknown,
but statistically observable.

As different design and implementation choices are
made for different libraries and smartcards (cards) with
regard to these criteria, a cumulative fingerprint is suf-
ficient to identify a probable key origin even when only
the public key modulus is available. The average clas-
sification accuracy on the test set was greater than 73%
even for a single classified key modulus when a hit within

894 25th USENIX Security Symposium USENIX Association

the top 3 matches was accepted2. When more keys from
the same (unknown) source were classified together, the
analysis of as few as ten keys allowed the correct ori-
gin to be identified as the top single match in more than
85% of cases. When five keys from the same source were
available and a hit within the top 3 matches was accepted,
the classification accuracy was over 97%.

We used the proposed probabilistic classifier to clas-
sify RSA keys collected from the IPv4 HTTPS/TLS [9],
Certificate Transparency [10] and PGP [30] datasets and
achieved remarkably close match to the current market
share of web servers for TLS dataset.

The optimal and most secure way of generating RSA
key pairs is still under discussion. Our wide-scale analy-
sis also provides a sanity check concerning how closely
the various recommendations are followed in practice for
software libraries and smartcards and what the impact on
the resulting prime values is, even when this impact is not
observably manifested in the public key value. We iden-
tified multiple cases of unnecessarily decreased entropy
in the generated keys (although this was not exploitable
for practical factorization) and a generic implementation
error pattern leading to predictable keys in a small per-
centage (0.05%) of cases for one type of card.

Surprisingly little has been published regarding how
key pairs are generated on cryptographic cards. In the
case of open-source libraries such as OpenSSL, one
can inspect the source code. However, this option is
not available for cards, for which the documentation of
the generation algorithm is confidential and neither the
source code nor the binary is available for review. To in-
spect these black-box implementations, we utilized the
side channels of time and power consumption (in addi-
tion to the exported raw key values). When this side-
channel information was combined with the available
knowledge and observed characteristics of open-source
libraries, the approximate key pair generation process
could also be established for these black-box implemen-
tations.

This paper is organized as follows: After a brief sum-
mary of the RSA cryptosystem, Section 2 describes the
methodology used in this study and the dataset of RSA
keys collected from software libraries and cryptographic
cards. Section 3 provides a discussion of the observed
properties of the generated keys. Section 4 describes the
modulus classification method and its results on large
real-world key sets, the practical impact and mitigation
of which are discussed in Section 5. Additional analysis
performed for black-box implementations on cards and a
discussion of the practical impact of a faulty/biased ran-
dom number generator are presented in Section 6. Fi-
nally, conclusions are offered in Section 7.

2The correct library is listed within the first three most probable
groups of distinct sources identified by the classification algorithm.

2 RSA key pairs

To use the RSA algorithm, one must generate a key:

1. Select two distinct large primes3 p and q.

2. Compute n = p ·q and ϕ(n) = (p−1)(q−1).

3. Choose a public exponent4 e < ϕ(n) that is coprime
to ϕ(n).

4. Compute the private exponent d as e−1 mod ϕ(n).

The pair (e,n) is the public key; either (d,n) serves as
the secret private key, or (p,q) can be used ((d,n) can be
calculated from (p,q,e) and vice versa).

2.1 Attacks against the RSA cryptosystem

The basic form of attack on the RSA cryptosystem is
modulus factorization, which is currently computation-
ally unfeasible or at least extremely difficult if p and q
are sufficiently large (512 bits or more) and a general al-
gorithm such as the number field sieve (NFS) or the older
quadratic sieve (MPQS) is used. However, special prop-
erties of the primes enable more efficient factorization,
and measures may be taken in the key pair generation
process to attempt to prevent the use of such primes.

The primes used to generate the modulus should be
of approximately the same size because the factorization
time typically depends on the smallest factor. However,
if the primes are too close in value, then they will also
be close to the square root of n and Fermat factorization
can be used to factor n efficiently [16].

Pollard’s p − 1 method outperforms general algo-
rithms if for one of the primes p, p− 1 is B-smooth (all
factors are ≤ B) for some small B (which must usually be
guessed in advance). The modulus can be factored using
Williams’ p+1 method if p+1 has no large factors [27].

Despite the existence of many special-purpose algo-
rithms, the easiest way to factor a modulus created as
the product of two randomly generated primes is usually
to use the NFS algorithm. Nevertheless, using special
primes may potentially thwart such factorization attacks,
and some standards, such as ANSI X9.31 [28] and FIPS
186-4 [14], require the use of primes with certain prop-
erties (e.g., p− 1 and p+ 1 must have at least one large
factor). Other special algorithms, such as Pollard’s rho
method and the Lenstra elliptic curve method, are im-
practical for factoring a product of two large primes.

Although RSA factorization is considered to be an NP-
hard problem if keys that fulfil the above conditions are
used, practical attacks, often relying on a faulty random

3Generated randomly, but possibly with certain required properties,
as we will see later.

4Usually with a low Hamming weight for faster encryption.

USENIX Association 25th USENIX Security Symposium 895

generator, nevertheless exist. Insufficient entropy, pri-
marily in routers and embedded devices, leads to weak
and factorizable keys [12]. A faulty card random num-
ber generator has produced weak keys for Taiwanese cit-
izens [3], and supposedly secure cryptographic tokens
have been known to produce corrupted or significantly
biased keys and random streams [6].

Implementation attacks can also compromise private
keys based on leakage in side channels of timing [8] or
power [15]. Active attacks based on fault induction [26]
or exploits aimed at message formatting [2, 5] enable the
recovery of private key values. We largely excluded these
classes of attacks from the scope of our analysis, focus-
ing only on key generation.

2.2 Analysis methodology
Our purpose was to verify whether the RSA key pairs
generated from software libraries and on cards provide
the desired quality and security with respect to the ex-
pectations of randomness and resilience to common at-
tacks. We attempted to identify the characteristics of the
generated keys and deduce the process responsible for
introducing them. The impact of the techniques used on
the properties of the produced public keys was also in-
vestigated. We used the following methodology:

1. Establish the characteristics of keys generated from
open-source cryptographic libraries with known im-
plementations.

2. Gather a large number of RSA key pairs from cryp-
tographic software libraries and cards (one million
from each).

3. Compare the keys originating from open-source li-
braries and black-box implementations and discuss
the causes of any observed similarities and differ-
ences (e.g., the distribution of the prime factors of
p−1).

4. Analyse the generated keys using multiple statisti-
cal techniques (e.g., calculate the distribution of the
most significant bytes of the primes).

Throughout this paper, we will use the term source (of
keys) when referring to both software libraries and cards.

2.3 Source code and literature
We examined the source codes of 19 open-source cryp-
tographic libraries variants5 and match it to the relevant
algorithms for primality testing, prime generation and

5We inspected multiple versions of libraries (though not all exhaus-
tively) to detect code changes relevant to the key generation process. If
such a change was detected, both versions were included in the analy-
sis.

RSA key generation from standards and literature. We
then examined how the different methods affected the
distributions of the primes and moduli. Summary results
together for all sources are available in Table 1.

2.3.1 Prime generation

Probable primes. Random numbers (or numbers from
a sequence) are tested for primality using probabilis-
tic primality (compositeness) tests. Different libraries
use different combinations of the Fermat, Miller-Rabin,
Solovay-Strassen and Lucas tests. None of the tests re-
jects prime numbers if implemented correctly; hence,
they do not affect the distribution of the generated
primes. GNU Crypto uses a flawed implementation of
the Miller-Rabin test. As a result, it permits only Blum
primes6. No other library generates such primes exclu-
sively (however, some cards do).

In the random sampling method, large integers (can-
didates) are generated until a prime is found. If the
candidates are chosen uniformly, the distribution is not
biased (case of GNU Crypto 2.0.1, LibTomCrypt 1.17
and WolfSSL 3.9.0). An incremental search algorithm
selects a random candidate and then increments it un-
til a prime is found (Botan 1.11.29, Bouncy Castle 1.54,
Cryptix 20050328, cryptlib 3.4.3, Crypto++ 5.6.3, Flex-
iProvider 1.7p7, mbedTLS 2.2.1, SunRsaSign – Open-
JDK 1.8.0, OpenSSL 1.0.2g, and PGPSDK4). Primes
preceded by larger “gaps” will be selected with slightly
higher probability; however, this bias is not observable
from the distribution of the primes.

Large random integers are likely to have some small
prime divisors. Before time-consuming primality tests
are performed, compositeness can be revealed through
trial division with small primes or the computation of the
greatest common divisor (GCD) with a product of a few
hundred primes. In the case of incremental search, the
sieve of Eratosthenes or a table of remainders that is up-
dated when the candidate is incremented can be used. If
implemented correctly, these efficiency improvements do
not affect the distribution of the prime generator.

OpenSSL creates a table of remainders by dividing a
candidate by small primes. When a composite candi-
date is incremented, this table is efficiently updated using
only operations with small integers. Interestingly, candi-
dates for p for which p−1 is divisible by a small prime
up to 17 863 (except 2) are also rejected. Such a com-
putational step is useful to speed up the search for a safe
prime; however, (p− 1)/2 is not required (as would be
for safe prime) to be prime by the library. This strange
behaviour was first reported by Mironov [20] and can be
used to classify the source if the primes are known.

6A prime p is a Blum prime if p ≡ 3 (mod 4). When both p and q
are Blum primes, the modulus n is a Blum integer n ≡ 1 (mod 4).

896 25th USENIX Security Symposium USENIX Association

Maximal region

2k−1 2k 2k+1

2k−
1

2k
2k+

1

Mod. size
2k+2
2k+1
2k
2k−1
2k−2

Rejection sampling

q

2k−1 2k
2k−

1
2k

Accept
Reject

Square regions

q

2k−1 22k−1 2k

2k−
1

2k−
1
+

2k−
2

2k

Arbitrary region

q

2k−1 2k

2k−
1

2k

Figure 1: RSA key generation. The maximal region for the generated primes is defined by the precise length of the
modulus and equal lengths of the primes. Such keys can be generated through rejection sampling. To avoid generating
short moduli (which must be discarded), alternative square regions may be used. Several implementations, such as
that of the NXP J2A080 card, generate primes from arbitrary combinations of square regions.

Provable primes. Primes are constructed recursively
from smaller primes, such that their primality can be de-
duced mathematically (using Pocklington’s theorem or
related facts). This process is randomized; hence, a dif-
ferent prime is obtained each time. An algorithm for
constructing provable primes was first proposed by Mau-
rer [18] (used by Nettle 3.2). For each prime p, p− 1
must have a large factor (≥ √

p for Maurer’s algorithm
or ≥ 3

√
p for an improved version thereof). Factors of

p+1 are not affected.
Strong primes. A prime p is strong if both p−1 and

p+1 have a large prime factor (used by libgcrypt 1.65 in
FIPS mode and by the OpenSSL 2.0.12 FIPS module).
We also refer to these primes as FIPS-compliant, as FIPS
186-4 requires such primes for 1024-bit keys (larger keys
may use probable primes). Differing definitions of strong
primes are given in the literature; often, the large factor
of p−1 itself (minus one) should also have a large prime
factor (PGPSDK4 in FIPS mode). Large random primes
are not “weak” by comparison, as their prime factors are
sufficiently large, with sufficient probability, to be safe
from relevant attacks.

Strong primes are constructed from large prime fac-
tors. They can be generated uniformly (as in ANSI
X9.31, FIPS 186-4, and IEEE 1363-2000) or with a visi-
bly biased distribution (as in a version of Gordon’s algo-
rithm [11] used in PGPSDK4).

2.3.2 Key generation – prime pairs

The key size is the bit length of the modulus. Typically,
an algorithm generates keys of an exact bit length (the
only exception being PGPSDK4 in FIPS mode). The
primes are thus generated with a size equal to half of the
modulus length. These two measures define the maximal
region for RSA primes. The product of two k-bit primes
is either 2k or 2k − 1 bits long. There are two princi-

pal methods of solving the problem of short (2k−1)-bit
moduli, as illustrated in Figure 1.

Rejection sampling. In this method, pairs of k-bit
primes are generated until their product has the cor-
rect length. To produce an unbiased distribution, two
new primes should be generated each time (Cryptix
20050328, FlexiProvider 1.7p7, and mbedTLS 2.2.1). If
the greater prime is kept and only one new prime is gen-
erated, some bias can be observed in the resulting distri-
bution of RSA moduli (Bouncy Castle up to version 1.53
and SunRsaSign in OpenJDK 1.8.0). If the first prime is
kept (without regard to its size) and the second prime is
re-generated, small moduli will be much more probable
than large values (GNU Crypto 2.0.1).

“Square” regions. This technique avoids the genera-
tion of moduli of incorrect length that must be discarded
by generating only larger primes such that their product
has the correct length. Typically, both primes are se-
lected from identical intervals. When the prime pairs are
plotted in two dimensions, this produces a square region.

The smallest k-bit numbers that produce a 2k-bit mod-
ulus are close to

√
2 ·2k−1. Because random numbers can

easily be uniformly generated from intervals bounded
by powers of two, the distribution must be additionally
transformed to fit such an interval. We refer to prime
pairs generated from the interval

[√
2 ·2k−1,2k −1

]

as being generated from the maximal square region
(Bouncy Castle since version 1.54, Crypto++ 5.6.3, and
the Microsoft cryptography providers used in Cryp-
toAPI, CNG and .NET). Crypto++ approximates this in-
terval by generating the most significant byte of primes
from 182 to 255.

A more practical square region, which works well for
candidates generated uniformly from intervals bounded
by powers of two, is achieved by fixing the two most sig-
nificant bits of a candidate to 112 (Botan 1.11.29, cryptlib

USENIX Association 25th USENIX Security Symposium 897

3.4.3, libgcrypt 1.6.5, LibTomCrypt 1.17, OpenSSL
1.0.2g, PGPSDK4, and WolfSSL 3.9.0). Addition-
ally, the provable primes generated in Nettle 3.2 and
the strong primes generated in libgcrypt 1.6.5 (in FIPS
mode) and in the OpenSSL 2.0.12 FIPS module are pro-
duced from this region.

2.4 Analysis of black-box implementations
To obtain representative results of the key generation
procedures used in cards (for which we could not in-
spect the source codes), we investigated 16 different
types of cards from 6 different established card manufac-
turers (2×Gemalto, 6×NXP, 1×Infineon, 3×Giesecke
& Devrient (G&D), 2×Feitian and 2×Oberthur) devel-
oped using the widely used JavaCard platform. The
key pair generation process itself is implemented at a
lower level, with JavaCard merely providing an inter-
face for calling relevant methods. For each type of
card (e.g., NXP J2D081), three physical cards were
tested to detect any potential differences among physi-
cal cards of the same type (throughout the entire analy-
sis, no such difference was ever detected). Each card
was programmed with an application enabling the gen-
eration and export of an RSA key pair (using the
KeyPair.generateKey() method) and truly random
data (using the RandomData.generate() method).

We focused primarily on the analysis of RSA keys of
three different lengths – 512, 1024 and 2048 bits. Each
card was repeatedly asked to generate new RSA 512-bit
key pairs until one million key pairs had been generated
or the card stopped responding. The time required to
create these key pairs was measured, and both the pub-
lic (the modulus n and the exponent e) and private (the
primes p and q and the private exponent d) components
were exported from the card for subsequent analyses. No
card reset was performed between key pair generations.
In the ideal case, three times one million key pairs were
extracted for every card type. The same process was re-
peated for RSA key pairs with 1024-bit moduli but for
only 50 000 key pairs, as the key generation process takes
progressively longer for longer keys. The patterns ob-
served from the analyses performed on the 512-bit keys
was used to verify the key set with longer keys7.

Surprisingly, we found substantial differences in the
intervals from which primes were chosen. In some cases,
non-uniform distributions of the primes hinted that the
prime generation algorithms are also different to those
used in the software libraries. Several methods adopted
in software libraries, such as incremental search, seem
to be suitable even for limited-resource systems. This

7For example, one can quickly verify whether a smaller number of
factorized values of p− 1 from 1024-bit RSA keys fit the distribution
extrapolated from 512-bit keys.

argument is supported by a patent application [21] by
G&D, one of the manufacturers of the examined cards.
All tested cards from this manufacturer produced Blum
integers, as described in the patent, and these integers
were distributed uniformly, as expected from the incre-
mental search method.

A duration of approximately 2-3 weeks was typically
required to generate one million key pairs from a single
card, and we used up to 20 card readers gathering keys in
parallel. Not all cards were able to generate all required
keys or random data, stopping with a non-specific error
(0x6F00) or becoming permanently non-responsive after
a certain period. In total, we gathered more than 30 mil-
lion card-generated RSA key pairs8. Power consumption
traces were captured for a small number of instances of
the key pair generation process.

In addition, 100 MB streams of truly random data were
extracted from each card for tests of statistical random-
ness. When a problem was detected (i.e., the data failed
one or more statistical tests), a 1 GB stream was gener-
ated for fine-grained verification tests.

3 Analysis of the generated RSA key pairs

The key pairs extracted from both the software libraries
and the cards were examined using a similar set of ana-
lytical techniques. The goal was to identify sources with
the same behaviour, investigate the impact on the public
key values and infer the probable key generation algo-
rithm used based on similarities and differences in the
observed properties.

3.1 Distributions of the primes
To visualize the regions from which pairs of primes were
chosen, we plotted the most significant byte (MSB) of
each prime on a heat map. It is possible to observe the in-
tervals for prime generation, as discussed in Section 2.3.

Figure 2 shows a small subset of the observed non-
uniform distributions. Surprisingly, the MSB patterns
were significantly different for the cards and the software
implementations. The patterns were identical among dif-
ferent physical cards of the same type and were also
shared between some (but not all) types of cards from the
same manufacturer (probably because of a shared code
base). We did not encounter any library that produced
outputs comparable to those of the first two cards from
the examples shown in Figure 2. The third example could
be reproduced by generating primes alternately and uni-
formly from 14 different regions, each characterized by a
pattern in the top four bits of the primes. By comparison,
it was rarer for a bias to be introduced by a library.

8The entire dataset is available for further research at [31].

898 25th USENIX Security Symposium USENIX Association

Card: Infineon JTOP 80K

0.
0

0.
2

0.
4

0.
6

0.
8

Density (%)
10

00
00

00
10

00
10

00
10

01
00

00
10

01
10

00
10

10
00

00
10

10
10

00
10

11
00

00
10

11
10

00
11

00
00

00
11

00
10

00
11

01
00

00
11

01
10

00
11

10
00

00
11

10
10

00
11

11
00

00
11

11
10

00
11

11
11

11
10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11001111
Qmin = 11000000
Qmax = 11001111
Nmin = 10010000
Nmax = 10101000
P = Q

Card: Gemalto GXP E64

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10110101
Pmax = 11111111
Qmin = 10110101
Qmax = 11111111
Nmin = 10000100
Nmax = 11110101
P = Q

Card: NXP J2A080

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 10010000
Qmax = 11101111
Nmin = 10000010
Nmax = 11101111
P = Q

Library: OpenSSL 1.0.2g

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Library: Microsoft CryptoAPI

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10110101
Pmax = 11111111
Qmin = 10110101
Qmax = 11111111
Nmin = 10000000
Nmax = 11111111
P = Q

Library: PGP SDK 4 FIPS

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Density (%)

01
00

00
00

01
00

11
00

01
01

10
00

01
10

01
00

01
11

00
00

01
11

11
00

10
00

10
00

10
01

01
00

10
10

00
00

10
10

11
00

10
11

10
00

11
00

01
00

11
01

00
00

11
01

11
00

11
10

10
00

11
11

01
00

11
11

11
11

01000000
01001100
01011000
01100100
01110000
01111100
10001000
10010100
10100000
10101100
10111000
11000100
11010000
11011100
11101000
11110100
11111111

Q
P

Pmin = 01100000
Pmax = 11101111
Qmin = 01100100
Qmax = 11111111
Nmin = 00100110
Nmax = 11101000
P = Q

Figure 2: Example distributions of the most significant byte of the prime p and the corresponding prime q from 8
million RSA key pairs generated by three software libraries and three types of cards. The histograms on the top and
the side of the graph represent the marginal distributions of p and q, respectively. The colour scheme expresses the
likelihood that primes of a randomly generated key will have specific high order bytes, ranging from white (not likely)
over orange to red (more likely). For distributions of all sources from the dataset, see our technical report [25].

The relation between the values of p and q reveals
additional conditions placed on the primes, such as a
minimal size of the difference p − q (PGPSDK4, NXP
J2D081, and NXP J2E145G).

It is possible to verify whether small factors of p− 1
are being avoided (e.g., OpenSSL or NXP J2D081) or
whether the primes generally do not exhibit same distri-
bution as randomly generated numbers (Infineon JTOP
80K) by computing the distributions of the primes, mod-
ulo small primes. It follows from Dirichlet’s theorem that
the remainders should be distributed uniformly among
the φ(n) congruence classes in Z∗

n [19, Fact 4.2].
The patterns observed for the 512-bit keys were found

to be identical to those for the stronger keys of 1024 and
2048 bits. For the software implementations, we checked
the source codes to confirm that there were no differ-
ences in the algorithms used to generate keys of different
lengths. For the cards, we assume the same and gen-

eralize the results obtained for 512-bit RSA keys to the
longer (and much more common) keys.

3.2 Distributions of the moduli
The MSB of a modulus is directly dependent on the
MSBs of the corresponding primes p and q. As seen in
Figure 3, if an observable pattern exists in the distribu-
tions of the MSBs of primes p and q, a noticeable pattern
also appears in the MSB of the modulus. The preserva-
tion of shared patterns was observed for all tested types
of software libraries and cards. The algorithm used for
prime pair selection can often be observed from the dis-
tribution of the moduli. If a source uses an atypical al-
gorithm, it is possible to detect it with greater precision,
even if we do not know the actual method used.

Non-randomness with respect to small factors of p−1
can also be observed from the modulus, especially for

USENIX Association 25th USENIX Security Symposium 899

P
128 255

Q

128 255 128 255

N

Figure 3: The visible preservation of the MSB distribu-
tions of the primes p and q in the MSB distribution of the
modulus n = p ·q. This example is from the NXP J2A081
card.

small divisors. Whereas random primes are equiproba-
bly congruent to 1 and 2 modulo 3, OpenSSL primes are
always congruent to 2. As a result, an OpenSSL mod-
ulus is always congruent to 1 modulo 3. This property
is progressively more difficult to detect for larger prime
divisors. The moduli are more probably congruent to 1
modulo all small primes, which are avoided from p− 1
by OpenSSL. However, the bias is barely noticeable for
prime factors of 19 and more, even in an analysis of a
million keys. OpenSSL primes are congruent to 1 mod-
ulo 5 with probability 1/3 (as opposed to 1/4 for random
primes), to 1 modulo 7 with probability 1/5 (as opposed
to 1/6), and to 1 modulo 11 with probability 1/9 (as op-
posed to 1/10). For the practical classification of only a
few keys (see Section 4), we use only the remainder of
division by 3.

The use of Blum integers can also be detected from
the moduli with a high precision, as random moduli are
equiprobably congruent to 1 and 3 modulo 4, whereas
Blum integers are always congruent to 1 modulo 4. The
probability that k random moduli will be Blum integers
is 2−k.

Neither libraries nor cards attempt to achieve a uni-
form distribution of moduli. Existing algorithms [13, 17]
have the disadvantage that sometimes a prime will be one
bit larger than half of the modulus length. All sources
sacrifice uniformity in the most significant bits of the
modulus to benefit from more efficient methods of prime
and key generation.

We verified that the distribution of the other bytes of
the moduli is otherwise uniform. The second least signif-
icant bit is biased in the case of Blum integers. Sources
that use the same algorithm are not mutually distinguish-
able from the distributions of their moduli.

3.3 Factorization of p−1 and p+1

It is possible to verify whether strong primes are be-
ing used. Most algorithms generate strong primes from
uniform distributions (ANSI X9.31, FIPS 186-4, IEEE
1363, OpenSSL FIPS, libgcrypt FIPS, Microsoft and
Gemalto GCX4 72K), matching the distribution of ran-

dom primes, although PGPSDK4 FIPS produces a highly
atypical distribution of primes and moduli, such that this
source can be detected even from public keys. Hence,
we were obliged to search for the sizes of the prime fac-
tors of p−1 and p+1 directly9 by factoring them using
the YAFU software package [29]. We then extended the
results obtained for 512-bit keys to the primes of 1024-
bit key pairs (though based on fewer factorized values
because of the longer factorization time). Finally, we
extrapolated the results to keys of 2048 bits and longer
based on the known patterns for shorter keys.

As confirmed by the source code, large factors of p±1
generated in OpenSSL FIPS and by libgcrypt in FIPS
mode always have 101 bits; this value is hardcoded.
PGPSDK4 in FIPS mode also generates prime factors of
fixed length; however, their size depends on the size of
the prime.

Additionally, we detected strong primes in some of our
black-box sources. Gemalto GCX4 72K generates strong
primes uniformly, but the large prime factors always have
101 bits. The strong primes of Gemalto GXP E64, which
have 112 bits, are not drawn from a uniform distribution.
The libraries that use Microsoft cryptography providers
(CryptoAPI, CNG, and .NET) produce prime factors of
randomized length, ranging from 101 bits to 120 bits, as
required by ANSI X9.31.

For large primes, p± 1 has a large prime factor with
high probability. A random integer p will not have a fac-
tor larger than p1/u with a probability of approximately
u−u [19]. Approximately 10% of 256-bit primes do not
have factors larger than 100 bits, but 512-bit keys are
not widely used. For 512-bit primes, the probability is
less than 0.05%. Therefore, the requirement of a large
factor does not seem to considerably decrease the num-
ber of possible primes. However, many sources construct
strong primes with factors of exact length (e.g., 101 bits).
Using the approximation of the prime-counting function
π(n) ≈ n

ln(n) [19], we estimate that the interval required
by ANSI X9.31 (prime factors from 101 to 120 bits) con-
tains approximately 220 times more primes than the num-
ber of 101-bit primes. Hence, there is a loss of entropy
when strong primes are generated in this way, although
we are not aware of an attack that would exploit this fact.
For every choice of an auxiliary prime, 293 possible val-
ues are considered instead of 2113, which implies the loss
of almost 20 bits of entropy. If the primes are to be (p−,
p+)-safe, then 2 auxiliary primes must be generated. Be-
cause we require two primes p and q for every RSA key,
we double the estimated loss of entropy compared with
ANSI-compliant keys to 80 bits for 1024-bit keys.

When p−1 is guaranteed to have a large prime factor
but p+1 is not, the source is most likely using provable

9By p−1, we always refer to both p−1 and q−1, as we found no
relevant difference between p and q in the factorization results.

900 25th USENIX Security Symposium USENIX Association

Bit lengths of the largest prime factors of p−1
Th

e
se

co
nd

 la
rg

es
t p

rim
e

fa
ct

or
 (b

it
le

ng
th

)

The largest prime factor (bit length)

a) Random prime p
0

40
80

12
0

50 100 150 200 250

b) No factors 3 to 251

0
40

80
12

0

50 100 150 200 250

c) No factors 3 to 17863

0
40

80
12

0

50 100 150 200 250

d) Some factors less probable

0
40

80
12

0

50 100 150 200 250
e) At least one 101−bit factor

0
40

80
12

0

50 100 150 200 250

f) At least one 112−bit factor

0
40

80
12

0

50 100 150 200 250

g) At least one 129−bit factor

0
40

80
12

0

50 100 150 200 250

h) 101 to 120−bit prime factors

0
40

80
12

0

50 100 150 200 250

Figure 4: Scatter graphs with all combinations of two biggest factors of p− 1 for 512-bit RSA. The tested sources
fall into following categories: a) Botan 1.11.29, Bouncy Castle 1.53 & 1.54, Cryptix JCE 20050328, cryptlib 3.4.3,
Crypto++ 5.6.3, FlexiProvider 1.7p7, GNU Crypto 2.0.1, (GPG) libgcrypt 1.6.5, LibTomCrypt 1.17, mbedTLS 2.2.1,
PGPSDK4, SunRsaSign (OpenJDK 1.8), G&D SmartCafe 3.2, Feitian JavaCOS A22, Feitian JavaCOS A40, NXP
J2A080, NXP J2A081, NXP J3A081, NXP JCOP 41 V2.2.1, Oberthur Cosmo Dual 72K; b) NXP J2D081, NXP
J2E145G; c) OpenSSL 1.0.2g; d) Infineon JTOP 80K; e) (GPG) libgcrypt 1.6.5 FIPS, OpenSSL FIPS 2.0.12, Gemalto
GCX4 72K; f) Gemalto GXP E64; g) Nettle 3.2; h) MS CNG, MS CryptoAPI, MS .NET.

primes, as in the case of the Nettle library. Techniques
for generating provable primes construct p using a large
prime factor of p−1 (at least

√
p for Maurer’s algorithm

or 3
√

p for an improved version thereof). The size of the
prime factors of p+ 1 is not affected by Maurer’s algo-
rithm.

Factorization also completes the picture with regard
to the avoidance of small factors in p− 1. Sources that
avoid small factors in p−1 achieve a smaller number of
factors on average (and therefore also a higher average
length of the largest factor). No small factors are present
in keys from NXP J2D081 and J2E145G (values from
3 to 251 are avoided), from OpenSSL (values from 3 to
17 863 are avoided) and from G&D Smartcafe 4.x and
G&D Smartcafe 6.0 (values 3 and 5 are avoided). Small
factors in p+1 are not avoided by any source.

Concerning the distribution of factors, most of the
software libraries (14) and card types (8) yield distri-
butions comparable to that of randomly generated num-
bers of a given length (see Figure 4). The Infineon JTOP
80K card produces significantly more small factors than
usual (compared with both random numbers and other
sources). This decreases the probability of having a large
factor.

We estimated the percentage of 512-bit RSA keys
that are susceptible to Pollard p− 1 factorization within
280 operations. This percentage ranges from 0% (FIPS-
compliant sources) to 4.35% (Infineon JCOP 80K), with

an average of 3.38%. Although the NFS algorithm
would still be faster in most cases of keys of 512 bits
and larger, we found a card-generated key (with a small
maximal factor of p− 1) that was factorized via Pollard
p−1 method in 19 minutes, whereas the NFS algorithm
would require more than 2 000 CPU hours. Note that for
1024-bit keys, the probability of such a key being pro-
duced is negligible.

3.4 Sanity check

Based on the exported private and public components of
the generated RSA keys obtained from all sources, we
can summarize their basic properties as follows (see also
Table 1):

• All values p and q are primes and are not close
enough for Fermat factorization to be practical.

• All card-generated keys use a public exponent equal
to 0x10001 (65 537), and all software libraries ei-
ther use this value as the default or support a user-
supplied exponent.

• Most modulus values are of an exactly required
length (e.g., 1024 bits). The only exception is PG-
PSDK4 in FIPS mode, which also generates moduli
that are shorter than the specified length by one or
two bits.

USENIX Association 25th USENIX Security Symposium 901

• Neither libraries nor cards ensure that p is a safe
prime (p = 2 ·q+1, where q is also prime).

• Some sources construct strong primes according to
the stricter definition or at least comply with the
requirements defined in the FIPS 186-4 and ANSI
X9.31 standards, such that p−1 and p+1 both have
a large prime factor. Other libraries are not FIPS-
compliant; however, keys of 1024 bits and larger
resist p−1 and p+1 attacks for practical values of
the smoothness bound.

• Some libraries (5) and most card types (12) order
the primes such that p > q, which seems to be a
convention for CRT RSA keys. PGPSDK4 (in both
regular and FIPS modes) and libgcrypt (used by
GnuPG) in both modes order the primes in the op-
posite manner, q > p. In some sources, the ordering
is a side effect of the primes having fixed (and dif-
ferent) most significant bits (e.g., 4 bits of p and
q are fixed to 1111 and 1001, respectively, by all
G&D cards).

• All generated primes were unique for all libraries
and all types of cards except one (Oberthur Cosmo
Dual 72K).

• All G&D and NXP cards, the Oberthur Cosmo
Dual 72K card and the GNU Crypto library gen-
erate Blum integers. As seen from a bug in the
implementation of the Miller-Rabin test in GNU
Crypto, a simpler version of the test suffices for test-
ing Blum primes. However, we hypothesize that the
card manufacturers have a different motivation for
using such primes.

4 Key source detection

The distinct distributions of specific bits of primes and
moduli enable probabilistic estimation of the source li-
brary or card from which a given public RSA key was
generated. Intuitively, classification works as follows: 1)
Bits of moduli known to carry bias are identified with
additional bits derived from the modulus value (a mask,
6+3 bits in our method). 2) The frequencies of all pos-
sible mask combinations (29) for a given source in the
learning set are computed. 3) For classification of an un-
known public key, the bits selected by the mask are ex-
tracted as a particular value v. The source with the high-
est computed frequency of value v (step 2) is identified
as the most probable source. When more keys from the
same source are available (multiple values vi), a higher
classification accuracy can be achieved through element-
wise multiplication of the probabilities of the individual
keys.

We first describe the creation of a classification ma-
trix and report the classification success rate as evaluated
on our test set [31]. Later, classification is applied to
three real-world datasets: the IPv4 HTTPS handshakes
set [9], Certificate Transparency set [10] and the PGP
key set [30].

4.1 The classification process
The classification process is reasonably straightforward.
For the full details of the algorithm, please refer to our
technical report [25].

1. All modulus bits identified through previous analy-
sis as non-uniform for at least one source are in-
cluded in a mask. We included the 2nd − 7th most
significant bits influenced by the prime manipula-
tions described in Section 3.1, the second least sig-
nificant bit (which is zero for sources that use Blum
integers), the result of the modulus modulo 3 (which
is influenced by the avoidance of factor 3) and the
overall modulus length (which indicates whether an
exact length is enforced).

2. A large number of keys (learning set) from known
generating sources are used to create a classification
matrix. For every possible mask value (of which
there are 29 in our case) and every source, the rela-
tive frequency of the given mask value in the learn-
ing set for the given source is computed.

3. During the classification phase for key K with mod-
ulus m, the value v obtained after the application of
mask to modulus m is extracted. The row (proba-
bility vector) of the classification matrix that corre-
sponds to the value v contains, as its ith element, the
probability of K being produced by source i.

4. When a batch of multiple keys that are known to
have been produced by the same (unknown) source
is classified, the probability vectors for every key
obtained in step 3 are multiplied element-wise and
normalized to obtain the source probabilities pb for
the entire batch, and the source with the highest
probability is selected.

Note that the described algorithm cannot distinguish be-
tween sources with very similar characteristics, e.g., be-
tween the NXP J2D081 and NXP J2E145G cards, which
likely share the same implementation. For this reason, if
two sources have the same or very similar profiles, they
are placed in the same group. Figure 5 shows the cluster-
ing and (dis-)similarity of all sources considered in this
study. If the particular source of one or more key(s) is
missing from our analysis (relevant for the classification

902 25th USENIX Security Symposium USENIX Association

Source Version C
la

ss
ifi

ca
tio

n
gr

ou
p

Pr
im

e
se

ar
ch

m
et

ho
d

Pr
im

e
pa

ir
se

le
ct

io
n

B
lu

m
in

te
ge

rs

Sm
al

lf
ac

to
rs

of
p
−

1

L
ar

ge
fa

ct
or

of
p
−

1

L
ar

ge
fa

ct
or

of
p
+

1

|p
−

q|
ch

ec
k

|d
|c

he
ck

Notes
Open-source libraries
Botan 1.11.29 XI Incr. 112 × � × × × ×
Bouncy Castle 1.53 VIII Incr. RS × � × × � � Rejection sampling is less biased
Bouncy Castle 1.54 X Incr.

√
2 × � × × � � Checks Hamming weight of the modulus

Cryptix JCE 20050328 VIII Incr. RS × � × × × × Rejection sampling is not biased
cryptlib 3.4.3 XI Incr. 112 × � × × � �
Crypto++ 5.6.3 X Incr.

√
2 × � × × × × 255 ≥ MSB of prime ≥ 182 = �

√
2 ·128�

FlexiProvider 1.7p7 VIII Incr. RS × � × × × × Rejection sampling is not biased
GNU Crypto 2.0.1 II Rand. RS � � × × × × Rejection sampling is more biased
GPG Libgcrypt 1.6.5 XI Incr. 112 × � × × × × Used by GnuPG 2.0.30
GPG Libgcrypt 1.6.5 FIPS mode XI FIPS 112 × � � � � × 101-bit prime factors of p±1
LibTomCrypt 1.17 XI Rand. 112 × � × × × ×
mbedTLS 2.2.1 VIII Incr. RS × � × × × × Rejection sampling is not biased
Nettle 3.2 XI Maurer 112 × � � × × × Prime factor of p−1 has (|n|/4+1) bits
OpenSSL 1.0.2g V Incr. 112 × × × × × × No prime factors 3 to 17 863 in p−1
OpenSSL FIPS 2.0.12 XI FIPS 112 × � � � � × 101-bit prime factors of p±1
PGP SDK 4.x PGP Desktop 10.0.1 XI Incr. 112 × � × × � × p and q differ in their top 6 bits
PGP SDK 4.x FIPS mode IV PGP 112 × � � � � × Prime factors of p±1 have (|n|/4−32) bits
SunRsaSign Provider OpenJDK 1.8 VIII Incr. RS × � × × × × Rejection sampling is less biased
WolfSSL 3.9.0 XI Rand. 112 × � × × × ×
Black-box implementations

Microsoft CNG Windows 10 X FIPS
√

2 × � � � ? ? Prime factors of p±1 have 101 to 120 bits
Microsoft CryptoAPI Windows 10 X FIPS

√
2 × � � � ? ? Prime factors of p±1 have 101 to 120 bits

Microsoft .NET Windows 10 X FIPS
√

2 × � � � ? ? Prime factors of p±1 have 101 to 120 bits

Smartcards
Feitian JavaCOS A22 XI Incr./Rand. 112 × � × × ? ?
Feitian JavaCOS A40 XI Incr./Rand. 112 × � × × ? ?
G&D SmartCafe 3.2 XIII Incr./Rand. FX×9X � � × × �* ? *Size of |p−q| guaranteed by prime intervals
G&D SmartCafe 4.x I Incr./Rand. FX×9X � × × × �* ? No prime factors 3 and 5 in p−1
G&D SmartCafe 6.0 I Incr./Rand. FX×9X � × × × �* ? No prime factors 3 and 5 in p−1
Gemalto GCX4 72K XI FIPS 112 × � � � ? ? 101-bit prime factors of p±1
Gemalto GXP E64 IX Gem. Gem. × � � � ? ? 112-bit prime factors of p±1
Infineon JTOP 80K XII Inf. Inf. × � × × ? ?
NXP J2A080 VII Incr./Rand. NXP � � × × ? ?
NXP J2A081 VII Incr./Rand. NXP � � × × ? ?
NXP J2D081 III Incr./Rand. RS � × × × � ? No prime factors 3 to 251 in p−1
NXP J2E145G III Incr./Rand. RS � × × × � ? No prime factors 3 to 251 in p−1
NXP J3A081 VII Incr./Rand. NXP � � × × ? ?
NXP JCOP 41 V2.2.1 VII Incr./Rand. NXP � � × × ? ?
Oberthur Cosmo Dual 72K VI Incr. 112 � � × × ? ?
Oberthur Cosmo 64 XI Incr./Rand. 112 × � ? ? ? ? 512-bit keys not supported

Table 1: Comparison of cryptographic libraries and smartcards. The algorithms are explained in Section 2.3. Prime
search method: incremental search (Incr.); random sampling (Rand.); FIPS 186-4 Appendix B.3.6 or equivalent
algorithm for strong primes (FIPS); Maurer’s algorithm for provable primes (Maurer); PGP strong primes (PGP);
Gemalto strong primes (Gem.); Infineon algorithm (Inf.); unknown prime generator with almost uniform distribution,
possibly incremental or random search (Incr./Rand.). Prime pair selection: practical square region (112); rejection
sampling (RS); maximal square region (

√
2); the primes p and q have a fixed pattern in their top four bits, 11112 and

10012, respectively (FX×9X); Gemalto non-uniform strong primes (Gem.); Infineon algorithm (Inf.); NXP regions –
14 distinct square regions characterized by patterns in the top four bits of p and q (NXP). Blum integers: the modulus
n is always a Blum integer n ≡ 1 (mod 4) (�); the modulus is n ≡ 1 (mod 4) and n ≡ 3 (mod 4) with equal probability
(×). Small factors of p− 1: p− 1 contains small prime factors (�); some prime factors are avoided in p− 1 (×).
Large factors of p−1: p−1 is guaranteed to have a large prime factor – provable and strong primes (�); size of the
prime factors of p− 1 is random (×). Large factors of p+ 1: similar as for p− 1, typically strong primes are (�);
random and provable primes are (×). |p− q| check: p and q differ somewhere in their top bits (�); the property is
not guaranteed (×); the check may be performed, but the negative case occurs with a negligible probability (?). |d|
check: sufficient bit length of the private exponent d is guaranteed (�); not guaranteed (×); possibly guaranteed, but
not detectable (?).

USENIX Association 25th USENIX Security Symposium 903

0.
00

0.
15

0.
30

Similarity of analyzed sources (classification groups)
Eu

cl
id

ea
n

di
st

an
ce

G
&D

 S
m

ar
tC

af
e

4.
x

G
&D

 S
m

ar
tC

af
e

6.
0

G
N

U
 C

ry
pt

o
2.

0.
1

N
XP

 J
2E

14
5G

N
XP

 J
2D

08
1

PG
P

SD
K

4
FI

PS
O

pe
nS

SL
 1

.0
.2

g
O

be
rth

ur
 C

os
m

o
D

ua
l 7

2K
N

XP
 J

C
O

P
41

 v
2.

2.
1

N
XP

 J
2A

08
1

N
XP

 J
2A

08
0

N
XP

 J
3A

08
1

C
ry

pt
ix

 J
C

E
20

05
03

28
m

be
dT

LS
 2

.2
.1

Fl
ex

iP
ro

vi
de

r 1
.7

p7
Bo

un
cy

 C
as

tle
 1

.5
3

Su
nR

sa
Si

gn
 O

pe
nJ

D
K

1.
8

G
em

al
to

 G
XP

 E
64

C
ry

pt
o+

+
5.

6.
3

M
ic

ro
so

ft
C

ry
pt

oA
PI

M
ic

ro
so

ft
C

N
G

Bo
un

cy
 C

as
tle

 1
.5

4
M

ic
ro

so
ft

.N
ET

PG
P

SD
K

4
O

be
rth

ur
 C

os
m

o
64

G
em

al
to

 G
C

X
72

K
Fe

iti
an

 J
av

aC
O

S
A2

2
Fe

iti
an

 J
av

aC
O

S
A4

0
Li

bT
om

C
ry

pt
 1

.1
7

G
PG

 L
ib

gc
ry

pt
 1

.6
.5

N
et

tle
 3

.2
O

pe
nS

SL
 F

IP
S

2.
0.

12
W

ol
fS

SL
 3

.9
.0

cr
yp

tli
b

3.
4.

3
G

PG
 L

ib
gc

ry
pt

 1
.6

.5
 F

IP
S

Bo
ta

n
1.

11
.2

9
In

fin
eo

n
JT

O
P

80
K

G
&D

 S
m

ar
tC

af
e

3.
2

Group separation threshold

XIIIII IX XIIVIVIVI III VII VIII X XIGroup:

Figure 5: Clustering of all inspected sources based on the 9 bits of the mask. The separation line shows which sources
were put by us into the same classification category. Finer separation is still possible (e.g., SunRsaSign vs mbedTLS),
but the number of the keys from same source needs to be high enough to distinguish these very similar sources.

Top 1 match Top 2 match Top 3 match
keys in batch 1 2 5 10 100 1 2 5 10 100 1 2 5 10 100
Group I 95.39% 98.42% 99.38% 99.75% 100.00% 98.41% 99.57% 99.92% 100.00% 100.00% 98.41% 99.84% 100.00% 100.00% 100.00%
Group II 17.75% 32.50% 58.00% 69.50% 98.00% 35.58% 60.88% 84.15% 93.80% 100.00% 42.85% 71.58% 91.45% 98.40% 100.00%
Group III 45.36% 72.28% 93.17% 98.55% 100.00% 54.34% 78.31% 95.23% 99.35% 100.00% 82.45% 94.59% 99.25% 99.90% 100.00%
Group IV 90.14% 97.58% 99.80% 100.00% 100.00% 92.22% 98.14% 99.90% 100.00% 100.00% 94.42% 99.02% 100.00% 100.00% 100.00%
Group V 63.38% 81.04% 97.50% 99.60% 100.00% 84.14% 90.88% 99.25% 99.90% 100.00% 90.01% 96.62% 99.95% 100.00% 100.00%
Group VI 54.68% 69.22% 88.45% 94.60% 100.00% 80.31% 89.70% 97.90% 99.80% 100.00% 90.40% 96.34% 99.55% 100.00% 100.00%
Group VII 7.58% 31.69% 64.21% 82.35% 99.75% 32.67% 69.48% 95.33% 98.60% 100.00% 63.99% 88.70% 98.89% 99.70% 100.00%
Group VIII 15.65% 40.30% 68.46% 76.60% 85.20% 30.29% 52.81% 79.54% 92.38% 100.00% 39.32% 66.45% 90.34% 97.92% 100.00%
Group IX 22.22% 45.12% 76.35% 83.00% 83.00% 54.57% 71.86% 85.25% 86.80% 88.00% 61.77% 81.96% 94.35% 95.00% 99.00%
Group X 0.63% 6.33% 27.42% 42.74% 69.60% 15.05% 43.84% 78.83% 84.62% 91.00% 41.46% 70.54% 96.78% 99.88% 100.00%
Group XI 11.77% 28.40% 55.56% 65.28% 77.69% 29.94% 56.09% 86.43% 96.19% 100.00% 55.35% 78.48% 97.04% 99.77% 100.00%
Group XII 60.36% 79.56% 97.20% 99.40% 100.00% 82.96% 93.58% 99.60% 99.90% 100.00% 94.48% 97.62% 99.75% 100.00% 100.00%
Group XIII 39.56% 70.32% 96.20% 99.70% 100.00% 84.52% 95.54% 99.85% 100.00% 100.00% 95.22% 99.00% 99.95% 100.00% 100.00%
Average 40.34% 57.90% 78.59% 85.47% 93.33% 59.62% 76.98% 92.40% 96.26% 98.38% 73.09% 87.75% 97.48% 99.27% 99.92%

Table 2: The classification success rate of 13 groups created from all 38 analyzed sources using test set with same prior
probability of sources (see Figure 5 for libraries and cards in particular group). Columns corresponds to different
number of keys (1, 2, 5, 10 and 100) classified together from same (unknown) source.

of real-world datasets), any such key will be misclassi-
fied as belonging to a group with a similar mask proba-
bility vector.

Both the construction of the classification matrix and
the actual classification are then performed using these
groups instead of the original single sources. The ob-
served similarities split the examined sources into 13 dif-
ferent groups (labelled I to XIII and listed in Figure 5).
The resulting classification matrix10 has dimensions of
13×512.

10Because of its large size, the resulting matrix is available in our
technical report [25] and at http://crcs.cz/papers/usenix2016.

4.1.1 Evaluation of the classification accuracy

To evaluate the classification success of our method, we
randomly selected 10 000 keys from the collected dataset
(that were not used to construct the classification matrix)
for every source, thereby endowing the test set with equal
prior probability for every source.

A single organization may use the same source library
to generate multiple keys for its web servers. The clas-
sification accuracy was therefore evaluated not only for
one key (step 3 of the algorithm) but also for five, ten
and one hundred keys (step 4) originating from the same
(unknown) source. We evaluated not only the ability to

904 25th USENIX Security Symposium USENIX Association

achieve the “best match” with the correct source group
but also the ability to identify the correct source group
within the top two and top three most probable matches
(top-n match).

As shown in Table 2, the average accuracy on the test
set of the most probable source group was over 40% for
single keys and improved to greater than 93% when we
used batches of 100 keys from the same source for classi-
fication. When 10 keys from the same source were clas-
sified in a batch, the most probable classified group was
correct in more than 85% of cases and was almost always
(99%) included in the top three most probable sources.

A significant variability in classification success was
observed among the different groups. Groups I (G&D
cards) and IV (PGPSDK4 FIPS) could be correctly iden-
tified from even a single key because of their distinct dis-
tributions of possible mask values. By contrast, group X
(Microsoft providers) was frequently misclassified when
only a single key was used because of the wider range of
possible mask values, resulting in a lower probability of
each individual mask value.

We conclude that our classification method is moder-
ately successful even for a single key and very accurate
when a batch of at least 10 keys from the same source is
classified simultaneously.

Further leakage in other bits of public moduli might
be found by applying machine learning methods to the
learning set, potentially leading to an improvement of the
classification accuracy. Moreover, although we have al-
ready tested a wide range of software libraries and cards,
more sources could also be incorporated, such as addi-
tional commercial libraries, various hardware security
modules and additional types of cards and security to-
kens.

4.2 Classifying real-world keys
One can attempt to classify keys from suitable public
datasets using the described method. However, the clas-
sification of keys observed in the real world may differ
from the classification scenario evaluated above in two
respects:

1. The prior probabilities of real-world sources can
differ significantly (e.g., OpenSSL is a more prob-
able source for TLS keys than is any card), and the
resulting posterior probabilities from the classifica-
tion matrix will then also be different.

2. Our classification matrix does not include all ex-
isting sources (e.g., we have not tested high-speed
hardware security modules), and such sources will
therefore always be misclassified.

The classification success rate can be significantly im-
proved if the prior distribution of possible sources can be

estimated. Such an estimate can be performed based on
meta information such as statistics concerning the popu-
larity of various software libraries or sales figures for a
particular card model. Note that the prior distributions
may also significantly differ for different application ar-
eas, e.g., PGP keys are generated by a narrower set of
libraries and devices than are TLS keys. In this work, we
did not perform any prior probability estimations.

4.2.1 Sources of Internet TLS keys

We used IPv4 HTTPS handshakes collected from the
Internet-Wide Scan Data Repository [9] as our source of
real-world TLS keys. The complete set contains approxi-
mately 50 million handshakes; the relevant subset, which
consists of handshakes using RSA keys with a public
exponent of 65 537, contains 33.5M handshakes. This
set reduces to 10.7M unique keys based on the modu-
lus values. The keys in this set can be further divided
into batches with the same subject and issue date (as ex-
tracted from their certificates), where the same under-
lying library is assumed to be responsible for the gen-
eration of all keys in a given batch. As the classifica-
tion accuracy improves with the inclusion of more keys
in a batch, we obtained classification results separately
for batches consisting of a single key only (users with a
single HTTPS server), 2-9 keys, 10-99 keys (users with
a moderate number of servers) and 100 and more keys
(users with a large number of servers).

Intuitively, batches with 100+ keys will yield very ac-
curate classification results but will capture only the be-
haviour of users with a large number of HTTPS servers.
Conversely, batches consisting of only a single key will
result in low accuracy but can capture the behaviours of
different types of users.

The frequency of a given source in a dataset (for a
particular range of batch sizes) is computed as follows:
1) The classification probability vector pb for a given
batch is computed according to the algorithm from Sec-
tion 4.1. 2) The element-wise sum of pb · nb over all
batches b (weighted by the actual number of keys nb in
the given batch) is computed and normalized to obtain
the relative proportion vector, which can be found as a
row in Table 3.

As shown in Section 4.1.1, a batch of 10 keys origi-
nating from the same source should provide an average
classification accuracy of greater than 85% – sufficiently
high to enable reasonable conclusions to be drawn re-
garding the observed distribution. Using batches of 10-
99 keys, the highest proportion of keys generated for
TLS IPv4 (82%) were classified as belonging to group
V, which contains a single library – OpenSSL. This pro-
portion increased to almost 90% for batches with 100+
keys. The second largest proportion of these keys (ap-

USENIX Association 25th USENIX Security Symposium 905

Group of sources

Dataset (size of included batches) #keys I II III IV V VI VII VIII IX X XI XII XIII

Multiple keys classified in single batch, likely accurate results (see discussion in Section 4.1.1)

TLS IPv4 (10-99 keys) [9] 518K - 0.00% - 0.01% 82.84% - - 1.09% 0.28% 10.18% 5.61% - -

TLS IPv4 (100+ keys) [9] 973K - - - 0.01% 89.92% - - 4.68% 0.00% 3.46% 1.93% - -

Cert.Transparency (10-99 keys) [10] 23K - 0.00% - 0.07% 26.14% - - 6.90% 2.79% 47.70% 16.41% - -

PGP keyset (10-99 keys) [30] 1.7K - - - 6.87% 11.95% - - 36.11% 2.09% 5.73% 37.25% - -

Classification based on batches with 2-9 keys only, likely lower accuracy results

TLS IPv4 (2-9 keys) [9] 237K 0.02% 0.79% 2.06% 0.11% 54.14% 3.26% 1.73% 7.03% 7.98% 11.34% 11.17% 0.36% 0.05%

Cert. Transparency (2-9 keys) [10] 794K 0.03% 1.12% 3.21% 0.14% 43.89% 5.03% 2.64% 6.59% 10.52% 12.10% 14.18% 0.49% 0.06%

PGP keyset (2-9 keys) [30] 83K 0.02% 1.47% 1.40% 2.07% 14.36% 7.90% 3.91% 7.74% 16.10% 18.80% 25.86% 0.35% 0.03%

Classification based on single key only, likely low accuracy results

TLS IPv4 (1 key) [9] 8.8M 0.98% 4.02% 6.47% 1.94% 21.01% 8.63% 6.13% 8.65% 12.22% 11.95% 13.48% 3.49% 1.03%

Cert. Transparency (1 key) [10] 12.7M 0.88% 3.75% 6.90% 1.49% 23.10% 8.69% 6.04% 7.99% 12.08% 11.78% 13.50% 3.04% 0.77%

PGP keyset (1 key) [30] 1.35M 0.44% 4.24% 4.09% 2.17% 13.91% 10.55% 7.18% 8.83% 14.34% 14.22% 16.79% 2.64% 0.59%

Table 3: The ratio of resulting source groups identified by the classification method described in Section 4. Datasets
are split into subsets based on the number of keys that can be attributed to a single source (batch). ‘-’ means no key
was classified for the target group. ‘0.00%’ means that some keys were classified, but less than 0.005%.

proximately 10.2%) was assigned to group X, which con-
tains the Microsoft providers (CAPI, CNG, and .NET).

These estimates can be compared against the es-
timated distribution of commonly used web servers.
Apache, Nginx, LiteSpeed, and Google servers with the
OpenSSL library as the default option have a cumula-
tive market share of 86% [32]. This value exhibits a re-
markably close match to the classification rate obtained
for OpenSSL (group V). MS Internet Information Ser-
vices (IIS) is included with Microsoft’s cryptographic
providers (group X) and has a market share of approx-
imately 12%. Again, a close match is observed with
the classification value of 10.2% obtained for users with
10-99 certificates certified within the same day (batch).

Users with 100 and more keys certified within the
same day show an even stronger preference for OpenSSL
library (89.9%; group V) and also for group VIII (4.6%;
this group contains popular libraries such as OpenJDK’s
SunRsaSign, Bouncy Castle and mbedTLS) at the ex-
pense of groups X and XI.

The classification accuracy for users with only single-
key batches or a small number of keys per batch is sig-
nificantly less certain, but the general trends observed
for larger batches persist. Group V (OpenSSL) is most
popular, with group X (Microsoft providers) being the
second most common. Although we cannot obtain
the exact proportions of keys generated using particular
sources/groups, we can easily determine the proportion
of keys that certainly could not have been generated by
a given source by means of the occurrence of impossi-
ble values produced by the bit mask, i.e., values that are
never produced by the given source. Using this method,

we can conclude for certain that 19%, 25%, 17% and
10% of keys for users with 1, 2-9, 10-99 and 100+ keys
per batch, respectively, could not have been generated by
the OpenSSL library (see [25] for details).

Another dataset of TLS keys was collected from
Google’s Pilot Certificate Transparency server [10]. The
dataset processing was the same as that for the previous
TLS dataset [9]. For users with small numbers of keys
(1 and 2-9), the general trends observed from the TLS
IPv4 dataset were preserved. Interestingly, however, Cer-
tificate Transparency dataset indicates that group X (Mi-
crosoft) is significantly more popular (47%) than group
V (OpenSSL) for users with 10-99 keys.

4.2.2 Sources of PGP keys

A different set of real-world keys can be obtained from
PGP key servers [30]. We used a dump containing nearly
4.2 million keys, of which approximately 1.4 million
were RSA keys suitable for classification using the same
processing as for the TLS datasets. In contrast to the
TLS handshakes, significantly fewer PGP keys could be
attributed to the same batch (i.e., could be identified as
originating from the same unknown source) based on the
subject name and certification date. Still, 84 thousand
unique keys were extracted in batches of 2-9 keys and
1 732 for batches of 10-99 keys.

The most prolific source group is group XI (which
contains both libgcrypt from the GnuPG software dis-
tribution and the PGPSDK4 library), as seen in Ta-
ble 3. This is intuitively expected because of the
widespread use of these two software libraries. Group

906 25th USENIX Security Symposium USENIX Association

VIII, consisting of the Bouncy Castle library (contain-
ing the org.bouncycastle.openpgp package), is also very
common (36%) for batches of 10-99 keys.

Because of the lower accuracy of classification for
users with smaller numbers of keys (1 and 2-9), it is fea-
sible only to consider the general properties of these key
batches and their comparison with the TLS case rather
than being concerned with the exact percentage values in
these settings. The results for the PGP dataset indicate a
significant drop in the proportion of keys generated us-
ing the OpenSSL library. According to an analysis of the
keys that certainly could not have been obtained from a
given source, at least 47% of the single-key batches were
certainly not generated by OpenSSL, and this percent-
age increases to 72% for batches of 2-9 keys. PGPSDK4
in FIPS mode (group IV) was found to be significantly
more common than in the TLS datasets.

Note that an exported public PGP key usually contains
a Version string that identifies the software used. Unfor-
tunately, however, this might be not the software used
to generate the original key pair but merely the software
that was used to export the public key. If the public key
was obtained via a PGP keyserver (as was the case for
our dataset), then the Version string indicates the version
of the keyserver software itself (e.g., Version: SKS 1.1.5)
and cannot be used to identify the ratios of the different
libraries used to generate the keys11.

5 Practical impact of origin detection

The possibility of accurately identifying the originating
library or card for an RSA key is not solely of theoretical
or statistical interest. If some library or card is found to
produce weak keys, then an attacker can quickly scan for
other keys from the same vulnerable source. The possi-
bility of detection is especially helpful when a successful
attack against a weak key requires a large but practically
achievable amount of computational resources. Prese-
lecting potentially vulnerable keys saves an attacker from
spending resources on all public keys.

The identification of the implementations responsible
for the weak keys found in [3, 12] was a difficult prob-
lem. In such cases, origin classification can quickly pro-
vide one or a few of the most probable sources for further
manual inspection. Additionally, a set of already identi-
fied weak keys can be used to construct a new classifi-
cation group, which either will match an already known
one (for which the underlying sources are known) or can
be used to search for other keys that belong to this new
group in the remainder of a larger dataset (even when the
source is unknown).

11A dataset with the original Version strings could be used to test
these predictions.

Another practical impact is the decreased anonymity
set of the users of a service that utilizes the RSA al-
gorithm whose users are not intended to be distin-
guishable (such as the Tor network). Using differ-
ent sources of generated keys will separate users into
smaller anonymity groups, effectively decreasing their
anonymity sets. The resulting anonymity sets will be es-
pecially small when individual users decides to use cryp-
tographic hardware to generate and protect their private
keys (if selected device does not fall into into group with
widely used libraries). Note that most users of the Tor
project use the default client, and hence the same im-
plementation, for the generation of the keys they use.
However, the preservation of indistinguishability should
be considered in the development of future alternative
clients.

Tor hidden services sometimes utilize ordinary
HTTPS certificates for TLS [1], which can be then linked
(via classification of their public keys) with other ser-
vices of the same (unknown) operator.

Mixnets such as mixmaster and mixminion use RSA
public keys to encrypt messages for target recipient
and/or intermediate mix. If key ID is preserved, one may
try to obtain corresponding public key from PGP key-
server and search for keys with the same source to nar-
row that user’s anonymity set in addition to analysis like
one already performed on alt.anonymous.messages [22].
Same as for Tor network, multiple seemingly indepen-
dent mixes can be linked together if uncommon source is
used to generate their’s RSA keys.

A related use is in a forensic investigation in which
a public key needs to be matched to a suspect key-
generating application. Again, secure hardware will
more strongly fingerprint its user because of its relative
rarity.

An interesting use is to verify the claims of remote
providers of Cryptography as a Service [4] regarding
whether a particular secure hardware is used as claimed.
As the secure hardware (cards) used in our analysis
mostly exhibit distinct properties of their generated keys,
the use of such hardware can be distinguished from the
use of a common software library such as OpenSSL.

5.1 How to mitigate origin classification

The impact of successful classification can be mitigated
on two fronts: by library maintainers and by library
users. The root cause lies with the different design and
implementation choices for key generation that influence
the statistical distributions of the resulting public keys.
A maintainer can modify the code of a library to elimi-
nate differences with respect to the approach used by all
other sources (or at least the most common one, which is
OpenSSL in most cases). However, although this might

USENIX Association 25th USENIX Security Symposium 907

work for one specific library (mimicking OpenSSL), it is
not likely to be effective on a wider scale. Changes to
all major libraries by its maintainers are unlikely to oc-
cur, and many users will continue to use older versions
of libraries for legacy reasons.

More pragmatic and immediate mitigation can be
achieved by the users of these libraries. A user may re-
peatedly generate candidate key pairs from his or her li-
brary or device of choice and reject it if its classification
is too successful. Expected number of trials differs based
on the library used and the prior probability of sources
within the targeted domain. For example, if TLS is the
targeted domain, five or less key generation trials are ex-
pected for most libraries to produce “indecisive” key.

The weakness of the second approach lies in the un-
known extent of public modulus leakage. Although we
have described seven different causes of leakage, others
might yet remain unknown – allowing for potential fu-
ture classification of keys even after they have been op-
timized for maximal indecisiveness against these seven
known causes.

This strategy can be extended when more keys are to
be generated. All previously generated keys should be
included in a trial classification together with the new
candidate key. The selection process should also be ran-
domized to some extent; otherwise, a new classification
group of “suspiciously indecisive” keys might be formed.

6 Key generation process on cards

The algorithms used in open-source libraries can be in-
spected and directly correlated to the biases detected in
their outputs. To similarly attribute the biased keys pro-
duced by cards to their unknown underlying algorithms,
we first verified whether the random number generator
might instead be responsible for the observed bias. We
also examined the time- and power-consumption side
channels of the cards to gain insight into the processes
responsible for key generation.

Truly random data generated on-card are a crucial in-
put for the primes used in RSA key pair generation. A
bias in these data would influence the predictability of
the primes. If a highly biased or malfunctioning gener-
ator is used, factorization is not necessary (only a small
number of fixed values can be taken as primes) or is fea-
sible even for RSA keys with lengths otherwise deemed
to be secure [3, 6, 12].

6.1 Biased random number generator
The output of an on-card truly random number genera-
tor (TRNG) can be tested using statistical batteries, and
deviances are occasionally detected in commercial secu-
rity tokens [6]. We generated a 100 MB stream of ran-

Infineon JTOP 80K − serial test 16−bit

O
bs

er
ve

d
fre

qu
en

cy
 o

f p
at

te
rn

 a

s
m

ul
tip

le
 o

f e
xp

ec
te

d
fre

qu
en

cy

0000 2492 4924 6DB6 9248 B6DA DB6C FFFF

0.63
0.68
0.74
0.80
0.85
0.91
0.96
1.02

16−bit pattern (hexadecimal)

(4) Patterns xyxy, xxxx
(4) (4)

(3) Patterns xy(xy XOR 01), xy(xy XOR 80)
(3) (3)

(2) Patterns xy(xy XOR 02), xy(xy XOR 03), xy(xy XOR 40), xy(xy XOR C0)
(2) (2)

(1) Patterns xy(xy XOR 04), xy(xy XOR 05), xy(xy XOR 06), xy(xy XOR 07),
 xy(xy XOR 20), xy(xy XOR 60), xy(xy XOR A0), xy(xy XOR E0)

(1) (1)

Figure 6: The frequencies of different patterns with the
length of 16 bits computed from 1 GB random data
stream generated by the Infineon JTOP 80K card. At
least five distinct patterns can be identified where all pat-
terns should exhibit an uniform distribution instead.

dom data from one card of each type and tested these
data streams using the common default settings of the
NIST STS and the Dieharder battery of statistical tests
[7, 23] as well as our alternative EACirc distinguisher
[24]. All types of cards except two (Infineon JTOP 80K
and Oberthur Cosmo Dual 72K) passed the tests with the
expected number of failures at a confidence level of 1%.

The Infineon JTOP 80K failed the NIST STS Approxi-
mate Entropy test (85/100, expected entropy contained in
the data) at a significant level and also failed the group of
Serial tests from the Dieharder suite (39/100, frequency
of overlapping n-bit patterns). Interestingly, the serial
tests began to fail only for patterns with lengths of 9 bits
and longer (lengths of up to 16 bits were tested), sug-
gesting a correlation between two consecutive random
bytes generated by the TRNG. As shown in Figure 6, for
16-bit patterns, all bytes in the form of xyxy (where x
and y denote 4-bit values) were 37% less likely to oc-
cur than other combinations. At least three more distinct
groups of inputs with smaller-than-average probabilities
were also identified. Note that deviating distributions
were observed in all three physical Infineon JTOP 80K
cards that were tested and thus were probably caused by
a systematic defect in the entire family of cards rather
than a single malfunctioning device. The detected bias
is probably not sufficient to enable faster factorization
by guessing potential primes according to the slightly bi-
ased distribution. However, it may be used to identify
this type of card as the source of a sufficiently large (e.g.,
1KB) random data stream (i.e., to fingerprint such a ran-
dom stream).

The Oberthur Cosmo Dual 72K failed more visibly,
as two cards were blocked after the generation of only
several MB of random data. The statistical tests then fre-
quently failed because of the significant bias in the data.
Several specific byte values were never produced in the
“random” stream.

908 25th USENIX Security Symposium USENIX Association

We also generated data streams directly from the con-
catenated exported primes with the two most signifi-
cant bytes and the least two bits dropped, as the previ-
ous analysis had revealed a non-uniform distribution in
these bits. Interestingly, both the Infineon JTOP 80K and
the Oberthur Cosmo Dual 72K failed only for their ran-
dom data streams (as described above) but successfully
passed12 for the streams generated from the concatenated
primes, hinting at the possibility that either random data
are generated differently during prime generation or (un-
likely) the prime selection process is able to mask the
bias observed in the raw random data.

6.1.1 Malfunctioning generator

All primes for the card-generated 512- and 1024-bit keys
were tested for uniqueness. All tested card types ex-
cept one generated unique primes. In the exceptional
case of the Oberthur Cosmo Dual 72K cards, approx-
imately 0.05% of the generated keys shared a specific
value of prime q. The flaw was discovered in all three
tested physical cards for both 512-bit and 1024-bit keys.
The repeated prime value was equal to 0xC000...0077

for 512-bit RSA keys and 0xC000...00E9B for 1024-
bit RSA keys. These prime values correspond to the
first Blum prime generated when starting from the value
0xC000...000 in each case.

The probable cause of such an error is the following
sequence of events during prime generation: 1) The ran-
dom number generator of the card was called but failed
to produce a random number, either by returning a value
with all bits set to zero or by returning nothing into the
output memory, which had previously been zeroed. 2)
The candidate prime value q (equal to 0 at the time) had
its highest four bits fixed to 11002 (to obtain a modulus
of the required length13 when multiplied by the prime p),
resulting in a value of 0xC0 in the most significant byte.
3) The candidate prime value was tested for primality and
increased until the first prime with the required properties
(a Blum prime in the case of the Oberthur Cosmo Dual
72K) was found (0xC000...0077 in the case of 512-bit
RSA).

The faulty process described above that leads to the
observed predictable primes may also occur for other
cards or software libraries as a result of multiple causes
(e.g., an ignored exception in random number genera-
tion or a programming error). We therefore inspected our
key pair dataset, the TLS IPv4 dataset [9] and the PGP
dataset [30] for the appearance of such primes relevant to
key lengths of 512, 1024 and 2048 bits. Interestingly, no
such corrupt keys were detected except for those already
described.

12Except for the Oberthur nearly zero keys (see Section 6.1.1).
13As was observed for the dataset analysed in Section 3.

Note that a random search for a prime is much less
likely to fail in this mode. Even if some of the top bits
and the lowest bit are set to one, the resulting value is not
a prime for common MSB masks. New values will be
generated if the starting value contains only zeroes.

6.2 Power analysis of key generation

Analysis of power consumption traces is a frequently
used technique for card inspection. The baseline power
trace expected should cover at least the generation of ran-
dom numbers of potential primes, primality testing, com-
putation of the private exponent and storage of generated
values into a persistent key pair object. We utilized the
simple power analysis to reveal significant features like
random number generation, RSA encryption, and RSA
decryption operation, separately. By programming a card
to call only the desired operation (generate random data,
encrypt, decrypt), the feature pattern for the given oper-
ation is obtained. These basic operations were identified
in all tested types of cards. Once identified, the opera-
tions can be searched for inside a more complex opera-
tions like the RSA key pair generation.

A typical trace of the RSA key pair generation process
(although feature patterns may differ with card hardware)
contains: 1) Power consumption increases after the gen-
erating key pair method is called (cryptographic RSA co-
processor turned on). 2) Candidate values for primes p
and q are generated (usage of a TRNG can be observed
from the power trace) and tested. 3) The modulus and
the private exponent are generated (assumed, not distin-
guishable from the power trace). 4) Operation with a pri-
vate key is executed (decryption, in 7 out of 16 types of
cards) to verify key usability. 5) Operation with a public
key is executed (encryption, 3 types of cards only).

Note that even when the key generation process is cor-
rectly guessed, it is not possible to simply implement it
again and compare the resulting power traces – as only
the card’s main CPU is available for user-defined opera-
tions, instead of a coprocessor used by the original pro-
cess. Additional side-channel and fault induction pro-
tection techniques may be also applied. Therefore, one
cannot obtain an exactly matching power trace from a
given card due to unavailability of low-level program-
ming interfaces and additionally executed operations for
verification of key generation hypothesis.

Whereas some steps of the key generation, such as the
randomness generation, take an equal time across mul-
tiple runs of the process, the time required to generate
a prime differs greatly as can be also seen from the ex-
ample given in Figure 7, where timing is extracted from
the power trace. The variability can be attributed to the
randomized process of the prime generation. Incremen-
tal search will find the first prime greater than a random

USENIX Association 25th USENIX Security Symposium 909

number selected as the base of the search. Since both
primes p and q are distributed as distances from a random
point to a prime number, the resulting time distribution
will be affected by a mixture of these two distributions.

In samples collected from 12 out of 16 types of cards,
the distribution of time is concentrated at evenly spaced
points14 as seen in Figure 7. The distance between a pair
of points is interpreted as the duration of a single primal-
ity test, whereas their amount corresponds to the number
of candidates that were ruled out by the test as a compos-
ite. Then it is possible to obtain a histogram of number
of tested candidates, e.g., by binning the distribution with
breaks placed in the midpoints of the empty intervals.

6.3 Time distribution
We experimentally obtained distributions for a number
of needed primality tests for different parameters of trial
division. Then we were able to match them with dis-
tributions from several cards, obtaining a likely estimate
for the number of primes used by the card in the trial
division (sieving) phase. For some types of cards, a sin-
gle parameter did not match distributions of neither 512-
bit nor 1024-bit keys. There may exist a different op-
timal value of trial division tests and primality tests for
different key lengths. Notably, in some cases of card-
generated 512-bit keys, the number of primality tests
would have to be halved to exactly match a referential
distribution. However, we are not aware of a mechanism
that would perform two primality tests in parallel or at
least in the same time, as is required for testing a candi-
date of double bit length.

The exact time distribution for software implementa-
tions is of less concern since the key generation process
tends to be much faster on an ordinary CPU. The source
code can be modified to accommodate for counting the
number of tests directly (as shown in the inlay in Figure
7) without relying on time measurement that may be in-
fluenced by other factors specific to the implementation.

7 Conclusions

This paper presents a thorough analysis of key pairs gen-
erated and extracted from 38 different sources encom-
passing open-source and proprietary software libraries
and cryptographic cards. This broad analysis allowed us
to assess current trends in RSA key pair generation even
when the source codes for key generation were not avail-
able, as in the case of proprietary libraries and cards. The

14Due to small differences in duration of key generation and round-
ing caused by precision of the measurement, the times belonging to the
same group will not be identical to one millisecond. The peaks were
highlighted by summing adjoining milliseconds, but only in the case
when large (almost) empty spaces exist in the distribution.

0 500 1000 1500 2000 2500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Time of key generation

Time of key generation (ms, difference from fastest run)

D
en

si
ty

 (%
)

 512b keys (smartcard)
1024b keys (smartcard)
 512b keys (sieving 11b)
1024b keys (sieving 6b)

0 50 100 150

0.
0

1.
0

2.
0

3.
0

Number of candidates tested for primality

D
en

si
ty

 (%
)

Figure 7: An example of the histogram of times neces-
sary to generate a large number of 512 and 1024-bit
RSA keys generated from an NXP J2D081 card. Left –
the distribution of key generation times is concentrated
around evenly spaced points, with the distance represent-
ing the duration of a single primality test. The times were
normalized to begin at zero, therefore they represent dif-
ference from the fastest run. Inlay – the distribution of
number of candidates tested by primality tests obtained
from a software implementation. 512-bit keys are gener-
ated with trial division up to 11-bit primes, 1024-bit keys
used 6-bit primes. The results show a clear correlation
between the generation time and an expected number of
primality tests.

range of approaches identified indicates that the question
of how to generate an optimal RSA key has not yet been
settled.

The tested keys were generally found to contain a high
level of entropy, sufficient to protect against known fac-
torization attacks. However, the source-specific prime
selection algorithms, postprocessing techniques and en-
forcement of specific properties (e.g., Blum primes)
make the resulting primes slightly biased, and these bi-
ases serve as fingerprints of the sources. Our paper there-
fore shows that public moduli leak significantly more in-
formation than previously assumed. We identified seven
properties of the generated primes that are propagated
into the public moduli of the generated keys. As a result,
accurate identification of originating library or smartcard
is possible based only on knowledge of the public keys.
Such an unexpected property can be used to decrease the
anonymity set of RSA keys users, to search for keys gen-
erated by vulnerable libraries, to assess claims regarding
the utilization of secure hardware by remote parties, and
for other practical uses. We classified the probable ori-
gins of keys in two large datasets consisting of 10 and

910 25th USENIX Security Symposium USENIX Association

15 million (mostly) TLS RSA keys and 1.4 million PGP
RSA keys to obtain an estimate of the sources used in
real-world applications.

The random number generator is a crucial component
for the generation of strong keys. We identified a generic
failure scenario that produces weak keys and occasion-
ally detected such keys in our dataset obtained from the
tested cards. Luckily, no such weak key was identified in
the datasets of publicly used RSA keys.

Acknowledgements: We acknowledge the support of
the Czech Science Foundation, project GA16-08565S.
The access to the computing and storage resources of Na-
tional Grid Infrastructure MetaCentrum (LM2010005) is
greatly appreciated. We would like to thank all anony-
mous reviewers and our colleagues for their helpful com-
ments and fruitful discussions.

References
[1] ARMA. Tor blog: Facebook, hidden services, and https certs.

Available from https://blog.torproject.org/blog/facebook-hidden-
services-and-https-certs, cit. [2016-06-26].

[2] BARDOU, R., FOCARDI, R., KAWAMOTO, Y., SIMIONATO, L.,
STEEL, G., AND TSAY, J.-K. Efficient Padding Oracle At-
tacks on Cryptographic Hardware. In Advances in Cryptology –
CRYPTO 2012: 32nd Annual Cryptology Conference. Proceed-
ings. Springer-Verlag, 2012, pp. 608–625.

[3] BERNSTEIN, D. J., CHANG, Y.-A., CHENG, C.-M., CHOU, L.-
P., HENINGER, N., LANGE, T., AND SOMEREN, N. Factoring
RSA Keys from Certified Smart Cards: Coppersmith in the Wild.
In Advances in Cryptology – ASIACRYPT 2013. Springer-Verlag,
2013, pp. 341–360.

[4] BERSON, T., DEAN, D., FRANKLIN, M., SMETTERS, D., AND
SPREITZER, M. Cryptography as a network service. In Pro-
ceedings of the ISOC Network and Distributed System Security
Symposium (NDSS) (2001).

[5] BLEICHENBACHER, D. Chosen ciphertext attacks against pro-
tocols based on the RSA encryption standard PKCS #1. In
Advances in Cryptology — CRYPTO ’98: 18th Annual Inter-
national Cryptology Conference. Proceedings. Springer-Verlag,
1998, pp. 1–12.

[6] BOORGHANY, A., SARMADI, S., YOUSEFI, P., GORJI, P., AND
JALILI, R. Random data and key generation evaluation of some
commercial tokens and smart cards. In Information Security and
Cryptology (ISCISC), 11th International ISC Conference. Pro-
ceedings. IEEE, 2014, pp. 49–54.

[7] BROWN, R. G. Dieharder: A random number
test suite, version 3.31.1, 2004. Available from:
http://www.phy.duke.edu/∼rgb/General/dieharder.php, cit.
[2016-06-26].

[8] BRUMLEY, B. B., AND TUVERI, N. Remote Timing Attacks
Are Still Practical. In Computer Security – ESORICS 2011: 16th
European Symposium on Research in Computer Security. Pro-
ceedings. Springer-Verlag, 2011, pp. 355–371.

[9] DURUMERIC, Z., ET AL. Internet-Wide Scan Data Repository:
Full IPv4 HTTPS Handshakes, dump from June 02, 2016. Avail-
able from: https://scans.io/, [cit. 2016-06-02].

[10] GOOGLE. Certificate Transparency dump from June 07, 2016.
https://www.certificate-transparency.org, cit. [2016-06-07].

[11] GORDON, J. Strong Primes are Easy to Find. Springer-Verlag,
1985, pp. 216–223.

[12] HENINGER, N., DURUMERIC, Z., WUSTROW, E., AND HAL-
DERMAN, J. A. Mining Your Ps and Qs: Detection of
Widespread Weak Keys in Network Devices. In 21st USENIX
Security Symposium. Proceedings. USENIX, 2012, pp. 205–220.

[13] IEEE. Standard Specifications for Public-Key Cryptography.
IEEE Std 1363, 2000.

[14] KERRY, C. F., AND ROMINE, C. FIPS PUB 186-4 Digital Sig-
nature Standard (DSS), 2013.

[15] KOCHER, P., JAFFE, J., AND JUN, B. Differential Power Analy-
sis. In Advances in Cryptology – CRYPTO’99: 19th Annual Inter-
national Cryptology Conference. Proceedings. Springer-Verlag,
1999, pp. 388–397.

[16] LEHMAN, R. S. Factoring large integers. In Mathematics of
Computation, vol. 28. American Mathematical Society, 1974,
pp. 637–646.

[17] LOEBENBERGER, D., AND NÜSKEN, M. Notions for RSA In-
tegers. In International Journal of Applied Cryptography. Inder-
science Publishers, 2014, pp. 116–138.

[18] MAURER, U. M. Fast generation of prime numbers and secure
public-key cryptographic parameters. Journal of Cryptology 8, 3
(1995), 123–155.

[19] MENEZES, A. J., OORSCHOT, P. C. V., VANSTONE, S. A., AND
RIVEST, R. L. Handbook of Applied Cryptography, 1st ed. CRC
Press, 1996.

[20] MIRONOV, I. Factoring RSA Moduli II. Available from
https://windowsontheory.org/2012/05/17/factoring-rsa-moduli-
part-ii/, cit. [2016-06-26].

[21] PULKUS, J. Efficient Prime-Number Check, Oct. 2 2014. US
Patent App. 14/354,455.

[22] RITTER, T. De-anonymizing alt.anonymous.messages. Available
from https://ritter.vg/p/AAM-defcon13.pdf, cit. [2016-06-26].

[23] RUKHIN, A., ET AL. A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applica-
tions. In NIST Special Publication 800-22rev1a. NIST, 2010.

[24] SÝS, M., ŠVENDA, P., UKROP, M., AND MATYÁŠ, V. Con-
structing empirical tests of randomness. In SECRYPT 2014,
SCITEPRESS (2014), pp. 229–237.

[25] ŠVENDA, P., NEMEC, M., SEKAN, P., KVAŠŇOVSKÝ, R.,
FORMÁNEK, D., KOMÁREK, D., AND MATYÁŠ, V. The
Million-Key Question Investigating the Origins of RSA Public
Keys, Technical report FIMU-RS-2016-03. Masaryk University,
Czech Republic, 2016.

[26] WAGNER, D. Cryptanalysis of a Provably Secure CRT-RSA Al-
gorithm. In 11th ACM Conference on Computer and Communi-
cations Security. Proceedings. ACM, 2004, pp. 92–97.

[27] WILLIAMS, H. C. A p+1 Method of Factoring. In Mathematics
of Computation, vol. 39. American Mathematical Society, 1982,
pp. 225–234.

[28] ANSI X9.31-1998: Public Key Cryptography Using Reversible
Algorithms for the Financial Services Industry (rDSA), 1998.

[29] YAFU: Yet Another Factorization Utility, 2013. Available from:
http://sourceforge.net/projects/yafu/, cit. [2016-06-26].

[30] PGP keydump from June 02, 2016. Available from:
http://pgp.key-server.io/dump/current/, cit. [2016-06-02].

[31] Keys collected in 1MRSA project, 2016. Available from:
http://crcs.cz/papers/usenix2016/1mrsaset.

[32] W3Techs Web Technology Surveys: Usage of
web servers for websites, 2016. Available from
http://w3techs.com/technologies/overview/web server/all,
cit. [2016-06-26].

USENIX Association 25th USENIX Security Symposium 911

Fingerprinting Electronic Control Units for Vehicle Intrusion Detection

Kyong-Tak Cho and Kang G. Shin
The University of Michigan
{ktcho, kgshin}@umich.edu

Abstract

As more software modules and external interfaces are
getting added on vehicles, new attacks and vulnera-
bilities are emerging. Researchers have demonstrated
how to compromise in-vehicle Electronic Control Units
(ECUs) and control the vehicle maneuver. To counter
these vulnerabilities, various types of defense mecha-
nisms have been proposed, but they have not been able
to meet the need of strong protection for safety-critical
ECUs against in-vehicle network attacks. To mitigate
this deficiency, we propose an anomaly-based intrusion
detection system (IDS), called Clock-based IDS (CIDS).
It measures and then exploits the intervals of periodic
in-vehicle messages for fingerprinting ECUs. The thus-
derived fingerprints are then used for constructing a base-
line of ECUs’ clock behaviors with the Recursive Least
Squares (RLS) algorithm. Based on this baseline, CIDS
uses Cumulative Sum (CUSUM) to detect any abnormal
shifts in the identification errors — a clear sign of intru-
sion. This allows quick identification of in-vehicle net-
work intrusions with a low false-positive rate of 0.055%.
Unlike state-of-the-art IDSs, if an attack is detected,
CIDS’s fingerprinting of ECUs also facilitates a root-
cause analysis; identifying which ECU mounted the at-
tack. Our experiments on a CAN bus prototype and on
real vehicles have shown CIDS to be able to detect a wide
range of in-vehicle network attacks.

1 Introduction

Security has now become an important and real concern
to connected and/or automated vehicles. The authors
of [9] systematically analyzed different attack vectors in
vehicles (e.g., Bluetooth, Cellular), and showed that in-
vehicle Electronic Control Units (ECUs) can be compro-
mised for remote attacks. Through a compromised ECU,
the adversary can control the vehicle by injecting pack-
ets in the in-vehicle network [20, 23]. Researchers have

also been able to compromise and remotely stop a Jeep
Cherokee running on a highway [7, 25], which triggered
a recall of 1.4 million vehicles. Such a reality of vehi-
cle attacks has made automotive security one of the most
critical issues.

As a countermeasure against such attacks on in-
vehicle networks, two main lines of defense have been
pursued: message authentication and intrusion detec-
tion. Although message authentication provides a certain
level of security and is shown to be efficient for Internet
security, its adoption in in-vehicle networks is hindered
by (i) the limited space available for appending a Mes-
sage Authentication Code (MAC) in in-vehicle messages
and (ii) its requirements of real-time processing and com-
munication.

Various types of Intrusion Detection Systems (IDS)
have been proposed [16, 23, 30, 31]. The essence of
state-of-the-art IDSs is to monitor the contents and the
periodicity of in-vehicle messages and verify whether
there are any significant changes in them. Since they
are either constant or predictable in in-vehicle networks,
such approaches can be feasible in most circumstances.
However, there still remain critical attacks which exist-
ing IDSs can neither detect nor prevent, for two main rea-
sons: 1) in-vehicle messages do not carry information on
their transmitters, and thus one cannot tell whether they
originate from genuine transmitters; and 2) lack of the
transmitters’ information makes it very difficult or im-
possible for state-of-the-art IDSs to identify which ECU
has mounted an attack.

To overcome these limitations and defend against var-
ious vehicle attacks, we propose a new anomaly-based
IDS, called Clock-based IDS (CIDS). The need of CIDS
for vehicles is motivated through an analysis of three
representative in-vehicle network attacks — fabrication,
suspension, and masquerade attacks. Our analysis shows
that state-of-the-art IDSs are insufficient, especially in
detecting the masquerade attack due to the absence of
the transmitters’ information in messages. CIDS over-

912 25th USENIX Security Symposium USENIX Association

comes these limitations of existing IDSs by fingerprint-
ing in-vehicle ECUs. Researchers have proposed vari-
ous schemes for fingerprinting network devices by esti-
mating their clock skews through the timestamps carried
in their control packet headers [17, 19, 34, 42]. How-
ever, since such embedded timestamps are not available
for in-vehicle networks making them inapplicable, CIDS
fingerprints in-vehicle ECUs in a very different way.
CIDS monitors the intervals of (commonly seen) peri-

odic in-vehicle messages, and then exploits them to esti-
mate the clock skews of their transmitters which are then
used to fingerprint the transmitters. That is, instead of
assuming or requiring timestamps to be carried in mes-
sages for fingerprinting, CIDS exploits the periodic fea-
ture (seen at receivers) of in-vehicle network messages
for fingerprinting transmitter ECUs. This makes CIDS

invulnerable to attackers who use faked timestamps and
thus clock skews — a problem that timestamp-based fin-
gerprinting schemes cannot handle. Based on the thus-
obtained fingerprints, CIDS constructs a norm model
of ECUs’ clock behaviors using the Recursive Least
Squares (RLS) algorithm and detects intrusions with a
Cumulative Sum (CUSUM) analysis. This enables CIDS
to detect not only attacks that have already been demon-
strated or discussed in literature, but also those that are
more acute and cannot be detected by state-of-the-art
IDSs. Our experimental evaluations show that CIDS de-
tects various types of in-vehicle network intrusions with
a low false-positive rate of 0.055%. Unlike state-of-the-
art IDSs, if an intrusion is detected in CIDS, its finger-
printing capability facilitates identification of the (com-
promised) ECU that mounted the attack. We validate
these capabilities of CIDS through experimental evalu-
ations on a CAN bus prototype and on real vehicles.

We focus on building CIDS for Control Area Net-
work (CAN), which is the de facto standard in-vehicle
network. Its applicability to other in-vehicle network
protocols is also discussed in Section 6. Considering
the ubiquity of CAN and its direct relationship with the
drivers/passengers’ safety, it is critically important to
build as capable a CAN bus IDS as possible.

This paper makes the following contributions:

• Development of a novel scheme of fingerprinting
ECUs by exploiting message periodicity;

• Proposal of CIDS, which models the norm behav-
ior of in-vehicle ECUs’ clocks based on fingerprints
and then detects in-vehicle network intrusions;

• Implementation and validation of CIDS on a CAN
bus prototype as well as on 3 real vehicles.

The rest of the paper is organized as follows. Sec-
tion 2 provides the necessary background of CAN and
IDS-related work, and Section 3 details the attack model

S
O
F

ID
R
T
R

I
D
E

R
B
0

DLC Data CRC CRC
Del

A
C
K

ACK
Del EOF

Arbitration Control Data CRC ACK

Figure 1: Format of a CAN data frame.

we consider. Section 4 details the design of CIDS, which
is evaluated in Section 5 on a CAN bus prototype as well
as on three real vehicles. Section 6 discusses CIDS fur-
ther, such as its overhead and extension to emerging in-
vehicle networks. Finally, we conclude the paper in Sec-
tion 7.

2 Background

For completeness, we first provide necessary background
on the CAN protocol, and then discuss the related work
on security solutions for in-vehicle networks.

2.1 Primer on CAN Protocol
CAN frame. CAN is the most widely deployed in-
vehicle communication protocol, which interconnects
ECUs/nodes through a multi-master, message broadcast
bus system [4]. To maintain data consistency and make
control decisions, data is exchanged between ECUs via
CAN frames, the format of which is shown in Fig. 1.
A CAN frame contains fields such as ID, Data Length
Code (DLC), Data, and CRC. Since CAN is message-
oriented, instead of containing the transmitter/receiver
address, a CAN frame contains a unique ID which rep-
resents its priority and meaning. For example, a frame
with ID=0x20 may contain wheel speed values whereas
a frame with ID=0x55 may contain temperature values.

Arbitration. Once the CAN bus is detected idle,
nodes with buffered messages to transmit, attempt to ac-
cess the bus. Multiple nodes could attempt to access
the bus simultaneously, i.e., contention occurs for access.
Such a contention is resolved via bus arbitration as fol-
lows. Each node first transmits the ID value of its CAN
frame one bit at a time, starting with the most signifi-
cant bit. Since CAN is designed to logically behave as
a wired-AND gate, some contending nodes see an out-
put of 0 from the bus, although they had transmitted 1.
Such nodes withdraw from bus contention and switch
to the receive mode. As a result, among the contend-
ing nodes, the ECU sending the message with the lowest
ID value wins arbitration, and gains exclusive access for
message transmission. Those which have lost arbitration
re-attempt to transmit once the bus becomes idle again.

Synchronization. For proper bitwise message trans-
mission and reception, hard and soft bit synchronizations
are achieved, respectively, by using the Start-of-Frame
(SOF) signal and bit stuffing in CAN frames [4]. Al-

USENIX Association 25th USENIX Security Symposium 913

though these provide alignment of bit edges for message
exchange, they do not synchronize the clocks of ECUs,
i.e., CAN lacks clock synchronization. Thus, since time
instants for ECUs are provided by their own quartz crys-
tal clocks, these clocks, in reality, run at different fre-
quencies, resulting in random drifting of clocks: a drift
of 2400ms over a period of 24 hours is possible [27].

2.2 Related Work

To defend against various types of vehicle cyber attacks,
there have been two main streams of security solutions:
message authentication and intrusion detection.

Message authentication. In the area of Internet se-
curity, cryptographic message authentication provides
strong protection against forgery. Thus, researchers have
attempted to borrow such approaches from the domain
of Internet security to address in-vehicle network secu-
rity problems. However, since the maximum payload
length allowed in the CAN data field is only 8 bytes, the
available space for appending a cryptographically secure
Message Authentication Code (MAC) is very limited,
i.e., the protocol specification limits its maximum cryp-
tographic strength. To overcome this difficulty, rather
than appending a MAC in one CAN frame’s data field,
the authors of [38] proposed to truncate it across multi-
ple frames. Instead of the data field, the authors of [33]
proposed to use multiple CRC fields to include 64 bits of
CBC-MAC. The authors of [15] suggested to exploit an
out-of-band channel for message authentication.

Although such preventive measures provide some de-
gree of security, they alone cannot guarantee complete
security due to their inability to handle certain critical
attacks, e.g., Denial-of-Service (DoS). Moreover, their
operations not only require a significant amount of pro-
cessing power but also increase message latencies and
bus utilization. Since in-vehicle networks must operate
in real time and ECUs are resource-limited for cost rea-
sons, unlike in the Internet, these “costs” of preventive
measures hinder their adoption [30]. More importantly,
when an adversary has full access to any data stored
in RAM and/or FLASH, including data used for imple-
menting security mechanisms (e.g., shared secret keys),
some cryptographic solutions become incapable [24].

Intrusion detection. To overcome such limitations of
preventive measures, different Intrusion Detection Sys-
tems (IDSs) have been proposed. Some state-of-the-art
IDSs exploit the fact that most CAN messages are peri-
odic, i.e., sent at fixed time intervals. The authors of [30]
proposed an IDS which monitors the intervals of periodic
messages, measures their entropies, and exploits them
for intrusion detection. Similarly, a method of model-
ing the distribution of message intervals, and utilizing it
for intrusion detection was proposed in [23]. In addition

to message frequency, researchers also proposed to ver-
ify the message contents. The authors of [31] exploited
in-vehicle sensors to verify message range, correlation,
etc. Abnormal measurements on brake-related sensors
were detected by using the tire-friction model [10].

Although existing IDSs are capable of detecting most
attacks through the above approaches, they fail to cover
some critical attacks which are more acute, and thus are
not sufficient to provide security. We will elaborate on
such shortcomings of state-of-the-art IDSs while ana-
lyzing the attack scenarios under consideration in Sec-
tion 3.3.

3 Attack Model

We first discuss the adversary model under considera-
tion, and then the three representative attack scenarios.

3.1 Adversary Model
Adversaries can physically/remotely compromise more
than one in-vehicle ECU via numerous attack surfaces
and means [9]. We consider an adversary who wants to
manipulate or impair in-vehicle functions. The adversary
can achieve this by either injecting arbitrary messages
with a spoofed ID into the in-vehicle network, which we
refer to as attack messages, or by stopping/suspending
message transmissions of the compromised ECU.

Strong and weak attackers. Depending on their
hardware, software, and attack surfaces, ECUs of dif-
ferent vehicles have different degrees of vulnerabilities,
thus providing attackers different capabilities. So, we
consider two different types of compromised ECUs: fully
and weakly compromised ECUs.

Through a weakly compromised ECU, the attacker is
assumed to be able to stop/suspend the ECU from trans-
mitting certain messages or keep the ECU in listen-only
mode, but cannot inject any fabricated messages. We
call such an attacker with limited capabilities a weak
attacker, and will use this term interchangeably with
“weakly compromised ECU”.

In contrast, with a fully compromised ECU, the at-
tacker is assumed to have full control of it and access
to memory data. Thus, in addition to what a weak at-
tacker can do, the attacker controlling a fully compro-
mised ECU can mount attacks by injecting arbitrary at-
tack messages. We call such an attacker with more attack
capabilities a strong attacker, and will use this term in-
terchangeably with a “fully compromised ECU”. Even
when preventive security mechanisms (e.g., MAC) are
built into the ECUs, since the strong attacker has full ac-
cess to any data stored in their memory, including data
used for implementing security mechanisms (e.g., shared
secret keys), it can disable them [24]. On the other hand,

914 25th USENIX Security Symposium USENIX Association

B0

ECU
A

B0 20

ECU
B

ECU
C

CAN Bus

B0 B0 B0 B020 20

B0 B0 B0 B020 20B0 B0 B0

Time

Without Attack

With Attack

(Strong)

B0 B0

(a) Fabrication attack.

ECU
A

B0 20

ECU
B

ECU
C

CAN Bus

B0 B0 B0 B020 20

B0 B020 20

Time

Without Attack

With Attack

(Weak)

-15

-15

-10 -5

From time
TsuspB0

Tsusp

(b) Suspension attack.

ECU
A

B0 20

ECU
B

ECU
C

CAN Bus

B0 B0 B0 B020 20

B0 B0 B0 B020 20

Time

Without Attack

With Attack

(Weak)(Strong)

From time
Tmasq

B0

Tmasq

(c) Masquerade attack.

Figure 2: Three representative attack scenarios on in-vehicle networks.

a weak attacker can only stop, or listen to message trans-
missions, but cannot start a new one.

Foster et al. [13] have recently proved the possible ex-
istence of these two types of attackers in in-vehicle net-
works. They have shown that the firmware versions of
telematics units can affect/limit the attacker’s capabili-
ties in injecting and monitoring in-vehicle network mes-
sages. Specifically, for a certain firmware version of the
telematics unit, an attacker having control of that ECU
was shown to be able to receive CAN messages but un-
able to send the messages. On the other hand, for some
other firmware versions, the attacker was capable of both
sending and receiving CAN messages to and from the in-
vehicle network. In other words, the firmware version of
an ECU determines which type of an attacker — strong
or weak — it can become, if compromised.

To further comprehend how and why these two
different types of attackers can exist, let’s consider
one of the most common CAN controllers, Microchip
MCP2515 [1]. For ECUs with such a controller, various
operation modes like configuration, normal, and listen-
only can be selected by user instructions through the
Serial Peripheral Interface (SPI). Thus, user-level fea-
tures for configuring the CAN controller allow attackers
to easily enter different modes (e.g., listen-only mode
for a weak attacker). In contrast, there are no such
features allowing attackers to easily inject forged mes-
sages. In other words, the specification of the ECU hard-
ware/software, if compromised, can restrict the adver-
sary to become a weak attacker only. Note that the re-
quired functionalities of a strong attacker subsume those
of a weak attacker. It is thus easier for an adversary to be-
come a weak attacker than a strong attacker, let alone re-
searchers have already demonstrated how to create such
a strong attacker [9, 20, 23, 24].

3.2 Attack Scenarios

Based on the adversary model discussed so far, we con-
sider the following attack scenarios that can severely im-
pair in-vehicle functions: fabrication, suspension, and

masquerade.1

Fabrication attack. Through an in-vehicle ECU com-
promised to be a strong attacker, the adversary fabricates
and injects messages with forged ID, DLC, and data.
The objective of this attack is to override any periodic
messages sent by a legitimate safety-critical ECU so that
their receiver ECUs get distracted or become inoperable.
For example, as shown in Fig. 2(a), the strong attacker A
injects several attack messages with ID=0xB0, which is
usually sent by a legitimate ECU B, at a high frequency.
Thus, other nodes which normally receive message 0xB0
are forced to receive the fabricated attack messages more
often than the legitimate ones. We refer to such a case
as A mounting a fabrication attack on message 0xB0 or
its genuine transmitter B. Demonstrated attacks such as
controlling vehicle maneuver [20] and monopolizing the
CAN bus with highest priority messages [16] exemplify
a fabrication attack.

Suspension attack. To mount a suspension attack,
the adversary needs only one weakly compromised ECU,
i.e., become a weak attacker. As one type of Denial-of-
Service (DoS) attack, the objective of this attack is to
stop/suspend the weakly compromised ECU’s message
transmissions, thus preventing the delivery/propagation
of information it acquired, to other ECUs. For some
ECUs, they must receive certain information from other
ECUs to function properly. Therefore, the suspension at-
tack can harm not only the (weakly) compromised ECU
itself but also other receiver ECUs. An example of this
attack is shown in Fig. 2(b) where the weak attacker hav-
ing control of the Electric Power Steering ECU B stops
transmitting its measured steering wheel angle value. So,
the Electronic Stability Control (ESC) ECU A, which re-
quires the steering wheel angle value from B for detect-
ing and reducing the loss of traction, no longer receives
its updates and thus malfunctions.

Masquerade attack. To mount a masquerade attack,
the adversary needs to compromise two ECUs, one as
a strong attacker and the other as a weak attacker. The

1In this paper, we focus on only these three attack scenarios and
do not consider others as they may be less feasible or harmful, or be
detectable by existing IDSs.

USENIX Association 25th USENIX Security Symposium 915

objective of this attack is to manipulate an ECU, while
shielding the fact that an ECU is compromised. Fig. 2(c)
shows an example where the adversary controls a strong
attacker A and a weak attacker B. Until time Tmasq, the
adversary monitors and learns which messages are sent at
what frequency by its weaker attacker, e.g., B sends mes-
sage 0xB0 every 20ms. Since most in-vehicle network
messages are periodic and broadcast over CAN, it is easy
to learn their IDs and intervals. Once it has learned the
ID and frequency of a message, at time Tmasq, the ad-
versary stops the transmission of its weak attacker and
utilizes its strong attacker A to fabricate and inject attack
messages with ID=0xB0. Stopping B’s transmission and
exploiting A for transmission of attack messages are to
overcome the weak attacker’s inability of injecting mes-
sages. After Tmasq, the original transmitter of 0xB0, B,
does not send that message any longer, whereas A sends
it instead at its original frequency. So, when the CAN
bus traffic is observed, the frequency of message 0xB0
remains the same, whereas its transmitter has changed.
We refer to such a case as A mounting a masquerade at-
tack on message 0xB0 or its original transmitter B.

In fact, in order to attack and remotely stop a Jeep
Cherokee running on a highway, Miller et al. [25] had to
control its ABS collision prevention system by mount-
ing a masquerade (not fabrication) attack. In contrast to
other vehicles which they had previously examined (e.g.,
Toyota Prius), the Jeep Cherokee’s brake was not con-
trollable via the fabrication attack as its ABS collision
prevention system, which was the attack vector for en-
gaging brakes, was switched off when the fabrication at-
tack was mounted. On the other hand, when mounting
the masquerade attack, the system was not switched off,
thus allowing them to control the Jeep Cherokee’s brak-
ing maneuver.

Using masquerade attacks, the adversary can
not only inject attack messages from the compro-
mised/impersonating ECU but also cause other severe
problems, significantly degrading the in-vehicle net-
work performance. The impersonating ECU sending a
message instead of another ECU implies that it would
generate more messages to periodically transmit than be-
fore, making its transmit buffer more likely overloaded.
This may, in turn, lead to severe consequences, such
as non-abortable transmission requests [12], deadline
violation [18], and significant priority inversion [32].
Moreover, the original sequence of messages may also
change, thus failing to meet the requirement of some
in-vehicle messages to be sent sequentially in a correct
order for proper vehicle operations. These network
problems from a masquerade attack occur while not
deviating much from the norm network behavior (e.g.,
message frequency remains the same). This is in sharp
contrast to the cases of mounting a fabrication attack

or a suspension attack, which may also incur similar
problems. Such problems have been identified to be
critical since they degrade the real-time performance
of CAN significantly, and thus undermine vehicle
safety [12, 18, 32]. The masquerade attack can thus
cause more problems to the in-vehicle network than just
injecting attack messages.

3.3 Defense Against the Attacks
When the fabrication or suspension attack is mounted,
the frequency of certain messages significantly and ab-
normally increases or decreases, respectively. Thus, if
state-of-the-art IDSs [16, 23, 30, 31], which monitor the
message frequencies, were to be used, the attacks can be
detected.

When mounting the masquerade attack, however, the
adversary does not change the original frequency of mes-
sages. Thus, the adversary may use this attack to evade
state-of-the-art IDSs. Moreover, if the adversary does
not change the content of messages as well, it can be-
have like a legitimate ECU. However, the adversary may
later mount other types of attacks (e.g., a fabrication at-
tack) through the impersonating ECU. Hence, defending
against the masquerade attack implies not only detect-
ing the attack reactively, but also preventing other attacks
proactively.

4 Clock-Based Detection

Although state-of-the-art IDSs are capable of detecting
some basic attacks such as fabrication attack and suspen-
sion attack, they fail to detect more sophisticated ones
such as the masquerade attack for the following reasons.

• No authenticity — CAN messages lack information
on their transmitters. So, existing IDSs do not know
whether or not the messages on the CAN bus were
sent by the genuine transmitter, and hence cannot
detect any changes of the message transmitter.

• Inability of identifying a compromised ECU —
Lack of the transmitter’s information makes it very
difficult or impossible for state-of-the-art IDSs to
identify which of compromised ECUs mounted an
attack.

If CAN frames do not carry any information on their
transmitters, how could an IDS identify them and de-
tect intrusions such as the masquerade attacks? Which
behavior of CAN should the IDS model for detection of
such intrusions? We answer these questions by devel-
oping a novel IDS, CIDS, which exploits message fre-
quency to fingerprint the transmitter ECUs, and models
a norm behavior based on their fingerprints for intrusion

916 25th USENIX Security Symposium USENIX Association

detection. We focus on detecting intrusions in periodic
messages as most in-vehicle messages are sent periodi-
cally [32, 36].

4.1 Fingerprinting ECUs
For each in-vehicle ECU in CAN, the time instants of
periodic message transmissions are determined by its
quartz crystal clock [27]. We follow the nomenclature
of clocks of the NTP specification [26] and Paxson [35].
Let Ctrue be a “true” clock which reports the true time at
any moment and Ci be some other non-true clock. We
define the terms “clock offset, frequency, and skew” as
follows.

• offset: difference in the time reported by clock Ci
and the true clock Ctrue. We define relative offset as
the offset between two non-true clocks.

• frequency: the rate at which clock Ci advances.
Thus, the frequency at time t is C�

i(t)≡ dCi(t)/dt.

• skew: difference between the frequencies of clock
Ci and the true clock Ctrue. We define relative skew
as the difference in skews of two non-true clocks.

If two clocks have relative offset and skew of 0, then
they are said to be synchronized. Otherwise, we consider
they are unsynchronized. Since CAN lacks clock syn-
chronization, it is considered to be unsynchronized.

Clock skew as a fingerprint. The clock offsets and
skews of unsynchronized nodes depend solely on their
local clocks, thus being distinct from others. As others
have also concluded [17, 19, 42], clock skews and offsets
can therefore be considered as fingerprints of nodes. Var-
ious studies have exploited this fact to fingerprint phys-
ical devices [17, 19, 34, 42]. However, they are not ap-
plicable to our problem as they exclusively rely on the
timestamps carried in the packet headers, which are, as
discussed before, not available in in-vehicle networks.
Kohno et al. [19] considered an alternative to embed-
ded timestamps: using Fourier Transform for clock skew
estimation. However, as their approach relies on the
unique characteristics of the Internet (e.g., multi-hop de-
lays, large network topology), it cannot be directly ap-
plied to in-vehicle networks.

To build an effective IDS, which can detect various
types of attack including the masquerade attack, it should
be capable of verifying the transmitter of each message.
However, since such information is not present in CAN
messages, we must fingerprint ECUs with other “leaked”
information. Unlike the existing approaches that exploit
embedded timestamps, we exploit message periodicity to
extract and estimate the transmitters’ clock skews, which
are then used to fingerprint the transmitter ECUs.

T+O1

T+O1+ d1+ n1Trx =

2T+O2 3T+O3

d0+n0 T+O1+d1+n1 2T+O2+d2+n2 3T+O3+d3+n3

T+O2-O1+ d2+ n2 T+O3-O2+ d3+ n3

ECU A

ECU R

T 2T 3TIdeal

Actual
t=0

Figure 3: Timing analysis of message arrivals.

Clock skew estimation. Consider an ECU A which
broadcasts a message every T ms and an ECU R which
periodically receives that message. From the perspec-
tive of R, since only its timestamp is available, we con-
sider its clock as the true clock. As shown in Fig. 3,
due to the clock skew, periodic messages are sent at
times with small offsets from the ideal values (e.g., T ,
2T , 3T , · · ·). Let t = 0 be the time when the first mes-
sage was sent from A, and Oi be the clock offset of A
when it sends the i-th message since t = 0. Then, after
a network delay of di, ECU R would receive that mes-
sage and put an arrival timestamp of iT +Oi + di + ni,
where ni denotes the noise in R’s timestamp quantiza-
tion [42]. Thus, the intervals between each arrival times-
tamp, Trx,i = T +ΔOi+Δdi+Δni, where ΔXi denotes the
difference of X between step i and i − 1, and O0 = 0.
Since the change in Oi within one time step is negligible
and ni is a zero-mean Gaussian noise term [2], the ex-
pected value of the timestamp intervals, μTrx = E[Trx,i],
can be expressed as:

μTrx = E[T +ΔOi +Δdi +Δni]

= T +E[ΔOi +Δdi +Δni]

≈ T,
(1)

where the second equality holds since T is a pre-
determined constant. Since the data lengths of CAN pe-
riodic messages, i.e., DLCs, are constant over time, for
now, we consider E[Δdi] = 0. Later in Section 4.4, we
will discuss the case when di is not constant, and how it
may affect the performance of CIDS.

Based on the arrival timestamp of the first message,
d0 +n0, and the average of timestamp intervals, μTrx , we
extrapolate and determine the estimated arrival time of
the i-th message as iμTrx + d0 + n0, whereas the actual
measured arrival time is iT + Oi + di + ni. As we are
estimating subsequent arrival times, μTrx is determined
by past measurements. Since T is constant over time and
thus again μTrx ≈ T , the average difference between the
estimated and measured times is:

E[D] = E[i(T −μTrx)+Oi +Δd +Δn]≈ E[Oi]. (2)

That is, from message periodicity, we can estimate the
average clock offset, E[Oi], which will indeed be dis-
tinct for different transmitters. Since clock offset is

USENIX Association 25th USENIX Security Symposium 917

Algorithm 1 Clock skew estimation with RLS
1: Initialize: S[0] = 0, P[0] = δ I
2: function SKEWUPDATE(t,e) � RLS algorithm
3: G[k]← λ−1P[k−1]t[k]

1+λ−1t2[k]P[k−1]

4: P[k]← λ−1(P[k−1]−G[k]t[k]P[k−1])
5: return S[k]← S[k−1]+G[k]e[k]
6: end function
7: for kth step do
8: a0 ← arrival timestamp of most recently rxed message
9: n ← 1

10: while n ≤ N do
11: if current time � an−1 then
12: /* No longer receives the message */
13: an, · · · ,aN ← significantly high values
14: Tn, · · · ,TN ← significantly high values
15: break
16: else
17: an ← arrival timestamp of nth message
18: Tn ← an −an−1 � Timestamp interval
19: n ← n+1
20: end if
21: end while
22: μT [k]← 1

N ∑N
i=1 Ti � Avg. timestamp interval

23: O[k]← 1
N−1 ∑N

i=2 ai − (a1 +(i−1)μT [k−1])
24: Oacc[k]← Oacc[k−1]+ |O[k]| � Accumulated offset
25: e[k]← Oacc[k]−S[k−1]t[k] � Identification error
26: S[k]← SKEWUPDATE(t,e) � Clock skew
27: end for

slowly varying and non-zero [17, 42], E[Oi] �= 0, whereas
E[ΔOi] = 0.

If ECU R were to determine the average clock offset
for every N received messages, since it is derived in ref-
erence to the first message (of N messages), it represents
only the average of newly incurred offsets. Thus, to ob-
tain the total amount of incurred offset, which we call
the accumulated clock offset, the absolute values of the
average clock offsets have to be summed up. By defini-
tion, the slope of the accumulated clock offset would thus
represent the clock skew, which is constant as we will
show and as others have also concluded [19, 29, 35, 40].
This enables CIDS to estimate the clock skew from ar-
rival timestamps and thus fingerprint the message trans-
mitter for intrusion detection. We will later show, via ex-
perimental evaluations on a CAN bus prototype and on 3
real vehicles, that the thus-derived clock skew is indeed
a fingerprint of an in-vehicle ECU.

4.2 CIDS — Per-message Detection
By determining the clock skew from observation of mes-
sage intervals, transmitter ECUs can be fingerprinted.
We exploit this in designing CIDS, a clock-based IDS
for in-vehicle networks which detects intrusions in two
different ways: per-message detection and message-

pairwise detection, where the latter supplements the for-
mer in reducing false positive/negative results. Next, we
first discuss per-message detection and then pairwise de-
tection.

Modeling. For a given message ID, CIDS derives the
accumulated clock offset inherent in the arrival times-
tamps. Since clock skew is constant, the accumulated
clock offset is linear in time, and hence CIDS describes it
as a linear regression model. A linear parameter identifi-
cation problem is thus formulated as:

Oacc[k] = S[k] · t[k]+ e[k], (3)

where at step k, Oacc[k] is the accumulated clock offset,
S[k] the regression parameter, t[k] the elapsed time, and
e[k] the identification error. The regression parameter
S represents the slope of the linear model and thus the
estimated clock skew. The identification error, e, repre-
sents the residual which is not explained by the model.
In CIDS, Oacc, S, t, and e are updated every N messages,
i.e., kN messages are examined up to step k.

To determine the unknown parameter S, we use the
Recursive Least Squares (RLS) algorithm [14], which
uses the residual as an objective function to minimize the
sum of squares of the modeling errors. Hence, in RLS,
the identification error skews towards 0, i.e., has 0 mean.
We will discuss the computational overhead of RLS as
well as other possible solutions in Section 6.

Algorithm 1 describes how the clock skew is estimated
using RLS. First, CIDS measures the arrival times and
their intervals of N messages for a given ID. If the in-
tended message has not been received for a long time —
possibly due to suspension attack — as in line 13–14,
CIDS sets the remaining timestamp and interval values
significantly higher. Once N values are measured, CIDS
determines the accumulated clock offset and accordingly,
the identification error. Based on the thus-derived value,
the gain, G, and the covariance, P, are updated with RLS
for identifying the regression parameter S, i.e., estimate
clock skew. This procedure of clock skew estimation
continues iteratively during the operation of CIDS and, if
uncompromised, outputs an identification error skewed
towards 0 and a constant clock skew. This way, the norm
clock behavior of the transmitter can be described as a
linear model with the clock skew being the slope. In
RLS, a forgetting factor, λ , is used to give exponentially
less weights to older samples and thus provide freshness.
In CIDS, we set λ=0.9995.

Detection. For a given message ID, CIDS runs RLS
for clock skew estimation, constructs a norm model on
clock behavior, and verifies whether there are any abnor-
mal measurements deviating from it, i.e., intrusions.

Consider a fabrication attack in which the adversary
injects an attack message with ID=0x01, which is orig-
inally sent every 10ms by some ECU. The fabrication

918 25th USENIX Security Symposium USENIX Association

attack significantly increases the absolute average differ-
ence between the estimated and measured arrival times
of 0x01. As a result, due to a sudden increase in the
rate at which the accumulated clock offset changes, a
high identification error results. Similarly, when the sus-
pension attack is mounted, the absolute average differ-
ence also increases and thus a high error is also incurred.
When a masquerade attack is mounted, since the adver-
sary sends the message through a different ECU than its
original one, the increase rate of accumulated clock off-
set, i.e., clock skew, suddenly changes and also results in
a high identification error. In summary, unlike when the
mean of identification error should usually skew towards
0, which is the norm clock behavior, its mean suddenly
shifts towards a high non-zero value when there is an in-
trusion.
CIDS exploits the Cumulative Sum (CUSUM) method,

which derives the cumulative sums of the deviations from
a target value to detect sudden shifts. Since it is cumu-
lative, even minor drifting from the target value leads to
steadily increasing or decreasing cumulative values. It
is therefore optimal in detecting small persistent changes
and is widely used for change-point detection [8]. CIDS
detects intrusions via CUSUM as follows. At each step
of clock skew estimation, CIDS updates the mean and
variance of the identification errors (e), μe and σ2

e , re-
spectively. In CIDS, these values represent the CUSUM
target values of e (i.e., norm clock behavior), and thus
require proper tracking. Hence, as a precaution of ab-
normal values incurring from an attack to be reflected
into the target values, μe and σ2

e are updated only if
| e−μe

σe
| < 3. Then, per derived identification error e, the

upper and lower control limits of CUSUM, L+ and L−
are updated as [41]:

L+ ← max
[
0,L++(e−μe)/σe −κ

]

L− ← max
[
0,L−− (e−μe)/σe −κ

] (4)

where κ is a parameter reflecting the number of standard
deviations CIDS intends to detect. Note that κ can be
learned offline, or by monitoring normal in-vehicle traf-
fic. If either of the control limits, L+ or L−, exceeds a
threshold ΓL, a sudden positive or negative shift in value
has been detected, respectively, and thus CIDS declares it
as an intrusion. As the general rule of thumb for CUSUM
is to have a threshold of 4 or 5 [28], we set ΓL = 5.

4.3 CIDS — Message-pairwise Detection
In addition to per-message detection, CIDS also alarms
intrusions via message-pairwise detection, which exam-
ines the correlation between the average clock offsets in
two periodic messages. Consider two messages M1 and
M2 periodically sent by an ECU A. Since these messages

originate from the same transmitter, their instantaneous
average clock offsets are likely equivalent. Thus, the cor-
relation coefficient, ρ , between their average clock off-
sets (derived per step) would show a high value close to
1, i.e., correlated. On the other hand, if the two messages
were sent by different ECUs, ρ � 0, i.e., uncorrelated.

Modeling and detection. If clock offsets in two mes-
sages are highly correlated (ρ > 0.8), their relationship
can be linear. So, CIDS describes them as a linear re-
gression model: OM2 [k] = αOM1 [k]+ecorr[k], where OMi

denotes the average clock offset of message Mi at step
k, α the regression parameter, and ecorr[k] the identifica-
tion error. As per-message detection, message-pairwise
detection is also based on a linear model. Thus, we ap-
ply the same detection method, CUSUM. Since message-
pairwise detection seeks intrusions from a different per-
spective than per-message detection, it reduces false pos-
itive/negative results. Note, however, that message-
pairwise detection is only applicable when two mes-
sages’ clock offsets are highly correlated, whereas per-
message detection is applicable to any periodic message.
Moreover, albeit effective, it requires pairwise computa-
tions. Therefore, we use message-pairwise detection as
an optional feature of CIDS. We will later show via ex-
perimental evaluations how message-pairwise detection
further improves the performance of CIDS.

4.4 Verification

To reduce possible false positives/negatives, CIDS also
performs a verification process. Suppose that a possible
intrusion was alarmed due to a high identification error
when verifying message Vi, the i-th message of V . Al-
though such a high error can be due to an intrusion, it
can also be due to an incorrect computation of average
clock offset. In Section 4.1, we considered E[Δdi] = 0
and could thus extract and determine the average clock
offset. Although this is true in most cases, occasionally
E[Δdi] �= 0, which affects the accuracy of deriving the
true clock offset and thus the detection result. In CAN,
E[Δdi] �= 0 only occurs if the transmission of Vi was de-
layed due to the bus being busy or its transmitter losing
arbitration when attempting to send Vi. Note that the lat-
ter also results in the bus being busy before the trans-
mission/reception of Vi. Thus, CIDS also checks if the
possibility of E[Δdi] �= 0 is the main cause of a (possibly
false) alarm of intrusion by verifying whether the CAN
bus was busy right before receiving Vi. This way, CIDS
enhances its detection accuracy. However, as discussed
before, usually E[Δdi] = 0 in an actual CAN bus due to
its high speed, its messages having short lengths, and low
bus load. In other words, the nature of CAN bus commu-
nication helps CIDS reduce false positives/negatives.

USENIX Association 25th USENIX Security Symposium 919

(a) CAN bus prototype. (b) The vehicle used for experiment. (c) Connection to the vehicle.

Figure 4: Different evaluation settings: (a) CAN bus prototype; (b) Honda Accord 2013 used for experiments on real
vehicle; and (c) three prototype nodes communicating with real ECUs through the OBD-II port.

4.5 Root-cause Analysis
When an intrusion is detected for some message
ID, CIDS can also identify which compromised ECU
mounted the attack. It can extract the clock skew for
that attacked message ID, compare it with other clock
skew values extracted from other message IDs, and ex-
ploit the comparison result in determining whether they
originated from the same transmitter. This way, CIDS can
at least reduce the scope of ECUs which may (or may
not) have mounted the attack, thus facilitating a root-
cause analysis.

5 Evaluation

We now validate that clock skews can be used as finger-
prints of transmitter ECUs, and evaluate the performance
of CIDS on a CAN bus prototype and real vehicles.

CAN bus prototype: As shown in Fig. 4(a), we built
a prototype with 3 CAN nodes, each of which consists of
an Arduino UNO board and a SeeedStudio CAN shield.
The CAN bus shield consists of a Microchip MCP2515
CAN controller, MCP2551 CAN transceiver, and a 120Ω
terminal resistor to provide CAN bus communication ca-
pabilities. This prototype was set up to operate at a
500Kbps bus speed as in typical CAN buses. The first
node A was programmed to send messages 0x11 and
0x13 every 50ms, and the second node B to send mes-
sage 0x55 at the same frequency. The third node R was
programmed to run CIDS.

Real vehicle: A 2013 Honda Accord (Fig. 4(b)) is also
used for our experiments in an isolated and controlled
(for safety) environment. As shown in Fig. 4(c), via the
On-Board Diagnostic (OBD-II) system port [3], we con-
nected our CAN bus prototype nodes — which function
as an adversary or CIDS — to the in-vehicle network.
Through the OBD-II port, the three nodes were able to
communicate with real ECUs.

CAN log data: To further validate that CIDS’s fin-
gerprinting is applicable to other vehicles, we also re-
fer to CAN traffic data logged from a Toyota Camry

2010 by Ruth et al. [36] and data logged from a Dodge
Ram Pickup 2010 by Daily [11]. Both data were logged
through a Gryphon S3 and Hercules software. In the Toy-
ota Camry 2010, there were 42 distinct messages trans-
mitted on the CAN bus: 39 of them sent periodically at
intervals ranging from 10ms to 5 seconds, and 3 of them
sent sporadically. In the Dodge Ram Pickup 2010, there
were 55 distinct messages which were all sent periodi-
cally on the CAN bus.

In order to identify which messages originate from the
same real ECU and thus exploit it as a ground truth, we
used the naive method discussed in [32]. The messages,
which originate from the same ECU and have the same
preset message interval, were shown to have the same
number of transmissions on the bus, when traced for at
least a few minutes. Such a method can be an alterna-
tive to fingerprinting, but it requires pairwise compar-
isons and cannot be completed in real time as required
in the design of CIDS, which is essential for intrusion de-
tection in real in-vehicle networks.

While running CIDS, we determined offsets and skews
for every 20 received samples, i.e., N = 20, and set κ = 5.

5.1 Clock Skew as a Fingerprint
We first evaluate the validity of CIDS’s fingerprinting
of the transmitter ECUs based on the estimated clock
skews. We evaluate skew estimates in microseconds per
second (μs/s) or parts per million (ppm).

CAN bus prototype. Fig. 5(a) plots our evaluation
results of CIDS’s fingerprinting on the CAN bus proto-
type: accumulated clock offsets of messages 0x11, 0x13,
and 0x55. Note that the slopes in this figure represent
the estimated clock skews. All the derived accumulated
clock offsets were found to be linear in time, i.e., con-
stant estimated skews. Messages 0x11 and 0x13, both of
which were sent from node A, exhibited the same con-
stant clock skew of 13.4ppm. On the other hand, the
message 0x55 sent from a different node B showed a dif-
ferent clock skew of 27.2ppm. Thus, the clock skews
derived by CIDS can be used to differentiate ECUs.

920 25th USENIX Security Symposium USENIX Association

0 50 100 150 200 250 300
Time [Sec]

0

2

4

6

8

10

Ac
cu

m
ul

at
ed

 C
lo

ck
 O

ffs
et

 [m
s]

0x11 by A
0x13 by A
0x55 by B

(a) CAN bus prototype.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time [Sec]

0

100

200

300

400

500

600

Ac
cu

m
ul

at
ed

 C
lo

ck
 O

ffs
et

 [m
s]

0x1B0 by A
0x1D0 by A
0x1A6 by B
0x294 by C
0x295 by C
0x309 by D

(b) Honda Accord 2013.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Time [Sec]

Ac
cu

m
ul

at
ed

 C
lo

ck
 O

ffs
et

 [m
s]

0x20 by A
0xB2 by A
0x223 by B
0x224 by B
0x2C1 by C
0x2C4 by D
0x3A0 by E
0x4C3 by F
0x620 by G

0x2C1

(c) Toyota Camry 2010.

0 20 40 60 80 100 120
Time [Sec]

0

10

20

30

40

50

Ac
cu

m
ul

at
ed

 C
lo

ck
 O

ffs
et

 [m
s]

0x200 by A
0x215 by B
0x300 by B
0x6F9 by C
0x3E6 by C
0x6FD by C
0x700 by C
0x101 by D
0x6FE by D

(d) Dodge Ram Pickup 2010.

Figure 5: Accumulated clock offsets derived by CIDS in different evaluation settings.

Honda Accord 2013. For CIDS’s evaluation on a
real vehicle, the CAN prototype nodes logged the in-
vehicle CAN traffic of the Honda Accord 2013, and
ran CIDS on messages 0x1B0, 0x1D0, 0x1A6, 0x294,
0x295, and 0x309. The approach in [32] was adopted
to verify that messages {0x1B0, 0x1D0} were sent from
the same ECU, {0x294, 0x295} both sent from another
ECU, whereas others were sent from different ECUs.
Utilizing these facts, one can conclude from Fig. 5(b)
that the clock offsets and the skews derived in CIDS are
equivalent only for those messages sent from the same
ECU; 0x1B0 and 0x1D0 showed a skew of 78.4ppm,
0x294 and 0x295 showed a skew of 199.8ppm, while
messages 0x1A6 and 0x309 showed very different skews
of 265.7ppm and 95.78ppm, respectively. This result
again shows that clock skews between different ECUs
are distinct and can thus be used as the fingerprints of
the corresponding ECUs.

Toyota Camry 2010. To show that the applicability
of CIDS’s fingerprinting is not limited to the specific ve-
hicle model used, we also conducted experiments on a
different vehicle: running CIDS’s fingerprinting on the
Toyota Camry logged data. Similarly to the real vehicle
evaluation in Section 5.1, the approach in [32] was used
as the ground truth. It was verified that messages {0x20,
0xB2} within the CAN log data were all sent from some
ECU A. Also, {0x223, 0x224} were both sent from some
ECU B, whereas 0x2C1, 0x2C4, 0x3A0, 0x4C3, and
0x620 were each sent from a different ECU. As shown
in Fig. 5(c), messages 0x20 and 0xB2 both showed a

clock skew of approximately 345.3ppm, whereas 0x223
and 0x224 showed a different clock skew of 276.5ppm.
0x2C4, 0x3A0, 0x4C3, and 0x620 showed very different
clock skews of 460.1ppm, 142.5ppm, 26.1ppm and 58.7
ppm, respectively.

We made an interesting observation on message
0x2C1, showing a clock skew of 334.1ppm, which was
different from the skews of messages {0x20, 0xB2} only
by 3%, despite the fact that it was sent by a different
ECU. This may confuse CIDS in determining whether
they were sent by the same ECU or not. However, in
such a case, CIDS can further examine the correlation be-
tween clock offsets and can thus fingerprint with a higher
accuracy, which we will discuss and evaluate further in
Section 5.4.

Dodge Ram Pickup 2010. We also ran CIDS’s fin-
gerprinting on the CAN log data of a Dodge Ram
Pickup 2010. For this vehicle, it was verified that
message 0x200 was sent from some ECU A, {0x215,
0x300} sent from B, {0x6F9, 0x3E6, 0x6FD, 0x700}
sent from C, and {0x101, 0x6FE} sent from D. Fig. 5(d)
shows that CIDS determined that 0x200 has a clock
skew of 351.7ppm, {0x215, 0x300} to have approxi-
mately 295.3ppm, {0x6F9, 0x3E6, 0x6FD, 0x700} to
have 24.5ppm, and {0x101, 0x6FE} to have 110.3ppm,
thus correctly fingerprinting their transmitters.

These results of a Toyota Camry and a Dodge Ram
Pickup CAN log data again affirm the fact that the clock
skews derived by CIDS are diverse and can indeed be
used as fingerprints of in-vehicle ECUs. Moreover, they

USENIX Association 25th USENIX Security Symposium 921

0 200 400 600 800
Time [Sec]

0

10

20

30

40
Ac

cu
m

. C
lo

ck
 O

ffs
et

 (O
ac

c) w/o attack w/ attack

0 200 400 600 800
Time [Sec]

-10

0

10

20

30

Id
en

tif
ic

at
io

n
Er

ro
r (

e)

0 200 400 600 800
Time [Sec]

0

2000

4000

6000

8000

U
pp

er
 C

on
tro

l L
im

it
(L

+)

(a) Fabrication attack.

0 200 400 600 800
Time [Sec]

0

2

4

6

8

Ac
cu

m
. C

lo
ck

 O
ffs

et
 (O

ac
c)

106
w/o attack w/ attack

0 200 400 600 800
Time [Sec]

-1

0

1

2

3

Id
en

tif
ic

at
io

n
Er

ro
r (

e)

106

0 200 400 600 800
Time [Sec]

0

0.5

1

1.5

2

U
pp

er
 C

on
tro

l L
im

it
(L

+) 109

(b) Suspension attack.

Figure 6: CIDS defending fabrication attack (left) and
suspension attack (right) in a CAN bus prototype.

show that CIDS’s fingerprinting is not limited to a spe-
cific vehicle model, and can thus be applied to other ve-
hicle models.

5.2 Defending Against Fabrication and
Suspension Attacks

On both the CAN bus prototype and the real vehicle set-
ting (Honda Accord 2013), we launch the fabrication and
suspension attacks, and evaluate CIDS’s effectiveness in
detecting them.2 To this end, we consider CIDS to only
perform per-message detection, and will later evaluate
CIDS with message-pairwise detection.

CAN bus prototype. For evaluation of CIDS defend-
ing against fabrication attack on the CAN bus proto-
type, B was programmed to inject a fabricated message at
t = 400 secs with ID=0x11, which is a periodic message
usually sent by A, i.e., B launches a fabrication attack on
A. ECU R was running CIDS on message 0x11 and de-
rived accumulated clock offset (Oacc), identification er-
ror (e), and control limits (L+, L−). For the suspension
attack, A was instead programmed to stop transmitting
0x11 at t = 400 secs.

Fig. 6(a) shows how such values changed for mes-
sage 0x11 in the presence and absence of a fabrication
attack. As soon as B mounted a fabrication attack, as dis-
cussed in Section 4.2, there was a sudden positive shift in
the accumulated clock offset, thus yielding a high iden-

2As the attacks cannot be emulated using the CAN log data, we do
not consider their use for evaluating CIDS against the attacks.

0 500 1000 1500
Time [Sec]

0

50

100

150

Ac
cu

m
. C

lo
ck

 O
ffs

et
 (O

ac
c) w/o attack w/ attack

0 500 1000 1500
Time [Sec]

-10

0

10

Id
en

tif
ic

at
io

n
Er

ro
r (

e)

0 500 1000 1500
Time [Sec]

0

200

400

600

U
pp

er
 C

on
tro

l L
im

it
(L

+)

(a) Fabrication attack.

0 500 1000 1500
Time [Sec]

0

1

2

3

Ac
cu

m
. C

lo
ck

 O
ffs

et
 (O

ac
c)

107
w/o attack w/ attack

0 500 1000 1500
Time [Sec]

-1

0

1

2

3

Id
en

tif
ic

at
io

n
Er

ro
r (

e)

106

0 500 1000 1500
Time [Sec]

0

2

4

6

U
pp

er
 C

on
tro

l L
im

it
(L

+) 107

(b) Suspension attack.

Figure 7: CIDS defending fabrication attack (left) and
suspension attack (right) in a Honda Accord 2013.

tification error. Due to such a shift, the upper control
limit, L+, of CUSUM suddenly increased and exceeded
its threshold ΓL =5, i.e., detecting an intrusion. Sim-
ilarly, Fig. 6(b) shows that since the suspension attack
also shifted the accumulated clock offset significantly,
CIDS was able to detect the attack.

Real vehicle. To evaluate CIDS against the fabrication
attack under the real vehicle setting, one CAN prototype
node R was programmed to run CIDS, and another node
A as an adversary mounting the attack on a real ECU.
The attack was mounted by injecting a fabricated attack
message with ID=0x1B0, which was sent every 20ms by
some real in-vehicle ECU, i.e., A mounted the fabrica-
tion attack on a Honda Accord ECU sending 0x1B0. For
the suspension attack, the message filter of R was reset
at t = 420 secs so as to no longer receive 0x1B0, thus
emulating the suspension attack.

Fig. 7(a) shows how accumulated clock offsets (Oacc),
identification errors (e), and upper control limits (L+)
changed for both cases of with and without a fabrica-
tion attack. Again, the attack message injected at around
t = 420 secs caused a sudden increase in Oacc and e, thus
increasing L+ to exceed ΓL =5. As a result, CIDS de-
clares the detection of an attack. After the attack, since
0x1B0 was still periodically sent by the real in-vehicle
ECU, the clock skew — i.e., the slope of Oacc graph —
remains unchanged. Similarly, as shown in Fig. 7(b), the
suspension attack increases the offset values, thus caus-
ing L+ to exceed the threshold, i.e., the suspension attack
was detected by CIDS.

922 25th USENIX Security Symposium USENIX Association

48.5 49 49.5 50 50.5 51 51.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Message Interval [ms]

Pr
ob

ab
ilit

y
M

as
s

Fu
nc

tio
n

(P
M

F)

0x55 (before attack)
0x55 (after attack)

50.5~51.5ms

0 100 200 300 400 500 600 700 800
0

5

10

15

20

Time [Sec]

O
ac

c

0x55
0x11

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

Time [Sec]

L+ /
L− o

f m
es

sa
ge

 0
x5

5

L+

L−

Mistimed

(a) CAN bus prototype.

18.5 19 19.5 20 20.5 21 21.5
0

0.2

0.4

0.6

0.8

1

Message Interval [ms]

Pr
ob

ab
ilit

y
M

as
s

Fu
nc

tio
n

(P
M

F)

0x1B0 (before attack)
0x1B0 (after attack)

0 500 1000 1500 2000 2500
0

100

200

300

400

500

Time [Sec]

O
ac

c

0x1B0 (w/o attack)
0x1B0 (w/ attack)

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2
x 104

Time [Sec]

L+ /
L− o

f m
es

sa
ge

 0
x1

B0

L+

L−

(b) Real vehicle.

Figure 8: Masquerade attack — Probability mass function of message intervals (left), changes in accumulated clock
offsets (middle), and control limits (right) derived in CIDS.

5.3 Defending Against Masquerade Attack

We now evaluate the performance of CIDS in detecting a
masquerade attack.

CAN bus prototype. To evaluate CIDS’s defense
against the masquerade attack in the CAN bus prototype,
nodes A and B were considered to have been compro-
mised as strong and weak attackers as in Fig. 2(c), re-
spectively. A was programmed to mount a masquerade
attack on B, i.e., stop B transmitting message 0x55 and
instead send it through A onwards, once Tmasq = 250 secs
had elapsed. As usual, messages 0x11 and 0x13 were pe-
riodically sent by A, and CIDS was run by R.

Fig. 8(a) (left) shows the Probability Mass Function
(PMF) of the intervals of message 0x55: before and af-
ter the attack was mounted. In contrast to the fabrica-
tion attack, since the attacker sent the attack message at
its original frequency after masquerading, the distribu-
tion did not deviate much from that before the attack.
However, at Tmasq, since there was some delay when the
transmitter was switched from one node to another, the
first masquerade attack message was sent 51.04ms after
its previous transmission, whereas it should have been
approximately 50ms which is the preset message interval
of 0x55. Due to such a slightly mistimed masquerade at-
tack, the PMF graph shows a message interval with an
abnormal deviation from the mean. We will later eval-
uate the perfectly timed masquerade attack — a much
more severe case than a mistimed attack — on a real ve-
hicle, and show the efficacy of CIDS in detecting it.

The resulting changes in Oacc, L+, and L− at R are
also shown in Fig. 8(a) (middle and right). The change
in the ECU transmitting message 0x55 caused the slope

(i.e., clock skew) in Oacc graph to change after the at-
tack was mounted. Since the measurements of Oacc af-
ter Tmasq significantly deviated from their expected val-
ues, which is determined by the estimated clock skew of
t < Tmasq, the CUSUM lower control limit, L−, in CIDS

exceeded the threshold, thus declaring detection of an in-
trusion. Since the transmitter of 0x55 was changed (to
ECU A), its clock skew after t = Tmasq was equivalent
to the clock skew in 0x11. Accordingly, via root-cause
analysis, CIDS identifies the compromised ECU to be
ECU A. Unlike the previous results, since the change
in slope was negative, persistent identification error with
high negative values caused L− to exceed the threshold.

Real vehicle. To evaluate CIDS’s defense against the
masquerade attack in a real vehicle, we consider a sce-
nario in which real in-vehicle ECUs V1 and V2 trans-
mitting 0x1A6 and 0x1B0 are compromised as a strong
and a weak attacker, respectively. Of the three CAN pro-
totype nodes (A, B, and R), which were connected to
the real in-vehicle network via OBD-II, we programmed
node R to run CIDS on in-vehicle message 0x1B0 and an-
other node B to simply log the CAN traffic. To generate a
scenario of real ECU V1 mounting a masquerade attack
on real ECU V2, R was programmed further to receive
message 0x1A6 instead of 0x1B0, but still record the
received messages’ ID to be 0x1B0, once Tmasq = 1100
seconds had elapsed. That is, we let R interpret 0x1A6
as 0x1B0 for t > Tmasq, i.e., the transmitter of 0x1B0
changes from V2 to V1. Such a change in interpretation
was achieved by programming R to modify its message
acceptance filter from only accepting 0x1B0 to only ac-
cepting 0x1A6. Since 0x1B0 and 0x1A6 were observed
to be always transmitted nearly at the same time, such a

USENIX Association 25th USENIX Security Symposium 923

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Average clock offset in 0x1B0

Av
er

ag
e

cl
oc

k
of

fs
et

 in
 0

x1
D

0

−1 −0.5 0 0.5 1
−2

−1

0

1

2

Average clock offset in 0x1B0

Av
er

ag
e

cl
oc

k
of

fs
et

 in
 0

x1
A6

Correlation=0.9213 Correlation=0.0026

(a) Honda Accord 2013.

−0.3 −0.2 −0.1 0 0.1 0.2
−0.3

−0.2

−0.1

0

0.1

0.2

Average clock offset in 0x20

Av
er

ag
e

cl
oc

k
of

fs
et

 in
 0

xB
2

−0.3 −0.2 −0.1 0 0.1 0.2
−1.5

−1

−0.5

0

0.5

1

Average clock offset in 0x20

Av
er

ag
e

cl
oc

k
of

fs
et

 in
 0

x2
C

1

Correlation=0.9860 Correlation=0.0331

(b) Toyota Camry 2010.

Figure 9: Correlated and uncorrelated clock offsets.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time [Sec]

0

20

40

60

80

100

120

140

160

Ac
cu

m
ul

at
ed

 c
lo

ck
 o

ffs
et

 (O
ac

c) [
m

s]

w/ attack
w/o attack

(a) Accumulated clock offset. (b) Control limits.

Figure 10: Defense against the worst-case masquerade attack via message-pairwise detection.

setting replicates the timed masquerade attack. During
such a process, B continuously logged 0x1B0 so that we
can obtain a reference for circumstances when no attacks
are mounted.

Fig. 8(b) (left) shows the PMF of the message inter-
vals of 0x1B0 before and after the attack. Since the mes-
sage periodicity remained the same, the distribution of
the messages intervals did not change. Moreover, since
we considered a timed masquerade attack, in contrast to
the result in Fig. 8(a), there were no such abnormal mes-
sage intervals. Such a result indicates that state-of-the-
art IDSs, which try to find abnormal message frequen-
cies, cannot detect such an attack. Although the distri-
bution of message intervals remained unchanged, due to
the change in ECU transmitting 0x1B0 (V2 → V1), the
accumulated clock offset suddenly exhibited a different
trend in its change, i.e., a different clock skew after the
attack. Here, the original trend in offset changes was de-
termined by the data obtained from B. So, as shown in
Fig. 8(b) (right), CIDS was able to detect a sudden shift in
its identification error and thus outputted a high level of
CUSUM upper control limit, i.e., an intrusion detection.
CIDS’s capability of detecting various types of masquer-
ade attack is evaluated further in Section 5.5.

In conclusion, through its modeling and detection pro-
cesses, CIDS can detect not only the fabrication attack
but also the masquerade attack, i.e., is capable of doing
not only what existing solutions can do, but also more.

5.4 Message-pairwise Detection

We evaluate the feasibility and efficiency of message-
pairwise detection in CIDS. To validate its practicabil-
ity in the real-world, we first examine whether there ex-
ists pairs of messages inside real vehicles with correlated
clock offsets — the condition for CIDS to run message-
pairwise detection.

Fig. 9(a) shows two cases of correlated and uncorre-
lated clock offsets of in-vehicle messages collected from
the Honda Accord 2013. Fig. 9(a) (left) shows that the
average clock offsets of messages 0x1B0 and 0x1D0,
which were determined to have been sent from the same
ECU, showed a high correlation of 0.9213, i.e., linear re-
lationship. In contrast, as shown in Fig. 9(a) (right), aver-
age clock offsets of messages 0x1B0 and 0x1A6, which
were sent every 20ms from different ECUs, showed a
near 0 correlation.

By the Birthday paradox, some ECUs in the vehicle
may probably have near-equivalent clock skews — as it
was for messages 0x20 and 0x2C1 in the examined Toy-
ota Camry 2010 (see Fig. 5(c)). Although clock skews
may be near-equivalent, instantaneous clock offsets of
two different ECUs cannot be near-equivalent and are
thus uncorrelated as they run different processes. The
results in Fig. 9(b) corroborate such a fact by showing
that clock offsets of messages 0x20 and 0xB2, which
were sent by the same ECU, had a high correlation of
0.9860, whereas offsets of messages 0x20 and 0x2C1 —

924 25th USENIX Security Symposium USENIX Association

Fabrication
Suspension
Mistimed Masquerade
Timed Masquerade

Fabrication
Suspension
Mistimed Masquerade
Timed Masquerade

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Probability of False Alarms 10-3

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

0

0.02

0.94

0.96

0.98

1
Fabrication
Suspension
Mistimed Masquerade
Timed Masquerade

(a) Per-message detection.

Fabrication
Suspension
Mistimed Masquerade
Timed Masquerade

Fabrication
Suspension
Mistimed Masquerade
Timed Masquerade

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Probability of False Alarms 10-3

Pr
ob

ab
ilit

y
of

 D
et

ec
tio

n

0

0.02

0.94

0.96

0.98

1
Fabrication
Suspension
Mistimed Masquerade
Timed Masquerade

(b) Per-message + Message-pairwise detection.

Figure 11: ROC curves of CIDS in the real vehicle.

sent by different ECUs with similar clock skews — had
a low correlation of 0.0331. Thus, for messages with
near-equivalent clock skews, CIDS can further examine
the correlation between their clock offsets, and correctly
determine their transmitters.3 These facts and observa-
tions indicate the feasibility and efficiency of message-
pairwise detection in CIDS.

To show that message-pairwise detection can sup-
port per-message detection in decreasing false posi-
tives/negatives by examining offset correlations, we con-
sider a scenario in which an attacker V1 has mounted
a masquerade attack on a Honda Accord ECU V2 at
tmasq = 800 secs. We refer to V2 as the ECU which orig-
inally transmits message 0x1B0. To consider the worst
case in detecting the masquerade attack, we assume that
the clock skews of V1 and V2 are nearly equivalent,
similarly to messages 0x20 and 0x2C1 in the Toyota
Camry. We replicated such a worst-case scenario by ran-
domly permuting the acquired offset values of 0x1B0 for
t > tmasq, and considering the permuted values to be out-
put from V1. As shown in Fig. 10(a), this leads to a situ-
ation where the clock skew does not change even though
the message transmitter has been changed from one ECU
to another. Although the clock skew remained equivalent
at t = tmasq, the correlation between offsets of 0x1B0 and
0x1D0 suddenly dropped from 0.9533 to 0.1201, i.e., a
linear to non-linear relationship. As a result, as shown in
Fig. 10(b), the control limits in CIDS’s message-pairwise
detection exceeded the threshold ΓL = 5. On the other
hand, since the clock skews before and after the attack
were equivalent, per-message detection was not able to
detect the intrusion.

5.5 False Alarm Rate
We also examined the false alarm rate of CIDS under the
real vehicle setting. The results obtained from the CAN

3If the two ECUs’ clock behaviors are still not distinguishable,
CIDS can be set up to exclude them for examination so that the risk
of false positives significantly decreases. However, this may impact
CIDS’s capability of detecting attacks mounted through those ECUs.

bus prototype are omitted due to their insignificance, i.e.,
not many false alarms occurred due to its less complex
bus traffic. Based on data recorded for 30 minutes from
the Honda Accord 2013 — approximately 2.25 million
messages on the CAN bus — four attack datasets were
constructed to each contain 300 different intrusions. The
intrusions either had different injection timings, suspen-
sion timings, or changes in clock skews: each in the form
of fabrication attack, suspension attack, mistimed mas-
querade attack, and timed masquerade attack. For each
dataset, we varied the κ parameter of CIDS to acquire one
false positive rate (false-alarm rate) and one false nega-
tive rate (1−detection rate).

Fig. 11(a) shows the Receiver Operating Characteris-
tic (ROC) curve of CIDS, which represents its trade-off
between false alarm and detection, executing only per-
message detection on the attack datasets. Clearly, CIDS
is shown to be able to detect fabrication, suspension, and
masquerade attacks with a high probability. Since the
timed masquerade attack is the most difficult to detect,
it showed the highest false positive rate among all the at-
tack scenarios considered: a false positive rate of 0.055%
while not missing any anomalies (100% true positives).
Even for false positives < 0.055%, 97% of the anoma-
lies were detected by CIDS. However, these false pos-
itives can be of great concern for in-vehicle networks.
Therefore, to eliminate such false positives, CIDS can
additionally run message-pairwise detection. Fig. 11(b)
shows the ROC curve of CIDS executing not only per-
message detection but also message-pairwise detection
for further verification. Accordingly, CIDS was able to
detect all types of attacks considered without having any
false positives, which is in contrast to CIDS with only
per-message detection, i.e., all false positives were elim-
inated via message-pairwise detection.

6 Discussion

Discussed below are the overhead, deployment, limita-
tions, and applications of CIDS.

USENIX Association 25th USENIX Security Symposium 925

Identification algorithm. To estimate clock skew,
one can also use other algorithms than RLS, such as Total
Least Squares (TLS) and Damped Least Squares (DLS),
which perform orthogonal linear and non-linear regres-
sion, respectively. Although they might identify the
clock skew with a higher accuracy than RLS, their gains
are offset by the accompanying high complexity. TLS
requires Singular Value Decomposition (SVD), which
is computationally expensive, and DLS requires a large
number of iterations for curve fitting. RLS is known to
have a computation complexity of O(N2) per iteration,
where N is the size of the data matrix. However, in CIDS,
only a scalar clock offset is exploited for identification,
and thus the computational complexity is relatively low.

Defeating CIDS. There may be several ways the ad-
versary may attempt to defeat CIDS. First, the adversary
may try to compromise the ECU running CIDS and dis-
able it. However, if cross-validation for CIDS was to be
exploited, such an attempt can be nullified. For the detec-
tion of intrusions, CIDS only requires an ECU to record
the timestamps of message arrivals. Such a low overhead
makes it feasible for CIDS to be installed distributively
across several in-vehicle ECUs for cross-validation. Sup-
pose using CIDS, ECU A monitors attacks on messages
{M1, M2}, ECU B monitors {M2, M3}, and ECU C mon-
itors {M1, M3}. Since CIDS regards the receiver’s time
clock as the true clock, cross-validation provides mul-
tiple perspectives of clock behaviors for each message
ID, e.g., two different perspectives of M2 from A and
B. Thus, even when an ECU running CIDS gets com-
promised, cross-validation via CIDS can handle such a
problem.

Another way the adversary may try to defeat CIDS is to
adapt to how its algorithm is running and thus deceive it.
The adversary may figure out the clock skew of the tar-
get ECU and then heat up or cool down the compromised
ECU so that its clock skew changes to match that of the
target. In such a case, the clock skew can be matched and
thus may bypass CIDS’s per-message detection. How-
ever, as discussed in Section 5.4, unless the adversary
also matches the instantaneous clock offset, which is af-
fected by the ECU’s momentary workload and tempera-
ture, CIDS can detect the intrusion via message-pairwise
detection.

Upon intrusion detection. False alarms for intrusion
detection systems, especially in in-vehicle networks, are
critical. Thus, CIDS should also deal with them as accu-
rately as possible. To meet this requirement, if an intru-
sion has been determined, even after going through the
verification process, CIDS can follow the following steps
for further examination:

1. If an intrusion was detected while using only per-
message detection, examine it further via message-
pairwise detection.

2. If still alarmed as an intrusion and the attacked ECU
is a safety-critical ECU, go straight to step 4.

3. If not, communicate with other ECUs for cross-
validation as they would provide different perspec-
tives of the clock skew results. If communicat-
ing with other ECUs incurs too much overhead (in
terms of bus load, processing overhead, etc.), send
traffic data for a remote diagnosis.

4. Request re-patching of firmware and advise the
driver to stop the vehicle.

Limitation of CIDS. CIDS is shown to be effective in
detecting various types of in-vehicle network intrusions.
One limitation of CIDS might be that since it can only
extract clock skews from periodic messages, it would be
difficult to fingerprint ECUs which are sending aperiodic
messages. That is, if the attacker injects messages ape-
riodically, although CIDS can still detect the intrusion,
it would not be able to pinpoint where the attack mes-
sage came from, i.e., finding the root-cause of attacks
launched with or on aperiodic messages. Recall that
CIDS can achieve this only for periodic messages. In fu-
ture, we would like to find new features other than clock
skew, which can fingerprint ECUs, regardless of whether
they send messages periodically or aperiodically.

Applicability to other in-vehicle networks. Al-
though most modern in-vehicle networks are based on
CAN, some may be equipped with other protocols, such
as CAN-FD, TTCAN and FlexRay, for more complex
operations. CAN-FD is an enhanced version of CAN,
providing flexible and higher data rates [5]. Since its
basic components conform to CAN and thus also lacks
synchronization, CIDS can be applied to CAN-FD. For
protocols such as TTCAN [21] and FlexRay [22], nodes
are periodically synchronized for determinative timing of
message exchanges. The interval between two consecu-
tive synchronizations depends on how each protocol is
deployed [32]. For TTCAN, it can be up to 216 = 65536
bits long, i.e., 131ms in a 500Kbps bus [37]. This lets
some messages be sent multiple times between consec-
utive synchronizations. So, if the time interval is long,
CIDS would still be able to extract clock skews from
messages which are sent multiple times, whereas, if the
period is short, CIDS may not be feasible. However, the
fact that TTCAN and FlexRay have high implementation
cost, whereas for CAN-FD it is minimal, makes CAN-
FD a favorite candidate for next-generation in-vehicle
networks [6, 39]. This means that CIDS can be applicable
to not only current but also future in-vehicle networks.

7 Conclusion

New security breaches in vehicles have made vehicle se-
curity one of the most critical issues. To defend against

926 25th USENIX Security Symposium USENIX Association

vehicle attacks, several security mechanisms have been
proposed in the literature. They can cope with some at-
tacks but cannot cover other safety-critical attacks, such
as the masquerade attack. To remedy this problem,
we have proposed a new IDS called CIDS, which ex-
tracts clock skews from message intervals, fingerprints
the transmitter ECUs, and models their clock behaviors
using RLS. Then, based on the thus-constructed model,
CIDS detects intrusions via CUSUM analysis. Based on
our experiments on a CAN bus prototype and on real ve-
hicles, CIDS is shown to be capable of detecting various
types of in-vehicle network intrusions. CIDS can address
all attacks that existing IDSs can and cannot handle as
well as facilitates root-cause analysis. Thus, it has po-
tential for significantly enhancing vehicle security and
safety.

8 Acknowledgments

We would like to thank the anonymous reviewers and
the shepherd, Tadayoshi Kohno, for constructive sugges-
tions. The work reported in this paper was supported in
part by the NSF/Intel Grant CNS-1505785 and the DG-
IST Global Research Laboratory Program through NRF
funded by MSIP of Korea (2013K1A1A2A02078326).

References
[1] Microchip MCP2515 Datasheet. [Online] Available:

www.microchip.com/MCP2515.

[2] Microchip TB078, PLL Jitter and Its Effects in the CAN Protocol.

[3] On-Board Diagnostic System [Online] http://www.obdii.com.

[4] CAN Specification v2.0. Robert Bosch GmbH (1991).

[5] CAN with Flexible Data-Rate Specification Version 1.0. Robert
Bosch GmbH (2012).

[6] Infineon: CAN FD Success Goes at Expense of FlexRay. [Online]
http://www.eetimes.com/. EETimes (Feb. 2015).

[7] Hackers Remotely Kill a Jeep on the Highway - With Me in It.
[Online] http://www.wired.com.

[8] BASSEVILLE, M., AND NIKIFOROV, I. Detection of abrupt
changes: Theory and application. In Prentice Hall information
and system sciences series (1993).

[9] CHECKOWAY, S., MCCOY, D., KANTOR, B., ANDERSON, D.,
SHACHAM, H., SAVAGE, S., KOSCHER, K., CZESKIS, A.,
ROESNER, F., AND KOHNO, T. Comprehensive Experimental
Analyses of Automotive Attack Surfaces. In USENIX Security
(2011).

[10] CHO, K. T., PARK, T., AND SHIN, K. G. CPS Approach to
Checking Norm Operation of a Brake-by-Wire System. In ICCPS
(2015).

[11] DAILY, J. Analysis of critical speed yaw scuffs using spiral
curves. In SAE Technical Paper 2012-01-0606 (2012).

[12] DAVIS, R., KOLLMANN, S., POLLEX, V., AND SLOMKA, F.
Controller area network (can) schedulability analysis with fifo
queues. ECRTS (2011).

[13] FOSTER, I., PRUDHOMME, A., KOSCHER, K., AND SAVAGE,
S. Fast and Vulnerable: A Story of Telematic Failures. In WOOT
(2015).

[14] HAYKIN, S. Adaptive filter theory. In 2nd ed. Prentice-Hall
(1991).

[15] HERREWEGE, A., SINGELEE, D., AND VERBAUWHEDE, I. Ca-
nauth - a simple, backward compatible broadcast authentication
protocol for can bus. In ECRYPT Workshop on Lightweight Cryp-
tography (2011).

[16] HOPPE, T., KILTZ, S., AND DITTMANN, J. Security threats to
automotive can networks - practical examples and selected short-
term countermeasures. In Reliability Engineering and System
Safety (Jan. 2011).

[17] JANA, S., AND KASERA, S. K. On fast and accurate detection of
unauthorized wireless access points using clock skews. In ACM
MobiCom (2008).

[18] KHAN, D., BRIL, R., AND NAVET, N. Integrating hardware
limitations in can scbedulability analysis. In WFCS (May. 2010).

[19] KOHNO, T., BROIDO, A., AND CLAFFY, K. Remote physical
device fingerprinting. In IEEE Symposium on Security and Pri-
vacy (2005).

[20] KOSCHER, K., CZESKIS, A., ROESNER, F., PATEL, S.,
KOHNO, T., CHECKOWAY, S., MCCOY, D., KANTOR, B., AN-
DERSON, D., SHACHAM, H., AND SAVAGE, S. Experimental
security analysis of a modern automobile. In IEEE Security and
Privacy (2010).

[21] LEEN, G., AND HEFFERNAN, D. Ttcan: a new time-triggered
controller area network. In Elsevier Microprocessors and Mi-
crosystems (2002).

[22] MILBREDT, P., HORAUER, M., AND STEININGER, A. An in-
vestigation of the clique problem in flexray. SIES (2008).

[23] MILLER, C., AND VALASEK, C. Adventures in automotive net-
works and control units. Defcon 21 (2013).

[24] MILLER, C., AND VALASEK, C. A survey of remote automotive
attack surfaces. Black Hat USA (2014).

[25] MILLER, C., AND VALASEK, C. Remote exploitation of an un-
altered passenger vehicle. Black Hat USA (2015).

[26] MILLS, D. L. Network time protocol: Specification, impleme-
nation, and analysis. RFC 1305.

[27] MOHALIK, S., RAJEEV, A. C., DIXIT, M. G., RAMESH, S.,
SUMAN, P. V., PANDYA, P. K., AND JIANG, S. Model check-
ing based analysis of end-to-end latency in embedded, real-time
systems with clock drifts. In DAC (2008).

[28] MONTGOMERY, D. Introduction to statistical quality control. In
4th edition, Wiley (2000).

[29] MOON, S. B., SKELLY, P., AND TOWSLEY, D. Estimation and
removal of clock skew from network delay measurements. In
INFOCOM (1999).

[30] MUTER, M., AND ASAJ, N. Entropy-based anomaly detection
for in-vehicle networks. IEEE IVS (2011).

[31] MUTER, M., GROLL, A., , AND FREILING, F. C. A structured
approach to anomaly detection for in-vehicle networks. In Infor-
mation Assurance and Security (IAS), Sixth International Confer-
ence (2010).

[32] NATALE, M. D., ZENG, H., GIUSTO, P., AND GHOSAL, A. Un-
derstanding and using the controller area network communication
protocol: Theory and practice. In Springer Science & Business
Media (2012).

[33] NILSSON, D., LARSON, D., AND JONSSON, E. Efficient In-
Vehicle Delayed Data Authentication Based on Compound Mes-
sage Authentication Codes. In VTC-Fall (2008).

USENIX Association 25th USENIX Security Symposium 927

[34] PASZTOR, A., AND VEITCH, D. Pc based precision timing with-
out gps. In ACM SIGMETRICS (2002).

[35] PAXSON, V. On calibrating measurements of packet transit times.
In SIGMETRICS (1998).

[36] RUTH, R., BARTLETT, W., AND DAILY, J. Accuracy of event
data in the 2010 and 2011 Toyota camry during steady state and
braking conditions. In SAE International Journal on Passenger
Cars (2012).

[37] RYANA, C., HEFFERNANB, D., AND LEENA, G. Clock syn-
chronisation on multiple ttcan network channels. In Elsevier Mi-
croprocessors and Microsystems (2004).

[38] SZILAGYI, C., AND KOOPMAN, P. Low cost multicast network
authentication for embedded control systems. In Proceedings of
the 5th Workshop on Embedded Systems Security (2010).

[39] TALBOT, S. C., AND REN, S. Comparison of fieldbus systems,
can, ttcan, flexray and lin in passenger vehicles. In ICDCSW
(2009).

[40] VEITCH, D., BABU, S., AND PASZTOR, A. Robust synchro-
nization of software cclock across the internet. In IMC (2004).

[41] WOODALL, W. H., AND ADAMS, B. The statistical design of
cusum charts. In Quality Engineering, 5(4), (1993).

[42] ZANDER, S., AND MURDOCH, S. An improved clock-skew
measurement technique for revealing hidden services. In USENIX
Security (2008).

USENIX Association 25th USENIX Security Symposium 929

Lock It and Still Lose It – On the (In)Security of
Automotive Remote Keyless Entry Systems

Flavio D. Garcia1

School of Computer Science,
University of Birmingham, UK.

f.garcia@bham.ac.uk

David Oswald2

School of Computer Science,
University of Birmingham, UK.

d.f.oswald@bham.ac.uk
Timo Kasper2

Kasper & Oswald GmbH, Germany.
info@kasper-oswald.de

Pierre Pavlidès1

School of Computer Science,
University of Birmingham, UK.

pierre@pavlides.fr
Abstract
While most automotive immobilizer systems have
been shown to be insecure in the last few years, the
security of remote keyless entry systems (to lock and
unlock a car) based on rolling codes has received
less attention. In this paper, we close this gap and
present vulnerabilities in keyless entry schemes used
by major manufacturers. In our first case study, we
show that the security of the keyless entry systems
of most VW Group vehicles manufactured between
1995 and today relies on a few, global master keys.
We show that by recovering the cryptographic al-
gorithms and keys from electronic control units, an
adversary is able to clone a VW Group remote con-
trol and gain unauthorized access to a vehicle by
eavesdropping a single signal sent by the original re-
mote. Secondly, we describe the Hitag2 rolling code
scheme (used in vehicles made by Alfa Romeo, Chev-
rolet, Peugeot, Lancia, Opel, Renault, and Ford
among others) in full detail. We present a novel
correlation-based attack on Hitag2, which allows re-
covery of the cryptographic key and thus cloning of
the remote control with four to eight rolling codes
and a few minutes of computation on a laptop. Our
findings affect millions of vehicles worldwide and
could explain unsolved insurance cases of theft from
allegedly locked vehicles.

1 Car Keys

For several decades, car keys have been used to phys-
ically secure vehicles. Initially, simple mechanical
keys were introduced to open the doors, unlock the
steering, and operate the ignition lock to start the
engine. Given physical access to a mechanical key,
or at hand of a detailed photograph, it is possible

1These authors contributed the research on Hitag2.
2These authors contributed the research on VW Group.

to create a duplicate. In addition, mechanical tum-
bler locks and disc locks are known to be vulner-
able to techniques such as lock-picking and bumping
that allow to operate a lock without the respective
key. Finally, for most types of car locks, locksmith
tools exist that allow to decode the lock and create
a matching key.

1.1 Electronics in a Car Key
With electronic accessories becoming available, ad-
ditional features were integrated into the locking and
starting systems of cars: some of them to improve
the comfort, others to increase security. On the side
of the car key, this implies some electronic circuitry
integrated in its plastic shell, as illustrated in Fig-
ure 1. Note that the link between Remote Keyless
Entry (RKE) and immobilizer is optional. In the
Hitag2 system (Section 4), the immobilizer interface
can be used to re-synchronize the counter used for
RKE, while VW Group vehicles (Section 3) com-
pletely separate RKE and immobilizer. In vehicles
with Passive Keyless Entry and Start (PKES) (Sec-
tion 1.1.2), the low-frequency immobilizer link is
used to trigger the transmission of a door opening
signal over the high-frequency RKE interface.

1.1.1 Immobilizer Transponders

One of the most notable events in the history of
car security was the introduction of the immobilizer,
which significantly reduced the number of stolen
cars and so-called joyrides conducted by teenagers.
An electronic immobilizer improves the security of
the car key with respect to starting the engine.
Technically, most immobilizers rely on Radio Fre-
quency IDentification (RFID) technology: An RFID
transponder is embedded in the plastic shell of the
car key and contains a secret that is required to

1

930 25th USENIX Security Symposium USENIX Association

mechanical part
(key blade)

Remote keyless entry
(433/315/868 MHz)

RKE
C

RF

Immo.
RFID

Immobilizer
(125 kHz)

RKE antenna

optional

Button(s)

Figure 1: Main components of a car key: RKE and
immobilizer systems are separate and use different
RF frequencies.

switch on the ignition and start the engine. An
antenna coil around the ignition lock establishes a
bidirectional communication link and provides the
energy for the transponder in order to verify its au-
thenticity with a range of a few centimeters. All
modern immobilizers use cryptography for authen-
tication between transponder and vehicle, typically
based on a challenge-response protocol.

For many years, only weak, proprietary crypto-
graphy was implemented in immobilizer transpon-
ders worldwide. This may have been caused by the
limited energy available on RFID-powered devices,
technological limitations, and cost considerations.
The first type of immobilizer transponder to be
broken was the widespread DST40 cipher used in
Texas Instrument’s Digital Signature Transponder
(DST), which was reverse-engineered and broken at
Usenix Security 2005 [8]: The 40-bit secret key of
the cipher can be revealed in a short time by means
of exhaustive search. This paper was at the same
time one of the first published attacks on a commer-
cial device in the literature. A few years later, at
Usenix Security 2012, researchers published several
cryptanalytic attacks on NXP’s Hitag2 transpon-
ders [30, 32], the most widely used car immobilizer
at that time. The authors showed that an attacker
can obtain the 48-bit secret key required to bypass
the electronic protection in less than 360 seconds.
One year later, in a paper submitted to Usenix Se-
curity 2013 (and finally published in 2015), the se-
curity mechanism of the Megamos Crypto transpon-
der were found to be vulnerable to cryptanalytic at-
tacks [31, 33]. The 96-bit secret key of the cipher
is mapped into a 57-bit state of a stream cipher
that can be rolled back. A flawed key generation
(multiple bits of the secret key are set to zero) addi-
tionally found in various transponders decreases the
attack time from the order of days to a few seconds

using a Time-Memory Tradeoff (TMTO).
As a result, the majority of RFID immobilizers

used in today’s vehicles can be cloned: the secret of
the transponder can be obtained by an adversary to
circumvent the added security provided by the im-
mobilizer. The cryptography of these immobilizers
has to be considered broken as their added protec-
tion to prevent criminals from starting the engine of
a car is very weak.

1.1.2 Passive Keyless Entry and Start

Today, certain modern cars (especially made by lux-
ury brands) are equipped with PKES systems that
rely on a bidirectional challenge-response scheme,
with a small operating range of about one meter:
When in proximity of the vehicle, the car key gener-
ates a cryptographic response to a challenge trans-
mitted by the car. A valid response unlocks the
doors, deactivates the alarm system, and enables the
engine to start. As a consequence, the only remain-
ing mechanical part in some cars is a door lock for
emergencies (usually found behind a plastic cover
on the driver’s side), to be used when the battery is
depleted.

Unfortunately, PKES does not require user inter-
action (such as a button press) on the side of the
car key to initiate the cryptographic computations
and signal transmission. The lack of user interac-
tion makes PKES systems prone to relay attacks, in
which the challenge and response signals are relayed
via a separate wireless channel: The car key (e.g., in
the pocket of the victim) and vehicle (e.g., parked
hundreds of meters away) will assume their mutual
proximity and successfully authenticate. Since the
initial publication of these relay attacks in 2011 [14],
tools that automatically perform relay attacks on
PKES systems are available on the black market and
are potentially used by criminals to open, start, and
steal vehicles.

1.1.3 Remote Keyless Entry Systems

RKE systems rely on a unidirectional data transmis-
sion from the remote control, which is embedded in
the car key, to the vehicle. Upon pressing a button,
an active Radio Frequency (RF) transmitter in the
remote control usually generates signals in a freely
usable frequency band. These include the 315 MHz
band in North America and the 433 MHz or 868 MHz
band in Europe, with a typical range of several tens
to hundreds of meters. Note that a few old cars have
been using infrared technology instead of RF. RKE
systems enable the user to comfortably lock and un-

2

USENIX Association 25th USENIX Security Symposium 931

lock the vehicle from a distance, and can be used to
switch on and off the anti-theft alarm, when present.

The first remote controls for cars used no crypto-
graphy at all: The car was unlocked after the suc-
cessful reception of a constant “fix code” signal. Re-
play attacks on these systems are straightforward.
We encountered a Mercedes Benz vehicle manufac-
tured around 2000 that still relies on such fix code
RKE systems.

The next generation of RKE systems are so-called
rolling code systems, which employ cryptography
and a counter value that is increased on each button
press. The counter value (and other inputs) form
the plaintext for generating a new, encrypted (or
otherwise authenticated) rolling code signal. After
decryption/verification on the side of the vehicle, the
counter value is checked by comparing it to the last
stored counter value that was recognized as valid:
An increased counter value is considered new and
thus accepted. A rolling code with an old counter
value is rejected. This mechanism constitutes an
effective protection against replay attacks, since a
rolling code is invalidated once it has been received
by the vehicle. The cryptographic mechanisms be-
hind rolling code systems are further described in
Section 2.

In principle, such unidirectional rolling code
schemes can provide a suitable security level for ac-
cess control. However, as researchers have shown in
the case of Keeloq in 2008, the security guarantees
are invalidated if they rely on flawed cryptographic
schemes: Keeloq was broken both by cryptana-
lysis [7, 15] and, in a more realistic setting, by side-
channel attacks on the key derivation scheme ex-
ecuted by the receiver unit [12, 17]. Although it is
frequently mentioned that Keeloq is widely used
for for vehicle RKE systems, our research indicates
that this system is prevalently employed for garage
door openers.

Another attack, targeting an outdated automotive
RKE scheme of an unspecified vehicle (built between
2000 and 2005), was demonstrated by Cesare in
2014 [9]: An adversary has to eavesdrop three sub-
sequent rolling codes. Then, using phase-space ana-
lysis, the next rolling code can be predicted with a
high probability. However, apart from this attack
the cryptographic security of automotive RKE sys-
tems has not been investigated to our knowledge.
In particular, a large-scale survey and security ana-
lysis of very wide-spread rolling code systems has
not been carried out.

A different, simple but effective method used by
criminals to break into cars is to jam the RF com-
munication when the victim presses the remote con-

trol to lock the car. The victim may not notice the
attack and thus leave the car open. A variant of
the attack is “selective jamming”, i.e., a combined
eavesdropping-and-jamming approach: The trans-
mitted rolling code signal is monitored and at the
same time jammed, with the effect that the car is
not locked and the attacker possesses a temporarily
valid (one-time) rolling code. Consequently, a car
could be found appropriately locked after a burg-
lary. This approach was first mentioned in [17] and
later practically demonstrated by [16,27]. Note that
one successful transmission of a new rolling code
from the original remote to the car usually inval-
idates all previously eavesdropped rolling codes, i.e.,
the time window for the attack is relatively small.
Furthermore, it is usually not possible to change
the signal contents, for example, convert a “lock”
command into an “unlock”. This limitation is often
overlooked (e.g. in [16, 27]) and severely limits the
practical threat posed by this type of attack.

1.2 Contribution and Outline
In this paper, we study several extremely wide-
spread RKE systems and reveal severe vulnerabil-
ities, affecting millions of vehicles worldwide. Our
research was in part motivated by reports of unex-
plained burglaries of locked vehicles (for example [1,
2]), as well as scientific curiosity regarding the se-
curity of our own, personal vehicles.

The remainder of this paper is structured as fol-
lows: In Section 2, we briefly summarize the results
of our preliminary analysis of different RKE systems
solely by analyzing the transmitted RF signals. The
main contributions presented subsequently are:

1. In Section 3, we analyze the RKE schemes
employed in most VW Group group vehicles
between 1995 and today. By reverse-
engineering the firmware of the respective Elec-
tronic Control Units (ECUs), we discovered
that VW Group RKE systems rely on crypto-
graphic schemes with a single, worldwide mas-
ter key, which allows an adversary to gain un-
authorized access to an affected vehicle after
eavesdropping a single rolling code.

2. In Section 4, we study an RKE scheme based
on the Hitag2 cipher, as used by many differ-
ent manufacturers. We have reverse-engineered
the protocol in a black-box fashion and present
a novel, fast correlation attack on Hitag2 ap-
plicable in an RKE context. By eavesdropping
four to eight rolling codes, an adversary can re-

3

932 25th USENIX Security Symposium USENIX Association

cover the cryptographic key within minutes and
afterwards clone the original remote control.

2 Preliminary Analysis of RKE Sys-
tems

To address the research question of this paper: “how
secure are modern automotive RKE systems?”, we
captured RF signals from the remote controls of a
variety of vehicles, including our own cars (VW Pas-
sat 3B, Škoda Fabia, Alfa Romeo Giulietta). Today,
the required hardware for receiving (and sending)
RKE signals is widely available. For our analyses,
we used various devices, including Software-Defined
Radios (SDRs) (HackRF, USRP, rtl-sdr DVB-T
USB sticks) and inexpensive RF modules. Figure 2
shows our simple setup which costs ≈ $40, is battery-
powered, can eavesdrop and record rolling codes,
emulate a key, and perform reactive jamming.

Figure 2: Arduino-based RF transceiver

Studying the raw received signals and guessing
the respective modulation and encoding schemes
turned out to be straightforward: The majority of
the studied RKE systems uses simple Amplitude-
Shift Keying (ASK) as modulation scheme, while
a smaller percentage employs Frequency Shift Key-
ing (FSK). For the encoding of the actual data bits,
the most prevalent methods are Manchester encod-
ing and pulse-width encoding. The utilized bit rates
range from less than 1 kBit/s (for older remotes) to
20 kBit/s (for newer remotes).

A typical rolling code packet consists of a pre-
amble (i.e., a regular sequence of 0 and 1), a fixed
start pattern (a sequence of one or a few fixed bytes),
the actual, cryptographic data payload, and a final
checksum, cf. Figure 3. Note that many schemes
slightly deviate from this general structure. Also,
in virtually all cases, the same packet is sent mul-
tiple times, presumably to increase the reliability in
presence of environmental disturbances.

The data payload normally contains the Unique

Preamble
Start
pattern

Payload Checksum

Figure 3: General packet structure of a rolling code.
Gray background indicates that the part is either
encrypted or authenticated.

Identifier (UID) of the remote control, the rolling
counter value, and the pressed button (i.e., “un-
lock”, “lock”, “open trunk”, in the US also “panic”
or “alarm”). Obviously, the data sent by the remote
control has to be cryptographically authenticated in
some way. There appear to be two major routes that
were taken by designers of RKE systems:

Implicit authentication: The complete payload
(or part of it) is symmetrically encrypted. The re-
ceiver then decrypts the packet, and checks if the
content is valid, i.e., if the UID is known to the
vehicle and the counter is in its validity window. Ex-
amples for this approach can be found in Section 3.
Explicit authentication: Some form of Message
Authentication Code (MAC) is computed over the
data payload and then appended to the packet. An
example of this approach is the Hitag2 scheme de-
scribed in Section 4.

As a next step, we tried to determine the utilized
encryption algorithms. However, a search for pub-
licly available documentation or data sheets yielded
little results. For example, the systems employed in
VW Group vehicles (VW, Seat, Škoda, and Audi)
appear to be a complete black box without any pub-
licly documented security analysis. Since VW Group
vehicles are extremely wide-spread, we selected this
manufacturer as the target of our first case study
(Section 3). Our second case study focuses on the
Hitag2 scheme, for which abridged (one-page) data
sheets can be found on the Internet [26]. We found
Hitag2-based remote controls in vehicles made by a
variety of manufacturers, hence, we opted to recover
the exact functionality and further analyze the se-
curity of this RKE scheme (Section 4).

3 Case Study 1: The VW System

With over 23% market share in Europe (Septem-
ber 2015) and 11.1% worldwide (August 2014), the
VW Group is amongst the leading global automot-
ive manufacturers [13]. We had access to a wide
variety of VW Group vehicles for our security ana-
lysis, from vehicles manufactured in the early 2000s
to ones for the model year 2016. In total, the VW
Group has sold almost 100 million cars from 2002
until 2015. While not all of these vehicles use the

4

USENIX Association 25th USENIX Security Symposium 933

RKE schemes covered in this section, we have strong
indications that the vast majority is vulnerable to
the attacks presented in the following. Note that
the VW Group also includes certain luxury brands
(e.g., Porsche, Bentley, Lamborghini, Bugatti) that
we did not analyze in detail. Instead, we focused
on more wide-spread vehicles manufactured by VW,
Seat, Škoda, and Audi. For a list of cars that we
validated our findings with, refer to Section 3.5.1.
Eavesdropping and analyzing the signals transmit-
ted by numerous remote controls, we identified at
least 7 different RKE schemes, referred to as VW-x
(x = 1. . .7) in the following. Out of these systems,
we selected the four schemes covering the largest
amount of vehicles:
VW-1: The oldest system, used in model years un-
til approximately 2005. The remote control trans-
mits On-Off-Keying (OOK) modulated signals at
433.92 MHz, using pulse-width coding at a bitrate
of 0.667 kBit/s.
VW-2: Used from approximately 2004 onwards.
The operating frequency is 434.4 MHz using OOK
(same as for VW-3 and VW-4), transmitting
Manchester-encoded data at a bitrate of 1 kBit/s.
VW-3: Employed for models from approxim-
ately 2006 onwards, using a frequency of 434.4 MHz
and Manchester encoding at a bitrate of 1.667 kBit/s.
The packet format differs considerably from VW-2.
VW-4: The most recent scheme we analyzed, found
in vehicles between approximately 2009 and 2016.
The system shares frequency, encoding, and packet
format with VW-3, but uses a different encryption
algorithm (see below).

The remaining three schemes are used in
Audi vehicles from approximately 2005 until 2011
(VW-5), the VW Passat since 2005 (model B6/type
3C and newer, VW-6) and new VW vehicles like the
Golf 7 (VW-7). We have not further investigated
the security of these systems, but at least for older
vehicles, it seems likely that similar design choices
as for VW-1–VW-4 were made.

For our initial analyses, we implemented the most
likely demodulation and decoding procedure for all
of the above systems. We then collected rolling codes
of multiple remote controls for each scheme and com-
pared the resulting data. For all schemes VW-1–
VW-4, we found that most of the packet content
appeared to be encrypted, except for a fixed start
pattern and the value of the pressed button sent
in plain. We hence assumed that all systems use
implicit authentication, i.e., check the correctness
of a rolling code after decryption. Demodulation
routines for VW-3 and VW-4 were independently

published in 2015 [6] after we had carried our pre-
liminary analysis. Note that this does not cover any
of the cryptographic algorithms presented here.

3.1 Analysis of Remote Control and
ECU

We obtained various VW Group remote controls and
extracted the Printed Circuit Boards (PCBs) for
further analysis of the hardware. A typical PCB
for a VW Group RKE remote includes a Microcon-
troller (µC), an RF transmitter, an antenna (integ-
rated on the PCB) and a coin cell battery as the
main components. On many remote control PCBs
(e.g., implementing VW-2), we found a µC marked
with Temic/Atmel M44C890E, cf. Figure 4. Ac-
cording to the datasheet available online [3], this
µC is a 4-bit processor, the so-called MARC4. The
µC is mask-programmed, i.e., the program code is
placed in Read Only Memory (ROM) and hence
fixed at manufacturing. According to Laurie [21],
it is possible to re-construct the program code of
MARC4 processors by taking microscopic photo-
graphs of the ROM memory and applying further
image processing to extract the value of each indi-
vidual bit. However, we did not follow this approach
because we did not have access to suitable micro-
scopic equipment.

Figure 4: PCB of an older VW Group remote control
using a MARC4 µC

When studying remote controls of newer vehicles,
we found different, not easily identifiable µCs on the
PCB. An example of this is shown in Figure 5: We
could not identify the type of µC from the mark-
ings on the main IC (top, towards the right), which
complicates the reverse engineering.

It seemed conceivable that some form of key de-
rivation could be present, which would have to be
implemented on the receiving ECU’s side. Thus,
we opted to analyze the RKE ECUs in the vehicle
that receive and process the remote control signals.
We therefore bought a number of ECUs implement-
ing the respective RKE functionality, and attemp-

5

934 25th USENIX Security Symposium USENIX Association

Figure 5: PCB of a newer VW Group remote control
using an unidentified µC

ted to extract the firmware of the µCs present on
the PCB of the ECU. Note that in contrast to the
low-power 4-bit or 8-bit processors usually employed
in the remote control, the RKE ECUs often handles
numerous additional features of the vehicle and thus
utilizes a more powerful, Flash-programmable 16-bit
or 32-bit µC (with documented debug and program-
ming interfaces).

Using widely available, standard programming
tools for automotive processors, we were able to ob-
tain firmware dumps for all studied ECUs. We then
located and recovered the cryptographic algorithms
by performing static analysis of the firmware im-
age, searching amongst others for constants used in
common symmetric ciphers and common patterns
of such ciphers (e.g., table lookups, sequences of bit-
wise operations). The results of this process are de-
scribed in more detail for each scheme VW-1–VW-4
in the following. Note that as part of our negoti-
ations with VW Group, and to protect VW Group
customers, we agreed to not fully disclose the part
numbers of the analyzed ECUs and the employed
µCs at this point. We furthermore agreed to omit
certain details of the reverse-engineering process, as
well as the values of cryptographic keys.

3.2 The VW-1 Scheme
The VW-1 system is the only VW Group scheme
discussed in this paper that operates at 433.92 MHz
(all newer systems use a frequency of 434.4 MHz).
In contrast to newer RKE schemes, the start of a
packet is not indicated by a long preamble, but by
a single 1-0 pattern (500µs high level, 500µs low
level). After this, the data bits are transmitted LSB-
first in pulse-width encoded form: A zero is indic-
ated by a short high level followed by a longer low
level, while a one is represented with the opposi-
te pattern (long high, short low). We discovered
that the first four bytes hold the UID of the remote
in an obfuscated form (several bytes of the packet
are XORed). The following three bytes lfsr hold the

(byte-permuted) state of a Linear Feedback Shift Re-
gister (LFSR) that is clocked a fixed number of ticks
for each new rolling code (i.e., the LFSR state has
the role of a counter). For reasons of responsible
disclosure, we do not provide the full details of the
obfuscation function and the LFSR feedback in this
paper. One bit of the final nibble btn indicates the
pressed button. The overall structure of a VW-1
rolling code packet is shown in Figure 6:

UID lfsr btn

0 32 56 59

Figure 6: Packet structure of a rolling code for
VW-1. Gray background indicates that the part is
obfuscated or holds the LFSR state. The start pulse
is not shown.

In conclusion, the security of the VW-1 is solely
based on obscurity. Neither is there a cryptographic
key involved in the computation of the rolling code,
nor are there any vehicle or remote control specific
elements for some form of key diversification. With
the knowledge of the details of the obfuscation func-
tion and the LFSR, an adversary can generate valid
rolling codes to open and close a VW-1 vehicle based
on a single eavesdropped signal (to obtain the UID
and the current state of the LFSR). Note that we
observed similarly insecure LFSR-based schemes in
older Audi vehicles built before 2004.

3.3 The VW-2 and VW-3 Schemes
Starting with VW-2, a rolling code packet has the
following structure: A preamble (regular 0-1 pat-
tern) is followed by a fixed start sequence start (in-
dividual per scheme), an encrypted 8-byte payload,
and finally a byte btn indicating the button that was
pressed. The packet structure (not showing the pre-
amble) is depicted in Figure 7.

start UID ctr btn’ btn

0 24 56 80 88 95

Figure 7: Packet structure of a rolling code for
VW-2–4. Gray background indicates that the part
is encrypted. Note that the fixed start pattern is
shorter for VW-2.

The 8-byte payload is generated from the follow-
ing plaintext: a 4-byte UID, a 3-byte counter ctr,
and one byte btn′ again indicating the pressed but-
ton. This payload is then encrypted using a propri-
etary block cipher that we recovered from the ECU

6

USENIX Association 25th USENIX Security Symposium 935

firmware as described in Section 3.1. We later found
that this cipher appears to be the so-called AUT64
cipher employed in certain immobilizer transponders
as well [4]. Hence, we will use the name AUT64 in
the following and follow the notation given in the
public datasheet.

AUT64 is an iterated cipher, operating on 8-byte
blocks. It uses a round structure as depicted in Fig-
ure 8: In each round i the state (represented as
bytes a0 . . . a7) is first byte-permuted, using a key-
dependent permutation σ. This permutation is fully
described by a 3 · 23 = 24 bit string. Then, bytes
a0 . . . a6 are left unchanged, while byte a7 is up-
dated using the round function g (a0, . . . ,a7,keyi),
where keyi is a 32-bit round key. In the case of
AUT64 in the VW Group system, the cipher has
12 rounds, while the datasheet [4] only specifies a
possible number of rounds between 8 and 24. The

a0 a1 a2 a3 a4 a5 a6 a7

Byte permutation σ

a0 a1 a2 a3 a4 a5 a6 a7

a0 a1 a2 a3 a4 a5 a6 a7

g

Figure 8: One round i of the AUT64 block cipher
as used in VW-2 and VW-3. a0, . . . ,a7 is the 8-
byte state of the cipher, g (a0, . . . ,a7,keyi) the round
function.

internal structure of g is shown in Figure 9: The
input bytes a0, . . . ,a7 are first combined with the
32-bit round key keyi using a sequence of concaten-
ations, table look-ups, and XOR operations denoted
as f . Note that the round key is derived from a
part (denoted as kf in the following) of the main
key k by a fixed, nibble-wise permutation per round.
Each nibble of the 8-bit output of f is then passed
through the same 4-to-4 S-Box τ , bit-permuted us-
ing the same permutation σ used for the state (but
applied on a bit-level), and again passed through a
second instance of τ . Note that both σ and τ are
key-dependent in addition to keyi. Hence, the full
key of the AUT64 cipher is the tuple k =

(
kf , σ, τ

)
with an overall key size of 32+3 ·23 +4 ·24 = 120 bit.

However, not all choices for τ and σ are per-
missible in order to have a bijective S-Box and a
valid permutation—in total, there are 16! bijective

a0 a1 a2 a3 a4 a5 a6 a7

Combining function f keyi

S-Box τ

Bit perm. σ

S-Box τ

8

8

32

Figure 9: One round function g of the AUT64 block
cipher as used in VW-2 and VW-3. a0, . . . ,a7 is the
8-byte state of the cipher, keyi the round key.

4-to-4 S-Boxes and 8! permutations. This results in
an effective key size of 32 + log2 (8!) + log2 (16!) =
91.55 bit. Finding an AUT64 key by exhaustive
search is therefore beyond current computational
capabilities, where a security level of 80 bit is usually
deemed acceptable for lightweight ciphers.

We have not further analyzed the mathematical
security of the cipher, but believe this to be an in-
teresting research problem, especially due to the un-
conventional design with several key-dependent op-
erations. For the analysis of the VW-2 and VW-3
RKE systems, however, it turned out that no further
cryptanalysis is necessary: Both schemes use a fixed,
global master key independent of vehicle or remote
control. In other words, this means that the same
AUT64 key is stored in millions of ECUs and RKE
remotes, without any key diversification being em-
ployed at all. The sole means by which the vehicle
determines if a rolling code is valid is hence by white-
listing certain UIDs and checking if the counter is
within the validity window. Incidentally, this also
implies that a VW Group vehicle using a particu-
lar scheme receives and decrypts all rolling codes for
that scheme transmitted in the vicinity.

Note that the global AUT64 master keys for VW-2
and VW-3 are different, but both can be extracted
from the ECU firmware and possibly from the µC in
the remote control as well (e.g. with invasive attacks
like micro-probing or side-channel analysis).

3.4 The VW-4 Scheme
In newer VW Group vehicles from approximate-
ly 2009 onwards, we found an RKE system that has
the same encoding and packet structure as VW-3 (al-
though with a different start pattern), but does not
employ the AUT64 cipher. For this system VW-4,

7

936 25th USENIX Security Symposium USENIX Association

the analysis of the respective ECU firmware revealed
that the XTEA cipher [24] is used to encrypt a
rolling code packet with a format otherwise identical
to VW-3 (cf. Figure 7).

XTEA is a block cipher based on a 64-round
Feistel structure with 64-bit block size and 128-bit
key. Due to the structure of the round function
based on Addition, Rotate, XOR (ARX) operations,
it is well suited for lightweight software implementa-
tions required for low-end and low-power devices like
RKE remotes. The best known cryptanalytical at-
tack on XTEA [22] is of theoretical nature (related-
key rectangle attack on 36 rounds with 263.83 byte
of data and 2104.33 steps) and hence not relevant in
the context of RKE systems.

However, again we found that a single, worldwide
key is used for all vehicles employing the VW-4 sys-
tem. The same single point of failure of the older sys-
tems VW-1–VW-3 is hence also present in recently
manufactured vehicles. For example, we found this
scheme implemented in an Audi Q3, model year
2016, and could decrypt and generate new valid
rolling codes to open and close this vehicle (and nu-
merous other VW Group vehicles, cf. Section 3.5.1).

3.5 Implications and Observations
As the main result of this section, we discovered
that the RKE systems of the majority of VW Group
vehicles have been secured with only a few crypto-
graphic keys that have been used worldwide over a
period of almost 20 years. With the knowledge of
these keys, an adversary only has to eavesdrop a
single signal from a target remote control. After-
wards, he can decrypt this signal, obtain the current
UID and counter value, and create a clone of the
original remote control to lock or unlock any door of
the target vehicle an arbitrary number of times.

We observed that (mostly) VW-4 vehicles blocked
the original remote control if a valid rolling code with
a counter more than 2 behind is received. In other
words, if ctr is the value expected by the vehicle, any
rolling code with ctr−2 or less leads to the blocking.
If an adversary sends at least two valid signals with
increased counter values (e.g., “unlock” and “lock”),
the original remote control of the owner will stop
working in the moment when the car receives an
outdated signal. In this case, usually automatic re-
synchronization procedures described in the respect-
ive vehicle’s manual help technically experienced car
owners to re-synchronize the remote control to the
car. In contrast, if the adversary only sends a single
valid signal, the original remote will not be blocked,
but only operate on the second button press, be-

cause the counter in vehicle and remote are in sync
afterwards. Note that the blocking behaviour could
be used for an automatized Denial-of-Service (DoS)
attack (aiming to lock out the legitimate car owners
of affected vehicles) by intentionally sending an old
signal (with a counter value of ctr −2 or less).

In conclusion, while the cryptographic algorithms
have improved over the years (from LFSR over
AUT64 to XTEA), the crucial problem of key dis-
tribution has not been properly solved in the stud-
ied schemes VW-1–4. However, according to VW
Group, this problem has been addressed in the
latest generation of vehicles, where individual cryp-
tographic keys are used. We discuss the con-
sequences and general implications of a successful
attack on a RKE system in more detail in Section 5.

3.5.1 Vulnerable Vehicles

Our findings affect amongst others the follow-
ing VW Group vehicles manufactured between
1995 and 2016. Cars that we have practically tested
are highlighted in bold. Note that this list is not ex-
haustive, as we did not have access to all types and
model years of cars, and that it is unfortunately not
clear if and when a car model has been upgraded to
a newer scheme.

Audi: A1, Q3, R8, S3, TT, various other types of
Audi cars (e.g. remote control part number 4D0 837
231)

VW: Amarok, (New) Beetle, Bora, Caddy,
Crafter, e-Up, Eos, Fox, Golf 4, Golf 5, Golf
6, Golf Plus, Jetta, Lupo, Passat, Polo, T4, T5,
Scirocco, Sharan, Tiguan, Touran, Up

Seat: Alhambra, Altea, Arosa, Cordoba, Ibiza,
Leon, MII, Toledo

Škoda: City Go, Roomster, Fabia 1, Fabia 2,
Octavia, SuperB, Yeti

It is conceivable that all VW Group (except for
some Audi) cars manufactured in the past and par-
tially today rely on a “constant-key” scheme and are
thus vulnerable to the attacks described in this pa-
per, except for those cars that rely on the latest plat-
form, e.g., the Golf 7 for VW.

Note that identical VW Group cars are sold under
different names in other countries, e.g., some Golf
versions were sold as “Rabbit” in North America.
We have tested some remote controls operating at
315 MHz, e.g., for the US market, and found them to
be vulnerable to our attacks as well, i.e., the only dif-
ference to their European counterparts is the operat-
ing frequency. Furthermore, cars of different brands

8

USENIX Association 25th USENIX Security Symposium 937

may share the same basic technology, e.g., we found
some model years of Ford Galaxy that have the same
flawed RKE system as their VW Group derivatives
VW Sharan and Seat Alhambra.

3.5.2 Temporary Countermeasures

Completely solving the described security problems
would require a firmware update or exchange of both
the respective ECU and (worse) the vehicle key con-
taining the remote control. Due to the strict testing
and certification requirements in the automotive in-
dustry and the high cost of replacing or upgrading
all affected car keys in the field, it is unlikely that
VW Group can roll out such an update in the short
term. Hence, we give recommendations for users of
affected vehicles in the following.

The well-known advice (see e.g. [25]) to verify that
a vehicle was properly locked with the remote con-
trol (blinking direction lights, sound) is no longer
sufficient. An adversary may have eavesdropped the
“lock” signal from a distance of up to 100 m and
generate a new, valid “unlock” rolling code any time
later. Preventing or detecting the eavesdropping of
RF signals is impractical. Hence, the only remaining
(yet impractical) countermeasure is to fully deactiv-
ate or at least not use the RKE functionality and
resort to the mechanical lock of the vehicle. Note
that in addition, for many cars, the alarm will trig-
ger after a while if the car doors or the trunk are
mechanically opened, unless the immobilizer is dis-
armed with the original key.

With respect to forensics, there are several po-
tential indicators (due to the nature of rolling code
schemes) that the remote control may have been
cloned: If the vehicle does not unlock on the first
button press, this could imply that an adversary has
sent valid rolling codes with counter values greater
than the one stored in the original remote control.
Note that no traces of the attack are left once the
counter in the original remote control has caught
up with the increased value stored in the car. Fur-
ther, a complete blocking of the remote control (see
above) may be an indicator (e.g., for insurance-
related court cases) that the RKE system was at-
tacked. It should however be taken into account
that, according to our practical tests, the remote
control will also be blocked if the car receives a
counter that is increased by more than 250 compared
to the last stored value—this could for example hap-
pen if the remote control buttons are pushed many
times while not in the range of the vehicle.

4 Case Study 2: The Hitag2 System

The Hitag2 rolling code system is an example of a
RKE scheme that is not specific to a single vehicle
brand. Instead, it is implemented on the PCF7946
and PCF7947 ICs manufactured by NXP. While
these ICs contain an 8-bit general-purpose µC that
(in theory) allows to realize a fully proprietary
scheme [26], it appears that numerous vehicle manu-
facturers have used a similar (though not identical)
RKE system, potentially following NXP’s reference
implementation. In contrast to the VW Group sys-
tem described in Section 3, it seems that manufac-
turers did not use a fixed, global cryptographic key.
Hence, to break this system, we developed a novel
attack to exploit the cryptographic weaknesses of
Hitag2 in the RKE context.

We first describe the Hitag2 cipher, which was
previously published in [35]. We have fully reverse-
engineered the rolling code scheme used in the
Hitag2 remote control ICs PCF7946/7947 as further
described in Section 4.2. The analysis was done in
a black-box fashion—we used a remote control for
which we were able to obtain the Hitag2 key (since
it was shared with the immobilizer in this particular
case), guessed potential implementations (based on
the immobilizer protocol) for the rolling code sys-
tem, and finally recovered the complete scheme. In
contrast to the analysis of the VW Group systems,
no firmware extraction and reverse-engineering of
program code was necessary.

To this date, the best known practical cryptana-
lysis of Hitag2 was proposed in [32] in the context of
vehicle immobilizers. Their attack requires 136 au-
thentication attempts and 235 encryptions/lookups,
which take 5 minutes on a laptop. In the context
of RKE systems, gathering 136 rolling code traces
is not practical in a realistic scenario, as it requires
to wait for the victim to push a button on the re-
mote that many times. We therefore propose a new
attack that requires eavesdropping less authentica-
tion attempts (usually between 4 and 8) and one
minute computation on a laptop. In Section 4.4, we
present our novel correlation attack on Hitag2 in a
RKE scenario.

We first need to introduce some notation. Let
F2 = {0,1} the field of two elements (or the set
of Booleans). The symbol ⊕ denotes exclusive-or
(XOR) and 0n denotes a bitstring of n zero-bits.
Given two bitstrings x and y, xy denotes their con-
catenation. x denotes the bitwise complement of
x. We write yi to denote the i-th bit of y. For ex-
ample, given the bitstring y = 0x03, y0 = y1 = 0 and
y6 = y7 = 1. We denote encryptions by {−}.

9

938 25th USENIX Security Symposium USENIX Association

4.1 Hitag2 Cipher
The targeted RKE protocol uses the Hitag2 stream
cipher. This cipher has been reverse engineered
in [35]. The cipher consists of a 48-bit LFSR and a
non-linear filter function f . Each clock cycle, twenty
bits of the LFSR are put through the filter function,
generating one bit of keystream. Then the LFSR is
shifted one bit to the left, using the feedback poly-
nomial to generate a new bit on the right. See Fig-
ure 10 for a schematic representation.

Definition 4.1 The feedback function L : F48
2 → F2

is defined by L(x0 . . .x47) := x0 ⊕x2 ⊕x3 ⊕x6 ⊕x7 ⊕
x8 ⊕ x16 ⊕ x22 ⊕ x23 ⊕ x26 ⊕ x30 ⊕ x41 ⊕ x42 ⊕ x43 ⊕
x46 ⊕x47.

The filter function f consists of three different cir-
cuits fa,fb and fc, which output one bit each. The
circuits fa and fb are employed more than once, us-
ing a total of twenty input bits from the LFSR. Their
resulting bits are used as input for fc. The circuits
are represented by three Boolean tables that contain
the resulting bit for each input.

Definition 4.2 (Filter function) The filter func-
tion f : F48

2 → F2 is defined by
f(x0 . . .x47) = fc(fa(x2x3x5x6),fb(x8x12x14x15),

fb(x17x21x23x26),fb(x28x29x31x33),
fa(x34x43x44x46)),

where fa,fb : F4
2 → F2 and fc : F5

2 → F2 are
fa(i) = (0xA63C)i

fb(i) = (0xA770)i

fc(i) = (0xD949CBB0)i.

Because f(x0 . . .x47) only depends on
x2,x3,x5 . . .x46 we shall define f20 : F20

2 → F2,
writing f(x0 . . .x47) as f20(x2,x3,x5 . . .x46).

Remark 4.3 (Cipher schematic) Figure 10 is
different from the schematic that was introduced
by [35] and later used by [11, 28, 34]. The input
bits of the filter function in Figure 10 are shifted by
one with respect to those of [35]. The filter function
in the old schematic represents a keystream bit at
the previous state f(xi−1 . . .xi+46), while the one in
Figure 10 represents a keystream bit of the current
state f(xi . . .xi+47). Furthermore, we have adapted
the Boolean tables to be consistent with our notation.

4.2 Rolling Code Scheme
This section describes the rolling code scheme used
by remotes based on the chips PCF7946/7947.
When a button on the remote control is pressed, it

transmits a message of the form shown in Figure 11.
UID is a 32-bit identifier; btn is a 4-bit button iden-
tifier; lctr are the 10 least-significant bits of a 28-bit
counter ctr; ks are 32-bits of keystream; and chk is
an 8-bit checksum. The checksum is computed by
simply XORing each byte, i.e., computing a parity
byte.

During the authentication protocol, the internal
state of the stream cipher is initialized. The initial
state consists of the 32-bits UID concatenated with
the first 16 bits of the key k. Next, the counter ctr
is incremented and then iv = ctr||btn is XORed with
the last 32 bits of the key and shifted into the LFSR.
From this point, the next 32 bits of keystream, which
are output by the cipher ks, are sent as proof of
knowledge of the secret key k.

4.3 Cipher Initialization
The following precisely defines the initialization of
the cipher and the generation of the LFSR stream
a0a1 . . . and the keystream ks.

Definition 4.4 Given a key k = k0 . . .k47 ∈ F48
2 ,

an identifier id = id0 . . . id31 ∈ F32
2 , a counter ctr =

ctr0 . . . ctr27 ∈ F28
2 , a button identifier btn0 . . . btn3 ∈

F4
2 and keystream ks = ks0 . . .ks31 ∈ F32

2 , we let the
initialization vector iv ∈ F32

2 be defined as
iv = ctr||btn.

Furthermore, the internal state of the cipher at time
i is αi := ai . . .a47+i ∈ F48

2 . Here the ai ∈ F2 are
given by

ai := idi ∀i ∈ [0,31] (1)
a32+i := ki ∀i ∈ [0,15] (2)
a48+i := k16+i ⊕ ivi ⊕f(ai . . .ai+47) ∀i ∈ [0,31] (3)
a80+i := L(a32+i . . .a79+i) ∀i ∈ N . (4)

Furthermore, we define the keystream bit ksi ∈ F2 by
ksi := f(a32+i . . .a79+i) ∀i ∈ [0,31]. (5)

Note that the ai, αi, and ksi are formally functions
of k, id, and iv. Instead of making this explicit by
writing, e.g., ai(k, id, iv), we just write ai where k,
id, and iv are clear from the context.

4.4 A Fast Correlation Attack on
Hitag2

This section describes a practical key-recovery cor-
relation attack against Hitag2. This attack requires
a minimum of four rolling codes (“traces”), but will
be faster and have higher success probability if more
are provided. The rolling codes can have an arbit-
rary counter value, i.e., do not have to be consec-
utive. In fact, the probability of success is higher

10

USENIX Association 25th USENIX Security Symposium 939

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

��

⊕����

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��
fa = 0xA63C fb = 0xA770 fb = 0xA770 fb = 0xA770 fa = 0xA63C

�� �� �� �� ��
fc = 0xD949CBB0

keystream��

Figure 10: Structure of the Hitag2 stream cipher, based on [35]

0x0001 UID btn lctr ks 0 chk

0 16 48 52 62 94 95 102

Figure 11: Packet structure of a rolling code for
Hitag2. Gray background indicates the keystream
part produced by the cipher.

when the traces are not consecutive, as consecutive
traces often only differ in a few bits from each other,
thus providing less correlation information. It also
depends on whether the same button was pressed or
not. The lower limit of four traces for the key re-
covery to work was determined experimentally. The
number of consecutive traces needed is higher, usu-
ally eight. Let 〈UID,ivj ,ksj〉, j = 0 . . .n − 1 be n
authentication traces for n > 3. Then, the attacker
proceeds as follows:

1. The adversary first guesses a 16-bit window cor-
responding to LFSR stream bits a32 . . .a47. Ob-
serve that a32 . . .a47 = k0 . . .k15 and together with
the UID, this gives the adversary LFSR bits
a0 . . .a47, see Definition 4.4. Also note that
a0 . . .a47 is constant over all traces. The ad-
versary can now compute b0 = f(a0 . . .a47).

2. The adversary will then shift this 16-bit window
to the left of the LFSR, until bits a32 . . .a47 are on
the very left of the LFSR. This is the point when
the cipher starts outputting ks, see Equation 5.

3. Next, the adversary will compute a correlation
score for this guess. The window determines 8
input bits x0 . . .x7 to the filter function f20 (see
Figure 10) while the remaining 12 inputs remain
unknown. This correlation is taken as the ratio of
those 212 input values x8 . . .x19 that produce the
correct keystream bit (ks0). Furthermore, shift-
ing our window further to the left allows the ad-
versary to perform tests on multiple keystream
bits (ks0 . . .ks15). Although, with every bit shift,
the window becomes smaller as the leftmost bits
will fall outside the LFSR, meaning that more
input bits are unknown.

Definition 4.5 We define the single-bit correla-
tion score as:
bit_score(x0 . . .xn−1, b) = #(b = f20(y0 . . .y19))

219−n

where y0 . . .yn−1 = x0 . . .xn−1,n < 20 (at the first
iteration of Step 3, n=8). We define the multiple-
bit correlation score as:
score(x0,ks0) =bit_score(x0,ks0)
score(x0 . . .xn−1,ks0 . . .ksn−1) =

bit_score(x0 . . .xn−1,ksn−1) ∗
score(x0 . . .xn−2,ks0 . . .ksn−2)

for n < 20.

The adversary will assign this guess the average
score over all traces. Note that, so far this scoring
computation is independent of the value iv as it
happens before iv gets to have any influence on
it (i.e. it is only XORed with unknown bits).

4. The adversary will now sort all guesses according
to their score and store them in a table of fixed
size, discarding the guesses with lowest scores
when needed. Experiments show that a table of
size 400,000 guesses is usually sufficient.

5. For each guess in the table, the adversary goes
back to Step (1) and proceeds as before, except
that she will now extend the window size by
one (to size 17, . . . ,32), guessing the next LFSR
stream bit (a48, . . . ,a51). The bigger window al-
lows the adversary to test on an additional bit of
keystream, giving her more meaningful correla-
tion information each time. Special care needs to
be taken at Step (3) while scoring multiple traces,
since a48 = k16+i ⊕ ivi ⊕b0 (see Eq. 3) and the iv
will be different in each trace. This is not a prob-
lem since in the previous Step (1) we had com-
puted the corresponding keystream bit bi, and ivi

is sent in clear. Therefore key bits k16+i can be
computed for i ∈ [0,31].

The power of this attack comes from using the win-
dow on the right of the LFSR to compute the ne-
cessary keystream bits to correct the internal state,
while combining different traces and using the win-
dow on the left of the LFSR to get meaningful cor-
relation information on multiple keystream bits.

11

940 25th USENIX Security Symposium USENIX Association

4.5 Practical Results and Implica-
tions

We implemented the above correlation attack on a
standard laptop. When executing this attack in
practice, the first obstacle that an adversary faces
is the fact that only the 10 Least Significant Bits
(LSBs) of the counter ctr are sent over the air (see
Figure 11), but the full 28-bit counter is used to ini-
tialize the cipher (both car and remote store the full
counter). Therefore, the adversary needs to guess
the remaining 18 bits. In practice, this is not a prob-
lem as it takes 210 = 1024 key pushes on the remote
to have a carry to the Most Significant Bits (MSBs)
and therefore this usually happens only a couple of
times a year. In the worst case, the adversary has to
repeat the above attack with increasing MSBs until
she has the correct guess.

On average, our attack implementation recovers
the cryptographic key in approximately 1 minute
computation, requiring a few eavesdropped rolling
codes (between 4 and 8). As mentioned, the ad-
versary needs to repeat this computation for each
guess of the 18 MSBs of the counter. For the vehicles
we tested, the MSBs of the counter were usually
between 0 and 10, which results in a total attack
time of less than 10 min. Besides, there was a strong
correlation between the vehicle’s age and the counter
value, so educated guesses are also possible.

We verified our findings in practice by building
a key emulator and then unlocking and locking the
vehicles with newly generated rolling codes:

Manufacturer Model Year
Alfa Romeo Giulietta 2010
Chevrolet Cruze Hatchback 2012
Citroen Nemo 2009
Dacia Logan II 2012
Fiat Punto 2016
Ford Ka 2009, 2016
Lancia Delta 2009
Mitsubishi Colt 2004
Nissan Micra 2006
Opel Vectra 2008
Opel Combo 2016
Peugeot 207 2010
Peugeot Boxer 2016
Renault Clio 2011
Renault Master 2011

The vehicles in the above list are our own and
also from colleagues and friends who volunteered.
We furthermore found the following list of suppor-
ted vehicles for an after-market universal remote
control [19] that is presumably implementing the

Hitag2 RKE scheme: Abarth 500, Punto Evo; Alfa
Romeo Giulietta, Mito; Citroen Jumper, Nemo; Fiat
500, Bravo, Doblo, Ducato, Fiorino, Grande Punto,
Panda, Punto Evo, Qubo; Dacia Duster; Ford Ka;
Lancia Delta, Musa; Nissan Pathfinder, Navara,
Note, Qashqai, X-Trail; Opel Corsa, Meriva, Zafira,
Astra; Peugeot Boxer, Expert; and Renault Clio,
Modus, Trafic, Twingo. This list includes most of
our tested vehicles. This would indicate that all
vehicles mentioned in the list (although not prac-
tically tested by us) are vulnerable to the described
attacks as well.

In contrast to the VW Group scheme, the vulner-
abilities in the Hitag2 RKE system are caused by the
cryptographically weak cipher, not a weak key distri-
bution method. In consequence, even though it must
be said that the correlation attack of Section 4.4 is
devastating from a cryptographic point of view, the
data complexity is slightly higher compared to the
VW Group schemes, which can be broken with one
single eavesdropped signal. The attack on Hitag2
requires at least four (not necessarily consecutive)
rolling codes, i.e., the adversary has to be present
for a longer period of time to capture signals for
multiple key presses on the victim’s remote control.

However, to quickly obtain the required rolling
codes, the adversary could selectively jam the sig-
nal during the final checksum byte (which is pre-
dictable). In this case, the vehicle ignores the rolling
code, but the adversary nevertheless obtains the key-
stream. The victim would hence notice that the
vehicle does not respond, and instinctively press the
button repeatedly. After having received the fourth
signal, the adversary stops jamming and the remote
control operates normally from the victim’s point of
view. However, the attacker has then collected the
required amount of rolling codes to subsequently ex-
tract the cryptographic key. Hence, if the described
behaviour is observed by a vehicle owner, it is an
indication that an attack may be in progress.

5 Conclusion

Answering the original research question about the
security of automotive RKE systems, the results of
this paper show that major manufacturers have used
insecure schemes over more than 20 years. Due to
the widespread use of the analyzed systems, our
findings have worldwide impact. Owners of affected
vehicles should be aware that unlocking the doors of
their car is much simpler than commonly assumed
today. Both for the VW Group and the Hitag2
rolling code schemes, it is possible to clone the ori-
ginal remote control and gain unauthorized access to

12

USENIX Association 25th USENIX Security Symposium 941

the vehicle after eavesdropping one or a few rolling
codes, respectively. The necessary equipment to re-
ceive and send rolling codes, for example SDRs like
the USRP or HackRF and off-the-shelf RF mod-
ules like the TI Chronos smart watch, are widely
available at low cost. The attacks are hence highly
scalable and could be potentially carried out by an
unskilled adversary. Since they are executed solely
via the wireless interface, with at least the range
of the original remote control (i.e., a few tens of
meters), and leave no physical traces, they pose a
severe threat in practice.

Security and Safety Implications The implic-
ations of our findings are manifold: Personal be-
longings left in a locked vehicle (as well as vehicle
components like the infotainment system) could be
stolen if a thief uses the vulnerabilities of the RKE
system to unlock the vehicle after the owner has left.
This approach is considerably more stealthy and
harder to prevent than the currently known meth-
ods of theft (e.g., using physical force or jamming
the rolling code). Moreover, since a valid rolling
code usually disables the alarm system, the theft is
more likely to remain undetected for a longer period
of time. Common recommendations like “lock it or
lose it” [25] or “verify that the vehicle has been suc-
cessfully locked and the transmission has not been
jammed” (blinking direction lights, sound) are hence
no longer sufficient to effectively prevent theft. A
successful attack on the RKE and anti-theft system
would also enable or facilitate other crimes:

– theft of the vehicle itself by circumventing the im-
mobilizer system (e.g. [32, 33]) or by programming
a new key into the car via the OBD port with a
suitable tool
– compromising the board computer of a mod-
ern vehicle [10, 20], which may even affect personal
safety, e.g., by deactivating the brakes while switch-
ing on the wiping system in a bend
– inconspicuously placing an object or a person in-
side the car. The car could be locked again after the
act
– on-the-road robbery, affecting the personal safety
of the driver or passengers if they (incorrectly) as-
sume that the vehicle is securely locked

Note that due to the long range of RKE systems
it is technically feasible to eavesdrop the signals of
all cars on a parking lot or at a car dealer by pla-
cing an eavesdropping device there overnight. Af-
terwards, all vulnerable cars could be opened by the
adversary. Practical experiments suggest that the

receiving ranges can be substantially increased: The
authors of [18] report eavesdropping of a 433 MHz
RFID system, with technology comparable to RKE,
from up to 1 km using low-cost equipment. Likewise,
a large-scale DoS attack targeting VW Group cars
would be possible with an automated approach—as
a result, the RKE system of the vulnerable vehicle
types would be deactivated for the respective remote
control and VW Group would face increased demand
for customer service, i.e., re-synchronizing remotes.

Legal Implications, Forensics, and Counter-
measures It is unclear whether such attacks on
the RKE scheme are currently carried out in the
wild by criminals. However, there have been vari-
ous media reports about unexplained theft from
locked vehicles in the last years. The security is-
sues described in this paper could explain such in-
cidents. Note that we have analyzed further auto-
motive RKE systems (with similar results regard-
ing their (in)security), but due to the difficulty of
responsible disclosure, cannot publish all results at
this point.

As of today, even experts in car theft cases ex-
pressed the opinion that the alarm and electronic
door locking systems of a car cannot be easily cir-
cumvented. From now on, they have to consider
that special universal remote controls to bypass the
security mechanisms might be used by criminals. In
contrast to mechanical tools to open vehicles, such
a device would leave no physical traces. Insurance
companies may thus have to accept that certain car
theft scenarios that have so far been regarded as in-
surance fraud (e.g. theft of personal belongings out
of a locked car without physical traces) have, consid-
ering the results of this paper, a higher probability
to be real. From a forensics point of view, the need
to press the button of the remote control more than
once in order to unlock the vehicle is an indicator
that the car might have been accessed by a crim-
inal. For VW Group vehicles, the “blocking” of a
remote control should be regarded as suspicious as
well. However, there are other causes for such beha-
viour, e.g., short range due to an empty battery of
the remote control or environmental RF noise.

While the vulnerabilities of the VW Group sys-
tem are due to worldwide master keys, Hitag2-based
systems suffer from weaknesses in the cipher itself.
Hence, in conclusion, for a “good” RKE system,
both secure cryptographic algorithms (e.g., AES)
and secure key distribution are necessary. Tech-
niques to solve the security problems discovered in
this paper are widely available [23]. Atmel has cre-
ated an open RKE protocol design [5], which is pub-

13

942 25th USENIX Security Symposium USENIX Association

lished in full detail. The security of their design
was scrutinized by Tillich et al. in [29]. It is now up
to vehicle manufacturers to securely implement such
next-generation RKE schemes.

For owners of affected vehicles, as a temporary
countermeasure in cases where valuable items are
left in the vehicle, we can unfortunately only recom-
mend to stop using or disable/remove the RKE part
of the car key and fall back to the mechanical lock:
Lock It or Lose It? Remove It!

6 Responsible Disclosure

Regarding the vulnerabilities of VW Group systems,
we contacted VW Group first in November 2015.
We discussed our findings in a meeting with VW
Group and an affected sub-contractor in February
2016, before submitting the paper. VW Group re-
ceived a draft version of this paper and the final
version. VW Group acknowledged the vulnerabilit-
ies. As mentioned in the paper, we agreed to leave
out amongst others the following details: crypto-
graphic keys, part numbers of vulnerable ECUs, and
the used programming devices and details about the
reverse-engineering process.

For Hitag2, we notified NXP in January 2016.
NXP received a version of this paper before submis-
sion. We would like to mention that the fact that
Hitag2 is cryptographically broken has been pub-
licly known for several years and NXP has already
informed their customers back in 2012. We would
further like to highlight that for several years, NXP
offers newer, AES-based RKE ICs that are not af-
fected by the vulnerabilities described in this paper.
Furthermore, many car manufacturers have already
started using the more secure chips for new designs.

References

[1] abc7news. Key fob car thefts, 2013. http:
//abc7news.com/archive/9079852.

[2] arstechnica. After burglaries, mystery car
unlocking device has police stumped, 2013.
http://arstechnica.com/security/2013/06/after-
burglaries-mystery-car-unlocking-device-has-
police-stumped.

[3] ATMEL. M44C890 Low-Current Micro-
controller for Wireless Communication ,
2001. datasheet, available at http://pdf1.
alldatasheet.com/datasheet-pdf/
view/118247/ATMEL/M44C890.html.

[4] ATMEL. e5561 Standard Read/Write Crypto
Identification IC, 2006. datasheet, avail-
able at http://www.usmartcards.com/
media/downloads/366/Atmel%20e5561%
20pdf-190.pdf.

[5] ATMEL. Embedded AVR Microcontroller
Including RF Transmitter and Immobil-
izer LF Functionality for Remote Keyless
Entry - ATA5795C. datasheet, available
at http://www.atmel.com/images/
Atmel-9182-Car-Access-ATA5795C_
Datasheet.pdf, November 2014.

[6] Bloessl, B. gr-keyfob. Github repository,
2015. https://github.com/bastibl/
gr-keyfob.

[7] Bogdanov, A. Attacks on the Kee-
Loq Block Cipher and Authentication Sys-
tems. In Workshop on RFID Security (RFID-
Sec’08) (2007). rfidsec07.etsit.uma.es/
slides/papers/paper-22.pdf.

[8] Bono, S. C., Green, M., Stubblefield,
A., Juels, A., Rubin, A. D., and Szydlo,
M. Security analysis of a cryptographically-
enabled RFID device. In 14th USENIX Security
Symposium (USENIX Security 2005) (2005),
USENIX Association, pp. 1–16.

[9] Cesare, S. Breaking the security of physical
devices. Presentation at Blackhat’14, August
2014.

[10] Checkoway, S., McCoy, D., Kantor, B.,
Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F.,
and Kohno, T. Comprehensive experimental
analyses of automotive attack surfaces. In 20th
USENIX Security Symposium (USENIX Secur-
ity 2011) (2011), USENIX Association, pp. 77–
92.

[11] Courtois, N. T., O’Neil, S., and
Quisquater, J.-J. Practical algebraic attacks
on the Hitag2 stream cipher. In 12th Inform-
ation Security Conference (ISC 2009) (2009),
vol. 5735 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 167–176.

[12] Eisenbarth, T., Kasper, T., Moradi, A.,
Paar, C., Salmasizadeh, M., and Shal-
mani, M. T. M. On the Power of Power Ana-
lysis in the Real World: A Complete Break of
the KeeLoq Code Hopping Scheme. In Advances
in Cryptology – CRYPTO’08 (2008), vol. 5157
of LNCS, Springer, pp. 203–220.

14

USENIX Association 25th USENIX Security Symposium 943

[13] European Automobile Manufacturers
Associaction. New passenger car registra-
tions, 2015. available at http://www.acea.
be/uploads/press_releases_files/
20151016_PRPC_1509_FINAL.pdf.

[14] Francillon, A., Danev, B., and Capkun,
S. Relay attacks on passive keyless entry and
start systems in modern cars. In Proceedings
of the Network and Distributed System Security
Symposium, NDSS 2011 (2011), The Internet
Society.

[15] Indesteege, S., Keller, N., Dunkelmann,
O., Biham, E., and Preneel, B. A prac-
tical attack on KeeLoq. In 27th International
Conference on the Theory and Application of
Cryptographic Techniques, Advances in Crypto-
logy (EUROCRYPT 2008) (2008), vol. 4965 of
Lecture Notes in Computer Science, Springer-
Verlag, pp. 1–8.

[16] Kamkar, S. Drive It Like You Hacked It: New
Attacks and Tools to Wirelessly Steal Cars.
Presentation at DEFCON 23, August 2015.

[17] Kasper, M., Kasper, T., Moradi, A.,
and Paar, C. Breaking KeeLoq in a Flash:
On Extracting Keys at Lightning Speed. In
Progress in Cryptology - AFRICACRYPT’09
(2009), B. Preneel, Ed., vol. 5580 of LNCS,
Springer, pp. 403–420.

[18] Kasper, T., Oswald, D., and Paar, C.
Wireless security threats: Eavesdropping and
detecting of active RFIDs and remote controls
in the wild. In 19th International Conference on
Software, Telecommunications and Computer
Networks – SoftCOM’11 (2011), pp. 1–6.

[19] Keyline S.p.A. RK60 guide, 2015. avail-
able at http://www.keyline.it/files/
teste-elettroniche/electronic_
heads_guide_13316.pdf.

[20] Koscher, K., Czeskis, A., Roesner, F.,
Patel, F., Kohno, T., Checkoway, S.,
McCoy, D., Kantor, B., Anderson, D.,
Shacham, H., and Savage, S. Experimental
security analysis of a modern automobile. In
31rd IEEE Symposium on Security and Privacy
(S&P 2010) (2010), IEEE Computer Society,
pp. 447–462.

[21] Laurie, A. Fun with Masked ROMs
— Atmel MARC4. Blog entry, 2013.
http://adamsblog.aperturelabs.com/
2013/01/fun-with-masked-roms.html.

[22] Lu, J. Related-key rectangle attack on 36
rounds of the XTEA block cipher. International
Journal of Information Security 8, 1 (2008), 1–
11.

[23] Moradi, A., and Kasper, T. A new remote
keyless entry system resistant to power analysis
attacks. In Information, Communications and
Signal Processing – ICICS 2009 (2009), IEEE,
pp. 1–6.

[24] Needham, R. M., and Wheeler, D. J. TEA
extensions. Technical Report, Cambridge Uni-
versity, UK (1997).

[25] Newport Beach PD. Lock It Or Lose It
- Newport Beach Vehicle Crime, 2011. Video
available at https://www.youtube.com/
watch?v=Mmi2LRF7al8.

[26] Philips. PCF7946AT – Security Transponder
Plus Remote Keyless Entry, 1999. datasheet,
available at http://www.datasheet4u.
com/pdf/PCF7946AT-pdf/609011.

[27] spencerwhyte. Jam Intercept and Re-
play Attack against Rolling Code Key Fob
Entry Systems using RTL-SDR. Web-
site, retrieved January 21, 2016, March 2014.
http://spencerwhyte.blogspot.ca/2014/03/delay-
attack-jam-intercept-and-replay.html.

[28] Sun, S., Hu, L., Xie, Y., and Zeng, X.
Cube cryptanalysis of Hitag2 stream cipher.
In 10th International Conference on Cryptology
and Network Security (CANS 2011) (2011),
vol. 7092 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 15–25.

[29] Tillich, S., and Wójcik, M. Security
analysis of an open car immobilizer protocol
stack. In 10th International Conference on Ap-
plied Cryptograpy and Network Security (ACNS
2012) (2012).

[30] Verdult, R. The (in)security of propriet-
ary cryptography. PhD thesis, Radboud Uni-
versity, The Netherlands and KU Leuven, Bel-
gium, April 2015.

[31] Verdult, R., and Garcia, F. D. Cryptana-
lysis of the Megamos Crypto automotive im-
mobilizer. USENIX ;login: 40, 6 (2015), pp.
17–22.

[32] Verdult, R., Garcia, F. D., and Balasch,
J. Gone in 360 seconds: Hijacking with Hitag2.
In USENIX Security Symposium (August

15

944 25th USENIX Security Symposium USENIX Association

2012), USENIX Association, pp. 237–252.
https://www.usenix.org/system/
files/conference/usenixsecurity12/
sec12-final95.pdf.

[33] Verdult, R., Garcia, F. D., and Ege,
B. Dismantling Megamos Crypto: Wire-
lessly Lockpicking a Vehicle Immobilizer. In
22nd USENIX Security Symposium (USENIX
Security 2013) (2015), USENIX Association,
pp. 703–718.

[34] Štembera, P., and Novotný, M. Break-
ing Hitag2 with reconfigurable hardware. In
14th Euromicro Conference on Digital System
Design (DSD 2011) (2011), IEEE Computer
Society, pp. 558–563.

[35] Wiener, I. Philips/NXP Hitag2
PCF7936/46/47/52 stream cipher refer-
ence implementation. http://cryptolib.
com/ciphers/hitag2/, 2007.

16

USENIX Association 25th USENIX Security Symposium 945

OBLIVP2P: An Oblivious Peer-to-Peer Content Sharing System

Yaoqi Jia1∗ Tarik Moataz2∗ Shruti Tople1∗ Prateek Saxena1

1National University of Singapore
{jiayaoqi, shruti90, prateeks}@comp.nus.edu.sg

2Colorado State University and Telecom Bretagne
tarik.moataz@colostate.edu

Abstract
Peer-to-peer (P2P) systems are predominantly used to
distribute trust, increase availability and improve perfor-
mance. A number of content-sharing P2P systems, for
file-sharing applications (e.g., BitTorrent and Storj) and
more recent peer-assisted CDNs (e.g., Akamai Netses-
sion), are finding wide deployment. A major security
concern with content-sharing P2P systems is the risk of
long-term traffic analysis — a widely accepted challenge
with few known solutions.

In this paper, we propose a new approach to protecting
against persistent, global traffic analysis in P2P content-
sharing systems. Our approach advocates for hiding
data access patterns, making P2P systems oblivious. We
propose OBLIVP2P— a construction for a scalable dis-
tributed ORAM protocol, usable in a real P2P setting.
Our protocol achieves the following results. First, we
show that our construction retains the (linear) scalability
of the original P2P network w.r.t the number of peers.
Second, our experiments simulating about 16,384 peers
on 15 Deterlab nodes can process up to 7 requests of
512KB each per second, suggesting usability in mod-
erately latency-sensitive applications as-is. The bottle-
necks remaining are purely computational (not band-
width). Third, our experiments confirm that in our con-
struction, no centralized infrastructure is a bottleneck —
essentially, ensuring that the network and computational
overheads can be completely offloaded to the P2P net-
work. Finally, our construction is highly parallelizable,
which implies that remaining computational bottlenecks
can be drastically reduced if OBLIVP2P is deployed on
a network with many real machines.

1 Introduction

Content sharing peer-to-peer (P2P) systems, especially
P2P file-sharing applications such as BitTorrent [1],
Storj [2] and Freenet [3] are popular among users for

∗Lead authors are alphabetically ordered.

sharing files on the Internet. More recently, peer-assisted
CDNs such as Akamai Netsession [4] and Squirrel [5]
are gaining wide adoption to offload web CDN traffic to
clients. The convenient access to various resources at-
tract millions of users to join P2P networks, e.g., BitTor-
rent has over 150 million active users per month [6] and
its file-sharing service contributes 3.35% of all world-
wide bandwidth [7]. However, the majority of such P2P
applications are susceptible to long-term traffic analy-
sis through global monitoring; especially, analyzing the
pattern of communication between a sender and a re-
ceiver to infer information about the users. For exam-
ple, many copyright enforcement organizations such as
IFPI, RIAA, MPAA, government agencies like NSA and
ISP’s are reported to globally monitor BitTorrent traffic
to identify illegal actors. Monitoring of BitTorrent traf-
fic has shown to reveal the data requested and sent by the
peers in the network [8–10]. Unfortunately, while detect-
ing copyright infringements is useful, the same global
monitoring is applicable to any user of the P2P network,
and can therefore collect benign users’ data. Thus, users
of such P2P systems are at a risk of leaking private infor-
mation such as the resources they upload or download.

To hide their online traces, users today employ anony-
mous networks as a solution to conceal their digital
identities or data access habits. Currently, anonymous
networks include Mix networks [11–13], and Onion
routing/Tor-based systems [14–17], as well as other P2P
anonymity systems [18–23]. Such systems allow the user
to be anonymous, so that the user is unidentifiable within
a set of users [24].

Although above solutions provide an anonymity guar-
antee, they are vulnerable to long-term traffic pattern
analysis attacks, which is an important threat for P2P sys-
tems like BitTorrent [25–30]. Researchers have demon-
strated attacks targeting BitTorrent users on top of Tor
that reveal information related to the resources uploaded
or downloaded [31, 32]. Such attacks raise the question
- is anonymizing users the right defense against traffic

1

946 25th USENIX Security Symposium USENIX Association

pattern analysis in P2P content sharing systems?
In this paper, we investigate a new approach to solve

the problem of persistent analysis of data communication
patterns. We advocate that data / resource access pattern
hiding is an important and necessary step to thwart leak-
age of users data in P2P systems. To this end, we present
a first candidate solution, OBLIVP2P— an oblivious pro-
tocol for peer-to-peer content sharing systems. Hiding
data access patterns or making them oblivious unlinks
user’s identity from her online traces, thereby defending
against long-term traffic monitoring.

1.1 Approach

For hiding data access patterns between a trusted CPU
and an untrusted memory, Goldreich and Ostrovsky pro-
posed the concept of an Oblivious RAM (ORAM) [33].
We envision providing similar obliviousness guarantees
in P2P systems, and therefore select ORAM as a start-
ing point for our solution. To the best of our knowledge,
OBLIVP2P is the first work that adapts ORAM to ac-
cesses in a P2P setting. However, directly employing
ORAM to hide access patterns in a P2P system is chal-
lenging. We outline two key challenges in designing an
oblivious and a scalable P2P protocol using ORAM.

Obliviousness. The first challenge arises due to the dif-
ference in the setting of a standard ORAM as compared
to a P2P content sharing system. Classical ORAM solu-
tions consists of a single client which securely accesses
an untrusted storage (server), wherein the client is even-
tually the owner and the only user of the data in the mem-
ory. In contrast, P2P systems consist of a set of trusted
trackers managing the network, and multiple data own-
ers (peers) in the network. Each peer acts both as a client
as well as a server in the network i.e., a peer can either
request for a data or respond to other peer’s request with
the data stored on its machine. Hence, adversarial peers
present in the network can see the plaintext and learn the
data requested by other peers, a threat that does not exists
in the traditional ORAM model where only encrypted
data is seen by the servers.

Scalability. The second challenge lies in seeking an
oblivious P2P system that 1) the throughput scales lin-
early with the number of peers in the network, 2) has no
centralized bottleneck and 3) can be parallelized with an
overall acceptable throughput. In standard ORAM solu-
tions, the (possibly distributed) server is responsible for
serving all the data access requests from a client one-by-
one. In contrast, P2P systems operate on a large-scale
with multiple peers (clients) requesting resources from
each other simultaneously without overloading a partic-
ular entity. To retain scalability of P2P systems, it is
necessary to ensure that requests can be served by dis-

tributing the communication and computation overhead.

Solution Overview. We start with a toy construction
(OBLIVP2P-0) which directly adapts ORAM to a P2P
setting, and then present our main contribution which is
a more efficient solution (OBLIVP2P-1).
Centralized Protocol (OBLIVP2P-0): Our centralized
protocol or OBLIVP2P-0, is a direct adaptation of
ORAM in a P2P system. The peers in the network
behave both like distributed storage servers as well as
clients. They request a centralized, trusted tracker to ac-
cess a particular resource. The tracker performs all the
ORAM operations to fetch the resource from the net-
work and returns it to the requesting peer. However, this
variant of OBLIVP2P protocol has limited scalability as
it assigns heavy computation to the tracker, making it a
bottleneck.
Distributed Protocol (OBLIVP2P-1): As our main con-
tribution, we present OBLIVP2P-1 which provides both
obliviousness and scalability properties in a tracker-
based P2P system. To attain scalability, the key idea
is to avoid any single entity (say the tracker) as a bot-
tleneck. This requires distributing all the ORAM oper-
ations for fetching and sharing of resources among the
peers in the network, while still maintaining oblivious-
ness guarantees. To realize such a distributed protocol,
our main building block, which we call Oblivious Selec-
tion (OblivSel), is a novel combination of private infor-
mation retrieval with recent advances in ORAM. Obliv-
ious Selection gives us a scalable way to securely dis-
tribute the load of the tracker. Our construction is proven
secure in the honest-but-curious adversary model. Con-
structions and proofs for arbitrarily malicious fraction of
peers is slated for future work.

1.2 System and Results
We provide a prototype implementation of both
OBLIVP2P-0 and OBLIVP2P-1 protocols in Python.
Our source code is available online [34]. We experimen-
tally evaluate our implementation on DeterLab testbed
with 15 servers simulating up to 214 peers in the network.
Our experiments demonstrate that OBLIVP2P-0 is lim-
ited in scalability with the tracker as the main bottleneck.
The throughput for OBLIVP2P-1, in contrast, scales lin-
early with increase in the number of peers in the network.
It attains an overall throughput of 3.19 MBps for a net-
work of 214 peers that corresponds to 7 requests per sec-
ond for a block size of 512 KB. By design, OBLIVP2P-1
is embarrassingly parallelizable over the computational
capacity available in a real P2P network. Further, our
protocol exhibits no bottleneck on a single entity in ex-
periment, thereby confirming that the network and the
computational overhead can be completely offloaded to

2

USENIX Association 25th USENIX Security Symposium 947

the P2P network.

Contributions. We summarize our contributions below:

• Problem Formulation. We formulate the problem
of making data access pattern oblivious in P2P sys-
tems. This is a necessary and important step in
building defenses against long-term traffic analysis.

• New Protocols. We propose OBLIVP2P— a first
candidate for an oblivious peer-to-peer protocol in
content sharing systems. Our main building block
is a primitive which we refer to as oblivious selec-
tion that makes a novel use of recent advances in
Oblivious RAM combined with private information
retrieval techniques.

• System Implementation & Evaluation. Our pro-
totype implementation is available online [34]. We
experimentally evaluate our protocol to measure the
overall throughput of our system, latency for ac-
cessing resources and the impact of optimizations
on the system throughput.

2 Problem

Many P2P applications are not designed with security in
mind, making them vulnerable to traffic pattern analy-
sis. We consider BitTorrent as our primary case study.
However, the problem we discuss is broadly applica-
ble to other P2P file sharing systems like Gnutella [35],
Freenet [3] and Storj [2] or peer-assisted CDNs such as
Akamai Netsession [4], Squirrel [5] and APAC [36].

2.1 BitTorrent: A P2P Protocol
The BitTorrent protocol allows sharing of large files be-
tween users by dividing it into blocks and distributing it
among the peers. It has a dynamic network, made up
of a number of nodes that join the network and volun-
teer themselves as peers. Each peer holds data blocks in
its local storage and acts both as a client / requester and
server / sender simultaneously. There exists a tracker that
tracks which peers are downloading / uploading which
file and saves the state of the network. It keeps in-
formation regarding the position or the IP addresses of
peers holding each resource but does not store any real
data blocks. A peer requests the tracker for a particular
resource and the tracker responds with a set of IP ad-
dresses of peers holding the resource. The requester then
communicates with these IP addresses to download the
blocks of the desired resource. The peers interact with
each other using a P2P protocol1. The requester con-
catenates all the blocks received to construct the entire
resource.

1We want to emphasize that there are other models of P2P networks
without tracker based on DHT that we are not addressing in this work.

2.2 Threat Model

In our threat model, we consider the tracker as a trusted
party and peers as passive honest-but-curious adversaries
i.e., the peers are expected to correctly follow the proto-
col without deviating from it to learn any extra informa-
tion. In P2P systems including CDNs (content delivery
networks) and BitTorrent, passive monitoring is already
a significant threat on its own. We consider the following
two types of adversaries:

Global Passive Adversary. Since BitTorrent traffic is
public, there exist tools like Global BitTorrent Moni-
tor [37] or BitStalker [38] that support accurate and ef-
ficient monitoring of BitTorrent. Previous research has
shown that any BitTorrent user can be logged within a
span of 3 hours, revealing his digital identity and the con-
tent downloaded [39]. Further, the adversary can log the
communication history of the network traffic to perform
offline analysis at a later stage. Hence, we consider it ra-
tional to assume the presence of a global adversary with
the capability to observe long term traffic in the network.

Passive Colluding Peers. Some of the peers in the
P2P network can be controlled by the global adversary.
They can further collude to exchange data with other
adversarial peers in the system. While colluding these
“sybil” peers can share information such as observed /
served requests and the contents stored at their local stor-
age. Their goal is to collectively glean information about
other peers in the network. A formal definition of passive
colluding peers is as follows:

Definition 2.1. (Passive Colluding peers) We say that
a peer Pi passively colludes with peer Pj if both peers
share their views without any modification, where a view
consists of: a transcript of the sequence of all accesses
made by Pi, a partial or total copy of peer’s private stor-
age, and a transcript of the access pattern induced by
the sequence of accesses. We denote by C (Pi) the set of
colluding peers with Pi.

Note that from the above definition, we have a sym-
metric relation such that if Pi ∈ C (Pj) for i �= j, then
Pj ∈ C (Pi). It follows that if Pi /∈ C (Pj), then C (Pi) and
C (Pj) are disjoint.

Our protocol tolerates a fraction of c adversarial peers
in the network such that c ∈ O(Nε), where N is the total
number of peers in the network and ε < 1. Although the
P2P network undergoes churn, we assume the fraction of
adversarial peers c remains within the asymptotic bounds
of O(Nε). Our choice of the upper bound for c ensures
an exponentially small advantage to the attacker; for an
application that can tolerate higher attacker’s advantage,
a larger malicious fraction can be allowed.

3

948 25th USENIX Security Symposium USENIX Association

2.3 Insufficiency of Existing Approaches
Existing techniques propose anonymizing users to pre-
vent traffic pattern analysis attacks. However, these so-
lutions are not sufficient to protect against a global adver-
sary with long term access to communication patterns.

Unlinkability Techniques (e.g. Mixnet). Existing
anonymity approaches “unlink” the sender from the re-
ceiver (see survey [40]). Chaum proposed the first
anonymous network called mix network [11], which
shuffles messages from multiple senders using a chain
of proxy servers and sends them to the receiver. Another
recent system called Riposte guarantees traffic analysis
resistance by unlinking a sender from its message [41].
However, all these systems are prone to attack if an ad-
versary can observe multiple request rounds in the net-
work.

For example, consider that Alice continuously com-
municates with Bob using a mixnet service. A global
adversary observes this communication for a couple of
rounds, and records the recipient set in each round. Let
the senders’ set consists of S1 = {Alice,a,b,c} and S2 =
{a�,b�,Alice,c�}, and the recipients’ set consists of R1 =
{x,y,z,Bob} and R2 = {x�,y�,Bob,z�} for rounds 1 and 2
respectively. The attacker can then infer the link between
sender and receiver by intersecting S1∩S2 = {Alice} and
R1 ∩R2 = {Bob}. The attacker learns that Alice is com-
municating with Bob, and thus breaks the unlinkability.
This attack is called the intersection, hitting set or sta-
tistical disclosure attack [25, 26]. Overall, one time un-
linkability is not a sufficient level of defense when the
adversary can observe traffic for arbitrary rounds.

Path Non-Correlation (e.g. Onion routing). Another
approach for guaranteeing anonymity is to route the mes-
sage from a path such that the sender and the receiver
cannot be correlated by a subset of passive adversar-
ial nodes. Onion-routing based systems like Tor en-
able anonymous communication by using a sequence of
relays as intermediate nodes (called circuit) to forward
traffic [15, 42]. However, Tor cannot provide sender
anonymity when the attacker can see both the ends of
the communication, or if a global adversary observes the
entire network. Hence, if an attacker controls the entry
and the exit peer then the adversarial peers can determine
the recipient identity with which the initiator peer is com-
municating [27–30]. This is a well-known attack called
the end-to-end correlation attack or traffic confirmation
attack [43, 44].

2.4 Problem Statement
Our goal is to design a P2P protocol that prevents linking
a user to a requested resource using traffic pattern anal-
ysis. Section 2.3 shows how previous anonymity based

solutions are susceptible to attacks in our threat model.
In this work, we address this problem from a new view-
point, by making the communication pattern oblivious
in the network. We advocate that hiding data / resource
access pattern is a necessary and important step in de-
signing traffic pattern analysis resistant P2P systems.

In a P2P system such as BitTorrent, a user accesses a
particular resource by either downloading (Fetch) or up-
loading (Upload) it to the network. We propose to build
an oblivious P2P content sharing protocol (OBLIVP2P)
that hides the data access patterns of users in the net-
work. We formally define an Oblivious P2P protocol as
follows:

Definition 2.2. (Oblivious P2P): Let (P1, · · · ,Pn) and
T be respectively a set of n peers and a tracker in a
P2P system. We denote by −→xi = (xi,1, · · · ,xi,M) a se-
quence of M accesses made by peer Pi such that xi, j =
(opi,j,fidi,j,filei,j) where opi,j = {Upload,Fetch}, fidi,j is
the filename being accessed, and filei,j is the set of blocks
being written in the network if opi,j = Upload.

We denote by A (−→xi) the access pattern induced by
the access sequence −→xi of peer Pi. The access pattern
is composed of the memory arrays of all peers accessed
while running the sequence −→xi . We say that a P2P is
oblivious if for any two equal-length access sequences
−→xi and −→x j by two peers Pi and Pj such that

• Pj /∈ C (Pi)
• ∀k ∈ [M] : xi,k = Fetch ⇔ x j,k = Fetch ∧ xi,k =

Upload⇔ x j,k = Upload
• ∀k ∈ [M], |filei,k|= |filej,k|

are indistinguishable for all probabilistic poly-time
adversaries except for C (Pi), C (Pj), and tracker T .

Scope. OBLIVP2P guarantees resistance against persis-
tent communication traffic analysis i.e., observing the
path of communication and thereby linking a sender to a
particular resource. OBLIVP2P does not prevent against:

a) Active Tampering: An adversarial peer can tam-
per, alter and deviate from the protocol to learn extra
information. Admittedly, this can have an impact
on obliviousness, correctness and availability of the
network.
b) Side Channels: An adversary can monitor any peer in
the system to infer its usage’s habits via side channels:
the number of requests, time of activity, and total
number of uploads. In addition, an adversary can always
infer the total file size that any peer is downloading or
uploading to the P2P network. Literature shows that
some attacks such as website fingerprinting can be based
on the length of file requested by peers [45].
c) Orthogonal Attacks: Other attacks in P2P file sharing

4

USENIX Association 25th USENIX Security Symposium 949

systems consist of threats such as poisoning of files by
uploading corrupted, fake or misleading content [46] or
denial of service attacks [47]. However, these attacks do
not focus on learning private information about the peers
and hence are orthogonal to our problem.

Admittedly, our assumption about honest-but-curious
is less than ideal and simplifies analysis. We hope that
our construction spurs future work on tackling the ac-
tive or arbitrary malicious adversaries. Emerging trusted
computing primitives (e.g., Intel SGX [48]) or crypto-
graphic measures [49] are promising directions to inves-
tigate. Lastly, OBLIVP2P should not be confused with
traditional anonymous systems where a user is anony-
mous among a set of users. OBLIVP2P does not guar-
antee sender or receiver anonymity, but hides data access
patterns of the users.

3 Our Approach

As a defense against traffic pattern analysis, we guaran-
tee oblivious access patterns in P2P systems. We con-
sider Oblivious RAM as a starting point.

3.1 Background: Tree-Based ORAM
Oblivious RAM, introduced by Goldreich and Ostro-
vsky [33], is a cryptographic primitive that prevents an
adversary from inferring any information via the mem-
ory access pattern. Tree-based ORAM introduced by Shi
et al. [50] offers a poly-logarithmic overhead which is
further reduced due to improvements suggested in the
follow up works [51–56]. In particular, we use Ring
ORAM, [52], one of the latest improvements for tree-
based ORAM in our protocol. In Ring ORAM, to store
N data blocks, the memory is organized in a (roughly)
logN-height full binary tree, where each node contains
z real blocks and s dummy blocks. Whenever a block is
accessed in the tree, it is associated to a new randomly
selected leaf identifier called, tag. The client stores this
association in a position map PosMap along with a pri-
vate storage (stash). To read and write to the untrusted
memory, the client performs an Access followed by an
Evict operation described at a high level as follows:

• Access(adr): Given address adr, the client fetches
the leaf identifier tag from PosMap. Given tag,
the client downloads one block per every node in
the path P(tag) that starts from the root and ends
with the leaf tag. The client decrypts the retrieved
blocks, and retrieves the desired block. This block
is appended to the stash.

• Evict(A,ν): After A accesses, the client selects a
path P(ν) based on a deterministic reverse lex-
icographic order, downloads the path, decrypts it
and appends it to the stash. The client runs the

Peers
Node path

Peer-to-Peer network

Figure 1: Mapping of a client / server ORAM model to a P2P system

least common ancestor algorithm to sort the blocks
as in [51]. Finally, the client freshly encrypts the
blocks and writes them back to the nodes in the
path.

The stash is upper bounded by O(logN). The overall
bandwidth may reach � 2.5logN, for N blocks stored. In
Ring ORAM, eviction happens periodically after a con-
trollable parameter A = 2z accesses where z is the num-
ber of blocks in each bucket [52].

3.2 Mapping an ORAM to a P2P setting
We start from a traditional ORAM in a client / server
model where the client is trusted and the server is not,
and simulate it on a tracker / peers setting. In particular,
we consider that the server’s memory is organized in a
tree structure, and we delegate every node in the tree to
a peer. That is, a full binary tree of N leaves is now
distributed among Np = 2N −1 peers (refer to Figure 1).
In practice, many nodes can be delegated to many peers
based on the storage capacity of each peer.

Contrary to the client / server setting where the client
is the only one who can fetch, modify or add a block,
in P2P, the peers can also request and add new blocks.
In addition, the peers are volatile, i.e, many peers can
join or leave the network. Moreover, from a security per-
spective, the network peers do not trust each other, and
an adversarial peer can always be interested in finding
out the block being retrieved by other peers. To avoid
this, the tracker instructs the peers in a P2P system to
save encrypted blocks in their local memory (different
from the conventional BitTorrent model). Our construc-
tion ensures that the peer neither has the keys necessary
to decrypt its storage nor can it collude with other adver-
sarial peers to recover it. In this setting, we first present a
strawman approach that guarantees our security goal but
is restricted in terms of scalability.

3.3 OBLIVP2P-0 : Centralized Protocol
Almost all ORAM constructions are in a client / server
setting and not designed for a P2P setting. A simple
approach is to map the role of the trusted client in an

5

950 25th USENIX Security Symposium USENIX Association

ORAM setting (refer to Figure 1) to the trusted tracker
in a P2P system. The client in ORAM is simulated by
the trusted tracker (storing the position map, private keys
and the stash) and the server by the untrusted peers (stor-
ing the encrypted blocks). With such a mapping from an
ORAM model to a P2P setting, a peer (initiator) can re-
quest for a resource to the tracker. To access a particular
resource, the tracker fetches the blocks from a path in the
tree and decrypts them to get the desired block. It then
returns the requested resource to the initiator peer. This
simple plug-&-play construction satisfies all our P2P se-
curity requirements.

In OBLIVP2P-0, the trusted tracker behaves as the
client in traditional ORAM model. Whenever a peer re-
quests a block, the tracker performs all the ORAM ac-
cess work, and then sends the plaintext block to the ini-
tiator. The tracker downloads the path composed of a
logarithmic number of nodes, writes back the path with
a fresh re-encryption before routing the block to the ini-
tiator. As long as the tracker is trusted, this ensures the
obliviousness property of peers’ accesses, as stated by
definition 2.2.

Upload algorithm. To upload a file, the peer divides
it into data blocks and sends the blocks to the tracker.
The tracker appends the block to the stash stored locally
while generating new random tags. The tracker updates
accordingly TagMap, and FileMap (refer to Table 1).

Fetch algorithm. To fetch a file, the peer sends the file
identifier, as an instance a filename, to the tracker. The
tracker fetches from the FileMap and TagMap the corre-
sponding blocks and sends requests to the corresponding
peers to retrieve the blocks, following the Ring ORAM
Access protocol. For every retrieved block, the tracker
sends the plaintext block to the requesting peer.

Sync algorithm. The synchronization happens after ev-
ery A� 2z accesses [52] (e.g., nearly 8 accesses) at which
point the tracker evicts the stash.

Tracker as Bottleneck. In OBLIVP2P-0, the tracker
has to transmit / encrypt a logarithmic number of blocks
on every access. The tracker requires a bandwidth of
O(logN ·B) where B is the block size and the computa-
tion cost of O(logN ·E) where E is time for encrypting
/ decrypting a block. Moreover, our evaluation in Sec-
tion 5 shows that the eviction step is network-intensive.
In a P2P setting with large number of accesses per sec-
ond, the tracker creates a bottleneck in the network.

3.4 OBLIVP2P-0 Analysis

Our analysis follow from Ring ORAM construction. To
access a block the tracker has to transmit ∼ 2.5logN ·B
bits per access. During a block access or eviction, any
peer at any time transmits O(B) bits. The tracker’s main

computational time consists of decrypting and encrypt-
ing the stash. Since the stash has a size of O(logN)
blocks, the tracker does O(logN) blocks encryption/de-
cryption. In terms of storage, every peer has (z + s)
blocks to store, where z is number of real blocks and s
is a parameter for dummy blocks. From a security per-
spective, it is clear that if there are two sequences veri-
fying the constraints of Definition 2.2, a malicious peer
monitoring their access pattern cannot infer the retrieved
blocks, since after every access the block is assigned to a
random path in the simulated ORAM.

4 OBLIVP2P-1: Distributed Protocol

In this section, we describe our main contribution,
OBLIVP2P-1 protocol that provides both security and
scalability properties. In designing such a protocol, our
main goal is to avoid any bottleneck on the tracker i.e.,
none of the real blocks should route through the tracker
for performing an access or evict operations of ORAM.
We outline the challenges in achieving this property
while still retaining the obliviousness in the network.

4.1 Challenges

First Attempt. A first attempt to reduce tracker’s over-
head is to modify OBLIVP2P-0 such that the heavy com-
putation of fetching the path of a tree and decrypting the
correct block is offloaded to the initiator peer. On getting
a resource request from a peer, the tracker simply sends
information to the peer that includes the path of the tree
to fetch, the exact position of the requested block and the
key to decrypt it. However, unlike standard ORAM, the
peer in our model is not trusted. Giving away the exact
position of the block to the initiator peer leaks additional
information about the requested resource in our model,
as we explain next.

Recall that in a tree-based ORAM, blocks are dis-
tributed in the tree such that the recently accessed blocks
remain in the top of the tree. In fact, after every evic-
tion the blocks in the path are pushed down as far as
possible from the root of the tree. As an instance, af-
ter N deterministic evictions, all blocks that were never
accessed are (very likely) in the leaves. Conversely, con-
sider that an adversarial peer makes two back-to-back ac-
cesses. In the first access, it retrieves a block from the top
of the tree while in the second access it retrieves a block
from a leaf. The adversarial peer (initiator) learns that
the first block is a popular resource and is requested be-
fore by other peers while the second resource is a less
frequently requested resource. This is a well known is-
sue in tree-based ORAM, and is recently formulated as
the block history problem [57]. Disclosing the block po-
sition, while hiding the scheme obliviousness requires to

6

USENIX Association 25th USENIX Security Symposium 951

address the block history challenge in ORAM. Unfortu-
nately, an ORAM hides the block history only if the com-
munication spent to access a block dominates the num-
ber of blocks stored in the entire ORAM. This would
be asymptotically equivalent to downloading the entire
ORAM tree from all the peers. We refer readers to [57]
for more details.

Second Attempt. Our second attempt is a protocol that
selects a block while hiding the block position from the
adversary i.e., to hide which node on the path holds the
requested block. Note that in a tree-based ORAM, dis-
closing the path does not break obliviousness, but leak-
ing which node on the path holds the requested block is
a source of leakage. One trick is to introduce a circuit,
a set of peers from the P2P network, that will simulate
the operations of a mixnet. That is, the peers holding the
path of the tree send their content to the first peer in the
circuit, who then applies a random permutation, adds a
new encryption layer, and sends the permuted path to the
second peer and so on. The tracker, who knows all the
permutations, can send the final block position (unlinked
from original position) to the initiator, along with the
keys to decrypt the block. The mixing guarantees that the
initiator does not learn the actual position of the block.
We note that mixing used here is for only one accessed
“path”, which is already randomized by ORAM. Hence,
it is not susceptible to intersection attack discussed in
Section 2.3. Finally, the initiator then peels off all layers
of the desired block to output the plaintext block.

However, there is an important caveat remaining in us-
ing this method. Note that the initiator has the keys to
peel off all the layers of encryption and hence it has ac-
cess to the same encrypted block fetched from the path in
the tree. Thus, it can determine which peer’s encrypted
block was finally selected as the output of the mixnet.
Hence, delegating the keys to the initiator boils down to
giving her the block position. One might think of elimi-
nating this issue by routing the block through the tracker
to peel off all layers, but this will just make the tracker
again a bottleneck.

So far, our attempts have shown limitations, but
pointed out that there is a need to formally define the
desired property. Considering a tracker, the initiator, and
the peers holding the path, we seek a primitive that given
a set of encrypted blocks, the initiator can get the desired
plaintext block, while no entity can infer the block posi-
tion but the tracker. We refer to this primitive as Oblivi-
ous Selection (OblivSel) and describe it next.

4.2 Oblivious Selection

4.2.1 Definitions

We define OblivSel and its properties as follows:

Step 1

Step 2

Step 3

Step 4

Figure 2: Oblivious Selection protocol using IT-PIR and Seed
Homomorphic PRG as base primitives

Definition 4.1. (Oblivious Selection). OblivSel is a tuple
of two probabilistic algorithms (Gen,Select) such that:

• (�σ ,�r)←Gen(k,pos): a probabilistic algorithm run
by the tracker, takes as input a key k and the
block position pos, picks uniformly at random m
peers (P1, · · · ,Pm), and outputs (�σ ,�r) where �σ =
{σ1, · · · ,σm} and�r = {r1, · · · ,rm} such that (σi,ri)
is given to the ith peer Pi.

• Δ← Select(�σ ,�r,Enc(k1,block1), · · · ,Enc(kL,blockL)):
a probabilistic algorithm run by m peers, takes
as input �σ , �r, and a set of encrypted blocks
Enc(ki,blocki), for i ∈ [L], and outputs the value Δ.

Definition 4.2. OblivSel, is correct, if

Pr[∀ pos ∈ [L],k ∈ {0,1}λ ,(�σ ,�r)← Gen(k,pos);
Δ← Select(�σ ,�r,Enc(k1,block1), · · · ,Enc(kL,blockL));
Δ= Dec(k,Enc(kpos,blockpos))] = 1

For instance, if (Enc,Dec) is a private key encryption,
OblivSel returns a decrypted block when the key given as
input to the Gen function is the same as the private key
of the block i.e., Δ= blockpos if k= kpos.

Definition 4.3. (Position Hiding.) We say that OblivSel
is a position hiding protocol if for all probabilistic poly-
nomial time global adversaries, including the initiator
and the m peers, guess the position of the block pos with
a negligible advantage in the implicit security parameter.

4.2.2 OblivSel Overview

The intuition for constructing OblivSel stems from the
fact that the tracker cannot give the position or private
key of the desired block to the peers in the network.

To privately select a block from the path without leak-
ing its position, we propose to use an existing crypto-
graphic primitive, called information-theoretical private

7

952 25th USENIX Security Symposium USENIX Association

Structure Mapping Purpose
FileMap file id fid to block addresses {adri}i∈[f

B]
Blocks identification

TagMap block address adr to tag
$←− [NB] Path identification

NetMap
peer id pid to network info(
IP,port

)
∈ {0,1}128+16 Network representation

PosMap
block address adr to path and bucket position

pos ∈ [Np]× [L · z+ |stash|] Block exact localization

KeyMap block address adr to key value k
$←− Zq Input of key block generation

StashList peers’ identifiers {pidi}i∈[|stash|] Stash localization

Table 1: Various meta-information contained in the state s, for OBLIVP2P-0 and OBLIVP2P-1. B is the block size in bits, NP the
number of peers, NB number of blocks, L the path length, and z the bucket size.

information retrieval (IT-PIR) [58]. IT-PIR requires
a linear computation proportional to the data size that
makes it expensive to use for real time settings. How-
ever, note that in our setting, we want to obliviously se-
lect a block from a logarithmic number of blocks (i.e., a
path of the tree). Thus, applying IT-PIR over tree-based
ORAM comes with significant computational improve-
ment, hence making it practical to use in our protocol.
The high level idea is to apply IT-PIR primitive only on
one path since the obliviousness is already guaranteed by
the underlined tree-based ORAM construction.

Figure 2 shows the steps involved in our OblivSel
primitive. As a first step, the tracker randomly samples
m peers from the network. For a bounded number of col-
luding adversarial peers in the system, this sample will
contain at least one honest peer with high probability.
The blocks of the path are fetched by all of the m peers.
Each of the m peers then locally computes an encrypted
share of the desired block using IT-PIR from the set of
input blocks. Note that the tracker must not download
the shares or it will violate our scalability requirement.
On the other hand, we require to decrypt the block with-
out giving away the private key to the network’s peers.
For this purpose, we make use of a second cryptographic
primitive — a seed homomorphic pseudo-random gener-
ator (SH-PRG) [59]. The tracker generates a valid key
share for each of the m peers to be used as seeds to the
PRG function. Each peer decrypts (or unblinds) its en-
crypted share using its own key share such that the com-
bination of decrypted shares results in a valid decryption
of the original encrypted block in the tree. This property
is ensured by SH-PRG and explained in detail in Sec-
tion 4.2.3. Finally, each peer submits its decrypted share
to the initiator peer who combines them to get the desired
plaintext block. The colluding peers cannot recover the
private key or the encrypted block since there is at least
one honest peer who does not disclose its private infor-
mation. This solves the issues raised in our second at-
tempt.

Remark. OblivSel primitive can be used as a black box

Algorithm 1: IT-PIR protocol by Chor et al. [58]

1 (r1, · · · ,rm)←Query(q,L,pos)

• randomly generate m−1 random vectors such that ri
$←− ZL

q

• compute rm such that for all j ∈ [L]\{pos}, set
rm, j =−∑m−1

k=1 rk, j , otherwise, rm,pos = 1−∑m−1
k=1 rk, j

Ri ← Compute(ri,DB)

• parse database such as DB = (block1, · · · ,blockL)
• compute Ri = ∑L

j=1 ri, jBlockj

blockpos ← Recover(R1, · · · ,Rm): compute blockpos = ∑m
j=1 Ri

in different settings such as distributed ORAMs to de-
crease the communication overhead. We further show in
Section 4.2.4 that OblivSel is highly parallelizable and
can leverage peers in the network such that the computa-
tion takes constant time.

4.2.3 Base Primitives

Information-theoretic PIR. Information-theoretic pri-
vate information retrieval (IT-PIR) [58] is a crypto-
graphic primitive that performs oblivious read opera-
tions while requiring multiple servers m ≥ 2. In the fol-
lowing, we present the details of one of the first con-
structions of IT-PIR by Chor et al. [58] which is se-
cure even when m − 1 among m servers collude pas-
sively, i.e., the servers collude in order to recover the
retrieved block while not altering the protocol. An
IT-PIR is a tuple of possibly randomized algorithms
IT−PIR= (Query,Compute,Recover). Query takes as
an input the block position pos to be retrieved, and out-
puts an IT-PIR query for m servers. Compute runs inde-
pendently by every server, takes as input the correspond-
ing IT-PIR query and outputs a share. Recover takes as
inputs all shares output by all m servers, and outputs the
plaintext block. We give the construction in Algorithm 1.

Seed homomorphic PRG (SH-PRG). A seed homo-
morphic PRG, G, is a pseudo-random generator over al-
gebraic group with the additional property that if given

8

USENIX Association 25th USENIX Security Symposium 953

Algorithm 2: OblivSel with seed-homomorphic PRG

1 (�σ ,�r)← Gen(k,pos)

• set�r = (r1, · · · ,rm)← IT−PIR.Query(q,L,pos);

• set �σ = (σ1, · · · ,σm), s.t., (σ1, · · · ,σm−1)
$←− Sm−1, and

σm = k−∑m−1
i=1 σi;

block← Select(�σ ,�r,DB) // Every peer Pi

• compute Esharei ← IT−PIR.Compute(ri,DB);

• set Dsharei = Esharei −G(σi);
// Initiator

• compute Δ= ∑m
i=1 Dsharei;

G(s1) and G(s2), then G(s1 ⊕ s2) can be computed effi-
ciently. That is, if the seeds are in a group (S,⊕), and
outputs in (G,⊗), then for any s1,s2 ∈ S, G(s1 ⊕ s2) =
G(s1)⊗G(s2). We refer to [60] for more details.

Decryption / Re-encryption using SH-PRG. Lever-
aging the property of SH-PRG, we explain the
encryption, decryption and re-encryption of a block
in our protocol. Every block in the tree is en-
crypted as Enc(k1,block) = block + G(k1). The
decryption of the block can be then represented as
block= Dec(k1,Enc(k1,block)) = block+G(k1)−G(k1)
For re-encrypting the encrypted block with a
different key k2, the tracker decrypts the en-
crypted block with a new secret key of the form
k1−k2 such that, Dec(k1−k2,Enc(k1,block))
= block+G(k1)−G(k1−k2) = block+G(k2) =
Enc(k2,block).

4.2.4 OblivSel Instantiation

In the following, we present an instantiation of OblivSel.
We consider a set of L encrypted blocks. Each block
blocki is a vector of elements in a finite group G of order
q. For every block, the key is generated at random from
Zq. The tracker has to keep an association between the
block key and its position. An algorithmic description is
given in Algorithm 2.

The tracker runs the Gen algorithm, which takes as
inputs the secret key k with which the block is en-
crypted and the block’s position pos, and outputs a se-
cret shared value of the key, �σ , as well as the IT-PIR
queries,�r. Every peer Pi holds a copy of the L encrypted
blocks and receives a share of the key, σi, as well as its
corresponding query, ri. Next, every peer runs locally
an IT−PIR.Compute on the encrypted blocks and out-
puts a share, Esharei. After getting the encrypted share
Esharei, each peer subtracts the evaluation of the SH-
PRG G on σi from Esharei (Esharei −G(σi)) to get the
decrypted share Dshare. Finally, initiator outputs the
sum of all the Dsharei’s received from the m peers to

get the desired decrypted block. As long as there is one
non-colluding peer among the m peers and G is a secure
PRG, the scheme is position hiding.
Highly Parallelizable. Notice that, in Algorithm 2, each
of the m peers performs scalar multiplications propor-
tional to the number of encrypted input blocks. The
encrypted blocks can be further distributed to different
peers such that each peer performs constant number of
scalar multiplications. Given the availability of enough
peers in the network, OblivSel is extremely parallelizable
and therefore provides a constant time computation.
OblivSel as a building block. OblivSel protocol can
be used as a building block in our second and main
OBLIVP2P-1. For fetching a block, an invocation of
OblivSel is sufficient as it obliviously selects the re-
quested block and returns it in plaintext to the initia-
tor. Additional steps such as re-encrypting the block and
adding it to stash are required to complete the fetch op-
eration. The details of these steps are in Section 4.3.

However, the eviction operation in ORAM poses an
additional challenge. Conceptually, an eviction consists
of block sorting, where the tracker re-orders the blocks
in the path (and the stash). Fortunately, our protocol can
perform eviction by several invocation of OblivSel prim-
itive. Given the new position for each block, the P2P
network can be instructed to invoke OblivSel recursively
to output the new sorted path. The encryption of blocks
has to be refreshed, but this is handled within OblivSel
protocol itself when refreshing the key, using seed ho-
momorphic PRG. We defer the concrete details of per-
forming oblivious eviction to Section 4.3.

4.3 OBLIVP2P-1: Complete Design
In a P2P protocol for a content sharing system the tracker
is responsible for managing the sharing of resources
among the peers in the network. To keep a consistent
global view on the network, the tracker keeps some state
information that we formally define below:

Definition 4.4. P2P network’s state consists of: (1) num-
ber of possible network connections per peer, and (2) a
lookup associating a resource to a (set of) peer identifier.

The tracker can store more information in the state de-
pending on the P2P protocol instantiating the network.
We start first by formalizing a P2P protocol.

Definition 4.5. A P2P protocol is a tuple of
four (possibly interactive) algorithms P2P =
(Setup,Upload,Fetch,Sync) involving a tracker,
T , and a set of peers, (P1, · · · ,Pn), such that:

• s� ← Setup(s,{pid}): run by the tracker T , takes as
inputs a state s and a (possibly empty) set of peers
identifiers {pid}, and outputs an updated state s�.

9

954 25th USENIX Security Symposium USENIX Association

Scheme
Tracker

bandwidth
(bits)

Network
bandwidth (#

blocks)

Tracker #
encryption

Network
computational

overhead

Network
Storage

overhead

Tracker storage
blocks

OBLIVP2P-0 O(logN ·B) O(1) O(logN ·E) − O(1) O(logN)

OBLIVP2P-1 O
(

log3 N
)

O(logN
N) − O(log 4N

N ·E) O(burst) −

Table 2: Comparison of OBLIVP2P instantiation per access. B the block size, N the number of blocks in the network, E the overhead of a block
encryption, E a multiplication in elliptic curve group, burst the number of versions

•
(
out,(A�

1, · · · ,A�
m),s

�) ←
Upload

(
(fid,file),(A1, · · · ,Am),s

)
: is an in-

teractive protocol between an initiator peer, a
(possibly randomly selected) set of m ≥ 0 peers,
and a tracker T . The initiator peer has as input a
file identifier fid, and the file file, the peers’ input
is memory array Ai each, while for the tracker its
state s. The initiator’s output is out ∈ {⊥,file},
the peers output each a modified local memory A�

i,
while the tracker outputs an updated state s�.

• (file,⊥,s�) ← Fetch
(
fid,(A1, · · · ,Am),s

)
: is an in-

teractive protocol between an initiator peer, a (pos-
sibly randomly selected) set of m ≥ 0 peers, and a
tracker T . The initiator peer has as input a file
identifier fid, the peers’ input is a memory array Ai
each, while for the tracker its state s. The initia-
tor outputs the retrieved file file, each peer gets ⊥,
while the tracker outputs an updated state s.

•
(
(A�

1, · · · ,A�
m),s

�) ← Sync
(
(A1, · · · ,Am),s

)
: is an

interactive protocol between the tracker and a (pos-
sibly randomly selected) set of m ≥ 0 peers. The
peers’ input is a memory array Ai each, while for
the tracker its state s. The peers output each a (pos-
sibly) modified memory array A�

i, while the tracker
outputs an updated state s�.

Note that a modification of a file already stored in the
network is always considered as uploading a new file.
Setup Algorithm. In a P2P network, different peers have
different storage capacities and hence we differentiate
between the number of blocks, NB, and the number of
physical peers NP. For this, we fragment the conceptual
ORAM tree into smaller chunks where every peer physi-
cally handles a number of buckets depending on its local
available storage. In addition, to keep a consistent global
view on the network, the tracker keeps some state infor-
mation. In OBLIVP2P-1, the state is composed of differ-
ent meta-information that are independent of the block
size: FileMap, PosMap, TagMap, NetMap, KeyMap,
and StashMap. Table 1 gives more details about the
metadata. The state also contains a counter recording the
last eviction step, and ∼ B

logq points sampled randomly
from a q-order elliptic curve group G to be used for DDH
seed homomorphic PRG, where B is the block size. The
number of points in the generator needs to be equal to
those in the data block. These points are publicly known

Algorithm 3: Fetch(fid, s): OBLIVP2P-1 fetch operation

Input: file id fid, and state s
Output: file {block}, and updated state s
// Initiator requests tracker for a file

1 {adr}← FileMap(fid);
2 for adr in {adr} do
3 (tag,pos)←

(
TagMap(adr),PosMap(adr)

)
;

4 k← KeyMap(adr);
5 compute (�σ ,�r) :=OblivSel.Gen(k,pos);
6 set A=

(
stash,P(tag,1), · · · ,P(tag,L)

)
;

// Initiator retrieves the block

7 compute block :=OblivSel.Select(�σ ,�r,A);
// Re-encryption with a new secret

8 compute k
$←− Zq;

9 compute (�σ ,�r) :=OblivSel.Gen(k,pos);
10 append Δ :=OblivSel.Select(�σ ,�r,A) to the stash, and update state

s;
11 end

to all peers in the network. The tracker randomly dis-
tributes the stash among the peers and records this infor-
mation in the StashList.

Fetch Algorithm. The Fetch process is triggered when
a peer requests a particular file. The tracker determines
the block tag and position from its state for all the blocks
composing the file. The m peers, the tracker, and the
initiator runs OblivSel protocol such that the initiator re-
trieves the desired block. The OblivSel is invoked a sec-
ond time to add a new layer to the retrieved block and
send it to the peer who will hold the stash. The tracker
updates its state, in particular, update KeyMap with the
new key, update the PosMap with the exact position of
the block in the network (in the stash), and TagMap with
the new uniformly sampled tag. We provide an algorith-
mic description of the Fetch process in Algorithm 3.

Sync Algorithm. The Sync in OBLIVP2P-1 consists
of: (1) updating the state of the network, but also, (2)
evicting the stash. The tracker determines the path to be
evicted, tag= ν mod 2L and then fetches the position of
all blocks in the stash and the path, P(tag). The tracker
then generates, based on the least common ancestor al-
gorithm (LCA), a permutation π that maps every block
in A=

(
stash,P(ν mod 2L,1), · · · ,P(ν mod 2L,L)

)
to

its new position in A�, a new array that will replace the
evicted path and the stash. The block A[π(i)] will be
mapped obliviously to A�[i], for all i ∈ [|stash|+ z · L].
The oblivious mapping between A and A� is performed
by invoking OblivSel between the tracker, the peers in

10

USENIX Association 25th USENIX Security Symposium 955

Algorithm 4: Sync(s): OBLIVP2P-1 sync operation

Input: tracker state s
// Fetch necessary parameters

1 ν ← s;
2 {adr}← PosMap−1(ν mod 2L);
3 for adr in {adr} do
4 set T= T∪ tag← TagMap(adr);
5 end
6 set A=

(
stash,P(ν mod 2L,1), · · · ,P(ν mod 2L,L)

)
;

7 Initialize an array A�, π ← LCA(T,ν);
// tracker generates key shares

8 for l from 1 to z ·L+ |stash| do
9 if ∃adr, l = PosMap(adr) then

10 set k← KeyMap(adr);

11 set k�� = k� −k, k� $←− Zq;
12 compute (�σl ,�rl) =OblivSel.Gen(k��,π(l));
13 else
14 set k�� $←− Zq, compute (�σl ,�rl)=OblivSel.Gen(k��,π(l));
15 end
16 end

// Peers generate the new array A�

17 for j from 1 to z ·L+ |stash| do
18 set A�[j] =OblivSel.Select(�σ j ,�r j ,A);
19 end
20 for j ∈ [m], send A�

j [1, · · · , |stash|] and A�
j [|stash|+1, · · · ,L] to peers in

P(ν) and the stash, and update state s;

the path and m peers, |stash|+ z ·L times. Note that (1)
the blocks in A� are encrypted with a freshly-generated
key, and (2) the mapping is not disclosed to any peers in
the path as long as there is one non-colluding peer. Refer
to Algorithm 4 for more detail about the Sync algorithm.

Upload Algorithm. A peer can request the tracker to add
a file. For this, the tracker selects uniformly at random a
set of m peers. The peer sends the file in a form of blocks.
Every block is secret shared such that every peer in the
m peers receives a share. The tracker generates a secret
unique to the block, k. The tracker secret shares k to the
m peers. The peers evaluate a seed-homomorphic PRG
on the received shares and add it to the block share. Fi-
nally, the block is appended to a randomly selected peer
in the network to hold a part of the stash.

4.4 Optimization: Handling Bursts
OBLIVP2P-1 has a functional limitation inherited by
ORAMs. Any access cannot be started unless the pre-
vious one has concluded 2. In our case, the tracker can
handle fetching several blocks before starting the Sync
operation. In our setting, we target increasing the P2P
network throughput while leveraging the network storage
and communication. In order to build a scalable system,
we propose several optimizations.

O1: Replication. In Ring ORAM, A = 3 accesses can
be performed before an eviction is required. To support A
parallel accesses, we replicate every block A times in the
tree. This absorbs the fetching access time and allows A

2We do not consider a multi-processor architectures as those con-
sidered in OPRAM literature [56].

simultaneous accesses, even for requests to the same re-
source. Additionally, we may replicate every block over
A times on different peers, in case that the peer hold-
ing the block is offline due to churn, and cannot serve
the block to the other peers. Lastly, the network opera-
tor can deploy multiple trackers to serve peers simulta-
neously, which leads to the throughput of OBLIVP2P-1
proportional to the number of trackers.

O2: Pipelining. While the eviction is highly paralleliz-
able in OBLIVP2P-1, an eviction can take a considerable
amount of time to terminate. If we denote by f the av-
erage number of fetch requests in the P2P network, and
by t the time to perform an eviction, then the system can
handle all the accesses if t < 1

f . However, in practice
t > 1

f and therefore the accesses will be queued and cre-
ates a bottleneck. To address this issue, we create mul-
tiple copies of the buckets that are run with different in-
stances of OBLIVP2P-1 protocol which overlays on the
same network. In the setup phase, every node creates l
copies of its bucket space. Every bucket will be associ-
ated to different versions of OBLIVP2P-1 instantiations.
For example, with replication we can handle A accesses
in parallel on the (same) ith version of the buckets, but
the upcoming accesses will be made on the (i+1)th ver-
sion. This will absorb the eviction time. To sum up,
having different versions will increase the throughput of
the system to l

f . In order to prevent pipeline stalls, we
need to choose l ≥ t · f in our implementation.

Another aspect (not considered for our implementa-
tion) for further optimizations in our versioning solution
is to distribute the communication overhead of the peers
in the network. In fact, the peers holding blocks at the
higher level of the tree will be accessed more often com-
pared to lower levels. In order to distribute the communi-
cation load on the network peers, peers’ location can be
changed for different versions such that: the peer at the
ith level of the tree in the jth version will be placed at
the (L− i+1)th level of the tree in the (j+1)th version.

O3: Parallelizing Computation across m Peers. The
scalar multiplication in the elliptic curve is expensive
and can easily delay the fetch and sync time. For this,
we consider every peer in the OblivSel as a set of peers.
Whenever there is a need to perform scalar multiplication
over a path, several peers participate in the computation
and only the representative of the set will perform the ag-
gregation. This optimization speeds up the OblivSel to be
proportional to the number of peers’ used to parallelize a
single peer.

5 Implementation and Evaluation

Implementation. We implement a prototype of
OBLIVP2P-0 and OBLIVP2P-1 in Python. The im-

11

956 25th USENIX Security Symposium USENIX Association

plementation contains 1712 lines of code (LOC) for
OBLIVP2P-0 and 3226 for OBLIVP2P-1 accounting to a
total of 4938 lines measured using CLOC tool [61]. Our
prototype implementation is open source and available
online [34]. As our building block primitives, we im-
plement the Ring ORAM algorithm, IT-PIR construction
and seed-homomorphic PRG. For Ring ORAM, we have
followed the parameters reported by authors [52]. Each
bucket contains z = 4 blocks and s = 5 dummy blocks.
The eviction occurs after every 3 accesses. The blocks
in OBLIVP2P-0 are encrypted using AES-CBC with 256
bit key from the pycrypto library [62]. For implementing
IT-PIR and seed homomorphic PRG in OBLIVP2P-1, we
use the ECC library available in Python [63]. We use the
NIST P-256 elliptic curve as the underlying group.

Experimental Setup. We use the DeterLab network
testbed for our experiments [64]. It consists of 15 servers
running Ubuntu 14.04 with dual Intel(R) Xeon(R) hexa-
core processors running at 2.2 Ghz with 15 MB cache (24
cores each), Intel VT-x support and 24 GB of RAM. The
tracker runs on a single server while each of the remain-
ing servers runs approximately 2400 peers. Every peer
process takes up to 4−60 MB memory which limits the
maximum network size to 214 peers in our experimental
set up. The tracker is connected to a 128 MBps link and
the peers in each server share a bandwidth link of 128
MBps as well. We simulate the bandwidth link following
the observed BitTorrent traffic rate distribution reported
in [65]. In our experimental setting, multiple peers are
simulated on a single machine hence our reported results
here are conservative. In the real BitTorrent setting, ev-
ery peer has its own separate CPU.

Evaluation Methodology. To evaluate the scalability
and efficiency of our system, we perform measurements
for a) the overall throughput of the system b) the la-
tency for Fetch and Sync operations and c) the data
transferred through the tracker for both OBLIVP2P-0
and OBLIVP2P-1. All our results are the average of
50 runs with 95% confidence intervals for each of them.
Along with the experimental results, we plot the theoret-
ical bounds computed based on Table 2. This helps us
to check if our experiments match our theoretical expec-
tations. In addition, we perform separate experiments
to demonstrate the effect of our optimizations on the
throughput of our OBLIVP2P-1 protocol. For our ex-
periments in this section, we leverage the technical opti-
mization introduced in Section 4.4.

We vary the number of peers in the system from 24 to
214 peers (capacity of our testbed) and extrapolate them
to 221 peers. Note that, when increasing the number of
peers, we implicitly increase the total data size in the en-
tire network which is computed as the number of peers ×
the block size. That is, our P2P network handles a total

data size that spans from 16 KB to 32 GB. For our eval-
uation, we consider each peer holds one ORAM bucket
because of the limited available memory. In reality, ev-
ery peer can hold more buckets. Note that, we linearly
extrapolate our curves to show the expected results for
larger number of peers starting from 215 − 221 (shown
dotted in the Figures) , and therefore larger data size in
the network. Aligned to the chunks in BitTorrent, we
select our blocksize as 128 KB, 512 KB and 1 MB.

5.1 Linear Scalability with Peers

The throughput is an important parameter in designing a
scalable P2P protocol. We define the throughput, as the
number of bits that the system can serve per second.

From Figure 3a, we observe that the throughput of
OBLIVP2P-0 decreases with the increase in the total
number of peers in the network. For a network size
of 214 peers, the experimental maximum throughput is
0.91 MBps. As we extrapolate to larger network size,
the maximum throughput decreases, e.g., for 221 peers,
the throughput is 0.64 MBps. This shows that as the
network size increases, the tracker starts queuing the re-
quests that will eventually lead to a saturation. However,
for OBLIVP2P-1, the maximum throughput for network
size of 214 is 3.19 MBps and is 3.29 MBps when extrap-
olated to 221 peers. The throughput increases as there
are more peers available in the network to distribute the
computation costs. The throughput shows a similar be-
haviour for blocksize of 128 KB and 1 MB (as shown
in Figure 5). Hence, we expect OBLIVP2P-1 to provide
better throughput in a real setting where more compu-
tational and communication capacity for each peer can
be provisioned. The throughput values for OBLIVP2P-1
are calculated after applying all the 3 optimizations dis-
cussed in Section 4.4. The behaviour of the theoretical
throughput matches our experimental results. The theo-
retical throughput has higher values as it does not capture
the network latency in our test environment.

Result 1. Our results show that the centralized proto-
col is limited in scalability and cannot serve a large net-
work. Whereas, the throughput for OBLIVP2P-1 lin-
early scales (0.15−3.39 MBps) with increasing number
of peers (25 −221) in the network.

Result 2. For a block of size 512 KB and 214 peers,
OBLIVP2P-1 serves around 7 requests / second which
can be enhanced with multiple copies of ORAM trees in
the network.

Remark. The throughput may be acceptable to privacy-
conscious users (e.g., whistleblowers), where privacy
concerns outweigh download / upload latencies. As
long as the number of request initiators is small, the
perceived throughput remains competitive with a non-

12

USENIX Association 25th USENIX Security Symposium 957

(a) The throughput for OBLIVP2P-1 linearly
scales with the increase in network size.

(b) The latency for fetching a block for
OBLIVP2P-1 reduces up to 213 and then be-
comes constant.

(c) The latency for sync operation for
OBLIVP2P-1 reduces up to 213 and then be-
comes constant.

Figure 3: Theoretical (Th) and experimental (Ex) comparison of OBLIVP2P-0 and OBLIVP2P-1 parameters for block size of 512 KB

Figure 4: The data transferred through
the tracker for OBLIVP2P-0 increases linearly
with the number of peers

Figure 5: The throughput for blocksize 128
KB and 1 MB increases with increase in the
network size.

Figure 6: Impact of optimizations (O1-O3)
on the throughput of OBLIVP2P-1 for 214

peers and blocksize of 512 KB.

oblivious P2P system. Further, the network operator can
deploy multiple trackers to serve peers simultaneously,
which leads to the throughput of OBLIVP2P-1 propor-
tional to the number of trackers.

5.2 Latency Overhead and Breakdown

We define the latency as the time required to perform one
ORAM operation in our P2P protocol. We measure the
latency for the following operations:

Fetch. Figure 3b shows that the average time for fetch-
ing a block of 512 KB increases for OBLIVP2P-0 with
increase in the size of the network. This is due to the
increased computation and bandwidth overhead at the
tracker. However, for OBLIVP2P-1, the latency initially
reduces with the increasing number of peers (from 25 to
211) and then becomes constant after the network is large
enough (around 213) to distribute the computation cost
in the network3. OBLIVP2P-1 has a higher latency for
fetch as compared to OBLIVP2P-0 due to the expensive
computation required for performing scalar multiplica-
tion. The average time for fetching a block of size 512
KB is around 0.31 s for a network size of 214 peers and

3Since a large number of nodes (e.g., over 1000 nodes) share one
physical machine, its limited computation power drastically affects our
result. Therefore, to be more realistic, we use the ideal computing
and decoding/encoding time for each node solely in one physical ma-
chine as the computing time per node, and simulate our experiments
for OBLIVP2P-1.

remains steady with increase in the number of peers.

Sync. We measure the time for performing a sync op-
eration for different network sizes. Figure 3c shows
that the time for performing a sync operation increases
in OBLIVP2P-0 with increase in the number of peers.
Whereas for OBLIVP2P-1, the sync time reduces grad-
ually at first and then becomes steady after the network
size reaches 213 peers which is as expected through our
theoretical calculation. OBLIVP2P-1 uses the peers in
the network to distribute the computation load and hence
the sync time tends to be steady for large network sizes.

Data transferred through tracker. Figure 4 shows the
amount of data that is transferred through the tracker per
request. We perform this measurement to show that the
centralized tracker becomes a bottleneck in OBLIVP2P-
0. The amount of data that the tracker has to pro-
cess increases with increase in the number of peers.
At 221 peers, the amount of data is 118 MB (almost)
reaching the bandwidth limit (128 MBps) of the tracker.
Whereas, for OBLIVP2P-1 the amount of data trans-
ferred is around 1 MB for 221 peers. This implies that
the tracker could manage up to 128 copies of ORAM tree
in parallel, which will increase the overall throughput by
128 times.

Result 3. OBLIVP2P has no centralized infrastructure
as a bottleneck, ensuring that communication and com-
putational overhead can be completely offloaded to the
network.

13

958 25th USENIX Security Symposium USENIX Association

5.3 Optimization Measurements

We perform incremental experiments to quantify the im-
pact of each of the introduced optimizations on the over-
all throughput in Section 4.4, as shown in Figure 6. We
fix the number of peers in the network to be equal to 214

and the block size to 512 KB. We chose our optimization
parameters based on our results in section 5.3. We fix the
number of replicas to be equal to A = 3, i.e., the same
data block is replicated three times. The burst parameter
needs to be in O(B

logq logNp), where Np is the number
of peers, B the block size, and q the elliptic curve group
order. Finally, we fix the number of parallel peers in the
OblivSel.Select algorithm to be in O(B

logq logNp).

O1: Replication. Replication enables to perform A =
3 fetch operations in parallel. This implies that the
throughput theoretically increases 3 times when com-
pared to our baseline without any optimizations. Our
experimental results show that we have 2.55 times im-
provement over the baseline, as expected theoretically.

O2: Pipelining. We evaluate the effect of our optimiza-
tion (O2) that absorbs the eviction time by pipelining the
fetch requests to different versions of the ORAM tree in
the P2P network. We show that this optimization, when
coupled to (O1), has theoretically increased the overall
throughput by 23.05 times if compared to the baseline.
Our experiments are aligned to our theoretical results and
show 17.2 times improvement over the baseline with a
burst parameter of 17. Clearly, if the number of versions
increases beyond 17, then OBLIVP2P-1 can handle par-
allel accesses, hence increasing the system throughput.

O3: Parallelizing m peers. We measure the effect of
parallelizing the computation load of m peers by lever-
aging more peers in the network on the overall through-
put of the system. We increase the number of peers to
116 peers that are used to compute the fetch and sync
operations. Our theoretical result shows an improve-
ment of 4398 times over the baseline, when coupled with
(O1) and (O2). Our experiments support this result and
demonstrates 1589 times improvement, the difference is
due to the real network latency are not considered in our
theoretical calculation.

Result 4. OBLIVP2P-1 is subject to several optimiza-
tions due to its highly parallelizable design.

6 OBLIVP2P-1 Analysis

In this section, we present the theoretical analysis on
computation / communication overhead of tracker / peers
and security analysis for OBLIVP2P-1.

6.1 Performance

We report OBLIVP2P-1 computation and communica-
tion overhead for the tracker and the network in Table 2.
In particular, OBLIVP2P-1’s tracker transmits a number
of bits independent of the block size, the tracker does not
perform any computation on the blocksize or store any
block locally.

Tracker overhead. To fetch a block, the tracker invokes
OblivSel twice. While for the eviction, the tracker per-
forms OblivSel

(
L · z+ |stash|

)
times. That is, it is suf-

ficient to first analyze OblivSel overhead and than just
conclude for the overall tracker overhead.

Within one instance of OblivSel, the tracker computes
an IT−PIR.Query that outputs m vectors for m peers,
each of size L · z+ |stash|. Each IT−PIR.Query vector
costs logq(L · z+ |stash|) bits, where q is the group or-
der. The tracker also needs to generate shares for the key,
where the shares are in Zq. That is, one OblivSel costs
the tracker O

(
m · logq · (L · z+ |stash|)

)
.

That is, the tracker has to transmit O
(
m · logq · (L · z+

|stash|)2
)

bits. Considering L, |stash| ∈ O(logN), q the
group order in poly(N), m the number of peers and z the
bucket size as constants, then the tracker needs to send
O(log3 N) bits independently of the block size. That is,
if block ∈ Ω(log3 N), the tracker has a constant commu-
nication work per block. Moreover, the tracker is very
lightweight as it does not perform any heavy computa-
tion such as encryption, decryption of blocks, which per-
mits the tracker to handle frequent accesses.

Peers overhead. Considering the communication be-
tween the peers, the main communication overhead
comes from block transfer from the peers holding the
path to the selected m peers. The m peers are se-
lected uniformly at random. Each peer receives (z ·L+
|stash|) blocks from the peers in the selected path and the
stash. That is, in terms of communication overhead, the
peers sends on average ∑L

i=0
z
2i +

(z·L+|stash|)
N + z

N blocks
per peers in the network. Considering z constant and
L, |stash| ∈ O(logN), implies that every peer is expected
to transmit O(logN

N) blocks per access.
In terms of computation, the main computational bot-

tleneck consists of the scalar multiplication from the
seed homomorphic PRG. For every OblivSel, every peer
needs to perform (z ·L+ |stash|) · B

logq scalar multiplica-
tions per block. The second term, B

logq , represents the
number of points that a block contains. We also have
(z ·L+ |stash|) instances of OblivSel during the eviction.
That is, the total number of scalar multiplication equals
O
(
(z · L+ |stash|)2 · B

logq

)
. Finally, the amortized com-

putation over the total number of peers in the network
equals O(log4 N

N) multiplications per eviction, consider-
ing B ∈ Ω(log3 N) and q ∈ poly(N).

14

USENIX Association 25th USENIX Security Symposium 959

6.2 Security Analysis

We show that OBLIVP2P-1 is an oblivious P2P as stated
by Definition 2.2. For this, it is sufficient to show that an
adversary cannot distinguish between a randomly gener-
ated string and the access pattern leaked by any peer’s
real access. This underlines the fact that the access pat-
tern is independent of the address of the requested block.
In our threat model, the adversary can have access to the
content of buckets, monitors the communication between
the peers, and has a total view of the internal state of dis-
honest peers. Buckets’ content is assumed to be trans-
mitted without any additional layer of encryption.

We present our address-tag experiment AT that
captures our security definition. Let OBLIVP2P
= (Setup,Upload,Fetch,Sync) represents an oblivi-
ous P2P protocol. Let E = (Gen,Enc,Dec) be an
IND$−CPA encryption scheme. Let G be a secure
pseudo-random generator. ATOblivP2P

A ,E ,G refers to the in-
stantiation of the address-tag experiment by algorithms
OBLIVP2P, E , G , and adversary A . We denote by Col
the event that m peers in the network collude and set
Pr[Col] = δm, by Bδm the Bernoulli distribution, and λ
the security parameter.

In the following, we fix the number of colluding peers
c ∈ O(Nε), for 0 < ε < 1. We consider every peer in
the network as a random variable distributed based on
a Bernoulli distribution with probability equal to c

N ∈
O(Nε−1). Let us denote by (X1, · · · ,Xm) the random
variables of the selected peers for every instantiation of
OblivSel. Note that Pr[Col] = Pr[X1 = 1 AND · · · Xm =
1]. Since all Xi’s are independent, then, Pr[Col] =
Πm

i=1 Pr[Xi = 1] = (c
N)

m. That is, δm = (c
N)

m which im-
plies under our assumptions that δm ∈ O(2logN·m·(ε−1)).

In the following experiment, we only consider the
Fetch algorithm for obliviousness analysis. In our
model, Upload sequences are indistinguishable by con-
struction assuming that peers uploads blocks that are ran-
domly distributed, and using random key for every block
encryption. The experiment ATOblivP2P

A ,E ,G (λ ,b) consists of:

• The adversary A picks one access operation
(Fetch,adr,⊥) and sends it to the challenger C

• If b= 1, pick X
Bδm←−−{0,1}, if X = 1, then set var=

adr , otherwise var =⊥ and set

π1 ={
(
P(tag,1), · · · ,P(tag,L)

)
,tag← TagMap[adr],(

Enc(q1), · · · ,Enc(qm)
)
,

(q1, · · · ,qm)← IT−PIR.Query(pos),

pos← PosMap[adr],var}

If b = 0, set π0 = {
(
P1, · · · ,PL

) $←−Gz×L,(
q1, · · · ,qm

) $←− {0,1}λ×m,⊥}

• Adversary A has access to an oracle OOblivP2P that
issues the access patterns for polynomial number of
accesses (while paths are re-encrypted for every re-
quest)

• A outputs b�

• The output of the experiment is 1 if b = b�, other-
wise 0. If ATOblivP2P

A ,E ,G (λ ,b�) = 1, we say that A won
the experiment.

The experiment differentiates between a realistic set-
ting where the adversary can see the access pattern, and
in which a possible colluding setting can happen with
a pre-fixed probability, δm, and an ideal setting where
the adversary receives a random string. We slightly re-
formulate Definition 2.2 below.

Definition 6.1. We say that a P2P is oblivious iff for
all PPT adversaries A , there exists a negligible function
negl such that:

Pr[ATOblivP2P
A ,E ,G (λ ,1) = 1]−Pr[ATOblivP2P

A ,E ,G (λ ,0) = 1]≤ negl(λ)

Theorem 6.1. If ∀N > 1, and ∀ε < 1, ∃m > 1 s.t.
2logN·m·(1−ε) ∈ negl(λ), G is a secure pseudo-random
generator, E is IND$−CPA secure, then OBLIVP2P-1
is an oblivious P2P as in Definition 6.1.

Proof. To prove our theorem, we proceed with a succes-
sion of games as follows:

• Game0 is exactly the same as ATOblivP2P
A ,E ,G (λ ,1)

• Game1 is the same as Game0 except that the blocks
in the buckets P(tag, i) are replaced with random
points from G

• Game2 is the same as Game1 except that the the en-
crypted IT−PIR queries are replaced with random
strings

From games’ description, we have

Pr[Game0 = 1] = Pr[ATOblivP2P
A ,E ,G (λ ,1) = 1], (1)

For Game1, we can build a distinguisher B1 that reduces
security of G to PRG security such that:

Pr[Game0 = 1]−Pr[Game1 = 1]≤ AdvPRG
B1,G

(λ), (2)

Similarly for Game1, we can build a distinguisher B2 that
reduces E to IND$−CPA security such that:

Pr[Game1 = 1]−Pr[Game2 = 1]≤ AdvIND$−CPA
B2,E

(λ),
(3)

We need now to compute Pr[Game2].

Pr[Game2] =Pr[Col] ·Pr[Game2 = 1| Col]+
Pr[Col] ·Pr[Game2 = 1| Col]

=δm +(1−δm)
1
N

15

960 25th USENIX Security Symposium USENIX Association

On the other side Pr[ATOblivP2P
A ,E ,G (λ ,0) = 1] = 1

N , since the
tag is generated uniformly at random for every access.

Pr[Game2]−Pr[ATOblivP2P
A ,E ,G (λ ,0) = 1] = δm(1−

1
N
) (4)

From equations 1, 2, 3, and 4 we obtain:

Pr[ATOblivP2P
A ,E ,G (λ ,1)]−Pr[ATOblivP2P

A ,E ,G (λ ,0) = 1]≤

δm(1−
1
N
)+AdvIND$−CPA

B2,E
+AdvPRG

B1,G
.

Since δm ∈ O(2logN·m·(ε−1)), this ends our proof.

Quantitatively, if the number of peers in the network
equals 220, number of colluding peers in the network is
c = N

1
2 and m = 12, then δ12 = 2−120. Given the number

of colluding peers and total number of peer, the value of
m can always be adjusted to handle the desired colluding
probability δm. In case of churn, the fraction c can vary
and therefore the length of the circuit m has to be adapted
to the new value. Furthermore, we implicitly assumed so
far that no peer among the m selected leaves in the middle
of the OblivSel process. If that occurs, the entire process
has to abort, re-calculates the number of required peers
m, and perform the OblivSel from scratch.

7 Discussion

Existing approaches. A valid question to investigate is
whether existing solutions such as unlinkability or path
non-correlation techniques can be extended to handle
global adversaries and therefore prevent traffic analysis
at the cost of providing more resources. It is easy to see
that unlinkability techniques (e.g., mixnet) can provide
better security in a P2P network under some assump-
tions. As an instance, assuming the case where a large
number of peers behave as senders and issue requests that
will be mixed by sufficient network peers before being
answered by corresponding receivers’ peers. Also, as-
suming that there is at least one honest peer in the mixing
network, this solution would provide slightly the same
level of security as OBLIVP2P where a global adver-
sary cannot distinguish the senders’ peers access pattern.
However, this solution suffers from two downsides. First,
there is a need to have sufficient number of senders’ peers
on-line in order to prevent intersection attacks. That is,
in order to prevent traffic analysis, the number of senders
represents a security parameter of the system that has
to be maintained throughout the entire run of the sys-
tem. Second, as the receivers’ contents are theirs and are
not encrypted, plus, all peers are considered honest-but-
curious, a global adversary can easily find out what con-
tent is being accessed independently of the sender iden-
tity. This therefore does not achieve obliviousness as de-
fined in our work but only a weaker version of it. On

the other hand, path non-correlation techniques concep-
tually cannot prevent against global adversary as we have
detailed in Section 2. To sum up, it is not clear if existing
techniques, even if given enough resources, can provide
similar security insurances as those in OBLIVP2P.

Does better network & computation help? As em-
pirically demonstrated in our evaluation section, the
throughput of OBLIVP2P is around 3.19 MBps while
considering only one tracker in the network. In a plain-
text version of P2P system such as BitTorrent, the net-
work leverages multiple trackers in order to handle more
queries, and therefore increase the overall throughput. In
OBLIVP2P, if we consider multiple copies of the entire
network, we can also handle multiple trackers, and the
throughput is expected to increase linearly with the num-
ber of trackers. However, as we delegate computation to
the peers in OBLIVP2P, increasing the number of track-
ers beyond a particular threshold might turn out to be
useless as the computation would represent a bottleneck
of the system. As future work, we plan to investigate
the asymptotic and empirical implications of including
multiple trackers in the system. Moreover, it would be
interesting to find out the relation between the number
of trackers, number of peers for an ideal throughput of
OBLIVP2P.

8 Related Work

Long-term traffic analysis. Anonymous systems like
mix networks and onion routing are susceptible to long-
term traffic analysis as shown in Section 2. Statis-
tical disclosure attacks proposed by Danezis and en-
hanced by other researchers improve the likelihood of
de-anonymizing users on these systems [66–73]. More-
over, existing traffic analysis attacks on onion routing
based approaches [27–30, 45] can reveal users’ iden-
tities with observing multiple communication rounds.
Other P2P systems like Crowds [19], Tarzan [18], Mor-
phMix [20], AP3 [21], Salsa [22], ShadowWalker [23],
Freenet [3] offer anonymity for users. However, these
systems show limits against global adversary with long-
term traffic analysis capabilities.

Side-Channels. Previous work has shown possible at-
tacks by leveraging side channels such as packet sizes,
number of packets and timing. These side channels leak
users’ private information, e.g., illnesses/medications/-
surgeries, income and investment secrets [74]. An at-
tacker can employ machine learning techniques (e.g.,
Support Vector Machines) on network traffic to identify
the user’s browsing websites [28–30, 45]. However, our
focus in this paper is to only prevent long-term pattern
traffic analysis. The aforementioned side-channels of
traffic analysis are out of scope.

16

USENIX Association 25th USENIX Security Symposium 961

Multi-servers and parallel ORAM. There have been
works on how to optimize ORAM constructions while
leveraging multiple servers [75–77], multiple CPUs [56,
78], computational servers [53, 54], or distributed under
a weaker threat model [55] . However, none of these re-
cent constructions fit to a P2P setting as is. This is mainly
due to the inherent client / server setting that results on a
single entity bottleneck. The client has to either perform
non-trivial computation or/and transmit several amount
of bits. We briefly discuss these works below.

OblivStore [76], Lu and Ostrovsky [75], and Stefanov
and Shi [77] demonstrate how to decrease the communi-
cation overhead while leveraging multiple ORAM nodes
and servers. However, all these constructions are central-
ized and route the block through the tracker. This leads
to a single entity bottleneck.

Recently, researchers have proposed oblivious parallel
RAM (OPRAM) [56, 78]. This was motivated by cur-
rent multi-cpu architectures that can access the same or
multiple resources in parallel. However, OPRAM does
not decrease the communication overhead making it as
well a single-entity bottleneck. Dachman-Soled et al. in-
troduced oblivious network RAM (ONRAM) [55]. ON-
RAM can reduce the communication overhead between
the client and multiple banks of memory to be constant in
the number of blocks. However, it assumes a weak threat
model, and cannot achieve obliviousness in the case of a
global adversary.

9 Conclusion

We advocate hiding data access patterns as a necessary
step in defenses against long-term traffic pattern analysis
in P2P content sharing systems. To this end, we propose
OBLIVP2P— an oblivious peer-to-peer protocol. Our
evaluation demonstrates that OBLIVP2P is parallelizable
and linearly scalable with increase in number of peers,
without bottleneck on a single entity.

Acknowledgement. We thank the anonymous reviewers of
this paper for their helpful feedback. We also thank Erik-Oliver
Blass, Travis Mayberry, Shweta Shinde and Hung Dang for
useful discussions and feedback on an early version of the pa-
per. This work is supported by the Ministry of Education, Sin-
gapore under under Grant No. R-252-000-560-112. All opin-
ions expressed in this work are solely those of the authors. A
note of thanks to the DeterLab team [64] for enabling access to
the infrastructure.

References
[1] “Bittorrent,” http://www.bittorrent.com/.

[2] “Storj.io,” http://storj.io/.

[3] “Freenet: The free network,” https://freenetproject.org.

[4] “Akamai,” http://www.akamai.com/.

[5] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: A decentralized
peer-to-peer web cache,” in PODC, 2002.

[6] “Utorrent & bittorrent surge to 150 mil-
lion monthly users,” https://torrentfreak.com/
bittorrent-surges-to-150-million-monthly-users-120109/.

[7] “Palo alto networks application usage & threat re-
port,” http://researchcenter.paloaltonetworks.com/
app-usage-risk-report-visualization/.

[8] M. Piatek, T. Kohno, and A. Krishnamurthy, “Challenges and di-
rections for monitoring p2p file sharing networks, or, why my
printer received a dmca takedown notice,” in HotSec, 2008.

[9] G. Siganos, J. M. Pujol, and P. Rodriguez, “Monitoring the bit-
torrent monitors: A bird’s eye view,” in PAM, 2009.

[10] S. Le Blond, C. Zhang, A. Legout, K. Ross, and W. Dabbous, “I
know where you are and what you are sharing: exploiting p2p
communications to invade users’ privacy,” in IMC, 2011.

[11] D. L. Chaum, “Untraceable electronic mail, return addresses, and
digital pseudonyms,” Communications of the ACM, 1981.

[12] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: De-
sign of a type iii anonymous remailer protocol,” in IEEE S&P,
2003.

[13] U. Möller, L. Cottrell, P. Palfrader, and L. Sassaman, “Mixmaster
protocol-version 2,” 2003.

[14] M. G. Reed, P. F. Syverson, and D. M. Goldschlag, “Anonymous
connections and onion routing,” J-SAC, 1998.

[15] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The
second-generation onion router,” in USENIX Security, 2004.

[16] T. Wang, K. Bauer, C. Forero, and I. Goldberg, “Congestion-
aware path selection for tor,” in FC, 2012.

[17] M. Akhoondi, C. Yu, and H. V. Madhyastha, “Lastor: A low-
latency as-aware tor client,” in IEEE S&P, 2012.

[18] M. J. Freedman and R. Morris, “Tarzan: A peer-to-peer
anonymizing network layer,” in CCS, 2002.

[19] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web
transactions,” TISSEC, 1998.

[20] M. Rennhard and B. Plattner, “Introducing morphmix: peer-to-
peer based anonymous internet usage with collusion detection,”
in WPES, 2002.

[21] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. S.
Wallach, “Ap3: Cooperative, decentralized anonymous commu-
nication,” in SIGOPS European Workshop, 2004.

[22] A. Nambiar and M. Wright, “Salsa: a structured approach to
large-scale anonymity,” in CCS, 2006.

[23] P. Mittal and N. Borisov, “Shadowwalker: peer-to-peer anony-
mous communication using redundant structured topologies,” in
CCS, 2009.

[24] A. Pfitzmann and M. Hansen, “Anonymity, unlinkability,
undetectability, unobservability, pseudonymity, and identity
management-a consolidated proposal for terminology,” Version
v0, 2008.

[25] D. Agrawal and D. Kesdogan, “Measuring anonymity: The dis-
closure attack,” IEEE S&P, 2003.

[26] D. Kesdogan and L. Pimenidis, “The hitting set attack on
anonymity protocols.” in IH, 2004.

[27] M. Edman and P. Syverson, “As-awareness in tor path selection,”
in CCS, 2009.

[28] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-
boo, i still see you: Why efficient traffic analysis countermeasures
fail,” in IEEE S&P, 2012.

17

962 25th USENIX Security Symposium USENIX Association

[29] T. Wang and I. Goldberg, “Improved website fingerprinting on
tor,” in WPES, 2013.

[30] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg,
“Effective attacks and provable defenses for website fingerprint-
ing,” in USENIX Security, 2014.

[31] “Bittorrent over tor isn’t a good idea,” https://blog.torproject.org/
blog/bittorrent-over-tor-isnt-good-idea.

[32] S. L. Blond, P. Manils, C. Abdelberi, M. A. D. Kaafar, C. Castel-
luccia, A. Legout, and W. Dabbous, “One bad apple spoils the
bunch: exploiting p2p applications to trace and profile tor users,”
arXiv, 2011.

[33] O. Goldreich and R. Ostrovsky, “Software protection and simu-
lation on oblivious rams,” J. ACM, 1996.

[34] “Oblivious peer-to-peer protocol,” https://github.com/jiayaoqijia/
OblivP2P-Code.

[35] “Gnutella,” https://en.wikipedia.org/wiki/Gnutella.

[36] Y. Jia, G. Bai, P. Saxena, and Z. Liang, “Anonymity in peer-
assisted cdns: Inference attacks and mitigation,” in PETS, 2016.

[37] “Scaneye’s global bittorrent monitor,” http://www.cogipas.com/
anonymous-torrenting/torrent-monitoring/.

[38] K. Bauer, D. McCoy, D. Grunwald, and D. Sicker, “Bitstalker:
Accurately and efficiently monitoring bittorrent traffic,” in WIFS,
2009.

[39] T. Chothia, M. Cova, C. Novakovic, and C. G. Toro, “The unbear-
able lightness of monitoring: Direct monitoring in bittorrent,” in
SECURECOMM, 2012.

[40] G. Danezis and C. Diaz, “A survey of anonymous communication
channels,” Tech. Rep., 2008.

[41] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte: An
anonymous messaging system handling millions of users,” in
IEEE S&P, 2015.

[42] M. Backes, A. Kate, S. Meiser, and E. Mohammadi, “(nothing
else) mator(s): Monitoring the anonymity of tor’s path selection,”
in CCS, 2014.

[43] “Tor suffers traffic confirmation attack,” http:
//www.techtimes.com/articles/11711/20140802/
tor-suffers-traffic-confirmation-attacks-say-goodbye-to-
anonymity-on-the-web.htm .

[44] “Traffic confirmation attack,” https://blog.torproject.org/blog/
tor-security-advisory-relay-early-traffic-confirmation-attack.

[45] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website
fingerprinting in onion routing based anonymization networks,”
in WPES, 2011.

[46] J. Kong, W. Cai, and L. Wang, “The evaluation of index poisoning
in bittorrent,” in ICCSN, 2010.

[47] K. El Defrawy, M. Gjoka, and A. Markopoulou, “Bottorrent:
Misusing bittorrent to launch ddos attacks.” SRUTI, 2007.

[48] “Software Guard Extensions Programming Reference.” software.
intel.com/sites/default/files/329298-001.pdf, 2013.

[49] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio:
Nearly practical verifiable computation,” in IEEE S&P, 2013.

[50] E. Shi, T.-H. Chan, E. Stefanov, and M. Li, “Oblivious RAM with
O(log3(N)) Worst-Case Cost,” in ASIACRYPT, 2011.

[51] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path ORAM: an extremely simple oblivious RAM
protocol,” in CCS, 2013.

[52] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk,
and S. Devadas, “Constants Count: Practical Improvements to
Oblivious RAM ,” in USENIX Security, 2014.

[53] S. Devadas, M. van Dijk, C. Fletcher, L. Ren, E. Shi, and
D. Wichs, “Onion ORAM: A Constant Bandwidth Blowup Obliv-
ious RAM,” IACR, 2015.

[54] T. Moataz, T. Mayberry, and E.-O. Blass, “Constant Communi-
cation ORAM with Small Blocksize,” in CCS, 2015.

[55] D. Dachman-Soled, C. Liu, C. Papamanthou, E. Shi, and
U. Vishkin, “Oblivious network RAM and leveraging parallelism
to achieve obliviousness,” in ASIACRYPT, 2015.

[56] E. Boyle, K. Chung, and R. Pass, “Oblivious parallel RAM and
applications,” in TCC, 2016.

[57] D. S. Roche, A. J. Aviv, and S. G. Choi, “A practical oblivi-
ous map data structure with secure deletion and history indepen-
dence,” IACR, 2015.

[58] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private
information retrieval,” in FOCS, 1995.

[59] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan,
“Key homomorphic prfs and their applications,” in CRYPTO,
2013.

[60] M. Naor and O. Reingold, “Number-theoretic constructions of
efficient pseudo-random functions,” in FOCS, 1997.

[61] “Cloc,” http://cloc.sourceforge.net/.

[62] “Python cryptography toolkit,” https://pypi.python.org/pypi/
pycrypto.

[63] “Python ecc,” https://github.com/johndoe31415/joeecc.

[64] “Deterlab,” https://www.isi.deterlab.net/index.php3.

[65] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyz-
ing and improving bittorrent performance,” Microsoft Research,
2005.

[66] G. Danezis, “Statistical disclosure attacks,” in Security and Pri-
vacy in the Age of Uncertainty, 2003.

[67] G. Danezis, C. Diaz, and C. Troncoso, “Two-sided statistical dis-
closure attack,” in PETS, 2007.

[68] G. Danezis and A. Serjantov, “Statistical disclosure or intersec-
tion attacks on anonymity systems,” in IH, 2005.

[69] N. Mathewson and R. Dingledine, “Practical traffic analysis: Ex-
tending and resisting statistical disclosure,” in PETS, 2005.

[70] N. Mallesh and M. Wright, “The reverse statistical disclosure at-
tack,” in IH, 2010.

[71] C. Troncoso, B. Gierlichs, B. Preneel, and I. Verbauwhede, “Per-
fect matching disclosure attacks,” LNCS, 2008.

[72] G. Danezis and C. Troncoso, “Vida: How to use bayesian in-
ference to de-anonymize persistent communications,” in PETS,
2009.

[73] F. Pérez-González and C. Troncoso, “Understanding statistical
disclosure: A least squares approach,” in PETS, 2012.

[74] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks
in web applications: A reality today, a challenge tomorrow,” in
IEEE S&P, 2010.

[75] S. Lu and R. Ostrovsky, “Distributed oblivious RAM for secure
two-party computation,” in TCC, 2013.

[76] E. Stefanov and E. Shi, “Oblivistore: High performance oblivious
distributed cloud data store,” in NDSS, 2013.

[77] ——, “Multi-cloud oblivious storage,” in CCS, 2013.

[78] B. Chen, H. Lin, and S. Tessaro, “Oblivious parallel RAM: im-
proved efficiency and generic constructions,” in TCC, 2016.18

USENIX Association 25th USENIX Security Symposium 963

AuthLoop: Practical End-to-End Cryptographic Authentication for
Telephony over Voice Channels

Bradley Reaves
University of Florida

reaves@ufl.edu

Logan Blue
University of Florida

bluel@ufl.edu

Patrick Traynor
University of Florida
traynor@cise.ufl.edu

Abstract
Telephones remain a trusted platform for conducting

some of our most sensitive exchanges. From banking to
taxes, wide swathes of industry and government rely on
telephony as a secure fall-back when attempting to con-
firm the veracity of a transaction. In spite of this, authen-
tication is poorly managed between these systems, and in
the general case it is impossible to be certain of the iden-
tity (i.e., Caller ID) of the entity at the other end of a call.
We address this problem with AuthLoop, the first system
to provide cryptographic authentication solely within the
voice channel. We design, implement and characterize
the performance of an in-band modem for executing a
TLS-inspired authentication protocol, and demonstrate
its abilities to ensure that the explicit single-sided authen-
tication procedures pervading the web are also possible
on all phones. We show experimentally that this protocol
can be executed with minimal computational overhead
and only a few seconds of user time (≈ 9 instead of ≈ 97
seconds for a naı̈ve implementation of TLS 1.2) over het-
erogeneous networks. In so doing, we demonstrate that
strong end-to-end validation of Caller ID is indeed prac-
tical for all telephony networks.

1 Introduction

Modern telephony systems include a wide array of end-
user devices. From traditional rotary PSTN phones to
modern cellular and VoIP capable systems, these devices
remain the de facto trusted platform for conducting many
of our most sensitive operations. Even more critically,
these systems offer the sole reliable connection for the
majority of people in the world today.

Such trust is not necessarily well placed. Caller ID
is known to be a poor authenticator [59, 18, 67], and
yet is successfully exploited to enable over US$2 Bil-
lion in fraud every year [28]. Many scammers simply
block their phone number and exploit trusting users by

asserting an identity (e.g., a bank, law enforcement, etc.),
taking advantage of a lack of reliable cues and mecha-
nisms to dispute such claims. Addressing these prob-
lems will require the application of lessons from a related
space. The Web experienced very similar problems in the
1990s, and developed and deployed the Transport Layer
Security (TLS) protocol suite and necessary support in-
frastructure to assist with the integration of more veri-
fiable identity in communications. While by no means
perfect and still an area of active research, this infrastruc-
ture helps to make a huge range of attacks substantially
more difficult. Unfortunately, the lack of similarly strong
mechanisms in telephony means that not even trained se-
curity experts can currently reason about the identity of
other callers.

In this paper, we address this problem with
AuthLoop.1 AuthLoop provides a strong cryptographic
authentication protocol inspired by TLS 1.2. However,
unlike other related solutions that assume Internet access
(e.g., Silent Circle, RedPhone, etc [24, 73, 25, 5, 3, 6,
1, 74, 7]), accessibility to a secondary and concurrent
data channel is not a guarantee in many locations (e.g.,
high density cities, rural areas) nor for all devices, man-
dating that a solution to this problem be network agnos-
tic. Accordingly, AuthLoop is designed for and trans-
mitted over the only channel certain to be available to all
phone systems — audio. The advantage to this approach
is that it requires no changes to any network core, which
would likely see limited adoption at best. Through the
use of AuthLoop, users can quickly and strongly iden-
tify callers who may fraudulently be claiming to be orga-
nizations including their financial institutions and their
government [28].

We make the following contributions:

1A name reminiscent of the “Local Loop” used to tie traditional
phone systems into the larger network, we seek to tie modern telephony
systems into the global authentication infrastructure that has dramati-
cally improved transaction security over the web during the past two
decades.

1

964 25th USENIX Security Symposium USENIX Association

IP Networks

PSTN

Cell Network

Gateway

Gateway

Intermediary
Telco

Networks

Internet

VOIP
Carrier

Web
Services

VOIP
Proxy

Figure 1: A high-level representation of modern telephony systems. In addition to voice being transcoded at each
gateway, all identity mechanisms become asserted rather than attested as calls cross network borders. A strong end-
to-end authentication must be designed aware of all such limitations.

• Design a Complete Transmission Layer: We de-
sign the first codec-agnostic modem that allows for
the transmission of data across audio channels. We
then create a supporting link layer protocol to en-
able the reliable delivery of data across the hetero-
geneous landscape of telephony networks.

• Design AuthLoop Authentication Protocol: After
characterizing the bandwidth limitations of our data
channel, we specify our security goals and design
the AuthLoop protocol to provide explicit authenti-
cation of one party (i.e., the “Prover”) and option-
ally weak authentication of the second party (i.e.,
the “Verifier”).

• Evaluate Performance of a Reference Implemen-
tation: We implement AuthLoop and test it us-
ing three representative codecs — G.711 (for PSTN
networks), AMR (for cellular networks) and Speex
(for VoIP networks). We demonstrate the ability
to create a data channel with a goodput of 500 bps
and bit error rates averaging below 0.5%. We then
demonstrate that AuthLoop can be run over this
channel in an average of 9 seconds (which can be
played below speaker audio), compared to running
a direct port of TLS 1.2 in an average of 97 seconds
(a 90% reduction in running time).

The remainder of this paper is organized as follows:
Section 2 provides background information and related

work; Section 3 presents the details of our system includ-
ing lower-layer considerations; Section 4 discusses our
security model; Section 5 formally defines the AuthLoop
protocol and parameterizes our system based on the mo-
dem; Section 6 discusses our prototype and experimental
results; Section 7 provides additional discussion about
our system; and Section 8 provides concluding remarks.

2 Background and Related Work

In this section, we provide an overview of modern tele-
phony networks and review current and proposed prac-
tices of authentication in those networks.

2.1 Modern Telephony Networks
The landscape of modern telephony is complex and het-
erogeneous. Subscribers can receive service from mo-
bile, PSTN and VoIP networks, and calls to those sub-
scribers may similarly originate from networks imple-
menting any of the above technologies. Figure 1 pro-
vides a high-level overview of this ecosystem.

While performing similar high-level functionality
(i.e., enabling voice calls), each of these networks is
built on a range of often incompatible technologies.
From circuit-switched intelligent network cores to packet
switching over the public Internet, very little information
beyond the voice signal actually propagates across the
borders of these systems. In fact, because many of these

2

USENIX Association 25th USENIX Security Symposium 965

a) 1-second chirp sweep from 300 - 3300 Hz before AMR-NB encoding

b) 1-second chirp sweep from 300 - 3300 Hz after AMR-NB encoding

Figure 2: A comparison of a signal (a) before and (b) after being encoded with the AMR codec. Note that while the
entirety of the signal is within the range of allowable frequencies for call audio, the received signal differs significantly
from its original form. It is therefore critical that a high-fidelity mechanism for delivering data over a mobile audio
channel be designed.

networks rely on different codecs for encoding voice,
one of the major duties of gateways between these sys-
tems is the transcoding of audio. Accordingly, voice en-
coded at one end of a phone call is unlikely to have the
same (or even similar) bitwise representation when it ar-
rives at the client side of the call. As evidence, the top
plot of Figure 2 shows a sweep of an audio signal from
300 to 3300 Hz (all within the acceptable band) across
1 second. The bottom plot shows the same signal af-
ter is has been encoded using the Adaptive Multi-Rate
(AMR) audio codec used in cellular networks, resulting
in a dramatically different message. This massive differ-
ence is a result of the voice-optimized audio codecs used
in different telephony networks. Accordingly, success-
fully performing end-to-end authentication will require
careful design for this non-traditional data channel.

One of the few pieces of digital information that can
be optionally passed between networks is the Caller ID.
Unfortunately, the security value of this metadata is min-
imal — such information is asserted by the source de-
vice or network, but never validated by the terminating
or intermediary networks. As such, an adversary is able
to claim any phone number (and therefore identity) as
its own with ease. This process requires little technical
sophistication, can be achieved with the assistance of a
wide range of software and services, and is the enabler
of greater than US$2 Billion in fraud annually [28].

2.2 Authentication in Telephony Networks
Authentication has been the chief security concern of
phone networks since their inception because of its
strong ties to billing [69]. Little effort was taken for au-
thentication in traditional landline networks as detecting
billable activity on a physical link limited the scalability
of attacks. First generation (1G) cellular systems were
the first to consider such mechanisms given the multi-

user nature of wireless spectrum. Unfortunately, 1G au-
thentication relied solely on the plaintext assertion of
each user’s identity and was therefore subject to signifi-
cant fraud [53]. Second generation (2G) networks (e.g.,
GSM) designed cryptographic mechanisms for authen-
ticating users to the network. These protocols failed to
authenticate the network to the user and lead to a range
of attacks against subscribers [44, 26, 19, 68]. Third
and fourth generation (3G and 4G) systems correctly
implement mutual authentication between the users and
providers [11, 12, 13]. Unfortunately, all such mecha-
nisms are designed to allow accurate billing, and do little
to help users identify other callers.

While a number of seemingly-cellular mechanisms
have emerged to provide authentication between end
users (e.g., Zphone, RedPhone) [24, 73, 25, 5, 3, 6, 1, 74,
7, 31, 30] , these systems ultimately rely on a data/Inter-
net connection to work, and are themselves vulnerable
to a number of attacks [63, 52]. Accordingly, there re-
mains no end-to-end solution for authentication across
voice networks (i.e., authentication with any non-VoIP
phone is not possible).

Mechanisms to deal with such attacks have had limited
success. Websites have emerged with reputation data for
unknown callers [2]; however, these sites offer no pro-
tection against Caller-ID spoofing, and users generally
access such information after such a call has occurred.
Others have designed heuristic approaches around black
lists [4], speaker recognition [71, 16, 72, 17, 66, 41],
channel characterization [18, 54], post hoc call data
records [58, 47, 23, 40] and timing [61]. Unfortunately,
the fuzzy nature of these mechanisms may cause them to
fail under a range of common conditions including con-
gestion and evasion.

Authentication between entities on the Internet gen-
erally relies on the use of strong cryptographic mecha-

3

966 25th USENIX Security Symposium USENIX Association

nisms. The SSL/TLS suite of protocols are by far the
most widely used, and help provide attestable identity for
applications as diverse as web browsing, email, instant
messaging and more. SSL/TLS are not without their own
issues, including a range of vulnerabilities across differ-
ent versions and implementations of the protocols [48,
27, 75, 34], weaknesses in the model and deployment
of Certificate Authorities [57, 36, 37, 38, 29, 39, 20],
and usability [55, 32, 60, 35, 65, 14, 15]. Regardless of
these challenges, these mechanisms provide more robust
means to reason about identity than the approaches used
in telephony.

Telephony can build on the success of SSL/TLS. How-
ever, these mechanisms can not simply be built on top
of current telephony systems. Instead, and as we will
demonstrate, codec-aware protocols that are optimized
for the limited bitrate and higher loss of telephony sys-
tems must be designed.

3 Voice Channel Data Transmission

To provide end-to-end authentication across any tele-
phone networks, we need a way to transfer data over the
voice channel. The following sections detail the chal-
lenges that must be addressed, how we implemented a
modem that provides a base data rate of 500bps, and how
we developed a link layer to address channel errors. We
conclude with a discussion of what these technical limi-
tations imply for using standard authentication technolo-
gies over voice networks.

3.1 Challenges to Data Transmission

Many readers may fondly remember dial-up Internet ac-
cess and a time when data transmission over voice chan-
nels was a common occurrence. In the heyday of tele-
phone modems, though, most voice channels were con-
nected over high-fidelity analog twisted pair. Although
the voice channel was band limited and digital trunks
used a low sample rate of 8kHz, the channel was quite
“well behaved” from a digital communications and sig-
nal processing perspective.

In the last two decades, telephony has been trans-
formed. Cellular voice and Internet telephony now com-
prise a majority of all voice communications; they are not
just ubiquitous, they are unavoidable. While beneficial
from a number of perspectives, one of the drawbacks is
that both of these modalities rely on heavily compressed
audio transmission to save bandwidth. These compres-
sion algorithms – audio codecs – are technological feats,
as they have permitted cheap, acceptable quality phone
calls, especially given that they were developed during
eras when computation was expensive. To do this, codec

designers employed a number of technical and psychoa-
coustic tricks to produce acceptable audio to a human
ear, and these tricks resulted in a channel poorly suited
for (if not hostile to) the transmission of digital data. As
a result, existing voice modems are completely unsuited
for data transmission in cellular or VoIP networks.

Voice codecs present several challenges to a general-
purpose modem. First, amplitudes are not well preserved
by voice codecs. This discounts many common modula-
tion schemes, including ASK, QAM, TCM, and PCM.
Second, phase discontinuities are rare in speech, and
are not effective to transmit data through popular voice
codecs. This discounts PSK, QPSK, and other modula-
tion schemes that rely on correct phase information. Fur-
thermore, many codecs lose phase information on encod-
ing/decoding audio, preventing the use of efficient de-
modulators that require correct phase (i.e., coherent de-
modulators). Because of the problems with amplitude
and phase modulation, frequency-shift modulation is the
most effective technique for transmitting data through
voice codecs. Even so, many codecs fail to accurately
reproduce input frequencies — even those well within
telephone voicebands (300–3400 Hz). Our physical layer
protocol addresses these challenges.

3.2 Modem design
The AuthLoop modem has three goals:

1. Support highest bitrate possible

2. At the lowest error rate possible

3. In the presence of deforming codecs

We are not the first to address transmission of data
over lossy compressed voice channels. Most prior ef-
forts [70, 51, 42] have focused on transmission over
a single codec, though one project, Hermes [33] was
designed to support multiple cellular codecs. Unfor-
tunately, that project only dealt with the modulation
scheme, and did not address system-level issues like re-
ceiver synchronization. Furthermore, the published code
did not have a complete demodulator, and our own im-
plementation failed to replicate their results. Thus, we
took Hermes as a starting point to produce our modem.

Most modems are designed around the concept of
modulating one or more parameters — amplitude, fre-
quency, and/or phase — of one or more sine waves. Our
modem modulates a single sine wave using one of three
discrete frequencies (i.e. it is a frequency shift key, or
FSK, modem). The selection of these frequencies is a
key design consideration, and our design was affected by
three design criteria.

First, our modem is designed for phone systems, so
our choice of frequencies are limited to the 300–3400Hz

4

USENIX Association 25th USENIX Security Symposium 967

Header Footer17 data bits

Figure 3: This 74ms modem transmission of a single frame demonstrates how data is modulated and wrapped in
headers and footers for synchronization.

range because most landline and cellular phones are lim-
ited to those frequencies. Second, because we cannot
accurately recover phase information for demodulation,
our demodulation must be decoherent; the consequence
is that our chosen frequencies must be separated by at
least the symbol transmission rate [64]. Third, each fre-
quency must be an integer multiple of the symbol fre-
quency. This ensures that each symbol completes a full
cycle, and it also ensures that each cycle begins and ends
on a symbol boundary. This produces a continuous phase
modulation, and it is critical because some voice codecs
will produce artifacts or aliased frequencies in the pres-
ence of phase discontinuities. These constraints led to
the selection of a 3-FSK system transmitting symbols at
1000 Hz using frequencies 1000, 2000, and 3000 Hz.

Unfortunately, 3-FSK will still fail to perform in many
compressed channels simply because those channels
distort frequencies, especially frequencies that change
rapidly. To mitigate issues with FSK, we use a differen-
tial modulation: bits are encoded not as individual sym-
bols, but by the relative difference between two consec-
utive symbols. For example, a “1” is represented by an
increase in two consecutive frequencies, while a “0” is
represented by a frequency decrease. Because we only
have 3 frequencies available, we have to limit the num-
ber of possible consecutive increases or decreases to 2.
Manchester encoding, where each bit is expanded into
two “half-bits” (e.g. a “1” is represented by “10”, and
“0” represented by “01”) limits the consecutive increases
or decreases within the limit.

While these details cover the transmission of data,
there are a few practical concerns that must be dealt with.
Many audio codecs truncate the first few milliseconds of
audio. In speech this is unnoticeable, and simplifies the
encoding. However, if the truncated audio carries data,
several bits will be lost every transmission. This effect
is compounded if voice activity detection (VAD) is used
(as is typical in VoIP and cellular networks). VAD distin-
guishes between audio and silence, and when no audio is
recorded in a call VAD indicates that no data should be
sent, saving bandwidth. However, VAD adds an addi-
tional delay before voice is transmitted again.

To deal with early voice clipping by codecs and VAD,
we add a 20 ms header and footer at the end of each
packet. This header is a 500 Hz sine wave; this frequency
is orthogonal to the other 3 transmission frequencies, and
is half the symbol rate, meaning it can be used to syn-
chronize the receiver before data arrives. A full modem
transmission containing 17 bits of random data can be
seen in Figure 3.

To demodulate data, we must first detect that data is
being transmitted. We distinguish silence and a trans-
mission by computing the energy of the incoming signal
using a short sliding window (i.e, the short-time energy).
Then we locate the header and footer of a message to
locate the beginning and end of a data transmission. Fi-
nally, we compute the average instantaneous frequency
for each half-bit and compute differences between each
bit. An increase in frequency indicates 1, a decrease in-
dicates 0.

3.3 Link Layer

Despite a carefully designed modem, reception errors
will still occur. These are artifacts created by line noise,
the channel codec, or an underlying channel loss (e.g., a
lost IP packet). To address these issues, we developed
a link layer to ensure reliable transmission of handshake
messages. This link layer manages error detection, error
correction, frame acknowledgment, retransmission, and
reassembly of fragmented messages.

Because error rates can sometimes be as high as sev-
eral percent, a robust retransmission scheme is needed.
However, because our available modem data rate is so
low, overhead must be kept to a minimum. This rules out
most standard transmission schemes that rely on explicit
sequence numbers. Instead, our data link layer chunks
transmitted frames into small individual blocks that may
be checked and retransmitted if lost. We are unaware of
other link layers that use this approach. The remainder
of this subsection motivates and describes this scheme.

5

968 25th USENIX Security Symposium USENIX Association

IDLE
(START)

SEND
ERROR
FRAME

SEND
STANDARD

FRAME

RECEIVE
STANDARD

FRAME

RECEIVE
OTHER
FRAME

AWAIT
ACK

SEND ACK
SEND

REPEAT
FRAMES

SEND
ERROR

MESSAGE

NACKs>0

Timeout /
Error

NACKs==0

AWAIT
REPEAT
BLOCKS

SEND
ERROR
FRAME

ANY
STATE

RECEIVE
ERROR
FRAME

Timeout

Receive
Repeat
Blocks

NACKs >0

NACKs==0

Figure 4: Link Layer State Machine

3.4 Framing and error detection
Most link layers are designed to transmit large (up to
12,144 bits for Ethernet) frames, and these channels ei-
ther use large (e.g., 32-bit) CRCs2 for error detection to
retransmit the entire frame, or use expensive but neces-
sary error correcting schemes in lossy media like radio.
Error correcting codes recover damaged data by trans-
mitting highly redundant data, often inflating the data
transmitted by 100% or more. The alternative, sending
large frames with a single CRC, was unlikely to succeed.
To see why, note that:

P(CorrectCRC) = (1−P(biterror))CRClength (1)

For a 3% bit error rate, the probability of just the CRC
being undamaged is less than 38% — meaning two thirds
of packets will be dropped for having a bad CRC inde-
pendent of other errors. Even at lower loss rates, retrans-
mitting whole frames for a single error would cause a
massive overhead.

Instead, we divide each frame into 32-bit “blocks”.
Each block carries 29 bits of data and a 3-bit CRC. This
allows short sections of data to be checked for errors in-
dividually and retransmitted, which is closer to optimal
transmission. Block and CRC selection was not arbitrary,
but rather the result of careful modeling and analysis. In
particular, we aimed to find an optimal tradeoff between
overhead (i.e., CRC length) and error detection. Intu-
itively, longer CRCs provide better error detection and
reduce the probability of an undetected error. More for-
mally, a CRC of length l can guarantee detection of up to

2A Cyclic Redundancy Check (CRC) is a common checksum that
is formed by representing the data as a polynomial and computing the
remainder of polynomial division. The polynomial divisor is a design
parameter that must be chosen carefully.

HD bit errors3 in a B-length block of data, and can detect
more than HD errors probabilistically [43].

The tradeoff is maximizing the block size and mini-
mizing the CRC length while minimizing the probability
of a loss in the frame or the probability of an undetected
error, represented by the following equations:

Pr(lost f rame) = 1−Pr(success f ul f rame) (2)

= 1− (1− p)B (3)

Pr
(

undetected
error

)
= 1−

HD

∑
i=0

(
B
i

)
pi(1− p)B−i (4)

where p represents the probability of a single bit er-
ror. The probability of undetected error is derived from
the cumulative binomial distribution. Using these equa-
tions and the common bit error rate of 0.3% (measured in
Section 6), we selected 32-bit blocks with a 3-bit CRC.
We chose the optimal 3-bit CRC polynomial according to
Koopman and Chakravarty [43]. These parameters give a
likelihood of undetected error of roughly 0.013% , which
will rarely affect a regular user. Even a call center user
would see a protocol failure due to bit error once every
two weeks, assuming 100 calls per day.

3.5 Acknowledgment and Retransmission
Error detection is only the first step of the error recovery
process, which is reflected as a state machine in Figure 4.

When a message frame is received, the receiver com-
putes which blocks have an error and sends an acknowl-
edgment frame (“ACK”) to the transmitter. The ACK
frame contains a single bit for each block transmitted to
indicate if the block was received successfully or not.

3The Hamming distance of the transmitted and received data

6

USENIX Association 25th USENIX Security Symposium 969

Blocks that were negatively acknowledged are retrans-
mitted; the retransmission will also be acknowledged by
the receiver. This process will continue until all original
blocks are received successfully.

By using a single bit of acknowledgment for each
block we save the overhead of using sequence num-
bers. However, even a single bit error in an ACK will
completely desynchronize the reassembly of correctly re-
ceived data. Having meta-ACK and ACK retransmission
frames would be unwieldy and inelegant. Instead, we
transmit redundant ACK data as a form of error correc-
tion; we send ACK data 3 times in a single frame and
take the majority of any bits that conflict. The likelihood
of a damaged ACK is then:

Block Count×3×Pr(biterr)2 (5)

instead of

1− (1−Pr(biterr))Block Count (6)

Note that there are effectively distinct types of frames
– original data, ACK data, retransmission data, and er-
ror frames. We use a four-bit header to distinguish these
frames; like ACK data, we send three copies of the
header to ensure accurate recovery. We will explore more
robust error correcting codes in future work.

3.6 Naı̈ve TLS over Voice Channels
With a modem and link layer design established, we can
now examine how a standard authentication scheme —
TLS 1.2 — would fare over a voice channel.

Table 1 shows the amount of data in the TLS hand-
shakes of four popular Internet services: Facebook,
Google, Bank of America, and Yahoo. These handshakes
require from 41,000 to almost 58,000 bits to transmit,
and this excludes application data and overhead from
the TCP/IP and link layers. At 500 bits per second (the
nominal speed of our modem), these transfers would re-
quire 83–116 seconds as a lower bound. From a usabil-
ity standpoint, standard TLS handshakes are simply not
practical for voice channels. Accordingly, a more effi-
cient authentication protocol is necessary.

4 Security Model

Having demonstrated that data communication is pos-
sible but extremely limited via voice channels, we now
turn our attention to defining a security model. The com-
bination of our modem and this model can then be used
to carefully design the AuthLoop protocol.

The goal of AuthLoop is to mitigate the most com-
mon enabler of phone fraud: claiming a false identity
via Caller ID spoofing. This attack generally takes the

Table 1: TLS Handshake Sizes

Site Name Total Bits Transmission
Time (seconds

at 500bps)
Facebook 41 544 83.088
Google 42 856 85.712

Bank of America 53 144 106.288
Yahoo 57 920 115.840

Average 48 688 97.732

form of the adversary calling the victim user and extract-
ing sensitive information via social engineering. The
attack could also be conducted by sending the victim a
malicious phone number to call (e.g., via a spam text or
email). An adversary may also attempt to perform a man
in the middle attack, calling both the victim user and a le-
gitimate institution and then hanging up the call on either
when they wish to impersonate that participant. Finally,
an adversary may attempt to perform a call forwarding
attack, ensuring that correctly dialed numbers are redi-
rected (undetected to the caller) to a malicious endpoint.

We base our design on the following assumptions. An
adversary is able to originate phone calls from any tele-
phony device (i.e., cellular, PSTN, or VoIP) and spoof
their Caller ID information to mimic any phone number
of their choosing. Targeted devices will either display
this spoofed number or, if they contain a directory (e.g.,
contact database on a mobile phone), a name associated
or registered with that number (e.g., “Bank of America”).
The adversary can play arbitrary sounds over the audio
channel, and may deliver either an automated message
or interact directly with the targeted user. Lastly, the
adversary may use advanced telephony features such as
three-way calling to connect and disconnect parties arbi-
trarily. This model describes the majority of adversaries
committing Caller ID fraud at the time of this work.

Our scenario contains two classes of participants, a
Verifier (i.e., the user) and Prover (i.e., either the attacker
of the legitimate identity owner). The adversary is ac-
tive and will attempt to assert an arbitrary identity. As is
common on the Web, we assume that Provers have cer-
tificates issued by their service provider4 containing their
public key and that Verifiers may have weak credentials
(e.g., account numbers, PINs, etc) but do not have cer-
tificates. We seek to achieve the following security goals
in the presence of this adversary:

1. (G1) Authentication of Prover: The Verifier
should be able to explicitly determine the validity of
an asserted Caller ID and the identity of the Prover
without access to a secondary data channel.

4See Section 7 for details.

7

970 25th USENIX Security Symposium USENIX Association

Mobile
(Verifier)

Call Center
(Prover)

(1) V, NV

(2) P, NP , CP , D(KP
-, P, NP)

(3) E(KP
+,S), H(k,'VRFY', #1, #2)

(4) H(k,'PROV', #1, #2)

(0) Initiate Call

...

(n-1) H(k, V, NV+n-1)

(n) H(k, P, NP+n)

C:
E:
H:
D:
K+,-:
k:
N:
P:
S:
V:

Certificate
Encryption
HMAC
Digital Signature
Public/Private Key
Symmetric Key
Nonce
Prover
Pre-Master Secret
Verifier

Figure 5: The AuthLoop authentication protocol. Solid arrows indicate the initial handshake message flows, and dotted
arrows indicate subsequent authenticated “keep alive” messages. Note that #1 and #2 in messages 2 and 3 indicate that
that contents of messages 1 and 2 are included in the calculation of the HMAC, as is done in TLS 1.2.

2. (G2) Proof of Liveness: The Prover and Verifier
will be asked to demonstrate that they remain on
the call throughout its duration.

Note that we do not aim to achieve voice confidential-
ity. As discussed in Section 2, the path between two tele-
phony participants is likely to include a range of codec
transformations, making the bitwise representation of
voice vary significantly between source and destination.
Accordingly, end-to-end encryption of voice content is
not currently possible given the relatively low channel
bitrate and large impact of transcoding. Solutions such
as Silent Circle [7] and RedPhone [1] are able to achieve
this guarantee strictly because they are VoIP clients that
traverse only data networks and therefore do not experi-
ence transcoding. However, as we discuss in Section 7,
our techniques enable the creation of a low-bandwidth
channel that can be used to protect the confidentiality and
integrity of weak client authentication credentials.

5 AuthLoop Protocol

This section describes the design and implementation of
the AuthLoop protocol.

5.1 Design Considerations
Before describing the full protocol, this section briefly
discusses the design considerations that led to the
AuthLoop authentication protocol. As previously men-
tioned, we are constrained in that there is no fully-fledged
Public Key Infrastructure, meaning that Verifiers (i.e.,
end users) do not universally possess a strong creden-
tial. Moreover, because we are limited to transmission
over the audio channel, the AuthLoop protocol must be
highly bandwidth efficient.

The most natural choice for AuthLoop would be
to reuse an authentication protocol such as Needham-
Schroeder [50]. Reusing well-understood security pro-
tocols has great value. However, Needham-Schroeder
is inappropriate because it assumes that both sides have
public/private key pairs or can communicate with a third
party for session key establishment. Goal G1 is there-
fore not practically achievable in real telephony systems
if Needham-Schroeder is used. This protocol is also un-
suitable as it does not establish session keys, meaning
that achieving G2 would require frequent re-execution of
the entire authentication protocol, which is likely to be
highly inefficient.

TLS can achieve goals G1 and G2, and already does so
for a wide range of traditional applications on the Web.
Unfortunately, the handshaking and negotiation phases
of TLS 1.2 require significant bandwidth. As we demon-
strate in Section 3, unmodified use of this protocol can
require an average of 97 seconds before authentication
can be completed. However, because it can achieve goals
G1 and G2, TLS 1.2 is useful as a template for our pro-
tocol, and we discuss what could be considered a highly-
optimized version below. We note that while TLS 1.3
provides great promise for reducing handshaking costs,
the current draft version requires more bandwidth than
the AuthLoop protocol.

5.2 Protocol Definition

Figure 5 provides a formal definition for our authenti-
cation protocol. We describe this protocol below, and
provide details about its implementation and parameteri-
zation (e.g., algorithm selection) in Section 5.4.

The AuthLoop protocol begins immediately after a

8

USENIX Association 25th USENIX Security Symposium 971

call is terminated.5 Either party, the Prover P (e.g., a call
center) or the Verifier V (e.g., the end user) can initiate
the call. V then transmits its identity (i.e., phone num-
ber) and a nonce NV to P. Upon receiving this message,
P transmits a nonce NP, its certificate CP, and signs the
contents of the message to bind the nonce to its identity.
Its identity, P, is transmitted via Caller ID and is also
present in the certificate.

V then generates a pre-master secret S, and uses
S to generate a session key k, which is the result
of HMAC(S,NP,NV). V then extracts P’s public key
from the certificate, encrypts S using that key and then
computes HMAC(k, ‘V RFY ’,#1,#2), where ‘VRFY’ is
a literal string, and #1 and #2 represent the con-
tents of messages 1 and 2. V then sends S and the
HMAC to P. P decrypts the pre-master secret and
uses it to similarly calculate k, after which is calculates
HMAC(k, ‘PROV ’,#1,#2), which it then returns to V .

At this time, P has demonstrated knowledge of the pri-
vate key associated with the public key included in its
certificate, thereby authenticating the asserted identity.
If the Prover does not provide the correct response, its
claim of the Caller ID as its identity is rejected. Security
goal G1 is therefore achieved. Moreover, P and V now
share a session key k, which can be subsequently used
to provide continued and efficient proofs (i.e., HMACs
over incrementing nonces) that they remain on the call,
thereby achieving Goal G2.

We note that the session key generation step between
messages 2 and 3 can be extended to provide keys for
protecting confidentiality and integrity (as is done in
most TLS sessions). While these keys are not of value
for voice communications (given the narrow bitrate of
our channel), they can be used to protect client authen-
tication credentials. We discuss this in greater detail in
Section 7.

5.3 Formal Verification

We believe that our protocol is secure via inspection.
However, to provide stronger guarantees, we use the
Proverif v1.93 [22] automatic cryptographic protocol
verifier to reason about the security of the AuthLoop
handshake. Proverif requires that protocols be rewritten
as Horn clauses and modeled in Pi Calculus, from which
it can then reason about secrecy and authentication in the
Dolev-Yao setting. AuthLoop was represented by a to-
tal of 60 lines of code, and Proverif verified the secrecy
of the session key k. Further details about configuration
will be available in our technical report.

5This is the telephony term for “delivered to its intended destina-
tion,” and signifies the beginning of a call, not its end.

Table 2: Authloop Message Sizes

Message Field Size(Bits)
Verifier Hello 144

Nonce 96
Cert Ident Number 40
Protocol Command 8

Prover Hello 1692
Nonce 96

Certificate (optional) 1592
Protocol Command 8
Verifier Challenge 1312

Encrypted Premaster Secret 1224
HMAC 80

Protocol Command 8
Prover Response 88

HMAC 80
Protocol Command 8

Total With Certificate 3236
Total Without Certificate 1648

5.4 Implementation Parameters
Table 2 provides accounting of every bit used in the
AuthLoop protocol for each message. Given the tight
constraints on the channel, we use the following param-
eters and considerations to implement our protocol as ef-
ficiently as possible while still providing strong security
guarantees.

We use elliptic curve cryptography for public key
primitives. We used the Pyelliptic library for Python [9],
which is a Python wrapper around OpenSSL. Keys were
generated on curve sect283r1, and keys on this curve
provide security equivalent to RSA 3456 [56]. For keyed
hashes, we use SHA-256 as the underlying hash function
for HMACs. To reduce transmission time, we compute
the full 256-bit HMAC and truncate the result to 80 bits.
Because the security factor of HMAC is dependent al-
most entirely on the length of the hash, this truncation
maintains a security factor of 2−80 [21]. This security
factor is a commonly accepted safe value [49] for the
near future, and as our data transmission improves, the
security factor can increase as well.

While similar to TLS 1.2, we have made a few im-
portant changes to reduce overhead. For instance, we
do not perform cipher suite negotiation in every session
and instead assume the default use of AES256 GCM and
SHA256. Our link layer header contains a bit field indi-
cating whether negotiation is necessary; however, it is
our belief that starting with strong defaults and negotiat-
ing in the rare scenario where negotiation is necessary is
critical to saving bandwidth for AuthLoop. Similarly, we
are able to exclude additional optional information (e.g.,

9

972 25th USENIX Security Symposium USENIX Association

compression types supported) and the rigid TLS Record
format to ensure that our overhead is minimized.

We also limit the contents of certificates. Our certifi-
cates consist of a protocol version, the prover’s phone
number, claimed identification (i.e., a name), validity pe-
riod, unique certificate identification number, the certifi-
cate owner’s ECC public key and a signature. Because
certificate transmission comprises nearly half of the to-
tal transmission time, we implemented two variants of
AuthLoop: the standard handshake and a version with
a verifier-cached certificate. Certificate caching enables
a significantly abbreviated handshake. For certificate
caching, we include a 16-bit certificate identifier that the
verifier sends to the prover to identify which certificate is
cached. We discuss how we limit transmitted certificate
chain size to a single certificate in Section 7.

Finally, we keep the most security-sensitive parame-
ters as defined in the TLS specification, including rec-
ommended sizes for nonces (96 bits).

While our protocol implementation significantly re-
duces the overhead compared to TLS 1.2 for this appli-
cation, there is still room for improvement. In partic-
ular, the encrypted pre-master secret requires 1224 bits
for the 256-bit premaster secret. This expansion is due
to the fact that while RSA has a simple primitive for
direct encryption of a small value, with ECC one must
use a hybrid encryption model called the Integrated En-
cryption Scheme (IEC), so a key must be shared sepa-
rately from the encrypted data. Pyelliptic also includes
a SHA-256 HMAC of the ECC keyshare and encrypted
data to ensure integrity of the message (which is standard
practice in IEC). Because the message already includes
an HMAC, in future work we plan to save 256 bits (or
15% of the cached certificate handshake) by including
the HMAC of the ECC share into the message HMAC.

6 Evaluation

Previous sections established the need for a custom au-
thentication protocol using a voice channel modem to
provide end-to-end authentication for telephone calls. In
this section, we describe and evaluate our prototype im-
plementation. In particular, we characterize the error
performance of the modem across several audio codecs,
compute the resulting actual throughput after layer 2 ef-
fects are taken into account, and finally measure the end
to end timing of complete handshakes.

6.1 Prototype Implementation

Our prototype implementation consists of software im-
plementing the protocol, link layer, and modem running
on commodity PCs. While we envision that AuthLoop

Table 3: Bit Error Rates

Codec Average Bit Error Std. Dev
G.711 0.0% 0.0%

AMR-NB 0.3% 0.2%
Speex 0.5% 5%

will eventually be a stand-alone embedded device or im-
plemented in telephone hardware/software, a PC served
as an ideal prototyping platform to evaluate the system.

We implemented the AuthLoop protocol in Python us-
ing the Pyelliptic library for cryptography. We also im-
plemented the link layer in Python. Our modem was
written in Matlab, and that code is responsible for mod-
ulating data, demodulating data, and sending and re-
ceiving samples over the voice channel. We used the
Python Engine for Matlab to integrate our modem with
Python. Our choice of Matlab facilitated rapid prototyp-
ing and development of the modem, but the Matlab run-
time placed a considerable load on the PCs running the
prototype. Accordingly, computation results, while al-
ready acceptable, should improve for embedded imple-
mentations.

We evaluate the modem and handshake using soft-
ware audio channels configured to use one of three au-
dio codecs: G.711 (µ-law), Adaptive MultiRate Narrow
Band (AMR-NB), and Speex. These particular codecs
were among the most common codecs used for land-
line audio compression, cellular audio, and VoIP audio,
respectively. We use the sox[10] implementations of
G.711 and AMR-NB and the ffmpeg[8] implementation
of Speex. We use software audio channels to provide
a common baseline of comparison, as no VoIP client or
cellular device supports all of these codecs.

As link layer performance depends only on the bit er-
ror characteristics of the modem, we evaluate the link
layer using a software loopback with tunable loss char-
acteristics instead of a voice channel. This allowed us to
fully and reproducibly test and evaluate the link layer.

6.2 Modem Evaluation
The most important characteristic of the modem is its
resistance to bit errors. To measure bit error, we transmit
100 frames of 2000 random bits6 each and measure the
bit error after reception.

Table 3 shows the average and standard deviation of
the bit error for various codecs. The modem saw no
bit errors on the G.711 channel; this is reflective of the
fact that G.711 is high-quality channel with very mini-
mal processing and compression. AMR-NB and Speex

62000 bits was chosen as the first “round” number larger than the
largest message in the AuthLoop handshake.

10

USENIX Association 25th USENIX Security Symposium 973

Table 4: Link Layer Transmission of 2000 bits

Bit Error Rate Transmission Time Goodput
0.1% 4.086 s (0.004) 490 bps
1% 6.130 s (0.009) 326 bps
2% 11.652 s (0.007) 172 bps

both saw minimal bit error as well, though Speex had a
much higher variance in errors. Speex had such a high
variance because one frame was truncated, resulting in a
higher average error despite the fact the other 99 frames
were received with no error.

6.3 Link Layer Evaluation
The most important characteristic of the link layer is its
ability to optimize goodput – the actual amount of appli-
cation data transmitted per unit time (removing overhead
from consideration).

Table 4 shows as a function of bit error the transmis-
sion time and the goodput of the protocol compared to
the theoretical optimal transmission time and goodput.
The optimal numbers are computed from the optimal bit
time (at 500 bits per second) plus 40ms of header and
footer. The experimental numbers are the average of
transmission of 50 messages with 2000 bits each. The
table shows that in spite of high bit error rates (up to 2%)
the link layer is able to complete message transmission.
Of course, the effect of bit errors on goodput is substan-
tial at larger rates. Fortunately, low bit error rates (e.g.
0.1%) result in a minor penalty to goodput – only 5bps
lower than the optimal rate. Higher rates have a more
severe impact, resulting in 65.8% and 34.7% of optimal
goodput for 1% and 2% loss. Given our observations
of bit error rates at less than 0.5% for all codecs, these
results demonstrate that our Link Layer retransmission
parameters are set with an acceptable range.

6.4 Handshake Evaluation
To evaluate the complete handshake, we measure the
complete time from handshake start to handshake com-
pletion from the verifier’s perspective. We evaluate both
variants of the handshake: with and without the prover
sending a certificate. Handshakes requiring a certificate
exchange will take much longer than handshakes with-
out a certificate. This is a natural consequence of simply
sending more data.

Table 5 shows the total handshake times for calls over
each of the three codecs. These results are over 10 calls
each. Note that these times are corrected to remove
the effects of instrumentation delays and artificial delays
caused by IPC among the different components of our

prototype that would be removed or consolidated in de-
ployment.

From the verifier perspective, we find that cached-
certificate exchanges are quite fast – averaging 4.844 sec-
onds across all codecs. When certificates are not cached,
our overall average time is 8.977 seconds. Differences in
times taken for certificate exchanges for different codecs
are caused by the relative underlying bit error rate of
each codec. G.711 and Speex have much lower error
rates than AMR-NB, and this results in a lower overall
handshake time. In fact, because those codecs saw no er-
rors during the tests, their execution times were virtually
identical.

Most of the time spent in the handshake is spent in
transmitting messages over the voice channel. In fact,
transmission time accounts for 99% of our handshake
time. Computation and miscellaneous overhead average
to less than 50 milliseconds for all messages. This indi-
cates that AuthLoop is computationally minimal and can
be implemented on a variety of platforms.

7 Discussion

This section provides a discussion of client authentica-
tion, public key infrastructure, and deployment consider-
ations for AuthLoop.

7.1 Client Credentials
Up until this point, we have focused our discussion
around strong authentication of one party in the phone
call (i.e., the Prover). However, clients already engage in
a weaker “application-layer” authentication when talking
to many call centers. For instance, when calling a finan-
cial institution or ISP, users enter their account number
and additional values including PINs and social security
numbers. Without one final step, our threat model would
allow for an adversary to successfully steal such creden-
tials as follows: An adversary would launch a 3-Way call
to both the victim client and the targeted institution. Af-
ter passively observing the successful handshake, the ad-
versary could capture the client’s credentials (i.e., DTMF
tone inputs) and hang up both ends of the call. The adver-
sary could then call the targeted institution back spoofing
the victim’s Caller ID and present the correct credentials.

One of the advantages of TLS is that it allows for the
generation of multiple session keys, for use not only in
continued authentication, but also in the protection of
data confidentiality and integrity. AuthLoop is no differ-
ent. While the data throughput enabled by our modem
is low, it is sufficiently large enough to carry encrypted
copies of client credentials. Accordingly, an adversary
attempting to execute the above attack would be unable
to do so successfully because this sensitive information

11

974 25th USENIX Security Symposium USENIX Association

Table 5: Handshake completion times

Codec Cached Certificate Certificate Exchanged
G.711 4.463 s (0.000) 8.279 s (0.000)

AMR-NB 5.608 s (0.776) 10.374 s (0.569)
Speex 4.427 s (0.000) 8.279 s (0.000)

Average 4.844 s 8.977 s

could easily be passed through AuthLoop (and therefore
useless in a second session). Moreover, because users are
already accustomed to entering such information when
interacting with these entities, the user experience could
continue without any observable difference.

7.2 Telephony PKI

One of the most significant problems facing SSL/TLS is
its trust model. X.509 certificates are issued by a vast
number of Certificate Authorities (CAs), whose root cer-
tificates can be used to verify the authenticity of a pre-
sented certificate. Unfortunately, the unregulated nature
of who can issue certificates to whom (i.e., what author-
ity does X have to verify and bind names to entity Y ?)
and even who can act as a CA have been known since the
inception of the current Public Key Infrastructure [37].
This weakness has lead to a wide range of attacks, and
enabled both the mistaken identity of domain owners
and confusion as to which root-signed certificate can be
trusted. Traditional certificates present another challenge
in this environment - the existence of long verification
chains in the presence of the bitrate limited audio channel
means that the blind adoption of the Internet’s traditional
PKI model will simply fail if applied to telephony sys-
tems. As we demonstrated in our experiment in Table 1,
transmitting the entirety of long certificate chains would
simply be detrimental to the performance of AuthLoop.

The structure of telephony networks leads to a natu-
ral, single rooted PKI system. Competitive Local Ex-
change Carriers (CLECs) are assigned blocks of phone
numbers by the North American Numbering Plan Asso-
ciation (NANPA), and ownership of these blocks is eas-
ily confirmed through publicly posted resources such as
NPA/NXX databases in North America. A similar ob-
servation was recently made in the secure Internet rout-
ing community, and resulted in the proposal of the Re-
source Public Key Infrastructure (RPKI) [45]. The ad-
vantage to this approach is that because all allocation of
phone numbers is conducted under the ultimate author-
ity of NANPA, all valid signatures on phone numbers
must ultimately be rooted in a NANPA certificate. This
Telephony Public Key Infrastructure (TPKI) reduces the
length of certificate chains and allows us to easily store
the root and all CLEC certificates in the US and asso-

bankof
america.com

Symantec

Verisign Root

(800) 432-1000
Bank of
America

AT&T
(NPA/NXX

Administrator)

NANPA Root

AddTrust Root Entrust Root

xyz.bankof
america.com

Current Internet PKI Proposed TPKI

Stored
at

Endpoint
. . .

Stored
at

Endpoint

Figure 6: The Telephony Public Key Infrastructure
(TPKI). Unlike in Internet model, the TPKI has a single
root (NANPA) which is responsible for all block alloca-
tion, and a limited second level of CLECs who admin-
ister specific numbers. Accordingly, only the certificate
for the number claimed in the current call needs to be
sent during the handshake.

ciated territories (≈ 700 [46]) in just over 100 KiB of
storage (1600 bits per certificate × 700). Alternatively,
if certificates are only needed for toll free numbers, a sin-
gle certificate for the company that administers all such
numbers (i.e., Somos, Inc.) would be sufficient.

Figure 6 shows the advantages of our ap-
proach. Communicating with a specific server
(xyz.bankofamerica.com) may require the transmis-
sion of three or more certificates before identity can be
verified. Additionally, the existence of different roots
adds confusion to the legitimacy of any claimed identity.
Our proposed TPKI relies on a single NANPA root, and
takes advantage of the relatively small total number of
CLECs to require only single certificate for the calling
number to be transmitted during the handshake. We
leave further discussion of the details of the proposed
TPKI (e.g., revocation, etc) to our future work.

7.3 Deployment Considerations

As our experiments demonstrate that AuthLoop is band-
width and not processor bound, we believe that these

12

USENIX Association 25th USENIX Security Symposium 975

techniques can be deployed successfully across a wide
range of systems. For instance, AuthLoop can be em-
bedded directly into new handset hardware. Moreover, it
can be used immediately with legacy equipment through
external adapters (e.g., Raspberry Pi). Alternatively,
AuthLoop could be loaded onto mobile devices through
a software update to the dialer, enabling large numbers
of devices to immediately benefit.

Full deployments have the opportunity to make au-
dio signaling of AuthLoop almost invisible to the user.
If AuthLoop is in-line with the call audio, the system
can remove AuthLoop transmissions from the audio sent
to the user. In other words, users will never hear the
AuthLoop handshakes or keep-alive messages. While
our current strategy is to minimize the volume of the sig-
naling so as to not interrupt a conversation (as has been
done in other signaling research [62]), we believe that
the in-line approach will ultimately provide the greatest
stability and least intrusive user experience.

Lastly, we note that because AuthLoop is targeted
across all telephony platforms, a range of security indi-
cators will be necessary for successfully communicating
authenticated identity to the user. However, given the
limitations of space and the breadth of devices and their
interfaces, we leave this significant exploration to our fu-
ture work.

8 Conclusions

Phone systems serve as the trusted carriers of some of our
most sensitive communications. In spite of this trust, au-
thentication between two end points across this heteroge-
neous landscape was previously not possible. In this pa-
per, we present AuthLoop to address this challenge. We
began by designing a modem and supporting link layer
protocol for the reliable delivery of data over a voice
channel. With the limitations of this channel understood,
we then presented a security model and protocol to pro-
vide explicit authentication of an assertion of Caller ID,
and discussed ways in which client credentials could be
subsequently protected. Finally, we demonstrated that
AuthLoop reduced execution time by over an order of
magnitude on average when compared to the direct ap-
plication of TLS 1.2 to this problem. In so doing, we
have demonstrated that end-to-end authentication is in-
deed possible across modern telephony networks.

Acknowledgment

The authors would like to thank our anonymous review-
ers for their helpful comments and colleagues at the
Florida Institute for Cybersecurity Research for their as-
sistance in preparing this manuscript.

This work was supported in part by the US National
Science Foundation under grant numbers CNS-1617474,
CNS-1526718 and CNS-1464088. Any opinions, find-
ings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessar-
ily reflect the views of the National Science Foundation.

References

[1] RedPhone. https://play.google.com/store/
apps/details?id=org.thoughtcrime.

redphone.

[2] Directory of Unknown Callers. http://www.

800notes.com/, 2015.

[3] GSMK CryptoPhone. http://www.

cryptophone.de/en/, 2015.

[4] Nomorobo. https://www.nomorobo.com/,
2015.

[5] PGPfone - Pretty Good Privacy Phone. http://

www.pgpi.org/products/pgpfone/, 2015.

[6] Signal. https://itunes.apple.com/us/app/

signal-private-messenger/id874139669?

mt=8, 2015.

[7] Silent Circle. https://www.silentcircle.

com/, 2015.

[8] ffmpeg. https://www.ffmpeg.org, 2016.

[9] Pyelliptic. https://pypi.python.org/pypi/

pyelliptic, 2016.

[10] sox. http://sox.sourceforge.net/Main/

HomePage, 2016.

[11] 3rd Generation Partnership Project. A Guide to 3rd
Generation Security. Technical Report 33.900 ver-
sion 1.2.0, 2000.

[12] 3rd Generation Partnership Project. 3G Security
Principles and Objectives (3GPP TS 33.120). 2001.

[13] 3rd Generation Partnership Project. 3GPP TS
23.228 IP Multimedia Subsystem (IMS). (Release
11), 2012.

[14] D. Akhawe, B. Amann, M. Vallentin, and R. Som-
mer. Here’s my cert, so trust me, maybe? Under-
standing TLS errors on the web. In Proceedings of
the 22nd International Conference on World Wide
Web (WWW), pages 59–70, 2013.

13

976 25th USENIX Security Symposium USENIX Association

[15] D. Akhawe and A. P. Felt. Alice in Warningland:
A large-scale field study of browser security warn-
ing effectiveness. In Proceedings of the USENIX
Security Symposium, 2013.

[16] F. Alegre, G. Soldi, and N. Evans. Evasion
and obfuscation in automatic speaker verification.
In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 749–753, 2014.

[17] F. Alegre and R. Vipperla. On the vulnerability
of automatic speaker recognition to spoofing at-
tacks with artificial signals. In Proceedings of the
20th European Signal Processing Conference (EU-
SIPCO), pages 36–40, 2012.

[18] V. Balasubramaniyan, A. Poonawalla, M. Ahamad,
M. Hunter, and P. Traynor. PinDr0p: Using Single-
Ended Audio Features to Determine Call Prove-
nance. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS),
2010.

[19] E. Barkan, E. Biham, and N. Keller. Instant
ciphertext-only cryptanalysis of GSM encrypted
communication. Journal of Cryptology, 21(3):392–
429, 2008.

[20] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek,
and K. R. Butler. Forced perspectives: Evaluating
an SSL trust enhancement at scale. In Proceed-
ings of the 2014 Internet Measurement Conference
(IMC), pages 503–510. ACM, 2014.

[21] M. Bellare. New Proofs for NMAC and HMAC
Security without Collision-Resistance. Advances
in Cryptology - CRYPTO ’06, 2006.

[22] B. Blanchet. ProVerif: Cryptographic proto-
col verifier in the formal model. http://www.

proverif.ens.fr/, 2016.

[23] H. K. Bokharaei, A. Sahraei, Y. Ganjali, R. Ker-
alapura, and A. Nucci. You can SPIT, but you
can’t hide: Spammer identification in telephony
networks. In Proceedings of the IEEE INFOCOM,
pages 41–45, 2011.

[24] R. Bresciani. The ZRTP protocol analysis on the
Diffie-Hellman mode. Foundations and Methods
Research Group, 2009.

[25] R. Bresciani, S. Superiore, S. Anna, and I. Pisa. The
ZRTP protocol security considerations. Technical
Report LSV-07-20, 2007.

[26] Y. J. Choi and S. J. Kim. An improvement on pri-
vacy and authentication in GSM. In Proceedings
of Workshop on Information Security Applications
(WISA), 2004.

[27] J. Clark and P. C. Van Oorschot. SoK: SSL and
HTTPS: Revisiting past challenges and evaluating
certificate trust model enhancements. In Proceed-
ings of the IEEE Symposium on Security and Pri-
vacy (S&P), pages 511–525, 2013.

[28] Communications Fraud Control Association
(CFCA). 2013 Global Fraud Loss Survey. http:

//www.cvidya.com/media/62059/global-

fraud_loss_survey2013.pdf, 2013.

[29] I. Dacosta, M. Ahamad, and P. Traynor. Trust No
One Else: Detecting MITM Attacks Against SS-
L/TLS Without Third-Parties. In Proceedings of
the European Symposium on Research in Computer
Security (ESORICS), 2012.

[30] I. Dacosta, V. Balasubramaniyan, M. Ahamad,
and P. Traynor. Improving Authentication Perfor-
mance of Distributed SIP Proxies. IEEE Transac-
tions on Parallel and Distributed Systems (TPDS),
22(11):1804–1812, 2011.

[31] I. Dacosta and P. Traynor. Proxychain: Developing
a Robust and Efficient Authentication Infrastruc-
ture for Carrier-Scale VoIP Networks. In Proceed-
ings of the USENIX Annual Technical Conference
(ATC), 2010.

[32] R. Dhamija, J. D. Tygar, and M. Hearst. Why phish-
ing works. In Proceedings of the SIGCHI con-
ference on Human Factors in Computing Systems
(CHI), CHI ’06, New York, NY, USA, 2006. ACM.

[33] A. Dhananjay, A. Sharma, M. Paik, J. Chen, T. K.
Kuppusamy, J. Li, and L. Subramanian. Hermes:
Data transmission over unknown voice channels. In
Proceedings of the Sixteenth Annual International
Conference on Mobile Computing and Networking,
MobiCom, New York, NY, USA, 2010. ACM.

[34] Z. Durumeric, J. Kasten, D. Adrian, J. A. Hal-
derman, M. Bailey, F. Li, N. Weaver, J. Amann,
J. Beekman, M. Payer, and V. Paxson. The matter
of heartbleed. In Proceedings of the 2014 Confer-
ence on Internet Measurement Conference (IMC),
pages 475–488, New York, NY, USA, 2014. ACM.

[35] S. Egelman, L. F. Cranor, and J. Hong. You’ve been
warned: An empirical study of the effectiveness of
web browser phishing warnings. In Proceedings of
the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI), 2008.

14

USENIX Association 25th USENIX Security Symposium 977

[36] C. Ellison, B. Frantz, B. Lampson, R. L. Rivest,
B. Thomas, and T. Ylonen. SPKI Certificate The-
ory. IETF, RFC 2693, 1999.

[37] C. Ellison and B. Schneier. Ten risks of PKI: What
you’re not being told about public key infrastruc-
ture. Computer Security Journal, 16(1):1–7, 2000.

[38] R. Holz, L. Braun, N. Kammenhuber, and G. Carle.
The SSL landscape: a thorough analysis of the
x.509 PKI using active and passive measurements.
In Proceedings of the 2011 ACM SIGCOMM
conference on Internet Measurement Conference
(IMC), pages 427–444, 2011.

[39] L. S. Huang, A. Rice, E. Ellingsen, and C. Jack-
son. Analyzing forged SSL certificates in the wild.
In Proceedings of the IEEE Symposium on Security
and Privacy (SP), 2014.

[40] N. Jiang, Y. Jin, A. Skudlark, W.-L. Hsu, G. Ja-
cobson, S. Prakasam, and Z.-L. Zhang. Isolating
and analyzing fraud activities in a large cellular net-
work via voice call graph analysis. In Proceedings
of the 10th international conference on Mobile sys-
tems, applications, and services (MobiSys), page
253, 2012.

[41] Q. Jin, A. R. Toth, A. W. Black, and T. Schultz. Is
voice transformation a threat to speaker identifica-
tion? In Proceedings of the International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 4845–4848. IEEE, 2008.

[42] N. N. Katugampala, K. T. Al-Naimi, S. Villette, and
A. M. Kondoz. Real-time end-to-end secure voice
communications over GSM voice channel. 2005
European Signal Processing Conference, pages 1–
4, 2005.

[43] P. Koopman and T. Chakravarty. Cyclic redun-
dancy code (CRC) polynomial selection for embed-
ded networks. In 2004 International Conference
on Dependable Systems and Networks, pages 145–
154, June 2004.

[44] C. Lee, M. Hwang, and W. Yang. Enhanced privacy
and authentication for the global system for mobile
communications. Wireless Networks, 5(4):231–
243, 1999.

[45] M. Lepinski, R. Barnes, and S. Kent. An Infras-
tructure to Support Secure Internet Routing. IETF,
RFC 6480, 2012.

[46] Local Search Association. CLEC Infor-
mation. http://www.thelsa.org/main/

clecinformation.aspx, 2016.

[47] B. Mathieu, S. Niccolini, and D. Sisalem. SDRS:
A Voice-over-IP spam detection and reaction sys-
tem. IEEE Security & Privacy Magazine, 6(6):52–
59, nov 2008.

[48] B. Moeller and A. Langley. TLS Fallback Signaling
Cipher Suite Value (SCSV) for Preventing Protocol
Downgrade Attacks. Internet-draft, Internet Engi-
neering Task Force, 2014.

[49] National Institute of Standards and Technology.
NIST Special Publication 800-107 Revision 1:
Recommendation for Applications Using Ap-
proved Hash Algorithms. http://csrc.nist.

gov/publications/nistpubs/800-107-

rev1/sp800-107-rev1.pdf, 2008.

[50] R. Needham and M. Schroeder. Using encryp-
tion for authentication in large networks of comput-
ers. Communications of the ACM, 21(12):993–999,
1978.

[51] M. A. Ozkan, B. Ors, and G. Saldamli. Secure
voice communication via GSM network. 2011 7th
International Conference on Electrical and Elec-
tronics Engineering (ELECO), pages II–288–II–
292, 2011.

[52] M. Petraschek, T. Hoeher, O. Jung, H. Hlavacs,
and W. Gansterer. Security and usability aspects
of Man-in-the-Middle attacks on ZRTP. Journal
of Universal Computer Science, 14(5):673–692,
2008.

[53] A. Ramirez. Theft through cellular ‘clone’
calls. http://www.nytimes.com/1992/04/07/

business/theft-through-cellular-clone-

calls.html, April 7, 1992.

[54] B. Reaves, E. Shernan, A. Bates, H. Carter, and
P. Traynor. Boxed Out: Blocking Cellular Inter-
connect Bypass Fraud at the Network Edge. In Pro-
ceedings of the USENIX Security Symposium (SE-
CURITY), 2015.

[55] E. Rescorla. SSL and TLS: Designing and Building
Secure Systems. Addison-Wesley, 2001.

[56] C. Research. SEC 2: Recommended Elliptic Curve
Domain Parameters, January 2010.

[57] R. Rivest and B. Lampson. SDSI: A Sim-
ple Distributed Security Infrastructure. http:

//research.microsoft.com/en-us/um/

people/blampson/59-sdsi/webpage.html,
1996.

15

978 25th USENIX Security Symposium USENIX Association

[58] S. Rosset, U. Murad, E. Neumann, Y. Idan,
and G. Pinkas. Discovery of fraud rules for
telecommunications-challenges and solutions. In
Proceedings of the Fifth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining (KDD), pages 409–413, New York,
NY, USA, 1999.

[59] D. Samfat, R. Molva, and N. Asokan. Untraceabil-
ity in mobile networks. In Proceedings of the First
Annual International Conference on Mobile Com-
puting and Networking (MobiCom), pages 26–36,
1995.

[60] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fis-
cher. The emperor’s new security indicators. In
Proceedings of the IEEE Symposium on Security
and Privacy (SP), 2007.

[61] H. Sengar. VoIP Fraud : Identifying a wolf in
sheep’s clothing. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communi-
cations Security (CCS), pages 334–345, 2014.

[62] M. Sherr, E. Cronin, S. Clark, and M. Blaze. Sig-
naling vulnerabilities in wiretapping systems. IEEE
Security & Privacy Magazine, 3(6):13–25, Novem-
ber 2005.

[63] M. Shirvanian and N. Saxena. Wiretapping via
mimicry: Short voice imitation man-in-the-middle
attacks on crypto phones. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 868 – 879.

[64] Sklar, Bernard. Digital Communications: Funda-
mentals and Applications. Prentice Hall, Upper
Saddle River, N.J, second edition, Jan. 2001.

[65] J. Sobey, R. Biddle, P. van Oorschot, and A. S.
Patrick. Exploring user reactions to new browser
cues for extended validation certificates. In Pro-
ceedings of the European Symposium on Research
in Computer Security (ESORICS), 2008.

[66] Y. Stylianou. Voice transformation: A survey. In
Proceedings of the IEEE Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2009.

[67] TelTech. SpoofCard. http://www.spoofcard.

com/, 2015.

[68] M. Toorani and A. Beheshti. Solutions to the GSM
security weaknesses. In Proceedings of the Second
International Conference on Next Generation Mo-
bile Applications, Services, and Technologies (NG-
MAST), pages 576–581, 2008.

[69] P. Traynor, P. McDaniel, and T. La Porta. Security
for Telecommunications Networks. Number 978-0-
387-72441-6 in Advances in Information Security
Series. Springer, August 2008.

[70] A. Tyrberg. Data Transmission over Speech Coded
Voice Channels. Master’s Thesis, Linkoping Uni-
versity, 2006.

[71] Z. Wu, A. Khodabakhsh, C. Demiroglu, J. Yam-
agishi, D. Saito, T. Toda, and S. King. SAS: A
speaker verification spoofing database containing
diverse attacks. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 4440–4444, 2015.

[72] Z. Wu and H. Li. Voice conversion and spoof-
ing attack on speaker verification systems. In Pro-
ceedings of the Asia-Pacific Signal and Information
Processing Association Annual Summit and Con-
ference (APSIPA). IEEE, 2013.

[73] P. Zimmermann. Zfone. http://zfoneproject.
com/, 2015.

[74] P. Zimmermann and A. Johnston. ZRTP: Me-
dia Path Key Agreement for Unicast Secure RTP.
IETF, RFC 6189, 2011.

[75] T. Zoller. TLS & SSLv3 Renegotiation Vulnera-
bility. http://www.g-sec.lu/practicaltls.

pdf, 2009.

16

USENIX Association 25th USENIX Security Symposium 979

You are Who You Know and How You Behave: Attribute Inference Attacks
via Users’ Social Friends and Behaviors

Neil Zhenqiang Gong
ECE Department, Iowa State University

neilgong@iastate.edu

Bin Liu
MSIS Department, Rutgers University

BenBinLiu@gmail.com

Abstract
We propose new privacy attacks to infer attributes (e.g.,
locations, occupations, and interests) of online social net-
work users. Our attacks leverage seemingly innocent
user information that is publicly available in online so-
cial networks to infer missing attributes of targeted users.
Given the increasing availability of (seemingly innocent)
user information online, our results have serious impli-
cations for Internet privacy – private attributes can be in-
ferred from users’ publicly available data unless we take
steps to protect users from such inference attacks.

To infer attributes of a targeted user, existing infer-
ence attacks leverage either the user’s publicly available
social friends or the user’s behavioral records (e.g., the
webpages that the user has liked on Facebook, the apps
that the user has reviewed on Google Play), but not both.
As we will show, such inference attacks achieve limited
success rates. However, the problem becomes qualita-
tively different if we consider both social friends and be-
havioral records. To address this challenge, we develop
a novel model to integrate social friends and behavioral
records and design new attacks based on our model. We
theoretically and experimentally demonstrate the effec-
tiveness of our attacks. For instance, we observe that,
in a real-world large-scale dataset with 1.1 million users,
our attack can correctly infer the cities a user lived in for
57% of the users; via confidence estimation, we are able
to increase the attack success rate to over 90% if the at-
tacker selectively attacks a half of the users. Moreover,
we show that our attack can correctly infer attributes for
significantly more users than previous attacks.

1 Introduction

Online social networks (e.g., Facebook, Google+, and
Twitter) have become increasingly important platforms
for users to interact with each other, process information,
and diffuse social influence. A user in an online social

network essentially has a list of social friends, a digital
record of behaviors, and a profile. For instance, behav-
ioral records could be a list of pages liked or shared by
the user on Facebook, or they could be a set of mobile
apps liked or rated by the user in Google+ or Google
Play. A profile introduces the user’s self-declared at-
tributes such as majors, employers, and cities lived. To
address users’ privacy concerns, online social network
operators provide users with fine-grained privacy set-
tings, e.g., a user could limit some attributes to be acces-
sible only to his/her friends. Moreover, a user could also
create an account without providing any attribute infor-
mation. As a result, an online social network is a mixture
of both public and private user information.

One privacy attack of increasing interest revolves
around these user attributes [18, 27, 46, 39, 15, 33, 11,
26, 42, 29, 8, 25, 20, 21, 23]. In this attribute infer-
ence attack, an attacker aims to propagate attribute in-
formation of social network users with publicly visi-
ble attributes to users with missing or incomplete at-
tribute data. Specifically, the attacker could be any party
(e.g., cyber criminal, online social network provider, ad-
vertiser, data broker, and surveillance agency) who has
interests in users’ private attributes. To perform such
privacy attacks, the attacker only needs to collect pub-
licly available data from online social networks. Apart
from privacy risks, the inferred user attributes can also
be used to perform various security-sensitive activities
such as spear phishing [37] and attacking personal infor-
mation based backup authentication [17]. Moreover, an
attacker can leverage the inferred attributes to link on-
line users across multiple sites [4, 14, 2, 13] or with of-
fline records (e.g., publicly available voter registration
records) [38, 32] to form composite user profiles, result-
ing in even bigger security and privacy risks.

Existing attribute inference attacks can be roughly
classified into two categories, friend-based [18, 27, 46,
39, 15, 33, 11, 26, 20, 21, 23] and behavior-based [42,
29, 8, 25]. Friend-based attacks are based on the intu-

1

980 25th USENIX Security Symposium USENIX Association

ition of you are who you know. Specifically, they aim to
infer attributes for a user using the publicly available user
attributes of the user’s friends (or all other users in the so-
cial network) and the social structure among them. The
foundation of friend-based attacks is homophily, mean-
ing that two linked users share similar attributes [30]. For
instance, if more than half of friends of a user major in
Computer Science at a certain university, the user might
also major in Computer Science at the same university
with a high probability. Behavior-based attacks infer at-
tributes for a user based on the public attributes of users
that are similar to him/her, and the similarities between
users are identified by using their behavioral data. The
intuition behind behavior-based attacks is you are how
you behave. In particular, users with the same attributes
have similar interests, characteristics, and cultures so that
they have similar behaviors. For instance, if a user liked
apps, books, and music tracks on Google Play that are
similar to those liked by users originally from China, the
user might also be from China. Likewise, previous mea-
surement study [43] found that some apps are only pop-
ular in certain cities, implying the possibility of inferring
cities a user lived in using the apps the user used or liked.

However, these inference attacks consider either so-
cial friendship structures or user behaviors, but not both,
and thus they achieve limited inference accuracy as we
will show in our experiments. Moreover, the problem
of inferring user attributes becomes qualitatively differ-
ent if we consider both social structures and user behav-
iors because features derived from them differ from each
other, show different sparsity, and are at different scales.
We show in our evaluation that simply concatenating fea-
tures from the two sources of information regresses the
overall results and reduces attack success rates.

Our work: In this work, we aim to combine social
structures and user behaviors to infer user attributes.
To this end, we first propose a social-behavior-attribute
(SBA) network model to gracefully integrate social struc-
tures, user behaviors, and user attributes in a unified
framework. Specifically, we add additional nodes to a
social structure, each of which represents an attribute or
a behavior; a link between a user and an attribute node
represents that the user has the corresponding attribute,
and that a user has a behavior is encoded by a link be-
tween the user and the corresponding behavior node.

Second, we design a vote distribution attack (VIAL)
under the SBA model to perform attribute inference.
Specifically, VIAL iteratively distributes a fixed vote ca-
pacity from a targeted user whose attributes we want to
infer to all other users in the SBA network. A user re-
ceives a high vote capacity if the user and the targeted
user are structurally similar in the SBA network, e.g.,
they have similar social structures and/or have performed
similar behaviors. Then, each user votes for its attributes

via dividing its vote capacity to them. We predict the tar-
get user to own attributes that receive the highest votes.

Third, we evaluate VIAL both theoretically and em-
pirically; and we extensively compare VIAL with several
previous attacks for inferring majors, employers, and lo-
cations using a large-scale dataset with 1.1 million users
collected from Google+ and Google Play. For instance,
we observe that our attack can correctly infer the cities
a user lived in for 57% of the users; via confidence esti-
mation, we are able to increase the success rate to over
90% if the attacker selectively attacks a half of the users.
Moreover, we find that our attack VIAL substantially
outperforms previous attacks. Specifically, for Precision,
VIAL improves upon friend-based attacks and behavior-
based attacks by over 20% and around 100%, respec-
tively. These results imply that an attacker can use our
attack to successfully infer private attributes of substan-
tially more users than previous attacks.

In summary, our key contributions are as follows:

• We propose the social-behavior-attribute (SBA) net-
work model to integrate social structures, user be-
haviors, and user attributes.

• We design the vote distribution attack (VIAL) under
the SBA model to perform attribute inference.

• We demonstrate the effectiveness of VIAL both the-
oretically and empirically. Moreover, we observe
that VIAL correctly infers attributes for substan-
tially more users than previous attacks via eval-
uations on a large-scale dataset collected from
Google+ and Google Play.

2 Problem Definition and Threat Model

Attackers: The attacker could be any party who has in-
terests in user attributes. For instance, the attacker could
be a cyber criminal, online social network provider, ad-
vertiser, data broker, or surveillance agency. Cyber crim-
inals can leverage user attributes to perform targeted so-
cial engineering attacks (now often referred to as spear
phishing attacks [37]) and attacking personal information
based backup authentication [17]; online social network
providers and advertisers could use the user attributes
for targeted advertisements; data brokers make profit via
selling the user attribute information to other parties such
as advertisers, banking companies, and insurance indus-
tries [1]; and surveillance agency can use the attributes
to identify users and monitor their activities.

Collecting publicly available social structures and be-
haviors: To perform attribute inference attacks, an at-
tacker first needs to collect publicly available informa-
tion. In particular, in our attacks, an attacker needs to

2

USENIX Association 25th USENIX Security Symposium 981

collect social structures, user profiles, and user behav-
iors from online social networks. Such information can
be collected via writing web crawlers or leveraging APIs
developed by the service providers. Next, we formally
describe these publicly available information.

We use an undirected1 graph Gs = (Vs,Es) to repre-
sent a social structure, where edges in Es represent so-
cial relationships between the nodes in Vs. We denote
by Γu,S = {v|(u,v) ∈ Es} as the set of social neighbors
of u. In addition to social network structure, we have
behaviors and categorical attributes for nodes. For in-
stance, in our Google+ and Google Play dataset, nodes
are Google+ users, and edges represent friendship be-
tween users; behaviors include the set of items (e.g.,
apps, books, and movies) that users rated or liked on
Google Play; and node attributes are derived from user
profile information and include fields such as major, em-
ployer, and cities lived.

We use binary representation for user behaviors.
Specifically, we treat various objects (e.g., the Android
app “Angry Birds”, the movie “The Lord of the Rings”,
and the webpage “facebook.com”) as binary variables,
and we denote by mb the total number of objects. Behav-
iors of a node u are then represented as a mb-dimensional
binary column vector �bu with the ith entry equal to 1
when u has performed a certain action on the ith object
(positive behavior) and −1 when u does not perform the
action on it (negative behavior). For instance, when we
consider user review behaviors for Google+ users, ob-
jects could be items such as apps, books, and movies
available in Google Play, and the action is review; 1 rep-
resents that the user reviewed the corresponding item and
-1 means the opposite. For Facebook users, objects could
be webpages; 1 represents that the user liked or shared
the corresponding webpage and -1 means that the user
did not. We denote by B = [�b1 �b2 · · ·�bns] the behavior
matrix for all nodes.

We distinguish between attributes and attribute val-
ues. For instance, major, employer, and location are dif-
ferent attributes; and each attribute could have multiple
attribute values, e.g., major could be Computer Science,
Biology, or Physics. A user might own a few attribute
values for a single attribute. For example, a user that
studies Physics for undergraduate education but chooses
to pursue a Ph.D. degree in Computer Science has two
values for the attribute major. Again, we use a binary
representation for each attribute value, and we denote
the number of distinct attribute values as ma. Then at-
tribute information of a node u is represented as a ma-
dimensional binary column vector �au with the ith entry
equal to 1 when u has the ith attribute value (positive
attribute) and −1 when u does not have it (negative at-

1Our attacks can also be generalized to directed graphs.

tribute). We denote by A = [�a1 �a2 · · ·�ans] the attribute
matrix for all nodes.
Attribute inference attacks: Roughly speaking, an at-
tribute inference attack is to infer the attributes of a set
of targeted users using the collected publicly available
information. Formally, we define an attribute inference
attack as follows:

Definition 1 (Attribute Inference Attack). Suppose we
are given T = (Gs,A,B), which is a snapshot of a so-
cial network Gs with a behavior matrix B and an at-
tribute matrix A, and a list of targeted users Vt with so-
cial friends Γv,S and binary behavior vectors �bv for all
v ∈ Vt , the attribute inference attack is to infer the at-
tribute vectors�av for all v ∈Vt .

We note that a user setting the friend list to be pri-
vate could also be vulnerable to inference attacks. This
is because the user’s friends could set their friend lists
publicly available. The attacker can collect a social rela-
tionship between two users if at least one of them sets the
friend list to be public. Moreover, we assume the users
and the service providers are not taking other steps (e.g.,
obfuscating social friends [19] or behaviors [42, 9]) to
defend against inference attacks.
Applying inferred attributes to link users across
multiple online social networks and with offline
records: We stress that an attacker could leverage our
attribute inference attacks to further perform other at-
tacks. For instance, a user might provide different at-
tributes on different online social networks. Thus, an
attacker could combine user attributes across multiple
online social networks to better profile users, and an at-
tacker could leverage the inferred user attributes to do
so [4, 14, 2, 13]. Moreover, an attacker can further use
the inferred user attributes to link online users with of-
fline records (e.g., voter registration records) [38, 32],
which results in even bigger security and privacy risks,
e.g., more sophisticated social engineering attacks. We
note that even if the inferred user attributes (e.g., major,
employer) seem not private for some targeted users, an
attacker could use them to link users across multiple on-
line sites and with offline records.

3 Social-Behavior-Attribute Framework

We describe our social-behavior-attribute (SBA) network
model, which integrates social structures, user behaviors,
and user attributes in a unified framework. To perform
our inference attacks, an attacker needs to construct a
SBA network from his/her collected publicly available
social structures, user attributes, and behaviors.

Given a social network Gs = (Vs,Es) with mb behavior
objects, a behavior matrix B, ma distinct attribute val-
ues, and an attribute matrix A, we create an augmented

3

982 25th USENIX Security Symposium USENIX Association

social node attribute node
social link attribute link

u1 u2 u6u5u4u3

behavior node
behavior link

WhatsApp Messager Facebook PinterestAngry Birds

Computer Science Male Biology Google Inc.

Figure 1: Social-behavior-attribute network.

network by adding mb additional nodes to Gs, with each
node corresponding to a behavior object, and another ma
additional nodes to Gs, with each additional node corre-
sponding to an attribute value. For each node u in Gs with
positive attribute a or positive behavior b, we create an
undirected link between u and the additional node corre-
sponding to a or b in the augmented network. Moreover,
we add the targeted users into the augmented network
by connecting them to their friends and the additional
nodes corresponding to their positive behaviors. We call
this augmented network social-behavior-attribute (SBA)
network since it integrates the interactions among social
structures, user behaviors, and user attributes.

Nodes in the SBA framework corresponding to nodes
in Gs or targeted users in Vt are called social nodes,
nodes representing behavior objects are called behavior
nodes, and nodes representing attribute values are called
attribute nodes. Moreover, we use S, B, and A to repre-
sent the three types of nodes, respectively. Links between
social nodes are called social links, links between social
nodes and behavior nodes are called behavior links, and
links between social nodes and attribute nodes are called
attribute links. Note that there are no links between be-
havior nodes and attribute nodes. Fig. 1 illustrates an
example SBA network, in which the two social nodes u5
and u6 correspond to two targeted users. The behavior
nodes in this example correspond to Android apps, and
a behavior link represents that the corresponding user
used the corresponding app. Intuitively, the SBA frame-
work explicitly describes the sharing of behaviors and
attributes across social nodes.

We also place weights on various links in the SBA
framework. These link weights balance the influence of
social links versus behavior links versus attribute links.2

For instance, weights on social links could represent the
tie strengths between social nodes. Users with stronger
tie strengths could be more likely to share the same at-
tribute values. The weight on a behavior link could in-

2In principle, we could also assign weights to nodes to incorporate
their relative importance. However, our attack does not rely on node
weights, so we do not discuss them.

dicate the predictiveness of the behavior in terms of the
user’s attributes. In other words, a behavior link with a
higher weight means that performing the corresponding
behavior better predicts the attributes of the user. For in-
stance, if we want to predict user gender, the weight of
the link between a female user and a mobile app track-
ing women’s monthly periods could be larger than the
weight of the link between a male user and the app.
Weights on attribute links can represent the degree of
affinity between users and attribute values. For instance,
an attribute link connecting the user’s hometown could
have a higher weight than the attribute link connecting a
city where the user once travelled. We discuss how link
weights can be learnt via machine learning in Section 8.

We denote a SBA network as G = (V,E,w, t), where V
is the set of nodes, n = |V | is the total number of nodes,
E is the set of links, m = |E| is the total number of links,
w is a function that maps a link to its link weight, i.e.,
wuv is the weight of link (u,v), and t a function that maps
a node to its node type, i.e., tu is the node type of u. For
instance, tu = S means that u is a social node. Addition-
ally, for a given node u in the SBA network, we denote by
Γu, Γu,S, Γu,B, and Γu,A respectively the sets of all neigh-
bors, social neighbors, behavior neighbors, and attribute
neighbors of u. Moreover, for links that are incident from
u, we use du, du,S, du,B, and du,A to denote the sum of
weights of all links, weights of links connecting social
neighbors, weights of links connecting behavior neigh-
bors, and weights of links connecting attribute neighbors,
respectively. More specifically, we have du = ∑v∈Γu wuv
and du,Y = ∑v∈Γu,Y wuv, where Y = S,B,A.

Furthermore, we define two types of hop-2 social
neighbors of a social node u, which share common be-
havior neighbors or attribute neighbors with u. In par-
ticular, a social node v is called a behavior-sharing so-
cial neighbor of u if v and u share at least one com-
mon behavior neighbor. For instance, in Fig. 1, both
u2 and u4 are behavior-sharing social neighbors of u1.
We denote the set of behavior-sharing social neighbors
of u as Γu,BS. Similarly, we denote the set of attribute-
sharing social neighbors of u as Γu,AS. Formally, we have
Γu,BS={v|t(v)= S & Γv,B∩Γu,B �= /0} and Γu,AS={v|t(v)=
S & Γv,A∩Γu,A �= /0}. We note that our definitions of Γu,BS
and Γu,AS also include the social node u itself. These no-
tations will be useful in describing our attack.

4 Vote Distribution Attack (VIAL)

4.1 Overview
Suppose we are given a SBA network G which also in-
cludes the social structures and behaviors of the targeted
users, our goal is to infer attributes for every targeted
user. Specifically, for each targeted user v, we compute

4

USENIX Association 25th USENIX Security Symposium 983

Dividing Backtracking Aggregating

Targeted
 user

Figure 2: Illustration of our three local rules.

the similarity between v and each attribute value, and
then we predict that v owns the attribute values that have
the highest similarity scores. In a high-level abstraction,
VIAL works in two phases.

• Phase I. VIAL iteratively distributes a fixed vote
capacity from the targeted user v to the rest of users
in Phase I. The intuitions are that a user receives a
high vote capacity if the user and the targeted user
are structurally similar in the SBA network (e.g.,
share common friends and behaviors), and that the
targeted user is more likely to have the attribute val-
ues belonging to users with higher vote capacities.
After Phase I, we obtain a vote capacity vector �sv,
where�svu is the vote capacity of user u.

• Phase II. Intuitively, if a user with a certain vote ca-
pacity has more attribute values, then, according to
the information of this user alone, the likelihood of
each of these attribute values belonging to the tar-
geted user decreases. Moreover, an attribute value
should receive more votes if more users with higher
vote capacities have the attribute value. Therefore,
in Phase II, each social node votes for its attribute
values via dividing its vote capacity among them,
and each attribute value sums the vote capacities
that are divided to it by its social neighbors. We
treat the summed vote capacity of an attribute value
as its similarity with v. Finally, we predict v has the
attribute values that receive the highest votes.

4.2 Phase I
In Phase I, VIAL iteratively distributes a fixed vote ca-
pacity from the targeted user v to the rest of users. We
denote by�s(i)v the vote capacity vector in the ith iteration,
where �s(i)vu is the vote capacity of node u in the ith itera-
tion. Initially, v has a vote capacity |Vs| and all other so-
cial nodes have vote capacities of 0. Formally, we have:

�s(0)vu =

{
|Vs| if u = v
0 otherwise

(1)

In each iteration, VIAL applies three local rules. They
are dividing, backtracking, and aggregating. Intuitively,

if a user u has more (hop-2) social neighbors, then each
neighbor could receive less vote capacity from u. There-
fore, our dividing rule splits a social node’s vote capacity
to its social neighbors and hop-2 social neighbors. The
backtracking rule takes a portion of every social node’s
vote capacity and assigns them back to the targeted user
v, which is based on the intuition that social nodes that
are closer to v in the SBA network are likely to be more
similar to v and should get more vote capacities. A user
could have a higher vote capacity if it is linked to more
social neighbors and hop-2 social neighbors with higher
vote capacities. Thus, for each user u, the aggregating
rule collects the vote capacities that are shared to u by its
social neighbors and hop-2 social neighbors. Fig. 2 illus-
trates the three local rules. Next, we elaborate the three
local rules.
Dividing: A social node u could have social neigh-
bors, behavior-sharing social neighbors, and attribute-
sharing social neighbors. To distinguish them, we use
three weights wS, wBS, and wAS to represent the shares
of them, respectively. For instance, the total vote ca-
pacity shared to social neighbors of u in the tth itera-
tion is �s(i−1)

vu × wS
wS+wBS+wAS

. Then we further divide the
vote capacity among each type of neighbors according
to their link weights. We define Iu,Y = 1 if the set of
neighbors Γu,Y is non-empty, otherwise Iu,Y = 0, where
Y = S,BS,AS. The variables Iu,S, Iu,BS, and Iu,AS are used
to consider the scenarios where u does not have some
type(s) of neighbors, in which u’s vote capacity is di-
vided among less than three types of social neighbors.
For convenience, we denote wT = wSIu,S + wBSIu,BS +
wASIu,AS.

• Social neighbors. A social neighbor x ∈ Γu,S re-
ceives a higher vote capacity from u if their link
weight (e.g., tie strength) is higher. Therefore, we
model the vote capacity p(i)v (u,x) that is divided to
x by u in the ith iteration as:

p(i)v (u,x) =�s(i−1)
vu · wS

wT
· wux

du,S
, (2)

where du,S is the summation of weights of social
links that are incident from u.

• Behavior-sharing social neighbors. A behavior-
sharing social neighbor x ∈ Γu,BS receives a higher
vote capacity from u if they share more behavior
neighbors with higher predictiveness. Thus, we
model vote capacity q(i)v (u,x) that is divided to x by
u in the ith iteration as:

q(i)v (u,x) =�s(i−1)
vu · wBS

wT
·wB(u,x), (3)

where wB(u,x) = ∑y∈Γu,B∩Γx,B
wuy
du,B

· wxy
dy,S

, represent-
ing the overall share of vote capacity that u divides

5

984 25th USENIX Security Symposium USENIX Association

to x because of their common behavior neighbors.
Specifically, wuy

du,B
characterizes the fraction of vote

capacity u divides to the behavior neighbor y and
wxy
dy,S

characterizes the fraction of vote capacity y di-
vides to x. Large weights of wuy and wxy indicate
y is a predictive behavior of the attribute values of
u and x, and having more such common behavior
neighbors make x share more vote capacity from u.

• Attribute-sharing social neighbors. An attribute-
sharing social neighbor x ∈ Γu,AS receives a higher
vote capacity from u if they share more attribute
neighbors with higher degree of affinity. Thus, we
model vote capacity r(i)v (u,x) that is divided to x by
u in the ith iteration as:

r(i)v (u,x) =�s(i−1)
vu · wAS

wT
·wA(u,x), (4)

where wA(u,x) = ∑y∈Γu,A∩Γx,A

wuy
du,A

· wxy
dy,S

, represent-
ing the overall share of vote capacity that u divides
to x because of their common attribute neighbors.
Specifically, wuy

du,A
characterizes the fraction of vote

capacity u divides to the attribute neighbor y and
wxy
dy,S

characterizes the fraction of vote capacity y di-
vides to x. Large weights of wuy and wxy indicate
y is an attribute value with a high degree of affin-
ity, and having more such common attribute values
make x share more vote capacity from u.

We note that a social node x could be multiple types
of social neighbors of u (e.g., x could be social neighbor
and behavior-sharing social neighbor of u), in which x
receives multiple shares of vote capacity from u and we
sum them as x’s final share of vote capacity.
Backtracking: For each social node u, the backtrack-
ing rule takes a portion α of u’s vote capacity back to
the targeted user v. Specifically, the vote capacity back-
tracked to v from u is α�s(i−1)

vu . Considering backtracking,
the vote capacity divided to the social neighbor x of u in
the dividing step is modified as (1−α)p(i)v (u,x). Sim-
ilarly, the vote capacities divided to a behavior-sharing
social neighbor and an attribute-sharing social neighbor
x are modified as (1−α)q(i)v (u,x) and (1−α)r(i)v (u,x),
respectively. We call the parameter α backtracking
strength. A larger backtracking strength enforces more
vote capacity to be distributed among the social nodes
that are closer to v in the SBA network. α = 0 means
no backtracking. We will show that, via both theoretical
and empirical evaluations, VIAL achieves better accu-
racy with backtracking.

We can verify that ∑x∈Γu,S
wux
du,S

= 1, ∑x∈Γu,BS
wB(u,x) =

1, and ∑x∈Γu,AS
wA(u,x) = 1 for every user u in the di-

viding step. In other words, every user divides all its

Algorithm 1: Phase I of VIAL
Input: G = (V,E,w, t), M, v, ε , and α .
Output: �sv.

1 begin
2 //Initializing the vote capacity vector.
3 for u ∈Vs do
4 if u = v then
5 �s(0)vu ←− |Vs|
6 else
7 �s(0)vu ←− 0
8 end
9 end

10 error ←− 1
11 while error > ε do
12 �s(i)v ←− α�ev +(1−α)MT�s(i−1)

v

13 error ←− |�s(i)v −�s(i−1)
v |/|Vs|

14 end
15 return�s(i)v

16 end

vote capacity to its neighbors (including the user itself if
the user has hop-2 social neighbors). Therefore, the to-
tal vote capacity keeps unchanged in every iteration, and
the vote capacity that is backtracked to the targeted user
is α|Vs|.
Aggregating: The aggregating rule computes a new
vote capacity for u by aggregating the vote capacities that
are divided to u by its neighbors in the ith iteration. For
the targeted user v, we also collect the vote capacities
that are backtracked from all social nodes. Formally, our
aggregating rule is represented as Equation 5.
Matrix representation: We derive the Phase I of our
attack using matrix terminologies, which makes it easier
to iteratively compute the vote capacities. Towards this
end, we define a dividing matrix M ∈ R|Vs|×|Vs|, which is
formally represented in Equation 6. The dividing matrix
encodes the dividing rule. Specifically, u divides Mux
fraction of its vote capacity to the neighbor x in the di-
viding step. Note that M includes the dividing rule for all
three types of social neighbors. With the dividing matrix
M, we can represent the backtracking and aggregating
rules in the ith iteration as follows:

�s(i)v = α�ev +(1−α)MT�s(i−1)
v , (7)

where�ev is a vector with the vth entry equals |Vs| and all
other entries equal 0, and MT is the transpose of M.

Given an initial vote capacity vector specified in Equa-
tion 1, we iteratively apply Equation 7 until the differ-
ence between the vectors in two consecutive iterations is
smaller than a predefined threshold. Algorithm 1 shows
Phase I of our attack.

6

USENIX Association 25th USENIX Security Symposium 985

Our aggregating rule to compute the new vote capacity�s(i)vu for u:

�s(i)vu =

{
(1−α)(∑x∈Γu,S

p(i)v (x,u)+∑x∈Γu,BS
q(i)v (x,u)+∑x∈Γu,AS

r(i)v (x,u)) if u �= v

(1−α)(∑x∈Γu,S
p(i)v (x,u)+∑x∈Γu,BS

q(i)v (x,u)+∑x∈Γu,AS
r(i)v (x,u))+α|Vs| otherwise

(5)

Our dividing matrix:

Mux =

{
δux,S · wS

wT
· wux

du,S
+δux,BS · wBS

wT
·wB(u,x)+δux,AS · wAS

wT
·wA(u,x) if x ∈ Γu,S ∪Γu,BS ∪Γu,AS

0 otherwise,
(6)

where δux,Y = 1 if x ∈ Γu,Y , otherwise δux,Y = 0, Y = S,BS,AS.

4.3 Phase II

In Phase I, we obtained a vote capacity for each user. On
one hand, the targeted user could be more likely to share
attribute values with the users with higher vote capaci-
ties. On the other hand, if a user has more attribute val-
ues, then the likelihood of each of these attribute values
belonging to the targeted user could be smaller. For in-
stance, if a user with a high vote capacity once studied in
more universities for undergraduate education, then ac-
cording to this user’s information alone, the likelihood
of the targeted user studying in each of those universities
could be smaller.

Moreover, among a user’s attribute values, an attribute
value that has a higher degree of affinity (represented by
the weight of the corresponding attribute link) with the
user could be more likely to be an attribute value of the
targeted user. For instance, suppose a user once lived in
two cities, one of which is the user’s hometown while
the other of which is a city where the user once travelled;
the user has a high vote capacity because he/she is struc-
turally close (e.g., he/she shares many common friends
with the targeted user) to the targeted user; then the tar-
geted user is more likely to be from the hometown of the
user than from the city the user once travelled.

Therefore, to capture these observations, we divide the
vote capacity of a user to its attribute values in proportion
to the weights of its attribute links; and each attribute
value sums the vote capacities that are divided to it by the
users having the attribute value. Intuitively, an attribute
value receives more votes if more users with higher vote
capacities link to the attribute value via links with higher
weights. Formally, we have

�tva = ∑
u∈Γa,S

�svu ·
wau

du,A
, (8)

where�tva is the final votes of the attribute value a, Γa,S is
the set of users who have the attribute value a, du,A is the
sum of weights of attribute links that are incident from u.

We treat the summed votes of an attribute value as its
similarity with v. Finally, we predict v has the attribute
values that receive the highest votes.

4.4 Confidence Estimation

For a targeted user, a confidence estimator takes the final
votes for all attribute values as an input and produces a
confidence score. A higher confidence score means that
attribute inference for the targeted user is more trustwor-
thy. We design a confidence estimator based on cluster-
ing techniques. A targeted user could have multiple at-
tribute values for a single attribute, and our attack could
produce close votes for these attribute values. Therefore,
we design a confidence estimator called clusterness for
our attack. Specifically, we first use a clustering algo-
rithm (e.g., k-means [24]) to group the votes that our at-
tack produces for all candidate attribute values into two
clusters. Then we compute the average vote in each clus-
ter, and the clusterness is the difference between the two
average votes. The intuition of our clusterness is that if
our attack successfully infers the targeted user’s attribute
values, there could be a cluster of attribute values whose
votes are significantly higher than other attribute values’.

Suppose the attacker chooses a confidence threshold
and only predicts attributes for targeted users whose con-
fidence scores are higher than the threshold. Via setting a
larger confidence threshold, the attacker will attack less
targeted users but could achieve a higher success rate. In
other words, an attacker can balance between the success
rates and the number of targeted users to attack via con-
fidence estimation.

5 Theoretical Analysis

We analyze the convergence of VIAL and derive the ana-
lytical forms of vote capacity vectors, discuss the impor-
tance of the backtracking rule, and analyze the complex-
ity of VIAL.

7

986 25th USENIX Security Symposium USENIX Association

5.1 Convergence and Analytical Solutions

We first show that for any backtracking strength α ∈
(0,1], the vote capacity vectors converge.

Theorem 1. For any backtracking strength α ∈ (0,1],
the vote capacity vectors �s(0)v , �s(1)v , �s(2)v , · · · converge,
and the converged vote capacity vector is α(I − (1 −
α)MT)−1�ev. Formally, we have:

�sv = lim
i→∞

�s(i)v = α(I − (1−α)MT)−1�ev, (9)

where I is an identity matrix and (I − (1−α)MT)−1 is
the inverse of (I − (1−α)MT).

Proof. See Appendix A.

Next, we analyze the convergence of VIAL and the an-
alytical form of the vote capacity vector when the back-
tracking strength α = 0.

Theorem 2. When α = 0 and the SBA network is con-
nected, the vote capacity vectors �s(0)v , �s(1)v , �s(2)v , · · · con-
verge, and the converged vote capacity vector is propor-
tional to the unique stationary distribution of the Markov
chain whose transition matrix is M. Mathematically, the
converged vote capacity vector�sv can be represented as:

�sv = |Vs|�π, (10)

where �π is the unique stationary distribution of the
Markov chain whose transition matrix is M.

Proof. See Appendix B.

With Theorem 2, we have the following corollary,
which states that the vote capacity of a user is propor-
tional to its weighted degree for certain assignments of
the shares of social neighbors and hop-2 social neighbors
in the dividing step.

Corollary 1. When α = 0, the SBA network is con-
nected, and for each user u, the shares of social neigh-
bors, behavior-sharing social neighbors, and attribute-
sharing social neighbors in the dividing step are wS =
τ · du,S, wBS = τ · du,B, and wAS = τ · du,A, respectively,
then we have:

�svu = |Vs|
du

D
, (11)

where τ is any positive number, du is the weights of all
links of u and D is the twice of the total weights of all
links in the SBA network, i.e., D = ∑u du.

Proof. See Appendix C.

5.2 Importance of Backtracking
Theorem 2 implies that when there is no backtracking,
the converged vote capacity vector is independent with
the targeted users. In other words, VIAL with no back-
tracking predicts the same attribute values for all targeted
users. This explains why VIAL with no backtracking
achieves suboptimal performance. We will further em-
pirically evaluate the impact of backtracking strength in
our experiments, and we found that VIAL’s performance
significantly degrades when there is no backtracking.

5.3 Time Complexity
The major cost of VIAL is from Phase I, which includes
computing M and iteratively computing the vote capac-
ity vector. M only needs to be computed once and is
applied to all targeted users. M is a sparse matrix with
O(m) non-zero entries, where m is the number of links in
the SBA network. To compute M, for every social node,
we need to go through its social neighbors and hop-2 so-
cial neighbors; and for a hop-2 social neighbor, we need
to go through the common attribute/behavior neighbors
between the social node and the hop-2 social neighbor.
Therefore, the time complexity of computing M is O(m).

Using sparse matrix representation of M, the time
complexity of each iteration (i.e., applying Equation 7)
in computing the vote capacity vector is O(m). There-
fore, the time complexity of computing the vote capacity
vector for one targeted user is O(d ·m), where d is the
number of iterations. Thus, the overall time complexity
of VIAL is O(d ·m) for one targeted user.

6 Data Collection

We collected a dataset from Google+ and Google Play to
evaluate our VIAL attack and previous attacks. Specif-
ically, we collected social structures and user attributes
from Google+, and user review behaviors from Google
Play. Google assigns each user a 21-digit universal ID,
which is used in both Google+ and Google Play. We
first collected a social network with user attributes from
Google+ via iteratively crawling users’ friends. Then we
crawled review data of users in the Google+ dataset. All
the information that we collected is publicly available.

6.1 Google+ Dataset
Each user in Google+ has an outgoing friend list (i.e., “in
your circles”), an incoming friend list (i.e., “have you
in circles”), and a profile. Shortly after Google+ was
launched in late June 2011, Gong et al. [16, 15] began
to crawl daily snapshots of public Google+ social net-
work structure and user profiles (e.g., major, employer,

8

USENIX Association 25th USENIX Security Symposium 987

and cities lived). Their dataset includes 79 snapshots of
Google+ collected from July 6 to October 11, 2011. Each
snapshot was a large Weakly Connected Component of
Google+ social network at the time of crawling.

We obtained one collected snapshot from Gong et
al. [16, 15]. To better approximate friendships between
users, we construct an undirected social network from
the crawled Google+ dataset via keeping an undirected
link between a user u and v if u is in v’s both incom-
ing friend list and outgoing friend list. After preprocess-
ing, our Google+ dataset consists of 1,111,905 users and
5,328,308 undirected social links.

User attributes: We consider three attributes, major,
employer, and cities lived. We note that, although we fo-
cus on these attributes that are available to us at a large
scale, our attack is also applicable to infer other attributes
such as sexual orientation, political views, and religious
views. Moreover, some targeted users might not view
inferring these attributes as an privacy attack, but an at-
tacker can leverage these attributes to further link users
across online social networks [4, 14, 2, 13] or even link
them with offline records to perform more serious secu-
rity and privacy attacks [38, 32].

We take the strings input by a user in its Google+ pro-
file as attribute values. We found that most attribute val-
ues are owned by a small number of users while some
are owned by a large number of users. Users could fill
in their profiles freely in Google+, which could be one
reason that we observe many infrequent attribute values.
Specifically, different users might have different names
for the same attribute value. For instance, the major of
Computer Science could also be abbreviated as CS by
some users. Indeed, we find that 20,861 users have Com-
puter Science as their major and 556 users have CS as
their major in our dataset. Moreover, small typos (e.g.,
one letter is incorrect) in the free-form inputs make the
same attribute value be treated as different ones. There-
fore, we manually label a set of attribute values.

1) Major. We consider the top-100 majors that are
claimed by the most users. We manually merge the ma-
jors that actually refer to the same one, e.g., Computer
Science and CS, Btech and Biotechnology. After prepro-
cessing, we obtain 62 distinct majors. 8.4% of users in
our dataset have at least one of these majors.

2) Employer. Similar to major, we select the top-100
employers that are claimed by the most users and manu-
ally merge the employers that refer to the same one. We
obtain 78 distinct employers, and 3.1% of users have at
least one of these employers.

3) Cities lived. Again, we select the top-100 cities in
which most users in the Google+ dataset claimed they
have lived in. After we manually merge the cities that ac-
tually refer to the same one, we obtain 70 distinct cities.
8% of users have at least one of these attribute values.

Table 1: Basic statistics of our SBA.

#nodes #links
social behavior attri. social behavior attri.

1,111,905 48,706 210 5,328,308 3,635,231 269,997

Summary and limitations: In total, we consider 210
popular distinct attribute values, including 62 majors,
78 employers, and 70 cities. We acknowledge that our
Google+ dataset might not be a representative sample of
the recent entire Google+ social network, and thus the in-
ference attack success rates obtained in our experiments
might not represent those of the entire Google+ social
network.

6.2 Crawling Google Play

There are 7 categories of items in Google Play. They
are apps, tv, movies, music, books, newsstand, and de-
vices. Google Play provides two review mechanisms for
users to provide feedback on an item. They are the lik-
ing mechanism and the rating mechanism. In the liking
mechanism, a user simply clicks a like button to express
his preference about an item. In the rating mechanism, a
user gives a rating score which is in the set {1,2,3,4,5}
as well as a detailed comment to support his/her rating.
A score of 1 represents low preference and a score of 5
represents high preference. We call a user reviewed an
item if the user rated or liked the item.

User reviews are publicly available in Google Play.
Specifically, after a user u logs in Google Play, u can
view the list of items reviewed by any user v once u can
obtain v’s Google ID. We crawled the list of items re-
viewed by each user in the Google+ dataset.

We find that 33% of users in the Google+ dataset have
reviewed at least one item. In total, we collected 260,245
items and 3,954,822 reviews. Since items with too few
reviews might not be informative to distinguish users
with different attribute values, we use items that were re-
viewed by at least 5 users. After preprocessing, we have
48,706 items and 3,635,231 reviews.

6.3 Constructing SBA Networks

We take each user in the Google+ dataset as a social node
and links between them as social links. For each item in
our Google Play dataset, we add a corresponding behav-
ior node. If a user reviewed an item, we create a link be-
tween the corresponding social node and the correspond-
ing behavior node. That a user reviewed an item means
that the user once used the item. Using similar items
could indicate similar interests, user characteristics, and
user attributes. To predict attribute values, we further

9

988 25th USENIX Security Symposium USENIX Association

add additional attribute nodes to represent attribute val-
ues, and we create a link between a social node and an
attribute node if the user has the attribute value. Table 1
shows the basic statistics of our constructed SBA for pre-
dicting attribute values.

In this work, we set the weights of all links in the SBA
to be 1. Therefore, our attacking result represents a lower
bound on what an attacker can achieve in practice. An
attacker could leverage machine learning techniques (we
discuss one in Section 8) to learn link weights to further
improve success rates.

7 Experiments

7.1 Experimental Setup
We describe the metrics we adopt to evaluate various at-
tacks, training and testing, and parameter settings.

Evaluation metrics: All attacks we evaluate essentially
assign a score for each candidate attribute value. Given a
targeted user v, we predict top-K candidate attribute val-
ues that have the highest scores for each attribute includ-
ing major, employer, and cities lived. We use Precision,
Recall, and F-score to evaluate the top-K predictions. In
particular, Precision is the fraction of predicted attribute
values that belong to v. Recall is the fraction of v’s at-
tribute values that are among the predicted K attribute
values. We address score ties in the manner described by
McSherry and Najork [31]. Precision characterizes how
accurate an attacker’s inferences are while Recall char-
acterizes how many user attributes are corrected inferred
by an attacker. In particular, Precision for top-1 predic-
tion is the fraction of users that the attacker can correctly
infer at least one attribute value. F-score is the harmonic
mean of Precision and Recall, i.e., we have

F-score =
2 ·Precision ·Recall
Precision+Recall

.

Moreover, we average the three metrics over all targeted
users. For convenience, we will also use P, R, and F to
represent Precision, Recall, and F-Score, respectively.

We also define performance gain and relative perfor-
mance gain of one attack A over another attack B to
compare their relative performances. We take Precision
as an example to show their definitions as follows:

Performance gain:
∆P = PrecisionA −PrecisionB

Relative performance gain:

∆P% =
PrecisionA −PrecisionB

PrecisionB
×100%

Training and testing: For each attribute value, we sam-
ple 5 users uniformly at random from the users that have
the attribute value and have reviewed at least 5 items, and
we treat them as test (i.e., targeted) users. In total, we
have around 1,050 test users. For test users, we remove
their attribute links from the SBA network and use them
as groundtruth. We repeat the experiments 10 times and
average the evaluation metrics over the 10 trials.
Parameter settings: In the dividing step, we set
equal shares for social neighbors, behavior-sharing social
neighbors, and attribute-sharing social neighbors, i.e.,
wS = wBS = wAS =

1
3 . The number of iterations to com-

pute the vote capacity vector is d = �log |Vs|�=20, after
which the vote capacity vector converges. Unless other-
wise stated, we set the backtracking strength α = 0.1.

7.2 Compared Attacks
We compare VIAL with friend-based attacks, behavior-
based attacks, and attacks that use both social structures
and behaviors. These attacks essentially assign a score
for each candidate attribute value, and return the K at-
tribute values that have the highest scores. Suppose v is
a test user and a is an attribute value, and we denote by
S(v,a) the score assigned to a for v.
Random: This baseline method computes the fraction
of users in the training dataset that have a certain attribute
value a, and it treats such fraction as the score S(v,a) for
all test users.
Friend-based attacks: We compare with three friend-
based attacks, i.e., CN-SAN, AA-SAN, and RWwR-
SAN [15]. They were shown to outperform previous at-
tacks such as LINK [46, 15].

• CN-SAN. S(v,a) is the number of common social
neighbors between v and a.

• AA-SAN. This attack weights the importance of
each common social neighbor between v and a pro-
portional to the inverse of the log of its number of
neighbors. Formally, S(v,a) = ∑u∈Γv,S∩Γa,S

1
log|Γu| .

• RWwR-SAN. RWwR-SAN augments the social
network with additional attribute nodes. Then it per-
forms a random walk that is initialized from the test
user v on the augmented graph. The stationary prob-
ability of the attribute node that corresponds to a is
treated as the score S(v,a).

Behavior-based attacks: We also evaluate three
behavior-based attacks.

• Logistic regression (LG-B-I) [42]. LG-B-I treats
each attribute value as a class and learns a multi-
class logistic regression classifier with the training

10

USENIX Association 25th USENIX Security Symposium 989

Ran
do

m

CN-S
AN

AA-S
AN

RW
wR-S

AN

LG-B
-I

LG-B
-II

VIA
L-B

LG-I
LG-II

VIA
L

Attacks

0.0

0.1

0.2

0.3

0.4

0.5
A

ve
ra

ge
pr

ec
is

io
ns

K=1
K=2
K=3

(a) Precision

Ran
do

m

CN-S
AN

AA-S
AN

RW
wR-S

AN

LG-B
-I

LG-B
-II

VIA
L-B

LG-I
LG-II

VIA
L

Attacks

0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

re
ca

lls

K=1
K=2
K=3

(b) Recall

Ran
do

m

CN-S
AN

AA-S
AN

RW
wR-S

AN

LG-B
-I

LG-B
-II

VIA
L-B

LG-I
LG-II

VIA
L

Attacks

0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

F
-s

co
re

s

K=1
K=2
K=3

(c) F-score

Figure 3: Precision, Recall, and F-Score for inferring majors. Although these attacks do not have temporal
orderings, we connect them via curves in the figures to better contrast them.

Ran
do

m

CN-S
AN

AA-S
AN

RW
wR-S

AN

LG-B
-I

LG-B
-II

VIA
L-B

LG-I
LG-II

VIA
L

Attacks

0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

pr
ec

is
io

ns

K=1
K=2
K=3

(a) Precision

Ran
do

m

CN-S
AN

AA-S
AN

RW
wR-S

AN

LG-B
-I

LG-B
-II

VIA
L-B

LG-I
LG-II

VIA
L

Attacks

0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

re
ca

lls

K=1
K=2
K=3

(b) Recall

Ran
do

m

CN-S
AN

AA-S
AN

RW
wR-S

AN

LG-B
-I

LG-B
-II

VIA
L-B

LG-I
LG-II

VIA
L

Attacks

0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

F
-s

co
re

s

K=1
K=2
K=3

(c) F-score

Figure 4: Precision, Recall, and F-Score for inferring employers.

Ran
do

m

CN-S
AN

AA-S
AN

RW
wR-S

AN

LG-B
-I

LG-B
-II

VIA
L-B

LG-I
LG-II

VIA
L

Attacks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

pr
ec

is
io

ns

K=1
K=2
K=3

(a) Precision

Ran
do

m

CN-S
AN

AA-S
AN

RW
wR-S

AN

LG-B
-I

LG-B
-II

VIA
L-B

LG-I
LG-II

VIA
L

Attacks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

re
ca

lls

K=1
K=2
K=3

(b) Recall

Ran
do

m

CN-S
AN

AA-S
AN

RW
wR-S

AN

LG-B
-I

LG-B
-II

VIA
L-B

LG-I
LG-II

VIA
L

Attacks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

F
-s

co
re

s

K=1
K=2
K=3

(c) F-score

Figure 5: Precision, Recall, and F-Score for inferring cities.

11

990 25th USENIX Security Symposium USENIX Association

Table 2: Performance gains and relative performance
gains of RWwR-SAN over other friend-based attacks,
where K = 1. Results are averaged over all attributes.
We find that RWwR-SAN is the best friend-based at-
tack.

Attack ΔP ΔP% ΔR ΔR% ΔF ΔF%
CN-SAN 0.07 24% 0.04 24% 0.05 24%
AA-SAN 0.08 26% 0.04 26% 0.05 26%

Table 3: Performance gains and relative performance
gains of VIAL-B over other behavior-based attacks,
where K = 1. We find that VIAL-B is the best
behavior-based attack.

Attack ΔP ΔP% ΔR ΔR% ΔF ΔF%
LG-B-I 0.06 42% 0.04 47% 0.05 45%
LG-B-II 0.07 47% 0.05 52% 0.06 50%

dataset. Specifically, LG-B-I extracts a feature vec-
tor whose length is the number of items for each
user that has review data, and a feature has a value
of the rating score that the user gave to the corre-
sponding item. Google Play allows users to rate or
like an item, and we treat a liking as a rating score
of 5. For a test user, the learned logistic regression
classifier returns a posterior probability distribution
over the possible attribute values, which are used as
the scores S(v,a). Weinsberg et al. [42] showed that
logistic regression classifier outperforms other clas-
sifiers including SVM [10] and Naive Bayes [29].

• Logistic regression with binary features (LG-B-
II) [25]. The difference between LG-B-II and LG-
B-I is that LG-B-II extracts binary feature vectors
for users. Specifically, a feature has a value of 1 if
the user has reviewed the corresponding item.

• VIAL-B. A variant of VIAL that only uses behavior
data. Specifically, we remove social links from the
SBA network and perform our VIAL attack using
the remaining links.

Attacks combining social structures and behav-
iors: Intuitively, we can combine social structures and
behaviors via concatenating social structure features with
behavior features. We compare with two such attacks.

• Logistic regression (LG-I). LG-I extracts a binary
feature vector whose length is the number of users
from social structures for each user, and a feature
has a value of 1 if the user is a friend of the person
that corresponds to the feature. Then LG-I concate-
nates this feature vector with the one used in LG-B-I
and learns multi-class logistic regression classifiers.

Table 4: Performance gains and relative performance
gains of VIAL over other attacks combining social
structures and behaviors, where K = 1. We find that
VIAL substantially outperforms other attacks.

Attack ΔP ΔP% ΔR ΔR% ΔF ΔF%
LG-I 0.17 61% 0.10 65% 0.13 63%
LG-II 0.18 65% 0.11 69% 0.13 67%

Table 5: Performance gains and relative performance
gains of VIAL over Random, RWwR-SAN (the best
friend-based attack), and VIAL-B (the best behavior-
based attack), where K = 1.

Attack ΔP ΔP% ΔR ΔR% ΔF ΔF%
Random 0.36 526% 0.22 535% 0.27 534%

RWwR-SAN 0.07 20% 0.05 23% 0.06 22%
VIAL-B 0.22 102% 0.13 99% 0.16 100%

• Logistic regression with binary features (LG-II).
LG-II concatenates the binary social structure fea-
ture vector with the binary behavior feature vector
used by LG-B-II.

We use the popular package LIBLINEAR [12] to learn
logistic regression classifiers.

7.3 Results
Fig. 3-Fig. 5 demonstrate the Precision, Recall, and F-
score for top-K inference of major, employer, and city,
where K = 1,2,3. Table 2-Table 5 compare different at-
tacks using results that are averaged over all attributes.
Our metrics are averaged over 10 trials. We find that
standard deviations of the metrics are very small, and
thus we do not show them for simplicity. Next, we de-
scribe several key observations we have made from these
results.
Comparing friend-based attacks: We find that
RWwR-SAN performs the best among the friend-based
attacks. Our observation is consistent with the previ-
ous work [15]. To better illustrate the difference be-
tween the friend-based attacks, we show the performance
gains and relative performance gains of RWwR-SAN
over other friend-based attacks in Table 2. Please refer
to Section 7.1 for formal definitions of (relative) perfor-
mance gains. The (relative) performance gains are aver-
aged over all attributes (i.e., major, employer, and city).
The reason why RWwR-SAN outperforms other friend-
based attacks is that RWwR-SAN performs a random
walk among the augmented graph, which better lever-
ages the graph structure, while other attacks simply count
the number of common neighbors or weighted common
neighbors.

12

USENIX Association 25th USENIX Security Symposium 991

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Backtracking strength, α

0.0

0.1

0.2

0.3

0.4

0.5

0.6
P

re
ci

si
on

of
in

fe
rr

in
g

ci
ti

es
K

=1

Figure 6: Impact of the backtracking strength on the
Precision of VIAL for inferring cities. We observe
that backtracking substantially improves VIAL’s per-
formance.

Comparing behavior-based attacks: We find that
VIAL-B performs the best among the behavior-based
attacks. Table 3 shows the average performance gains
and relative performance gains of VIAL-B over other
behavior-based attacks. Our results indicate that our
graph-based attack is a better way to leverage behavior
structures, compared to LG-B-I and LG-B-II, which flat-
ten the behavior structures into feature vectors. More-
over, LG-B-I and LG-B-II achieve very close perfor-
mances, which indicates that the rating scores carry little
information about user attributes.

Comparing attacks combining social structure and
behavior: We find that VIAL performs the best among
the attacks combining social structures and behaviors.
Table 4 shows the average performance gains and rela-
tive performance gains of VIAL over other attacks. Our
results imply that, compared to flattening the structures
into feature vectors, our graph-based attack can better in-
tegrate social structures and user behaviors.

Comparing VIAL with the best friend-based attack
and the best behavior-based attack: Table 4 shows
the average performance gains and relative performance
gains of VIAL over Random, the best friend-based at-
tack, and the best behavior-based attack. We find that
VIAL significantly outperforms these attacks, indicating
the importance of combining social structures and be-
haviors to perform attribute inference. This implies that,
when an attacker wants to attack user privacy via infer-
ring their private attributes, the attacker can successfully
attack substantially more users using VIAL.

Impact of backtracking strength: Fig. 6 shows the im-
pact of backtracking strength on the Precision of VIAL
for inferring cities. According to Theorem 1, VIAL with
α = 1 reduces to random guessing, and thus we do not
show the corresponding result in the figure. α = 0 cor-
responds to the case in which VIAL does not use back-
tracking. We observe that not using backtracking sub-

[5,20) [20,35) [35,50) ≥ 50
Number of reviewed items

0.45

0.50

0.55

0.60

0.65

A
ve

ra
ge

pr
ec

is
io

ns
of

in
fe

rr
in

g
ci

ti
es

, K
=1

Figure 7: Impact of the number of reviewed items on
the Precision of our attack VIAL for inferring cities.
We observe that, when users share more behaviors,
our attack is able to more accurately predict their at-
tributes.

stantially decreases the performance of VIAL. The rea-
son might be that 1) α = 0 makes VIAL predict the same
attribute values for all test users, according to Theorem 2,
and 2) a user’ attributes are close to the user in the SBA
network and backtracking makes it more likely for votes
to be distributed among these attribute nodes. Moreover,
we find that inference accuracies are stable across dif-
ferent backtracking strengths once they are larger than
0. The reason is that when we increase the backtrack-
ing strength, attribute values receive different votes, but
the ones with top ranked votes only change slightly. We
observe similar results for other attributes.

Impact of the number of reviewed items: Figure 7
shows the Precision as a function of the number of re-
viewed items for inferring cities lived. We average Preci-
sions for test users whose number of reviewed items falls
under a certain interval (i.e., [5,20), [20,35), [35,50), or
≥ 50). We observe that our attack can more accurately
infer attributes for users who share more digital behav-
iors (i.e., reviewed items in our case).

Confidence estimation: Figure 8 shows the trade-off
between the Precision and the fraction of users that are
attacked via our confidence estimator. We observe that
an attacker can increase the Precision (K = 1) of infer-
ring cities from 0.57 to over 0.92 if the attacker attacks
a half of the test users that are selected via confidence
estimation. We also tried the confidence estimator called
gap statistic [34], in which the confidence score for a
targeted user is the difference between the score of the
highest ranked attribute value and the score of the second
highest ranked one. Our confidence estimator slightly
outperforms gap statistic because a test user could have
multiple attribute values and our attack could produce
close scores for them.

13

992 25th USENIX Security Symposium USENIX Association

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of users that are attacked

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

A
ve

ra
ge

pr
ec

is
io

ns
of

in
fe

rr
in

g
ci

ti
es

, K
=1

Figure 8: Confidence estimation: trade-off between
the Precision of our attack and the fraction of test
users that are attacked. An attacker can substantially
improve the attack success rates when attacking less
users that are selected by our confidence estimator.

8 Discussion

This work focuses on propagating vote capacity among
the SBA network with given link weights, and our
method VIAL is applicable to any link weights. How-
ever, it is an interesting future work to learn the link
weights, which could further improve the attacker’s suc-
cess rates. In the following, we discuss one possible ap-
proach to learn link weights. Phase I of VIAL essentially
iteratively computes the vote capacity vector according
to Equation 7. Therefore, Phase 1 of VIAL can be
viewed as performing a random walk with a restart [40]
on the subgraph consisting of social nodes and social
links, where the matrix MT and α are the transition ma-
trix and restart probability of the random walk, respec-
tively. Therefore, the attacker could adapt supervised
random walk [3] to learn the link weights. Specifically,
the attacker already has a set of users with publicly avail-
able attributes and the attacker can use them as a training
dataset to learn the link weights; the attacker removes
these attributes from the SBA network as ground truth,
and the link weights are learnt such that VIAL can pre-
dict attributes for these users the most accurately.

9 Related Work

Friend-based attribute inference: He et al. [18] trans-
formed attribute inference to Bayesian inference on a
Bayesian network that is constructed using the social
links between users. They evaluated their method us-
ing a LiveJournal social network dataset with synthesized
user attributes. Moreover, it is well known in the ma-
chine learning community that Bayesian inference is not
scalable. Lindamood et al. [27] modified Naive Bayes
classifier to incorporate social links and other attributes
of users to infer some attribute. For instance, to infer

a user’s major, their method used the user’s other at-
tributes such as employer and cities lived, the user’s so-
cial friends and their attributes. However, their approach
is not applicable to users that share no attributes at all.

Zheleva and Getoor [46] studied various approaches to
consider both social links and groups that users joined to
perform attribute inference. They found that, with only
social links, the approach LINK achieves the best per-
formance. LINK represents each user as a binary fea-
ture vector, and a feature has a value of 1 if the user is a
friend of the person that corresponds to the feature. Then
LINK learns classifiers for attribute inference using these
feature vectors. Gong et al. [15] transformed attribute
inference to a link prediction problem. Moreover, they
showed that their approaches CN-SAN, AA-SAN, and
RWwR-SAN outperform LINK.

Mislove et al. [33] proposed to identify a local com-
munity in the social network by taking some seed users
that share the same attribute value, and then they pre-
dicted all users in the local community to have the shared
attribute value. Their approach is not able to infer at-
tributes for users that are not in any local communities.
Moreover, this approach is data dependent since detected
communities might not correlate with the attribute value.
For instance, Trauda et al. [41] found that communities
in a MIT male network are correlated with residence but
a female network does not have such property.

Thomas et al. [39] studied the inference of attributes
such as gender, political views, and religious views.
They used multi-label classification methods and lever-
aged features from users’ friends and wall posts. More-
over, they proposed the concept of multi-party privacy to
defend against attribute inference.

Behavior-based attribute inference: Weinsberg et
al. [42] investigated the inference of gender using the
rating scores that users gave to different movies. In par-
ticular, they constructed a feature vector for each user;
the ith entry of the feature vector is the rating score that
the user gave to the ith movie if the user reviewed the
ith movie, otherwise the ith entry is 0. They compared a
few classifiers including Logistic Regression (LG) [22],
SVM [10], and Naive Bayes [29], and they found that LG
outperforms the other approaches. Bhagat et al. [6] stud-
ied attribute inference in an active learning framework.
Specifically, they investigated which movies we should
ask users to review in order to improve the inference ac-
curacy the most. However, this approach might not be
applicable in real-world scenarios because users might
not be interested in reviewing the selected movies.

Chaabane et al. [8] used the information about the mu-
sics users like to infer attributes. They augmented the
musics with the corresponding Wikipedia pages and then
used topic modeling techniques to identify the latent sim-
ilarities between musics. A user is predicted to share

14

USENIX Association 25th USENIX Security Symposium 993

attributes with those that like similar musics with the
user. Kosinski et al. [25] tried to infer various attributes
based on the list of pages that users liked on Facebook.
Similar to the work performed by Weinsberg et al. [42],
they constructed a feature vector from the Facebook likes
and used Logistic Regression to train classifiers to dis-
tinguish users with different attributes. Luo et al. [28]
constructed a model to infer household structures using
users’ viewing behaviors in Internet Protocol Television
(IPTV) systems, and they showed promising results.

Other approaches: Bonneau et al. [7] studied the ex-
traction of private user data in online social networks via
various attacks such as account compromise, malicious
applications, and fake accounts. These attacks can not
infer user attributes that users do not provide in their pro-
files, while our attack can. Otterbacher [35] studied the
inference of gender using users’ writing styles. Zamal
et al. [45] used a user’s tweets and her neighbors’ tweets
to infer attributes. They didn’t consider social structures
nor user behaviors. Gupta et al. [17] tried to infer inter-
ests of a Facebook user via sentiment-oriented mining on
the Facebook pages that were liked by the user. Zhong
et al. [47] demonstrated the possibility of inferring user
attributes using the list of locations where the user has
checked in. These studies are orthogonal to ours since
they exploited information sources other than the social
structures and behaviors that we focus on.

Attribute inference using social structure and behav-
ior could also be solved by a social recommender sys-
tem (e.g., [44]). However, such approaches have higher
computational complexity than our method for attacking
a targeted user, and it is challenging for them to have
theoretical guarantees as our attack. For instance, the ap-
proach proposed by Ye et al. [44] has a time complexity
of O(m · k · f · d) on a single machine, where m is the
number of edges, k is the latent topic size, f is the aver-
age number of friends, and d is the number of iterations.
Note that both our VIAL and this approach can be paral-
lelized on a cluster.

10 Conclusion and Future Work

In this work, we study the problem of attribute inference
via combining social structures and user behaviors that
are publicly available in online social networks. To this
end, we first propose a social-behavior-attribute (SBA)
network model to gracefully integrate social structures,
user behaviors, and their interactions with user attributes.
Based on the SBA network model, we design a vote dis-
tribution attack (VIAL) to perform attribute inference.
We demonstrate the effectiveness of our attack both the-
oretically and empirically. In particular, via empirical
evaluations on a real-world large scale dataset with 1.1

million users, we find that attribute inference is a se-
rious practical privacy attack to online social network
users and an attacker can successfully attack more users
when considering both social structures and user behav-
iors. The fundamental reason why our attack succeeds is
that private user attributes are statistically correlated with
publicly available information, and our attack captures
such correlations to map publicly available information
to private user attributes.

A few interesting directions for future work include
learning the link weights of a SBA network, generalizing
VIAL to infer hidden social relationships between users,
as well as defending against our inference attacks.

11 Acknowledgements

We would like to thank the anonymous reviewers for
their insightful feedback. This work is supported by Col-
lege of Engineering, Department of Electrical and Com-
puter Engineering of the Iowa State University.

References

[1] “Data brokers: a call for transparency and account-
ability,” Federal Trade Commission, 2014.

[2] S. Afroz, A. Caliskan-Islam, A. Stolerman,
R. Greenstadt, and D. McCoy, “Doppelgänger
finder: Taking stylometry to the underground,” in
IEEE S & P, 2014.

[3] L. Backstrom and J. Leskovec, “Supervised random
walks: predicting and recommending links in social
networks,” in WSDM, 2011.

[4] S. Bartunov, A. Korshunov, S.-T. Park, W. Ryu, and
H. Lee, “Joint link-attribute user identity resolution
in online social networks,” in SNA-KDD, 2012.

[5] E. Behrends, Introduction to Markov chains.
Vieweg, 2000.

[6] S. Bhagat, U. Weinsberg, S. Ioannidis, and N. Taft,
“Recommending with an agenda: Active learning
of private attributes using matrix factorization,” in
RecSys, 2014.

[7] J. Bonneau, J. Anderson, and G. Danezis, “Prying
data out of a social network,” in ASONAM, 2009.

[8] A. Chaabane, G. Acs, and M. A. Kaafar, “You are
what you like! information leakage through users’
interests,” in NDSS, 2012.

[9] T. Chen, R. Boreli, M. A. Kâafar, and A. Friedman,
“On the effectiveness of obfuscation techniques in
online social networks,” in PETS, 2014.

15

994 25th USENIX Security Symposium USENIX Association

[10] C. Cortes and V. Vapnik, “Support-vector net-
works,” Machine Learning, 1995.

[11] R. Dey, C. Tang, K. Ross, and N. Saxena, “Estimat-
ing age privacy leakage in online social networks,”
in INFOCOM, 2012.

[12] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin, “Liblinear: A library for large lin-
ear classification,” The Journal of Machine Learn-
ing Research, 2008.

[13] O. Goga, H. Lei, S. H. K. Parthasarathi, G. Fried-
land, R. Sommer, and R. Teixeira, “Exploiting in-
nocuous activity for correlating users across sites,”
in WWW, 2013.

[14] O. Goga, D. Perito, H. Lei, R. Teixeira, and
R. Sommer, “Large-scale correlation of accounts
across social networks,” ICSI, Tech. Rep., 2013.

[15] N. Z. Gong, A. Talwalkar, L. Mackey, L. Huang,
E. C. R. Shin, E. Stefanov, E. R. Shi, and D. Song,
“Joint link prediction and attribute inference using
a social-attribute network,” ACM TIST, 2014.

[16] N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Ste-
fanov, V. Sekar, and D. Song, “Evolution of social-
attribute networks: Measurements, modeling, and
implications using google+,” in IMC, 2012.

[17] P. Gupta, S. Gottipati, J. Jiang, and D. Gao, “Your
love is public now: Questioning the use of personal
information in authentication,” in AsiaCCS, 2013.

[18] J. He, W. W. Chu, and Z. V. Liu, “Inferring privacy
information from social networks,” in IEEE Intelli-
gence and Security Informatics, 2006.

[19] R. Heatherly, M. Kantarcioglu, and B. Thuraising-
ham, “Preventing private information inference at-
tacks on social networks,” IEEE TKDE, 2013.

[20] M. Humbert, T. Studer, M. Grossglauser, and J.-P.
Hubaux, “Nowhere to hide: Navigating around pri-
vacy in online social networks,” in ESORICS, 2013.

[21] C. Jernigan and B. F. Mistree, “Gaydar: Facebook
friendships expose sexual orientation,” First Mon-
day, vol. 14, no. 10, 2009.

[22] D. W. H. Jr and S. Lemeshow, Applied logistic re-
gression. John Wiley & Sons, 2004.

[23] D. Jurgens, T. Finnethy, J. McCorriston, Y. T. Xu,
and D. Ruths, “Geolocation prediction in twitter us-
ing social networks: A critical analysis and review
of current practice,” in ICWSM, 2015.

[24] T. Kanungo, D. Mount, N. Netanyahu, and C. Pi-
atko, “An efficient k-means clustering algorithm:
analysis and implementation,” IEEE TPAMI, 2002.

[25] M. Kosinski, D. Stillwell, and T. Graepel, “Pri-
vate traits and attributes are predictable from digital
records of human behavior,” PNAS, 2013.

[26] S. Labitzke, F. Werling, and J. Mittag, “Do online
social network friends still threaten my privacy?”
in CODASPY, 2013.

[27] J. Lindamood, R. Heatherly, M. Kantarcioglu, and
B. Thuraisingham, “Inferring private information
using social network data,” in WWW, 2009.

[28] D. Luo, H. Xu, H. Zha, J. Du, R. Xie, X. Yang, and
W. Zhang, “You are what you watch and when you
watch: Inferring household structures from iptv
viewing data,” IEEE Transactions on Broadcasting,
2014.

[29] A. McCallum and K. Nigam, “A comparison of
event models for naive bayes text classification,” in
AAAI, 1998.

[30] M. McPherson, L. Smith-Lovin, and J. M. Cook,
“Birds of a feather: Homophily in social networks,”
Annual Review of Sociology, 2001.

[31] F. McSherry and M. Najork, “Computing informa-
tion retrieval performance measures efficiently in
the presence of tied scores,” in ECIR, 2008.

[32] T. Minkus, Y. Ding, R. Dey, and K. W. Ross, “The
city privacy attack: Combining social media and
public records for detailed profiles of adults and
children,” in COSN, 2015.

[33] A. Mislove, B. Viswanath, K. P. Gummadi, and
P. Druschel, “You are who you know: Inferring user
profiles in online social networks,” WSDM, 2010.

[34] A. Narayanan, H. Paskov, N. Z. Gong, J. Bethen-
court, R. Shin, E. Stefanov, and D. Song, “On the
feasibility of internet-scale author identification,” in
IEEE S & P, 2012.

[35] J. Otterbacher, “Inferring gender of movie review-
ers: exploiting writing style, content and metadata,”
in CIKM, 2010.

[36] O. Perron, “Zur theorie der matrices,” Mathematis-
che Annalen, 1907.

[37] Spear Phishing Attacks, “http://www.microsoft.
com/protect/yourself/phishing/spear.mspx.”

16

USENIX Association 25th USENIX Security Symposium 995

[38] L. Sweeney, “k-anonymity: a model for protect-
ing privacy,” International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems, 2002.

[39] K. Thomas, C. Grier, and D. M. Nicol, “unfriendly:
Multi-party privacy risks in social networks,” in
PETS, 2010.

[40] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random
walk with restart and its applications,” in ICDM,
2006.

[41] A. L. Trauda, P. J. Muchaa, and M. A. Porter,
“Social structure of facebook networks,” Physica
A: Statistical Mechanics and its Applications, vol.
391, no. 16, 2012.

[42] U. Weinsberg, S. Bhagat, S. Ioannidis, and N. Taft,
“Blurme: Inferring and obfuscating user gender
based on ratings,” in RecSys, 2012.

[43] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and
S. Venkataraman, “Identifying diverse usage be-
haviors of smartphone apps,” in IMC, 2011.

[44] M. Ye, X. Liu, and W.-C. Lee, “Exploring social
influence for recommendation - a probabilistic gen-
erative model approach,” in SIGIR, 2012.

[45] F. A. Zamal, W. Liu, and D. Ruths, “Homophily
and latent attribute inference: Inferring latent
attributes of twitter users from neighbors,” in
ICWSM, 2012.

[46] E. Zheleva and L. Getoor, “To join or not to join:
The illusion of privacy in social networks with
mixed public and private user profiles,” in WWW,
2009.

[47] Y. Zhong, N. J. Yuan, W. Zhong, F. Zhang, and
X. Xie, “You are where you go: Inferring de-
mographic attributes from location check-ins,” in
WSDM, 2015.

A Proof of Theorem 1

According to Equation 7, we have:

�s(i)v = (1−α)i(MT)i�s(0)v +α(
i−1

∑
k=0

(1−α)k(MT)k)�ev.

(12)

Therefore,

lim
i→∞

�s(i)v = lim
i→∞

α(
i−1

∑
k=0

(1−α)k(MT)k)�ev

= α(I − (1−α)MT)−1�ev. (13)

We note that the matrix (I − (1−α)MT) is nonsingular
because it is strictly diagonally dominant.

B Proof of Theorem 2

The matrix M has non-negative entries, and each row of
M sums to be 1. Therefore, M can be viewed as a tran-
sition matrix. In particular, M can be viewed as a tran-
sition matrix of the following Markov chain on the SBA
network: each social node is a state of the Markov chain;
the transition probability from a social node u to another
social node x is Mux, i.e., a social node u can only tran-
sit to its social neighbors or hop-2 social neighbors with
non-zero probabilities.

When the SBA network is connected, the above
Markov chain is irreducible and aperiodic. Therefore,
the Markov chain has a unique stationary distribution
�π . Moreover, according to the Perron-Frobenius theo-
rem [36], we have:

lim
i→∞

(MT)i = [�π �π · · ·�π]

When α = 0, we have�s(i)v = (MT)i�s(0)v . Thus, we have

�sv = lim
i→∞

�s(i)v

= lim
i→∞

(MT)i�s(0)v

= [�π �π · · ·�π]�s(0)v

= |Vs|�π,

where |Vs| is the sum of the entries of�s(0)v .

C Proof of Corollary 1

When wS = τ ·du,S, wBS = τ ·du,B, and wAS = τ ·du,A for
each user u, the Markov chain defined by the transition
matrix M is a random walk on a weighted graph Gw =
(Vw,Ew), which is defined as follows: Vw = Vs, an edge
(u,x) in Ew means that x is u’s social neighbor or hop-
2 social neighbor in the SBA network, and the weight of
the edge (u,x)∈ Ew is δux,S ·wux+δux,BS ·du,B ·wB(u,x)+
δux,AS · du,A ·wA(u,x). We can verify that, on the graph
Gw, the weights of all edges that are incident to a node u
sum to du. Therefore, the stationary distribution �π [5] of
the random walk on Gw is:

�π = [
du1

D
du2

D
· · ·

du|Vs|

D
]T . (14)

Thus, according to Theorem 2, we have�svu = |Vs| du
D .

17

USENIX Association 25th USENIX Security Symposium 997

Internet Jones and the Raiders of the Lost Trackers:
An Archaeological Study of Web Tracking from 1996 to 2016

Ada Lerner,∗ Anna Kornfeld Simpson∗, Tadayoshi Kohno, Franziska Roesner
University of Washington

{lerner,aksimpso,yoshi,franzi}@cs.washington.edu

Abstract
Though web tracking and its privacy implications have
received much attention in recent years, that attention
has come relatively recently in the history of the web
and lacks full historical context. In this paper, we
present longitudinal measurements of third-party web
tracking behaviors from 1996 to present (2016). Our
tool, TrackingExcavator, leverages a key insight: that
the Internet Archive’s Wayback Machine opens the pos-
sibility for a retrospective analysis of tracking over time.
We contribute an evaluation of the Wayback Machine’s
view of past third-party requests, which we find is im-
perfect — we evaluate its limitations and unearth lessons
and strategies for overcoming them. Applying these
strategies in our measurements, we discover (among
other findings) that third-party tracking on the web has
increased in prevalence and complexity since the first
third-party tracker that we observe in 1996, and we see
the spread of the most popular trackers to an increasing
percentage of the most popular sites on the web. We ar-
gue that an understanding of the ecosystem’s historical
trends — which we provide for the first time at this scale
in our work — is important to any technical and policy
discussions surrounding tracking.

1 Introduction
Third-party web tracking is the practice by which third
parties like advertisers, social media widgets, and web-
site analytics engines — embedded in the first party sites
that users visit directly — re-identify users across do-
mains as they browse the web. Web tracking, and the
associated privacy concerns from tracking companies
building a list of sites users have browsed to, has inspired
a significant and growing body of academic work in the
computer security and privacy community, attempting to
understand, measure, and defend against such tracking
(e.g., [3, 4, 6, 8, 14, 15, 18–20, 22, 24, 25, 27–30, 32–
34, 37, 39–43, 45, 46, 51, 57, 60, 61, 64–66, 70, 71]).

∗Co-first authors listed in alphabetical order.

However, the research community’s interest in web
tracking comes relatively recently in the history of web.
To our knowledge, the earliest measurement studies be-
gan in 2005 [42], with most coming after 2009 — while
display advertising and the HTTP cookie standard date
to the mid-1990s [44, 48]. Though numerous studies
have now been done, they typically consist of short-term
measurements of specific tracking techniques. We ar-
gue that public and private discussions surrounding web
tracking — happening in technical, legal, and policy are-
nas (e.g., [49, 72]) — ought to be informed not just by a
single snapshot of the web tracking ecosystem but by a
comprehensive knowledge of its trajectory over time. We
provide such a comprehensive view in this paper, con-
ducting a measurement study of third-party web tracking
across 20 years since 1996.

Measurement studies of web tracking are critical to
provide transparency for users, technologists, policy-
makers, and even those sites that include trackers, to help
them understand how user data is collected and used, to
enable informed decisions about privacy, and to incen-
tivize companies to consider privacy. However, the web
tracking ecosystem is continuously evolving, and others
have shown that web privacy studies at a single point in
time may only temporarily reduce the use of specific con-
troversial tracking techniques [63]. While one can study
tracking longitudinally starting in the present, as we and
others have (e.g., [42, 63]), ideally any future develop-
ments in the web tracking ecosystem can be contextu-
alized in a comprehensive view of that ecosystem over
time — i.e., since the very earliest instance of tracking
on the web. We provide that longitudinal, historical con-
text in this paper, asking: how has the third-party web
tracking ecosystem evolved since its beginnings?

To answer this question, we apply a key insight: the
Internet Archive’s Wayback Machine [31] enables a ret-
rospective analysis of third-party tracking on the web

1

998 25th USENIX Security Symposium USENIX Association

over time. The Wayback Machine1 contains archives of
full webpages, including JavaScript, stylesheets, and em-
bedded resources, dating back to 1996. To leverage this
archive, we design and implement a retrospective track-
ing detection and analysis platform called TrackingEx-
cavator (Section 3), which allows us to conduct a lon-
gitudinal study of third-party tracking from 1996 to
present (2016). TrackingExcavator logs in-browser be-
haviors related to web tracking, including: third-party
requests, cookies attached to requests, cookies program-
matically set by JavaScript, and the use of other relevant
JavaScript APIs (e.g., HTML5 LocalStorage and APIs
used in browser fingerprinting [15, 57], such as enumer-
ating installed plugins). TrackingExcavator can run on
both live as well as archived versions of websites.

Harnessing the power of the Wayback Machine for our
analysis turns out to be surprisingly challenging (Sec-
tion 4). Indeed, a key contribution of this paper is our
evaluation of the historical data provided by the Way-
back Machine, and a set of lessons and techniques for
extracting information about trends in third-party con-
tent over time. Through a comparison with ground truth
datasets collected in 2011 (provided to us by the authors
of [60]), 2013, 2015, and 2016, we find that the Way-
back Machine’s view of the past, as it relates to included
third-party content, is imperfect for many reasons, in-
cluding sites that were not archived due to robots.txt

restrictions (which are respected by the Wayback Ma-
chine’s crawlers), the Wayback Machine’s occasional
failure to archive embedded content, as well as site re-
sources that were archived at different times than the top-
level site. Though popular sites are typically archived
at regular intervals, their embedded content (including
third-party trackers) may thus be only partially repre-
sented. Whereas others have observed similar limita-
tions with the Wayback Machine, especially as it relates
to content visible on the top-level page [10, 38, 53], our
analysis is focused on the technical impact of missing
third-party elements, particularly with respect to track-
ing. Through our evaluation, we characterize what the
Wayback Machine lets us measure about the embedded
third parties, and showcase some techniques for best us-
ing the data it provides and working around some of its
weaknesses (Section 4).

After evaluating the Wayback Machine’s view into the
past and developing best practices for using its data, we
use TrackingExcavator to conduct a longitudinal study
of the third-party web tracking ecosystem from 1996-
2016 (Sections 5). We explore how this ecosystem has
changed over time, including the prevalence of different
web tracking behaviors, the identities and scope of pop-
ular trackers, and the complexity of relationships within

1https://archive.org

the ecosystem. Among our findings, we identify the ear-
liest tracker in our dataset in 1996 and observe the rise
and fall of important players in the ecosystem (e.g., the
rise of Google Analytics to appear on over a third of all
popular websites). We find that websites contact an in-
creasing number of third parties over time (about 5% of
the 500 most popular sites contacted at least 5 separate
third parties in early 2000s, whereas nearly 40% do so
in 2016) and that the top trackers can track users across
an increasing percentage of the web’s most popular sites.
We also find that tracking behaviors changed over time,
e.g., that third-party popups peaked in the mid-2000s and
that the fraction of trackers that rely on referrals from
other trackers has recently risen.

Taken together, our findings show that third-party web
tracking is a rapidly growing practice in an increasingly
complex ecosystem — suggesting that users’ and policy-
makers’ concerns about privacy require sustained, and
perhaps increasing, attention. Our results provide hith-
erto unavailable historical context for today’s technical
and policy discussions.

In summary, our contributions are:
1. TrackingExcavator, a measurement infrastruc-

ture for detecting and analyzing third-party web
tracking behaviors in the present and — leveraging
the Wayback Machine — in the past (Section 3).

2. An in-depth analysis of the scope and accuracy
of the Wayback Machine’s view of historical web
tracking behaviors and trends, and techniques for
working around its weaknesses (Section 4).

3. A longitudinal measurement study of third-party
cookie-based web tracking from 1996 to present
(2016) — to the best of our knowledge, the longest
longitudinal study of tracking to date (Section 5).

This paper and any updates, including any data or
code we publish, will be made available at http://

trackingexcavator.cs.washington.edu/.

2 Background and Motivation
Third-party web tracking is the practice by which enti-
ties (“trackers”) embedded in webpages re-identify users
as they browse the web, collecting information about the
websites that they visit [50, 60]. Tracking is typically
done for the purposes of website analytics, targeted ad-
vertising, and other forms of personalization (e.g., so-
cial media content). For example, when a user vis-
its www.cnn.com, the browser may make additional re-
quests to doubleclick.net to load targeted ads and
to facebook.com to load the “Like” button; as a re-
sult, Doubleclick and Facebook learn about that user’s
visit to CNN. Cookie-based trackers re-identify users by
setting unique identifiers in browser cookies, which are
then automatically included with requests to the tracker’s
domain. Figure 1 shows a basic example; we discuss

2

USENIX Association 25th USENIX Security Symposium 999

Figure 1: Overview of basic cookie-based web tracking. The
third-party domain tracker.com uses a browser cookie to re-
identify users on sites that embed content from tracker.com.
This example shows vanilla tracking according to the taxon-
omy from [60]; other behaviors are described in Section 3.

more complex cookie-based tracking behaviors in Sec-
tion 3. Though cookie-based tracking is extremely com-
mon [60], other types of tracking behaviors have also
emerged, including the use of other client-side storage
mechanisms, such as HTML5 LocalStorage, or the use
of browser and/or machine fingerprinting to re-identify
users without the need to store local state [15, 57].

Because these embedded trackers are often invisible
to users and not visited intentionally, there has been
growing concern about the privacy implications of third-
party tracking. In recent years, it has been the subject
of repeated policy discussions (Mayer and Mitchell pro-
vide an overview as of 2012 [50]); simultaneously, the
computer science research community has studied track-
ing mechanisms (e.g., [50, 57, 60, 71]), measured their
prevalence (e.g., [3, 20, 42, 60]), and developed new de-
fenses or privacy-preserving alternatives (e.g., [6, 22, 25,
61, 64]). We discuss related works further in Section 6.

However, the research community’s interest in web
tracking is relatively recent, with the earliest measure-
ments (to our knowledge) beginning in 2005 [42], and
each study using a different methodology and measur-
ing a different subset of known tracking techniques (see
Englehardt et al. [18] for a comprehensive list of such
studies). The practices of embedding third-party content
and targeted advertising on websites predate these first
studies [48], and longitudinal studies have been limited.
However, longitudinal studies are critical to ensure the
sustained effects of transparency [63] and to contextual-
ize future measurements. Thus, to help ground technical
and policy discussions surrounding web tracking in his-
torical trends, we ask: how has the third-party tracking
ecosystem evolved over the lifetime of the web?

We investigate questions such as:
• How have the numbers, identities, and behaviors

of dominant trackers changed over time?
• How has the scope of the most popular trackers (i.e.,

the number of websites on which they are embed-
ded) changed over time?

• How has the prevalence of tracking changed over
time? For example, do websites include many more

third-party trackers now than they did in the past?
• How have the behaviors of web trackers (e.g.,

JavaScript APIs used) changed over time?
By answering these questions, we are to able provide

a systematic and longitudinal view of third-party web
tracking over the last 20 years, retroactively filling this
gap in the research literature, shedding a light on the evo-
lution of third-party tracking practices on the web, and
informing future technical and policy discussions.
The Wayback Machine. To conduct our archeological
study, we rely on data from the Internet Archive’s Way-
back Machine (https://archive.org). Since 1996,
the Wayback Machine has archived full webpages, in-
cluding JavaScript, stylesheets, and any resources (in-
cluding third-party JavaScript) that it can identify stati-
cally from the site contents. It mirrors past snapshots of
these webpages on its own servers; visitors to the archive
see the pages as they appeared in the past, make requests
for all resources from the Wayback Machine’s archived
copy, and execute all JavaScript that was archived. We
evaluate the completeness of the archive, particularly
with respect to third-party requests, in Section 4.

3 Measurement Infrastructure:
TrackingExcavator

To conduct a longitudinal study of web tracking using
historical data from the Wayback Machine, we built a
tool, TrackingExcavator, with the capability to (1) detect
and analyze third-party tracking-related behaviors on a
given web page, and (2) run that analysis over historical
web pages archived and accessed by the Wayback Ma-
chine. In this section, we introduce TrackingExcavator.
Figure 2 provides and overview of TrackingExcavator,
which is organized into four pipeline stages:
(1) Input Generation (Section 3.1): TrackingExcavator
takes as input a list of top-level sites on which to measure
tracking behaviors (such as the Alexa top 500 sites), and,
in “Wayback mode,” a timestamp for the desired archival
time to create archive.org URLs.
(2) Data Collection (Section 3.2): TrackingExcavator
includes a Chrome browser extension that automatically
visits the pages from the input set and collects tracking-
relevant data, such as third-party requests, cookies, and
the use of certain JavaScript APIs.
(3) Data Analysis (Section 3.3): TrackingExcavator
processes collected measurement events to detect and
categorize third-party web tracking behaviors.
(4) Data Visualization: Finally, we process our results
into visual representations (included in Section 5).

3.1 Input Generation

In the input generation phase, we provide TrackingExca-
vator with a list of top-level sites to use for measurement.

3

1000 25th USENIX Security Symposium USENIX Association

Figure 2: Overview of our infrastructure, TrackingExcavator, organized into four pipeline stages. Red/italic elements apply only to
“Wayback mode” for historical measurements, while black/non-italics elements apply also to present-day measurements.

For historical measurements, TrackingExcavator must
take a list of top-level URLs along with historical
timestamps and transform them into appropriate
URLs on archive.org. For example, the URL for
the Wayback Machine’s February 10, 2016 snap-
shot of https://www.usenix.org/conference/

usenixsecurity16 is https://web.archive.org/

web/20160210050636/https://www.usenix.org/

conference/usenixsecurity16.
We use the Memento API to find the nearest archived

snapshot of a website occurring before the specified mea-
surement date [36]. Though this process ensures a rea-
sonable timestamp for the top-level page, embedded re-
sources may have been archived at different times [5].
During analysis, we thus filter out archived resources
whose timestamps are more than six months from our
measurement timestamp, to ensure minimal overlap and
sufficient spacing between measurements of different
years.

3.2 Data Collection

To collect data, TrackingExcavator uses a Chrome ex-
tension to automatically visit the set of input sites. Note
that we cannot log into sites, since the Wayback Ma-
chine cannot act as the original server. Our browser is
configured to allow third-party cookies as well as pop-
ups, and we visit the set of sites twice: once to prime the
cache and the cookie store (to avoid artifacts of first-time
browser use), and once for data collection. During these
visits, we collect the following information relevant to
third-party web tracking and store it in a local database:

• All request and response headers (including
set-cookie).

• All cookies programmatically set by JavaScript (us-
ing document.cookie).

• All accesses to fingerprint-related JavaScript APIs,
as described below.

• For each request: the requested URL, (if available)
the referrer, and (if available) information about the
originating tab, frame, and window.

We later process this data in the analysis phase of
TrackingExcavator’s pipeline (Section 3.3 below).

Fingerprint-Related APIs. Since cookie-based web
tracking is extremely common (i.e., it is “classic” web
tracking), we focus largely on it — and third-party re-
quests in general — to capture the broadest view of the
web tracking ecosystem over time. However, we also
collect information about the uses of other, more recently
emerged tracking-related behaviors, such as JavaScript
APIs that may be used to create browser or machine fin-
gerprints [15, 57]. To capture any accesses a webpage
makes to a fingerprint-related JavaScript API (such as
navigator.userAgent), TrackingExcavator’s Chrome
extension Content Script overwrites these APIs on each
webpage to (1) log the use of that API and (2) call the
original, overwritten function. The set of APIs that we
hook was collected from prior work on fingerprint-based
tracking [3, 4, 15, 56, 57] and is provided in Appendix A.

Preventing Wayback “Escapes”. In archiving a page,
the Wayback Machine transforms all embedded URLs
to archived versions of those URLs (similar to our own
process above). However, sometimes the Wayback Ma-
chine fails to properly identify and rewrite embedded
URLs. As a result, when that archived page is loaded on
archive.org, some requests may “escape” the archive
and reference resources on the live web [9, 38]. In
our data collection phase, we block such requests to the
live web to avoid anachronistic side effects. However,
we record the domain to which such a request was at-
tempted, since the archived site did originally make that
request, and thus we include it in our analysis.

3.3 Data Analysis

In designing TrackingExcavator, we chose to separate
data collection from data analysis, rather than detecting
and measuring tracking behaviors on the fly. This mod-
ular architecture simplifies data collection and isolates it
from possible bugs or changes in the analysis pipeline —
allowing us to rerun different analyses on previously col-
lected data (e.g., to retroactively omit certain domains).

“Replaying” Events. Our analysis metaphorically “re-
plays” collected events to simulate loading each page in
the measurement. For historical measurements, we mod-
ify request headers to replace “live web” Set-Cookie

headers with X-Archive-Orig-Set-Cookie headers

4

USENIX Association 25th USENIX Security Symposium 1001

added by archive.org, stripping the Wayback Machine
prefixes from request and referrer URLs, and filling our
simulated cookie jar (described further below). During
the replay, TrackingExcavator analyzes each event for
tracking behaviors.
Classifying Tracking Behaviors. For cookie-based
trackers, we base our analysis on a previously published
taxonomy [60].2 We summarize — and augment — that
taxonomy here. Note that a tracker may fall into multiple
categories, and that a single tracker may exhibit different
behaviors across different sites or page loads:

1. Analytics Tracking: The tracker provides a script
that implements website analytics functionality.
Analytics trackers are characterized by a script,
sourced from a third party but run in the first-party
context, that sets first-party cookies and later leaks
those cookies to the third-party domain.

2. Vanilla Tracking: The tracker is included as a third
party (e.g., an iframe) in the top-level page and uses
third-party cookies to track users across sites.

3. Forced Tracking: The tracker forces users to visit its
domain directly — for example, by opening a popup
or redirecting the user to a full-page ad — allowing
it to set cookies from a first-party position.

4. Referred Tracking: The tracker relies on another
tracker to leak unique identifiers to it, rather than
on its own cookies. In a hypothetical example,
adnetwork.com might set its own cookie, and then
explicitly leak that cookie in requests to referred
tracker ads.com. In this case, ads.com need not
set its own cookies to perform tracking.

5. Personal Tracking: The tracker behaves like a
Vanilla tracker but is visited by the user directly in
other contexts. Personal trackers commonly appear
as social widgets (e.g., “Like” or “tweet” buttons).

In addition to these categories previously intro-
duced [60], we discovered an additional type of tracker
related to but subtly different from Analytics tracking:

6. Referred Analytics Tracking: Similar to an Analyt-
ics tracker, but the domain which sets a first-party
cookie is different from the domain to which the
first-party cookie is later leaked.

Beyond cookie-based tracking behaviors, we also con-
sider the use of fingerprint-related JavaScript APIs, as
described above. Though the use of these APIs does
not necessarily imply that the caller is fingerprinting the
user — we know of no published heuristic for determin-
ing fingerprinting automatically — but the use of many
such APIs may suggest fingerprint-based tracking.

Finally, in our measurements we also consider third-
party requests that are not otherwise classified as track-

2We are not aware of other taxonomies of this granularity for
cookie-based tracking.

ers. If contacted by multiple domains, these third-parties
have the ability to track users across sites, but may or
may not actually do so. In other words, the set of all do-
mains to which we observe a third-party request provides
an upper bound on the set of third-party trackers.

We tested TrackingExcavator’s detection and classi-
fication algorithms using a set of test websites that we
constructed and archived using the Wayback Machine,
triggering each of these tracking behaviors.

Reconstructing Archived Cookies. For many track-
ing types, the presence or absence of cookies is a
key factor in determining whether the request rep-
resents a tracking behavior. In our live measure-
ments, we have the actual Cookie headers attached by
Chrome during the crawl. On archived pages, the Way-
back Machine includes past Set-Cookie headers as
X-Archive-Orig-Set-Cookie headers on archived re-
sponses. To capture the cookies that would have actu-
ally been set during a live visit to that archived page,
TrackingExcavator must simulate a browser cookie store
based on these archival cookie headers and JavaScript
cookie set events recorded during data collection.

Unfortunately, cookie engines are complicated and
standards non-compliant in major browsers, including
Chrome [11]. Python’s cookie storage implementation
is compliant with RFC 2965, obsoleted by RFC 6265,
but these standards proposals do not accurately represent
modern browser practices [7, 13, 21]. For efficiency, we
nevertheless use Python’s cookie jar rather than attempt-
ing to re-implement Chrome’s cookie engine ourselves.

We found that Python’s cookie jar computed cook-
ies exactly matching Chrome’s for only 71% of requests
seen in a live run of the top 100. However, for most types
of tracking, we only need to know whether any cookies
would have been set for the request, which we correctly
determine 96% of the time. Thus our tool captures most
tracking despite using Python’s cookie jar.

Classifying Personal Trackers in Measurements. For
most tracker types, classification is independent of user
behaviors. Personal trackers, however, are distinguished
from Vanilla trackers based on whether the user vis-
its that domain as a top-level page (e.g., Facebook or
Google). To identify likely Personal trackers in auto-
mated measurement, we thus develop a heuristic for user
browsing behaviors: we use popular sites from each year,
as these are (by definition) sites that many users visited.

Alexa’s top sites include several that users would not
typically visit directly, e.g., googleadservices.com.
Thus, we manually examined lists of popular sites for
each year to distinguish between domains that users typ-
ically visit intentionally (e.g., Facebook, Amazon) from
those which ordinary users never or rarely visit inten-
tionally (e.g., ad networks or CDNs). Two researchers

5

1002 25th USENIX Security Symposium USENIX Association

independently classified the domains on the Alexa top
100 sites for each year where we have Alexa data, gath-
ering information about sites for which they were unsure.
The researchers examined 435 total domains: for the top
100 domains in 2015, they agreed on 100% and identified
94 sites as potential Personal trackers; for the 335 addi-
tional domains in the previous years’ lists, they agreed
on 95.4% and identified 296 Personal tracker domains.

4 Evaluating the Wayback Machine as an
Archaeological Data Source for Tracking

The Wayback Machine provides a unique and compre-
hensive source of historical web data. However, it was
not created for the purpose of studying third-party web
tracking and is thus imperfect for that use. Nevertheless,
the only way to study web tracking prior to explicit mea-
surements targeting it is to leverage materials previously
archived for other purposes. Therefore, before using the
Wayback Machine’s archived data, it is essential to sys-
tematically characterize and analyze its capabilities and
flaws in the context of third-party tracking.

In this section we thus study the extent to which data
from the Wayback Machine allows us to study histor-
ical web tracking behaviors. Beyond providing confi-
dence in the trends of web tracking over time that we
present in Section 5, we view this evaluation of the Way-
back Machine as a contribution of this paper. While
others have studied the quality of the Wayback Ma-
chine’s archive, particularly with respect to the quality
of the archived content displayed on the top-level page
(e.g., [10, 38, 53]), we are the first to systematically study
the quality of the Wayback Machine’s data about third-
party requests, the key component of web tracking.

To conduct our evaluation, we leverage four ground
truth data sets collected from the live web in 2011, 2013,
2015, and 2016. The 2011 data was originally used
in [60] and provided to us by those authors. All datasets
contain classifications of third-party cookie-based track-
ers (according to the above taxonomy) appearing on the
Alexa top 500 sites (from the time of each measurement).
The 2015 and 2016 data was collected by TrackingExca-
vator and further contains all HTTP requests, including
those not classified as tracking.3 We plan to release our
ground truth datasets from 2013, 2015, and 2016.

We organize this section around a set of lessons that
we draw from this evaluation. We apply these lessons in
our measurements in Section 5. We believe our findings
can assist future researchers seeking to use the Wayback
Machine as a resource for studying tracking (or other
web properties relying on third-party requests) over time.

3For comparison, the published results based on the 2011
dataset [60] measured tracking on the homepages of the top 500 web-
sites as well as four additional pages on that domain; for the purposes
of our work, we re-analyzed the 2011 data using only homepages.

August 1 August 25 September 1
All Third-Parties 324 304 301
Analytics 7 13 11
Vanilla 127 115 108
Forced 0 0 0
Referred 3 3 3
Personal 23 21 21
Referred Analytics 21 17 18

Table 1: Natural variability in the trackers observed on different
visits to the Alexa top 100 in 2015. This variability can result
from non-static webpage content, e.g., ad auctions that result in
different winners.

4.1 Lesson (Challenge): The Wayback Machine
provides a partial view of third-party requests

A key question for using the Wayback Machine for his-
torical measurements is: how complete is the archive’s
view of the past, both for the top-level pages and for
the embedded content? In this lesson, we explore why
its view is incomplete, surfacing challenges that we will
overcome in subsequent lessons. We identify several rea-
sons for the differences between the live and Wayback
measurements, and quantify the effects of each.

Variation Between Visits. Different trackers and other
third parties may appear on a site when it is loaded a
second time, even if these views are close together; an
example of this variation would be disparity in tracking
behaviors between ads in an ad network.

To estimate the degree of variation between page
views, we compare three live runs from August-
September 2015 of the Alexa top 100 sites (Table 1).
We find that variation between runs even a week apart
is notable (though not enough to account for all of the
differences between Wayback and live datasets). For the
number of Vanilla trackers found, the August 25th and
September 1st runs vary by 7 trackers, or 6%.

Non-Archived and Blocked Requests. There are sev-
eral reasons that the Wayback Machine may fail to
archive a response to a request, or provide a response that
TrackingExcavator must ignore (e.g., from a far different
time than the one we requested or from the live web).
We describe these conditions here, and evaluate them in
the context of a Wayback Machine crawl of the top 500
pages archived in 2015, according to the 2015 Alexa top
500 rankings; we elaborate on this dataset in Section 5.
Table 2 summarizes how often the various conditions oc-
cur in this dataset, for requests, unique URLs, and unique
domains. In the case of domains, we count only those do-
mains for which all requests are affected, since those are
the cases where we will never see a cookie or any other
subsequent tracking indicators for that domain.
Robots.txt Exclusions (403 errors). If a domain’s
robots.txt asks that it not be crawled, the Wayback
Machine will respect that restriction and thus not archive

6

USENIX Association 25th USENIX Security Symposium 1003

Type of Blocking Fraction Missed
Requests 1115 / 56,173 (2.0%)

Robots Exclusions URLs 609 / 27,532 (2.2%)
Domains 18 / 1150 (1.6%)
Requests 809 / 56,173 (1.4%)

Not Archived URLs 579 / 27,532 (2.1%)
Domains 8 / 1150 (0.7%)
Requests 9025 / 56,173 (16.1%)

Wayback Escapes URLs 4730 / 27,532 (17.2%)
Domains 132 / 1150 (11.5%)
Requests 404 / 56,173 (0.7%)

Inconsistent Timestamps URLs 156 / 27,532 (0.6%)
Domains 55 / 1150 (4.8%)

Table 2: For the archived versions of the Alexa top 500 sites
from 2015, the fraction of requests, unique URLs, and unique
domains affected by robots exclusion (403 errors), not archived
(404), Wayback escapes (blocked by TrackingExcavator), or
inconsistent timestamps (filtered by TrackingExcavator).

the response. As a result, we will not receive any in-
formation about that site (including cookies, or use of
Javascript) nor will we see any subsequent resources that
would have resulted from that request.

We find that only a small fraction of all requests,
unique URLs, and (complete) domains are affected by
robots exclusion (Table 2). We note that robots exclu-
sions are particularly common for popular trackers. Of
the 20 most popular trackers on the 2015 live dataset, 12
(60%) are blocked at least once by robots.txt in the 2015
Wayback measurement. By contrast, this is true for only
74/456, or 16.23%, of all Vanilla trackers seen in live.
Other Failures to Archive (404 errors). The Wayback
Machine may fail to archive resources for any number
of reasons. For example, the domain serving a certain
resource may have been unavailable at the time of the
archive, or changes in the Wayback Machine’s crawler
may result in different archiving behaviors over time. As
shown in Table 2, missing archives are rare.
URL Rewriting Failures (Wayback “Escapes”). Though
the Wayback Machine’s archived pages execute the cor-
responding archived JavaScript within the browser when
TrackingExcavator visits them, the Wayback Machine
does not execute JavaScript during its archival crawls
of the web. Instead, it attempts to statically extract
URLs from HTML and JavaScript to find additional sites
to archive. It then modifies the archived JavaScript,
rewriting the URLs in the included script to point to
the archived copy of the resource. This process may
fail, particularly for dynamically generated URLs. As
a result, when TrackingExcavator visits archived pages,
dynamically generated URLs not properly redirected to
their archived versions will cause the page to attempt to
make a request to the live web, i.e., “escape” the archive.
TrackingExcavator blocks such escapes (see Section 3).
As a result, the script never runs on the archived site,
never sets a cookie or leaks it, and thus TrackingExcava-

Figure 3: The fraction of domains categorized as Vanilla track-
ers in the live 2015 crawl which, in the archival 2015 crawl,
(1) set and leaked cookies and thus were confirmed as trackers,
(2) were only third-party requests (had at least one third-party
request but no cookies), (3) did not appear at all, or (4) other
(e.g., had cookies but not at the time of a third-party request, or
cookies were not attached due to a cookie simulation bug).

tor does not witness the associated tracking behavior.
We find that Wayback “escapes” are more common

than robots exclusion or missing archives (Table 2):
16.1% of all requests attempted to “escape” (i.e., were
not properly rewritten by the Wayback Machine) and
were blocked by TrackingExcavator.
Inconsistent Timestamps. As others have docu-
mented [10], embedded resources in a webpage archived
by the Wayback Machine may occasionally have a times-
tamp far from the timestamp of the top-level page. As de-
scribed in Section 3, we ignore responses to requests for
resources with timestamps more than six months away.

Cascading Failures. Any of the above failures can lead
to cascading failures, in that non-archived responses or
blocked requests will result in the omission of any sub-
sequent requests or cookie setting events that would have
resulted from the success of the original request. The
“wake” of a single failure cannot be measured within an
archival dataset, because events following that failure are
simply missing. To study the effect of these cascading
failures, we must compare an archival run to a live run
from the same time; we do so in the next subsection.

4.2 Lesson (Opportunity): Consider all third-party
requests, in addition to confirmed trackers

In the previous section, we evaluated the Wayback Ma-
chine’s view of third-party requests within an archival
measurement. For requests affected by the issues in Ta-
ble 2, TrackingExcavator observes the existence of these
requests — i.e., counts them as third parties — but with-
out the corresponding response may miss additional in-
formation (e.g., set cookies) that would allow it to con-
firm these domains as trackers according to the taxonomy
presented earlier. However, this analysis cannot give us
a sense of how many third-party requests are entirely ab-
sent from Wayback data due to cascading failures, nor a
sense of any other data missing from the archive, such as

7

1004 25th USENIX Security Symposium USENIX Association

2011 2013 2015 2016
Wayback (All Third Parties) 553 621 749 723
Wayback (Vanilla+Personal) 47 49 92 90
Live (Vanilla+Personal) 370 419 493 459
Wayback-to-Live Ratio
(Vanilla+Personal) 0.13 0.12 0.19 0.20

Table 3: We compare the prevalence of the most common track-
ing types (Vanilla and Personal) over the four years for which
we have data from the live web. Though the Wayback Machine
provides only partial data on trackers, it nevertheless illumi-
nates a general upward trend reflected in our ground truth data.

missing cookie headers on otherwise archived responses.
For that, we must compare directly with live results.

We focus our attention on unique trackers: we attempt
to identify which live trackers are missing in the 2015
Wayback dataset, and why. For each tracker we ob-
serve in our 2015 live measurement, Figure 3 identifies
whether we (1) also observe that tracker in “Wayback
mode,” (2) observe only a third-party request (but no con-
firmed cookie-based tracking behavior, i.e., we classify it
only as a third-party domain), or (3) do not observe any
requests to that tracker at all.

We conclude two things from this analysis. First, be-
cause the Wayback Machine may fail to provide suf-
ficient data about responses or miss cookies even in
archived responses, many trackers confirmed in the live
dataset appear as simple third-party requests in the Way-
back data (the second column in Figure 3). For example,
doubleclick.net, one of the most popular trackers,
appears as only a third party in Wayback data because of
its robots.txt file. Thus, we learn that to study third-
party web tracking in the past, due to missing data in the
archive, we must consider all third-party requests, not
only those confirmed as trackers according to the taxon-
omy. Though considering only third-party requests will
overcount tracking in general (i.e., not all third parties on
the web are trackers), we find that it broadens our view
of tracking behaviors in the archive.

Second, we find that a non-trivial fraction of track-
ers are missing entirely from the archive (the third col-
umn in Figure 3). In the next subsection, we show that
we can nevertheless draw conclusions about trends over
time, despite the fact that the Wayback Machine under-
represents the raw number of third parties contacted.

4.3 Lesson (Opportunity): The Wayback Machine’s
data allows us to study trends over time

As revealed above, the Wayback Machine’s view of the
past may miss the presence of some third parties entirely.
Thus, one unfortunately cannot rely on the archive to
shed light on the exact raw numbers of trackers and other
third parties over time. Instead, we ask: does the Way-
back Machine’s data reveal genuine historical trends?

To investigate trends, we compare all of our live

datasets (2011, 2013, 2015, and 2016) to their Wayback
counterparts. Table 3 compares the number of Vanilla
and Personal trackers (the most prevalent types) detected
in each dataset. For the purposes of this comparison, we
sum the two types, since their distinction depends only
on the user’s browsing behaviors. We also include the
number of all third parties in the Wayback datasets, based
on the previous lesson. Though not all of these third par-
ties represent trackers in live data, they help illuminate
trends in third party prevalence over time.

We draw two conclusions from this comparison. First,
we find that we can rely on the archive to illuminate gen-
eral trends over time. Although confirmed trackers in
“Wayback mode” (as expected from our earlier lessons)
underrepresent the number of confirmed trackers found
on the live web — and third parties in the archive overes-
timate confirmed trackers in the live data — we find that
the trends we see over time are comparable in both sets of
measurements. Critically, we see that the upward trend
in our archival view is not merely the result of improve-
ments in archive quality over time or other factors — we
indeed observe this trend reflected in ground truth data.
We gain further confidence in these trends in Section 5,
where we see a rise in tracking behaviors since 1996 that
corresponds with our intuition. The absence of any large
vertical steps in the figures in Section 5 further suggests
that the trends we identify are artifacts of the web evolv-
ing as opposed to any significant changes in the Wayback
Machine archival process.

Second, however, we find that — although long-term
trends appear to be meaningfully represented by the
Wayback Machine — one should not place too much
confidence into small variations in trends. For exam-
ple, the Wayback Machine’s data in 2013 appears to be
worse than in other years, under-representing the num-
ber of confirmed trackers more than average. Thus, in
Section 5, we do not report on results that rely on small
variations in trends unless we have other reasons to be-
lieve that these variations are meaningful.

4.4 Lesson (Opportunity): Popular trackers are
represented in the Wayback Machine’s data

Because popular trackers, by definition, appear on many
sites that users likely browse to, they have a strong effect
on user privacy and are particularly important to exam-
ine. We find that although the Wayback Machine misses
some trackers (for reasons discussed above), it does cap-
ture a large fraction of the most popular trackers —
likely because the Wayback Machine is more likely to
have correctly archived at least one of each popular
tracker’s many appearances.

Specifically, when we examine the 2015 archival and
live datasets, we find that 100% of the top 20 trackers
from the live dataset are represented as either confirmed

8

USENIX Association 25th USENIX Security Symposium 1005

trackers or other third parties in the Wayback data. In
general, more popular trackers are better represented in
Wayback data: 75% of the top 100 live trackers, com-
pared to 53% of all live trackers. Tracker popularity
drops quickly — the first live tracker missing in Wayback
data is #22, which appears on only 22 of the top 500 web-
sites; the 100th most popular tracker appears on only 4
sites. By contrast, the top tracker appears on 208 sites. In
other words, those trackers that have the greatest impact
on user privacy do appear in the archive.

Based on this lesson, we focus part of Section 5’s anal-
ysis in on popular trackers, and we manually label those
that the Wayback Machine only sees as third parties but
that we know are confirmed trackers in live data.

4.5 Lesson (Opportunity): The Wayback Machine
provides additional data beyond requests

Thus far, we have considered third-party requests and
confirmed cookie-based trackers. However, the Wayback
Machine provides, and TrackingExcavator collects, ad-
ditional data related to web tracking behaviors, particu-
larly the use of various JavaScript APIs that allow third
parties to collect additional information about users and
their machines (e.g., to re-identify users based on finger-
prints). For JavaScript correctly archived by the Way-
back Machine, TrackingExcavator observes accesses to
the supported APIs (Appendix A). For example, we ob-
serve uses of navigator.userAgent as early as 1997.

4.6 Summary

In summary, we find that the Wayback Machine’s view
of the past is incomplete, and that its weaknesses par-
ticularly affect the third-party requests critical for evalu-
ating web tracking over time. We identified and quanti-
fied those weaknesses in Section 4.1, and then introduced
findings and strategies for mitigating these weaknesses
in Sections 4.2-4.5, including considering third-party re-
quests as well as confirmed trackers, manually labeling
known popular trackers, and studying general trends over
time instead of raw numbers. We leverage these strate-
gies in our own measurements. By surfacing and evalu-
ating these lessons, we also intend to help guide future
researchers relying on data from the Wayback Machine.

We focus on the Wayback Machine since it is to our
knowledge the most comprehensive web archive. Apply-
ing our approach to other, more specialized archives [58],
if relevant for other research goals, would necessitate a
new evaluation of the form we presented here.

5 Historical Web Tracking Measurements
We now turn to our longitudinal study of third-party
cookie-based web tracking from 1996-2016.

Datasets. We focus our investigation on the most pop-
ular websites each year, for two reasons: first, trackers

Figure 4: Evolution of tracker types over time. The grey bars
show the total number of tracking domains present in each
dataset, and the colored lines show the numbers of trackers with
each type of tracking behavior. A single tracker may have more
than one behavior in the dataset (e.g., both Vanilla and Analyt-
ics), so the sum of the lines might be greater than the bar.

on these sites are (or were) able to collect information
about the greatest number of users; second, popular sites
are crawled more frequently by the Wayback Machine (if
permitted by robots.txt). We thus need historical lists
of the top sites globally on the web.
2003-2016: Alexa. For 2010-2016, we use Wayback Ma-
chine archives of Alexa’s top million sites list (a csv

file). For 2003-2009, we approximate the top 500 by
scraping Alexa’s own historical API (when available)
and archives of individual Alexa top 100 pages. Because
of inconsistencies in those sources, our final lists contain
459-500 top sites for those years.
1996-2002: Popular Links from Homepages. In 2002,
only the Alexa top 100 are available; before 2002, we
only have ComScore’s list of 20 top sites [69]. Thus,
to build a list of 500 popular sites for the years 1996-
2002, we took advantage of the standard practice at the
time of publishing links to popular domains on personal
websites. Specifically, we located archives of the People
pages of the Computer Science or similar department at
the top 10 U.S. CS research universities as of 1999, as
reported in that year by U.S. News Online [2]. We iden-
tified the top 500 domains linked to from the homepages
accessible from those People pages, and added any Com-
Score domains that were not found by this process. We
ran this process using People pages archived in 1996 and
1999; these personal pages were not updated or archived
frequently enough to get finer granularity. We used the
1996 list as input to our 1996, 1997 and 1998 measure-
ments, and the 1999 list as input for 1999-2002.

5.1 Prevalence of Tracking Behaviors over Time

We begin by studying the prevalence of tracking behav-
iors over time: how many unique trackers do we observe,
what types of tracking behaviors do those trackers ex-
hibit, and how many trackers appear on sites over time?

9

1006 25th USENIX Security Symposium USENIX Association

Prevalence and Behaviors of Unique Trackers. Fig-
ure 4 shows the total number of unique trackers observed
over time (the grey bars) and the prevalence of different
tracking behavior types (the lines) for the top 500 sites
from 1996-2016. Note that trackers may exhibit more
than one behavior across sites or on a single site, so the
sum of the lines may be greater than the height of the bar.
We note that the particularly large bars in 2015 and 2016
may reflect not only a change in tracking prevalence but
also changes in the way the Wayback Machine archived
the web. See Table 3 for validation against live data
which suggest that actual growth may have been smaller
and more linear, similar to past years.

We make several observations. First, we see the emer-
gence of different tracking behaviors: the first cookie-
based tracker in our data is from 1996: microsoft.com
as a Vanilla tracker on digital.net. The first Per-
sonal tracker to appear in our dataset is in 1999:
go.com shows up on 5 different sites that year, all
also owned by Disney: disney.com, espn.com,

sportszone.com, wbs.net, and infoseek.com (ac-
quired by Disney mid-1999 [1], before the date of our
measurement). The existence of a Personal tracker that
only appeared on sites owned by the same company dif-
fers from today’s Personal tracking ecosystem, in which
social media widgets like the Facebook “Like” button ap-
pear on many popular sites unaffiliated with that tracker
(Facebook, in this case) [60].

More generally, we see a marked increase in quanti-
ties of trackers over time, with rises in all types of track-
ing behavior. One exception is Forced trackers — those
relying on popups — which are rare and peaked in the
early 2000s before popup blockers became default (e.g.,
in 2004 for Internet Explorer [54]). Indeed, we see third-
party popups peak significantly in 2003 and 2004 (17 and
30 popups, respectively, compared to an annual mean of
about 4), though we could not confirm all as trackers for
Figure 4. Additionally, we see an increasing variety of
tracking behavior over time, with early trackers nearly
all simply Vanilla, but more recent rises in Personal, An-
alytics, and Referred tracking.

We can also consider the complexity of individual
trackers, i.e., how many distinct tracking behaviors they
exhibit over each year’s dataset. (Note that some behav-
iors are exclusive, e.g., a tracker cannot be both Personal
and Vanilla, but others are nonexclusive.) Table 4 sug-
gests that there has been some increase in complexity in
recent years, with more trackers exhibiting two or even
three behaviors. Much of this increase is due to the rise
in Referred or Referred Analytics trackers, which receive
cookie values shared explicitly by other trackers in addi-
tion to using their own cookies in Vanilla behavior.

Fingerprint-Related APIs. We measured the use
of Javascript APIs which can be used to fingerprint

Year 1Type 2Type 3Type 4Type
1996 100.00% (1) 0 0 0
1998 0 0 0 0
2000 100.00% (13) 0 0 0
2002 100.00% (19) 0 0 0
2004 96.97% (32) 3.03% (1) 0 0
2006 100.00% (34) 0 0 0
2008 100.00% (29) 0 0 0
2010 94.12% (32) 2.94% (1) 2.94% (1) 0
2012 88.57% (31) 11.43% (4) 0 0
2014 93.75% (60) 4.69% (3) 1.56% (1) 0
2016 86.24% (94) 11.01% (12) 2.75% (3) 0

Table 4: Complexity of trackers, in terms of the percentage (and
number) of trackers displaying one or more types of tracking
behaviors across the top 500 sites.

Year Most Prolific API-user Num APIs Used Coverage
1998 realhollywood.com 2 1
1999 go2net.com 2 1
2000 go.com 6 2
2001 akamai.net 8 15
2002 go.com 10 2
2003 bcentral.com 5 1
2004 163.com 9 3
2005 163.com 8 1
2006 sina.com.cn 11 2
2007 googlesyndication.com 8 24
2008 go.com 12 1
2009 clicksor.com 10 2
2010 tribalfusion.com 17 1
2011 tribalfusion.com 17 2
2012 imedia.cz 12 1
2013 imedia.cz 13 1
2014 imedia.cz 13 1
2015 aolcdn.com 25 5
2016 aolcdn.com 25 3

Table 5: Most prolific API-users, with ties broken by cover-
age (number of sites on which they appear) for each year. The
maximum number of APIs used increases over time, but the
max API users are not necessarily the most popular trackers.

browsers and persist identifiers even across cookie dele-
tion. Though the use of these APIs does not necessarily
imply that they are used for tracking (and we know of no
published heuristic for correlating API use with genuine
fingerprinting behaviors), the use of these APIs neverthe-
less allows third parties to gather potentially rich infor-
mation about users and their machines. The full list of
37 fingerprint-related APIs we measure (based on prior
work [3, 4, 15, 56, 57]) is in Appendix A.

We now consider third parties that are prolific users
of fingerprint-related APIs, calling many APIs on each
site. Table 5 shows the tracker in each year that calls
the most APIs on a single site. Ties are broken by the
choosing the third party that appears on the largest num-
ber of sites. Maximum usage of APIs has increased over
time, but we observe that the most prolific API users are
not the most popular cookie-based trackers. Although
we only identify API uses within JavaScript, and not
how their results are used, we note that increasing use

10

USENIX Association 25th USENIX Security Symposium 1007

Figure 5: Number of sites in each year with a tracker that calls
(on that site) at least K (of our 37) fingerprint-related APIs.

Figure 6: Domains using window.localStorage. First party
usages are uses in the top frame of a web page by a script loaded
from the web page’s own domain. Third party usages are those
also in the top frame of a page but by a script loaded from a
third party. Framed uses are those inside of an iframe.

of these APIs implies increased power to fingerprint,
especially when combined with non-Javascript signals
such as HTTP headers and plugin behavior. For exam-
ple, Panopticlick derived 18 bits of entropy about remote
browsers from a subset of these APIs plus HTTP headers
and information from plugins [15].

Beyond the power of the most prolific fingerprint-
related API users growing, we also find that more sites
include more trackers using these APIs over time. Fig-
ure 5 shows the number of sites in each year contain-
ing a tracker that calls, on that site, at least K of the 37
fingerprinting APIs. Although many sites contain and
have contained trackers that use at least 1 API (typically
navigator.userAgent, common in browser compat-
ibility checks), the number of sites containing trackers
that call 2 or more APIs has risen significantly over time.

In addition to fingerprint-related APIs, we also ex-
amine the use of HTML5 LocalStorage, a per-site per-
sistent storage mechanism standardized in 2009 in ad-
dition to cookies. Figure 6 shows that the use of the
localStorage API rises rapidly since its introduction
in 2009, indicating that tracking defenses should increas-
ingly consider on storage mechanisms beyond cookies.

Third Parties Contacted. We now turn our attention
to the number of third parties that users encounter as
they browse the web. Even third parties not confirmed
as trackers have the potential to track users across the
web, and as we discovered in Section 4, many third par-

Figure 7: Distributions of third-party requests for the top 500
sites 1996-2016. Center box lines are medians, whiskers end
at 1.5*IQR. The increase in both medians and distributions of
the data show that more third-parties are being contacted by
popular sites in both the common and extreme cases.

Figure 8: Distribution of top sites for each year by number of
unique third-parties (tracking-capable domains) they contact.
In later years, more sites appear to contact more third parties.

ties in archived data may in fact be confirmed trackers
for which the Wayback Machine simply archived insuf-
ficient information. Figure 7 thus shows the distributions
of how many third parties the top 500 sites contacted in
each year. We see a rise in the median number of third
parties contacted — in other words, more sites are giving
more third parties the opportunity to track users.

Figure 8 provides a different view of similar data,
showing the distribution of the top sites for each year
by number of distinct third parties contacted. In the early
2000s, only about 5% of sites contacted at least 5 third
parties, while in 2016 nearly 40% of sites did so. We see
a maximum in 2015, when one site contacted 34 separate
third-parties (a raw number that is likely underestimated
by the Wayback Machine’s data)!

5.2 Top Trackers over Time

We now turn to an investigation of the top trackers each
year: who are the top players in the ecosystem, and how
wide is their view of users’ browsing behaviors?

Coverage of Top Trackers. We define the coverage of
a set of trackers as the percentage of total sites from the
dataset for which at least one of those trackers appears.
For a single tracker, its coverage is the percentage of sites
on which it appears. Intuitively, coverage suggests the
concentration of tracking ability — greater coverage al-

11

1008 25th USENIX Security Symposium USENIX Association

Figure 9: The growth in the coverage (percentage of top 500 sites tracked) of the top 1/5/10/20 trackers for each year is shown in
the first and second panels, for all confirmed trackers and for all third parties respectively. The right hand panel shows the values on
the live web for confirmed trackers, with the top 5 trackers covering about 70% of all sites in the dataset. Note that top third party
coverage in the archive is an excellent proxy for modern confirmed tracker coverage today.

Figure 10: This figure depicts variations in site coverage for
a number of the most popular confirmed trackers from years
across the studied period. We call the two trackers embedded
on the most sites in a given year the “champions” of that year,
filtered by manual classification as described in the text.

lows trackers to build larger browsing profiles. This met-
ric reaches toward the core privacy concern of tracking,
that certain entities may know nearly everything a person
does on the web. We consider trackers by domain name,
even though some trackers are in fact owned by the same
company (e.g., Google owns google-analytics.com,
doubleclick.net, and the “+1” button served from
google.com), because a business relationship does not
imply that the entities share data, though some trackers
may indeed share information out of public view.

Figure 9 illustrates the growth of tracker coverage over
time. It considers both the single domain with the high-
est coverage for each year (Top 1 Tracker) as well as the
combined coverage of the union of the top 5, 10 and
20 trackers. Confirming the lesson from Section 4.2,
the coverage rates we see for third party domains in the
archive are similar to live coverage of confirmed Vanilla
cookie-based trackers.

Clearly, the coverage of top trackers has risen over
time, suggesting that a small number of third parties can
observe an increasing portion of user browsing histories.

Popular Trackers over Time. Who are these top track-

ers? Figure 10 shows the rise and fall of the top two
trackers (“champions”) for each year. To create this fig-
ure, we make use of the lesson in Section 4.4 to manu-
ally label known popular confirmed trackers. We identi-
fied the two domains with the highest third-party request
coverage for each year, omitting cases where the most
popular tracker in a year appeared on only one site. We
manually verified that 12/19 of these domains were in
fact trackers by researching the domain, owning com-
pany, archived behavior and context, and modern behav-
iors (if applicable). Based on this analysis, we are able
to assess the change in tracking behaviors even of do-
mains for whom cookies are lost in the archive (e.g.,
doubleclick.net). In particular, this analysis reveals
trends in the trackers with the most power to capture pro-
files of user behavior across many sites.

We find that in the early 2000s, no single tracker
was present on more than 10% of top sites, but in re-
cent years, google-analytics.com has been present
on nearly a third of top sites and 2-4 others have been
present on more than 10% and growing. Some, such as
doubleclick.net (acquired by Google in 2008) have
been popular throughout the entire time period of the
graph, while others, such as scorecardresearch.com,
have seen a much more recent rise.

We note that google-analytics.com is a remark-
able outlier with nearly 35% coverage in 2011. Google
Analytics is also an outlier in that it is one of
only two non-cross-site trackers among the champi-
ons (gstatic.com, a Referred Analytics tracker, is the
other). As an Analytics type tracker, Google Analyt-
ics trackers users only within a single site, meaning that
its “coverage” is arguably less meaningful than that of
a cross-site tracker. However, we observe that Google
Analytics could track users across sites via fingerprint-
ing or by changing its behavior to store tracking cook-
ies. This observation highlights the need for repeated

12

USENIX Association 25th USENIX Security Symposium 1009

Figure 11: Changes in the frequency with which domains are
referred to or refer to other domains (based on HTTP Referer).

measurements studies that provide transparency on the
web: with a simple change to its tracking infrastructure,
Google Analytics could begin to track users across 40%
of the most popular sites on the web overnight. Thus,
Google’s decision not to structure Google Analytics in
this way has a tremendous impact on user privacy.

5.3 Evolution of the Tracking Ecosystem

Finally, we consider the tracking ecosystem as a whole,
focusing on relationships between different trackers. We
find a remarkable increase in the complexity of these re-
lationship over time. Again we consider only relation-
ships observable using TrackingExcavator, not external
information about business relationships.

To study these relationships, we construct the graph
of referring relationships between elements on pages.
For example, if we observe a third-party request from
example.com to tracker.com, or from tracker.com

referring to tracker2.com, the nodes for those domains
in the graph will be connected by edges.

We find a significant increase in complexity over
time by examining several properties of this graph (Fig-
ure 11). Over time, the mean number of referrals out-
ward from domains increases (top of Figure 11), while
the number of domains that are never referred to by other
domains or never refer outward steadily decreases (mid-
dle of Figure 11). Meanwhile, the maximum number of
domains that refer to a single domain increases dramati-
cally, suggesting that individual third parties in the web
ecosystem have gradually gained increasing prominence
and coverage. This reflects and confirms trends shown by
other aspects of our data (Figures 10 and 9). These trends
illuminate an ecosystem of generally increasingly con-
nected relationships and players growing in size and in-

fluence. Appendix B shows this evolution in graph form;
the increase in complexity over time is quite striking.

5.4 Summary and Discussion

We have uncovered trends suggesting that tracking has
become more prevalent and complex in the 20 years
since 1996: there are now more unique trackers exhibit-
ing more types of behaviors; websites contact increasing
numbers of third parties, giving them the opportunity to
track users; the scope of top trackers has increased, pro-
viding them with a broader view of user browsing be-
haviors; and the complexity and interconnectedness of
the tracking ecosystem has increased markedly.

From a privacy perspective, our findings show that
over time, more third parties are in a position to gather
and utilize increasing amounts of information about
users and their browsing behaviors. This increase comes
despite recent academic, policy, and media attention on
these privacy concerns and suggests that these discus-
sions are far from resolved. As researchers continue to
conduct longitudinal measurements of web tracking go-
ing forward, our work provides the necessary historical
context in which to situate future developments.

6 Additional Related Work
Tracking and Defenses. Third-party tracking has been
studied extensively in recent years, particularly through
analysis and measurements from 2005 to present [18, 19,
24, 30, 32–34, 40–43, 60]. A few studies have considered
mobile, rather than desktop, browser tracking [20, 27].
Beyond explicit stateful (e.g., cookie-based) tracking,
recent work has studied the use of browser and ma-
chine fingerprinting techniques to re-identify and track
users [3, 4, 15, 37, 57, 71]. Others have studied the pos-
sible results of tracking, including targeted ads [45, 70],
personalized search [29], and price discrimination [66].

User-facing defenses against tracking range from
browser extensions like Ghostery [23] and Privacy Bad-
ger [16] to research proposals (e.g. [8, 28]). Researchers
have also designed privacy-preserving alternatives in-
cluding privacy-preserving ads [22, 25, 59, 64], social
media widgets [14, 39, 61], and analytics [6]. Others
have studied user attitudes towards tracking and targeted
advertising (e.g., [46, 51, 65]). Our study shows the
increased prevalence of tracking over time, suggesting
that designing and supporting these defenses for privacy-
sensitive users is as important as ever.

Wayback Machine and other Longitudinal Measure-
ments. Others have used the Wayback Machine for his-
torical measurements to predict whether websites will
become malicious [62] and to study JavaScript inclu-
sion [55] and website accessibility [26]; to recover med-
ical references [67]; to analyze social trends [35]; and
as evidence in legal cases [17]. Others [53] found that

13

1010 25th USENIX Security Symposium USENIX Association

websites are accurately reflected in the archive. These
studies noted similar limitations as we did, as well as
ways it has changed over time [38]. Finally, researchers
have studied other aspects of the web and Internet lon-
gitudinally without the use of archives, including IPv6
adoption [12], search-engine poisoning [47], privacy no-
tices [52], and botnets [68].

7 Conclusion

Though third-party web tracking and its associated pri-
vacy concerns have received attention in recent years,
the practice long predates the first academic measure-
ments studies of tracking (begun in 2005). Indeed, in
our measurements we find tracking behaviors as early as
1996. We introduce TrackingExcavator, a measurement
infrastructure for third-party web tracking behaviors that
leverages archive.org’s Wayback Machine to conduct
historical studies. We rigorously evaluate the Wayback
Machine’s view of past third-party requests and develop
strategies for overcoming its limitations.

We then use TrackingExcavator to conduct the most
extensive longitudinal study of the third-party web track-
ing ecosystem to date, retrospectively from 1996 to
present (2016). We find that the web tracking ecosys-
tem has expanded in scope and complexity over time:
today’s users browsing the web’s popular sites encounter
more trackers, with more complex behaviors, with wider
coverage, and with more connections to other trackers,
than at any point in the past 20 years. We argue that
understanding the trends in the web tracking ecosystem
over time — provided for the first time at this scale by
our work — is important to future discussions surround-
ing web tracking, both technical and political.

Beyond web tracking, there are many questions about
the history and evolution of the web. We believe our
evaluation of the Wayback Machine’s view of the past,
as well as TrackingExcavator, which we plan to release
with this paper, will aid future study of these questions.

Acknowledgements

We thank individuals who generously offered their time
and resources, and organizations and grants that support
us and this work. Jason Howe of UW CSE offered in-
valuable technical help. Camille Cobb, Peter Ney, Will
Scott, Lucy Simko, and Paul Vines read our drafts thor-
oughly and gave insightful feedback. We thank our col-
leagues from the UW Tech Policy Lab, particularly Ryan
Calo and Emily McReynolds, for their thoughts and ad-
vice. This work was supported in part by NSF Grants
CNS-0846065 and IIS-1302709, an NSF Graduate Re-
search Fellowship under Grant No. DGE-1256082, and
the Short-Dooley Professorship.

References

[1] Disney absorbs Infoseek, July 1999. http://money.cnn.com/
1999/07/12/deals/disney/.

[2] Grad School Rankings, Engineering Specialties: Computer,
1999. https://web.archive.org/web/19990427094034/

http://www4.usnews.com/usnews/edu/beyond/

gradrank/gbengsp5.htm.
[3] ACAR, G., EUBANK, C., ENGLEHARDT, S., JUAREZ, M.,

NARAYANAN, A., AND DIAZ, C. The Web Never Forgets: Per-
sistent Tracking Mechanisms in the Wild. In Proceedings of
the ACM Conference on Computer and Communications Secu-
rity (2014).

[4] ACAR, G., JUAREZ, M., NIKIFORAKIS, N., DIAZ, C.,
GÜRSES, S., PIESSENS, F., AND PRENEEL, B. FPDetective:
Dusting the web for fingerprinters.

[5] AINSWORTH, S. G., NELSON, M. L., AND VAN DE SOMPEL,
H. Only One Out of Five Archived Web Pages Existed as Pre-
sented. 257–266.

[6] AKKUS, I. E., CHEN, R., HARDT, M., FRANCIS, P., AND
GEHRKE, J. Non-tracking web analytics. In Proceedings of
the ACM Conference on Computer and Communications Secu-
rity (2012).

[7] BARTH, A. HTTP State Management Mechanism, Apr. 2011.
https://tools.ietf.org/html/rfc6265.

[8] BAU, J., MAYER, J., PASKOV, H., AND MITCHELL, J. C. A
Promising Direction for Web Tracking Countermeasures. In Web
2.0 Security and Privacy (2013).

[9] BRUNELLE, J. F. 2012-10-10: Zombies in the Archives.
http://ws-dl.blogspot.com/2012/10/2012-10-10-

zombies-in-archives.html.
[10] BRUNELLE, J. F., KELLY, M., SALAHELDEEN, H., WEIGLE,

M. C., AND NELSON, M. L. Not All Mementos Are Created
Equal : Measuring The Impact Of Missing Resources Categories
and Subject Descriptors. International Journal on Digital Li-
braries (2015).

[11] CHROMIUM. CookieMonster. https://www.chromium.

org/developers/design-documents/network-

stack/cookiemonster.
[12] CZYZ, J., ALLMAN, M., ZHANG, J., IEKEL-JOHNSON, S., OS-

TERWEIL, E., AND BAILEY, M. Measuring IPv6 Adoption. ACM
SIGCOMM Computer Communication Review 44, 4 (2015), 87–
98.

[13] D. KRISTOL, L. M. HTTP State Management Mechanism, Oct.
2000. https://tools.ietf.org/html/rfc2965.html.

[14] DHAWAN, M., KREIBICH, C., AND WEAVER, N. The Priv3
Firefox Extension. http://priv3.icsi.berkeley.edu/.

[15] ECKERSLEY, P. How unique is your web browser? In Pro-
ceedings of the International Conference on Privacy Enhancing
Technologies (2010).

[16] ELECTRONIC FRONTIER FOUNDATION. Privacy Badger.
https://www.eff.org/privacybadger.

[17] ELTGROTH, D. R. Best Evidence and the Wayback Machine:
a Workable Authentication Standard for Archived Internet Evi-
dence. 78 Fordham L. Rev. 181. (2009), 181–215.

[18] ENGLEHARDT, S., EUBANK, C., ZIMMERMAN, P., REISMAN,
D., AND NARAYANAN, A. OpenWPM: An automated platform
for web privacy measurement. Tech. rep., Princeton University,
Mar. 2015.

[19] ENGLEHARDT, S., REISMAN, D., EUBANK, C., ZIMMERMAN,
P., MAYER, J., NARAYANAN, A., AND FELTEN, E. W. Cook-
ies That Give You Away: The Surveillance Implications of Web
Tracking. In Proceedings of the 24th International World Wide
Web Conference (2015).

14

USENIX Association 25th USENIX Security Symposium 1011

[20] EUBANK, C., MELARA, M., PEREZ-BOTERO, D., AND
NARAYANAN, A. Shining the Floodlights on Mobile Web Track-
ing — A Privacy Survey. In Proceedings of the IEEE Workshop
on Web 2.0 Security and Privacy (2013).

[21] FOUNDATION, P. S. 21.24. http.cookiejar Cookie handling for
HTTP clients, Feb. 2015. https://docs.python.org/3.4/

library/http.cookiejar.html.
[22] FREDRIKSON, M., AND LIVSHITS, B. RePriv: Re-Envisioning

In-Browser Privacy. In Proceedings of the IEEE Symposium on
Security and Privacy (2011).

[23] GHOSTERY. Ghostery. https://www.ghostery.com.
[24] GUHA, S., CHENG, B., AND FRANCIS, P. Challenges in mea-

suring online advertising systems. In Proceedings of the ACM
Internet Measurement Conference (2010).

[25] GUHA, S., CHENG, B., AND FRANCIS, P. Privad: Practical
Privacy in Online Advertising. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation
(2011).

[26] HACKETT, S., PARMANTO, B., AND ZENG, X. Accessibility
of Internet Websites Through Time. In Proceedings of the 6th
International ACM SIGACCESS Conference on Computers and
Accessibility (New York, NY, USA, 2004), Assets ’04, ACM,
pp. 32–39.

[27] HAN, S., JUNG, J., AND WETHERALL, D. A Study of Third-
Party Tracking by Mobile Apps in the Wild. Tech. Rep. UW-
CSE-12-03-01, University of Washington, Mar. 2012.

[28] HAN, S., LIU, V., PU, Q., PETER, S., ANDERSON, T. E., KR-
ISHNAMURTHY, A., AND WETHERALL, D. Expressive Privacy
Control with Pseudonyms. In SIGCOMM (2013).

[29] HANNAK, A., SAPIEŻYŃSKI, P., KAKHKI, A. M., KRISHNA-
MURTHY, B., LAZER, D., MISLOVE, A., AND WILSON, C.
Measuring Personalization of Web Search. In Proceedings of the
International World Wide Web Conference (2013).

[30] IHM, S., AND PAI, V. Towards Understanding Modern Web Traf-
fic. In Proceedings of the ACM Internet Measurement Conference
(2011).

[31] INTERNET ARCHIVE. Wayback Machine. https://archive.
org/.

[32] JACKSON, C., BORTZ, A., BONEH, D., AND MITCHELL, J. C.
Protecting Browser State From Web Privacy Attacks. In Proceed-
ings of the International World Wide Web Conference (2006).

[33] JANG, D., JHALA, R., LERNER, S., AND SHACHAM, H. An em-
pirical study of privacy-violating information flows in JavaScript
web applications. In Proceedings of the ACM Conference on
Computer and Communications Security (2010).

[34] JENSEN, C., SARKAR, C., JENSEN, C., AND POTTS, C. Track-
ing website data-collection and privacy practices with the iWatch
web crawler. In Proceedings of the Symposium on Usable Pri-
vacy and Security (2007).

[35] JOHN, N. A. Sharing and Web 2.0: The emergence of a keyword.
New Media & Society (2012).

[36] JONES, S. M., NELSON, M. L., SHANKAR, H., AND DE SOM-
PEL, H. V. Bringing Web Time Travel to MediaWiki: An
Assessment of the Memento MediaWiki Extension. CoRR
abs/1406.3876 (2014).

[37] KAMKAR, S. Evercookie — virtually irrevocable persistent
cookies. http://samy.pl/evercookie/.

[38] KELLY, M., BRUNELLE, J. F., WEIGLE, M. C., AND NELSON,
M. L. On the Change in Archivability of Websites Over Time.
CoRR abs/1307.8067 (2013).

[39] KONTAXIS, G., POLYCHRONAKIS, M., KEROMYTIS, A. D.,
AND MARKATOS, E. P. Privacy-preserving social plugins. In
USENIX Security Symposium (2012).

[40] KRISHNAMURTHY, B., NARYSHKIN, K., AND WILLS, C. Pri-

vacy Leakage vs. Protection Measures: The Growing Disconnect.
In Proceedings of the IEEE Workshop on Web 2.0 Security and
Privacy (2011).

[41] KRISHNAMURTHY, B., AND WILLS, C. On the leakage of per-
sonally identifiable information via online social networks. In
Proceedings of the ACM Workshop on Online Social Networks
(2009).

[42] KRISHNAMURTHY, B., AND WILLS, C. Privacy Diffusion on
the Web: a Longitudinal Perspective. In Proceedings of the Inter-
national World Wide Web Conference (2009).

[43] KRISHNAMURTHY, B., AND WILLS, C. E. Generating a Privacy
Footprint on the Internet. In Proceedings of the ACM Internet
Measurement Conference (2006).

[44] KRISTOL, D., AND MONTULLI, L. RFC 2109 - HTTP State
Management Mechanism, 1997. https://tools.ietf.org/

html/rfc2109.
[45] LÉCUYER, M., DUCOFFE, G., LAN, F., PAPANCEA, A., PET-

SIOS, T., SPAHN, R., CHAINTREAU, A., AND GEAMBASU, R.
XRay: Enhancing the Web’s Transparency with Differential Cor-
relation. In 23rd USENIX Security Symposium (2014).

[46] LEON, P. G., UR, B., WANG, Y., SLEEPER, M., BALEBAKO,
R., SHAY, R., BAUER, L., CHRISTODORESCU, M., AND CRA-
NOR, L. F. What Matters to Users? Factors that Affect Users’
Willingness to Share Information with Online Advertisers. In
Symposium on Usable Privacy and Security (2013).

[47] LEONTIADIS, N., MOORE, T., AND CHRISTIN, N. A nearly
four-year longitudinal study of search-engine poisoning. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (2014), ACM, pp. 930–941.

[48] LUND, A. The History of Online Ad Targeting, 2014. http://
www.sojern.com/blog/history-online-ad-targeting/.

[49] MAYER, J., AND NARAYANAN, A. Do Not Track. http://

donottrack.us/.
[50] MAYER, J. R., AND MITCHELL, J. C. Third-Party Web Track-

ing: Policy and Technology. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (2012).

[51] MCDONALD, A. M., AND CRANOR, L. F. Americans’ Attitudes
about Internet Behavioral Advertising Practices. In Proceedings
of the Workshop on Privacy in the Electronic Society (2010).

[52] MILNE, G. R., AND CULNAN, M. J. Using the content of online
privacy notices to inform public policy: A longitudinal analysis
of the 1998-2001 US Web surveys. The Information Society 18,
5 (2002), 345–359.

[53] MURPHY, J., HASHIM, N. H., AND OCONNOR, P. Take Me
Back: Validating the Wayback Machine. Journal of Computer-
Mediated Communication 13, 1 (2007), 60–75.

[54] NARAINE, R. Windows XP SP2 Turns ‘On’ Pop-up Block-
ing, 2004. http://www.internetnews.com/dev-news/

article.php/3327991.
[55] NIKIFORAKIS, N., INVERNIZZI, L., KAPRAVELOS, A.,

VAN ACKER, S., JOOSEN, W., KRUEGEL, C., PIESSENS, F.,
AND VIGNA, G. You Are What You Include: Large-scale Evalu-
ation of Remote Javascript Inclusions. In Proceedings of the ACM
Conference on Computer and Communications Security (2012).

[56] NIKIFORAKIS, N., JOOSEN, W., AND LIVSHITS, B. Privarica-
tor: Deceiving fingerprinters with little white lies. In Proceedings
of the 24th International Conference on World Wide Web (2015),
International World Wide Web Conferences Steering Committee,
pp. 820–830.

[57] NIKIFORAKIS, N., KAPRAVELOS, A., JOOSEN, W., KRUEGEL,
C., PIESSENS, F., AND VIGNA, G. Cookieless Monster: Explor-
ing the Ecosystem of Web-based Device Fingerprinting. In Pro-
ceedings of the IEEE Symposium on Security and Privacy (2013).

[58] RESEARCH LIBRARY OF LOS ALAMOS NATIONAL LABORA-

15

1012 25th USENIX Security Symposium USENIX Association

TORY. Time Travel. http://timetravel.mementoweb.org/
about/.

[59] REZNICHENKO, A., AND FRANCIS, P. Private-by-Design Ad-
vertising Meets the Real World. In Proceedings of the ACM Con-
ference on Computer and Communications Security (2014).

[60] ROESNER, F., KOHNO, T., AND WETHERALL, D. Detecting
and Defending Against Third-Party Tracking on the Web. In
Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (2012).

[61] ROESNER, F., ROVILLOS, C., KOHNO, T., AND WETHERALL,
D. ShareMeNot: Balancing Privacy and Functionality of Third-
Party Social Widgets. USENIX ;login: 37 (2012).

[62] SOSKA, K., AND CHRISTIN, N. Automatically detecting vul-
nerable websites before they turn malicious. In 23rd USENIX
Security Symposium (USENIX Security 14) (2014), pp. 625–640.

[63] STEVEN ENGLEHARDT. Do privacy studies help? A Retrospec-
tive look at Canvas Fingerprinting. https://freedom-to-

tinker.com/blog/englehardt/retrospective-look-

at-canvas-fingerprinting/.
[64] TOUBIANA, V., NARAYANAN, A., BONEH, D., NISSENBAUM,

H., AND BAROCAS, S. Adnostic: Privacy Preserving Targeted
Advertising. In Proceedings of the Network and Distributed Sys-
tem Security Symposium (2010).

[65] UR, B., LEON, P. G., CRANOR, L. F., SHAY, R., AND WANG,
Y. Smart, useful, scary, creepy: perceptions of online behavioral
advertising. In 8th Symposium on Usable Privacy and Security
(2012).

[66] VISSERS, T., NIKIFORAKIS, N., BIELOVA, N., AND JOOSEN,
W. Crying wolf? on the price discrimination of online airline
tickets. In HotPETS (2014).

[67] WAGNER, C., GEBREMICHAEL, M. D., TAYLOR, M. K., AND
SOLTYS, M. J. Disappearing act: decay of uniform resource
locators in health care management journals. Journal of the Med-
ical Library Association : JMLA 97, 2 (2009), 122–130.

[68] WANG, D. Y., SAVAGE, S., AND VOELKER, G. M. Juice: A
Longitudinal Study of an SEO Botnet. In NDSS (2013).

[69] WASHINGTON POST. From Lycos to Ask Jeeves to Face-
book: Tracking the 20 most popular web sites every year since
1996. https://www.washingtonpost.com/news/the-

intersect/wp/2014/12/15/from-lycos-to-ask-

jeeves-to-facebook-tracking-the-20-most-

popular-web-sites-every-year-since-1996/.
[70] WILLS, C. E., AND TATAR, C. Understanding what they do

with what they know. In Proceedings of the ACM Workshop on
Privacy in the Electronic Society (2012).

[71] YEN, T.-F., XIE, Y., YU, F., YU, R. P., AND ABADI, M. Host
Fingerprinting and Tracking on the Web: Privacy and Security
Implications. In Proceedings of the Network and Distributed Sys-
tem Security Symposium (2012).

[72] ZACK WHITTAKER. PGP co-founder: Ad companies
are the biggest privacy problem today, not governments,
2016. www.zdnet.com/article/pgp-co-founder-the-

biggest-privacy-issue-today-are-online-ads/.

A Fingerprint-Related JavaScript APIs
As described in Section 3, TrackingExcavator hooks
a number of JavaScript APIs that may be used in
fingerprint-based tracking and drawn from prior work [3,
4, 15, 56, 57]. The complete list:

• navigator.appCodeName

• navigator.appName

• navigator.appVersion

• navigator.cookieEnabled

• navigator.doNotTrack

• navigator.language

• navigator.languages

• navigator.maxTouchPoints

• navigator.mediaDevices

• navigator.mimeTypes

• navigator.platform

• navigator.plugins

• navigator.product

• navigator.productSub

• navigator.userAgent

• navigator.vendor

• navigator.vendorSub

• screen.availHeight

• screen.availLeft

• screen.availTop

• screen.availWidth

• screen.colorDepth

• screen.height

• screen.orientation

• screen.pixelDepth

• screen.width

• CanvasRenderingContext2D.getImageData

• CanvasRenderingContext2D.fillText

• CanvasRenderingContext2D.strokeText

• WebGLRenderingContext.getImageData

• WebGLRenderingContext.fillText

• WebGLRenderingContext.strokeText

• HTMLCanvasElement.toDataURL

• window.TouchEvent

• HTMLElement.offsetHeight

• HTMLElement.offsetWidth

• HTMLElement.getBoundingClientRect

B Ecosystem Complexity
Figure 12 (on the next page) visually depicts the connec-
tions between entities in the tracking ecosystem that we
observe in our datasets for 1996, 2000, 2004, 2008, 2012,
and 2016: domains as nodes, and referral relationships as
edges. Note that the visual organization of these graphs
(with nodes in multiple tiers) is not meaningful and sim-
ply an artifact of the graph visualization software. Over
time, the complexity and interconnectedness of relation-
ships between third-party domains on the top 450 web-
sites has increased dramatically.

16

USENIX Association 25th USENIX Security Symposium 1013

(a) 1996

(b) 2000

(c) 2004

(d) 2008

(e) 2012

(f) 2016

Figure 12: Referrer graphs for the top 450 sites in 1996, 2000, 2004, 2008, 2012 and 2016 as seen in the Wayback Machine’s
archive. An edge from a domain referrer.com to another domain referred.com is included if any URL from referrer.com

is seen to be the referrer for any request to referred.com. Note the increasing complexity of the graph over time.

17

USENIX Association 25th USENIX Security Symposium 1015

Hey, You Have a Problem:
On the Feasibility of Large-Scale Web Vulnerability Notification

Ben Stock
stock@cs.uni-saarland.de
CISPA, Saarland University

Saarland Informatics Campus

Giancarlo Pellegrino
gpellegrino@mmci.uni-saarland.de

CISPA, Saarland University
Saarland Informatics Campus

Christian Rossow
crossow@mmci.uni-saarland.de

CISPA, Saarland University
Saarland Informatics Campus

Martin Johns
martin.johns@sap.com

SAP SE

Michael Backes
backes@cs.uni-saarland.de

CISPA, Saarland University & MPI-SWS
Saarland Informatics Campus

Abstract
Large-scale discovery of thousands of vulnerable Web

sites has become a frequent event, thanks to recent ad-
vances in security research and the rise in maturity of
Internet-wide scanning tools. The issues related to dis-
closing the vulnerability information to the affected par-
ties, however, have only been treated as a side note in
prior research.

In this paper, we systematically examine the feasibility
and efficacy of large-scale notification campaigns. For
this, we comprehensively survey existing communica-
tion channels and evaluate their usability in an automated
notification process. Using a data set of over 44,000 vul-
nerable Web sites, we measure success rates, both with
respect to the total number of fixed vulnerabilities and
to reaching responsible parties, with the following high-
level results: Although our campaign had a statistically
significant impact compared to a control group, the in-
crease in the fix rate of notified domains is marginal.

If a notification report is read by the owner of the vul-
nerable application, the likelihood of a subsequent res-
olution of the issues is sufficiently high: about 40%.
But, out of 35,832 transmitted vulnerability reports, only
2,064 (5.8%) were actually received successfully, result-
ing in an unsatisfactory overall fix rate, leaving 74.5%
of Web applications exploitable after our month-long ex-
periment. Thus, we conclude that currently no reliable
notification channels exist, which significantly inhibits
the success and impact of large-scale notification.

1 Introduction

The large-scale detection of vulnerabilities in Web appli-
cations has become significantly more common over the
course of the last years. This can be attributed to two
concurrent developments: The ever-growing adoption of
open-source Web frameworks and the recent advances in
automated vulnerability detection.

Open-source Web application frameworks, such as
Joomla, Drupal, or WordPress, nowadays constitute the
technological basis for a vast number of Web sites. Thus,
a single vulnerability in any of these frameworks makes
tens of thousands of Web applications attackable at once.
Previously disclosed vulnerabilities range from Cross-
Site Scripting attacks [20], to more severe attacks like
SQL injections [10] or object deserialization flaws [19].
Given the rise in maturity and efficiency of Internet-
wides scanning tools, such as ZMap [12], such flaws can
effectively be identified on affected Web sites.

Furthermore, a recent stream of security research has
demonstrated automated approaches that are capable of
discovering Web vulnerabilities on a large scale. Ex-
amples of such research results include the discovery of
high numbers of Client-Side Cross-Site Scripting prob-
lems [22], server-side application logic flaws [9], and in-
stances of vulnerable server-side infrastructure [13].

However, as soon as a researcher has discovered
security-critical vulnerabilities that affect thousands of
Web sites, she has an ethical dilemma: On the one hand,
with the awareness of a vulnerability comes the implicit
responsibility of disclosing it to the affected parties. On
the other hand, large-scale Web vulnerability disclosure
is non-trivial, has not been well-studied, and there are no
guidelines or suggestions on how to proceed.

Thus, in this paper, we explore the following ques-
tions: Is it actually feasible to disseminate vulnerability
information on a large scale? What are suitable com-
munication channels to reach out to the affected parties?
And does such a large-scale notification campaign affect
the prevalence of vulnerabilities in the wild?

To answer these questions, we conduct the first in-
depth study on the feasibility and efficacy of large-scale
Web vulnerability notification campaigns. To this end,
we establish a large body of vulnerable Web sites, suf-
fering from different types of vulnerabilities such as Re-
flected or Client-Side Cross-Site Scripting bugs. We then
review communication channels to notify affected par-

1016 25th USENIX Security Symposium USENIX Association

ties at scale, including direct contacts (such as generic
email aliases and WHOIS contacts) and indirect chan-
nels (such as hosting providers or CERTs). We notify the
Web site administrators via these communication chan-
nels and compare how the vulnerabilities in the moni-
tored Web sites evolve over time compared to a control
group of vulnerable Web sites that we do not notify.

Our large-scale experiments reveal important take-
away messages for fellow researchers. First, we show
that while large-scale notifications can have a statistically
significant impact on the fix rate of vulnerable Web ap-
plications, the long-term impact is marginal. Second, we
therefore analyze the efficacy of direct and indirect com-
munication channels, both with respect to reaching the
(initial) recipient of the notification as well as the im-
pact of the channel on the vulnerability landscape. Third,
from our results, we derive the core challenges of noti-
fication campaigns and find that failures to reach out to
contact persons cause the most severe degradation of suc-
cess rates. Finally, we cover the lessons we learned dur-
ing our pioneering efforts in order to assist researchers in
future large-scale notification campaigns.

To sum up, we make the following contributions:

• We systematically evaluate the suitability of dif-
ferent communication channels for large-scale vul-
nerability disclosure and present a methodology to
measure the feasibility and efficacy of such a dis-
closure process (§3).

• We document the results of a large-scale notifica-
tion campaign, discussing the data set of vulnerable
domains (§4) and the impact our campaign of noti-
fying 35,832 vulnerable domains had (§5).

• Based on the observed (low) impact on the global
landscape, we analyze factors inhibiting the success
of large-scale disclosure campaigns (§6).

• We highlight key insights gathered in our study and
present directions for future work in this space (§7).

2 Problem Statement

In this section, we outline the research questions we aim
to answer. Secondly, we follow up with information on
the actual vulnerabilities we consider for our work.

2.1 Research Questions
The ad-hoc process of reporting individual Web-related
vulnerabilities to a single vendor is fairly well under-
stood. Given its small scale, such a notification can be
conducted with some manual, site-specific effort. How-
ever, detecting large numbers of vulnerabilities span-
ning several parties has become the norm rather than

the exception. Examples in the recent past include the
identification of high numbers of vulnerable SSL imple-
mentations [13], Client-Side XSS vulnerabilities [22],
or execute-after-redirect flaws in Ruby on Rails appli-
cations [9]. With higher numbers of affected parties,
manual effort becomes unfeasible, and hence responsible
disclosure transforms into a distinctly different problem.
Therefore, it is necessary to investigate notification pro-
cesses that function with little to no human involvement.

Taking this overarching motivation into consideration,
we reach a set of distinct research questions: For one,
given a large number of vulnerabilities that affect a
similarly large set of disjoint site owners: How can a
scalable responsible vulnerability notification process be
conducted? As manual effort is not a realistic option, an
automated vulnerability disclosure process is required.

Furthermore: What are suitable communication chan-
nels to report vulnerabilities? Not all methods to com-
municate vulnerability information can be easily used
in automated processes. Once suitable channels are se-
lected, it is necessary to examine how successful a large-
scale Web vulnerability disclosure process can be. Even
in an automated fashion, a large-scale notification cam-
paign results in considerable effort: The notification pro-
cess has to be set up, executed, and monitored. More-
over, even automated initial notification will in many
cases lead to personal, non-automated communication
with a subset of recipients of the vulnerability reports.
Thus, it is reasonable to examine how significant the pos-
itive effect of our campaign was. Based on the results
of such a study, another question arises: Which methods
were most successful in delivering notification, and what
might inhibiting factors be?

An increasing number of security researchers (profes-
sional and academic) spend significant time and effort
to discover and fix security-critical software bugs, often
wondering about how to proceed with large-scale disclo-
sure processes. With the aforementioned research ques-
tions, we aim to shed light on the under-explored issue
of whether, how and with what chance of success re-
searchers can notify affected parties.

2.2 Vulnerability Information

To answer these research questions, we leverage a data
set with concrete instances of Web sites that contain
security-critical flaws. We can use this data set to no-
tify affected parties and monitor their reactions. In the
following, we outline the Web-related vulnerabilities we
consider for our work, separated into well-known and
previously-unknown vulnerabilities.

We establish the data set on well-known vulnerabili-
ties by inspecting WordPress-based Web sites. We se-
lected WordPress since it is the most frequently used

USENIX Association 25th USENIX Security Symposium 1017

PHP-based web application, deployed by about 25% of
the most popular Web sites [35]. To find WordPress vul-
nerabilities, we systematically searched the CVE (Com-
mon Vulnerabilities and Exposures) database [27] for
vulnerabilities which could be verified with (i) non-
intrusive proof-of-concept (PoC) tests and (ii) without
requiring valid user credentials for the tested site. We
chose two vulnerabilities: one reflected XSS from 2013
(CVE-2013-0237) and one Client-Side XSS discovered
in 2015 (CVE-2015-3429).

In addition, we selected a recent vulnerability discov-
ered by security researchers at Sucuri. This third vul-
nerability, which targets the XML-RPC service of Word-
Press prior to version 4.4, allows an attacker to perform
brute-force amplification attacks [6]. The flaw is in the
behavior of the XML-RPC service which accepts mul-
tiple remote procedure calls (RPCs) with different user
credentials within a single HTTP request. As a result,
an attacker can forge a request in which she tries several
user passwords at once. In the remainder of this paper,
we refer to this vulnerability as Multicall. All these vul-
nerabilities were already known and patched in current
versions of WordPress when we started our experiments.
In the following, we refer to these domains as DWP.

Our data set on previously-unknown vulnerabilities
contains Web sites from the Alexa Top 10,000 suffer-
ing from one or more Client-Side Cross-Site Scripting
(Client-Side XSS) vulnerabilities. To detect these flaws,
we used a methodology presented in our previous work
(see Lekies et al. [22]) which is based on a taint-aware
browsing engine and an exploit generator to gather veri-
fied exploitable vulnerabilities. To the best of our knowl-
edge, these flaws were not shared with the site operators
before our notification. The second data set thus rep-
resents a situation researchers face when discovering a
previously unknown type or instance of Web flaws. We
denote these domains as DCXSS.

3 Methodology

In this section we cover fundamental aspects of our
methodology on large-scale notifications. We first dis-
cuss which communication channels can be used to reach
out to affected parties. Subsequently, we outline how we
prepared the notification messages. Third, we present
the metrics that help to answer our research questions.
Finally, we discuss ethical aspects of our methodology.

3.1 Communication Channels

The first key challenge when disclosing a Web vulnera-
bility is to reach out to an appropriate contact person,
e.g., to the administrator of a vulnerable Web site. In the

following, we review potential communication channels
and discuss which of them are suitable in our context.

3.1.1 Direct Channels

We first consider and assess direct communication chan-
nels that lead to the responsible contact.

Web contacts (discarded) — One option would be to
browse the Web site and search for contact email ad-
dresses, phone numbers, or contact forms. Naturally,
calling affected parties or interacting with custom Web
forms is not a viable option in a large-scale scenario. Al-
ternatively, we could crawl the domain to extract email
addresses. This process, however, is an unreliable and
error-prone undertaking, and is complicated by anti-
scraping mechanisms such as CAPTCHAs or obfuscated
email addresses. Hence, such contacts are not viable for
large-scale notifications and we do not consider them.

Generic email aliases — Standardized email aliases for
each domain should ideally redirect to appropriate mail-
boxes and are “to be used when contacting personnel
of an organization” (RFC 2142 [7]). The RFC also
proposes alias categories suitable for our goal. Besides
the security-related aliases, security@ and abuse@, we
chose to contact the support mailbox for the HTTP ser-
vice, i.e., webmaster@. In addition, we include the
generic info@ alias.

Domain WHOIS information — The Domain WHOIS
protocol can be used to query information about regis-
tered domain names. Depending on the providing server,
however, the structure and content of the provided infor-
mation varies. WHOIS data is optimized for readabil-
ity to humans [8] and thus does not have a consistent
document format [25]. While a human can easily use
WHOIS to retrieve contact information for a single do-
main, it does not scale to large-scale disclosure. WHOIS
providers also rate-limit requests and partially employ
CAPTCHAs to protect contact addresses [17]. Hence,
querying WHOIS at large scale is not feasible. Instead,
to retrieve the WHOIS domain contact, we purchased a
machine-readable WHOIS data set for the Alexa top one
million Web sites as of September, 29th, 2015 1 and aug-
mented the data with additional, on-demand queries. To
select the contact person, first priority was given to the
registrant’s email address. In cases where this did not
exist, we selected the technical contact address instead.

3.1.2 Indirect Channels

Apart from direct channels, we can ask intermediaries to
forward information about vulnerabilities on our behalf:

1We bought the data set from http://whoisxmlapi.com

1018 25th USENIX Security Symposium USENIX Association

VRPs (discarded) — In recent years, vulnerability re-
ward programs (VRPs) have gained traction and their
success has been studied by researchers [14]. VRPs in-
centivize researchers to responsibly disclose flaws either
directly to the vendor or to a VRP organization. Com-
panies such as Google run their own in-house programs,
whereas others outsource the coordination to organiza-
tions like HackerOne or BugCrowd. Naturally, in-house
programs focus on vulnerabilities that are specific to the
company, and hence, cannot be used for large-scale dis-
closure. Moreover, VRP organizations usually only ac-
cept and forward reports for their customers. Given
a large body of vulnerable sites from several domains,
VRPs are not a viable option for large-scale notifications.
We thus exclude VRPs from our study.

Hosting providers — Hosting providers may already
have an infrastructure in place to receive and react to
security complaints. The provider likely has an incen-
tive to use its direct customer contacts to forward the
vulnerability information. While there is no specific
security-related contact for providers, each provider typ-
ically has an abuse mailbox, which is used to notify op-
erators about malicious activities originating from their
networks. Abuse contacts can be found in Regional In-
ternet Registries (RIRs) contact databases or queried via
the IP WHOIS protocol. Both systems rate-limit requests
and return proprietary formats. To work around this lim-
itation, we query the Abusix Contact IP WHOIS proxy
service [1] to obtain contacts of providers hosting the
vulnerable Web sites.

TTPs — Trusted Third-Party Coordinators (hereafter
TTPs) such as CERTs (Computer Emergency Response
Teams) can act as intermediaries to report software vul-
nerabilities to operators. TTPs either operate on a re-
gional level, i.e., within countries, or on a global scale,
e.g., FIRST (Forum of Incident Response and Security
Teams) [15]. Typically, TTPs already have technical in-
frastructure and procedures to forward vulnerability in-
formation to the administrators within their authority.
To select CERTs, we determined the countries in which
the vulnerable Web applications are hosted. We se-
lected the top-20 countries in our data set and looked up
their national CERTs. As global coordinators, we chose
FIRST [15], and Ops-T [29] (Operations Security Trust),
a closed community of security professionals.

3.2 Notification Procedure

In this section, we outline our notification procedure.
Our campaign consisted of sending emails to the four
notification groups on a bi-weekly basis, i.e., an initial
notification and subsequent reminders every two weeks.
In each round, we only notified Web sites which were

exploitable at least once in the previous 72 hours2.
We split our overall data set of vulnerable Web sites

into five disjoint groups of equal size, i.e., each domain
is part of exactly one group. We use four notification
groups and assign 1/5th of the domains to each of them:
(i) generic email aliases, (ii) domain WHOIS contacts,
(iii) abuse contacts of network providers, and (iv) TTPs.
To reduce possible bias, we did not inform TTPs and net-
work providers that they received only an excerpt of all
affected sites in their constituency (since the rest were in
the other groups). In addition, to set a baseline, we as-
sign the fifth group to the control group, to which we did
not send notifications.

3.2.1 Notification Types

To notify contacts, we carefully aggregated information
to avoid a single contact receiving multiple notification
emails, as discussed in the following.

Individual Disclosure — For the Generic and the
WHOIS contact groups, we sent individual emails that
contained a list of discovered flaws for their domain, as
well as instructions to retrieve the technical report. We
left it to the recipient to either view the technical report
on our vulnerability disclosure Web interface, or to use
our mailbot to retrieve the reports. Each domain there-
fore had a unique token assigned to it which could be
used to retrieve the report. Additionally, the email in-
formed the recipient that they could opt out of the exper-
iments or get in touch with us via a dedicated mailbox.
An example of the email is shown in Appendix A.

Aggregated Disclosure — For the network provider and
TTP contact groups, the email contained a message sim-
ilar to the one used for the individual disclosure, kindly
asking the recipient to forward the information to the re-
sponsible domain admin. However, we aggregated vul-
nerability information per authority and prepared a sin-
gle message to disclose multiple vulnerabilities affect-
ing Web sites within the authority of TTPs and network
providers. Specifically, we attached a CSV file speci-
fying the domain, IP address, vulnerability types, Web
interface link, and unique token for each site. The email
also contained a note regarding opt-out and reaching us.

3.2.2 Mail Delivery and Anti-Spam Filters

To send out a large number of such notification emails,
we opted to set up our own email server. Operating our
own email infrastructure prevents side-effects that may
have arisen when using existing email infrastructure of
the university, e.g., in case an IP-based blacklist starts
blocking our server due to the notification emails.

2See Section 3.3.1 for details on these exploitability checks

USENIX Association 25th USENIX Security Symposium 1019

One of the key challenges for benign email campaigns
is to avoid the emails being flagged as spam, based ei-
ther on a bad sender reputation, or the message content.
To minimize this risk, we implemented both Sender Pol-
icy Framework (SPF) [31] and, starting from the first
reminder, DomainKeys Identified Mail (DKIM) [28].
For each email template, we used SpamAssassin to en-
sure that the message content would not be flagged as
spam. Finally, throughout the mail sending process,
we periodically monitored the reputation of our mail
server by repeatedly querying IP-based blacklists, such
as Spamhaus.org and SpamCop. In addition, as email
providers may implement custom spam filters, we also
tested our messages against the filters of the two most
popular mail providers, i.e., Google Mail and Outlook,
registering new email accounts on both services. In ad-
dition, we signed up for Microsoft’s Junk Mail Reporting
Program (JMRP), which provides feedback on the spam
check for mail from a given host [26].

3.2.3 Report Interface

During the experiment design time, one of the main con-
cerns was the manual effort of our staff to address the
quantity of possible questions that Web site owners might
have. To help us with this type of activity, we built a
web-based system, composed of a back end component
for our staff and a front end for the Web site owner.

We wanted to provide users with as much detail as
possible on the vulnerability, its impact, and ways of
fixing it. Therefore, we created report templates for
each vulnerability. For WordPress, we provided the de-
tails and hints on updating the installation. For Client-
Side XSS, we provided the proof-of-concept URL which
would open an alert box, as well as information on all the
files which were involved in the exploitable data flow.
Depending on the type of flaw, one of the customized
templates would be presented to users of the front end.

The back end allowed us to retrieve current Web site
statuses and statistics. Additionally, we automatically as-
signed emails to each domain. This allowed us to easily
find all emails associated with a domain to give the best
possible information on questions from domain admins.

3.3 Measurements

We broke down our research questions into a number of
measurements that we perform throughout our notifica-
tion campaign. These measurements are:

Global and Per-Group Vulnerable Web Sites — To
measure the number of Web sites that are still ex-
ploitable, we set up a monitoring system which periodi-
cally verifies the exploitability of flaws using PoC tests.

In addition, as groups are mutually disjoint, our moni-
tor naturally provides per-group results. The monitoring
system is presented in Section 3.3.1.

Reachability of Recipients, Viewed Reports, and
Time to Fix — We can directly measure the success of
mail delivery by looking at both email responses and re-
port interface access logs. The logs help to infer that a
message has reached the recipient. We present this reach-
ability analysis in Section 3.3.2.

3.3.1 Web Site Monitoring

Throughout our experiments, we periodically monitored
Web sites to establish the point in time when they were
no longer vulnerable. In the following, we discuss the
different types and frequency of tests, as well as the ap-
proach used to determine that a site was fixed.

WordPress Vulnerabilities Tests — To test for the three
WordPress vulnerabilities, we implemented the follow-
ing vulnerability-specific probes.

XSS Vulnerabilities — The CVE-2013-0237 vulnera-
bility affects a specific version of a Flash file which
is part of the PlUpload component included in default
WordPress installations. Our test retrieves the Flash file
and compares its checksum against the checksum of the
known vulnerable version. If the checksums match, the
test returns Exploitable. In all other cases, it returns
Non-Exploitable. Similarly, the presence of the CVE-
2015-3429 vulnerability can be verified by comparing
the checksum of a specific HTML page. If the checksum
values match, the Web site is considered Exploitable;
otherwise it is Non-Exploitable. Both these files have the
same content regardless of Web site language, i.e., we
did not have to implement a checker per site language.

Multicall — The detection of the Multicall vulnerabil-
ity requires further care. In a vulnerable installation, the
XML-RPC API checks all user-provided credentials per
request. In the patched variant, it skips all credential
checks if one has failed, but still returns a list of invalid
credential error messages. As a result, the output of the
service cannot be used to deduce exploitability. How-
ever, as vulnerable services process all calls—including
the ones with invalid credentials—the processing time is
longer than for the patched version. Based on this obser-
vation, we developed a test which uses this timing side
channel to deduce if a site is vulnerable or not. For the
technical details, we refer the interested reader to Ap-
pendix B. As side channels are susceptible to false posi-
tives, we correlate the results with the deployed version
of WordPress, which we extract by using the testing tool
plecost [18]. If both timing analysis and version reflect
a vulnerable service, the site is Exploitable. In all other
cases the Web site is Non-Exploitable.

1020 25th USENIX Security Symposium USENIX Association

Web Site Time-Series Analysis — Since the exploitabil-
ity relies on core components of WordPress, it can be
reliably triggered. To keep server loads to the neces-
sary minimum, we only checked for these vulnerabili-
ties once per day. Given the variety and number of Web
sites that we monitor, however, our point-wise observa-
tions are susceptible to temporal errors, such as Web ap-
plications that are temporarily inaccessible or are other-
wise unresponsive at the time of our check. To decide
whether a Web site is no longer exploitable, or just tem-
porarily unavailable, we calculate the confidence of our
tests. The confidence is the complement of the number of
unlikely events (i.e., number of observed transitions from
Non-Exploitable to Exploitable). A site is only marked
as fixed if the confidence is greater than 0.99. For a pre-
cise definition of our confidence function, we refer the
interested reader to Appendix C.

Client-Side XSS Test — To test for this vulnerability,
we used the set of per-domain exploits discovered with
our methodology from previous work. Each exploit is
a URL including the XSS payload. For more details on
this aspect, we refer the reader to our paper [22]. The
exploits are grouped according to the vulnerability they
trigger. To keep the load on the target server low, we ini-
tially only check one exploit URL. If the exploit works,
we consider the site still vulnerable. If the exploit fails,
we do not consider the Web site as fixed yet. In fact, as
our previous work has shown, a vulnerable page may no
longer exist or the flaw may be caused by rotating adver-
tisements [32]. To rule out such volatility, we re-check
the exploit every three hours. Additionally, if the page no
longer exists, we check other exploits from the same ex-
ploit group and update the PoC if any of them succeeds.
A flaw is only marked as fixed if it was not exploitable
for at least three consecutive days.

3.3.2 Mailbox and Report Access Log Analysis

One of our core research questions is to study the effec-
tiveness of each notification group. To measure if we
actually reached someone, we analyzed our mailbox and
the logs of the front end. Our front end allows notified
parties to retrieve a detailed technical report by clicking
on a link, or, if the owner distrusts URLs in emails, via
our mailbot. In both cases, the recipient has to submit
a unique token. We kept track of all actions by logging
the tokens and access times. This allowed us to perform
fine-grained analyses regarding the access to our vulner-
ability reports. In addition, the mailbox we used to dis-
seminate emails received a variety of automated replies
that provided insights on the status of the email delivery.
We use all this information to classify each contact point
into one of the following categories.

Reached — For individual disclosure, we state that we
reached a contact point when the response message is,
for example, an auto-responder message acknowledging
the receipt of our email, a response by a tracking sys-
tem (e.g., a new ticket), and other messages in which the
recipient unequivocally states that the message was re-
ceived. We say that we reached a contact point also when
we observe an access to corresponding domain’s techni-
cal report. In case of aggregated disclosure, if the email
recipient, i.e., TTP or provider, is reached, then each of
the domains within their constituency is also marked as
reached. Similarly for individual disclosure, if a tech-
nical report for any domain within a constituency is ac-
cessed, we mark all associated domains as reached.

Bounced — Bounce messages are messages sent by a
mail transfer agent to notify the sender that an error oc-
curred and the message could not be delivered. Such er-
rors might stem from the mailbox not existing or being
full. If all emails we sent for a particular domain bounce,
we classify the domain as bounced.

Unreachable — A contact point is unreachable when the
response message indicates that no human will process
our request. Examples of these cases are messages stat-
ing that the mailbox is unattended, or emails asking to
contact Web site personnel only via a web form. Another
example of an unreachable contact point is domains for
which we could not retrieve any email address, e.g., if
such information is missing in the WHOIS data.

Unknown — When we cannot establish whether a mes-
sage was received, bounced, or the contact point was un-
reachable, we mark the contact point as Unknown.

While the identification of bounce messages is quite
straightforward based on their content (e.g., SMTP error
codes), automatically assigning emails to the aforemen-
tioned categories is prone to errors. Hence, we manually
assigned incoming emails to one of the categories.

3.4 Ethical Considerations

We addressed ethical concerns from the early stages of
our methodology design. In general, we design our
experiments to be unobtrusive. This is, e.g., reflected
on both the WordPress vulnerabilities selection criteria
and the monitoring frequency. Despite that, our regular
checks may still be undesired by network providers and
Web site owners. For this reason, in our emails, we in-
cluded instructions to opt out of our study. Moreover, we
configured descriptive reverse DNS names for our infras-
tructure and hosted a website that described our initia-
tive, again detailing contact information (postal address,
email address, phone numbers) and an opt-out procedure.

The second ethical consideration of our experiments
was fairness towards Web site administrators. As a result

USENIX Association 25th USENIX Security Symposium 1021

of our methodology, there are administrators that were
not made aware of vulnerabilities affecting their sites,
i.e., were contained in the control group. After the end
of our notification campaign, we informed them using
the discussed direct channels and shared the list of vul-
nerable domains with the TTPs.

Our experiments are in part related to human opera-
tors on the receiving end of our notification emails. Our
organizations, however, neither mandate nor provide an
IRB approval before conducting such experiments.

4 Data Set

In this section, we explain the details of our experiments
such as the time period, data sets of vulnerable applica-
tions, and composition of our notification groups.

Vulnerable Domains — In total, our data set included
44,790 Web sites of which 43,865 are WordPress-based
Web sites suffering from at least one vulnerability dis-
cussed in Section 2.2 (DWP). The remaining 925 Web
sites were susceptible to site-specific Client-Side XSS
exploits (DCXSS).

Notification Groups — We randomly split the data sets
of vulnerable Web sites into five equally-sized groups of
185 DCXSS and 8,773 DWP domains. During the lookup
process, we could not retrieve contact points for several
domains. For the domain group, the WHOIS database
did not contain email addresses for 34 (18.4%) and 1,665
Web sites (19.0%) for DCXSS and DWP, respectively. For
the network provider group, queries to the Abusix servers
did not return a contact for 18 (9.7%) and 254 domains
(2.9%) of DCXSS and DWP, respectively. In all these
cases, we marked these Web sites as unreachable within
their contact group.

For the TTP group, we followed a different approach.
To select regional coordinators, we extracted the coun-
try code of the ASN hosting each domain, using the
IP-to-ASN database of Team Cymru [33]. Finally, we
selected coordinators for the 20 most frequent country
codes from the list maintained by CERT-CC [4]. These
regional CERTs account for 90.8% of the domains in the
TTP contact group, the remaining 9.2% were hosted in
a country outside of the top 20. To close this gap, we
augmented the set of coordinators with the two global
coordinators FIRST and Ops-T.

Notification Campaign — We notified the affected par-
ties on Jan 14th, 2016. We sent two reminders, one af-
ter two weeks (Jan 28th), and one after four weeks (Feb
11th). For FIRST, we accidentally delayed the initial
mail delivery by two days due to a misunderstanding, but
made sure they received the vulnerability information as
soon as the issue was resolved. In total, our server deliv-
ered 17,819 emails as the initial notification, 15,110 as

primary reminders, and 13,588 as secondary reminders.
In each round, the number of emails sent decreased be-
cause administrators fixed the vulnerability, they explic-
itly asked to be excluded from the experiments, or email
addresses were invalidated due to bounces.

Unsubscribed Domains — As discussed in Section 3.4,
we enabled domains to opt out of our analysis. Through-
out the duration of our experiments, we received five
requests to exclude a total of 187 domains, of which
149 were in a notification group and 38 in the control
group. We received an email from a hosting provider
on the second day of our campaign, threatening to sue
our university if we did not immediately stop the analy-
sis on this network. Additionally, we received messages
from domain owners that were contacted by their host-
ing providers, stating that their Web sites would be taken
down if the vulnerabilities were not fixed within a short
timeframe. In these cases, we not only excluded the do-
mains from any further analysis, but also reached out to
the providers to clarify the obvious misunderstanding.

5 Site Vulnerability Evolution

Using the methodology described before, we now instan-
tiate our large-scale notification experiment and assess
whether we can affect the prevalence of vulnerabilities
in the wild. We answer this question by looking at the
observed trends of fixed vulnerabilities and the signifi-
cance of our campaign. Finally, we have a closer look at
each data set and discuss the impact in isolation.

5.1 Trend of Fixed Vulnerabilities

Table 1 shows the total number of non-exploitable do-
mains at the end of our measurements (February 16th).
The fraction of non-exploitable Web sites ranges from
about 25.1% (Generic) to 26.5% (WHOIS) for DWP. For
DCXSS, the fraction of domains has a greater variety and
ranges from 8.6% (Provider) to 16.8% (TTP). We ob-
serve a distinctive difference in the fix rates for the con-
trol group for DWP (23.3%) and DCXSS (2.4%). We dis-
cuss the reasons for this in Sections 5.2.1 and 5.2.2.

DWP DCXSS

Generic 2,201 25.1% 25 13.5%
WHOIS 2,325 26.5% 21 11.4%
Provider 2,261 25.8% 16 8.6%
TTP 2,268 25.9% 31 16.8%
Control 2,043 23.3% 4 2.2%

Table 1: Non-exploitable domains per group by 02/16

1022 25th USENIX Security Symposium USENIX Association

01/14 01/21 01/28 02/04 02/11
0%

5%

10%

15%

20%

25%
fr

ac
ti

on
of

fix
ed

do
m

ai
ns

Generic
Domain Cont.
Provider
TTP
Control

(a) WordPress

01/14 01/21 01/28 02/04 02/11
0%

5%

10%

15%

20%

25%

fr
ac

ti
on

of
fix

ed
do

m
ai

ns

Generic
WHOIS
Provider
TTP
Control

(b) Client-Side XSS

Figure 1: Fixed vulnerabilities over time

Figures 1a and 1b show the timeline and reveal when
the vulnerabilities were fixed. For DWP, we observe
that all groups (including the control group) have a
steady increase in non-exploitable domains. Each group
progresses to the maximum, following a slight “wave”
shape. This shape correlates to a weekly pattern. The
weeks following a notification round (denoted as the hor-
izontal lines) are characterized by a slightly steeper in-
crease than the weeks before a notification round. For
each of the groups, more than 2,000 of the 8,773 do-
mains were no longer vulnerable at the end of our study.
Overall, all notification groups performed better than the
control group.

In contrast to the steady increase we observed for
DWP, no such pattern can be found for DCXSS. Gener-
ally speaking, the difference between control and notified
groups is much larger for DCXSS. We discuss the results
in Section 5.2.

Result Significance — During our experiments, we wit-
nessed an increase in the fix rate for notified domains
in comparison to the control group for both DWP and

DWP DCXSS

Generic 0.0053449 7.76 0.0000486 16.50
WHOIS 0.0000009 24.24 0.0004299 12.40
Provider 0.0001308 14.63 0.0058000 7.61
TTP 0.0000796 15.57 0.0000016 23.00

Overall Campaign 0.0000012 23.51 0.0000360 17.07

Table 2: p-values and raw values from χ2 tests

DCXSS. In order to ascertain whether this is due to chance
or an effect of our campaign, we analyze the gathered
data in more detail. To that end, we state the hypothe-
sis H0 that the difference in the results originates purely
from chance and is not an effect of our notification. For
both DCXSS and DWP, we use Pearson’s χ2 [30] test to
calculate the p-values for each notification group in com-
parison to the control group. This test allows us to deter-
mine whether the differences between the results arose
by chance. Both the resulting p-values and the raw χ2

values for both DWP and DCXSS are shown in Table 2.
In our case, however, we need to account for the com-

parison of the control group to several other groups.
Hence, an error in the control group would bias all com-
parisons. Applying the Holm-Bonferroni method (α =
0.05) [16], we observe that every value pi is below α

5−i+1 ,
i.e., H0 does not hold. Hence, we find that the notified
groups all differ significantly from the control group.

For the sake of completeness, in addition to the com-
parison to the control group, Tables 7 and 8 in the ap-
pendix show the p-values when comparing the notified
groups against each other. While direct comparison be-
tween two groups sometimes reveals significant differ-
ences (e.g., DWP WHOIS and Generic), no group per-
formed significantly better than all other groups.

5.2 Impact Analysis

In this section, we analyze the collected data in more
depth. More precisely, we discuss the changes for DWP
over time, showing how long-lasting the effect of our no-
tification was. Moreover, we explain why the number of
fixed domains in the control group is high, at almost one
fifth. Subsequently, we discuss the impact of our notifi-
cation on DCXSS.

5.2.1 WordPress

Our notification campaign increased the number of do-
mains that fixed the WordPress vulnerabilities by 11.2%.
All notification groups outperformed the control group.
The WHOIS group was the communication channel with
the highest fix ratio (+15.4%). Next, the TTPs (+12.1%)

USENIX Association 25th USENIX Security Symposium 1023

and providers (+10.9%) were second and third, respec-
tively. The least effective channel was Generic, which
still showed a 5.9% increase over the control group.

Besides the overall impact, we analyzed our collected
data on a per-week basis, starting on the first day of our
campaign. The results of this analysis are shown in Ta-
ble 3. Next to the absolute number, the table also shows
the fraction of domains fixed in each week. Note that this
is relative to the number of domains that was still vulner-
able at the beginning of that week for that group. In the
first week, all channels performed better than the control
group. In the second week, only providers still showed
an observable increase in fixed domains. After the re-
minders, only the Generic and WHOIS contact groups
had slightly increased fix numbers. All in all, however,
the most drastic change occurred in the first week. Based
on our definition of fixed domains (see Section 3.3.1),
conclusive results can only be given at least three days
back. As we stopped our experiments on January, 17th,
we can only provide information on the first four weeks.

We observe that a substantial fraction of about one
fifth of the control group was fixed during the duration
of our study. This observation can be explained by ana-
lyzing the evolution of WordPress installations. We re-
quire version information to make a decision about the
Multicall flaw, i.e., we had this information readily avail-
able for all days of the experiment. Indeed, out of the
8,773 domains in the control group, 1,134 moved from
a version prior to 4.4 to an updated variant (not suscep-
tible to Multicall) in the timeframe of our experiments.
In addition, we observed that 360 domains no longer
used WordPress or were offline at the end of our study.
Throughout the remainder of the paper, we refer to these
fixes as the natural decay of vulnerable domains.

It is also clear from Table 3 that in the first week of our
campaign, a comparatively higher number of domains
in the control group was marked first. While we can-
not conclusively say why this occurred, we have anec-
dotal evidence from emails we received from one ad-
ministrator who was responsible for multiple domains.
Even though we had only notified him about one do-

Control Generic WHOIS Prov. TTP

14/1-20/1 438 521 610 631 664
(5.1%) (6.1%) (7.2%) (7.4%) (7.8%)

21/1-27/1 387 387 397 416 395
(4.8%) (4.8%) (5.1%) (5.3%) (5.0%)

28/1-03/2 382 416 418 380 380
(5.0%) (5.5%) (5.6%) (5.1%) (5.1%)

04/2-10/2 386 389 402 368 365
(5.3%) (5.4%) (5.7%) (5.2%) (5.2%)

Table 3: WordPress flaws fixed per week

main, he fixed several domains at once. Similarly, the
WHOIS data set we purchased shows that different do-
mains (spread across notified and control groups) con-
tained the same contact email, i.e., had the same owner.

5.2.2 Client-Side XSS

Contrary to what we observed for DWP, there is no ev-
idence for a natural decay of Client-Side XSS vulner-
abilities. This stems from the fact that updates for the
WordPress flaws are readily available and that sites are
constantly being upgraded. For DCXSS, however, to the
best of our knowledge, developers were not aware of the
flaws and no automated update existed to patch the flaws.
Therefore, the impact of our campaign is much higher in
comparison to DWP.

In total, our campaign on average increased the num-
ber of fixed domains by a factor of almost 6, compared to
the negligible number of three fixed domains in the con-
trol group. The highest fix rate was achieved by Trusted
Third-Parties (16.8%), followed by the Generic channel
with 13.5%. Additionally, 11.4% of the WHOIS and
8.7% of the provider group domains were fixed.

Important to note in this instance is one specific fea-
ture of Client-Side XSS: such issues are often caused by
third-party scripts [32], which are out of the control of
the administrator of the vulnerable domain. If a vulner-
able third-party component is used across multiple do-
mains, it is sufficient if one affected party reports this to
the third-party vendor. In one particular case, we found
that nine domains suffered from the same flaw. The vul-
nerability was fixed on February 8th, and its effect is vis-
ible in Figure 1b in the increase of fixed domains for
Generic (three domains), WHOIS (four domains), and
TTP (two domains) on that day. Since by chance, none
of the domains was in the control group, this anomaly
had a heavy impact on the overall notification campaign.

6 Communication Channel Analysis

In the previous section, we outlined the global picture on
the vulnerability landscape and how much our campaign
impacted it. Although the notifications for both DWP and
DCXSS showed significant improvements over the control
group, the number of domains which were fixed is unsat-
isfactory (25.8% and 12.6%, respectively). This raises
the question whether we succeeded in reaching out to
administrators. Therefore, in this section, we analyze
how both direct and indirect communication channels
performed in terms of successfully reporting the flaws
to the responsible administrators.

1024 25th USENIX Security Symposium USENIX Association

6.1 Direct Channels

In this section, we analyze the direct channels, first deter-
mining whether we reached the intended recipient. We
then assess how many reports were accessed and how
quickly flaws were fixed after report view.

6.1.1 Reachability Analysis

For the direct channels, i.e., Generic email addresses and
WHOIS contacts, we sent a single email per domain. As
outlined in Section 3.3.2, we then classified each domain
as to its reachability state. The results of the classifica-
tion are shown in Table 4. Based on the numbers we ob-
serve, several characteristics for the direct channels be-
come apparent. First and foremost, more than half of
all domains are marked as unknown, either because the
emails were silently bounced, delivered to an unmoni-
tored mailbox, or ignored by the recipient. Apart from
this, we observe that the groups have distinct differences,
which we discuss separately in the following.

For the Generic group, we received a large number
of email bounces. More precisely, for 50% and 28% of
DWP and DCXSS domains, respectively, all emails we sent
bounced. The difference in number of bounces between
DCXSS and DWP likely originates from the higher pop-
ularity of DCXSS Web sites (Alexa Top 10,000) in com-
parison to DWP (Alexa Top 1 million). As popular Web
sites may have a more structured staff, they may tend
to adhere to standards like RFC-2142 [7], thus reducing
the number of bounces. Nevertheless, even for the high-
ranked DCXSS Web sites, only 41 (22.2%) were actually
reached. Moreover, for 90 DCXSS domains (48.6%) we
neither received emails acknowledging our reports, nor
saw any hits on our Web site. Similarly, we observe that
more than 45% of the DWP domains are unknown.

The situation for the WHOIS group is slightly differ-
ent: the fraction of bounces is significantly lower than for
the Generic channels. This appears natural based on the
fact that a valid email address is typically necessary to
register a domain. However, apart from the large body of
unknown domains, we see that the second-biggest frac-
tion of domains belong to the unreachable bucket. This

Generic WHOIS
DWP DCXSS DWP DCXSS Total

Reached 357 41 714 38 1,150
Bounced 4,395 52 771 14 5,232
Unreach. 10 2 1,731 36 1,779
Unknown 4,011 90 5,557 97 9,755

Total 8,773 185 8,773 185 17,916

Table 4: Success of direct channels

is caused by the fact that for 1,699 domains (both DWP
and DCXSS), we could not retrieve a contact address from
the WHOIS information. Additionally, for 37 domains,
our messages were not delivered to the domain owner
because the emails from the WHOIS database are of or-
ganizations that hide email addresses. The remaining 31
domains in that bucket were marked as unreachable since
we received emails redirecting us to a Web-based form.

Given the large volume of emails we sent out for di-
rect notifications (four on Generic, one on WHOIS), anti-
spam filters also interfered with reaching out to Web site
administrators. Despite our careful preparation of infras-
tructure and email content, our messages were partially
labeled as spam. Even though our mailserver was never
listed in any well-known blacklist, Microsoft’s JMRP re-
ported that the emails of the first two rounds were in parts
flagged as spam. Interestingly, none of the emails of the
second round of reminders were labeled as spam.

Additionally, provider-specific anti-spam filters misla-
beled our emails. For 562 domains, we received bounces
stating that our mails were classified as spam and thus
rejected. In addition, in a handful of cases, we received
feedback from contact points stating that they had only
received our reminders and not the initial notification.
This was either caused by silent bounces (the mail server
accepted the email, but dropped it without notifying the
sender), or by our email ending up in the spam folder,
and then being automatically deleted after a few days.

6.1.2 Report Access

As we have seen in the previous section, the number of
reached domains for the direct channels is low, amount-
ing to only 357 and 714 DWP domains for Generic and
WHOIS, respectively. The increase in fixed DWP do-
mains compared to the control group, however, is even
smaller: 158 and 282, respectively (see Table 1). We ob-
serve a similar trend for DCXSS. To investigate this dis-
crepancy, in the following we analyze for how many of
the reached domains a report was accessed on our Web
interface or via the mailbot.

Table 5 shows the number of domains which accessed
a report at least once. In addition, Figures 2a and 2b

DWP DCXSS

Generic 273 3.1% 37 20%
WHOIS 550 6.3% 30 16.2%
sum direct 823 4.6% 67 18.1%

Provider 477 5.4% 26 14.1%
TTP 601 6.9% 70 37.8%
sum indirect 1,078 6.1% 96 25.9%

Table 5: Viewed reports for all channels up to 02/16

USENIX Association 25th USENIX Security Symposium 1025

01/17 01/21 01/25 01/29 02/02 02/06 02/10 02/14
0

100

200

300

400

500

600

700
vi

ew
ed

do
m

ai
ns

Generic
WHOIS
Provider
TTP

(a) WordPress

01/17 01/21 01/25 01/29 02/02 02/06 02/10 02/14
0

10

20

30

40

50

60

70

vi
ew

ed
do

m
ai

ns

(b) Client-Side XSS

Figure 2: Accessed reports for different channels

plot the temporal evolution of the viewed reports for DWP
and DCXSS, respectively. We observe that within a few
days of the initial notification, the number of accessed
domain reports stabilizes for both DWP and DCXSS. Both
reminders increased the number of viewed domains, but
interestingly the effect for DWP was larger for the second
reminder, whereas for DCXSS this held true for the first.

In total, only 823 of the DWP domains had reports
viewed for the direct channels. For DCXSS, the ratio of
viewed reports was much higher, but still adds up to only
67 (18.1%) of the notified domains, whereas Generic was
slightly better than WHOIS with 37 viewed reports.

6.1.3 From Report Access to Fix

Even though not all reached domains had a report view,
the number of domains for which a report was viewed
is still larger than the increase in fixed domains. This is
due to the fact that instead of only viewing a report, the
final step towards ensuring that the domain is no longer
vulnerable is to understand the specific issue and patch
it accordingly. In this section, we therefore analyze how
many domains from the direct channels were fixed after
a report was viewed and how long it took.

Figures 3a and 3b show the time between a report
being viewed and the fix of the underlying flaw. For
DWP we observe on the Generic channel about 30% of
the viewed domains are fixed within 5 days. Similarly,
for WHOIS we observe a slightly higher rate of 32.5%
within that timeframe. After this, the increase in fixed

0 days 5 days 10 days 15 days 20 days 25 days 30 days
0%

10%

20%

30%

40%

50%

%
fix

ed
do

m
ai

ns
af

te
r

vi
ew

Generic
WHOIS
Provider
TTP

(a) WordPress

0 days 5 days 10 days 15 days 20 days 25 days 30 days
0%

10%

20%

30%

40%

50%

%
fix

ed
do

m
ai

ns
af

te
r

vi
ew

(b) Client-Side XSS

Figure 3: Time from first report view to flaws fixed

domains aligns with what we what observed for domains
in the control group (roughly 0.5-0.7% per day). In
essence, domains are either fixed within a very short time
after initial report view or become non-exploitable just
based on the natural decay of vulnerable domains.

For the DCXSS domains, this pattern differs, showing
significant increases in the fix rates even after more than a
week. These flaws, in contrast to WordPress, are mostly
site-specific and, more importantly, a fix has to be devel-
oped first. Hence, a longer timeframe for the fix is some-
what expected. Of all channels, the Generic channel had
the highest rate of fixed domains after having viewed a
report with about 38%. Noteworthy in this instance is the
poor conversion rate for the WHOIS group. One possi-
ble explanation for this is the fact that the domain owner
for high-ranked sites might be disconnected from the en-
gineering team. Hence, the information might have been
viewed by this person, but not properly forwarded to the
actual administrator of the site. In contrast, for DWP, we
argue that such installations are mostly used by either
small companies or single persons, and hence no such
disconnect exists.

6.2 Indirect Communication Channels

After the discussion of direct channels, we now follow
up with an in-depth analysis on the indirect channels.

1026 25th USENIX Security Symposium USENIX Association

Provider TTP
DWP DCXSS DWP DCXSS total

Reached 3,992 75 7,567 138 11,772
Bounced 2 0 0 0 2
Unreach. 271 20 0 0 291
Unknown 4,508 90 1,206 47 5,851

Total 8,773 185 8,773 185 17,916

Table 6: Success of indirect channels

6.2.1 Reachability Analysis

Similarly to direct channels, we also classified all do-
mains based on their reachability. In this case, however,
reaching the end point does not entail that we reached the
administrator of the site. Instead, since we rely on inter-
mediaries, we can only measure whether they received
the email and not whether they forwarded it to the re-
sponsible party. This is also reflected in Table 6 in the
large number of reached domains. As discussed in Sec-
tion 3.3.2, a domain is marked as reached once the inter-
mediary was reached, i.e., either confirmed our email or
viewed at least one report disclosed to them.

In total, we reached 592 network providers responsible
for 3,992 and 75 domains, respectively. Unreachable do-
mains for the indirect channels were providers for which
no contact existed in the Abusix database. In contrast
to the high number of reached providers, about 50% for
both DWP and DCXSS remain unknown.

For TTPs, such as CERTs or Ops-T, the numbers seem
even more promising. Here, the unknown domains cor-
respond to such domains for which we received no feed-
back from the hosting country’s CERT, or those which
were not located in any of the top 20 countries. Since a
relatively small number of TTPs is responsible for a large
body of vulnerable domains, the fraction of reached do-
mains is comparatively high.

6.2.2 Report Access

The large number of reached domains appears to be
a positive sign for a successful vulnerability notifica-
tion. However, looking at the number of accessed reports
shown in Table 5, we find that the improvement over the
direct channels is less significant.

In general, the report access pattern for the provider
group (depicted in Figures 2a and 2b) is similar to what
we observed for direct channels: an initial increment of
access to our reports after each notification round fol-
lowed by long intervals of a quasi-constant number of ac-
cesses. For the provider group, the percentage of viewed
reports remains low at 5.4% and 14.1% for DWP and
DCXSS, respectively. For the most part, this is caused by
unhelpful providers: the top 5 providers accounted for

2,082 domains, but none of them reviewed any report,
thus effectively stopping the notification process dead in
its tracks for more than half of the reached domains.

Compared to the providers, TTPs show a significantly
different access pattern. First of all, after the first no-
tification round, we observe an increase of access after
four days. This can in part be attributed to FIRST receiv-
ing our initial email two days late. Additionally, from
feedback received from the third-largest active regional
CERT, we learned that they follow their own dates to
distribute notifications. While we sent notifications ev-
ery other Thursday, this CERT sent their notifications
on Mondays. In addition, we argue that the CERTs did
not simply forward our messages, but rather vetted them
first. Therefore, it is highly likely that the information
was vetted on Friday, and only forwarded to responsible
parties on Monday. This can be observed in Figures 2a
and 2b as the steep increase starting from the fourth day
of our campaign (i.e., Monday, January 18th).

For TTPs, we have a large number of reached do-
mains, but cannot observe an analogous increase in num-
ber of viewed reports. The fractions of viewed reports
are 37.8% for DCXSS and 6.9% for DWP. In contrast to
the direct channels, our measurements could not reveal
direct causes for these low numbers such as bounces or
unreachable contacts. An explanation may be that TTPs
did not forward our notification emails to Web site ad-
ministrators. Among the 20 regional CERTs, 18 reacted
to our email. Since we did not receive bounces for the
two non-reactive CERTs, we marked the domains in their
constituency as unknown. 10 CERTs that reacted to our
email did not view a single report. This could happen for
two reasons. First, rather than vetting the information,
these TTPs could have directly forwarded the informa-
tion, but the Web site administrators did not receive them,
or did not act upon them. Second, the CERT might not
have forwarded the information at all. Given the assump-
tion that a TTP would first vet the information originating
from an untrusted source, the lack of accesses to the re-
port favors the second explanation, i.e., our notification
messages were not forwarded by half of the CERTs.

In total, the combination of indirect channels per-
formed better in terms of accessed reports than the com-
bination of direct channels. However, providers per-
formed worst of all channels for DCXSS and ranked third
for DWP. In contrast, TTPs were most successful for re-
port access on both types of vulnerable domains. This
result, however, is greatly influenced by Ops-T: this TTP
alone was exclusively responsible for 135 report accesses
for DWP and 36 for DCXSS. Let us consider a scenario
in which we could have relied only on regional CERTs
and FIRST. In this case, the number of viewed reports
for TTPs would have gone down to 466 and 34 for DWP
and DCXSS, respectively. These numbers are similar to

USENIX Association 25th USENIX Security Symposium 1027

or even lower than the other groups. Hence, although the
TTPs were of great help in our campaign, a researcher
without access to the vetted Ops-T community could not
have achieved a comparable report access rate.

6.2.3 From Report Access to Fix

For the indirect channels, we also measured the time be-
tween first access of a report and fix for the disclosed vul-
nerability. The results are depicted in Figures 3a and 3b.
For DWP, although TTPs perform similar to the direct
channels, they have a distinct lag. More precisely, only
15.4% of domains were fixed within one day of report
access, whereas this number ranged between 20.8% and
22.4% for direct channels. This underlines our hypoth-
esis that TTPs would first vet the information we pre-
sented them. Hence, the first access to a domain report
would have originated from the TTP, which subsequently
forwarded the information to the responsible party.

As discussed before, there is less of a natural decay
for DCXSS vulnerabilities, hence any fix is more likely
to be caused by our notifications. However, due to the
specifics of Client-Side XSS, where a single third-party
script may be the cause for multiple flaws, it is hard to
detect a distinct trend for the vulnerabilities. Similar to
the DWP flaws, we observe a lag for both providers and
TTPs between the initial view of the report and the time
to fix, especially compared to the Generic group. This
again highlights the vetting process of the intermediaries.

6.3 Discussion

As this section highlighted, the most significant issue we
were faced with during our notification campaign was
reaching the administrators in the first place. The issues
depend on both communication channels and character-
istics for the vulnerable domains. Naturally, reaching the
intermediaries was quite straightforward: the email ad-
dresses were well-known and we only needed to send
a comparatively small number of emails to them. In
contrast, on the direct communication channels, espe-
cially for domains from DWP, we had a large number of
bounces or unreachable contacts to begin with.

While the results for reachability suggest that using in-
termediaries greatly improves the chances of successful
notifications, the benefit was not carried on to the num-
ber of viewed reports. Although TTPs performed best
for both DWP and DCXSS report views, this was mostly
caused by the closed Ops-T community. Additionally,
our reminders improved on the number of accessed re-
ports, especially for the direct channels.

Once a report was viewed, fix rates for DWP were sim-
ilar across all groups, while the providers had a slightly
higher fix rate. Moreover, we found that with a chance

of approximately 30%, domains were fixed within 5 days
of a report view. After this period, the fraction of fixed
domains only increased by what we observed to be the
natural decay of flaws. For DCXSS, differences between
communication channels were more drastic, with a much
lower performance by the WHOIS channel. Although
the number of fixes is subject to side-effects from vul-
nerabilities caused by third-party scripts, we note that
the Generic channel worked best when considering the
fix rate within the first 5 days.

7 Key Insights and Follow-Up Questions

In our work, we not only wanted to measure how suc-
cessful a large-scale vulnerability notification campaign
could be, but also aimed at determining what issues re-
searchers would face. In the following, we discuss the
key insights gained in our efforts, and present a number
of follow-up questions which arise out of our findings.

Establishing Communication Channels — First and
foremost, establishing a direct communication channel is
remarkably challenging. For direct channels, we observe
three main problems: (i) standardized addresses perform
poorly with less popular Web sites; (ii) WHOIS contacts
are a valid alternative for less popular Web sites, but the
WHOIS database is not complete (about 20% domains
lack contact points); and (iii) sending a large number of
emails can be considered a spam campaign. All these
reasons contribute to the low fraction of viewed reports.

Relying on indirect channels may reduce the workload
for disclosure, as it de facto outsources the effort to an
external organization. We found that for a large fraction
of the domains such an intermediary could be reached.
Although judging from the number of viewed reports,
TTPs have the highest success rate, the overall results
are still unsatisfactory. Moreover, we cannot ascertain
how many TTPs forwarded the information or simply
discarded them. We also found that reminders do not
cause significant changes for TTPs, but have a slight im-
pact on providers. Given all these facts, we find that es-
tablishing a communication channel to Web site admin-
istrators remains a hard problem even in the presence of
intermediaries. Thus, the first question that arises for fu-
ture work is: How can the security community come up
with reliable means of establishing communication chan-
nels between researchers and affected parties?

User Distrust — For our experiments it was imperative
that we were able to keep track of delivered and viewed
reports. Therefore, we embedded a link to our web in-
terface into the email. This naturally increases the risk
of improper spam classification. Moreover, the security
community trains users not to click on untrusted links or
respond to suspicious emails, i.e., a significant fraction

1028 25th USENIX Security Symposium USENIX Association

of all reached administrators might not have followed
our link or accessed the report via email. To investigate
to what extent such behavior might have influenced our
findings, we sent emails containing the full vulnerability
details to all domains of the control group that were still
vulnerable at the end of our experiments, using only the
direct notification channels. While for DCXSS, no signifi-
cant difference could be observed, DWP domains notified
this way show significant differences. Contrary to the
intuition that a report only accessible via a link would
hinder the campaign, however, these domains performed
worse in terms of fix rates. This curious fact might
be caused by the fact that the emails contained multi-
ple links (e.g., to the vulnerable site, the description on
mitre.org, and the information on updating WordPress),
hence triggering more spam filters. Alternatively, such
long emails might have aroused more suspicions by the
recipients. Hence, this rises another question: To what
extent does the message tone, content, and length influ-
ence the success of notification campaigns?

Sender Reputation — When looking at the results for
TTPs in more detail, we find that the trusted Ops-T com-
munity was responsible for a large portion of successful
notification deliveries, even up to 50% of DCXSS viewed
reports for the TTPs. Thus, we argue that although stud-
ies have shown otherwise [5], trust in the sender of a noti-
fication message may be important factor to a campaign’s
success. This also holds true for the German CERT,
which (according to our data) was more inclined to for-
ward our messages. In this case, the cause is most likely
the fact that we originate from a German university and
have had interactions with the CERT before. This brings
up another question for future work: What is the impact
of the sender reputation, especially when using interme-
diaries, on the success of a notification campaign?

Time to Fix and Need for Reminders — Once a report
was viewed, the fix rate for DWP was around 30% within
five days, regardless of the channel that was used to orig-
inally transmit the report. After that, the fix rate approxi-
mates what we observe for the control group, i.e., is most
likely not an effect of our notification. For DCXSS, the
fix ratio for Generic, Provider, and TTP channel was be-
tween 30% and 40%, while the WHOIS group achieved
a fix rate of less than 20%. In total, fixing these vulnera-
bilities typically took longer, which stems from the lack
of a readily available patch for the custom flaws.

Additionally, as indicated by the increase in viewed
reports right after our reminders, we find that they are
necessary and useful. Moreover, considering that a patch
typically only occurred within the first five days of a re-
port being viewed, future work should select a shorter
interval for such reminders.

Results Generality — Our work was a first glimpse into
the landscape of vulnerability notifications. We explic-
itly studied the effects of such a campaign in the context
of Web vulnerabilities which could be verified without
interfering with the server’s normal operation, i.e., we
did not consider high-impact flaws such as SQL injec-
tions or remote code execution. The impact of our notifi-
cation campaign was statistically significant, but smaller
than in other related experiments (e.g., [13, 21]). Judging
from their results, the criticality of the discovered flaws
may also effect the impact of a notification campaign.

While in principle we could have applied our method-
ology to other types of flaws, we limited our study specif-
ically to Web vulnerabilities. Contrary to other works
in this space, our methodology to find Client-Side XSS
gave us the opportunity to notify domain owners of site-
specific flaws rather than vulnerabilities which are the
same across multiple installations. Also, to the best of
our knowledge, no other parties had access to such a data
set, and hence, the site administrators were not aware
of the flaws before our notification. This data set gave
us the opportunity to study the behavior of administra-
tors when notified of previously-unknown vulnerabili-
ties, and to perform a comparative analysis with a data
set of known vulnerabilities.

Web vulnerabilities can be attributed to a domain,
therefore allowing us to use additional anchors to reach
administrators, e.g., in comparison to physical devices
such as home routers. We nevertheless believe the
methodology can be applied to other types of flaws,
to determine whether the vulnerability type influences
the impact of notifications. Hence, comparing different
means of notifying parties for different types of vulnera-
bilities is an interesting direction for future research.

Even though the WordPress flaws were publicly
known beforehand, they had not received media attention
such as, e.g., Heartbleed or NTP amplification attacks.
The vulnerabilities we disclosed also concerned the ap-
plication layer rather than the network layer, i.e., needed
to be fixed by a large number of disjunct site owners
rather than significantly fewer network providers. Inves-
tigating these factors therefore is an interesting direction
for future research. This opens new research questions
such as: Are campaigns more successful if the vulnerabil-
ities gained attention in the media (such as Heartbleed)?
Does it matter who needs to fix the vulnerability, be it a
Web site developer, network admins, or end-users?

8 Related Work

In this section, we relate our study to prior work, re-
viewing works on vulnerability notifications, large-scale
security analysis and an emerging area of disclosing
security-relevant information.

USENIX Association 25th USENIX Security Symposium 1029

Large-Scale Vulnerability Notification — In concur-
rent work, Li et al. [23] investigated the feasibility of
vulnerability notifications for networked systems, i.e.,
industry control systems, misconfigured IPv6 firewalls,
and DDoS amplifiers. Similarly to our work, they dis-
covered that notifications have a positive impact, but the
global effect is low and thus unsatisfactory. Contrary to
our work, they did not use links to track the reachability
of recipients. They did, however, gain insights into how
message content influences fix rates. Moreover, from
messages received in a survey they handed out to the no-
tified parties, they found that such notifications generally
are welcomed by affected parties, underlining the need
for future work in this problem space.

Prior to this work, Li et al. [24] investigated how noti-
fication of compromised Web sites can improve the time
to clean-up from malware infestation. They find that di-
rectly communicating with administrators via the Google
Webmaster Console increases likelihood of clean-up by
50% and decreases infection lengths by 62%.

Prior to these closely related works, Durumeric et al.
[13] conducted a large-scale analysis of the Heartbleed
bug. This work showed that large-scale notification may
increase the number of patched servers by about 50%.
The main differences between this work and our study
are in the composition of the data set. The first, impor-
tant one is the type of flaw: the Heartbleed bug was a very
popular, high-impact flaw with outstanding media cover-
age and its own website. Our data set does not contain
flaws of this type, however it contains previously undis-
closed XSS vulnerabilities that, to the best of our knowl-
edge, were unknown to the Web site administrator prior
to our disclosure. As a result, our data set allows us to
study the problem without bias due to popularity. Sec-
ond, the authors used the network operator abuse contact
(retrieved from the IP WHOIS), whereas we use multiple
channels. Finally, our study focuses on Web vulnerabil-
ities, and does not target flaws in the Internet infrastruc-
ture, e.g., SSL/TLS.

Similarly to the previous work, Kührer et al. [21] re-
ported on the vulnerability disclosure process on a data
set of 9 million servers susceptible to becoming unwit-
ting attackers in NTP amplification attacks. The authors
reported all flaws using en masse well-established chan-
nels. This allowed them to remove 90% of the vulnerable
servers within 7 weeks. As opposed to our paper, they
relied only on two channels, i.e., TTPs and vendors, and
they did not consider other possible ones such as domain
WHOIS. More importantly, the authors did not perform
a comparative analysis between channels, leaving the re-
search questions of our paper unanswered.

Large-Scale Security Analyses — Recently, we have
witnessed an increasing number of large-scale security
analyses ranging from validation of security testing tech-

niques (e.g., Balduzzi et al. [2], Lekies et al. [22], Doupé
et al. [9]) to Internet-wide analyses of insecure behavior
(e.g., Durumeric et al. [11], Kührer et al. [21]), which
can spot a large number of security issues. While most
of the efforts have been expended on tools and analysis
techniques, little has been done to address the problem
of reporting the discovered issues. For example, Bal-
duzzi et al. [2] tested 5,000 Web sites for HTTP param-
eter pollution (HPP), discovering a vulnerability in 30%
of them. With reference to the disclosure, the authors
left the problem unaddressed, only mentioning that they
could not reach all Web site owners. (For other examples
in the Web domain, please refer to Doupé et al. [9]).

To better support large-scale analysis, new tools have
been developed. For example, ZMap [12] can scan the
entire IPv4 address space in 45 minutes. ZMap has
already been used for Internet-wide analysis. For ex-
ample, Durumeric et al. [11] used ZMap to study the
HTTPS ecosystem, uncovering a variety of issues includ-
ing certificates with invalid domains and certificate mis-
use. Similarly, this paper does not address the problem
of reaching operators to solve the problem.

Notification of Security-Relevant Information —
This paper can be seen as part of an emerging line of
research that develops the idea of using notifications
of security-relevant information as a security measure.
Works in this area studied the distribution of security-
relevant information from different angles and with a
major focus on malware reports. For example, Cetin
et al. [5] studied the role of sender reputation in abuse
reports by sending 480 reports to network providers and
Web site owners from senders with different reputations.
Their study found no evidence that reputation improves
cleanup rates, but they observed that, after accessing
an online technical report, network providers performed
better than Web site owners.

Vasek and Moore [34] looked at the problem from the
angle of the quality of the reports, concluding that de-
tailed reports increase the number of cleanups, while re-
ports with minimal details perform better than not send-
ing reports at all. Our paper builds on the results of these
works: we did not consider sender reputation as a vari-
able, and we prepare detailed reports.

Canali et al. [3] studied provider diligence by setting
up compromised Web sites and notifying them about on-
going malicious activities. Their experiments showed
that 64% of complaints were ignored. While this work
shows an alarming attitude towards these problems, the
size of their data set, 22 providers, makes it hard to gen-
eralize to a larger scale. From this point of view, our pa-
per provides a broader view on the issue, including other
notification channels and comparative analysis using a
control group as a baseline.

1030 25th USENIX Security Symposium USENIX Association

9 Conclusion

With the increase of inter-connectivity on the Internet,
the magnitude and diversity of large-scale vulnerability
incidents will likely rise. We presented our experiences
with a large-scale notification process to inform Web site
owners about vulnerable Web apps. While our notifica-
tions have had an statistically significant impact on the
vulnerability remediation, the overall fix rate is unsatis-
factory, leaving 74.5% of Web sites exploitable after our
month-long experiment.

This naturally begs the question for the potential rea-
sons for the large fraction of unfixed sites. The major
cause is the unsolved challenge to reach out to persons
who can deploy a fix, such as developers or administra-
tors. Of all contacts that we notified, only 5.8% viewed
our vulnerability report. Out of these, 40% fixed the vul-
nerability within a week. This, but also the ease of fixing
the vulnerabilities (in most cases just update WordPress),
indicates that the main problem is actually to disseminate
the vulnerability information.

How do we inform affected parties about vulnerabil-
ities on large scale? Identifying contact points remains
the main challenge that has to be addressed by the In-
ternet society, including network providers, CERTs, and
registrars. We imagine that this problem could, for ex-
ample, be tackled by centralized contact databases, more
efficient dissemination strategies within hosters/CERTs,
or even a new notification channel or trusted party re-
sponsible for such notifications. Until we find solutions
to the reachability problem, the effects of large-scale no-
tifications are likely to remain low in the future.

Acknowledgements

The authors would like to thank Thomas Schreck and
the Spanish CERT for providing insights into the inner
workings of CERT organizations. Also, we would like
to thank the anonymous reviewers for their helpful com-
ments. In addition, we thank our shepherd Leyla Bilge
for her support in improving the paper for the camera-
ready version. This work was supported by the German
Ministry for Education and Research (BMBF) through
funding for the Center for IT-Security, Privacy and Ac-
countability (CISPA).

References

[1] Abusix GmbH. Abuse contact database. https:
//abusix.com/contactdb.html, 2016.

[2] Marco Balduzzi, Carmen Torrano Gimenez, Da-
vide Balzarotti, and Engin Kirda. Automated dis-
covery of parameter pollution vulnerabilities in

web applications. In Proceedings of the Network
and Distributed System Security Symposium, 2011.

[3] Davide Canali, Davide Balzarotti, and Aurélien
Francillon. The role of web hosting providers in
detecting compromised websites. In Proceedings
of the 22nd International World Wide Web Confer-
ence, 2013.

[4] CERT-CC. List of National CSIRTs.
http://www.cert.org/incident-managemen
t/national-csirts/national-csirts.cfm,
2016.

[5] Orcun Cetin, Mohammad Hanif Jhaveri, Carlos
Ganán, Michel van Eeten, and Tyler Moore. Un-
derstanding the role of sender reputation in abuse
reporting and cleanup. In Workshop on the Econ-
omy of Information Security (WEIS 2015).

[6] Daniel Cid. Brute force amplification
attacks against WordPress XMLRPC.
https://blog.sucuri.net/2015/10/brut
e-force-amplification-attacks-against
-wordpress-xmlrpc.html.

[7] D. Crocker. Mailbox Names for Common Ser-
vices, Roles and Functions. RFC 2142 (Pro-
posed Standard), http://www.ietf.org/rfc/r
fc2142.txt, May 1997.

[8] L. Daigle. WHOIS Protocol Specification. RFC
3912 (Draft Standard), http://www.ietf.org/r
fc/rfc3912.txt, September 2004.

[9] Adam Doupé, Bryce Boe, Christopher Kruegel, and
Giovanni Vigna. Fear the EAR: Discovering and
mitigatfeaing execution after redirect vulnerabili-
ties. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, 2011.

[10] Drupal Security Team. Drupal core - highly critical
- public service announcement - PSA-2014-003. ht
tps://www.drupal.org/PSA-2014-003.

[11] Zakir Durumeric, James Kasten, Michael Bailey,
and J. Alex Halderman. Analysis of the HTTPS
certificate ecosystem. In Proceedings of the 2013
ACM Internet Measurement Conference, 2013.

[12] Zakir Durumeric, Eric Wustrow, and J. Alex Hal-
derman. ZMap: Fast Internet-wide scanning and
its security applications. In Proceedings of the 22nd
USENIX Security Symposium, 2013.

[13] Zakir Durumeric, James Kasten, David Adrian,
J. Alex Halderman, Michael Bailey, Frank Li,

USENIX Association 25th USENIX Security Symposium 1031

Nicholas Weaver, Johanna Amann, Jethro Beek-
man, Mathias Payer, and Vern Paxson. The mat-
ter of Heartbleed. In Proceedings of the 2014 ACM
Internet Measurement Conference, 2014.

[14] Matthew Finifter, Devdatta Akhawe, and David
Wagner. An empirical study of vulnerability re-
wards programs. In Proceedings of the 22nd
USENIX Security Symposium, 2013.

[15] FIRST.org, Inc. Forum of Incident Response and
Security Teams. https://www.first.org/, 2016.

[16] Sture Holm. A simple sequentially rejective multi-
ple test procedure. Scandinavian Journal of Statis-
tics, pages 65–70, 1979.

[17] ICANN Security and Stability Advisory Com-
mittee. SAC 023: Is the WHOIS ser-
vice a source for email addresses for spam-
mers? https://www.icann.org/en/system/f
iles/files/sac-023-en.pdf.

[18] Iniqua. plecost. https://github.com/iniqua/
plecost, 2016.

[19] Joomla! [20151206] - Core - Session Hardening.
https://developer.joomla.org/security-c
entre/639-20151206-core-session-harde
ning.html.

[20] Aaron Jorbin. WordPress 4.4.1 Security and
Maintenance Release. https://wordpress.org
/news/2016/01/wordpress-4-4-1-securit
y-and-maintenance-release/.

[21] Marc Kührer, Thomas Hupperich, Christian
Rossow, and Thorsten Holz. Exit from hell? re-
ducing the impact of amplification DDoS attacks.
In Proceedings of the 23rd USENIX Security Sym-
posium, 2014.

[22] Sebastian Lekies, Ben Stock, and Martin Johns. 25
million flows later: Large-scale detection of DOM-
based XSS. In Proceedings of the 20th ACM Con-
ference on Computer and Communications Secu-
rity, 2013.

[23] Frank Li, Zakir Durumeric, Jakub Czyz, Mo-
hammad Karami, Damon McCoy, Stefan Savage,
Michael Bailey, and Vern Paxson. You’ve got vul-
nerability: Exploring effective vulnerability notifi-
cations. In Proceedings of the 25th USENIX Secu-
rity Symposium, 2016.

[24] Frank Li, Grant Ho, Eric Kuan, Yuan Niu, Lucas
Ballard, Kurt Thomas, Elie Bursztein, and Vern

Paxson. Remedying web hijacking: Notification ef-
fectiveness and webmaster comprehension. In Pro-
ceedings of the 25th International World Wide Web
Conference, 2016.

[25] Suqi Liu, Ian Foster, Stefan Savage, Geoffrey M.
Voelker, and Lawrence K. Saul. Who is .com?:
Learning to parse WHOIS records. In Proceed-
ings of the 2015 ACM Internet Measurement Con-
ference.

[26] Microsoft Corporation. Services for senders and
ISPs. https://mail.live.com/mail/services
.aspx.

[27] MITRE Corporation. Common Vulnerabilities and
Exposures. http://cve.mitre.org/.

[28] Mutual Internet Practices Association. Do-
mainKeys Identified Mail. http://www.dkim.org
/, 2016.

[29] OpSecAdmin. Operations Security Trust. https:
//www.ops-trust.net/, 2016.

[30] Karl Pearson. X. On the criterion that a given sys-
tem of deviations from the probable in the case of a
correlated system of variables is such that it can be
reasonably supposed to have arisen from random
sampling. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 50
(302):157–175, 1900.

[31] SPF Project. Sender Policy Framework. http://
www.openspf.org/, 2016.

[32] Ben Stock, Stephan Pfistner, Bernd Kaiser, Sebas-
tian Lekies, and Martin Johns. From facepalm
to brain bender: Exploring client-side cross-site
scripting. In Proceedings of the 22nd ACM Confer-
ence on Computer and Communications Security,
2015.

[33] Team Cymru. Team Cymru IP to ASN Map-
ping. http://www.team-cymru.org/IP-ASN-m
apping.html, 2016.

[34] Marie Vasek and Tyler Moore. Do malware reports
expedite cleanup? An experimental study. In 5th
Workshop on Cyber Security Experimentation and
Test, CSET, 2012.

[35] W3Techs. Usage of content management systems
for websites. http://w3techs.com/technolog
ies/overview/content_management/all/.

1032 25th USENIX Security Symposium USENIX Association

A Notification Email

Subject: Vulnerability Notification for your domain
...com

Hello,

Primer: All information in and attached to this
email is confidential and should be passed on to
individuals and organizations on a need-to-know
principle only.

We are security researchers from Saarland University,
Germany. In our research, we have been scanning
several web sites for critical vulnerabilities.
We would like to inform you that your website is
susceptible to the following vulnerability(ies):

- XMLRPC Multicall Vulnerability

The XMLRPC API of Wordpress can be abused to execute
numerous commands on the server-side, thereby
allowing an attacker to bruteforce passwords or
perform a Denial-of-Service attack against the
server.

You can review more detailed
information using our web interface at
https://notify.mmci.uni-saarland.de/....
Alternatively, you can retrieve more information
via email. To do so, please respond to this email
and set the subject line to *only* contain the token
72cf.... We will automatically respond with the
vulnerability report via email.

Since this notification is part of an ongoing
research project, we will re-scan your web site to
see if the vulnerability has been fixed. If you wish
us to stop scanning your web site, please contact us
at contact@notify.mmci.uni-saarland.de. Should you
need further information or have any other questions,
please do not hesitate to contact us using the same
email address.

Best Regards,
Ben Stock, Researcher at CISPA

Center for IT-Security, Privacy, and Accountability
Saarland University, Building E9 1
Phone +49 681 302 57377

B Multicall Checker

The Multicall checker uses a timing side-channel to de-
termine whether a WordPress XMLRPC service is vul-
nerable or not. First, we estimate network latency with
a probe request. We use the round-trip time of the probe
to rule out network transmission time from the measure-
ment of the multicall request. The resulting value is an
estimation of the CPU time. However, as this value may
be sensitive to fluctuations of the network latency esti-
mation, we increase the execution time with inefficient
user credentials. These strings trigger WordPress sani-
tization procedures, resulting in longer execution time,

and guarantee to always fail at login attempts to prevent
accidental unauthorized access to a WordPress installa-
tion. Our test estimates CPU time of two multicall re-
quests with 40 and 80 calls per request. We measured
that our servers take 1,600 ms and 3,300 ms of CPU time
on an Intel i7 processor for 40 and 80 multicalls, respec-
tively, which we use as indicators for vulnerable services.
Finally, we correlate the time analysis with the version
of the deployed WordPress, which can be extracted from
several sources. If both timing analysis and version indi-
cate a vulnerable service, then we mark the Web site as
Exploitable, otherwise as Non-Exploitable.

C Confidence Function

The monitoring system for WordPress returns a collec-
tion of time series T v

ws = s1 ⋅s2 ⋅ ... ⋅sn where ws is the Web
site, v a vulnerability, and si is the result of the checker
in a point of time i with 1 ≤ i ≤ n. The value si can be
E if the checker found the vulnerability Exploitable; N
for Non-Exploitable. In our experiments, we need to es-
tablish whether a Web site ws has fixed v. To do that,
we take into account the rate of unlikely events within a
time series in order to establish a confidence level, i.e.,
the number of substrings N ⋅E in the longer prefix of the
time series. We define the confidence that the Web site is
not vulnerable as the complement of this rate. We define
a Web site as not vulnerable if the confidence is greater
than 0.99. If no errors occur in a time series, we define a
conservative error of 0.1, i.e., a domain is marked fixed
if it was Non-Exploitable for three consecutive days.

D Comparison of Notified Groups

Generic WHOIS Provider TTP

Generic - 0.0323810 0.2982599 0.2456719
WHOIS 0.0323810 - 0.2714901 0.3276381
Provider 0.2982599 0.2714901 - 0.9038795
TTP 0.2456719 0.3276381 0.9038795 -

Table 7: p-values from χ2 tests for DWP

Generic WHOIS Provider TTP

Generic - 0.5285343 0.1360734 0.3841099
WHOIS 0.5285343 - 0.3862386 0.1346949
Provider 0.1360734 0.3862386 - 0.0191932
TTP 0.3841099 0.1346949 0.0191932 -

Table 8: p-values from χ2 tests for DCXSS

USENIX Association 25th USENIX Security Symposium 1033

You’ve Got Vulnerability: Exploring Effective Vulnerability Notifications

Frank Li† Zakir Durumeric∗‡� Jakub Czyz∗ Mohammad Karami�
Michael Bailey‡ Damon McCoy� Stefan Savage◦ Vern Paxson†�

†University of California Berkeley ∗University of Michigan �George Mason University
‡University of Illinois Urbana-Champaign �New York University

◦University of California San Diego �International Computer Science Institute

Abstract

Security researchers can send vulnerability notifications
to take proactive measures in securing systems at scale.
However, the factors affecting a notification’s efficacy
have not been deeply explored. In this paper, we report
on an extensive study of notifying thousands of parties
of security issues present within their networks, with an
aim of illuminating which fundamental aspects of noti-
fications have the greatest impact on efficacy. The vul-
nerabilities used to drive our study span a range of pro-
tocols and considerations: exposure of industrial control
systems; apparent firewall omissions for IPv6-based ser-
vices; and exploitation of local systems in DDoS ampli-
fication attacks. We monitored vulnerable systems for
several weeks to determine their rate of remediation. By
comparing with experimental controls, we analyze the
impact of a number of variables: choice of party to con-
tact (WHOIS abuse contacts versus national CERTs ver-
sus US-CERT), message verbosity, hosting an informa-
tion website linked to in the message, and translating
the message into the notified party’s local language. We
also assess the outcome of the emailing process itself
(bounces, automated replies, human replies, silence) and
characterize the sentiments and perspectives expressed in
both the human replies and an optional anonymous sur-
vey that accompanied our notifications.

We find that various notification regimens do result
in different outcomes. The best observed process was
directly notifying WHOIS contacts with detailed infor-
mation in the message itself. These notifications had
a statistically significant impact on improving remedia-
tion, and human replies were largely positive. However,
the majority of notified contacts did not take action, and
even when they did, remediation was often only partial.
Repeat notifications did not further patching. These re-
sults are promising but ultimately modest, behooving the
security community to more deeply investigate ways to
improve the effectiveness of vulnerability notifications.

1 Introduction

A secure Internet ecosystem requires continual discovery
and remediation of software vulnerabilities and critical
misconfigurations. Security researchers discover thou-
sands of such issues each year, across a myriad of plat-
forms [1]. This process consists of four key phases:
(1) discovering new security problems, (2) identifying
remedies, (3) determining affected parties, and (4) reach-
ing out to promote remediation among those affected.

The security community has decades of experience
with the first two phases, and developments in high-
speed scanning [10, 11] and network monitoring [23, 25]
have significantly advanced the ease of the third phase
for many security issues. However, the process of out-
reach remains today at best ad hoc. Unlike the public
health community, which has carefully studied and de-
veloped best practices for patient notification (e.g., [4,
19]), the security community lacks significant insight
into the kinds of notification procedures that produce the
best outcomes.1 Instead, for most software, the modern
practice of vulnerability notification remains broadcast-
ing messages via well-known mailing lists or websites
that administrators must periodically poll and triage.

Given the relative ease with which investigators can
today often determine the affected parties, the question
then arises of how they should best utilize that infor-
mation. In the past, performing large-scale notifica-
tions was often seen as both ineffective and impracti-
cal [2, 7, 12, 18]. However, several recent case studies
have provided clear evidence to the contrary. For exam-
ple, to promote patching of the 2014 OpenSSL Heart-
bleed vulnerability, Durumeric et al. emailed notices to
operators of hosts detected as vulnerable via scanning

1An exception concerns the development of online software update
systems that explicitly tie together notification and remediation, allow-
ing precise and automated updating targeting the affected parties. Un-
fortunately, the vast majority of software lacks such systems; even for
those that do, operators may disable it in some contexts (critical servers,
embedded systems) to avoid unplanned downtime.

1

1034 25th USENIX Security Symposium USENIX Association

and found that notified operators patched at a rate al-
most 50% greater than a control group [9]. Similarly,
Li et al. analyzed the efforts of Google Safe Browsing
and Search Quality in reaching out to operators of com-
promised websites, and found that direct communication
with webmasters increased the likelihood of cleanup by
over 50%, and reduced infection durations by more than
60% [14].

With these clear indications that notifications can drive
positive security outcomes, it behooves the security com-
munity to determine how to best conduct the outreach
efforts. At the same time, we must balance the benefits
to the ecosystem (and the associated ethical responsibil-
ities to notify) against the burden this imposes on the re-
porter, which calls for determining notification regimens
that will not prove unduly taxing.

In this work, we strive to lay the foundations for sys-
tematically determining the most effective notification
regimens, seeking to inform and drive the development
of “best practices” for the community. The solution
space has many more dimensions than we can hope to
methodically explore in a single study. Here, we aim
to develop soundly supported results for the most salient
basic issues, with an eye towards then facilitating follow-
on work that builds on these findings to further map out
additional considerations. The issues we address include
(1) who to notify (e.g., WHOIS contacts versus national
CERTs versus US-CERT), (2) the role of notification
content (e.g., do reporters need to devise detailed mes-
sages or do short ones suffice), (3) the importance of lo-
calization (e.g., what role does native language play in
notification response rates), and (4) how these consider-
ations vary with the nature of the vulnerability (includ-
ing whether for some vulnerabilities notification appears
hopeless).

We evaluate these questions empirically in the context
of notification campaigns spanning three different vul-
nerability categories: publicly accessible industrial con-
trol systems, misconfigured IPv6 firewalls, and DDoS
amplifiers. Using large-scale Internet scanning to iden-
tify vulnerable hosts and then monitor their behavior over
time post-notification, we infer the effects of different
notification regimes as revealed by the proportion and
timeliness of contacts remediating their vulnerable hosts.

Our results indicate that notifications can have a sig-
nificant positive effect on patching, with the best mes-
saging regimen being directly notifying WHOIS contacts
with detailed information within the message itself. An
additional 11% of contacts addressed the security issue
when notified in this fashion, compared to a control.
However, we failed to push the majority of contacts to
take action, and even when they did, remediation was
often only partial. Repeat notifications did not further
patching. We additionally characterize the responses we

received through our notification campaigns, of which
96% of human-sent responses were positive or neutral.
Given these promising yet modest findings, it behooves
the security community to more deeply investigate vul-
nerability notifications and ways to improve their effi-
cacy. Our methodology and results form the basis for es-
tablishing initial guidelines to help drive future efforts.

2 Related Work

Several recent studies have found that large-scale secu-
rity notifications increase patching and remediation—
particularly for infected websites.

Vasek et al. notified 161 infected websites [24] and
found that after 16 days, 55% of notified sites cleaned
up compared to 45% of unnotified sites. They further
note that more detailed notifications outperformed re-
ports with minimal information by 13%, resulting in
a 62% cleanup rate. Cetin et al. performed a simi-
lar study, measuring the role of sender reputation when
notifying the owners of hijacked websites [5]. They
emailed the WHOIS contacts of 240 infected sites from
email addresses belonging to an individual independent
researcher (low reputation), a university research group
(medium reputation), and an anti-malware organization
(high reputation). While nearly twice as many notified
sites cleaned up within 16 days compared to unnotified
ones, they found no significant differences across the var-
ious senders.

On a larger scale, Li et al. investigated the life cy-
cles of 761 K website hijacking incidents identified by
Google Safe Browsing and Search Quality [14]. They
found that direct notifications to webmasters increased
the likelihood of cleanup by over 50% and reduced in-
fection lengths by 60% on average. Absent this commu-
nication, they observed that browser interstitials—while
intended to protect browser users—correlated with faster
remediation.

Most similar to the vulnerabilities we investigate, Du-
rumeric et al. used Internet-wide scanning to track the
Heartbleed vulnerability and notified system owners two
weeks after public disclosure [9]. Their notifications
drove a nearly 50% increase in patching compared to a
control: 39.5% versus 26.8%.

Concurrent to this work, Stock et al. investigated the
feasibility of large-scale notifications for web vulnera-
bilities [22]. Similar to our study, they experimentally
evaluated the effectiveness of different communication
channels, including WHOIS email contacts and CERTs.
Additionally, they analyzed the reachability and viewing
behavior of their messages. Their results largely accord
with ours, providing a complementary study of notifica-
tions in a separate context (namely, vulnerable websites).
Notably, they likewise observed that while notifications

2

USENIX Association 25th USENIX Security Symposium 1035

Dataset Hosts WHOIS Abuse
Contacts

Hosts with
WHOIS Contacts

ICS 45,770 2,563 79.7%
IPv6 180,611 3,536 99.8%
Ampl. 83,846 5.960 92.4%

Table 1: Vulnerable Hosts—We notified network oper-
ators about three classes of vulnerabilities found in recent
studies: publicly accessible industrial control systems
(ICS), hosts with misaligned IPv4 and IPv6 firewall poli-
cies, and DDoS amplifiers (NTP, DNS, and Chargen).

could induce a statistically significant increase in patch-
ing, the raw impact was small. In the best case, only an
additional 15% of the population patched compared with
a control group.

Each of these studies has established that notifications
can increase vulnerability patching and cleanup. We
build on these works and explore the next critical step:
understanding what factors influence patching and how
to construct effective vulnerability notifications.

3 Methodology

To measure notification efficacy and to understand how
to construct effective notifications, we notified network
operators while varying aspects of the notification pro-
cess. In this section, we detail the datasets of vulnerable
hosts, the variables we tested, and how we tracked reme-
diation.

3.1 Vulnerable Hosts

We notified operators about the three classes of vulnera-
bilities listed below. We show the population of vulnera-
ble hosts in Table 1.

Publicly Accessible Industrial Control Systems In-
dustrial control systems (ICS) are pervasive and con-
trol physical infrastructure ranging from manufactur-
ing plants to environmental monitoring systems in com-
mercial buildings. These systems communicate over a
myriad of domain and manufacturer specific protocols,
which were later layered on Ethernet and TCP/IP to fa-
cilitate long distance communication. Never designed to
be publicly accessible on the Internet, these protocols
lack important security features, such as basic authen-
tication and encryption, but nonetheless are frequently
found unsecured on the public Internet. To identify vul-
nerable ICS devices, Mirian et al. extended ZMap [10]
and Censys [8] to complete full IPv4 scans for several
ICS protocols: DNP3, Modbus, BACnet, Tridium Fox,
and Siemens S7 [17]. In total, they found upwards of

46 K ICS hosts that were publicly accessible and inher-
ently vulnerable.

We coordinated with Mirian et al. to complete daily
scans for each protocol against the public IPv4 address
space from January 22–24, 2016. We limited our study
to the 45.8 K hosts that were present all three days to
reduce the noise due to IP churn. To track the impact of
our notifications, we continued the daily scans of these
hosts using the same methodology.

Misconfigured IPv6 Firewall Policies Czyz et al.
found that 26% of IPv4/IPv6 dual-stack servers and
routers have more permissive IPv6 firewall policies com-
pared to IPv4, including for BGP, DNS, FTP, HTTP,
HTTPS, ICMP, MySQL, NTP, RDP, SMB, SNMPv2,
SSH, and Telnet access [6]. For example, twice as many
routers have SSH accessible over IPv6 compared to IPv4.
Given the presumed rarity of IPv6-only services, this
likely indicates a misconfiguration and potential security
issue.

To identify dual-stack servers, Czyz et al. looked for
hostnames in the Rapid7 DNS ANY dataset [20] that had
both A and AAAA records. After filtering out automat-
ically generated hostnames, they identified 520 K dual-
stack servers. To find routers, the team performed reverse
DNS lookups and subsequent A and AAAA lookups for
hosts in the CAIDA Ark dataset [3], identifying 25 K
routers. Czyz et al. then scanned these hosts using Scam-
per [15] to identify firewall inconsistencies.

We scanned the hosts that Czyz et al. identified over a
25 day period from December 31, 2015 to January 24,
2016. We limited our study to the 8.4 K routers and
172.2 K servers that were consistently available during
that period. Similar to the ICS measurements, we contin-
ued to perform daily scans using the same methodology
to track the impact of our notifications.

DDoS Amplifiers Several UDP protocols allow attack-
ers to launch distributed denial of service attacks when
improperly configured [21]. In this scenario, an attacker
spoofs a small request to a misconfigured server, which
then sends a large response to the victim. For example,
an attacker can spoof a DNS lookup to a recursive DNS
resolver, which will then send the full recursive lookup
to the victim’s machine. We identified 152 K misconfig-
ured hosts that were actively being used to launch DDoS
attacks over NTP, DNS, and Chargen by monitoring the
sources of DDoS attacks against a university network be-
tween December 11–20, 2015.

We restricted our notifications to the vulnerable hosts
that were consistently available during our daily scans
from December 21, 2015 to January 26, 2016. In total,
we discovered 5.9 K Chargen amplifiers, 6.4 K NTP am-
plifiers, and 71.5 K DNS amplifiers on 83.8 K distinct IP
addresses. We continued to track these hosts by perform-

3

1036 25th USENIX Security Symposium USENIX Association

ing daily protocol scans (e.g., Chargen requests, NTP
monlist commands, and DNS recursive lookups).

In each case, we coordinated with the studies’ authors
to ensure that they did not simultaneously notify opera-
tors. However, we do note that groups have previously
sent notifications to DDoS amplifiers [13].

3.2 Experiment Variables
To understand how to best construct and route notifica-
tion messages, we performed notifications using several
methodologies and measured the differences in remedi-
ation. We specifically aimed to answer the following
questions:

Who should researchers contact? Researchers have
several options when deciding where they should report
vulnerabilities, including directly contacting network op-
erators, notifying national CERTs, and asking their own
country’s CERT to disseminate the data to other CERT
groups. We tested three options: (1) notifying the abuse
contact from the corresponding WHOIS record, (2) ge-
olocating the host and contacting the associated national
CERT, and (3) asking our regional CERT (US-CERT) to
propagate the information.

How verbose do messages need to be? It is not
clear how much information researchers need to include
when notifying operators. For example, are notifications
more effective if researchers include detailed remedia-
tion steps or will such instructions go unheeded? We
sent three types of messages: (1) a terse message that
briefly explained that we discovered the vulnerability
with Internet-wide scanning, and the impact of the vul-
nerability (e.g., for ICS notifications, we wrote “These
devices frequently have no built-in security and their
public exposure may place physical equipment at risk
for attack.”), (2) a terse message with a link to a web-
site with detailed information, and (3) a verbose email
that included text on how we detected the problem, vul-
nerability details, and potential remediation steps. We
provide the full text of our different messages in Ap-
pendix B–G.

Do messages need to be translated? We tested send-
ing messages in English as well as messages translated
by native technical speakers to several local languages.

3.3 Group Assignment
To test the impact of our experiment variables, we ran-
domly formed experiment groups that received different
notification regimens. Here we describe our process for
constructing these groups.

For each IP address, we extracted the abuse con-
tact from the most specific network allocation’s WHOIS

Group ICS IPv6 Ampl.

Control 657 3,527 1,484
National CERTs 174 650 379
US-CERT 493 578 1,128
WHOIS: English Terse 413 633 777
WHOIS: English Terse w/ Link 413 633 777
WHOIS: English Verbose 413 632 777
WHOIS: Language – Terse

Germany: German 71
Germany: English 72
Netherlands: Dutch 32
Netherlands: English 32
Poland: Polish 37
Poland: English 37
Russia: Russian 123
Russia: English 123

WHOIS: Language – Verbose
Germany: German 70
Germany: English 72
Netherlands: Dutch 32
Netherlands: English 29
Poland: Polish 36
Poland: English 36
Russia: Russian 123
Russia: English 123

Table 2: Notification Groups—We aggregated vulner-
able hosts by WHOIS abuse contacts and randomly as-
signed these contacts to notification groups. Here, we
show the number of contacts notified in each group. Note
that for the language experiments, we tested terse and
verbose messages for several countries, both translated
and in English.

record. For the 16.7% of dual-stack hosts with different
contacts extracted from IPv4 and IPv6 WHOIS records,
we used the contact with the deepest level of alloca-
tion, and preferred IPv6 contacts when all else was equal
(4.3% of dual-stack hosts).

To test each variable, we split the abuse contacts from
each vulnerability into treatment groups (Table 2). For
the ICS and amplifier experiments, we randomly allo-
cated one quarter of abuse contacts to the control group
(Group 1), one quarter to the CERT groups (half US-
CERT, half national CERTs), and the remaining half to
the WHOIS groups. For IPv6, to act in a responsible
manner we needed to complete some form of notification
for all hosts to ensure adequate disclosure prior to the re-
lease of the corresponding study [6] in February 2016.
This prevented us from using a true control group. In-
stead, we approximate the behavior of the control group
using the 25 days of daily scans prior to our notifications.
We allocated a third of the IPv6 contacts to the CERT
groups, and the remainder to the WHOIS groups.

For the vulnerable hosts assigned to the CERT groups,

4

USENIX Association 25th USENIX Security Symposium 1037

we geolocated each IP using MaxMind [16] and identi-
fied the associated CERT. We note that not all countries
have an established CERT organization. This was the
case for 2,151 (17%) IPv6 hosts, 175 (8%) ICS devices,
and 2,156 (19%) DDoS amplifiers. These hosts were
located in 16 countries for IPv6, 26 countries for ICS,
and 63 countries for DDoS. Many of these countries are
in Africa or Central America (e.g., Botswana, Ethiopia,
and Belize), or are smaller island states (e.g., American
Samoa, Antigua and Barbuda, and the Bahamas). We
did not include hosts without a CERT organization in the
CERT experiment (although we later passed them along
to US-CERT).

In total, 64 CERTs were responsible for IPv6 hosts,
57 for ICS, and 86 for amplifiers. To compare directly
contacting national CERTs versus having US-CERT dis-
tribute information to them, we randomly divided the
affected national CERTs into two halves. For national
CERTs in the first half, we contacted them directly with
vulnerable hosts in their region (Group 2). We sent the
remaining hosts for CERTs in the second half to US-
CERT (Group 3).

We obtained native translations of our WHOIS mes-
sages for several countries. We allocated contacts in the
WHOIS groups that were in those countries (based on
the WHOIS records) for our language experiment, fur-
ther detailed in Section 4.3. The remaining contacts were
randomly split into three groups based on message ver-
bosity: terse (Group 4), terse with a link (Group 5), and
verbose (Group 6).

3.4 Notification Process
We sent notification emails with the FROM and REPLY-
TO header set to an institutional mailing list: security-
notifications@berkeley.edu. In each message, we at-
tached a CSV file that contained the list of vulnerable
hosts along with the latest scan timestamp and the list
of vulnerable protocols. We also included a link to an
anonymous survey, which asked for the organization’s
perspective on the reported security issue and whether
they found our detection and notification acceptable. The
messages were sent from a server in UC Berkeley’s net-
work, which was listed as a valid mail server by UC
Berkeley’s SPF policy. We note that we also included a
randomly generated identifier in each email subject that
enabled us to match a reply to the original notification.

3.5 Tracking Remediation
We tracked the impact of different notification method-
ologies by scanning all hosts for several weeks follow-
ing our notifications. As our scanning methods tested
the reachability of several services, we may have falsely

identified a host as patched due to random packet loss or
temporary network disruptions. To account for this, we
only designated a host as patched if it did not appear vul-
nerable in any subsequent scans. We leveraged the last
day’s scan data for this correction, but did not otherwise
use it in our analysis as it lacked subsequent data for val-
idation.

One limitation in our tracking is the inability to distin-
guish true patching from network churn, where the host
went offline or changed its IP address. While we can
still conduct a comparative analysis against our control
group, we acknowledge that our definition of patching
is a mixture of true patching and churn. We investigated
whether we could better approximate true remediation by
distinguishing between RST packets and dropped pack-
ets. We compared the proportion of RSTs and drops be-
tween our control group and our notified groups two days
after notification and two weeks after notification. At
both times, we observed nearly identical proportions be-
tween the control and notified groups—in all cases less
than 20% of hosts sent RST packets. This indicates that
RST packets are not a reliable signal for remediation, as
most hosts did not send RST packets even when truly
fixed.

Unless stated otherwise, we consider a host as having
taken remediation steps for a particular vulnerability if
any of its affected protocols were detected as fixed. Like-
wise, we say a notification contact has taken remediation
steps if any of its hosts have patched. We define the re-
mediation rate as the percentage of notification contacts
that have taken remediation steps. This definition is over
contacts rather than hosts as we are measuring the im-
pact of notifying these contacts, and contacts differ in
the number of affected hosts.

3.6 Ethical Considerations

We followed the guidelines for ethical scanning behav-
ior outlined by Durumeric et al. [10]: we signaled the
benign intent of our scans through WHOIS entries and
DNS records, and provided project details on a website
on each scanning host. We respected scanning opt-out
requests and extensively tested scanning methods prior
to their deployment.

The ethics of performing vulnerability notifications
have not been widely discussed in the security commu-
nity. We argue that the potential good from informing
vulnerable hosts outweighs the risks. To minimize po-
tential harm, we only contacted abuse emails using ad-
dresses available in public databases. Additionally, we
messaged all unnotified contacts at the conclusion of the
study. We offered a channel for feedback through an
anonymous survey with questions about the notified or-
ganization (described in Appendix A). We note that be-

5

1038 25th USENIX Security Symposium USENIX Association

(a) Misconfigured IPv6 (b) DDoS Amplifiers (c) ICS Services

Figure 1: Remediation Rates—We show the remediation rate for each variable we tested. We find that verbose
English notifications sent to network operators were most effective for IPv6 and ICS. Note the varying Y axes.

cause we only collected data about organizational deci-
sions and not individuals, our study did not constitute
human subjects research (confirmed by consulting the
UC Berkeley IRB committee). Nevertheless, we fol-
lowed best practices, e.g., our survey was anonymous
and optional.

4 Results

For both ICS and IPv6, our notifications had a signifi-
cant impact on patch rates. In our most successful trial—
verbose English messages sent directly to operators—the
patch rate for IPv6 contacts was 140% higher than in the
control group after two weeks. For ICS, the patch rate
was 200% higher. However, as can be seen in Figure 1b,
none of our notifications had significant impact on DDoS
amplifiers. This is likely due to the extensive attention
DDoS amplifiers have already received in the network
operator community, including several prior notification
efforts [21]. In addition, these amplifiers were already
previously abused in DDoS attacks without administra-
tive responses, potentially indicating a population with
poor security stances. It is also important to note that
our best notification regimen resulted in at most 18% of
the population remediating. Thus, while notifications can
significantly improve patching, the raw impact is limited.
In the remainder of this section, we discuss the impact of
each experiment variable and how this informs how we
should construct future notifications.

To characterize the performance of our trial groups,
we measure the area under the survival curve for each
group, which captures the cumulative effect of each treat-
ment. To determine if observed differences have sta-
tistical significance, we perform permutation tests with
10,000 rounds. In each round of a permutation test, we
randomly reassign group labels and recompute the area
differences under the new assignments. The intuition is

that if the null hypothesis is true and there is no signif-
icant difference between two groups, then this random
reassignment will only reflect stochastic fluctuation in
the area difference. We assess the empirical probability
distribution of this measure after completing the permu-
tation rounds, allowing us to determine the probability
(and significance) of our observed values.

All reported p-values are computed via this permuta-
tion test. We use a significance threshold of α = 0.05,
corrected during multiple testing using the simple (al-
though conservative) Bonferroni correction, where each
test in a family of m tests is compared to a significance
threshold of α

m .
Ideally, we would have selected this procedure as part

of our original experimental design. Unfortunately, we
only identified its aptness post facto; thus, its selection
could introduce a selection bias, a possible effect that we
lack any practical means to assess.

4.1 Notification Contact

For both IPv6 and ICS notifications, directly notifying
WHOIS abuse contacts was most effective—particularly
early on. Two days after IPv6 disclosure, direct verbose
notifications resulted in 9.8% of the population remediat-
ing, compared to 3.1% when contacting national CERTs
and 1.4% by contacting US-CERT. For ICS, direct notifi-
cations promoted 6.8% of the population to patch, more
than national CERTs (1.7%) and US-CERT (1.0%). In
both cases, direct notifications were notably better than
no notifications. As can be seen in Figures 1a and 1c,
this gain was persistent. After two weeks, the patch rate
of directly notified IPv6 contacts was 2.4 times as high
as the control, and three times as high for ICS contacts.

To determine if these observations are statistically sig-
nificant, we perform permutation tests using the Bonfer-
roni correction. With six treatment groups, the family of

6

USENIX Association 25th USENIX Security Symposium 1039

(a) Misconfigured IPv6 (b) ICS Services

Figure 2: Differences between National CERTs—We show the remediation rate for each directly notified national
CERT after two weeks. The size of a data point is proportional to the number of abuse contacts in the country. We
directly contacted 32 CERTs for IPv6, and 29 CERTs for ICS. We observe notable differences between CERT groups.
However, none are statistically significantly different than the control group. This may be because there are too few
hosts for some countries, and that the Bonferroni correction is conservative.

Figure 3: Remediation Rates for Website Visitors—
The contacts who viewed our informational website re-
mediated at a higher rate than those who received a ver-
bose message. However, despite this, less than 40% of
the contacts who visited the site fixed the vulnerability.

pairwise comparisons includes 15 tests, giving an indi-
vidual test threshold of α = 0.0033. Under the permu-
tation test, the gains that direct verbose notifications had
on the CERTs and the control group are statistically sig-
nificant for both IPv6 and ICS, with all p-values less than
0.0001 except when comparing ICS verbose notifications
with national CERTs (p = 0.0027).

Notably, US-CERT—our local CERT who we asked to
disseminate data to other CERT groups—had the lowest
patch rate, which is statistically indistinguishable from
the control group that had no notifications. We suspect
that US-CERT did not disseminate the data to any other

CERT groups or notify any US operators. One national
CERT included in the report to US-CERT informed us
they had not received any notices from US-CERT. As
seen in Figure 2, there were stark differences between
CERT groups—some duly notified operators, while oth-
ers appear to have ignored our disclosures.

Overall, this suggests that the most effective
approach—in terms of both the number of hosts patched
and the rate of patching—is to directly notify network
operators rather than contact CERT groups.

4.2 Message Verbosity
To determine what information needs to be included in
notification messages, we sent three types of emails: (1)
verbose, (2) terse, and (3) terse with a link to a website
with additional details. We observed the best remediation
by contacts who received verbose messages. For IPv6,
verbose messages were 56.5% more effective than either
terse messages after two days and 55.5% more effective
for ICS. However, as can be seen in Figure 1, the dif-
ferences between verbose and terse messages decreased
over time.

Using permutation testing and the Bonferroni correc-
tion, we find that the differences between the message
types are not statistically significant for IPv6 and ICS.
However, given the earlier benefits that verbose mes-
sages had for both data sets, we argue notifiers may still
want to prefer verbose messages over terse ones. We dis-
cuss this effect further in Section 4.4 and note that further
investigation of this variable is warranted.

We tracked the remediation rate of contacts who vis-
ited the linked website, as shown in Figure 3. We note
that all of the information included in the verbose mes-
sage was available on the linked website and that 16.8%
of users who received an email with a link visited the site.
This indicates that a sizable population of users engaged

7

1040 25th USENIX Security Symposium USENIX Association

(a) Misconfigured IPv6 - German Contacts (b) Misconfigured IPv6 - Dutch Contacts

Figure 4: Remediation Rates for Translated Messages—We find that sending verbose English messages was more
effective than translating notifications into the language of the recipient. Note, though, that this observation is limited
to the small set of languages we were able to evaluate.

(a) Misconfigured IPv6 (b) DDoS Amplifiers (c) ICS Services

Figure 5: Daily Changes in Remediation Proportions—We show the differences in the proportions of remediated
contacts from one day to the next. We find that most contacts that remediated fixed the problem immediately after
disclosure. After a few days, contacts returned to remediating at the same rate as the control group.

with our site, but many would not patch even after visit-
ing the link. Specifically, no more than 40% of website
visitors patched. Thus, even when our messages success-
fully reached contacts, the majority did not take action.

4.3 Message Language

To investigate whether notifications need to be translated
into recipients’ local languages or can be sent in English,
we distributed translated messages for two countries for
DDoS and IPv6 notifications. For DDoS amplifiers, we
obtained native Russian and Polish translations—for the
countries with the third and fourth largest number of vul-
nerable organizations. For IPv6, we translated messages
into German and Dutch, for the second and third largest
countries. The population of contacts in non-English

speaking countries for the ICS dataset was too low to pro-
vide significant meaning. We randomly split the WHOIS
contacts in each country into four groups that vary lan-
guage and verbosity.

We observe no significant effect from language for
DDoS notifications. This is unsurprising given our no-
tifications’ overall lack of effect on DDoS amplifiers.
For IPv6, as seen in Figure 4, we observe that trans-
lated messages resulted in worse patching than when left
in English. Several survey respondents were surprised
at receiving translated messages from United States in-
stitutions and initially suspected our notifications were
phishing messages or spam, which may explain the lower
patch rate. The additional overhead of translating mes-
sages paired with less successful disclosure suggests that
it may be most effective to send notifications in English.

8

USENIX Association 25th USENIX Security Symposium 1041

(a) Misconfigured IPv6 (b) ICS Services

Figure 6: Contact Remediation per Country—We show the percentage of contacts who remediated per country
after two weeks. The data sizes are proportional to the number of contacts. Green data points surrounded by an orange
star signify countries with a remediation rate statistically better than the control group’s, under the permutation test
using the Bonferroni correction.

(a) Misconfigured IPv6 - WHOIS Verbose (b) DDoS Amplifiers - WHOIS Verbose (c) ICS Services - WHOIS Verbose

(d) Misconfigured IPv6 - Control (e) DDoS Amplifiers - Control (f) ICS Services - Control

Figure 7: Protocol Remediation Rates—We track the remediation rate for each specific protocol within the WHOIS
verbose group and the control group. We note that operators patched some protocols significantly faster than others
(e.g., Telnet versus FTP).

However, we note that our results are limited to the small
set of languages we were able to obtain reliable trans-
lations for, and deeper investigation into the effects of
message language is warranted.

4.4 Staying Power of Notification’s Effect

As can be seen in Figure 5, our notifications caused
a near immediate increase in patching. However, this

increased patching velocity did not persist. In other
words, we find that the effects of notifications were short-
lived—on the order of several days. The day after noti-
fications were sent, we observe large increases in the re-
mediation proportions for IPv6 and ICS notified groups,
as operators responded to our reports. However, we also
see that the daily changes in remediation proportions
drastically dropped by the second day.

For IPv6, the daily changes in remediation proportions

9

1042 25th USENIX Security Symposium USENIX Association

for all notified groups leveled off and matched that of the
control group from the fifth day onward. We also witness
a drop off in the daily remediation proportion changes
for ICS, although a non-trivial amount of change contin-
ued throughout the first 10 days. Notably, the national
CERTs first began accelerating remediation after two
days, a delay compared to WHOIS experiment groups.
For amplifiers, there was little change in the remediation
rate over time, which is unsurprising given the limited
effect of our notifications.

4.5 Geographic Variation

As with the national CERTs, we note variation in the
patching rates between countries. This suggests that the
geographic distribution of vulnerable contacts may influ-
ence a notification’s outcome. As visible in Figure 6,
the United States, Great Britain, India, and Finland were
the only countries that patched significantly better than
the control group. However, we note that some countries
had too few hosts to be statistically significant, given the
conservative nature of the Bonferroni correction.

4.6 Variation over Protocols

In Figure 7, we observe variation in the patch rates for
different protocols within each vulnerability (e.g., Mod-
bus versus S7 for ICS). As seen in Figure 7a, network
administrators reacted most to open IPv6 NTP, Telnet,
and SSH services, and least to FTP, with over a 200%
difference in the remediation proportions. This variation
is not reflected in the control group (Figure 7d), where
all protocols exhibited similar behavior. This may reflect
an increased likelihood that certain services were unin-
tentionally left accessible, or that operators assessed dif-
ferent levels of risk for allowing different protocols to be
reachable.

Operators also responded differently for the multi-
ple ICS protocols (Figure 7c), but the variation is also
reflected for contacts in the control group (Figure 7f).
BACnet, Fox, and Modbus devices were fixed at simi-
lar rates. While the remediation of S7 systems initially
lagged behind, there was a significant upswing in action
after three days, with nearly 18% of contacts with vul-
nerable S7 systems patching after 8 days.

Surprisingly, no DNP3 systems had been patched
within 10 days of notification (out of 5 contacts). We
note that these five contact groups belonged to Inter-
net service providers—not individual organizations. We
similarly note that DNP3 differs from the other pro-
tocols and is specifically intended for power grid au-
tomation. These devices may be remote power stations
which require more complex changes than local devices

(a) Remediation rates

(b) Changes in the remediation proportions from one day to the
next.

Figure 8: Remediation Rates by Host Type—We find
no significant difference in the remediation rate between
servers and routers.

(e.g., installation of new hardware versus a configuration
change).

While we observe variation between amplifier proto-
cols, these fluctuations are similar in both the notified
and control group. Given the limited effect of our DDoS
amplifier notifications, these differences likely reflect the
varying natural churn rates of these hosts.

4.7 Host Type

When notifying IPv6 operators, we were able to distin-
guish between servers and routers. To assess the differ-
ence between device types, for each type, we only con-
sider contacts with a vulnerable host of that type. We
count a contact as having performed some remediation if
that contact fixed at least one host of that type.

10

USENIX Association 25th USENIX Security Symposium 1043

(a) Misconfigured IPv6 (b) DDoS Amplifiers (c) ICS Services

Figure 9: Remediation Completeness—We find that most operators only fixed a subset of their vulnerable hosts. For
example, only 40% of the operators that fixed a single host fixed all hosts in their purview.

(a) Misconfigured IPv6 (b) DDoS Amplifiers (c) ICS Services

Figure 10: Re-Notifications—We find that a second round of notifications did not result in increased remediation.

We observe that servers and routers remediated at sim-
ilar rates for the first four days, after which router re-
mediation dropped off and fell significantly below that
of servers (Figure 8a). However, servers also naturally
patched at a higher rate than routers in the control group.
This difference accounts for the gap between notified
servers and routers after four days. This is also visible
in Figure 8b, where the daily changes in the remediation
proportions converged after four days. After 14 days,
notified contacts with servers fixed at a rate 44% higher
than notified contacts with routers. The divergence in
the control group was similar at 48%. This indicates that
overall, network administrators respond to vulnerabili-
ties in servers and routers about equally.

4.8 Degree of Remediation

Up to this point, we designated a contact as having
patched if any host under its purview was patched. We
now consider how well operators patched their hosts.

As can be seen in Figure 9, the majority of contacts did
not patch all of their servers. Less than 60% secured all
hosts and we note that 30% of groups with 100% reme-

diation were only responsible for fixing one or two hosts.
This highlights one of the challenges in the vulnerability
notification process: even if our messages reach a desig-
nated contact, that contact may not have the capabilities
or permissions to remediate all hosts. The multiple hops
in a communication chain can be broken at any link.

4.9 Repeated Notifications

Given that our notifications resulted in improved patch-
ing, a natural question is whether repeat notifications
promote further remediation. We conducted a second
round of notifications for the contacts that were directly
sent verbose messages in the first round since these
proved to be the most effective. We randomly split con-
tacts who had not remediated one month after our notifi-
cations into two groups, one as a control group and one
to receive a second round of notifications.

As can be seen in Figure 10, the patch rates between
the re-notified group and the control group were similar
for all three vulnerabilities, indicating that repeat notifi-
cations are not effective. This suggests that contacts who
did not remediate during the first round of notifications

11

1044 25th USENIX Security Symposium USENIX Association

either were not the appropriate points of contact, or chose
(either intentionally or due to lack of capabilities) to not
remediate. It is unlikely they simply missed or forgot
about our original notification.

5 Notification Reactions

We included a link to an anonymous survey in all of our
notification emails as well as monitored the email ad-
dress from which we sent messages. In the two weeks
following our disclosures, we received 57 survey sub-
missions and 93 human email replies. In this section, we
analyze these responses.

5.1 Email Responses
Of the 685 email responses we received, 530 (77%) were
automated responses (e.g., acknowledgment of receipt),
62 (9%) were bounces, and 93 (14%) were human re-
sponses (Table 3). For all three vulnerabilities, over 70%
of the human responses expressed positive sentiments.
We received only four negative emails, all of which con-
cerned IPv6. Two stated that we were incorrectly us-
ing the abuse contact; the other two noted that the open
IPv6 services were intentional and asked to be excluded
from notifications in the future. None of the emails were
threatening. We detail the breakdown for each vulnera-
bility type in Table 4.

Beyond expressing sentiments, 23 contacts requested
additional information—primarily about how we de-
tected the vulnerabilities; two requested remediation in-
structions. Of those 23 contacts, 15 (65%) received
terse notifications without a link to additional informa-
tion, while 3 contacts (13%) received verbose messages.
We note that verbose messages both reduced follow-up
communication and resulted in the highest patching rate.

Unexpectedly, all five contacts who requested infor-
mation about DDoS amplifiers asked for evidence of
DDoS attacks via network logs. This may be a result
of the extensive attention amplifiers have received in the
past, such that operators only respond to active abuse is-
sues regarding amplifiers.

Twelve IPv6 contacts rebutted our claim of vulnerabil-
ity. Six stated that the inconsistency was intentional; one
was a honeypot; and five explained that the IP addresses
we sent them no longer pointed to the same dual-stack
host, likely due to network churn. Two amplifier contacts
claimed we falsely notified, stating that their hosts were
honeypots. However, we do note that these IPs were seen
as part of an attack and were therefore likely misconfig-
ured honeypots.

Most human responses were in English, with eight
(9%) in other languages: 3 Russian, 1 German, 1 Czech,
1 Swedish, 1 French, and 1 Slovak. These non-English

Response Types ICS IPv6 Ampl.

Automated 143 214 173
Human 22 48 23
Bounces 10 34 18

Total 175 296 214

Contacts w/ No Reply 85.9% 87.2% 92.8%

Table 3: Email Responses—We received 685 email re-
sponses to our notifications, of which 14% were human
replies.

Human Responses ICS IPv6 Ampl.

Positive Sentiments 17 35 19
Negative Sentiments 0 4 0
Neutral Sentiments 5 9 4

Request for Information 2 16 5
Taking Actions 12 17 15
False Positive Notification 0 12 2

Total 22 48 23

Table 4: Human Email Responses—We characterize
the human email responses we received in reply to our
notifications.

replies were in response to English notifications and ex-
pressed gratitude; none requested additional information.

We note that the level of feedback we received re-
garding DDoS notifications was commensurate with our
other efforts, yet the patch response was minimal. This
could indicate that operators struggle with actually re-
solving the issue after encountering and responding to
our messages, or have become desensitized enough to
DDoS issues to not take real action.

5.2 Anonymous Survey Responses
All of our notification messages contained a link to
an anonymous seven question survey (Appendix A), to
which we received 57 submissions. We summarize the
results in Table 5.

Interestingly, 46% of respondents indicated that they
were aware of the vulnerability prior to notification, and
16% indicated that they had previously attempted to re-
solve the problem. This contrasts with the survey re-
sults in the Heartbleed study [9], where all 17 respon-
dents indicated they were aware of the Heartbleed vul-
nerability and had previously attempted to resolve the
problem. The widespread media attention regarding the
Heartbleed bug may account for this discrepancy, high-
lighting the differences in the nature of various vulnera-
bilities.

For DDoS amplifiers and ICS vulnerabilities, the ma-

12

USENIX Association 25th USENIX Security Symposium 1045

Survey Responses ICS IPv6 Ampl.

Aware of Issue 2/4 20/45 4/8
Taken Prior Actions 1/4 5/43 3/8
Now Taking Action 4/4 24/43 6/8
Acceptable to Detect 3/4 35/45 7/8
Acceptable to Notify 2/4 34/45 7/8
Would want Future Notifications 2/4 30/43 7/8
Correct Contact 1/3 37/43 6/8

Total 4 45 8

Table 5: Survey Responses—We included a link to a
short, anonymous survey in all of our notifications. We
find that most respondents (54%) weren’t aware of the
vulnerabilities, but found our scanning and notifications
acceptable (over 75%). Further, 62% of respondents
stated they were taking corrective actions and 71% of re-
spondents requested future notifications.

jority of respondents expressed that they were now tak-
ing corrective action (75% for DDoS amplifiers, 100%
for ICS). For IPv6, only 56% of respondents indicated
they would fix the problem. Given the nature of the IPv6
notification, it is likely that some of the misaligned poli-
cies were intentional.

Over 80% of respondents indicated that we reached
out to the correct contact, who found scanning and no-
tifications acceptable and requested future vulnerability
notifications. However, this is a population with whom
we successfully established communication. The accu-
racy of the other contacts from whom we did not hear
back could be lower.

Our survey also allowed respondents to enter free form
comments. We received 17 IPv6 comments, 4 DDoS am-
plifier comments, and 1 ICS comment. Of the IPv6 re-
spondents, 5 thanked us, 7 discussed how the misalign-
ment could be intentional or that our detection was in-
correct, 3 equated our messages to spam, and 2 noted
that they initially thought our translated messages were
phishing messages because they expected English mes-
sages from an institution in the United States. For ampli-
fiers, we received four comments: two thanking us and
two informing us not to notify unless there is a real at-
tack. Finally, there was only one ICS commenter, who
suggested contacting vendors instead of network opera-
tors, but thanked us for our notification.

The feedback we received from these survey answers
and the email responses indicates an overall positive re-
ception of our notifications. While it may be that those
who provided feedback are more opinionated, these re-
sults suggest that further discourse on notifications is
needed within our community.

6 Discussion

Here we summarize the main results developed during
our study, and the primary avenues for further work that
these suggest.

Effective Vulnerability Notifications Our results indi-
cate that vulnerability notifications can improve remedia-
tion behavior and the feedback we received from network
operators was largely positive. We conclude that notifica-
tions are most effective when detailed messages are sent
directly to WHOIS abuse contacts. These notifications
were most effective in our experiments and resulted in
an additional 11% of contacts addressing a vulnerability
in response to our message.

On the one hand, this result provides clear guidance
on how to best notify network operators. On the other
hand, the majority of organizations did not patch their
hosts despite our notifications. Even among those who
patched at least one host, most did not fix all of their
vulnerable hosts. In the case of networks hosting DDoS
amplifiers, no form of notification generated benefits sta-
tistically significant over the control.

The failures to remediate could signal a number of
problems, including:

1. failure to contact the proper parties who could best
instigate remediation;

2. a need for better education about the significance of
the vulnerability;

3. a need for better education about the remediation
process;

4. administrative or logistical hurdles that proved too
difficult for those parties to overcome;

5. or a cost-benefit analysis by those parties that con-
cluded remediation was not worth the effort.

Illuminating the role that each of these considerations
plays, and the best steps to then address them, remains
for future work.

In addition, we found the effects of our notification
campaigns to be short-lived: if recipients did not act
within the first couple days, they were unlikely to ever
do so. Repeat notifications did not further improve re-
mediation levels.

Thus, while we have developed initial guidance for
conducting effective notifications, there remain many
unanswered questions as to how to best encourage op-
erators to patch vulnerable hosts.

Improving Centralized Notification Mechanisms We
observed that relying on national and regional CERT or-
ganizations for vulnerability notifications had either a
modest effect (compared to our direct notifications) or no
effect (indistinguishable from our unnotified controls).

13

1046 25th USENIX Security Symposium USENIX Association

While certain national CERTs evinced improved levels
of remediation, others either did not act upon the infor-
mation we reported, or if they did so, recipients ignored
their messages. Thus, the community should consider
more effective mechanisms for facilitating centralized re-
porting, either within the existing CERT system, or us-
ing some separate organizational structure. This need is
quite salient because the burden of locating and messag-
ing thousands of individual contacts is high enough that
many researchers will find it too burdensome to conduct
notifications themselves.

Open Ethical Questions The process of notifying par-
ties regarding security issues raises a number of ethical
questions. The community has already discussed some
of these in depth, as in the debates concerning “full dis-
closure.” Contacting individual sites suffering from vul-
nerabilities, likewise, raises questions regarding appro-
priate notification procedures.

For example, WHOIS abuse emails are a point-of-
contact that multiple notification efforts have relied
on [5,9,13,14,22,24]. However, these contacts are tech-
nically designated for reports of abusive, malicious be-
havior (a point noted in the feedback we received as de-
tailed in Section 5). While vulnerability reports have a
somewhat similar flavor, they do not serve the same pur-
pose. It behooves the security community to establish a
standardized and reliable point-of-contact for communi-
cating security issues.

Another question concerns whether the benefits of re-
peated notifications for the same vulnerability outweigh
the costs imposed on recipients. Some may derive no
benefits from the additional messages due to having no
means to effectively remediate, yet must spend time in-
gesting the notifications. From our results, we observed
that repeat notifications did not promote further patching,
which argues against performing re-notifications.

More provocative, and related to the full-disclosure
debate mentioned above, is the notion of threatening re-
cipients with publicly revealing their vulnerabilities if
unaddressed after a given amount of time. Likely, the
research community would find this (quite) unpalatable
in general; however, one can imagine specific situations
where the community might conclude that spurring vi-
tal action justifies such a harsh step, just as some have
concluded regarding full disclosure.

Future Abuse of Notifications In a future with
widespread notifications, we would hope that security
issues could be rectified more extensively and quickly.
However, this would provide a new avenue for abuse, as
attackers could potentially leverage the open communi-
cation channel to target network operators. As a simple
example, a malicious actor could notify operators about
a real security issue, and inform the operators to install

a malicious application to help hosts resolve the secu-
rity gap. While existing techniques such as phishing de-
tection and binary analysis can help limit these attacks,
the problem domain likely will yield new challenges. It
is important that the security community remain cog-
nizant of these dangers as the state of security notifica-
tions evolves.

Effective Remediation Tools For contacts that do not
remediate, our measurements cannot distinguish which
of the underlying reasons sketched above came into play.
However, while some operators may lack sufficient mo-
tivation to take action, it seems quite plausible that others
wish to, but lack the technical capabilities, resources, or
permissions to do. Accordingly, we see a need for inves-
tigation into the operational problems that operators en-
counter when considering or attempting remediation, as
well as the development of effective and usable remedia-
tion tools that simplify the operators’ tasks. By reducing
the effort and resources required to address a vulnerabil-
ity, such tools could also increase the likelihood that an
operator would take the steps to react to vulnerability re-
ports. Ultimately, automated systems would be ideal, but
these face significant challenges, such as heterogeneous
platforms, potential abusive or malicious behavior, and
inadvertent disruption of mission-critical systems.

7 Conclusion

We have undertaken an extensive study of notifying thou-
sands of network operators of security issues present
within their networks, with the goal of illuminating
which fundamental aspects of notifications have the
greatest impact on efficacy. Our study investigated vul-
nerabilities that span a range of protocols and consider-
ations: exposure of industrial control systems; apparent
firewall omissions for IPv6-based services; and exploita-
tion of local systems in DDoS amplification attacks.

Through controlled multivariate experiments, we stud-
ied the impact of a number of variables: choice of
party to contact (WHOIS abuse contacts versus national
CERTs versus US-CERT), message verbosity, hosting a
website linked to in the message, and translating the mes-
sage into the notified party’s local language. We moni-
tored the vulnerable systems for several weeks to deter-
mine their rate of remediation in response to changes to
these variables.

We also assessed the outcome of the emailing pro-
cess itself and characterized the sentiments and perspec-
tives expressed in both the human replies and an optional
anonymous survey that accompanied our notifications.
The responses were largely positive, with 96% of hu-
man email responses expressing favorable or neutral sen-
timents.

14

USENIX Association 25th USENIX Security Symposium 1047

Our findings indicate that notifications can have a sig-
nificant positive effect on patching, with the best messag-
ing regimen being directly notifying contacts with de-
tailed information. An additional 11% of contacts ad-
dressed the security issue when notified in this fashion,
compared to the control. However, we failed to prompt
the majority of contacts to respond, and even when they
did, remediation was often only partial. Repeat notifi-
cations did not further improve remediation. Given these
positive yet unsatisfactory outcomes, we call on the secu-
rity community to more deeply investigate notifications
and establish standards and best practices that promote
their effectiveness.

Acknowledgments

The authors thank L. Aaron Kaplan for insightful discus-
sions regarding the CERT organizations and Philip Stark
for providing statistical consultation. We similarly thank
Jethro Beekman, Christian Kreibich, Kirill Levchenko,
Philipp Moritz, Antonio Puglielli, and Matthias Vallentin
for message translations. Additionally, we thank the re-
viewers and our shepherd Nicolas Christin for helpful
feedback.

This work was supported in part by the National
Science Foundation under contracts 1111672, 1111699,
1237264, 1237265, 1345254, 1409505, 1409758,
1518741, 1518888, 1518921, and 1619620. The first
author is supported by a National Science Foundation
Graduate Research Fellowship. The second author is
supported by the Google Ph.D. Fellowship in Computer
Security. The opinions in this paper are those of the au-
thors and do not necessarily reflect the opinions of any
funding sponsor.

References
[1] National Vulnerability Database. https://nvd.nist.gov/.

[2] Conficker Working Group: Lessons Learned, 2011.
http://www.confickerworkinggroup.org/wiki/
uploads/Conficker_Working_Group_Lessons_
Learned_17_June_2010_final.pdf.

[3] CAIDA. Archipelago (Ark) Measurement Infrastructure.
http://www.caida.org/projects/ark/.

[4] CENTERS FOR DISEASE CONTROL AND PREVENTION.
Patient Notification Toolkit. http://www.cdc.gov/
injectionsafety/pntoolkit/index.html.

[5] CETIN, O., JHAVERI, M. H., GANAN, C., EETEN, M., AND
MOORE, T. Understanding the Role of Sender Reputation in
Abuse Reporting and Cleanup. In Workshop on the Economics of
Information Security (WEIS) (2015).

[6] CZYZ, J., LUCKIE, M., ALLMAN, M., AND BAILEY, M. Don’t
Forget to Lock the Back Door! A Characterization of IPv6 Net-
work Security Policy. In Symposium on Network and Distributed
System Security (NDSS) (2016).

[7] DITTRICH, D., BAILEY, M., AND DIETRICH, S. Towards Com-
munity Standards for Ethical Behavior in Computer Security Re-
search. Tech. rep., 2009.

[8] DURUMERIC, Z., ADRIAN, D., MIRIAN, A., BAILEY, M., AND
HALDERMAN, J. A. A Search Engine Backed by Internet-Wide
Scanning. In ACM Conference on Computer and Communica-
tions Security (CCS) (2015).

[9] DURUMERIC, Z., LI, F., KASTEN, J., WEAVER, N., AMANN,
J., BEEKMAN, J., PAYER, M., ADRIAN, D., PAXSON, V., BAI-
LEY, M., AND HALDERMAN, J. A. The Matter of Heartbleed.
In ACM Internet Measurement Conference (IMC) (2014).

[10] DURUMERIC, Z., WUSTROW, E., AND HALDERMAN, J. A.
ZMap: Fast Internet-Wide Scanning and its Security Applica-
tions. In USENIX Security Symposium (2013).

[11] GRAHAM, R. Masscan: The Entire Internet in 3 Minutes.
Errata Security Blog, 2013. http://blog.erratasec.
com/2013/09/masscan-entire-internet-in-3-
minutes.html.

[12] HOFMEYR, S., MOORE, T., FORREST, S., EDWARDS, B., AND
STELLE, G. Modeling Internet-Scale Policies for Cleaning up
Malware. In Economics of Information Security and Privacy III
(2013).

[13] KUHRER, M., HUPPERICH, T., ROSSOW, C., AND HOLZ, T.
Exit from Hell? Reducing the Impact of Amplification DDoS
Attacks. In USENIX Security Symposium (2014).

[14] LI, F., HO, G., KUAN, E., NIU, Y., BALLARD, L., THOMAS,
K., BURSZTEIN, E., AND PAXSON, V. Remedying Web Hijack-
ing: Notification Effectiveness and Webmaster Comprehension.
In World Wide Web Conference (WWW) (2016).

[15] LUCKIE, M. Scamper: A Scalable and Extensible Packet Prober
for Active Measurement of the Internet. In ACM Internet Mea-
surement Conference (IMC) (2010).

[16] MAXMIND, LLC. Geoip2 database.
[17] MIRIAN, A., MA, Z., ADRIAN, D., TISCHER, M.,

CHUENCHUJIT, T., MASON, J., YARDLEY, T., BERTHIER, R.,
DURUMERIC, Z., HALDERMAN, J. A., AND BAILEY, M. An
Internet-Wide View of Publicly Accessible SCADA Devices. Un-
published Manuscript.

[18] MOORE, T., AND CLAYTON, R. Ethical Dilemmas in Take-
down Research. In International Conference on Financial Cryp-
tography and Data Security (FC) (2011).

[19] NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION.
Clinical Effectiveness of Partner Notification. http://www.
ncbi.nlm.nih.gov/books/NBK261439/.

[20] RAPID7. DNS Records (ANY) Dataset, 2015. https://
scans.io/study/sonar.fdns.

[21] ROSSOW, C. Amplification Hell: Revisiting Network Protocols
for DDoS Abuse. In Symposium on Network and Distributed Sys-
tem Security (NDSS) (2014).

[22] STOCK, B., PELLEGRINO, G., ROSSOW, C., JOHNS, M., AND
BACKES, M. Hey, You Have a Problem: On the Feasibility of
Large-Scale Web Vulnerability Notification. In USENIX Security
Symposium (2016).

[23] STONE-GROSS, B., CAVALLARO, L., GILBERT, B., SZYD-
LOWSKI, M., KEMMERER, R., KRUEGEL, C., AND VIGNA,
G. Your Botnet is My Botnet: Analysis of a Botnet Takeover.
In ACM Conference on Computer and Communications Security
(CCS) (2009).

[24] VASEK, M., AND MOORE, T. Do Malware Reports Expedite
Cleanup? An Experimental Study. In USENIX Workshop on Cy-
ber Security Experimentation and Test (CSET) (2012).

[25] YEGNESWARAN, V., BARFORD, P., AND PAXSON, V. Using
Honeynets for Internet Situational Awareness. In Hot Topics in
Networks (HotNets) (2005).

15

1048 25th USENIX Security Symposium USENIX Association

A Anonymous and Optional Security Noti-
fications Survey

Help us better understand the factors surrounding secu-
rity notifications by providing anonymous feedback in
this survey. Each question is optional, so answer the ones
you feel comfortable answering. Thank you!

1. Was your organization aware of the security issue
prior to our notification?

2. Did your organization take prior actions to resolve
the security issue before our notification?

3. Is your organization planning on resolving the secu-
rity issue?

4. Do you feel it was acceptable for us to detect the
security issue?

5. Do you feel it was acceptable for us to notify your
organization?

6. Would your organization want to receive similar se-
curity vulnerability/misconfiguration notifications
in the future?

7. Did we notify the correct contact?

B IPv6 Notification: Terse with Link

Subject: [RAND#] Potentially Misconfigured IPv6 Port
Security Policies

Body: Computer scientists at the University of Michi-
gan, the University of Illinois Urbana-Champaign, and
the University of California Berkeley have been con-
ducting Internet-wide scans to detect IPv4/IPv6 dual-
stack hosts that allow access to services via IPv6, but
not IPv4. This likely indicates a firewall misconfigura-
tion and could be a security vulnerability if the services
should not be publicly accessible. We have attached a list
of hosts that are potentially vulnerable on your network.

[LINK: More information is available at https://security-
notifications.cs.berkeley.edu/[RAND#]/ipv6.html.]

Thank you,

Berkeley Security Notifications Team

Help us improve notifications with anonymous feedback
at: https://www.surveymonkey.com/r/Q2HLJ5D

C IPv6 Notification: Verbose

Subject: [RAND#] Potentially Misconfigured IPv6 Port
Security Policies

Body: During a recent study on the network security
policies of IPv4/IPv6 dual-stack hosts, computer scien-
tists at the University of Michigan, the University of Illi-
nois Urbana-Champaign, and the University of Califor-
nia Berkeley have been conducting Internet-wide scans
to detect IPv4/IPv6 dual-stack hosts that allow access to
services via IPv6, but not IPv4. This likely indicates a
firewall misconfiguration and could be a security vulner-
ability if the services should not be publicly accessible.
We have attached a list of hosts that are potentially vul-
nerable on your network (as determined by WHOIS in-
formation).

For each dual-stack host, we test whether popular ser-
vices (e.g., SSH, Telnet, and NTP) are accessible via
IPv4 and/or IPv6 using a standard protocol handshake.
For ICMP this is an echo request, for TCP it is a SYN
segment, and for UDP this is an application-specific re-
quest (e.g., DNS A query for ‘www.google.com’ or an
NTP version query). We do not exploit any vulnerabili-
ties, attempt to login, or access any non-public informa-
tion.

The protocols we scanned are popular targets for attack
and/or can be used to launch DDoS attacks when left
publicly available to the Internet. We suspect they are
misconfigured and are notifying you because hosts rarely
offer services on IPv6 that are not offered on IPv4, and
we believe these services may have been left exposed ac-
cidentally. This is a common occurrence when admin-
istrators forget to configure IPv6 firewall policies along
with IPv4 policies.

If these IPv6-only accessible services should not be ac-
cessible to the public Internet, they can be restricted by
updating your firewall or by disabling or removing the
services. If none of your systems use IPv6, you can also
disable IPv6 on your system. Make sure your changes
are persistent and will not be undone by a system reboot.

More information is available at https://security-
notifications.cs.berkeley.edu/[RAND#]/ipv6.html.

Thank you,

Berkeley Security Notifications Team

Help us improve notifications with anonymous feedback
at: https://www.surveymonkey.com/r/Q2HLJ5D

D ICS Notification: Terse with Link

Subject: [RAND#] Vulnerable SCADA Devices

16

USENIX Association 25th USENIX Security Symposium 1049

Body: Computer scientists at the University of Michi-
gan and the University of California Berkeley have been
conducting Internet-wide scans to detect publicly acces-
sible industrial control (SCADA) devices. These devices
frequently have no built-in security and their public ex-
posure may place physical equipment at risk for attack.
We have attached a list of SCADA devices on your net-
work that are publicly accessible.

[LINK: More information is available at https://security-
notifications.cs.berkeley.edu/[RAND#]/ics.html.]

Thank you,

Berkeley Security Notifications Team

Help us improve notifications with anonymous feedback
at: https://www.surveymonkey.com/r/ZC7BVW5

E ICS Notification: Verbose

Subject: [RAND#] Vulnerable SCADA Devices

Body: During a recent study on the public exposure
of industrial control systems, computer scientists at the
University of Michigan and the University of Califor-
nia Berkeley have been conducting Internet-wide scans
to detect publicly accessible industrial control (SCADA)
devices. These devices frequently have no built-in secu-
rity and their public exposure may place physical equip-
ment at risk for attack. We have attached a list of SCADA
devices on your network (as determined by WHOIS in-
formation) that are publicly accessible.

We scan for potentially vulnerable SCADA systems by
scanning the full IPv4 address space and attempting
protocol discovery handshakes (e.g., Modbus device ID
query). We do not exploit any vulnerabilities or change
any device state.

SCADA protocols including Modbus, S7, Bacnet, Trid-
ium Fox, and DNP3 allow remote control and moni-
toring of physical infrastructure and equipment over IP.
Unfortunately, these protocols lack critical security fea-
tures, such as basic authentication and encryption, or
have known security vulnerabilities. If left publicly ac-
cessible on the Internet, these protocols can be the tar-
get of attackers looking to monitor or damage physical
equipment, such as power control, process automation,
and HVAC control systems.

SCADA services are not designed to be publicly accessi-
ble on the Internet and should be maintained on an inter-

nal, segmented network, or otherwise protected by a fire-
wall that limits who can interact with these hosts. Make
sure your changes are persistent and will not be undone
by a system reboot.

More information is available at https://security-
notifications.cs.berkeley.edu/[RAND#]/ics.html.

Thank you,

Berkeley Security Notifications Team

Help us improve notifications with anonymous feedback
at: https://www.surveymonkey.com/r/ZC7BVW5

F DDoS Amplification Notification: Terse
with Link

Subject: [RAND#] Vulnerable DDoS Amplifiers

Body: Computer scientists at George Mason University
and the University of California Berkeley have been de-
tecting open and misconfigured services that serve as
amplifiers for distributed denial-of-service (DDoS) at-
tacks. Attackers abuse these amplifiers to launch pow-
erful DDoS attacks while hiding the true attack source.
We have attached a list of hosts that are potentially vul-
nerable on your network.

[LINK: More information is available at https://security-
notifications.cs.berkeley.edu/[RAND#]/amplifiers.html.]

Thank you,

Berkeley Security Notifications Team

Help us improve notifications with anonymous feedback
at: https://www.surveymonkey.com/r/Y99J8K8

G DDoS Amplification Notification: Ver-
bose

Subject: [RAND#] Vulnerable DDoS Amplifiers

Body: During a recent study on distributed denial-of-
service (DDoS) attacks, computer scientists at George
Mason University and the University of California
Berkeley have been conducting Internet-wide scans for
open and misconfigured services that serve as amplifiers
for DDoS attacks. Attackers abuse these amplifiers to
launch powerful DDoS attacks while hiding the true at-

17

1050 25th USENIX Security Symposium USENIX Association

tack source. We have attached a list of hosts that are po-
tentially vulnerable on your network (as determined by
WHOIS information).

We detect amplifiers by monitoring hosts involved in re-
cent DDoS attacks and checking whether these hosts sup-
port the features used for launching an attack (e.g., NTP
monlist or recursive DNS resolution). We do not exploit
any vulnerabilities or attempt to access any non-public
data on these servers.

DDoS attacks are often conducted by directing an over-
whelming amount of network traffic towards a target sys-
tem, making it unresponsive. Amplifiers are services that
send large amounts of data in response to small requests.
Attackers leverage these in DDoS attacks by spoofing
traffic to the amplifier, forging it to look as if it came
from the attacker’s target. Amplifiers then respond to
the target with a large response that overwhelms the tar-
get. Publicly accessible amplifiers are constantly abused
by attackers to conduct the DDoS attacks for them while
hiding the tracks of the real attacker.

These amplifiers can be avoided by disabling the appli-
cation or updating your firewall to block the application
port or restrict the IP addresses that can access it. More
specifically, Chargen should be closed as it is rarely use-
ful and is inherently an amplifier. If left open, DNS
should be configured to restrict who can make recursive
requests, and NTP should be configured to disable the
monlist functionality. Make sure your changes are per-
sistent and will not be undone by a system reboot.

More information is available at https://security-
notifications.cs.berkeley.edu/[RAND#]/amplifiers.html.

Thank you,

Berkeley Security Notifications Team

Help us improve notifications with anonymous feedback
at: https://www.surveymonkey.com/r/Y99J8K8

18

USENIX Association 25th USENIX Security Symposium 1051

Mirror: Enabling Proofs of Data Replication and Retrievability
in the Cloud

Frederik Armknecht
University of Mannheim, Germany
armknecht@uni-mannheim.de

Ludovic Barman
NEC Laboratories Europe, Germany

ludovic.barman@neclab.eu

Jens-Matthias Bohli
NEC Laboratories Europe, Germany
Hochschule Mannheim, Germany

jens.bohli@neclab.eu

Ghassan O. Karame
NEC Laboratories Europe, Germany

ghassan.karame@neclab.eu

Abstract

Proofs of Retrievability (POR) and Data Possession
(PDP) are cryptographic protocols that enable a
cloud provider to prove that data is correctly stored
in the cloud. PDP have been recently extended
to enable users to check in a single protocol that
additional file replicas are stored as well. To conduct
multi-replica PDP, users are however required to
process, construct, and upload their data replicas
by themselves. This incurs additional bandwidth
overhead on both the service provider and the user
and also poses new security risks for the provider.
Namely, since uploaded files are typically encrypted,
the provider cannot recognize if the uploaded content
are indeed replicas. This limits the business models
available to the provider, since e.g., reduced costs for
storing replicas can be abused by users who upload
different files—while claiming that they are replicas.

In this paper, we address this problem and pro-
pose a novel solution for proving data replication
and retrievability in the cloud, Mirror, which allows
to shift the burden of constructing replicas to the
cloud provider itself—thus conforming with the cur-
rent cloud model. We show that Mirror is secure
against malicious users and a rational cloud provider.
Finally, we implement a prototype based on Mirror,
and evaluate its performance in a realistic cloud set-
ting. Our evaluation results show that our proposal
incurs tolerable overhead on the users and the cloud
provider.

1 Introduction

The cloud promises a cost-effective alternative for
small and medium enterprises to downscale/upscale
their services without the need for huge upfront in-
vestments, e.g., to ensure high service availability.

Currently, most cloud storage services guarantee

service and data availability [4, 6] in their Service
Level Agreements (SLAs). Availability is typically
ensured by means of full replication [4, 23]. Repli-
cas are stored onto different servers—thus ensuring
data availability in spite of server failure. Storage
services such as Amazon S3 and Google FS provide
such resiliency against a maximum of two concur-
rent failures [30]; here, users are typically charged
according to the required redundancy level [4].

Nevertheless, none of today’s cloud providers ac-
cept any liability for data loss in their SLAs. This
makes users reluctant—and rightly so—when using
cloud services due to concerns with respect to the
integrity of their outsourced data [2, 7, 10]. These
concerns have been recently fueled by a number
of data loss incidents within large cloud service
providers [5, 10]. For instance, Google recently ad-
mitted that a small fraction of their customers’ data
was permanently lost due to lightning strikes which
caused temporary electricity outages [10].

To remedy this, the literature features a number
of solutions that enable users to remotely verify the
availability and integrity of stored data [11, 15, 16,
25, 34]. Examples include Proofs of Retrievability
(POR) [25,34] which provide clients with the assur-
ance that their data is available in its entirety, and
Proofs of Data Possession (PDP) [12] which enable a
client to verify that its stored data has not undergone
any modifications. PDP schemes have been recently
extended to verify the replication of files [18, 22,30].
These extensions can provide guarantees for the users
that the storage provider is replicating their data as
agreed in the SLA, and that they are indeed getting
the value for their money.

Notice, however, that existing solutions require
the users themselves to create replicas of their files,
appropriately pre-process the replicas (i.e., to cre-
ate authentication tags for PDP), and finally upload
all processed replicas in the cloud. Clearly, this in-

1052 25th USENIX Security Symposium USENIX Association

Table 1: Bandwidth cost in different regions as pro-
vided by CloudFlare [3]. “% Peered” refers to the
percentage of traffic exchanged for free with other
providers.

Region % Peered Effective price/Mbps/Month
Europe 50% $5

North America 20% $8
Asia 55% $32

Latin America 60% $32
Australia 50% $100

curs significant burden on the users. Moreover, this
consumes considerable bandwidth from the provider,
that might have to scale up its bandwidth to ac-
commodate for such large upload requests. For ex-
ample, in order to store a 10 GB file together with
three replicas, users have to process and upload at
least 40 GB of content. Recall that the provider’s
bandwidth is a scarce resource; most providers, such
as AWS and CloudFlare, currently buy bandwidth
from a number of so-called Tier 1 providers to en-
sure global connectivity to their datacenters [3]. For
example, CloudFlare pays for maximum utilization
(i.e., maximum number of Mbps) used per month.
This process is costly (cf. Table 3) and is consid-
erably more expensive than acquiring storage and
computing resources [24].

Besides consuming the provider’s bandwidth re-
sources, this also limits the business models available
to the provider, since e.g., reduced costs for stor-
ing replicas can be offered in the case where the
replication process does not consume considerable
bandwidth resources from the provider (e.g., when
the replication is locally performed by the provider).
Alternatively, providers can offer reduced costs by
offering infrequent/limited access to stored replicas,
etc. Amazon S3, for example, charges its users almost
25% of the underlying storage costs for additional
replication [1,9]. Users therefore have considerable in-
centives to abuse this service, and to store their data
at reduced costs as if they were replicas. Since the
outsourced data is usually encrypted, the provider
cannot recognize if the uploaded contents are indeed
replicas.

In this paper, we address this problem, and pro-
pose a novel solution for proving data replication
and retrievability in the cloud, Mirror, which goes
beyond existing multi-replica PDP solutions and en-
ables users to efficiently verify the retrievability of
all their replicas without requiring them to replicate
data by themselves. Notably, in Mirror, users need
to process/upload their original files only once irre-
spective of the replication undergone by their data;
here, conforming with the current cloud model [4],

the cloud provider appropriately constructs the repli-
cas given the original user files. Nevertheless, Mirror
allows users to efficiently verify the retrievability of
all data replicas—including those constructed by the
service provider.

To this end, Mirror leverages cryptographic puzzles
to impose significant resource constraints—and thus
an economic disincentive—on a cloud provider which
creates the replicas on demand, i.e., whenever the
client initiates the verification protocol. By doing so,
Mirror incentivizes a rational cloud provider to cor-
rectly store and replicate the clients’ data—otherwise
the provider risks detection with significant probabil-
ity.

In summary, we make the following contributions
in this work:

• We propose a novel formal model and a security
model for proofs of replication and retrievability.
Our proposed model, PoR2, extends the POR
model outlined in [34] and addresses security
risks that have not been covered so far in existing
multi-replica PDP models.

• We describe a concrete PoR2 scheme, dubbed
Mirror that is secure in our enhanced security
model. Mirror leverages a tunable replication
scheme based on the combination of Linear Feed-
back Shift Registers (LFSRs) with the RSA-
based puzzle by Rivest [33]. By doing so, Mirror
shifts the burden of constructing replicas to the
cloud provider itself and is therefore likely to
be appreciated by cloud providers since it al-
lows them to trade their expensive bandwidth
resources with relatively cheaper computing re-
sources.

• We implement and evaluate a prototype based
on Mirror in a realistic cloud setting, and we
show that our proposal incurs tolerable over-
head on both the users and the cloud provider
when compared to existing multi-replica PDP
schemes.

The remainder of this paper is organized as fol-
lows. In Section 2, we introduce a novel model for
proofs of replication and retrievability. In Section 3,
we propose Mirror, an efficient instantiation of our
proposed model, and analyze its security in Section 4.
In Section 5, we evaluate a prototype implementation
of Mirror in realistic cloud settings and compare its
performance to the multi-replica PDP scheme of [18].
In Section 6, we overview related work in the area,
and we conclude the paper in Section 7.

2

USENIX Association 25th USENIX Security Symposium 1053

2 PoR2: Proofs of Replication and Re-
trievability

In this section, we introduce a formal model for proofs
of replication and retrievability, PoR2.

2.1 System Model

We consider a setting where a user U outsources
a file D to a service provider S who agrees to the
following two conditions:
1. Store the file D in its entirety.
2. Additionally store r replicas of D in their en-

tirety.

A PoR2 protocol aims to ensure to the user that
both conditions are kept without the need for users
to download the files and the replicas. Hence, our
model comprises a further party: the verifier V who
runs the PoR2 scheme to validate that indeed the data
and sufficient copies are stored by S . In a privately-
verifiable scheme, the user and the verifier consist
of the same entity; these roles might be however
different in publicly-verifiable schemes.
As one can see, Condition 1 indirectly implies

that a PoR2 scheme needs to comprise a PDP or
POR scheme. Consequently, similar to the POR
model, a PoR2 involves a process for outsourcing the
original data, referred to as Store, and an interactive
verification protocol Verify.

However, Condition 2 goes beyond common
POR/PDP requirements. Hence, one needs an ad-
ditional (possibly interactive) process denoted by
Replicate for generating the replicas and a second
process, dubbed CheckReplica, which checks the cor-
rectness of the replicas (in case the replicas were
created by the user). Moreover, the interactive ver-
ification protocol Verify needs to be extended such
that it verifies the storage of the original file and the
copies computed by the service provider. In what
follows, we give a formal specification of the proce-
dures and protocols involved in a PoR2 scheme. Our
model adapts and extends the original POR model
introduced in [25,34]. In Section 2.2, we summarize
the relation between PoR2 and previous POR models.

The Store Procedure: This randomized procedure
is executed by the user once at the start. Store takes
as input the security parameter κ and the file D̃ to be
outsourced, and produces a file tag τ that is required
to run the verification procedure. Depending on
whether the scheme is private or public verifiable,
the verification tag needs to be kept secret or can
be made public. The output of Store comprises the
file D that the service provider should store. D may

be different from D̃, e.g., contain some additional
information, but D̃ should be efficiently recoverable
from D. Finally, Store outputs public parameters
Π which allow the generation of r replicas D(i) of
the outsourced file. We assume that the number of
copies is (implicitly) given in the copy parameters Π,
possibly being specified in the SLA before. Summing
up, the formal specification of Store is:

(D,τ,Π)← Store(κ, D̃)

The Replicate Procedure: The Replicate procedure
is a protocol executed between the verifier (who holds
the verification tag τ) and the service provider to
generate replicas of the original file. To this end,
Replicate takes as inputs the copy parameters Π
and the outsourced file D, and outputs the r copies
D(1), . . . ,D(r). In addition, the provider gets a copy
tag τ∗ which allows him to validate the correctness
of the copies. Formally, we have:

Replicate : [V : τ,Π; S : D,Π]

→ [V : τ; S : D(1), . . . ,D(r),τ∗]

Recall that the verifier V refers to the party that
holds the verification tag and may not necessarily be
a third party. This captures (i) the case where the
user creates the copies on his own at the beginning
(as discussed in [18]), and (ii) the case where this
replication process is completely outsourced to the
service provider (or even to a third party).
Observe that the output for the verifier includes

again the verification tag. This is the case since we
want to capture situations where the verification tag
can be changed, depending on the protocol flow of
Replicate. To keep the description simple, we denote
both values (the verification tag as output of the Store
procedure and the potentially updated verification
tag after running Replicate) by τ.

The CheckReplica Procedure: The purpose of
the CheckReplica procedure, which is used by the
service provider, is to validate that the replicas have
been correctly generated, i.e., are indeed copies of the
original file. Notice that CheckReplica is mandatory
for a comprehensive model but is not necessary in the
case where the service provider replicates the data
itself (in this case the service provider can ensure
that the replication process is done correctly).
CheckReplica is executed between the verifier and

the service provider. The verifier V takes as input the
copy parameters Π and verification tag τ, being his
output of the Replicate procedure (see above), while
the service provider S takes as input the uploaded
file D, a possible replica D∗ (together with a replica

3

1054 25th USENIX Security Symposium USENIX Association

index i ∈ {1, . . . ,r}), the copy parameters Π, and the
copy tag τ∗. CheckReplica then outputs a binary
decision expressing whether the service provider S
believes that D∗ is a correct i-th replica of D according
to the Replicate procedure and the copy parameters
Π.

CheckReplica : [V : τ,Π; S : τ∗,Π,D,D∗, i]→ [S : dec]

The Verify Protocol: A verifier V , i.e., the user
if the scheme is privately verifiable and possibly a
third party if the scheme is publicly verifiable, and
the provider S execute an interactive protocol to
convince the verifier that both the outsourced D
and the r replicas D(1), . . . ,D(r) are correctly stored.
The input of V is the tag τ given by Store and the
copy parameters Π, while the input of the provider
S is the file D outsourced by the user and the r
replicas generated by the Replicate procedure. The
output dec ∈ {accept, reject} of the verifier expresses
his decision, i.e., whether he accepts or rejects. It
holds that:

Verify : [V : τ,Π; S : D,D(1), . . . ,D(r)]−→ [V : dec]

Note that Verify and CheckReplica aim for com-
pletely different goals. The CheckReplica procedure
allows the service provider S to check if the repli-
cas have been correctly generated and hence protects
against a malicious customer who misuses the repli-
cas for storing additional data at lower costs. On
the other side, the Verify procedure enables a client
or verifier V to validate that the file and all copies
are indeed stored in their entirety to provide secu-
rity against a rational service provider. For instance,
CheckReplica can be omitted if the replicas have been
generated by the service provider directly while Verify
would still be required.

2.2 Relation to Previous Models

Notice that the introduced PoR2 model covers and
extends both proofs of retrievability and proofs of
multiple replicas. For example in case that no replicas
are created at all, i.e., neither the Replicate nor the
CheckReplica procedures are used, the scheme reduces
to a standard POR according to the model given
in [34]. Observe that in such cases storage allocation
is a direct consequence of the incompressibility of the
file. Moreover, the multi-replica schemes presented so
far (see Section 6 for an overview) can be seen as PoR2

schemes where the correct replication requirement
is simply ignored. In fact, we argue that if existing
multi-replica schemes are coupled with a proof that
the replicas are honestly generated by the user, then
the resulting scheme would be a secure PoR2 scheme.

2.3 Attacker Model

Similar to existing work in the area [35,36], we adapt
the concept of the rational attacker model. Here,
rational means that if the provider cannot save any
costs by misbehaving, then he is likely to simply
behave honestly. In our particular case, the advan-
tage of the adversary clearly depends on the rela-
tion between storage costs and other resources (such
as computation), and on the availability of these
resources to the adversary. In the sequel, we cap-
ture such a rational adversary by restricting him to
a bounded number of concurrent threads of execu-
tion. Given that the provisioning of computational
resources would incur additional costs, our restric-
tion is justified by the fact that a rational adversary
would only invest in additional computing resources
if such a strategy would result in lower total costs
(including the underlying costs of storage).

Likewise, we assume that users are interested to
misuse the replicas for storing more data than has
been agreed upon. Recall that since replicas are typ-
ically charged less than original files [1, 9], a rational
user may try to encode additional information or
other files into the replicas.

2.4 Security Goals and Correctness

In this section, we formalize the security goals of a
PoR2 scheme and define the correctness requirements.
Note that we do not consider confidentiality of the
file D̃, since we assume that the user encrypts the
file prior to the start the PoR2 protocol. We start by
defining three security notions that a PoR2 scheme
must guarantee:

Extractability: The user can recover the uploaded
file D.

Storage Allocation: Provider uses at least as
much storage as required to store the file and
all replicas.

Correct Replication: The files D(i) are correct
replicas of D.

The extractability notion protects the user against
a malicious service provider who does not store the
whole file. Similarly, the storage allocation notion
aims to protect a user against a service provider who
does not commit enough storage to store all replicas.
Clearly, the first two conditions together imply that a
rational provider S indeed stores D and the replicas
D(1), . . . ,D(r) and therefore fulfills his part of provid-
ing redundancy to protect the data. In contrast to
the two previous notions, correct replication aims to

4

USENIX Association 25th USENIX Security Symposium 1055

protect the service provider against a malicious user
who tries to encode additional data in the replicas.
This is an important property, which is not satisfied
by existing multi-replica PDP models, but which
should cater to any practical deployment of PoR2. In
Section 3, we propose an instantiation of PoR2 which
allows the provider to run Replicate by itself—thus
inherently satisfying this property. In the following
paragraphs, we provide a formal description of the
above defined notions.

Extractability. Extractability guarantees that an hon-

est user is able to recover the data D̃. Adopting
[25, 34], this is formalized as follows. If a service
provider is able to convince a honest user with signif-
icant probability during the Verify procedure, then
there exists an extractor algorithm that can interact
with the service provider and extract the file. This is
captured by a hypothetical game between an adver-
sary and an environment where the latter simulates
all honest users and an honest verifier. The adver-
sary is allowed to request the environment to create
new honest users (including respective public and
private keys), to let them store chosen files, and to
run the Verify and Replicate procedures. At the end,
the adversary chooses a user U with the correspond-
ing outsourced file D and outputs a service provider
S who can execute the Verify protocol with U with
respect to the chosen file D. We say that a service
provider is ε-admissible if the probability that the
verifier does not abort is at least ε.

Definition 1 (Extractability) We say that a
PoR2 scheme is ε-extractable if there exists an ex-
traction algorithm such that for any PPT algorithm
who plays the aforementioned game and outputs an
ε-admissible service provider S , the extraction algo-
rithm recovers D with overwhelming probability.

In addition, we say that correctness is provided
with respect to the extractability if the following holds.
If all parties are honest, i.e., the user, the verifier,
and the provider, then the verifier accepts the output
of the Verify protocol with probability 1. This should
hold for any file D̃ ∈ {0,1}∗.

Storage Allocation. Let ST denote the storage of the
service provider that has been allocated for storing
the file D and the replicas D(1), . . . ,D(r). We compute
the storage allocation by the provider, ρ , as follows:

ρ :=
|ST|

|D|+ |D(1)|+ . . .+ |D(r)|
(1)

Here, we consider the generic case where the sizes
of the replicas can be different (e.g., due to different

metadata). Moreover, we assume that neither the
file nor the replicas can be (further) compressed, e.g.,
because these have been encrypted first. Since the
service provider aims to save storage, it holds in
general that 0 ≤ ρ ≤ 1. Storage allocation ensures
that ρ ≥ δ for a threshold 0 ≤ δ ≤ 1 chosen by the
user.

Definition 2 (Binding) We say that a PoR2

scheme is (δ ,ε)-binding if for any rational attacker
who plays the aforementioned game, and outputs an
ε-admissible service provider S who invests only a
fraction ρ < δ of memory, it holds that the verifier
accepts only with negligible probability (in the security
parameter).
We say that the scheme is even strongly (δ ,ε)-

binding if it holds for any PPT attacker, i.e., also
for non-rational attackers.

We stress that the distinction between binding
and strongly binding is necessary in a comprehensive
model. For instance, for schemes where the repli-
cas are generated locally by the service provider S
himself, i.e., to save bandwidth, the strongly binding
property is impossible to achieve for δ > |ST|/|D|.
The reason is that a non-rational service provider
could always store D only and run the Replicate pro-
cedure over and over again when needed. On the
other hand, if the user is generating and uploading
the replicas, strong binding could be achieved when
replicas are different encryptions of the original file,
e.g., as done in [18]. In Fortress, we aim to out-
source the replica generation to the service provider
to save bandwidth and hence only aim for the binding
property.

Correct Replication. Correct replication means es-
sentially that both, Replicate and CheckReplica, are
sound and correct. We detail this below.

We say that Replicate is sound if in the case where
the user is involved in the replica generation, the
service provider can get assurance that the addition-
ally uploaded data represents indeed correctly built
replicas that do not encode, for example, some addi-
tional data. That is, Replicate must not be able to
encode a significant amount of additional data in the
replicas. This is formally covered by the requirement
that inputs of the verifier to the replicate procedure
Replicate, namely the verification tag τ and the copy
parameters Π, have a size that is independent of the
file size.

On the other hand, we say that Replicate is correct
if replicas represent indeed copies of the uploaded
file D. This is formally captured by requiring that

5

1056 25th USENIX Security Symposium USENIX Association

D can be efficiently recovered from any replica D(k).
More precisely, we say that Replicate is correct if
there exists an efficient algorithm which given τ, Π,
and any replica D(k) outputs D.
With respect to CheckReplica, we require that

S only accepts replicas which are valid output of
Replicate. Let D and Π be the output of the Store pro-
cedure. Let E be the event that τ∗ and D(1), . . . ,D(r)

are the output of a Replicate run. Let dec be the
decision of the service provider at the end of the
CheckReplica protocol. We say that the scheme is
ε∗-correctly building replicas if:

∀i ∈ {1, . . . ,r} : Pr[dec = Accept|E] = 1,
max

i∈{1,...,r}
{Pr[dec = Accept|¬E]} ≤ ε∗.

Observe that the first and second condition express
the correctness and soundness of CheckReplica, re-
spectively.

3 Mirror: An Efficient PoR2 Instantia-
tion

3.1 Overview

The goal of Mirror is to provide a verifiable replication
mechanism for storage providers. Note that straight-
forward approaches to construct PoR2 would either
be communication-expensive or would be insecure in
the presence of a rational cloud provider.
For instance, the user could create and upload

the required t replicas of his files, similar to [18].
Obviously, this alternative incurs considerable band-
width overhead on the providers and users can abuse
the replicas to outsource several, different files in
encrypted form. An alternative solution would be
to enable the cloud provider to create the repli-
cas (and their tags) on his own given the original
files. This would significantly reduce the provider’s
bandwidth consumption incurred in existing multi-
replica schemes at the expense of investing additional
(cheaper) computing resources [24]. This alternative
might be, however, insecure since it gives considerable
advantage for the provider to misbehave, e.g., store
only one single replica and construct the replicas on
the fly when needed.
To thwart the generic attacks described above,

Mirror ensures that a malicious cloud provider can
only reply correctly within the verification protocol
by investing a minimum amount of resources, i.e.,
memory and/or time. However, to ensure the binding
property (Definition 2), i.e., that the provider invests
memory and not time, Mirror allows to scale the
computational effort that a dishonest provider would

have to invest without increasing the memory effort
of an honest provider. This allows to adjust the
computational effort of a dishonest provider such
that the costs of storing the replicas is cheaper than
the costs of computing the response to the challenges
on the fly—giving an economic incentive to a rational
provider to behave honestly.

This is achieved in Mirror through the use of a
tunable puzzle-based replication scheme. Namely, in
Mirror, the user has to outsource only his original
files and compact puzzles to the cloud provider; the
solution of these puzzles will be then combined with
the original file in order to construct the r required
replicas. Puzzles are constructed such that (i) they
require noticeable time to be solved by the cloud
provider while the user is significantly more efficient
by exploiting a trapdoor, (ii) storing their solution
incurs storage costs that are at least as large as
the required storage for replicas, (iii) their difficulty
can be easily adjusted by the creator to cater for
variable strengths (and different cost metrics), and
(iv) they can be efficiently combined with the original
file blocks in order to create r correct replicas of the
file preserving the homomorphic properties needed
for compact proofs1.

To this end, Mirror combines the use of the RSA
puzzle of Rivest [33] and Linear Feedback Shift Reg-
isters (LFSR) (cf. Section 3.3). A crucial aspect here
is that the user creates two LFSRs: a short one which
is kept secret, and a longer public LFSR. The service
provider is only given the public LFSR to generate
the exponent values. As we show later, this allows
for high degrees of freedom with respect to security
and performance of Mirror. In the following, we first
explain the deployed main building blocks and give
afterwards the full protocol specification.

3.2 Building Blocks

RSA-based Puzzles: Mirror ties each sector with a
cryptographic puzzle that is inspired by the RSA
puzzle of Rivest [33]. In a nutshell, the puzzle re-
quires the repeated exponentiation of given values
Xa mod N where N = p · q is publicly known RSA
modulus and a, p,q remain secret. Without know-
ing these secrets, this requires to perform modular
exponentiation. Modular exponentiation is an inher-
ently sequential process [33]. The running time of the
fastest known algorithm for modular exponentiation
is linear in the size of the exponent. Although the
provider might try to parallelize the computation of

1This condition restricts our choice of puzzles since e.g.,
hash-based puzzles cannot be efficiently combined with the
authentication tag of each data block/sector.

6

USENIX Association 25th USENIX Security Symposium 1057

the puzzle, the parallelization advantage is expected
to be negligible [17, 26, 28, 33]. On the other hand,
the computation can be efficiently verified by the
puzzle generator through the trapdoor offered by Eu-
ler’s function in O(log(N)) modular multiplications

by computing Xa′ mod N ≡ Xa′ mod φ(N) mod N.
Observe that this puzzle is likewise multiplicative

homomorphic: given a and a′, the product of the
solutions Xa′ and Xa′′ represents a solution for a′+a′′.
This preserves the homomorphic properties of the
underlying POR and allows for batch verification for
all the replicas and hence enables compact proofs.

To further reduce the verification burden on users,
Mirror generates the exponents using a Linear Feed-
back Shift Registers (LFSR) as follows.

Linear Feedback Shift Registers: A Linear Feedback
Shift Register (LFSR) is a popular building block for
designing stream ciphers as it enables the generation
of long output streams based on a initial state. In
Mirror, LFSRs will be used to generate the exponents
for the RSA-based puzzle described above. In what
follows, we briefly describe the concept of an LFSR
sequence and refer the readers to [29] for further
details.

Definition 3 (Linear Feedback Shift Register)
Let F be some finite field, e.g., Zp for some prime
p. A Linear Feedback Shift Register (LFSR) of
length λ consists of an internal state of length λ
and a linear feedback function F : Fλ → F with
F(x1, . . . ,xλ) = ∑λ

i=1 ci · xi. Given an initial state
(s1, . . . ,sλ) ∈ Fλ , it defines inductively an LFSR
sequence (st)t≥1 by st+λ = F(st , . . . ,st+λ−1) for t ≥ 1.

An important and related notion is that of a feedback
polynomial. Given an LFSR with feedback function
F(x1, . . . ,xλ) = ∑λ

i=1 ci · xi, the feedback polynomial
f (x) ∈ F[x] is defined as:

f (x) = xλ −
λ

∑
i=1

ci · xi−1. (2)

It holds that any multiple of a feedback polyno-
mial is again a feedback polynomial. That is, if
f ∗(x) = xλ ∗ −∑λ ∗

i=1 c∗i · xi−1 is a multiple of f , then it

holds that st+λ ∗ −∑λ ∗
i=1 c∗i · st+i−1 = 0 for each t ≥ 1.

Mirror exploits this feature in order to realize a gap
between the puzzle solution created by provider and
the verification done by the user.

3.3 Protocol Specification

We now start by detailing the procedures in Mirror.

Specification of the Store Procedure: In the store
phase, the user is interested in uploading a file
D ∈ {0,1}∗. We assume that the file D is encrypted
to protect its confidentiality and encoded with an era-
sure code (as required by the utilized POR in order
to provide extractability guarantees) prior to being
input to the Store protocol [25, 34]. First, the user
generates an RSA modulus N := p ·q where p and q
are two safe primes2 whose size is chosen according
to the security parameter κ.
Similar to [34], the file is interpreted as n blocks,

each is s sectors long. A sector is an element of ZN
and is denoted by di, j with 1 ≤ i ≤ n, 1 ≤ j ≤ s. That
is, the overall number of sectors in the file is n · s.
To ensure unique extractability (see Section 4.1), we
require that the bit representation of each sector di, j
contains a characteristic pattern, e.g., a sequence of
zero bits. The length of this pattern depends on the
file size and should be larger than log2(n · s).
Furthermore, the user samples a key kprf per file,

where the key length is determined by the security
parameter, e.g., kprf ∈ {0,1}κ . By invoking kprf as a
seed to a pseudo-random function (PRF), the user

samples s non-zero elements of Zφ(N), i.e., ε1, . . . ,εs
R←

Zφ(N) \{0}. Finally, the user computes σi for each i,
1 ≤ i ≤ n, as follows:

σi ←
s

∏
j=1

di, j
ε j ∈ ZN . (3)

These values are appended to the original file so
that the user uploads (D,{σi}1≤i≤n). Unless specified
otherwise, we note that all operations are performed
in the multiplicative group Z∗

N of invertible integers
modulo N.3

Assuming that the user is interested in maintaining
r replicas in addition to the original file D at the cloud,
the user additionally constructs copy parameters Π
which will also be sent to the server. To this end, the
user first generates two elements g,h ∈ Z∗

N of order
p′ and q′, respectively. Recall that the order of Z∗

N is
ϕ(N) = (p−1)(q−1) = 4 · p′ ·q′. The elements g and
h will be made public to the server while their orders
are kept secret.
Then, the user proceeds to specify feedback poly-

nomials for two LFSRs, one being defined over Zp′

and the other over Zq′ . Both LFSRs need to have a

length λ such that |F|λ > n · s. Here, for each of the
two LFSRs, two feedback polynomials are specified:
a shorter one which will be kept secret by the user

2That is, p− 1 = 2 · p′ and likewise q− 1 = 2 · q′ for two
distinct primes p′ and q′.

3Observe that hitting by coincidence a value outside of Z∗
N

allows to factor N which is considered to be a hard problem.

7

1058 25th USENIX Security Symposium USENIX Association

and a larger one that will be made public to the
provider. More precisely, for the LFSR defined over
Zp′ the user chooses two polynomials

fa(x) := xλ −
λ

∑
i=1

αi · xi−1, f ∗a (x) := xλ ∗ −
λ ∗

∑
i=1

α∗
i · xi−1

such that f ∗a (x) is a multiple of fa(x) (and hence
λ < λ ∗). For security reasons, it is necessary to
ensure that α∗

1 ≥ 2.
The feedback polynomial fa(x) with the lower de-

gree will be kept secret while the polynomial f ∗a (x)
of the higher degree and the larger coefficients will
be given to the provider. fa(x) will serve as a
feedback polynomial to generate for each replica

k ∈ {1, . . . ,r} an LFSR sequence (a(k)t). To this
end, the user chooses for each k an initial state

(a(k)1 , . . . ,a(k)λ)∈Zλ
p′ which defines the full sequence by

a(k)t+λ+1 = ∑λ
i=1 αi ·a(k)t+i for any t ≥ 0. Observe that due

to the fact that f ∗a (x) is a multiple of fa(x), it likewise
holds a(k)t+λ ∗+1 = ∑λ ∗

i=1 α∗
i · a

(k)
t+i for any t ≥ 0. Finally,

the user publishes as part of the copy parameters

the values ga(k)1 , . . . ,ga(k)λ∗ ∈ ZN for each replica and the
coefficients α∗

1 , . . . ,α
∗
λ ∗ ∈ Z. Afterwards, he proceeds

analogously over Zq′ , i.e., sample coefficients βi ∈ Zq′ ,
compute feedback functions fb(x), f ∗b (x), choose an

initial state (b(k)1 , . . . ,b(k)λ) for each replica, and so on.
Summing up, and assuming that the server should

construct r replicas, the user sets the file specific
verification tag (which are kept secret by the user)
to:

τ :=
(

kprf, p,q,g,h,(a(k)1 , . . . ,a(k)λ)1≤k≤r,(α1, . . . ,αλ),

(b(k)1 , . . . ,b(k)λ)1≤k≤r,(β1, . . . ,βλ)
)
.

To enable the server to construct the r replicas, the
following copy parameters are given to the server:

Π :=
(
(ga(k)1 , . . . ,ga(k)λ∗)1≤k≤r,(α∗

1 , . . . ,α
∗
λ ∗),

(hb(k)1 , . . . ,hb(k)λ∗)1≤k≤r,(β ∗
1 , . . . ,β

∗
λ ∗)

)
.

That is, the user sends D, the values {σi}1≤i≤n, and
Π to the service provider and keeps the verification
tag τ secret. Observe that the size of τ and Π are
independent of the file size.

Specification of the CheckReplica Procedure: As the
replicas are completely generated by the service
provider, a CheckReplica procedure is not required in
Mirror. However, one could check the validity of the

data replicas by running the Replicate procedure and
simply comparing the outputs.

Specification of the Replicate Procedure: Upon re-
ception of D, the values {σi}1≤i≤n, and Π, the service
provider S stores D and starts the construction of
the r additional replicas D(k) for 1 ≤ k ≤ r, of D. Here,

each sector d(k)
i, j of replica k has the following form:

d(k)
i, j = di, j ·g(k)i, j ·h

(k)
i, j , (4)

We call these values g(k)i, j and h(k)i, j blinding factors.
Both sets of blinding factors are computed by raising

g and h by elements of the LFSR sequences a(k)t and

b(k)t , respectively, but one in the forward and the
other in the backward order, namely:

g(k)i, j := ga(k)
(i−1)·s+ j , h(k)i, j := hb(k)

(n·s+1)−(i−1)·s− j . (5)

To enable the provider to compute the blinding fac-

tors ga(k)i , we make use of the fact that for any t ≥ 0
it holds a(k)t+λ ∗+1 = ∑λ ∗

i=1 α∗
i ·a

(k)
t+i and hence

ga(k)t+λ∗+1 =
λ ∗

∏
i=1

(
ga(k)t+i

)α∗
i

. (6)

The computation of the blinding factors hb(k)i works
analogously.

In summary, the server constructs replicas D(k) for
k = 1, . . . ,r as follows:

d1,1 ·ga(k)1 ·hb(k)
(n−1)·s+s . . . d1,s ·ga(k)s ·hb(k)

(n−1)·s+1

d2,1 ·ga(k)s+1 ·hb(k)
(n−2)·s+s . . . d2,s ·ga(k)2·s ·hb(k)

(n−2)·s+1

...
. . .

...

dn,1 ·g
a(k)
(s−1)·s+1 ·hb(k)s . . . dn,s ·ga(k)n·s ·hb(k)1

Specification of the Verify Procedure: The Verify pro-
tocol generates at first a random challenge C. It con-
tains a random �-element set of tuples (i,νi) where

i ∈ {1, . . . ,n} denotes a block index, and νi
R← ZN is

a randomly generated integer. In addition, a non-
zero subset R ⊂ {1, . . . ,r} is sampled. The set R will
indicate which replicas will be involved in the chal-
lenge. Observe that R = /0 would mean that simply a
proof of retrievability is executed without checking
the replicas. The challenge is then the combination
of both:

C = ((ic,νc)
�
c=1,R). (7)

Given a challenge C, the server computes the re-
sponse µ = (µ1, . . . ,µs) ∈ Zs

N as follows:

µ j :=
�

∏
c=1

dνc
ic, j, j = 1, . . . ,s. (8)

8

USENIX Association 25th USENIX Security Symposium 1059

Observe that µ j is the product of powers of the
original data, that is dic, j

νc . In addition, the file tags
are processed in the same manner to obtain:

σ =
�

∏
c=1

(
σic ·

s

∏
j=1

∏
k∈R

dic, j
(k)

)νc

. (9)

The tuple (µ,σ) marks the response and is sent back
to the user who verifies (µ,σ) similar to the private-
verifiable POR of [34]. First, he computes:

σ̃ := σ ·
�

∏
c=1

(
s

∏
j=1

∏
k∈R

g(k)ic, jh
(k)
ic, j

)−νc

(10)

Observe that this will require the reconstruction of
the blinding factors. In Appendix C, we show how to
efficiently perform this verification by the user, using
the knowledge of the verification tags—in particular
the knowledge of the secret shorter LFSR, its initial
state, and the order of g and h, respectively.
Next, the user recovers the secret parameters εik ,

k = 1, . . . , �, using the key kprf as a seed for the PRF.
Finally, the user verifies that the following holds:

s

∏
j=1

µ j
ε j+|R| = σ̃ . (11)

We now explain why the verification step has
to hold if the response has been computed cor-
rectly. First, it follows from Equation (4)

that ∏�
c=1

(
∏s

j=1 ∏r∈R d(r)
ic, j

)νc
can be rewritten

as the product of ∏�
c=1

(
∏s

j=1 ∏r∈R dic, j

)νc
and

∏�
c=1

(
∏s

j=1 ∏r∈R g(r)ic, jh
(r)
ic, j

)νc
. The second factor is

exactly the part that is canceled out in Equa-
tion (10) while the first factor can be simplified to

∏�
c=1

(
∏s

j=1 d|R|
ic, j

)νc
.

Given a series of straightforward calculations, one

can show that σ̃ can be rewritten to ∏s
j=1 (µ j)

ε j+|R|.
This proves the correctness of Equation (11)—hence
the correctness with respect to extractability.
Moreover, it is easy to see that, since each sector

of a replica corresponds to the multiplication of the
corresponding sector of the uploaded file D with a
blinding factor (that can be reconstructed from Π),
the replicas are indeed copies of the original file. This
means that Replicate is correct. Summing up, all
three correctness requirements explained in Section 2
are fulfilled in Mirror.

4 Security Analysis

We now proceed to prove the security of our scheme
according to the definitions in Section 2.4. Recall that

the user is not involved in the replica generation and
that the size of the parameters involved in creating a
replica is independent of the file size. This ensures the
correct replication property described in Section 2.4.

It remains to prove that (i) if the service provider
S stores at least a fraction δ of all sectors in one
replica, then the file can be reconstructed (extractabil-
ity) and (ii) if the service provider stores less than
a fraction of δ of any replica, this misbehavior will
be detected with overwhelming probability (storage
allocation).

4.1 Extractability

In principle, the computations done in the Store and
Verify procedures of Mirror can be seen as multiplica-
tive variants of the corresponding mechanisms of the
privately-verifiable POR of [34] (see Appendix B for
details on the scheme of [34]). In particular, the
extractability arguments given in [34] transport di-
rectly to Mirror. We assume that an erasure coding
is applied to the file to ensure the recovery of file
contents from any fraction δ of the file. In particular,
we refer to [34] for additional details on the choice
of parameters (e.g., for erasure coding) such that
retrievability is ensured if a fraction δ of the file is
stored.
To show that Mirror enables the reconstruction

of the file from sufficiently many correct responses,
we point out that given a correct response, the user
learns expressions of the form µ j = ∏�

c=1 dic, j
νc for

known exponents νc ∈ Z and known indices. Let us
assume some arbitrary ordering µ(1),µ(2), . . . on these
expressions. If sufficiently many responses µ(i) are
known, the user can choose for any (i, j) coefficients

c(k) ∈Z such that ∏k

(
µ(k)

)c(k)

= du
i, j =: d̃ for a known

value u ∈ Z.
Recall that the order of any di, j ∈ Z∗

N is a divi-
sor of 2p′q′. If u is odd, u is co-prime to p′q′ with
overwhelming probability and the user can simply

compute u−1 mod p′q′ and determine di, j = d̃u−1
. On

the other hand, if u is even (i.e., u = 2 · u′), two
cases emerge. If the order of di, j is a divisor of p′q′,
the exponent is again co-prime to the order with
high probability. In this case, the user computes

u−1 mod p′q′ and checks if d̃u−1
contains the char-

acteristic bit pattern (see description of the Store
procedure). If this fails, this means that the order of
d̃ is even and the user proceeds as follows. Observe
that the order of d2

i, j is a divisor of p′q′. Thus, the

user first computes (u′)−1 mod p′q′ and then d̃(u′)−1
.

This yields d2
i, j. As the user knows the factorization

of N, he can compute all four possible roots of d2
i, j

9

1060 25th USENIX Security Symposium USENIX Association

(e.g., using the Chinese Remainder Theorem). Due
to the characteristic pattern embedded in di, j (see
the specification of the Store procedure), the user is
able to identify the correct di, j.

4

4.2 Storage Allocation

Observe that Mirror represents in fact a proof of
retrievability over the uploaded file and all repli-
cas. This means that if a challenge involves sectors
that are not stored, Mirror ensures that the service
provider fails with high probability unless he is able
to correctly reconstruct the missing replicas. In the
following, we therefore investigate the effort of a
malicious service provider in reconstructing missing
sectors. That is, we consider the scenario where the
service provider has stored the complete file5 but
only parts of some replicas.

InMirror, the service provider needs to compute the
corresponding blinding factors in order to recompute
any missing sectors. As these are products of the form

g(k)i ·h(k)j and since these sequences are independent
from each other, the service provider is forced to store

values of the sequences (g(k)i)i and (h(k)j) j separately.
Moreover, since these values are different for the
individual replicas, knowing (or reconstructing) a
value from one sequence and one replica does not
help the service provider in deriving values of other
sequences and/or replicas.

A crucial aspect of Mirror is that a cheating service
provider should require a significantly higher effort
compared to an honest service provider in recom-
puting missing replicas. Recall that both the user
and the provider determine the blinding factors by
computing LFSR sequences. One difference though
is that the provider has to do his computations on

values ga(k)i ,hb(k)j ∈ Z∗
N while the user can efficiently

compute on the exponents in a(k)i ∈ Zp′ and b(k)j ∈ Zq′

directly. Observe that the provider is not able to
transfer his computations into Zp′ and Zq′ without
eventually factoring N = p · q, which is commonly
assumed to be a hard problem. A further gap is
that the user deploys LFSRs with feedback functions
fa(x) ∈ Zp′ [x] and fb(x) ∈ Zq′ where the provider only
knows the feedback functions f ∗a (x), f ∗b (x) ∈ Z[x] that
are multiples of fa(x), fb(x). Given that these func-
tions involve more inputs, and require the construc-

4Observe that in principle it may happen with some prob-
ability that more than one root exhibits this pattern. This is
the reason why a padding length ≥ log2(n · s) is proposed such
that the expected number of incorrectly reconstructed sectors
in the file is less than 1.

5Recall that this property is validated by the proof of
retrievability already.

tion of larger coefficients, this would incur additional
(significant) computational overhead on the provider
compared to the user. For deducing the shorter feed-
back functions fa(x), fb(x), the provider would have
to determine Zp′ respectively Zq′—which equally re-
quire the knowledge of the factors of N.

It remains to investigate the effort for reconstruct-
ing values of the LFSR sequences. Note that the
sequences used in the replicas are defined by different
independent internal states and that, for each replica,

the sequences (a(k)i) and (b(k)j) are independent. We
can therefore without loss of generality restrict our
analysis to one sequence (gt)t≥1. For the ease of rep-
resentation, we omit in the sequel the index (k) and
write gi = gai for the ease of representation. We say
that �v = (v1, . . . ,vn·s) ∈ Zn·s represents a valid relation
with respect to (gt)t≥1 if:

n·s

∏
i=1

gvi
i = 1. (12)

It follows from known facts about LFSRs that valid
relations are the only means for the service provider
to compute missing values g j from known values gi
(see Appendix D for more details).

As the provider is forced to use the feedback func-
tion defined by the coefficients (α∗

1 , . . . ,α
∗
λ ∗) (see

above), the only valid relations the provider can
derive are linear combinations of:

−→
b j := (0 . . .0︸ ︷︷ ︸

j−1

,α∗
1 , . . . ,α

∗
λ ∗ , 0 . . .0︸ ︷︷ ︸

n·s−(j−1)−λ ∗

), (13)

where
−→
b1 corresponds to the given feedback polyno-

mial f ∗a (x) and the others are derived by simple shift
of indexes.
Hence, for any valid relation �v = (vi)i ∈ V, there

exist unique coefficients c1, . . . ,cn·s−λ ∗+1 ∈Z such that

�v = ∑i ci ·
−→
bi . Let imin be the smallest index with

cimin �= 0. Then, it holds that the first v j = 0 for
j < imin − 1 and that vimin = cimin ·α∗

1 (as the other
vectors with index i > imin) are zero at index imin.
Hence, it holds that maxi{�log2(vi)�} ≥ �log2(α∗

1)�.
This shows that the effort of executing a valid rela-

tion (cf. Equation (12)) involves at least one exponen-
tiation with an exponent of size �log2(α∗

1)�.6 The ef-
fort to compute one exponentiation for an exponent of
bitsize k is 3/2 ·k ·Tmult, where Tmult stands for the time
it takes the resource-constrained rational attacker
(see Section 2.3) to multiply two values modulo N [27].

6One may combine several exponentiations to reduce the
overall number of exponentiations but one cannot reduce the
effort to compute at least once the exponentiation with the
highest exponent.

10

USENIX Association 25th USENIX Security Symposium 1061

Thus, a pessimistic lower bound for reconstructing
a missing value gi is 3/2 · �log2(α∗

1)� ·Tmult. Observe
that we ignore here additional efforts such as finding
appropriate valid relations (cf. Equation (12)), etc.
Assume now that the service provider stores less

than a fraction δ of all sectors of a given replica
where δ refers to the threshold chosen by the user
(see also Definition 2). Thus, for any value gi con-
tained in the challenge, the probability that gi has
to be re-computed is at least 1−δ . Due to the fact
that this holds for the values h j as well and that a
challenge requests � · s sectors, the expected number
of values that need to be recomputed is 2� · s · (1−δ).
To achieve the binding property with respect to a
rational attacker, one has to ensure that the time
effort for recomputing these values incurs costs that
exceed the costs for storing these values. This im-
plies a time threshold Tthr which marks the minimum
computational effort this should take. Given such a
threshold Tthr, we get the following inequality:

�log2(α
∗
1)� ≥

Tthr

3� · s · (1−δ) ·Tmult
. (14)

That is, if the parameters are chosen as displayed
in (14), a dishonest provider would bear on average
higher costs than an honest provider. Here, one
can use the common cut-and-choose approach, by
posing a number of challenges where the number is
linear in the security parameter κ , to ensure that the
overall probability to circumvent these computations
is negligible in κ. This proves the binding property
(cf. Definition 2) with respect to the class of PPT
service providers that can execute a bounded number
of threads in parallel only.

Notice that Mirror can easily cope with (i) different
attacker strengths, and (ii) variable cost metrics, as
follows:

Length of LFSR: One option would be to increase
λ ∗, i.e., the length of the LFSR communicated
to the provider, and hence the number of values

ga(k)i and hb(k)j the provider has to use for gener-
ating the replicas. In the extreme case, λ ∗ could
be made equal to half of the total number of
sectors n · s—which would result into a scheme
whose bandwidth consumption is comparable
to [18].

Bitlength of coefficients: Another alternative
would be to keep λ ∗ short, but to increase
the bitlengths of the coefficients α∗

i and β ∗
j .

This would preserve the small bandwidth
consumption of Mirror but would increase the
time effort to run Replicate. This option will

also not affect the latency borne by users in
verifying the provider’s response.

Hybrid approach: Clearly, one can also aim for a
hybrid scheme, by increasing both the public
LFSR length λ ∗ and the coefficients α∗

i and β ∗
j .

In Section 5, we investigate reasonable choices of α∗
1 ,

ρ, and Tthr to satisfy Equation 14. Of course, the
same considerations can also be applied with respect
to β ∗

1 which we omit for space reasons.

5 Implementation & Evaluation

In this section, we evaluate an implementation of
Mirror within a realistic cloud setting and we compare
the performance of Mirror to the MR-PDP solution
of [18].

5.1 Implementation Setup

We implemented a prototype of Mirror in Scala. For a
baseline comparison, we also implemented the multi-
replica PDP protocol7 of [18], which we denote by
MR-PDP in the sequel (see Appendix A for a descrip-
tion of the MR-PDP of [18]). In our implementation,
we relied on SHA-256, and the Scala built-in random
number generator.

We deployed our implementation on a private net-
work consisting of two 24-core Intel Xeon E5-2640
with 32GB of RAM. The storage server was running
on one 24-core Xeon E5-2640 machine, whereas the
clients and auditors were co-located on the second
24-core Xeon E5-2640 machine.

To emulate a realistic Wide Area Network (WAN),
the communication between various machines was
bridged using a 100 Mbps switch. All traffic ex-
changed on the networking interfaces of our machines
was shaped with NetEm [31] to fit a Pareto distri-
bution with a mean of 20 ms and a variance of 4
ms—thus emulating the packet delay variance spe-
cific to WANs [19].
In our setup, each client invokes an operation in

a closed loop, i.e., a client may have at most one
pending operation.
When implementing Mirror, we spawned multiple

threads on the client machine, each thread corre-
sponding to a unique worker handling a request of a
client. Each data point in our plots is averaged over
10 independent measurements; where appropriate, we
include the corresponding 95% confidence intervals.

7We acknowledge that PDP offers weaker guarantees than
POR. However, to the best of our knowledge, no prior propos-
als for multi-replica-POR exist. MR-PDP thus offers one-of-
the-few reasonable benchmarks for Mirror.

11

1062 25th USENIX Security Symposium USENIX Association

 0

 200

 400

 600

 800

 1000

 1200

10 20 30 40 50 60 70 80 90 100

Ti
m

e
to

 re
pl

ic
at

e
64

M
B

[s
]

|α1*|

λ*=5
λ*=15
λ*=40
λ*=60

(a) Impact of |α∗
1 | on replication time.

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 40 80 120 160 200

La
te

nc
y

[s
]

|α1*|

(b) Impact of |α∗
1 | on the time required

by a rational provider to issue correct
responses.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 8 16 32 64 128 1024

La
te

nc
y

[s
]

File size [MB]

MR-PDP (Store)
Mirror (Store)

(c) Latency incurred in Store w.r.t. the
file size.

 0
 50

 100
 150
 200
 250
 300
 350
 400

1 2 8 32 64

La
te

nc
y

[s
]

r

MR-PDP (Replicate)

(d) Latency incurred in Replicate as wit-
nessed by the clients of MR-PDP w.r.t.
r.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 8 32 64

La
te

nc
y

[s
]

r

Mirror (Replicate)

(e) Latency incurred in Replicate as wit-
nessed by the service provider in Mirror
w.r.t. r.

 0

 1

 2

 3

 4

 5

 6

1 2 8 32 64

La
te

nc
y

[s
]

r

MR-PDP (Verify-Client)
MR-PDP (Verify-Server)

Mirror (Verify-Client)
Mirror (Verify-Server)

(f) Latency incurred in Verify as seen by
clients.

Figure 1: Performance evaluation of Mirror in comparison to the MR-PDP scheme of [18]. Each data point
in our plots is averaged over 10 independent runs; where appropriate, we also show the corresponding 95%
confidence intervals.

Parameter Default Value

File size 64 MB
|p| 1024 bits
|q| 1024 bits

RSA modulus size 2048 bit
Number of challenges � 40 challenges
Length of secret LFSR λ 2
Length of public LFSR λ ∗ 15
Fraction of stored sectors δ 0.9

Number of replicas r 2

Table 2: Default parameters used in the evaluation.

Table 2 summarizes the default parameters assumed
in our setup.

5.2 Evaluation Results

Before evaluating the performance of Mirror, we start
by analyzing the impact of the block size on the
latency incurred in the verification of Mirror and
in MR-PDP. Our results (Figure 4 in Appendix E)
show that modest block sizes of 8 KB yield the most
balanced performance, on average, across the inves-
tigated schemes. In the rest of our evaluation, we
therefore set the block size to 8 KB.

Impact of the bitsize of α∗
1 : In our implementa-

tion, our choice of parameters was mainly governed
by the need to establish a tradeoff between the repli-
cation performance and the resource penalty incurred
on a dishonest provider. To this end, we choose a
small value for the public LFSR length λ ∗, i.e., the
LFSR length communicated to S , and small coeffi-
cients α∗

i and β ∗
j (these coefficients were set to 1 bit

for i, j > 1). Recall that using smaller coefficients al-
lows for faster exponentiations and hence a decreased
replication effort.

However, as shown in Equation 14, the bitsize of
α∗

1 (which we shortly denote by |α∗
1 | in the follow-

ing) plays a paramount role in the security of Mirror.
Note that the same analysis applies to β ∗

1 —which we
do not further consider to keep the discussion short.
Clearly, |α∗

1 | (and λ ∗) also impacts the file replica-
tion time at the service provider. In Figure 1(a), we
evaluate the impact of |α∗

1 | on the replication time,
and on the time invested by a rational provider (who
does not replicate) to answer every client challenge in
Mirror. Our results indicate that the file replication
time grows linearly with |α∗

1 |. Moreover, the higher
λ ∗ is, the longer it takes to replicate a given file. On
the other hand, as shown in Figure 1(b), |α∗

1 | consid-

12

USENIX Association 25th USENIX Security Symposium 1063

|α∗
1 | Estimated EC2 costs per challenge (USD)

40 0.000058
70 0.00011
80 0.00013
120 0.00019

Table 3: Costs borne by a rational provider who
computes the responses to a challenge of size l = 40
on the fly. We assume two replicas of size 64 MB,
and estimate costs for a compute-optimized (extra
large) instance from Amazon EC2 (at 0.42 USD per
hour).

erably affects the time incurred on a rational provider
which did not correctly replicate (some) user files.
The larger |α∗

1 | is, the longer it takes a misbehaving
provider to reply to the user challenges, and thus the
bigger are the amount of computational resources
that the provider needs to invest in. Here, we as-
sume the lower bound on the effort of a misbehaving
provider (i.e., which only stores a fraction δ of the
sectors per replica) given by Equation 14.

Setting |α∗
1 |: Following this analysis, suitable

choices for α∗
1 need to be large enough such that

the costs borne by a rational provider who computes
the responses on the fly are higher than those borne
by an honest provider who correctly stores the repli-
cas. In Table 3, we display the corresponding costs
borne by a rational provider who computes the re-
sponses on the fly to a single challenge, assuming
l = 40, and r = 2 replicas of size 64 MB. Here, we
estimate the computation costs as follows: we in-
terpolate the time required by a rational provider
in answering challenges from Figure 1(c). We then
estimate the corresponding computation costs assum-
ing a compute-optimized (extra large) instance from
Amazon EC2 (at 0.42 USD per hour), which offers
comparable computing power than that used in our
implementation setup.

For comparison purposes, notice that the cost of
storing two 64 MB replicas per day (based on Amazon
S3 pricing [9]) is approximately 0.00011 USD. This
shows that when instantiating Mirror with parameters
|α∗

1 |= 70, the provider should not gain any (rational)
advantage in misbehaving, if the user issues at least
one PoR2 challenge of l = 40 randomly selected blocks
per day. Clearly, users can increase the number of
challenges that they issue accordingly to ensure that
the costs borne by a rational provider are even more
pronounced, e.g., to account for possible fluctuations
in costs.

Following this analysis, we assume that |α∗
1 |= 70

throughout the rest of the evaluation. As shown in

Figure 1(a), this parameter choice results in reason-
able replication times. e.g., when λ ∗ = 5 or λ ∗ = 15.
Observe that, in this case, users can detect/suspect
misbehavior by observing the cloud’s response time.
As shown in Figure 1(f), the typical response time
of an honest service provider is less than 2 seconds
when r = 2. An additional 0.9 seconds of delay (i.e.,
totalling 2.9 seconds) in responding to a challenge
can be then detected by users.

Store performance: In Figure 1(c), we evaluate the
latency incurred in Store with respect to the file size.
Our findings suggest that the Store procedure of Mir-
ror is considerably faster than that of MR-PDP. This
is the case since the tag creation in Mirror requires
fewer exponentiations per block (cf. Appendix A).
For instance, the Store procedures is almost 20%
faster than that of MR-PDP for files of 64MB in size.

Replicate performance: Figure 1(d) depicts the
latency incurred on the clients of MR-PDP in the
replicate procedure Replicate with respect to the num-
ber of replicas. Recall that, in MR-PDP, clients have
to process and upload all replicas by themselves to
the cloud. Clearly, the latency of Replicate increases
with the number of replicas stored. Given our multi-
threaded implementation, notice that the replication
process can be performed in parallel. Here, as the
number of concurrent replication requests increases,
the threads in our thread pool are exhausted and the
system saturates—which explains the sharp increase
in the latency witnessed by clients who issue more
than 8 concurrent replication requests. Notice that
users of Mirror do not bear any overhead due to repli-
cation since this process is performed by the service
provider.

In Figure 1(e), we show the latency incurred on the
service provider in Mirror with respect to the number
of replicas r. Since Mirror relies on puzzles, the repli-
cation process consumes considerable resources from
the service provider. However, we point out that
is a one-time effort per file, and can be performed
offline (i.e., the provider can replicate files using “of-
fline” resources in the back-end). For example, the
creation of 8 additional 64 MB file replicas incurs a
latency of almost 765 seconds. As mentioned earlier,
Mirror trades this additional computational burden
with bandwidth. Namely, users of Mirror only have
to upload the file once, irrespective of the number of
replicas desired. This, in turn, reduces the download
bandwidth of providers and, as a consequence, the
costs of offering the service.

In Figure 2, we estimate the costs of the additional
computations incurred in Mirror for a 64 MB file,

13

1064 25th USENIX Security Symposium USENIX Association

0.01

0.1

1

10

 2 10 18 26 34 42 50 58

Co
st

 (
in

 U
SD

)

r

Existing Multi Replica Schemes
Mirror

Figure 2: Replication costs for a 64 MB file (in USD)
incurred Mirror vs. existing multi-replica schemes.
We assume that the provider provisions a large gen-
eral instance from Amazon EC2 at 0.441 USD per
hour). We assume the replication time given by our
experiments in Figure 1(e) and we estimate band-
width costs by adapting the findings of [3] (cf. Ta-
ble 3).

compared to those incurred by existing multi-replica
schemes which require users to upload all the repli-
cas. To estimate computing costs, we rely on the
AWS pricing model [8]; we assume that the provider
provisions a multi-core (compute-optimized) extra
large instance from Amazon EC2 (at 0.441 USD per
hour). We rely on our findings in Figure 1(e) to
estimate the computing time for replication. We
estimate bandwidth costs by adapting the findings
of [3] (i.e., by assuming $5 per Mbps per month cf.
Table 3). Our estimates suggest that Mirror consid-
erably reduces the costs borne on the provider by
trading bandwidth costs with the relatively cheaper
computing costs. We expect that the cost savings of
Mirror will be more significant for larger files, and/or
additional replicas.

Verify performance: In Figure 1(f), we evaluate the
latency witnessed by the users and service provider
in the Verify procedure of Mirror and MR-PDP, re-
spectively. Our findings show that the verification
overhead witnessed by the service provider in Mirror
is almost twice that of MR-PDP. Moreover, users of
Mirror require almost 1 second to verify the response
issued by the provider. Notice that the majority of
this overhead is spent while computing/verifying the
response to the issued challenge. This discrepancy
mainly originates from the fact that the challenge-
response in Mirror involves all the 32 sectors of
each block in order to ensure the extractability of
all replicas8. We contrast this to MR-PDP where
each block comprises a single sector—which only en-
sures data/replica possession but does not provide

8We point out that this is not particular to Mirror and
applies to all schemes which ensure retrievability (e.g., [34]).

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14

La
te

nc
y

[s
]

Number of operations per second [op/s]

MR-PDP
Mirror

Figure 3: Latency vs. throughput comparison be-
tween MR-PDP and Mirror.

extractability guarantees.

In Figure 3, we evaluate the peak throughput ex-
hibited by the service provider in the Verify procedure.
Here, we require that the service provider handles
verification requests back to back; we then gradu-
ally increase the number of requests in the system
(until the throughput is saturated) and measure the
associated latency. Our results confirm our previous
analysis and show that Mirror attains a maximum
throughput of 6 verification operations per second;
on the other hand, the service provider in MR-PDP
can handle almost 12 operations per second. As
mentioned earlier, this discrepancy is mainly due to
the fact that the MR-PDP blocks only comprise a
single sector, whereas each block in Mirror comprises
32 sectors. However, we argue that the overhead
introduced by our scheme compared to MR-PDP can
be easily tolerated by clients; for instance, for 64 MB
files, our proposal only incurs an additional latency
overhead of 800 ms on the clients when compared to
MR-PDP.

6 Related Work

Curtmola et al. propose in [18] a multi-replica PDP,
which extends the basic PDP scheme in [12] and en-
ables a user to verify that a file is replicated at least
across t replicas by the cloud. In [16], Bowers et al.
propose a scheme that enables a user to verify if his
data is stored (redundantly) at multiple servers by
measuring the time taken for a server to respond to
a read request for a set of data blocks. In [13, 14],
Barsoum and Hasan propose a multi-replica dynamic
data possession scheme which allows users to verify
multiple replicas, and to selectively update/insert
their data blocks. This scheme builds upon the BLS-
based SW scheme of [34]. In [22], the authors extend
the dynamic PDP scheme of [21] to transparently sup-
port replication in distributed cloud storage systems.
All existing schemes however share a common system
model, where the user constructs and uploads the

14

USENIX Association 25th USENIX Security Symposium 1065

replicas onto the cloud. On the other hand, Mirror
conforms with the existing cloud model by allowing
users need to process/upload their original files only
once irrespective of the replication performed by the
cloud provider.

Proofs of location (PoL) [32, 36] aim at proving
the geographic position of data, e.g., if it is stored
on servers within a certain country. In [36], Watson
et al. provide a formal definition for PoL schemes by
combining the use of geolocation techniques together
with the SW POR schemes [34]. In [36], the authors
assume a similar system model to Mirror, where the
user uploads his files to the service provider only
once. The latter then re-codes the tags of the file,
and replicates content across different geo-located
servers. Users can then execute individual PORs
with each server to ensure that their data is stored
in its entirety at the desired geographical location.
We contrast this to our solution, where the user has
to invoke a single Mirror instance to efficiently verify
the integrity of all stored replicas.

Proofs of space [20] ensure that a prover can only re-
spond correctly if he invests at least a certain amount
of space or time per execution. However, this notion
is not applicable to our scenario where we need to
ensure that a minimum amount of space has been
invested by the prover. Moreover, the instantiation
in [20] does not support batch-verification which is
essential in Mirror to conduct POR on several replicas
in a single protocol run.

7 Conclusion

In this paper, we proposed a novel solution, Mirror,
which enables users to efficiently verify the retriev-
ability of their data replicas in the cloud. Unlike
existing schemes, the cloud provider replicates the
data by itself in Mirror; by doing so, Mirror trades
expensive bandwidth resources with cheaper comput-
ing resources—a move which is likely to be welcomed
by providers and customers since it promises better
service while lowering costs.

Consequently, we see Mirror as one of the few
economically-viable and workable solutions that en-
able the realization of verifiable replicated cloud stor-
age.

8 Acknowledgements

The authors would like to thank the anonymous re-
viewers for their valuable feedback and comments.
This work was partly supported by the TREDISEC
project (G.A. no 644412), funded by the European

Union (EU) under the Information and Communica-
tion Technologies (ICT) theme of the Horizon 2020
(H2020) research and innovation programme.

References

[1] Amazon S3 Introduces Cross-Region Replication.

[2] Cloud Computing: Cloud Security Con-
cerns. http://technet.microsoft.com/en-us/

magazine/hh536219.aspx.

[3] The Relative Cost of Bandwidth Around the World.

[4] Amazon S3 Service Level Agreement, 2009. http:

//aws.amazon.com/s3-sla/.

[5] Are We Safeguarding Social Data?,
2009. MIT Technology Review, http:

//www.technologyreview.com/view/412041/

are-we-safeguarding-social-data/.

[6] Microsoft Corporation. Windows Azure Pricing and
Service Agreement, 2009.

[7] Protect data stored and shared in public cloud
storage. http://i.dell.com/sites/doccontent/

shared-content/data-sheets/en/Documents/

Dell_Data_Protection_Cloud_Edition_Data_

Sheet.pdf, 2013.

[8] Amazon EC2 Pricing, 2015. https://aws.amazon.

com/ec2/pricing/.

[9] Amazon S3 Pricing, 2015. http://aws.amazon.com/
s3/pricing/?nc2=h_ls.

[10] Google loses data after lightning strikes.
http://money.cnn.com/2015/08/19/technology/

google-data-loss-lightning/, 2015.

[11] Frederik Armknecht, Jens-Matthias Bohli, Ghas-
san O. Karame, Zongren Liu, and Christian A.
Reuter. Outsourced proofs of retrievability. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14,
pages 831–843, New York, NY, USA, 2014. ACM.

[12] Giuseppe Ateniese, Randal C. Burns, Reza Curt-
mola, Joseph Herring, Lea Kissner, Zachary N. J.
Peterson, and Dawn Xiaodong Song. Provable data
possession at untrusted stores. In ACM Conference
on Computer and Communications Security, pages
598–609, 2007.

[13] Ayad F. Barsoum and M. Anwar Hasan. Integrity
verification of multiple data copies over untrusted
cloud servers. In 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing,
CCGrid 2012, Ottawa, Canada, May 13-16, 2012,
pages 829–834, 2012.

[14] Ayad F. Barsoum and M. Anwar Hasan. Provable
multicopy dynamic data possession in cloud com-
puting systems. IEEE Transactions on Information
Forensics and Security, 10(3):485–497, 2015.

15

1066 25th USENIX Security Symposium USENIX Association

[15] Kevin D. Bowers, Ari Juels, and Alina Oprea. HAIL:
a high-availability and integrity layer for cloud stor-
age. In ACM Conference on Computer and Commu-
nications Security, pages 187–198, 2009.

[16] Kevin D. Bowers, Marten van Dijk, Ari Juels, Alina
Oprea, and Ronald L. Rivest. How to tell if your
cloud files are vulnerable to drive crashes. In ACM
Conference on Computer and Communications Se-
curity, pages 501–514, 2011.

[17] Jin-yi Cai, Richard J. Lipton, Robert Sedgewick,
and Andrew Chi-Chih Yao. Towards uncheatable
benchmarks. In Proceedings of the Eigth Annual
Structure in Complexity Theory Conference, San
Diego, CA, USA, May 18-21, 1993, pages 2–11, 1993.

[18] Reza Curtmola, Osama Khan, Randal C. Burns,
and Giuseppe Ateniese. MR-PDP: Multiple-Replica
Provable Data Possession. In ICDCS, pages 411–420,
2008.

[19] Dan Dobre, Ghassan Karame, Wenting Li, Matthias
Majuntke, Neeraj Suri, and Marko Vukolić. Pow-
erstore: Proofs of writing for efficient and robust
storage. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications
Security, CCS ’13, pages 285–298, New York, NY,
USA, 2013. ACM.

[20] Stefan Dziembowski, Sebastian Faust, Vladimir Kol-
mogorov, and Krzysztof Pietrzak. Proofs of space.
In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology - CRYPTO 2015 - 35th An-
nual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part II, vol-
ume 9216 of Lecture Notes in Computer Science,
pages 585–605. Springer, 2015.

[21] C. Christopher Erway, Alptekin Küpçü, Charalam-
pos Papamanthou, and Roberto Tamassia. Dynamic
provable data possession. In ACM Conference on
Computer and Communications Security, pages 213–
222, 2009.

[22] Mohammad Etemad and Alptekin Küpçü. Transpar-
ent, distributed, and replicated dynamic provable
data possession. In Proceedings of the 11th Inter-
national Conference on Applied Cryptography and
Network Security, ACNS’13, pages 1–18, Berlin, Hei-
delberg, 2013. Springer-Verlag.

[23] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The google file system. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems
Principles, SOSP ’03, pages 29–43, New York, NY,
USA, 2003. ACM.

[24] Jim Gray. Distributed computing economics. Queue,
6(3):63–68, May 2008.

[25] Ari Juels and Burton S. Kaliski Jr. PORs: Proofs Of
Retrievability for Large Files. In ACM Conference
on Computer and Communications Security, pages
584–597, 2007.

[26] Ghassan Karame and Srdjan Capkun. Low-cost
client puzzles based on modular exponentiation. In
Computer Security - ESORICS 2010, 15th Euro-
pean Symposium on Research in Computer Security,
Athens, Greece, September 20-22, 2010. Proceedings,
pages 679–697, 2010.

[27] Neal Koblitz. A Course in Number Theory and
Cryptography. Springer-Verlag New York, Inc., New
York, NY, USA, 1987.

[28] Çetin Kaya Koç, Tolga Acar, and Burton S. Kaliski,
Jr. Analyzing and comparing montgomery multipli-
cation algorithms. IEEE Micro, 16(3):26–33, June
1996.

[29] Rudolf Lidl and Harald Niederreiter. Introduction
to Finite Fields and Their Applications. Cambridge
University Press, New York, NY, USA, 1986.

[30] Yadi Ma, Thyaga Nandagopal, Krishna P. N. Put-
taswamy, and Suman Banerjee. An ensemble of
replication and erasure codes for cloud file systems.
In Proceedings of the IEEE INFOCOM 2013, Turin,
Italy, April 14-19, 2013, pages 1276–1284, 2013.

[31] NetEm. NetEm, the Linux Founda-
tion. Website, 2009. Available online at
http://www.linuxfoundation.org/collaborate/

workgroups/networking/netem.

[32] Zachary N. J. Peterson, Mark Gondree, and Robert
Beverly. A position paper on data sovereignty: The
importance of geolocating data in the cloud. In
Proceedings of the 3rd USENIX Conference on Hot
Topics in Cloud Computing, HotCloud’11, pages 9–9,
Berkeley, CA, USA, 2011. USENIX Association.

[33] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-
lock puzzles and timed-release crypto. Technical
report, Cambridge, MA, USA, 1996.

[34] Hovav Shacham and Brent Waters. Compact Proofs
of Retrievability. In ASIACRYPT, pages 90–107,
2008.

[35] Marten van Dijk, Ari Juels, Alina Oprea, Ronald L.
Rivest, Emil Stefanov, and Nikos Triandopoulos.
Hourglass schemes: how to prove that cloud files
are encrypted. In Ting Yu, George Danezis, and
Virgil D. Gligor, editors, ACM Conference on Com-
puter and Communications Security, pages 265–280.
ACM, 2012.

[36] Gaven J. Watson, Reihaneh Safavi-Naini, Mohsen
Alimomeni, Michael E. Locasto, and Shivaramakr-
ishnan Narayan. LoSt: location based storage. In
Ting Yu, Srdjan Capkun, and Seny Kamara, editors,
CCSW, pages 59–70. ACM, 2012.

A MR-PDP

In what follows, we briefly describe the multi-replica
provable data possession scheme by Curtmola et
al. [18]. Here, the user first splits the file D into

16

USENIX Association 25th USENIX Security Symposium 1067

n blocks d1, . . . ,dn ∈ ZN . Let p = 2p′+ 1,q = 2q′+ 1
be safe primes, and N = pq an RSA modulus; more-
over, let g be a generator of the quadratic residues
of Z∗

N , and e,d a pair of integers such that e ·d = 1
mod p′q′. The user creates authentication tags for
each block i ∈ [1,n] by computing Ti ← (h(v||i)gdi)d

mod N, where h : {0,1}∗ → ZN is a hash function and
v ∈ ZN .

Subsequently, each replica is created by the user

as follows: d(k)
i ← di +PRF(k||i) where PRF denotes

a pseudorandom function. The user sends to the
service provider the tags {Ti}, the original file blocks

{di}, and the replica blocks d(k)
i .

At the verification stage, the user selects a replica
k and creates a (pseudo-)random challenge set I =
{(k1, i1), . . . ,(k�, i�)} where k j denotes the replica num-
ber and i j the block index. In addition, the user
picks s ∈ Z∗

N , and computes gs = gs mod N. The
challenge query then comprises the set I and the
value gs which are both sent to the service provider
who stores replica k. The service provider then com-
putes the response (T,σ) as follows and sends it back
to the verifier:

T ← ∏
i∈I

Ti, σ ← g
∑1≤ j≤� d

(k j)
i j

s

Finally, the user checks whether:

σ ?
=

(
T e

∏h(v||i)
g∑1≤ j≤�PRF(k j ||i j)

)s

B POR Schemes of Shacham and
Waters

In what follows, we briefly describe the private POR
scheme by Shacham and Waters [34]. This scheme
leverages a pseudo-random function PRF. Here, the
user first applies an erasure code to the file and
then splits it into n blocks d1, . . . ,dn ∈ Zp, where p
is a large prime. The user then chooses a random
α ∈R Zp and creates for each block an authentication
value as follows:

σi = PRF ˚key(i)+α ·di ∈ Zp. (15)

The blocks {di} and their authentication values {σi}
are all stored at the service provider in D∗.

At the POR verification stage, the verifier (here,
the user) chooses a random challenge set I ⊂{1, . . . ,n}
of size �, and � random coefficients νi ∈R Zp. The
challenge query then is the set Q := {(i,νi)}i∈I which
is sent to the prover (here, service provider). The

prover computes the response (σ ,µ) as follows and
sends it back to the verifier:

σ ← ∑
(i,νi)∈Q

νiσi, µ ← ∑
(i,νi)∈Q

νidi.

Finally, the verifier checks the correctness of the
response:

σ ?
= αµ + ∑

(i,νi)∈Q
νi ·PRF(i).

C Improving User Verification in Mir-
ror

In what follows, we describe a number of optimiza-
tions that we adopted in our implementation in order
to reduce the effort in verifying the service provider’s
response.

Using either g or h: Recall that the service
provider’s response involves powers of g and of h
which have order p′ and q′, respectively. One tech-
nique that allows to reduce the effort on the user’s
side is to rely on either g or h. That is, at the be-
ginning of the verification step, the user randomly
decides whether only g or only h shall be taken into
account. For example, let us assume that the choice
falls on g. Then, the user proceeds as follows:
1. The user computes:

σ̃ := σq′ ·
�

∏
c=1

(
s

∏
j=1

∏
k∈R

gk
ic, j

)−(q′·νc)

. (16)

Here, we exploit the fact that (he)q′ = 1 for any
e.

2. The user checks if:

(
s

∏
j=1

µ j
ε j+|R|

)q′

= σ̃ . (17)

This approach incurs two additional exponentiations
but completely eliminates the need to compute the
expressions for the values h.

Representing LFSRs by Pre-computed Matri-
ces: According to our experiments, suitable parame-
ter choices are to choose the length λ of the secret
LFSR quite small, e.g., equal to 2, while the block
size s is comparatively large. This motivates the
following optimization.

Let A(k)
t := (a(k)t , . . . ,a(k)t+λ−1) for any t ≥ 1 and any

k ∈ {1, . . . ,r}. That is, A(k)
1 denotes the initial state of

the k-th LFSR while A(k)
t denotes the state after t −1

17

1068 25th USENIX Security Symposium USENIX Association

clocks. Recall that we consider r LFSR sequences
which are all generated by the same feedback function.
Namely, it holds for any t ≥ 1 and any k ∈ {1, . . . ,r}
that a(k)t+λ = ∑λ

i=1 αi · a(k)t+i−1. Due to the linearity of
the feedback function, there exists a λ ×λ matrix M,
called the companion matrix, for which it holds that:

Mt ·A(k)
1 = A(k)

t+1, ∀t ≥ 0. (18)

Recall that we aim to compute for each i ∈ I the value

∑
k∈R

(
a(k)π(ic,1) +a(k)π(ic,1)+1 + . . .+a(k)π(ic,1)+s−1

)
(19)

where π : N×N→ N is a mapping such that g(k)i, j =

g(k)π(i, j) = ga(k)t and to raise g by the resulting value.

The idea is now to combine as many computations
as possible to reduce the overall effort. To this end,
the goal is to sum-up for each k ∈ R and each i ∈ I
the following internal states:

A(k)
π(i,1) = (a(k)π(i,1), . . . ,a

(k)
π(i,1)+λ−1)

...

A(k)
π(i,1)+�s/λ�·λ = (a(k)π(i,1)+�s/λ�·λ , . . . ,a

(k)
π(i,1)+�s/λ�·λ−1)

This can be accomplished by computing:
(

∑
i∈I

Mπ(i,1)

)
·

(
�s/λ�

∑
j=0

M j·λ

)
·

(
∑
k∈R

A(k)
1

)
. (20)

Observe that ∑�s/λ�
j=0 M j·λ is independent of the current

challenge and can be precomputed. Moreover, due
to the fact that we aim for a small LFSR length, e.g.,
λ = 2, the user may consider to precompute the value
in the last bracket for any choice of R, yielding an
additional storage effort of λ ·(2r−1) sectors. In such
case, the computation would boil down to the effort
of computing the first bracket only. We note that if
λ does not divide s, then the user has to compute in
addition:(

∑
i∈I

Mπ(i,1)

)
·M�s/λ�·λ ·

(
∑
k∈R

A(k)
1

)
, (21)

and to add the sum of the first s mod λ entries to
the value computed above. Also here, similar pre-
computations can be done to accelerate this step.

D Valid Relations

We now explain why �v = (v1, . . . ,vn·s) ∈ Zn·s such that

n·s

∏
i=1

gvi
i = 1, (22)

represents the only type of equations that allows the
provider to compute missing values g j from known
values gi.

To see why, recall that g j = ga j where (a j) j rep-
resents an LFSR-sequence. More precisely, this se-
quence is defined by the feedback polynomial and the
initial state, i.e., the first λ entries. Without knowing
these entries, it is (information-theoretically) impos-
sible to determine a j for larger indices. Also, any
element in (a j) j is a linear combination of the initial
state values. Let us denote this combination by L1.
This can be relaxed as follows: the knowledge of any
λ elements a j1 , . . . ,a jλ of the sequence (a j) j allows
almost always to compute another element by an ap-
propriate linear combination (say L2) of a j1 , . . . ,a jλ .
Notice that the coefficients of L2 have to be a linear
combination of the coefficients (or shifted versions)
of L1 (this is in inherent property of LFSRs). This
is exactly the definition of “valid relations” given in
Equation (12).

E Impact of the Block Size on the
Performance of MR-PDP and Mir-
ror

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

1 8 32 512 1024 2048

La
te

nc
y

[s
]

Block size [KB]

Store
Replicate

Verify (Server)
Verify (Client)

(a) Impact of block size on the performance
of MR-PDP [18].

 0.1

 1

 10

 100

 1000

 10000

 100000

1 8 32 512 1024 2048

La
te

nc
y

[s
]

Block size [KB]

Store
Replicate

Verify (Server)
Verify (Client)

(b) Impact of block size on the performance
of Mirror.

Figure 4: Impact of the block size on the performance
of MR-PDP [18] and Mirror.

18

USENIX Association 25th USENIX Security Symposium 1069

ZKBoo: Faster Zero-Knowledge for Boolean Circuits

Irene Giacomelli Jesper Madsen Claudio Orlandi
Computer Science Department, Aarhus University

Abstract
In this paper we describe ZKBoo1, a proposal for practi-
cally efficient zero-knowledge arguments especially tai-
lored for Boolean circuits and report on a proof-of-
concept implementation. As an highlight, we can gen-
erate (resp. verify) a non-interactive proof for the SHA-1
circuit in approximately 13ms (resp. 5ms), with a proof
size of 444KB.

Our techniques are based on the “MPC-in-the-head”
approach to zero-knowledge of Ishai et al. (IKOS), which
has been successfully used to achieve significant asymp-
totic improvements. Our contributions include:
◦ A thorough analysis of the different variants of IKOS,
which highlights their pros and cons for practically rele-
vant soundness parameters;
◦ A generalization and simplification of their approach,
which leads to faster Σ-protocols (that can be made
non-interactive using the Fiat-Shamir heuristic) for state-
ments of the form “I know x such that y = φ(x)” (where
φ is a circuit and y a public value);
◦ A case study, where we provide explicit protocols,
implementations and benchmarking of zero-knowledge
protocols for the SHA-1 and SHA-256 circuits.

1 Introduction

Since their introduction in the 80s [16], zero-knowledge
(ZK) arguments have been one of the main building
blocks in the design of complex cryptographic protocols.
However, due to the lack of practically efficient solutions
for proving generic statements, their application in real-
world systems is very limited. In particular, while there
is a large body of work considering the efficiency of ZK
protocols for algebraic languages (following the seminal
work of Schnorr for discrete logarithm [26]), things are
quite different when it comes to general purpose ZK.

1Sounds like Peekaboo.

A notable exception is the recent line of work
on succinct non-interactive arguments of knowledge
(SNARKs) (e.g. Pinocchio [23], libsnark [4], etc.).
SNARKs are an extremely useful tool when the size of
the proof and the verification time matters: SNARKs are
less than 300 bytes and can be verified in the order of
5ms, which makes them perfect for applications such as
ZeroCash [3]. However, on the negative side, SNARKs
require very large parameters (which must be generated
in a trusted way) and the time to generate proofs are pro-
hibitive for many applications. As an example, the run-
ning time of the prover for generating a proof for SHA-
1 is in the order of 10 seconds. There is an inherent
reason for this inefficiency: current SNARKs technol-
ogy requires to perform expensive operations (in pairing
friendly groups) for each gate in the circuit.

Jawurek et al. [21] proposed a different approach to
efficient ZK, namely using garbled circuits (GC). Using
GC, it is possible to prove any statement (expressed as
a Boolean circuit) using only a (low) constant number
of symmetric key operations per gate in the circuit, thus
decreasing the proving time by more than an order of
magnitude. On the flip-side, GC-based ZK are inher-
ently interactive, and they still require a few public-key
operations (used for implementing the necessary oblivi-
ous transfers).

In this paper we describe efficient ZK protocols for cir-
cuits based on the “MPC-in-the-head” paradigm of Ishai
et al. [19] (IKOS). In IKOS, a prover simulates an MPC
protocol between a number of “virtual” servers (at least
3) and then commits to the views and internal state of the
individual servers. Now the verifier challenges the prover
by asking to open a subset of these commitments. The
privacy guarantee of the underlying MPC protocol guar-
antees that observing the state of a (sufficiently small)
subset of servers does not reveal any information. At the
same time, the correctness of the MPC protocol guaran-
tees that if the prover tries to prove a false statement,
then the joint views of some of the server must nec-

1070 25th USENIX Security Symposium USENIX Association

essarily be inconsistent, and the verifier can efficiently
check that. By plugging different MPC protocols into
this approach, [19] shows how to construct ZK protocols
with good asymptotic properties. However, to the best
of our knowledge, no one has yet investigated whether
the IKOS approach can be used to construct practically
efficient ZK protocols. This paper is a first step in this
direction.

Structure of the paper. In Section 3 we describe the
different variants of the IKOS framework. IKOS presents
two strategies to achieve a negligible soundness error: ei-
ther repeating a passive secure MPC protocol with few
parties, or using a single instance of an active secure
MPC protocol with a large number of parties. While
IKOS only provides asymptotic estimates of the sound-
ness parameters, we concretely estimate the soundness
of IKOS with different kind of MPC protocols and show
that, if one is interested in a (reasonable) soundness er-
ror of 2−80, then the version of IKOS without repetition
does not (unfortunately) lead to any practical advantage.
Then (in Section 4) we present a new interpretation of the
IKOS framework when instantiated with a 2-private 3-
party version of the GMW [15] protocol, where each pair
of parties is connected with an OT-channel. We observe
that in general the OT-channels can be replaced with ar-
bitrary 2-party functionalities. Since those ideal func-
tionalities do not have to be implemented using cryp-
tographic protocols (remember, they are executed be-
tween pair of virtual servers in a simulation performed by
the prover), this increases the degrees of freedom of the
protocol designer and allows to construct more efficient
MPC protocols (or, as we prefer to call them, function
decompositions) that can be used for constructing ZK
protocols. (Note that this class of protocol has not been
studied before, since it does not lead to any advantage
in the standard MPC setting, and therefore we expect fu-
ture work to improve on our approach by designing bet-
ter MPC protocols for this special setting.) All resulting
protocols are Σ-protocols (3-move honest-verifier zero-
knowledge protocols with special soundness) which can
therefore be made non-interactive in the random oracle
model using the Fiat-Shamir heuristic.

Finally (in Section 5) we describe how our approach
can be used to construct very efficient ZK protocols for
proving knowledge of preimages for SHA-1 and SHA-
256. The resulting proofs are incredibly efficient: the
verification time is essentially the same as the verifica-
tion time for SNARKs, but the prover runs approximately
1000 times faster. On the negative side the size of our
proofs scales linearly with the circuit size, but we believe
that in some applications this is a desirable trade-off.

Recent Related Work. Ranellucci et al. [25] proposed
a general-purpose public-coin ZK protocol which can be
based on any commitment scheme. The asymptotic per-
formances are the same as ours (both communication and
computation complexity are linear in the circuit size) but
the concrete constants are higher (e.g., the proofs are ap-
proximately 3 times larger and computation more than
10 times slower). Hazay et al. [18] show how to extend
the IKOS technique to the case of two-party MPC proto-
cols (2PC) with application to adaptive ZK protocols. It
is an open question whether their approach might lead to
concrete efficiency improvements.

2 Preliminaries

Standard notations: For an integer n, we write [n] =
{1,2, . . . ,n} and, given A ⊆ [n], |A| denotes the cardi-
nality of A. We say that a function ε is negligible in
n, ε(n) = negl(n), if for every polynomial p there ex-
ists a constant c such that ε(n) < 1

p(n) when n > c.
Given two random variables X ad Y with support S,
the statistical distance between X and Y is defined as
SD(X ,Y)= 1

2 ∑i∈S | Pr[X = i]−Pr[Y = i] |. Two families
X = {Xk} and Y = {Yk}, k ∈ {0,1}∗ of random variables
are said to be statistically indistinguishable if there exists
a negligible function ε(·) such that for every k ∈ {0,1}∗,
SD(Xk,Yk)≤ ε(|k|). They are said to be computationally
indistinguishable if for every efficient non-uniform dis-
tinguisher D there exists a negligible function ε(·) such
that for every k ∈ {0,1}∗, | Pr[D(Xk) = 1]−Pr[D(Yk) =
1]≤ ε(|k|).

2.1 Multi-Party Computation (MPC)
Consider a public function f : ({0,1}k)n → {0,1}� and
let P1, . . . ,Pn be n players modelled as PPT machines.
Each player Pi holds the value xi ∈ {0,1}k and wants to
compute the value y = f (x) with x = (x1, . . . ,xn) while
keeping his input private. The players can communicate
among them using point-to-point secure channels CHi, j
in the synchronous model. These can be classical se-
cure channels (i.e. encrypted channels) or more powerful
channels (e.g. OT-channel [11, 24]). If necessary, we also
allow the players to use a broadcast channel. To achieve
their goal, the players jointly run a n-party MPC proto-
col Π f . The latter is a protocol for n players that is spec-
ified via the next-message functions: there are several
rounds of communication and in each round the player
Pi sends into the channel CHi, j (or in the broadcast chan-
nel) a message that is computed as a deterministic func-
tion of the internal state of Pi (his initial input xi and his
random tape ki) and the messages that Pi has received
in the previous rounds of communications. The view of
the player Pj, denoted by ViewPj(x), is defined as the

USENIX Association 25th USENIX Security Symposium 1071

concatenation of the private input x j, the random tape
k j and all the messages received by Pj during the ex-
ecution of Π f . Each channel CHi, j defines a relation of
consistency between views. For instance, in a plain chan-
nel two views are consistent if the messages reported in
ViewPj(x) as incoming from Pi are equal to the outgoing
message implied by ViewPi(x) (i �= j). More powerful
channels (such as OT channels), are defined via some
function ϕ and we say that two views are consistent if
the view of the sender implies an input x to the channel
and the view of the receiver implies an input y and con-
tains an output z such that z = ϕ(x,y). For instance, in
OT channels x = (m0,m1), y is a bit and z = my.

Finally, the output y can be computed from any of the
view ViewPi(x), i.e. there are n functions Π f ,1, . . . ,Π f ,n
such that y = Π f ,i(ViewPi(x)) for all i ∈ [n]. In order to
be private, the protocol Π f needs to be designed in such
a way that a curious player Pi can not infer information
about x j with j �= i from his view ViewPi(x). An addi-
tional security property, robustness, assures that a cheat-
ing player Pi (who may not follow the instructions in the
protocol) can not mislead the honest players, who still
compute the correct output y. More precisely, we have
the following definition.

Definition 2.1. • (Correctness) We say that the pro-
tocol Π f realizes f with perfect (resp. statistical)
correctness if for any input x = (x1, . . . ,xn), it holds
that Pr[f (x) �= Π f ,i(ViewPi(x))] = 0 (resp. negligi-
ble) for all i ∈ [n]. The probability is over the choice
of the random tapes ki.

• (Privacy) Let 1 ≤ t < n, the protocol Π f has perfect
t-privacy if it is correct and for all A ⊆ [n] satisfy-
ing |A| ≤ t there exists a PPT algorithm SA such that
the joint views (ViewPi(x))i∈A have the same distri-
bution as SA(f ,(xi)i∈A,y), for all x = (x1, . . . ,xn).

We will speak about statistical (resp. com-
putational) t-privacy if the two distributions
SA(f ,(xi)i∈A,y) and (ViewPi(x))i∈A are statistically
(resp. computationally) indistinguishable.

• (Robustness) Let 0 ≤ r < n, the protocol Π f has
perfect (resp. statistical) r-robustness if it is correct
and for all A ⊆ [n] satisfying |A| ≤ r even assuming
that all the players in A have been arbitrarily cor-
rupted, then Pr[f (x) �= Π f ,i(ViewPi(x))] = 0 (resp.
negligible) for all i ∈ Ac.

3 Zero Knowledge

In this section we recall the notion of zero-knowledge
and Σ-protocols, we review the IKOS construction [19]
for zero-knowledge, and we discuss different possible in-
stantiations.

3.1 Definitions
Let R ⊆ {0,1}∗ ×{0,1}∗ be a binary relation represent-
ing some computational problem (e.g. R = {(y,x) |y =
SHA-256(x)}). We will interpret R as a binary func-
tion from {0,1}∗ ×{0,1}∗ to {0,1} (i.e. R(y,x) = 1 ⇔
(y,x) ∈ R) and we will assume that:

• ∀ y and ∀ x, R(y,x) can be computed in polynomial-
time by a probabilistic Turing machine;

• there exists a polynomial p such that if R(y,x) = 1
then the length of x is less or equal to p(|y|).

Such relation is called NP relation. With L we indi-
cate the set of the yes-instances of the relation R, i.e.
L = {y |∃x s.t. R(y,x) = 1}.

An argument for L is a cryptographic protocols be-
tween two players: the prover P and the verifier V with
the following features. We assume that both P and V
are probabilistic polynomial time (PPT) machines and
that they know y, an instance of the relation R. The sit-
uation is that P wants to convince V that y ∈ L. This
clearly makes sense only if the prover has some advan-
tage over the verifier. Thus, we allow the prover to have
an extra private input (for example P knows x such that
R(y,x) = 1). The protocol is described by instructions
for the players and has different rounds of communi-
cation. At the end of the protocol, the verifier outputs
accept if he is convinced or reject otherwise. If y ∈ L,
we require that an honest verifier convinces an honest
prover with probability 1 (the protocol is complete). On
the other hand, we say that the protocol has soundness
error ε if for all y /∈ L Pr[V (y) = accept] ≤ ε , no mat-
ter what the prover does. In other words, ε is an upper-
bound of the probability that a cheating prover makes an
honest verifier output accept for a false instance.

However, in many interesting cryptographic applica-
tions, the language L is trivial and therefore the sound-
ness property gives absolutely no guarantees: for every
string y there exist a x s.t., y =SHA-256(x). In this case
we need a stronger property, namely proof-of-knowledge
(PoK), which informally states that the verifier should
output accept only if the prover knows the value x.

Finally, ZK protocols get their name from the zero-
knowledge property: Here, we want to express the re-
quirement that whatever strategy a cheating verifier fol-
lows, he learns nothing except for the truth of the
prover’s claim. In particular, he can not obtain informa-
tion about the private input of P. This is captured using
the simulation-paradigm and saying that the messages
received by the verifier during the protocol can be effi-
ciently simulated only knowing the public input y. More
precisely, we have the following requirement: for any
corrupted PPT verifier V ∗, there is a PPT algorithm S
(the “simulator”) with access to V ∗ such that the output

1072 25th USENIX Security Symposium USENIX Association

of S(y) and the real conversation between P and V ∗ on
input y are indistinguishable.

In the rest of the paper we will be concerned with
public-coin two-party protocols with a specific commu-
nication pattern known as Σ-protocols.

Definition 3.1 (Σ-protocol). A protocol ΠR between two
players P and V is a Sigma Protocol for the relation R if
it satisfies the following conditions:

• ΠR has the following communication pattern:

1. (Commit) P sends a first message a to V ;

2. (Challenge) V sends a random element e to P;

3. (Prove) P replies with a second message z.

• (Completeness) If both players P and V are honest
and y ∈ L, then Pr[(P,V)(y) = accept] = 1;

• (s-special soundness) For any y and any set of s ac-
cepting conversations {(a,ei,zi)}i∈[s] with ei �= e j if
i �= j, a witness x for y can be efficiently computed;

• (Special honest-verifier ZK) There exists a PPT
simulator S such that on input y ∈ L and e outputs
a triple (a′,e,z′) with same probability distribution
of real conversations (a,e,z) of the protocol.

Prover Verifier

commitment a

challenge e

openings z

Figure 1: The communication pattern of a Σ-protocol.

Σ-protocols have several properties (e.g. parallel com-
position, witness indistinguishability) that make them a
useful building block for many other cryptographic prim-
itives (identification schemes, signatures, etc). See [7]
or [17, Chapter 6] for more details on this. Here we
are mainly interested in the following facts: First, Σ-
protocols are public-coin protocols and thus they can be
made non-interactive in the random oracle model using
the Fiat-Shamir heuristic [12]. Second, there exist effi-
cient transformations from Σ-protocols to fully-fledged
ZK and PoK: indeed, it is possible to efficiently trans-
form a Σ-protocol into a zero-knowledge argument (resp.
zero-knowledge proof of knowledge) with the addition of
one additional round (resp. two additional rounds). Note

finally that if the challenge e is chosen uniformly at ran-
dom form a set of cardinality c, then s-special soundness
implies a bound of (s−1)/c on the soundness error of the
protocol: if y �∈ L, then there exist no x s.t. R(x,y) = 1,
and therefore fixed any a there are at most s− 1 chal-
lenges such that an accepting conversation for them ex-
ists.

3.2 IKOS Construction

In 2007 Ishai et al. show how to use any MPC proto-
col and the commitment-hybrid (Com) model2 to obtain
a ZK proof for an arbitrary NP relation R with asymp-
totically small soundness error. Here we briefly recall
their construction and moreover we explicitly analyse its
soundness error.

Let Π f be an MPC protocol that realizes any n-party
function f with perfect correctness (Definition 2.1). De-
pending on the features of Π f (privacy, robustness, com-
munication channels used), [19] presents slightly differ-
ent ZK protocols. However, the general structure is al-
ways the same and is the structure of a Σ-protocol, see
Figure 1. The high-level idea is the following: assume
that y ∈ L is the public input of the ZK protocol, while x
is the private input of the prover (i.e. R(y,x) = 1). The
prover first takes n random values x1, . . . ,xn such that
x = x1 ⊕·· ·⊕xn, then he considers the n-input function
fy defined as

fy(x1, · · · ,xn) := R(y,x1 ⊕·· ·⊕xn)

and emulates “in his head” the protocol Π fy on in-
puts x1, . . . ,xn. After the emulation, he computes the
commitments to each of the n produced views (i.e.
Com(ViewPi(x)) for i = 1, . . . ,n). After all the commit-
ments have been stored, the verifier challenges the prover
to open some of them (i.e. the challenge is a random sub-
set of [n] of a given size). Finally, the prover opens the
requested commitments and the verifier outputs accept if
and only if all the opened views are consistent with each
other and with output 1.

Here we focus on the ZK protocols presented in [19]
that assume a perfectly correct (and eventually perfectly
robust) MPC protocol and we collect them in two ver-
sions. Version 1 considers the case of an MPC protocol
with t-privacy and perfect r-robustness with t > 1.3 Ver-
sion 2 shows that 2-privacy is not necessary condition
and indeed considers the case of an MPC protocol with
1-privacy only.

2In the commitment-hybrid model the two parties have access to an
idealized implementation of commitments, which can be imagined as
a trusted third party which stores the messages of the sender and only
reveals them if told so by the sender.

3This is a generalization of [19] as they only consider the case t = r.

USENIX Association 25th USENIX Security Symposium 1073

IKOS Protocol (Version 1)

The verifier and the prover have input y ∈ L. The
prover knows x such that R(y,x) = 1. A perfectly
correct and t-private n-party MPC protocol Π fy is
given (2 ≤ t < n).

Commit: The prover does the following:

1. Sample random vectors x1, . . . ,xn s.t.
x1 ⊕·· ·⊕xn = x;

2. Run Π fy(x1, . . . ,xn) and obtain the views
wi = ViewPi(x) for all i ∈ [n];

3. Commit to w1, . . . ,wn.

Prove: The verifier chooses a subset E ⊆ [n] such
that |E| = t and sends it to the prover. The
prover reveals the value we for all e ∈ E.

Verify: The verifier runs the following checks:

1. If ∃e∈E s.t. Π f ,e(ViewPe(x)) �= 1, output
reject;

2. If ∃{i, j}⊂ E s.t. ViewPi(x) is not consis-
tent with ViewPj(x), output reject;

3. Output accept;

Figure 2: The IKOS zero-knowledge protocol for the re-
lation R in the commitment-hybrid model.

Version 1: Let t and r be two integers, 2 ≤ t < n and
0 ≤ r ≤ t. We assume that the protocol Π fy is perfectly
correct and satisfies two more properties: perfect, statis-
tical or computational t-privacy and perfect r-robustness.
In this version of the IKOS protocol (Figure 2) the veri-
fier is allowed to ask for the openings of t of the commit-
ments Com(ViewPi(x)). In this way, the zero-knowledge
property follows easily by the t-privacy of the protocol
Π fy .

For the analysis of the soundness error of this proto-
col we use the so-called inconsistency graph G. Given
an execution of Π fy , the graph G has n nodes and there
is an edge (i, j) if and only if the views of the play-
ers Pi and Pj are inconsistent. Assume that y /∈ L and
that the execution of Π fy is not a correct one (otherwise
Pr[V (y) = accept] = 0 because of the checks in step 1 of
the procedure Verify). Then we have two cases:

1. There is in G a vertex cover set4 B of size at most

4B is a vertex cover set for the graph G if each edge in G is incident
to at least 1 node in B.

r. Intuitively, this means that in the current execu-
tion of Π fy only the players in B have been actively
corrupted. Indeed, if we remove the nodes in B, we
obtain a graph without edges. That is, all the play-
ers not in B have views consistent among them and
we can consider these players honest. Since the size
of B is less or equal to the parameter r, the robust-
ness property assures that for all the players not in
B (honest players) the view implies a 0 output (the
correct output of the protocol Π fy). The probabil-
ity that the verifier will not see one of these views
choosing t of them uniformly at random is less or
equal to5

p1(n, t,r) =
(

r
t

)(
n
t

)−1

2. If the size of the minimum vertex cover is > r, then
the graph G has a matching6 of size > r/2. The
probability that the verifier accepts the wrong proof
is equal to the probability that between the t nodes
that he chooses there are no edges of G and this
is less or equal to the probability that there are no
edges from the matching. Clearly, this probabil-
ity reaches the maximum when the matching is the
smallest possible, that is it has size k = �r/2�+ 1.
In this situation the aforementioned probability is

p2(n, t,r) =

{
0 otherwise(

∑k
j=0 2 j

(k
j

)(n−2k
t− j

))(n
t

)−1 if n−2k > 0

In general, the soundness error is equal to the value
p(n, t,r) = max{p1(n, t,r), p2(n, t,r)}.

Version 2: A second version of the protocol was pro-
posed in [20] to show that 2-privacy is not a necessary
condition for the IKOS construction. In other words, we
can construct ZK proofs in from 1-private MPC proto-
cols. Notice that in this case the MPC protocol is allowed
to use only standard point-to-point secure channels. The
idea of the construction is very similar to the previous
one, but now the prover commits to all the

(n
2

)
channels

in addition to committing to the n views. The verifier
picks a random i ∈ [n] and challenges the prover to open
the view of the player Pi and all the n−1 channels CHi j
incident to him. Finally, the verifier accepts if the opened
view is consistent with the channels and with the output
1. Again, the ZK property follows from the privacy prop-
erty of the MPC protocol: the information revealed to the
verifier is implied by the view of a single player. To com-
pute the soundness error in this case, observe that for any

5(r
t

)
is 0 if r < t.

6A matching is a set of edges without common nodes.

1074 25th USENIX Security Symposium USENIX Association

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Privacy parameter t

p(
24
,t
,t
)

Soundness error in IKOS (version 1)

t 15 16 17 18 19 20
σ 8.7 19.5 18.4 17 15.4 13.4

Figure 3: The graph represents the soundness error
p(n, t,r) in function of t when t = r and n = 24. The
table shows the values of σ such that p(24, t, t) = 2−σ

for t ∈ {15, . . . ,20}.

incorrect execution of Π fy there is at least one player Pi
such that ViewPi(x) is inconsistent with a channel CHi j.
The probability Pr[V (y) = accept] is less or equal to the
probability that V does not choose this index i. There-
fore, the soundness error of this version is 1−1/n.

3.3 Our choice of version and parameters
In this section we discuss and motivate some of our de-
sign choices.

Which MPC protocol? As discussed, IKOS can be in-
stantiated with a large number of MPC protocols. In
particular, using MPC protocols with good asymptotic
properties (such as [8, 9], etc.), one can obtain ZK proto-
cols with equally good asymptotic properties. However
in this paper we are concerned with concrete, constant
size circuits, and we do not want to put any restriction
on the shape or width of the circuits. Thus, the best two
choices are BGW [2] style protocols with t = r = � n−1

3 �
which use simple point-to-point channels and GMW [15]
style protocols with t = n−1,r = 0 which use OT chan-
nels between each pair of parties. Then we have the fol-
lowing two cases:

1. (GMW [15]:) In this case the soundness error is 2
n

and we open n− 1 views. Note that in these proto-
cols each party must communicate with every other
party, thus the size of the proof for soundness 2−σ

is given by

c · (n−1)2

log2(n)−1
·σ

where c is a constant which depends on the exact
protocol. It is easy to see that the function grows
with n and therefore smallest proofs are achieved
with n = 3. Looking ahead, our protocol in Sec-
tion 4 has c = 1/2 and σ = 80 and therefore the
size of the proof is 274 bits per multiplication gate.

2. (BGW [2]:) In this case the soundness error is
given by p2(n,� n−1

3 �,� n−1
3 �). To get soundness er-

ror ≤ 2−80, we get that n ≥ 1122 and therefore the
number of opened views is � n−1

3 � = 373. Thus,
even if each party only had to store a single bit for
each multiplication gate, the size of the proof would
already be larger than in the previous case.

3. (Future Work:) Our analysis shows that using an
MPC protocol with t = r =

⌈ 2
3 n
⌉

it would be enough
to use (n, t,r) = (92,64,64) to achieve soundness
2−80. The existence of such a protocol, where in
addition each party only needs to store ≤ 4 bits per
multiplication gate, would give rise to ZK proofs
of size smaller than the one we construct. We are
not aware of any such protocols, however we cannot
rule out their existence. In particular, we note that
such protocols have not been considered in the liter-
ature, since they give rise to poor MPC protocols in
practice (note that such a protocol necessarily uses
advanced channels, which in the standard MPC pro-
tocol need to be implemented using expensive cryp-
tographic operations), and we believe that the quest
for “MPC protocols” optimized for the ZK applica-
tions has just begun. Figure 3 shows how, for a fixed
number of parties n, the soundness error decreases
as a function of t = r. Note that the soundness error
for 2

3 n is much smaller than 1
3 n.

Why only perfect correctness and robustness? [19]
presented also two extensions of the basic construction
that allow to use MPC protocol with statistical correct-
ness or with statistical robustness, but we are not con-
sidering those cases here for two reasons: first, the re-
sulting ZK protocols have higher round complexity (and
are therefore not Σ-protocols); second, perfectly secure
MPC protocols are more efficient: practically efficient
MPC protocols which only achieve statistical security
(even when allowing arbitrary two-party channels, such
as in [5, 22]) require parties to store tags or MACs to-
gether with their shares, and to make sure that the sta-

USENIX Association 25th USENIX Security Symposium 1075

tistical error is negligibly small these tags need to be at
least as long as the security parameter7, whereas in per-
fectly secure MPC protocols the share size can be made
constant.

Why not Version 2? Note that the soundness error
of Version 1 with (n, t,r) = (3,2,0) is the same as the
soundness error of Version 2 with (n, t,r) = (3,1,0), thus
the number of required rounds is exactly the same. How-
ever (i) Version 2 requires to compute and open more
commitments and (ii) Version 2 only works with plain
channels, while Version 1 allows to use arbitrary chan-
nels which helps in constructing more efficient protocols.

4 Generalizing IKOS

This section contains a generalized and optimized ver-
sion of the IKOS protocol that works for any relation de-
fined by a function, φ : X →Y which can be decomposed
in the “right way”. In particular, in Section 4.2 we will
describe a ZK Σ-protocol for the relation Rφ defined by
Rφ (y,x) = 1 ⇔ φ(x) = y, while the decomposition used
to construct it is formalized in the following section.

Protocol Π∗
φ

Let φ : X → Y be a function and D a related
(2,3)-decomposition as defined in Definition 4.1.

Input: x ∈ X

1. Sample random tapes k1,k2,k3;

2. Compute (x1,x2,x3)← Share(x;k1,k2,k3);

3. Let w1,w2,w3 be vectors with N +1 entries;

• Initialize wi[0] = xi for all i ∈ {1,2,3};

• For j = 1, . . . ,N, compute:

• For i = 1,2,3, compute

wi[j] = φ (j)
i

(
(wm[0.. j−1],km)m∈{i,i+1}

)

4. Compute yi =Outputi(wi,ki) for i ∈ {1,2,3};

5. Compute y = Rec(y1,y2,y3);

Output: y ∈ Y

Figure 4: Given a correct decomposition D , the protocol
Π∗

φ can be used to evaluate the function φ .

7This can be avoided for SIMD computations [10].

4.1 (2,3)-Function Decomposition
Given an arbitrary function φ : X →Y and an input value
x ∈ X we want to compute the value φ(x) splitting the
computation in 3 branches such that the values com-
puted in 2 branches reveals no information about the
input x. In order to achieve this, we start by “split-
ting” the value x in three values x1,x2,x3 (called input
shares) using a surjective function that we indicate with
Share. These input shares as well as all the interme-
diate values are stored in 3 string w1,w2,w3 called the
views. More precisely, wi contains the values computed
in the computation branch i. In order to achieve the goal
and compute the value y = φ(x), we use a finite fam-
ily of efficiently computable functions that we indicate
with F =

⋃N
j=1{φ (j)

1 ,φ (j)
2 ,φ (j)

3 }. The function φ (j)
m takes

as inputs specific values from the views wm,wm+1 with
m= {1,2,3} and where 3+1= 1. The functions are used
in the following way: we use functions φ (j)

1 ,φ (j)
2 ,φ (j)

3 to
compute the next value to be stored in each view wm:
The function φ (1)

m takes as input wm,wm+1 (which at this
point contain only the shares xm,xm+1) and outputs one
value which is saved in position 1 of the views wm. We
continue like this for all N functions, with the difference
that in step j > 1, the function φ (j)

m can receive as in-
put (any subset of) the current views wm,wm+1. The
initial function Share and all subfunctions φ (j)

m are al-
lowed to be randomized, and they get their coins from
k1,k2,k3, three random tapes which correspond to the
three branches. Finally, after the N steps described, the 3
functions Output1,Output2,Output3 are used to com-
pute the values yi = Outputi(wi) that we call output
shares. From these three values we compute the final
output y = φ(x) using the function Rec. The entire pro-
cedure is described in detail in Figure 4 (Protocol Π∗

φ).

Definition 4.1. A (2,3)-decomposition for the function
φ is the set of functions

D = {Share,Output1,Output2,Output3,Rec}∪F

such that Share is a surjective function and φ (j)
m , Outputi

and Rec are functions as described before. Let Π∗
φ be the

algorithm described in Figure 4, we have the following
definitions.

• (Correctness) We say that D is correct if Pr[φ(x) =
Π∗

φ (x)] = 1 for all x ∈ X. The probability is over
the choice of the random tapes ki.

• (Privacy) We say that D has 2-privacy if it is correct
and for all e ∈ [3] there exists a PPT simulator Se
such that

({ki,wi}i∈{e,e+1},ye+2) and Se(φ ,y)

have the same probability distribution for all x ∈ X.

1076 25th USENIX Security Symposium USENIX Association

w1[0] = x1 w2[0] = x2 w3[0] = x3

Share

x

φ (1)
1 φ (1)

2 φ (1)
3

φ (2)
1 φ (2)

2 φ (2)
3

...
...

...

Output1 Output2 Output3

Rec

y

x1 x2
x3

w1[1] w2[1] w3[1]

w1 w2 w3

w1[2] w2[2] w3[2]

y1 y2
y3

Figure 5: Pictorial representation of a (2,3)-
decomposition of the computation y = φ(x) showing the
three branches.

4.1.1 The Linear Decomposition

We present here an explicit example of a convenient
(2,3)-decomposition. Let Z be an arbitrary finite ring
such that φ : Zk → Z� can be expressed by an arithmetic
circuit over the ring using addition by constant, multipli-
cation by constant, binary addition and binary multipli-

cation gates8. The total number of gates in the circuit is
N, the gates are labelled with indices in [N]. The linear
(2,3)-decomposition of φ is defined as follows:

• ShareZ(x;k1,k2,k3) samples random x1,x2,x3
such that x = x1 +x2 +x3;

• The family FZ =
⋃N

c=1{φ (c)
1 ,φ (c)

2 ,φ (c)
3 } is defined

in the following way. Assume that the c-th gate has
input wires coming from the gate number a and the
gate number b (or only gate number a in the case
of a unary gate), then the function φ (c)

i is defined as
follows: If the c-th gate is a (∀α ∈ Z)

− unary “add α” gate, then ∀ i ∈ [3]:

wi[c] = φ (c)
i (wi[a]) =

{
wi[a]+α if i = 1
wi[a] else

− unary “mult. α” gate, then ∀ i ∈ [3]:

wi[c] = φ (c)
i (wi[a]) = α ·wi[a]

− binary addition gate, then ∀ i ∈ [3]:

wi[c] = φ (c)
i (wi[a],wi[b]) = (wi[a]+wi[b])

− binary multiplication gate, then ∀ i ∈ [3]:

wi[c] = φ (c)
i

(
wi[a,b],wi+1[a,b])

)

= wi[a] ·wi[b]+wi+1[a] ·wi[b]

+wi[a] ·wi+1[b]+Ri(c)−Ri+1(c)

where Ri(c) is a uniformly random function sam-
pled using ki.

• For all i∈ [3], OutputZi (wi,ki) simply selects all the
shares of the output wires of the circuit;

• Finally, RecZ(y1,y2,y3) outputs y = y1 +y2 +y3

Proposition 4.1. The decomposition DZ =
{ShareZ,RecZ,OutputZ1 ,OutputZ2 ,OutputZ3 } ∪ FZ

defined above is a (2,3)-decomposition. Moreover, the
length of each view in DZ is (k+N + �) log |Z|+κ bits.

Correctness of the decomposition follows from in-
spection. Privacy can be shown by constructing an ap-
propriate simulator as shown in Appendix A

In the linear decomposition just presented, the param-
eter N is equal to the total number of gates (unary and
binary) in the circuit computing φ . It is easy to slightly
modify the definition of the functions φ (c)

i in DZ in such

8Note that Boolean circuits are a special case of this, with the XOR,
AND and NOT gate.

USENIX Association 25th USENIX Security Symposium 1077

a way that N results equal to the number of multiplica-
tion gates only. In particular, note that the evaluation
of addition gates (both unary and binary) only requires
computation on values from the same branch, thus they
can be embedded in a generalized multiplication gates
which take as input arbitrary subsets of wires A, B, con-
tains constants α,β ,γ and computes the value:

w[c] =

(
∑
a∈A

α[a]w[a]

)
·

(
∑
b∈B

β [b]w[b]

)
+ γ

4.2 ZKBoo Protocol

Following the idea of [19], we turn a (2,3)-
decomposition of a function φ into a zero-knowledge
protocol for statements of the form “I know x such
that φ(x) = y”. We indicate with Lφ the language
{y |∃x s.t. φ(x) = y}.

Assume that a (2,3)-decomposition of the function φ
is known (see Section 4.1). The structure of the result-
ing protocol (Figure 6) is very similar to the structure of
the IKOS protocol. If y ∈ Lφ is the public input of the
proof, then the prover P uses his private input x (with
φ(x) = y) to run “in his head” the protocol Π∗

φ . After
the emulation of the protocol, P commits to each of the 3
produced views w1,w2,w3. Now the verifier challenges
the prover to open 2 of the commitments. Finally, the
verifier accepts if the opened views are consistent with
the decomposition used and with output y.

Proposition 4.2. The ZKBoo protocol (Figure 6) is a Σ-
protocol for the relation Rφ with 3-special soundness.

Proof. Clearly, the ZKBoo protocol has the right com-
munication pattern and it is complete given that the de-
composition D is correct. Moreover, the protocol satis-
fies the 3-special soundness property: consider 3 accept-
ing conversations (a, i,zi), i ∈ [3]: first note that thanks
to the binding property of the commitment, the view w1
contained in z1 and the one contained in z3 are identi-
cal, and the same holds for the other views w2,w3 and
random tapes k1,k2,k3. Then, we can traverse the de-
composition of φ backwards from the output to the input
shares: since the three conversations are accepting, we
have that Rec(y1,y2,y3) = y, that yi = Outputi(wi) ∀i,
and finally that every entry in all of wi was computed
correctly. Therefore, since the Share function is surjec-
tive, we can compute x′ = Share−1(w1[0],w2[0],w3[0]).
Thanks to the correctness of the decomposition we thus
have that φ(x′) = y, which is what we wanted to prove.
Note that the protocol does not satisfy 2-special sound-
ness, even if two accepting conversation actually contain
all three views: in this case, since one of the branches of

ZKBoo Protocol

The verifier and the prover have input y ∈ Lφ .
The prover knows x such that y = φ(x). A (2,3)-
decomposition of φ is given. Let Π∗

φ be the protocol
related to this decomposition.

Commit: The prover does the following:

1. Sample random tapes k1,k2,k3;

2. Run Π∗
φ (x) and obtain the views

w1,w2,w3 and the output shares
y1,y2,y3;

3. Commit to ci =Com(ki,wi) for all i∈ [3];

4. Send a = (y1,y2,y3,c1,c2,c3).

Prove: The verifier choose an index e ∈ [3] and
sends it to the prover. The prover answers
to the verifier’s challenge sending opening
ce,ce+1 thus revealing z= (ke,we,ke+1,we+1).

Verify: The verifier runs the following checks:

1. If Rec(y1,y2,y3) �= y, output reject;

2. If ∃ i ∈ {e,e + 1} s.t. yi �= Outputi(wi),
output reject;

3. If ∃ j such that

we[j] �= φ (j)
e

(
we,we+1,ke,ke+1

)

output reject;

4. Output accept;

Figure 6: ZKBoo protocol for the language Lφ in the
commitment-hybrid model.

the computation has not been checked, ∃ i s.t. wi might
not be equal to φ (j)

i

(
wi,wi+1,ki,ki+1

)
.

To prove the special honest-verifier ZK property, we
consider the simulator S defined by the following steps.
The input are y ∈ Lφ and e ∈ [3]: run the 2-privacy
simulator (which is guaranteed to exist thanks to the
2-privacy property of the decomposition D as in Defi-
nition 4.1), which returns ({ki,wi}i∈{e,e+1},ye+2), sets
we+2 = 0|w|,ke+2 = 0|k| and then constructs a by com-
mitting to the three views and tapes.

Efficiency. Let φ : Zk → Z� be a function that can be
expressed by a circuit over the finite ring Z with N mul-

1078 25th USENIX Security Symposium USENIX Association

tiplication gates. If we repeat σ(log2 3− 1)−1 copies of
the ZKBoo protocol instantiated with the linear decom-
position described in Section 4.1.1, and where we gener-
ate the random tapes pseudo-randomly with security pa-
rameter κ , we get a Σ-protocol with soundness 2−σ and
bit-size

σ(log2 3−1)−1 ·2 · [log2(|Z|)(k+N + �)+κ]

5 Zero-Knowledge for SHA-1/SHA-256

In this section we describe our case study, in which
we implemented the protocol described in Section 4 for
proving knowledge of preimages of SHA-1 and SHA-
256. We start describing the choices we made in our
implementation, describe the result of our empirical val-
idation and finally compare with state-of-the-art proto-
cols for the same task. Our implementation is available
at https://github.com/Sobuno/ZKBoo.

5.1 Circuits For SHA-1/SHA-256
The linear-decomposition protocol described in Sec-
tion 4 can be used with arithmetic circuits over arbi-
trary rings. Our first choice is picking a ring in which to
express the computation of SHA-1/SHA-256. The two
functions are quite similar, and they both use vectors of
32 bits for internal representation of values. Three kind
of operations are performed over these bit-vectors: bit-
wise XORs, bitwise ANDs, and additions modulo 232.
Implementing the two algorithms (after some simple op-
timization to reduce the number of bitwise ANDs) re-
quires the following number of operations9:

AND XOR ADD
SHA-1 40 372 325
SHA-256 192 704 600

Hence, the two natural choices for the ring are Z2
(where XOR gates are for free but AND/ADD require
32 multiplication gates) and Z232 (where ADD is free but
bitwise operations require a linear number of multiplica-
tion gates). Since the number of XORs dominates in both
algorithms, we opted for an implementation over the ring
Z2.

5.2 Implementation of Building Blocks
We wrote our software in C, using the OpenSSL10 li-
brary. We instantiated the building blocks in our protocol
in the following way:

9Note that the AND complexity of our circuits is approximately 1/3
of the “standard MPC circuit” from https://www.cs.bris.ac.uk/

Research/CryptographySecurity/MPC/.
10https://www.openssl.org

RNG: We generate the random tapes pseudorandomly
using AES in counter mode, where the keys are gener-
ated via the OpenSSL secure random number generator.
In the linear decomposition of multiplication gates, we
use a random function R : [N]→ Z2. We implement this
function by picking a bit from the stream generated using
AES. In particular, we compute

R(i) = AES(K,�i/128�)[i mod 128]

which means that 3 calls to AES are sufficient to eval-
uate 128 individual AND gates. Note that since N (the
number of AND gates) is known in advance, we can pre-
compute all calls to AES at the beginning of the proto-
col. These two optimizations, together with the native
support for AES in modern processors, proved very ef-
fective towards decreasing running times.
Commitments: In the first step of the protocol the
prover commits to the three views w1,w2,w3. Those
commitments have been implemented using SHA-
256 as the commitment function i.e., Com(x,r) =
SHA-256(x,r). Under the (mild) assumptions that SHA-
256 is collision resistant and that SHA-256(·,r) is a PRF
(with key r) the commitments are binding and hiding.
The Fiat-Shamir Oracle. To make the proofs non-
interactive, we need a random oracle H : {0,1}∗ →
{1,2,3}r where r is the number of repetitions of our
basic protocol. We instantiate this using SHA-256 as
a random oracle and by performing rejection sampling.
In particular, we compute the first output coordinate of
H(x) by looking at the first two output bits of SHA-
256(0,x) and mapping (a,b)→ 2a+ b+ 1. In case that
(a,b) = (1,1) we look at the third-fourth bit instead and
repeat. If there are no more bits left in the output of
the hash function, we evaluate SHA-256(1,x) and so on.
In our experiments the maximum number of repetition
is r ∈ {69,137}, thus we call the hash function once or
twice (on expectation).

5.3 Experimental Setup
We report on the results of the implementation of SHA-
1 and SHA-256 for 69 and 137 repetitions each. Those
correspond to soundness errors 2−40 and 2−80. While the
security level 2−40 is not sufficient for the case of non-
interactive zero-knowledge, it offers reasonable security
guarantees in the interactive case – note however that in
this case our timings are only indicative of the local com-
putation as they do not account for the necessary network
communication.

Our experiments were run on a machine with an AMD
FX-8350 CPU, running 8 cores at 4.00 GHz. The pro-
grams were run under Windows 10 Pro version 1511
(OS Build 10586.14) on a Seagate Barracuda 7200 RPM
SATA 3.0 Gb/s hard drive with 16MB cache. Note that

USENIX Association 25th USENIX Security Symposium 1079

computing and verifying our proofs is an embarrassingly
parallel task, thus it was possible to effortlessly take ad-
vantage of our multi-core architecture using OpenMP11,
an API useful for making a C program multi-threaded.
We note that we have only done this for the main loop
of the program, which iterates over the individual repeti-
tions of the proofs (which are clearly independent from
each other), thus it is likely that there is room for fur-
ther parallelisation. Timings were done using C native
clock() function and are measured in milliseconds.

5.4 Experimental Results
Breakdown. In Table 1 we report on the timings we
obtained for both SHA-1 and SHA-256, with 69 and 137
rounds, both enabling and disabling parallelisation. In
this table we also present a breakdown of the running
time. In particular we measure the following phases for
the prover:

• Commit: This is the time to run the Commit pro-
cedure (Figure 6) to produce a. It is further divided
into the following sub-timings: (Rand. gen.) Gen-
eration of all needed randomness using OpenSSL
RNG as well as preprocessing of the PRF; (Algo-
rithm exec.) Time taken to run the algorithm Π∗

φ .
This is the total time for all 69/137 rounds; (Com-
mitment) Generating commitments of the views;

• Gen. challenge: Using the random oracle to gener-
ate the challenge vector as e = H(y,a);

• Prove: Building the vector z;

• Output to disk: Writing (a,e,z) to disk;12

For the verifier:

• Input from disk: Reading the proof from file;

• Gen. challenge: Regenerate the challenge vector
using the random oracle;

• Verify: The time to run all the rounds of the Verify
procedure;

Finally, with proof size we indicate the size of the string
π = (y,a,z) on disk in KB.

Parallelisation. Figure 7 and 8 show how the run-
ning time of the prover (resp. verifier) changes when we
change the number of rounds (from 1 to 137) and the
number of threads (from 1 to 8). We include the graphs
for SHA-256 only. It is easy to see that the running time

11http://openmp.org
12We observed that the timings of writing to disk are very noisy, and

not always monotone in the size of the written file.

20 40 60 80 100 120
0

20

40

60

Number of rounds

Ti
m

e
(m

s)

SHA-256 prover running time

1 thread
2 threads
3 threads
4 threads
5 threads
6 threads
7 threads
8 threads

Figure 7: Relation between the total running time and
the number of rounds for the SHA-256 prover, average
over 100 runs.

20 40 60 80 100 120
0

20

40

60

Number of rounds

Ti
m

e
(m

s)

SHA-256 verifier running time

Figure 8: Relation between the total running time and
the number of rounds for the SHA-256 verifier, average
over 100 runs.

increases linearly with the number of rounds, and that the
improvement due to multithreading is significant. The
graph indicates that there is some fluctuation in the al-
gorithm’s run time for all number of threads when us-
ing up to about 85 rounds, which is mostly due to the

1080 25th USENIX Security Symposium USENIX Association

SHA-1 SHA-256
69 rounds 137 rounds 69 rounds 137 rounds

Serial Paral. Serial Paral. Serial Paral. Serial Paral.
Prover (ms) 18.98 8.12 31.73 12.73 30.81 12.45 54.63 15.95
Commit 13.45 3.68 26.73 6.59 24.47 5.86 48.25 10.07
- Rand. gen. 1.35 0.60 2.47 0.88 2.28 0.80 4.46 1.13
- Algorithm exc. 10.41 2.69 21.55 5.06 19.60 4.44 38.68 7.87
- Commitment 1.37 0.39 2.71 0.64 2.56 0.62 5.09 1.07
Gen. challenge 0.06 0.05 0.10 0.13 0.05 0.06 0.09 0.09
Prove 0.12 0.18 0.28 0.32 0.32 0.39 0.07 0.53
Output to disk 5.35 4.21 4.62 5.70 5.08 5.39 4.76 4.43
Verifier (ms) 11.68 2.35 22.85 4.39 34.16 6.77 67.74 13.20
Input from disk 0.09 0.11 0.13 0.16 0.15 0.16 0.29 0.25
Gen. challenge 0.06 0.05 0.10 0.10 0.06 0.05 0.10 0.11
Verify 11.53 2.20 22.63 4.12 33.95 6.56 67.35 12.85
Proof size (KB) 223.71 444.18 421.01 835.91

Table 1: Breakdown of times and proof size for 69/137 rounds of SHA-1/SHA-256, average of 1000 runs

Preproc. (ms) Prover (ms) Verifier (ms) Proof size (B)
ZKBoo 0 13 5 454840
ZKGC (Estimates) 0 > 19 (OT only) > 25 (OT only) 186880
Pinocchio 9754 12059 8 288

Table 2: Comparison of approaches for SHA-1

noise introduced by disk operations13. We note that the
runtime of the verifier benefits more from parallelisation.
This is consistent with Amdahl’s law since, as shown in
Table 1, the prover spends significantly more time per-
forming tasks which do not benefit from parallelisation
(e.g., writing to disk).

5.5 Comparison
Here we compare the performances of ZKBoo with some
of the state-of-the-art protocol for the same task. In par-
ticular, we compare the performances of proving/veri-
fying knowledge of SHA-1 preimages across ZKBoo,
Pinocchio [23] and ZKGC [21].

Pinocchio [23] is an implementation of SNARKs for
verifiable outsourcing of computation. While not its
main purpose, it can generate zero-knowledge proofs at a
negligible extra cost over sound-only proofs. The choice
of benchmarking SHA-1 only (and not SHA-256) is due
to the fact that the Pinocchio library only contains SHA-
1. The runtime reported for Pinocchio are obtained on
the same machine as our implementation. The results
shows that ZKBoo is faster at both proving and verify-
ing, with an incredible 103 factor for the prover. Note

13See the full version [14] for graphs showing the running times
without disk operations.

here that if the underlying circuit had been larger, the
proof size and the verification time of Pinocchio would
not change, while its preprocessing and proving time
would grow accordingly. We note also that Pinocchio
has a large preprocessing time where some prover/veri-
fier key are generated. Those keys are circuit dependent,
and for SHA-1 the prover key is 6.5 MB and the veri-
fier key is 1.1 MB. To Pinocchio’s defence, it must be
noted that 1) Pinocchio is a general purpose system that
can generate proofs for any circuit (provided as an in-
put file) while our implementation contains the SHA cir-
cuit hard-coded; 2) according to [23], Pinocchio has not
been parallelised; and 3) Pinocchio uses a SHA-1 circuit
which is approximately 3 times larger than ours. While it
is conceivable that Pinocchio could be made faster using
some of the optimizations introduced here, we do not be-
lieve that Pinocchio could ever reach proving times sim-
ilar to ZKBoo, due to the use of heavy public-key tech-
nology (exponentiations in a pairing-friendly group) for
each gate in the circuit.

ZKGC [21]. For the case of ZKGC, we could not di-
rectly compare implementations, since the source code
for [21] is not publicly available. In addition, since
the publication of [21], several significant improvements
have been proposed but have not been implemented yet.
Therefore, in Table 2, we give an accurate estimate of

USENIX Association 25th USENIX Security Symposium 1081

the size of the proofs generated using ZKGC but only a
lower-bound for its runtime. The estimates are computed
using the following tools: (GC) we estimate the proof
size using the communication complexity of the most ef-
ficient (in terms of communication complexity) garbled
circuits, namely privacy-free garbled circuits [13, 27]
that can be instantiated with as little as one ciphertext
(128 bits using AES) per AND gate in the circuit; (OT)
we plug the size and runtime given by the most effi-
cient OT available [6]. Since the input size of SHA-1
is quite large (512 bits), it might be that using OT exten-
sion would prove useful. Therefore, to make the com-
parison even more favourable towards ZKGC, we only
count the runtime of 190 base OTs necessaries for active
secure OT extensions [1] and we do not account at all for
the runtime of the OT extension protocol nor the genera-
tion/verification of the GC. The resulting estimates show
that even when counting the base OTs alone, the run-
time of ZKGC is already larger than the runtime of ZK-
Boo for the SHA-1 circuit. As for proof size, we note
that ZKGC produces shorter proofs. However, the ap-
proach of ZKGC cannot be made non-interactive which
is a qualitative drawback and it is likely to introduce sig-
nificant slow-downs due to network latency.

6 Conclusions

In this paper we described ZKBoo, the first attempt
to make general purpose zero-knowledge practical us-
ing the “MPC-in-the-head” approach of Ishai et al. [19].
We discussed how to generalize their protocol using the
idea of (2,3)-function decompositions, we showed sim-
ple linear decompositions for arithmetic circuits over any
ring and we leave it as a future work to find compact de-
compositions for other interesting functions.

Our experimental results show that for practically rel-
evant circuits (such as SHA-1), our protocol is the fastest
in terms of proving time, and where the verification time
is comparable even with SNARKs technology.

Acknowledgements

This project was supported by: the Danish National Re-
search Foundation and The National Science Foundation
of China (grant 61361136003) for the Sino-Danish Cen-
ter for the Theory of Interactive Computation; the Cen-
ter for Research in Foundations of Electronic Markets
(CFEM); the European Union Seventh Framework Pro-
gramme ([FP7/2007-2013]) under grant agreement num-
ber ICT-609611 (PRACTICE).

References
[1] ASHAROV, G., LINDELL, Y., SCHNEIDER, T., AND ZOHNER,

M. More efficient oblivious transfer extensions with security for
malicious adversaries. In Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I (2015), pp. 673–701.

[2] BEN-OR, M., GOLDWASSER, S., AND WIGDERSON, A.
Completeness theorems for non-cryptographic fault-tolerant dis-
tributed computation (extended abstract). In STOC (1988), pp. 1–
10.

[3] BEN-SASSON, E., CHIESA, A., GARMAN, C., GREEN, M.,
MIERS, I., TROMER, E., AND VIRZA, M. Zerocash: Decen-
tralized anonymous payments from bitcoin. In 2014 IEEE Sym-
posium on Security and Privacy, SP 2014, Berkeley, CA, USA,
May 18-21, 2014 (2014), pp. 459–474.

[4] BEN-SASSON, E., CHIESA, A., TROMER, E., AND VIRZA, M.
Succinct non-interactive zero knowledge for a von neumann ar-
chitecture. In Proceedings of the 23rd USENIX Security Sympo-
sium, San Diego, CA, USA, August 20-22, 2014. (2014), pp. 781–
796.

[5] BENDLIN, R., DAMGÅRD, I., ORLANDI, C., AND ZAKARIAS,
S. Semi-homomorphic encryption and multiparty computation.
In Advances in Cryptology - EUROCRYPT 2011 - 30th An-
nual International Conference on the Theory and Applications
of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.
Proceedings (2011), K. G. Paterson, Ed., vol. 6632 of Lecture
Notes in Computer Science, Springer, pp. 169–188.

[6] CHOU, T., AND ORLANDI, C. The simplest protocol for obliv-
ious transfer. In Progress in Cryptology - LATINCRYPT 2015
- 4th International Conference on Cryptology and Information
Security in Latin America, Guadalajara, Mexico, August 23-26,
2015, Proceedings (2015), pp. 40–58.

[7] DAMGAARD, I. On σ -protocols (2010). Lecture on Cryptologic
Protocol Theory (Aaurhus Unvivesrity, course notes).

[8] DAMGÅRD, I., AND ISHAI, Y. Scalable secure multiparty com-
putation. In Advances in Cryptology-CRYPTO 2006. Springer,
2006, pp. 501–520.

[9] DAMGÅRD, I., ISHAI, Y., AND KRØIGAARD, M. Perfectly
secure multiparty computation and the computational overhead
of cryptography. In Proceedings of EuroCrypt (Springer Verlag
2010), pp. 445–465.

[10] DAMGÅRD, I., AND ZAKARIAS, S. Constant-overhead secure
computation of boolean circuits using preprocessing. In TCC
(2013), pp. 621–641.

[11] EVEN, S., GOLDREICH, O., AND LEMPEL, A. A randomized
protocol for signing contracts. Commun. ACM 28, 6 (1985), 637–
647.

[12] FIAT, A., AND SHAMIR, A. How to prove yourself: Practical
solutions to identification and signature problems. In Advances
in Cryptology—CRYPTO’86 (1986), Springer, pp. 186–194.

[13] FREDERIKSEN, T. K., NIELSEN, J. B., AND ORLANDI, C.
Privacy-free garbled circuits with applications to efficient zero-
knowledge. In Advances in Cryptology - EUROCRYPT 2015 -
34th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part II (2015), pp. 191–219.

[14] GIACOMELLI, I., MADSEN, J., AND ORLANDI, C. Zkboo:
Faster zero-knowledge for boolean circuits. Cryptology ePrint
Archive, Report 2016/163, 2016. http://eprint.iacr.org/.

1082 25th USENIX Security Symposium USENIX Association

[15] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. How to
play any mental game. In Proceedings of the nineteenth annual
ACM symposium on Theory of computing (1987), ACM, pp. 218–
229.

[16] GOLDWASSER, S., MICALI, S., AND RACKOFF, C. The knowl-
edge complexity of interactive proof-systems (extended abstract).
In Proceedings of the 17th Annual ACM Symposium on Theory
of Computing, May 6-8, 1985, Providence, Rhode Island, USA
(1985), pp. 291–304.

[17] HAZAY, C., AND LINDELL, Y. Efficient secure two-party proto-
cols: Techniques and constructions. Springer Science & Business
Media, 2010.

[18] HAZAY, C., AND VENKITASUBRAMANIAM, M. On the power
of secure two-party computation. Cryptology ePrint Archive,
Report 2016/074. To appear in Crypto 2016, 2016. http://

eprint.iacr.org/.

[19] ISHAI, Y., KUSHILEVITZ, E., OSTROVSKY, R., AND SAHAI,
A. Zero-knowledge from secure multiparty computation. In Pro-
ceedings of the Thirty-ninth Annual ACM Symposium on Theory
of Computing (2007), STOC ’07, ACM, pp. 21–30.

[20] ISHAI, Y., KUSHILEVITZ, E., OSTROVSKY, R., AND SAHAI,
A. Zero-knowledge proofs from secure multiparty computation.
SIAM Journal on Computing 39, 3 (2009), 1121–1152.

[21] JAWUREK, M., KERSCHBAUM, F., AND ORLANDI, C. Zero-
knowledge using garbled circuits: how to prove non-algebraic
statements efficiently. In 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin, Ger-
many, November 4-8, 2013 (2013), pp. 955–966.

[22] NIELSEN, J. B., NORDHOLT, P. S., ORLANDI, C., AND
BURRA, S. S. A new approach to practical active-secure two-
party computation. In Advances in Cryptology - CRYPTO 2012
- 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings (2012), pp. 681–700.

[23] PARNO, B., HOWELL, J., GENTRY, C., AND RAYKOVA, M.
Pinocchio: Nearly practical verifiable computation. In 2013
IEEE Symposium on Security and Privacy, SP 2013, Berkeley,
CA, USA, May 19-22, 2013 (2013), pp. 238–252.

[24] RABIN, M. O. How to exchange secrets with oblivious transfer.
IACR Cryptology ePrint Archive 2005 (2005), 187.

[25] RANELLUCCI, S., TAPP, A., AND ZAKARIAS, R. W. Efficient
generic zero-knowledge proofs from commitments. Cryptology
ePrint Archive, Report 2014/934. To appear in ICITS 2016, 2014.
http://eprint.iacr.org/.

[26] SCHNORR, C.-P. Efficient identification and signatures for smart
cards. In CRYPTO (1989), pp. 239–252.

[27] ZAHUR, S., ROSULEK, M., AND EVANS, D. Two halves make
a whole - reducing data transfer in garbled circuits using half
gates. In Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part II (2015), pp. 220–250.

A Appendix

Proof of Proposition 4.1

Proof. In order to prove that the decomposition DZ is
correct is enough to prove that for any c ∈ [N] the fol-
lowing holds.

(1) if the c-th gate is an “add α” gate, then:

3

∑
i=1

wi[c] =

(
3

∑
i=1

wi[a]

)
+α

(2) if the c-th gate is an “mult. α” gate, then:

3

∑
i=1

wi[c] =

(
3

∑
i=1

wi[a]

)
·α

(3) if the c-th gate is an addition gate, then:

3

∑
i=1

wi[c] =

(
3

∑
i=1

wi[a]

)
+

(
3

∑
i=1

wi[b]

)

(4) if the c-th gate is a multiplication gate, then:

3

∑
i=1

wi[c] =

(
3

∑
i=1

wi[a]

)
·

(
3

∑
i=1

wi[b]

)

Indeed, using (1), (2), (3) and (4) iteratively for all
the gates in the circuit we can prove that ∑3

i=1 wi[N] =
φ(∑3

i=1 xi) and from this it follows that

Π∗
φ (x) = RecZ(y1, . . . ,yn) =

3

∑
i=1

yi

=
3

∑
i=1

wi[N] = φ

(
3

∑
i=1

xi

)
= φ(x)

The first three follow trivially by the definition of the
function φ (c)

Ai
when the c-th gate is a an “add α”, “mult.

α” and addition gate, respectively. Now assume that the
c-th gate is a multiplication gate. Then, using the defini-
tion for the function φ (c)

Ai
for this case and recalling that

the index values are computed modulo 3, we have that

3

∑
i=1

wi[c] =
3

∑
i=1

(
wi[a] ·wi[b]+wi+1[a] ·wi[b]+wi[a] ·wi+1[b]

+Ri(c)−Ri+1(c)
)

=
3

∑
i=1

wi[a] · (wi[b]+wi+1[b])+
3

∑
i=1

wi[a] ·wi+2[b]+

+
3

∑
i=1

Ri(c)−
3

∑
i=1

Ri(c)

=

(
3

∑
i=1

wi[a]

)
·

(
3

∑
i=1

wi[b]

)

USENIX Association 25th USENIX Security Symposium 1083

We now pass to prove the 2-privacy property. Given
e ∈ [3], we define the simulator Se on input y with the
following instructions:

1. Sample random tapes k′
e,k′

e+1;

2. Sample uniformly at random the values w′
e[0] and

w′
e+1[0]. Then, for all c ∈ [N]: If the c-th gate is

an “add α”, “mult. α” or addition gate then define
w′

e[c] and w′
e+1[c] using the functions φ (c)

e and φ (c)
e+1,

respectively. If the c-th gate is a multiplication gate
then sample uniformly at random the value w′

e+1[c]

and compute the value w′
e[c] using φ (c)

e ; In this way
define the entire views w′

e and w′
e+1;

3. Compute y′e = Outpute(w′
e) and y′e+1 =

Outpute+1(w′
e+1);

4. Compute y′e+2 = y− (y′e +y′e+1);

5. Output ({k′
i,w′

i}i∈{e,e+1},y′e+2)

It is easy to verify that the output of the sim-
ulator Se has the same distribution of the string
({ki,wi}i∈{e,e+1},ye+2) produced by the protocol Π∗

φ .
Indeed, all the elements in the output of Se are computed
using the same commands used in Π∗

φ , except for the ele-
ment w′

e+1[c] when the c-th gate is a multiplication gate.
In this case w′

e+1[c] is sample uniformly at random, while
we+1[c] in the protocol is computed using the function
φ (c)

e+1. In particular, we+1[c] is computed by subtracting to
determined value the element Ri+2(c). Since Ri+2 is an
uniformly random function sampled using an indepen-
dent tape ke+2, the distribution of we+1[c] in the protocol
is the uniform one, that is it has the same distribution of
w′

e+1[c] in the output of Se. Therefore, we can conclude
that Se is a correct simulator for the decomposition DZ.

Finally, by inspection we have that |wi| = (k + N +
�) log |Z|+κ for all i ∈ [3].

USENIX Association 25th USENIX Security Symposium 1085

The Cut-and-Choose Game and its Application to Cryptographic Protocols

Ruiyu Zhu
Indiana University

Yan Huang
Indiana University

Jonathan Katz
University of Maryland

abhi shelat
Northeastern University

Abstract
The cut-and-choose technique plays a fundamental role
in cryptographic-protocol design, especially for secure
two-party computation in the malicious model. The basic
idea is that one party constructs n versions of a message
in a protocol (e.g., garbled circuits); the other party ran-
domly checks some of them and uses the rest of them in
the protocol. Most existing uses of cut-and-choose fix in
advance the number of objects to be checked and in opti-
mizing this parameter they fail to recognize the fact that
checking and evaluating may have dramatically different
costs.

In this paper, we consider a refined cost model and
formalize the cut-and-choose parameter selection prob-
lem as a constrained optimization problem. We analyze
“cut-and-choose games” and show equilibrium strategies
for the parties in these games. We then show how our
methodology can be applied to improve the efficiency
of three representative categories of secure-computation
protocols based on cut-and-choose. We show improve-
ments of up to an-order-of-magnitude in terms of band-
width, and 12–106% in terms of total time. Source
code of our game solvers is available to download at
https://github.com/cut-n-choose.

1 Introduction

Most efficient implementations for secure two-party
computation in the semi-honest setting rely on garbled
circuits. One party, acting as circuit generator, prepares a
garbled circuit for the function of interest and sends it to
the other party along with garbled values corresponding
to its input. The second party, who will serve as the cir-
cuit evaluator, obtains garbled values for its own inputs
using oblivious transfer, and then evaluates the garbled
circuit to obtain the result.

The primary challenge in handling malicious adver-
saries is to ensure that the garbled circuit sent by the

first party is constructed correctly. The cut-and-choose
paradigm is a popular and efficient mechanism for doing
so. The basic idea is that the circuit generator produces
and sends several garbled circuits; the circuit evaluator
checks a random subset of these, and evaluates the rest to
determine the final result. Since its formal treatment by
Lindell and Pinkas [16], numerous works have improved
various aspects of the cut-and-choose methodology and
used it to design secure protocols [28, 18, 24, 25, 26, 17,
14, 6, 15, 10, 27, 4, 2, 19, 11, 1, 20]. These prior works
fall roughly into three categories:
1. MajorityCut. Here the circuit evaluator determines

its output by taking the majority value among the
evaluated garbled circuits. Thus, security holds as
long as a majority of the evaluated circuits are cor-
rect. This is the classic approach adopted by many pa-
pers [16, 28, 18, 17] and implementations [25, 26, 14].

2. SingleCut. Here the circuit evaluator is able to ob-
tain the correct output as long as at least one of the
evaluated circuits are correctly generated. Schemes
adopting this approach include [15, 10, 4, 2].

3. BatchedCut. This considers a slightly different set-
ting in which the parties repeatedly evaluate some
function, and the goal is to obtain good amortized
efficiency by batching the cut-and-choose procedure
either across multiple instances of secure computa-
tion [19, 11], or at the gate level [24, 6].

Although SingleCut is asymptotically better than Ma-
jorityCut, some SingleCut protocols [15] require using
MajorityCut on a smaller circuit as a sub-routine, and
therefore optimizations to MajorityCut can result in effi-
ciency improvements to SingleCut. In addition, Majori-
tyCut works better for applications with long outputs as
its cost does not grow with output length.

When setting parameters for cut-and-choose proto-
cols, in order to optimize efficiency for some target
level of security, state-of-the-art approaches treat circuit
checking roughly as expensive as circuit evaluation, and
hence strive to optimize the total number of garbled cir-

1086 25th USENIX Security Symposium USENIX Association

Table 1: Bandwidth cost ratios r in various settings.

AESa Floating
pt multb

ORAM
R/Wd Sortc

AND
gates 6800 4300 350 K 6.3×109

Ratio r 4533 2866 233 K 4.2×109

To be conservative in estimating r, figures assume 128-
bit labels. aOne-block AES128 with 128-bit wire labels.
(Non-free gate counts, 6800, reported in [3, 31], hence
6800 × 256/(256 + 128) ≈ 4533). bA single multiplica-
tion of two 64-bit IEEE-754 floating-point numbers [21].
cSecurely compute an oblivious access to an ORAM of one
million 32-bit numbers [21]. dSorting one million 32-bit
numbers [21].

cuits involved. Although some researchers [15, 7, 2] ob-
served the asymmetry in the cost of checking and eval-
uation, they did not explore the cost asymmetry further,
and did not investigate the possibility of optimizing cut-
and-choose parameters based on this asymmetry.

As evidenced by many recent prototypes [21, 29, 20,
5, 9, 26, 25, 14, 13], network communication has be-
come the most prominent bottleneck of garbled-circuit
protocols, especially when exploiting dedicated hard-
ware [3, 8] or parallelism [5, 23, 13] for faster gar-
bling/evaluation. However, the bandwidth costs are
markedly different for checking and evaluating circuits:
garbled circuits that are evaluated must be transmitted in
their entirety, but checking garbled circuits can be done
by generating the circuit from a short seed and commit-
ting to the circuit using a succinct commitment [7, 14, 2].
Table 1 presents, in the context of a few example appli-
cations, the bandwidth costs for sending an entire circuit
(i.e. the costs for an evaluated circuit) versus the cost for
committing to the circuit (which, for simplicity, requires
only one SHA256 hash), and thus a sample ratio r that
we use in this paper as a variable.

Based on these observations, we propose a new ap-
proach to optimizing parameters in cut-and-choose pro-
tocols. Our approach casts the interaction between the
circuit generator and circuit evaluator as a game, com-
putes the optimal strategies in this game (which, inter-
estingly, turn out to be mixed strategies), and then sets
parameters while explicitly taking into account the rela-
tive costs of circuit checking and circuit evaluation. Our
optimizations result in cut-and-choose approaches that
can be easily integrated into prior protocols, and can re-
duce the bandwidth in these protocols by an order-of-
magnitude in some settings.

1.1 Prior Work

The protocol of Lindell and Pinkas [16] checks exactly
half the circuits, an idea followed in many subsequent
works [25, 17]. They showed that by generating n cir-
cuits and checking a random subset of size n/2, a cheat-
ing generator succeeds in convincing the evaluator to ac-
cept an incorrect output with probability at most 2−0.311n.
Thus, to achieve (statistical) security level 2−40, their
protocol requires 128 garbled circuits. Shen and She-
lat [26] slightly improved the bound to 2−0.32s by open-
ing roughly 60% (instead of one half) of the circuits; this
reduces the number of garbled circuits needed to 125 for
2−40 security. These protocols belong to the MajorityCut
category in our terminology.

The idea of using SingleCut protocols was subse-
quently introduced [15, 4, 2]. Here, the evaluator chooses
whether to check each circuit with independent prob-
ability 1/2; now n circuits suffice to achieve security
level 2−n.

Most recently, several works [19, 11, 20] have pro-
posed to amortize the cost of cut-and-choose across mul-
tiple evaluations of the same function. Along with the
LEGO family of protocols [6, 24] that amortize checks
at the gate level (rather than the circuit level), they all fall
in the class of BatchedCut protocols. These works show
that cut-and-choose can be very efficient in an amortized
sense, requiring fewer than 8 circuits per execution to
achieve 2−40 security when amortizing over 1000 exe-
cutions. A brief explanation of the BatchedCut idea is
given at the beginning of Section 3.3.

1.2 Contributions

We introduce a game-theoretic approach to study cut-
and-choose in the context of secure-protocol design. The
simplest version of cut-and-choose can be treated as
a zero-sum game (where the utilities are 0/1 for the
loser/winner) between the evaluator and the generator in
which the generator wins if it can produce enough in-
correct circuits to skew the protocol without being de-
tected. Finding an optimal strategy for the evaluator can
be cast as solving a linear-program and results in a ran-
domized strategy for choosing the number of circuits to
check. This linear program can be further refined to take
into consideration the different cost of checking vs eval-
uating (i.e., the ratio r). Analyzing the equilibrium of
this game leads to a constrained optimization problem
that can be used to derive more efficient protocols meet-
ing a targeted security bound (e.g. ε = 2−40 as per many
published implementations).

Our techniques enable optimization based on the pre-
cise relative costs of checking and evaluating, which in
turn may depend on the function being computed as well

2

USENIX Association 25th USENIX Security Symposium 1087

as characteristics of specific deployment settings, such as
software, hardware configuration and network condition,
etc. This provides the ability to “tune” protocols to spe-
cific applications in a much more fine-grained way than
before. We demonstrate that doing so can lead to band-
width savings of 1.2–10×.

We concretely apply our methodology to three
representative types of cut-and-choose-based secure-
computation protocols, and show a significant overall
improvement in the bandwidth usage. For example, we
are able to reduce the network traffic by up to an order-
of-magnitude in comparison with the state-of-the-art Sin-
gleCut (see Figure 5) and MajorityCut (see Figure 2) pro-
tocols, and savings of 20%∼ 80% for state-of-the-art (al-
ready highly optimized) BatchedCut protocols (see Fig-
ure 8). Our improvements do not require any additional
cryptographic assumptions and come with little develop-
ment overhead.

2 Overview

Notation. Throughout this paper, we implicitly fix the
semantic meaning for a few frequently-used variables
(unless explicitly noted otherwise) as in Table 2.

Table 2: Frequently-used variables

ε Failure probability of the cut-and-choose game
r Cost ratio between circuit evaluation and checking
n Total number of circuit copies (n = k+ e)
k Number of circuit copies used for checking
e Number of circuit copies used for evaluation
b Number of bad circuit copies generated

T Total number of circuits used in BatchedCut.
B Bucket size in BatchedCut.
τ Evaluator’s detection rate checking a bad gate/circuit

2.1 Problem Abstraction
Let e and k be the numbers of evaluate-circuits and
check-circuits, respectively. Let r be the ratio between
the costs of evaluating and checking a circuit. In the
case when the parameters e,k are set deterministically
and public, the cut-and-choose parameter optimization
problem can be expressed as the following non-linear
programming problem:

argmin
e,k

r · e+ k

subject to

maxb Pra(e,k,b)≤ ε ,

where ε,r are known input constants; Pra(e,k,b) is the
probability of a successful attack; and b is the total num-
ber of bad circuits generated by the malicious generator.

In the case when at least one of the two parameters (e
and k) is randomly picked by the circuit evaluator from
some public distributions (but sampled values remain se-
cret to the circuit generator at the time of circuit gen-
eration), the optimization problem takes a more general
form

argmin
SE

E[cost(r,SE)]

subject to

E [Pra(SE ,SG)]≤ ε , ∀ SG

where SE and SG are the circuit evaluator’s and the circuit
generator’s strategies, respectively; cost is the cut-and-
choose cost function, and E[·] denotes the expectation
function. Note that the cost function does not need to
account for pre-maturely terminated protocol executions
(due to detected cheating activity). Our goal is to iden-
tify the best SE for the evaluator. We leave the notion
of SE and SG abstract for now but will give more con-
crete representations when analyzing specific protocols
in Section 3.

We stress that, in contrast to the common belief used in
the state-of-the-art cost analysis of cut-and-choose proto-
cols, the cost of cut-and-choose is usually not best rep-
resented by n—the total number of circuits generated,
but rather by a cost ratio r between checking and eval-
uation which depends on many factors such as (1) the
kind of cost (e.g., bandwidth or computation); (2) the
deployment environment (e.g., network condition, dis-
tribution of computation power on the players, buffer-
ing, etc.) (3) the specific cryptographic primitives and
optimization techniques (e.g., the garbling scheme) used
in a protocol. Therefore, the best practice would be al-
ways micro-benchmarking the ratio between the per cir-
cuit cost of evaluation and checking before running the
protocol, and then select the best cut-and-choose strate-
gies accordingly.

2.2 Summary of Our Results
The main thesis of this work is,

Cut-and-choose protocols should be appropri-
ately configured based on the security require-
ment (ε) and the cost ratio (r) benchmarked at
run-time. Such practice can bring significant
cost savings to many cut-and-choose based
cryptographic protocols.

To support our thesis, we have formalized the cut-and-
choose-based protocol configuration problem into a con-
strained optimization problem over a refined cost model.

3

1088 25th USENIX Security Symposium USENIX Association

Our solutions to the constrained optimization problem
imply randomized strategies are optimal. We show how
to support randomized strategies in the state-of-the-art
cut-and-choose-based cryptographic protocols with only
small changes. We applied this methodology to analyze
three major types of cut-and-choose schemes and the ex-
perimental results corroborate our thesis. We have im-
plemented a search tool for each category of schemes to
output the optimal parameters. The tool is available at
https://github.com/cut-n-choose.

3 Case Studies

In this section, we show how our general idea can be
applied to three main types of two-party secure com-
putation protocols that are based on the cut-and-choose
method to substantially improve their performance. We
assume that n is fixed and public, while e will be selected
from some distribution and remain hidden to the genera-
tor until all circuits are generated and committed.

3.1 MajorityCut Protocols
MajorityCut strategy stems from an intuitive folklore
idea: the circuit evaluator randomly selects k (out of a
total n circuits) to check for correctness, evaluates the re-
maining e= n−k circuits, and outputs the majority of the
e evaluation results. All previous work assumed the use
of fixed and public n,e,k parameter values, which grants
a malicious generator unnecessary advantages. For ex-
ample, knowing e, a malicious generator can choose to
generate �e/2� bad circuits to maximize the chance that
an honest evaluator outputs a wrong result. Thanks to its
simplicity, it is the scheme the most widely adopted by
implementations thus far.

In the following, we show how to apply our observa-
tions to MajorityCut protocols, which involves delaying
the revelation of cut-and-choose parameters and employ-
ing a mixed strategy (instead of a pure one) to minimize
the total cost of cut-and-choose.
Analysis. We represent the evaluator’s strategy by a vec-
tor xxx = (x0,x1, . . . ,xn) where xi is the probability that the
evaluator evaluates i uniform-randomly chosen circuits
and checks the remaining n − i. The expected cost of
MajorityCut is

n

∑
i=0

[xi · (i · r+(n− i))] = n+(r−1)
n

∑
i=0

xi · i

If the generator produces b incorrect circuits and the
evaluator evaluates i circuits, the probability that the
evaluator’s check passes is

(n−b
n−i

)/(n
n−i

)
. After a suc-

cessful check, the evaluator loses the security game if
and only if 2b ≥ i, i.e., there is no majority of correct

evaluation circuits. Hence, when the evaluator uses strat-
egy xxx, the expected failure probability of the MajorityCut
scheme is

∑
i≤2b

xi ·
(

n−b
n− i

)/(
n

n− i

)

Since i ≤ n and
(n−b

n−i

)
= 0 for all i < b, this sum can

be further reduced to ∑min(n,2b)
i=b xi ·

(n−b
n−i

)/(n
n−i

)
. The se-

curity requirement stipulates that for every choice of b
by the malicious generator, the resulting cut-and-choose
failure probability should be less than ε . In other words,
the goal of picking optimal cut-and-choose parameters
can be achieved by solving the following linear program:

min
xxx

n+(r−1)
n

∑
i=0

xi · i

subject to

xi ≥ 0
n

∑
i=0

xi = 1,

min(n,2b)

∑
i=b

xi ·
(

n−b
i−b

)/(
n
i

)
< ε, ∀b ∈ {1, . . . ,n}.

Solving this linear program provides us an equilibrium
strategy for every fixed n,ε,r. Using standard LP solvers,
such programs can be solved exactly for n that ranges
into the thousands (i.e., all practical settings).

With this capability, we can identify, for a given target
ε and ratio r, the optimal n (that leads to the least overall
cost) by solving the linear programs for all feasible n val-
ues. While this leads to the search algorithm described
in Figure 1, we note several important observations that
speedup the search:
1. We begin our search at n0 = �ε� and consider n =

n0,n0 + 1, After solving each LP, we identify a
current best cost c∗. Observe that c∗ − (r − 1) is an
upper-bound of the best n (noted n∗), since any feasi-
ble strategy with n > c∗ − (r−1) will cost at least c∗

(the evaluator need to evaluate at least one circuit ex-
cept with at most ε probability). Thus, as our search
continues, we update c∗, and terminate the search as
soon as all values of n between n0 and c∗− (r−1) are
examined.

2. When the value of r is beyond moderate (i.e., r > tr
for some constant tr like 128 with our laptop), search-
ing for the optimal cost becomes time-consuming as it
involves solving the above linear programming prob-
lem for many relatively large n values (e.g., n > 500).
In these settings, however, we opt to live with a sub-
optimal pure strategy, based on the observation that
the standard deviation of e is already so small (less

4

USENIX Association 25th USENIX Security Symposium 1089

than 0.6 and only keeps decreasing as r grows) that
the cost of a sub-optimal pure strategy (i.e. a combi-
nation of n and e) approximates the theoretical opti-
mal pretty well (Figure 3b).

3. We note that when r > tr (step 2), it suffices to search
all e less than e0 (recall (e0,n0,c0) is the starting
point of our search, simply derived from the tradi-
tional setup with MajorityCut) instead of the infi-
nite range because any strategy with e = e0 + 1 that
is more efficient than one with e = e0 has to use at
least r−1 fewer check circuits. Since tr = 128, such
strategy would have used at least 127 fewer check-
circuits, which will contradict with n0 = 128 (assum-
ing ε = 2−40).

Results. We have implemented the search algorithm of
Figure 1 and run it with a wide range of practically pos-
sible r values (see Figure 2). For r values ranging from
5000 to 109, which are typical regarding the cost in net-
work traffic, we can achieve 6 to 16 times savings com-
pared to traditional MajorityCut protocols. Even when r
is small, such as 8 ∼ 128 which are representative when
considering only the timing cost, our approach brings
about 1.45 to 3 times savings. When circuit-level paral-
lelism is exploited like in the work of [14, 13, 5], where r
typically ranges from 50 to 500 (see Table 5), we are able
to speedup the best existing works by 2.3 ∼ 3.9 times.

Table 3 gives two example optimal strategies for
achieving ε = 2−40 security when r = 10 and r = 100,
respectively. We observe that the solution mixes fewer
pure strategies (which is consistent to the decrease of
variance) as r grows. Also note that all pure strategies
with even es are dominated by ones with odd es. In con-
trast to current implementations, these strategies suggest
that the generator produce a few hundred circuits, but
only send roughly 13–21 of them. (Such a scheme is for
example quite feasible when using the GPU to produce
and commit to garbled circuits.) In comparison, the best
protocols that use BatchedCut need to amortize 1000s
of protocol executions to achieve security when sending
roughly 10 circuits.

In Figure 2, the cross-marked solid curve delineates
the optimal cost of mixed strategies (among all strate-
gies with public fixed n), while the dot-marked dashed
curve delineates pure-strategy approximation of the op-
timal mixed strategies (efficiently computed as a result
of step 2 of Figure 1 search algorithm). We observe that
the pure-strategy approximation actually improves as r
get bigger. But when r is relatively small (100 ≥ r ≥ 1),
our optimization-based approach can indeed bring about
1% ∼ 11% extra improvement (Figure 2). Last, the
curves for two different ε values have similar shape but
the improvement as a result of our approach is signifi-
cantly larger for smaller ε values.

We also observe from Figure 2 that the performance

Table 3: Example optimal strategies for MajorityCut pro-
tocols. (ε = 2−40, only non-zero xis are listed.)

r = 10 r = 100

n i xi as % n i xi as %

7 1 ·10−4 3 4 ·10−6

9 9 ·10−4 5 2.04 ·10−4

11 7 ·10−3 7 7.44 ·10−3

13 4.54 ·10−2 514 9 0.21

361 15 0.25 11 4.86

17 1.23 13 94.73

19 5.36 15 0.19

21 20.9

23 72.2

Saves 13.5% b/w Saves 65.3% b/w

boost seems to be upper-bounded by some value related
to ε , no matter how big r becomes. This makes some in-
tuitive sense because the cost of our optimized protocols
will be upper-bounded by a linear function of r (as the
solution comes out of solving the linear programming
problem where r constitutes the coefficients of the un-
knowns). We leave the formal proof of this intuition as
an interesting future work.

To examine the characteristic of our solution more
closely for 1 ≤ r ≤ 128, we have plotted the compari-
son of overall cost of the optimal strategy with respect
to best prior works (Figure 3a), the standard deviation of
the overall cost (Figure 3b, recall the optimal strategy is
a randomized strategy), and the best n used in every opti-
mal strategy (Figure 3c). Note that the standard deviation
of the overall cost is also exactly the standard deviation
of e because the randomness in cost all comes from the
randomness in selecting e. The fact that the standard de-
viation quickly drops to less than 0.3 (when r ≥ 100) and
strictly decreases justifies the accuracy of pure strategy
approximation for large r.

Changes to Existing Protocols. Our approach to Major-
ityCut applies to many published cut-and-choose based
two-party computation protocols; in particular, it applies
directly to those protocols in which the generator first
commits to n garbled circuits, and later, after a coin-
tossing protocol between generator and evaluator, opens
each check circuit by sending either (a) both the 0 and 1
labels for all of its input wires, or (b) the random coins
used to construct the circuit. Goyal, Smith and Mohas-
sel [7] were the first to use this technique and the second

5

1090 25th USENIX Security Symposium USENIX Association

Input: ε,r.
Output: c∗,n∗,xxx∗.

1. If r ≤ tr,
(a) Initialize n0 := �logε� and c∗ :=+∞.
(b) For n := n0 to c∗ − (r−1)(1− ε),

i. Solve the MajorityCut linear programming problem for (n,ε,r) to obtain (c,xxx) where c is the minimal cost of
LP(n,ε,r) and xxx represents the corresponding strategy to achieve c.

ii. If (c,xxx) is a feasible solution and c∗ > c, then (c∗,xxx∗,n∗) := (c,xxx,n).
(c) Output (c,n∗,xxx∗).

2. If r > tr,
(a) Initialize n0 := 3�logε�,e0 = n0/2,c0 := 3�logε�+(r−1)e0 and c∗ = c0,n∗ = n0.
(b) For i := 1 to +∞ until ei−1 = 1,

i. Set ei = ei−1 −1 and compute the smallest (ci,ni) that satisfies the security constraints.
ii. If c∗ > ci, then (c∗,n∗,e∗) := (ci,ni,ei).

(c) Output(c,n∗,{x0, . . . ,xn}) where xi = 1 if i = e∗, and xi = 0 otherwise.

Figure 1: Search the most efficient strategy (n,xxx) for MajorityCut protocols. log(·) is base-2. c is the minimal cost,
n is the fixed total number of circuits and xxx = (x0, . . . ,xn) stands for the evaluator’s best strategy to sample e. While
the value of tr depends on hardware and users’ tolerance of performance. tr = 128 works well on a MacBook Air for
ε = 2−40.

100 102 104 106 108
0

2

4

6

8

10

12

14

16

Cost Ratio r

E
xp

ec
te

d
Sa

vi
ng

s
(×

)

pure strategies
mixed strategies

(a) ε = 2−40

100 102 104 106 108

0

10

20

30

40

50

Cost Ratio r

E
xp

ec
te

d
Sa

vi
ng

s
(×

)

pure strategies
mixed strategies

(b) ε = 2−20

Figure 2: Our savings for MajorityCut protocols

(“I +2C”) protocol from Kreuter, Shelat, Shen [14] also
operates in this way. In these cases, no modifications to
the security analysis are needed. For every specific ε and
r, our solver outputs a particular n and a distribution xxx for
picking e. Roughly speaking, the only changes needed in
the protocol are straightforward: the evaluator announces
this n beforehand and the result of the coin-tossing pro-
tocol ρ is used to sample e according to xxx using stan-
dard methods (instead of the 1/2 or 3/5 fractions as be-
fore). The simulation of a malicious evaluator proceeds
as in the original security proof with the exception that
the simulator first samples e according to xxx using random
tape ρ and then (as before), uses a simulated coin-tossing
to ensure the outcome of the toss induces ρ . (The coin-
tossing method is a simple and effective method to prove
security; other proofs may also exist.)

Similarly, the first protocol of Lindell and Pinkas [16]

can be modified to adopt this idea: step (3) should send
commitments to garbled circuits, modify step (4) to use
the random tape from coin-tossing to sample e, modify
step (8) so that the garbler sends the entire garbled cir-
cuits for the evaluation specimens as well as openings to
the commitments so that the evaluator can check consis-
tency.

The idea seems applicable to many protocols which
have the property that the set of checked circuits becomes
publicly verifiable. For example, Mohassel and Riva [22]
use a different idea in their protocol to allow the same
output labels to be used across all n copies of the garbled
circuit. In their original protocol, the evaluator and gen-
erator then use coin-tossing to select the open circuits,
but then proceed to evaluate the remaining circuits first,
perform some checks, and then the evaluator commits to
the output labels. Finally, the generator opens the check

6

USENIX Association 25th USENIX Security Symposium 1091

0 50 100

0

1

2

3

4

5

6

×103

Cost ratio r

B
an

dw
id

th
ov

er
he

ad
best prior works
this work

(a)

0 50 100
0
1
2
3
4
5
6
7
8

Cost ratio r

St
an

da
rd

de
vi

at
io

n

(b)

0 50 100
1

2

3

4

5

×102

Cost ratio r

O
pt

im
al

n

(c)

Figure 3: Characteristics of optimal mixed-strategy solutions for MajorityCut protocols (ε = 2−40. The bandwidth
overhead is measured in units. A unit cost is that of evaluating a evaluation-circuit. The standard deviation chart
applies to both the overall cost and e.)

circuits for the evaluator to check, and if all succeed, the
evaluator opens a commitment to the output. Although
a different order, the modifications noted above seem to
apply without the need to modify the security proof.

The protocols of Lindell and Pinkas [17] and she-
lat and Shen [27], however, seem to require more sub-
tle modifications and new security arguments to use our
technique. In both cases, the protocols use a special
oblivious transfer (instead of coin-tossing) to allow the
evaluator to independently choose the set of check cir-
cuits. In the case of [17], the fact that the size of the
set of checked circuits is fixed, and therefore verifiable
by the garbler, is needed in the security proof. This re-
striction can be lifted with a variant of cut-and-choose
oblivious transfer proposed and used in Lindell’s Single-
Cut protocol [15]. For a different reason, a new security
argument will also be needed for shelat and Shen [27].

3.2 SingleCut Protocols

With SingleCut protocols, extra cryptographic mech-
anisms (e.g., a second-stage fully secure computation
as in [15] or an additive homomorphic commitment as
in [2]) are employed in order to weaken the requirement
for the soundness property. In particular, in such pro-
tocols, it suffices to ensure that at least one evaluation
circuit selected by the evaluator is not corrupted. If one
evaluation circuit is properly formed, then the evaluator
will either receive the same output from all of the evalu-
ated circuits (in which case it can accept the output since
one circuit is good), or it receives two different outputs.
In the latter case, the evaluator uses the two different au-
thenticated output labels to recover the garbler’s input,
and then evaluate the function itself.

The state-of-the-art SingleCut protocols implicitly as-
sume r = 1, in which case an honest evaluator’s best

strategy is to evaluate each garbled circuit with prob-
ability 1/2, as there is only a single way for the mali-
cious generator to win the cut-and-choose game. In real-
ity, however, r is not necessarily equal to 1. In order to
achieve ε statistical security, this strategy will lead to an
expected �logε� · (r+1)/2 units of cost.

Analysis. As before, let i be the number of evalua-
tion circuits and xi is the probability that the evaluator
chooses to evaluate i circuits. An evaluator’s strategy is
denoted by xxx = {x0, . . . ,xn}. Then the cost of the cut-
and-choose scheme is n+(r−1)∑n

i=0 xi · i.
Fix b, the number of incorrect circuits chosen by the

generator. The first observation is that when the evaluator
picks e �= b, then the generator certainly loses the game.
When e = b, recall that there are

(n
b

)
different ways to

select b evaluation circuits (out of n circuits in total). As-
suming the evaluator uniform-randomly picks one of the(n

b

)
ways, then the generator looses the cut-and-choose

game with probability 1
/(n

b

)
because it happens only

if the generator guesses all n of the evaluator’s check-
or-evaluate decisions correctly. Since the event that the
evaluator picks e = b is independent of the event that the
generator guessed all decisions correctly, the overall fail-
ure probability is xb

/(n
b

)
. As a result, the security re-

quirement can be dramatically simplified in comparison
to MajorityCut. In particular, we need that every pure
strategy for the generator, i.e., every choice of b, wins
with probability at most ε: xb/

(n
b

)
< ε .

Therefore, fixing n, r and ε , the original cut-and-
choose game configuration problem can be translated
into the following linear programming problem:

min
xxx

n+(r−1)
n

∑
i=0

xi · i

7

1092 25th USENIX Security Symposium USENIX Association

Input: ε,r.
Output: c∗,n∗,xxx∗

1. Initialize n0 := �logε� and c∗ := n0 · (r+1)/2.
2. For n := n0 to c∗ − (r−1)(1− ε),

(a) Solve the SingleCut linear programming prob-
lem for (n,ε,r) to obtain (c,xxx) where c is the
minimal cost of LP(n,ε,r) and xxx represents the
corresponding strategy to achieve c.

(b) If (c,xxx) �= ⊥ and c∗ > c, then (c∗,xxx∗,n∗) :=
(c,xxx,n).

3. Output (c,n∗,xxx∗).

Figure 4: Search the optimal strategy (n,xxx) for SingleCut
protocols. log(·) is base-2. c is the minimal cost, n is the
fixed total number of circuits and xxx = (x0, . . . ,xn) stands
for the evaluator’s best strategy to sample e.

subject to

xi ≥ 0, ∀i ∈ {0, . . . ,n}
n

∑
i=0

xi = 1,

xb

/(
n
b

)
< ε, ∀b ∈ {0, . . . ,n}.

Next, we show that the linear programming problem
above can actually be solved highly efficiently thanks to
its special form. The key observation is that this linear
programming problem is in essence a special continuous
knapsack program (where the weight wi = i). In order
to minimize ∑n

i=0 xi · i, we aim to maximize xi (which is
upper-bounded by ε ·

(n
i

)
and collectively constrained by

∑n
i=0 xi = 1) for all small i’s. This leads to the following

simple greedy algorithm that solves the problem in linear
time (of n).
1. For i = 0 to n,

(a) Set xi := ε ·
(n

i

)
.

(b) If ∑i
j=0 x j ≥ 1 then set xi := 1−∑i−1

j=0 x j, x j := 0 for
all j > i, and return {xi|0 ≤ i ≤ n}.

2. If ∑i
j=0 x j < 1, return ⊥ (i.e., the problem has no fea-

sible solution); otherwise, return {xi|0 ≤ i ≤ n}.
As with the MajorityCut setting, we scan all possible

values of n to identify the best n leading to the smallest
overall cost (Figure 4). Fortunately, thanks to this highly
efficient special solver, we are always able to identify the
best n within seconds for r as large as 1010.

Results. Using the search algorithm described above,
we are able to compute the fixed-n, variating e optimal
randomized strategies for every ε and r. We summa-
rize the performance gains in Figure 5a. The savings
due to our approach rise steadily for r < 104 and can get
to about 10X for reasonably large r (e.g., r = 7× 107,
which roughly corresponds to the bandwidth-based cost-
ratio for privately computing the edit distance between

two 1000-character strings). Generally, it appears that
the improvement-curves (Figure 5) for different ε share
some similarity in their shape but smaller ε results in big-
ger improvements.

Table 4 shows two example optimal strategies of Sin-
gleCut protocols for r = 10 and r = 100, respectively. We
observe that the optimal strategy exhibit some pattern:
the number of evaluation circuits with positive support
falls within [0,g] where g < n and g shrinks as r grows.
An interesting note is that e = 0 (i.e., checking all n cir-
cuits) has positive support, albeit with probability less
than 2−40 (note the “%” sign), hence preserving security.
Instead of artificially preventing e= 0 as Lindell did [15],
our solution indicates that a rational evaluator should set
e = 0 with some negligible probability to maximize its
chance to win (while keeping the expected cost low).

Table 4: Example optimal strategies for SingleCut proto-
cols. (ε = 2−40, only non-zero xis are listed)

r = 10 r = 100

n i xi as % n i xi as %

0 9 ·10−11 0 9 ·10−11

1 5.91 ·10−9 1 1.64 ·10−8

2 1.89 ·10−7 2 1.47 ·10−6

3 3.97 ·10−6 180 3 8.69 ·10−5

4 6.16 ·10−5 4 3.85 ·10−3

65 5 7.51 ·10−4 5 0.14

6 7.51 ·10−3 6 3.95

7 6.33 ·10−2 7 95.91

8 0.46

9 2.91

10 16.28

11 80.28

Saves 26.4% b/w Saves 57.0% b/w

Figure 6 presents a closer look at various character-
istics of the optimal strategies, including expected costs
(Figure 6a), the standard deviation of the costs (which
also applies to e, Figure 6b), and the best ns associated
with those optimal strategies (Figure 6c). We note in Fig-
ure 6b that the standard deviation for SingleCut optimal
strategies are generally smaller (about half) than that for
MajorityCut strategies (Figure 3b). In addition, the ns
for the optimal strategies also exhibit a staircase effect
like in MajorityCut. This is because for any fixed ε , it
does not make sense to trade in a larger n for a smaller e,

8

USENIX Association 25th USENIX Security Symposium 1093

100 102 104 106 108

2

4

6

8

10

Cost Ratio r

E
xp

ec
te

d
Sa

vi
ng

s
(×

)

(a) ε = 2−40

100 102 104 106 108

2

4

6

8

10

Cost Ratio r

E
xp

ec
te

d
Sa

vi
ng

s
(×

)

(b) ε = 2−20

Figure 5: Bandwidth savings for SingleCut protocols

unless r exceeds certain discrete threshold values.
Changes to Existing Protocols. The changes needed in
protocol 3.2 of Lindell (CRYPTO, 2013) to support our
technique are standard:

• Add a step 0 to [15, Protocol 2], where an n is fixed
in advance based on ε and r.

• Change step 2(b) of [15, Protocol 2] to: P2 picks
the check-set J at random so that |J|= k, where k is
randomly sampled from the distribution computable
(from n,r,ε) by the 2-step algorithm given above.

Afshar et al. [2] present a conceptually simple and ele-
gant non-interactive secure computation protocol; it uses
a cut-and-choose technique and achieves security 2−40

by sending 40 garbled circuits. Surprisingly, this can be
done in just one round. Like Lindell, they create a trap-
door which allows an evaluator to recover the garbler’s
inputs with high probability if inconsistent but valid out-
put wire-labels are obtained. However, since their proto-
col is only 1 round, the cut-and-choose is implemented
through oblivious transfer; specifically, the evaluator re-
covers a seed for all of the check circuits through OT, and
the garbler sends all circuits in its one message. In or-
der to apply our technique, we need to add extra rounds
(in order to save substantial communication costs). In-
stead of sending the full circuits in the first message,
we change the protocol to send succinct commitments of
the circuits (thereby committing the sender) which keeps
the first message short. In the next message, the evalua-
tor asks the garbler to send the evaluation circuits only;
and the evaluator uses its previous messages to continue
running the original protocol. We believe these modifi-
cations are consistent with the security proof implicitly
given in [2]. As a result, we can run this protocol with
significantly less communication when r > 1.

3.3 BatchedCut Protocols
The basic idea of BatchedCut is to amortize the cost of
cut-and-choose across either many protocol executions
(of the same circuit) [11, 19] or many basic gates [12, 6,
24] of a big circuit. Without loss of generality, we fo-
cus on the setting of batched execution of a single func-
tionality. Roughly speaking, the evaluator randomly se-
lects and checks k out of T circuits in total and randomly
groups the remaining circuits in buckets of size B. The
state-of-the-art can ensure correctness as long as at least
one good circuit is included in every bucket. This can ef-
fectively reduce the number of circuit copies to less than
8 (c.f. the optimal 40 without amortization [2, 15]) per
execution to ensure 2−40 security. However, optimality
of this result holds only if r = 1. In this section, we
present our approach to optimize BatchedCut protocols
for general r values.

We note one technical complication in this setting: in
the checking stage, a bad circuit (or gate) might only be
detected by the evaluator with probability τ . Although
τ = 1 for most protocols, it can be less than 1 for some
other protocols, e.g., τ = 1/2 for [12] and τ = 1/4 for
MiniLEGO [6]. Our analysis below is generalized to ac-
count for any 0≤ τ ≤ 1. State-of-the-art BatchedCut pro-
tocols [19, 11, 12] only require one object in each bucket
to evaluate being correct, hence the focus of our analysis.

Analysis. Let N be the number of times a particular func-
tionality will be executed, T be the total number of cir-
cuits generated to realize the N executions, and let B de-
note the bucket size.

With any positive r, we want to identify parame-
ters (T,B) such that cost(T,B) is minimized over all
(T,B) configurations that satisfy the security constraint.
That is, Prfail, the overall failure probability of cut-and-
choose, should be no more than ε . Therefore, the prob-
lem reduces to the following constrained optimization

9

1094 25th USENIX Security Symposium USENIX Association

0 2 4 6 8
×107

0

0.5

1

1.5

×109

Cost ratio r

B
an

dw
id

th
ov

er
he

ad
best prior works
this work

(a)

100 103 106

0

1

2

3

Cost ratio r

St
an

da
rd

de
vi

at
io

n

(b)

100 103 106

102

104

106

Cost ratio r

O
pt

im
al

n

(c)

Figure 6: Characteristics of optimal mixed-strategy solutions for SingleCut protocols (ε = 2−40. The bandwidth
overhead is measured in units. A unit cost is that of evaluating a evaluation-circuit. The standard deviation chart
applies to both the overall cost and e.)

problem:
min T +(r−1)BN

subject to

Prfail(N,T,B,τ,b) < ε, ∀b ∈ {0, . . . ,T}

where b is the number of bad circuits a malicious gener-
ator chooses to inject.

Note that Prfail describes the failure across all N ex-
ecutions as follows: In the first move of the game, the
evaluator picks T −BN circuits to open and verifies all
are correct. In the second move, the evaluator randomly
partitions the BN unopened circuits into buckets of B
circuits. A failure occurs if (i) the adversary is able to
corrupt b circuits such that the first check passes, and
(ii) there is some bucket containing only corrupted cir-
cuits. We let Prc(N,B,T,τ,b, i) denote the probability of
(i) and Pre(N,B,b) denote that of (ii).

First, as before, when i circuits are opened in the first
phase, the garbler succeeds with probability

Prc(N,B,T,τ,b, i) = (1− τ)i
(

b
i

)(
T −b

T −BN − i

)/(
T

T −BN

)
.

Here the extra (1−τ) term reflects the case when check-
ing a circuit can succeed with some chance even if it is
corrupt. There are T total circuits, and T − BN − i of
them can be checked. The next term, Pre reflects the
probability that conditioned on the first phase passing,
the evaluator randomly assigns the remaining circuits to
buckets, and one bucket of size B contains all corrupted
circuits.

Pre(N,B,b) = 0, ∀0 ≤ b ≤ B (1)

Pre(N,B,b) =
(

b
B

)/(
BN
B

)
+

b−1

∑
i=0

Pre(N −1,B,b− i) ·
(b

B−i

)(BN−b
i

)
(BN

B

) (2)

The first equation holds because a garbler who corrupts
fewer than B circuits never succeeds. Finally, since phase

1 and phase 2 are independent, we conclude that

Prfail(N,B,T,τ,b) =
b

∑
i=0

Prc(N,B,T,τ,b, i)Pre(N,B,b− i)

The summation over i occurs because every check only
succeeds with probability τ , and thus even after i checks
on corrupted circuits, b− i corrupted circuits may remain
in the second phase.

Having explained the constraint, Figure 7 describes
our search algorithm to solve the BatchedCut parame-
ter optimization problem. The basic idea is simple—for
every B = 2,3, . . . , find the least T such that the security
constraint is satisfied for every b ∈ {0, . . . ,T}. Our main
contribution here is to make the search efficient enough
for realistic r,N, and ε , which is achieved based on a new
efficient and accurate way to calculate Prfail and the fol-
lowing observations to ensure efficiency and complete-
ness of the search:

1. For every B, the cost cost(T,B) strictly increases with
T while the failure rate Prfail strictly decreases with
T . So the best T for a given B can be identified ef-
ficiently using a combination of exponential backoff
and binary search.

2. The constraint that Prfail < ε regardless of the at-
tacker’s strategy can be verified by computing Prfail
for every b ∈ {1, . . . ,T} (where b is the number of
corrupted circuits generated by the attacker), which, if
naively implemented, would require computing Prfail
T ·T times for every B. We can leverage the idea of
generating functions to reduce it to T +T inexpensive
operations (we will detail this in a bit).

3. Assuming c = (T −BN)/T > c0 (where c0 is a small
positive constant determined solely by the evalua-
tor), it does not make sense for a malicious gener-
ator to insert more than bu = −(s + 1)/ log(c0/2 +

2
2/(1−c0)−i0/N) bad circuits. We shall prove this obser-

10

USENIX Association 25th USENIX Security Symposium 1095

vation as Claim 2. This observation further reduces
T +T down to bu +bu inexpensive operations.

4. Assuming (T − BN)/T > c0, a smaller feasible T
identified during the search stipulates an upper-bound
on the Bs that needs to be examined.

Compute Prfail Efficiently. For every N,B,T,τ,b, the
probability of a malicious generator’s successful attack
can be described by equations described above. How-
ever, for most N,T values (e.g., N > 215), it is infea-
sible to compute Prc (which involves calculating large
binomial coefficients) and Pre (which involves exponen-
tial number of slow recursions) accurately based on (3.3)
and (2).

Hence, we propose an efficient way to compute Pre
and Prc with provable accuracy.
1. Compute Pre(N,B,b). The idea is to use generating

functions to efficiently calculate Pre as the ratio be-
tween the number of ways to group garbled circuits
into buckets that will result a failure (i.e., at least
one bucket is filled with all B bad circuits) and the
total number of ways to group the garbled circuits.
First, we use function g(x,y) = (1+ x)B +(y− 1)xB

to model the circuit assignment process for a sin-
gle bucket, where ‘x’ denotes a “bad” gate and ‘1’
denotes a “good” gate, thus the coefficient of xi in
g(x,y) equals to the number of ways to assign i bad
gates to a bucket. Note that the symbol ‘y’ we in-
tentionally introduce as the coefficient of xB term
of g(x,y) denotes the event that “all B gates in a
bucket are bad”. Next, we use the generating func-
tion G(x,y) = g(x,y)N to model the circuit assign-
ment process over all of the N buckets: the coeffi-
cient of xi (which is a polynomial in y, hence writ-
ten as fi(y)) in G(x,y) denotes the number of assign-
ments involving i bad gates. Let fi(y) = ∑∞

j=0 c jy j

(where c j are constants efficiently computable from
G(x,y)), then fb(1) = ∑∞

j=0 c j is the total number of
assignments with b bad gates used in the evaluation
stage; and fb(1)− fb(0) = ∑∞

j=1 c j is the number of
assignments (among all with b bad circuits) that re-
sult in at least one broken bucket. Hence, we compute
Pre(N,B,b) = (fb(1)− fb(0))/ fb(1). Further, we can
dramatically reduce the cost of computing the coef-
ficients of G(x,y) by not distinguishing any terms y j1

and y j2 for any j1, j2 ≥ 1. That is, multiplying (u+vy)
and (w+ ty) yields uw+(ut +vw+vt)y, hence, how-
ever big N and B are, fi(y)s are linear formulas in y.

2. Compute Prc(N,B,T,τ,b, i). Recall that typically
T,N are large while b, i are far smaller than N. So
the dominating cost in computing Prc is to calcu-
late

(T−b
T−BN−i

)/(T
T−BN

)
. To this end, we approximate

Prc(N,B,T,τ,b, i) using
(T−BN

T

)i (BN
T−i

)b−i, whose
high accuracy is formally proved in Claim 1.

To illustrate the precision of the above calculation, e.g.,
when s = 40, if N = 50,000, the overall error in our cal-
culation of logPrfail(N,B,T,τ,b) is less than 1. Note the
error only decreases as N grows (following Claim 1 and
Claim 2).

Claim 1 Let T,B,N,b, i be defined as above. Then

lim
N→∞

(T−b
T−BN−i

)
(T

T−BN

) =

(
T −BN

T

)i(BN
T − i

)b−i

.

Claim 2 Let Prfail(N,B,T,τ,b) be the probability that
the cut-and-choose game fails in a BatchedCut scheme
(with b bad circuits up-front). For every ε, c0 =

(T −BN)/T,τ > 0, if N > i0
/(

B
1−c0

− B
1−(1−τ)c0

)
and

b > −(�logε� + 1)
/

log
(
(1− τ)c0 +

B
B/(1−c0)−i0/N

)
,

then Prfail(N,B,T,τ,b)< ε .

Last, we also considered employing mixed strategies
for BatchedCut protocols (i.e., fixing T to some public
value up-front while randomizing the selection of B) to
further reduce the cost. However, our analysis show that
the extra improvement brought by randomized strate-
gies is very small in this setting. This is consistent with
our intuition: (1) It only makes sense to alternate B be-
tween two consecutive integers, which can be derived
as a corollary of [12, Lemma 9]; (2) The strategy with
smaller B is almost dominated by the one with larger B
such that mixing them brings little extra benefit. There-
fore, we opt to avoid using randomized strategies for
BatchedCut protocols.

Results. Figure 8 depicts the improvements induced by
the refined cost model for cut-and-choose. In this sce-
nario, our search algorithm is able to identify the optimal
pure strategies for r up to 105, assuming the check rate c
is always larger than 0.02. We note that the optimal strat-
egy (characterized by (T,B) pairs) does not change much
for 105 < r � ∞. Experimental results show that roughly
20 ∼ 80% performance gain can be achieved (while the
exact improvement depends on r, ε and N). Note the ef-
fects of the bad circuits detection rate τ on the benefits
of our approach (through comparing Figure 8a and 8b).

Changes to Existing Protocols. In this case, because we
do not use randomized strategies, our proposal applied
to the BatchedCut scenario requires no protocol changes
other than setup the public parameters to the suggested
value output by our search algorithm.

4 Benefits in Time

Recall that circuit checking will result in negligible net-
work traffic because only a short circuit seed and a circuit

11

1096 25th USENIX Security Symposium USENIX Association

Input: ε,N, c0.
Output: T ∗,B∗

1. Choose bu and Bu.
(a) Let s = �logε�. Compute i0 := s+2 and bu :=−(s+1)

/
log(c0

2 + 2
2/(1−c0)−i0/N)

(b) Set T ∗ := ∞ and Bu := ∞.
2. For B ranging from 2 to Bu,

(a) Precompute Pre(N,B,b) = 1− fb(0)/ fb(1) for every b ∈ [B,bu].
(b) Find the smallest T , call it TB, such that T < T ∗ and Prfail(N,B,TB,τ,b) < ε for all b ≤ bu, using exponential

backoff and binary search. (Note that Prfail(N,B,T,τ,b) monotonically decreases with T while the cost T +
NB(r−1) monotonically increases with T .)

(c) If T ∗+NB∗(r−1)> TB +NB(r−1), then update T ∗ := TB, B∗ := B, and Bu := �(1− c0)TB/N�.
3. Output T ∗,B∗.

Figure 7: Find cost-efficient (T,B) for BatchedCut protocols.

101 102 103 104 105
1

1.2

1.4

1.6

1.8

Cost Ratio r

E
xp

ec
te

d
Sa

vi
ng

s
(×

) N = 100
N = 200
N = 10000

(a) τ = 1 (applicable to [15, 4])

101 102 103 104 105

1

1.2

1.4

1.6

Cost Ratio r

E
xp

ec
te

d
Sa

vi
ng

s
(×

)
N = 100
N = 200
N = 10000

(b) τ = 1/2 (applicable to [12])

Figure 8: Bandwidth savings for BatchedCut protocols (ε = 2−40 and the check ratio c ≥ 0.02)

hash needs to be transferred. This gap in bandwidth over-
head also leads to a substantial gap in execution speeds,
due to the significant difference in the throughputs of gar-
bling/checking (about 50 ns/gate on a single-core proces-
sor) and that of network transmission (typically a wide
range of 50∼3000 ns/gate).

To evaluate the benefit of our technique in terms of
time, we modified OblivC [29] to measure the ratios of
speed for circuit evaluation and circuit checking tasks
in various network settings. Our test implementation
utilizes Intel AES-NI instructions and the half-gate gar-
bling technique [30] to minimize bandwidth usage, and
SHA256 implementation provided by Libgcrypt for cir-
cuit hashing. In circuit checking tasks, the circuit gen-
erator garbles a number of circuits but sends only a
(Seed,Hash) pair for each garbled circuit, while the cir-
cuit verifier re-computes the hash from the seed for each
circuit. We record the per circuit time cost for this task
as Tc. For circuit evaluation tasks, the circuit generator
garbles a number of circuits and sends the garbled gates
to the evaluator, who not only evaluates, but also com-
putes the hash of the received circuit. We record the per
circuit time cost for this task as Te. (In both tasks, the two

ends work in a pipelined fashion.) Thus, the time cost ra-
tios between evaluation and checking can be calculated
as (Tc +Te)/(2Tc) (recall that every circuits will be gen-
erated twice, once for commiting their hashes and once
for check/evaluate to avoid storing the typically gigantic
circuits).

We used a benchmark circuit (provided by OblivC)
with 31×106 non-free gates. Our exepriments were run
on two Amazon EC2 boxes (instance type: c4.large,
$0.105/hour, Intel Xeon E5-2666, 2.9GHz, 3.75GB
memory) with Ubuntu 14.04 Server edition in the VA re-
gion.

We detail our experimental results in Table 5. The r
values (in terms of wall-clock time) range from a lit-
tle over 1 (with high speed connection) to 30 (with
ordinary home-to-home connections). Such time gaps
can be well-explained by the difference in the through-
puts of computation and communication. The observed
speedups of the proposed cut-and-choose technique can
range from 12% up to 106%. Note that our approach
yields no noticeable time savings for the settings of run-
ning SingleCut or BatchedCut protocols in a 1 Gbps
LAN with single-core processors (compared to the their

12

USENIX Association 25th USENIX Security Symposium 1097

state-of-the-art couterparts), because the cost ratio r is
already very close to 1.

We note that due to the use of SHA256 in computing
circuit hashes, we observe only 2.23× 106 gates/second
for circuit verification while 1.30×106 gates/second for
circuit evaluation. It would be interesting to replace
SHA256 with some hashing algorithm that leverages
AES-NI instructions to match up with the speed of AES-
NI based garbling (more than 109 gates/second, as was
reported in [3]). That will imply a time ratio up to 100×
larger than we observe in our experiments.

Table 5: Timing gaps between circuit evaluation and ver-
ification and our speedup benefits (measurements taken
from 10 runs with 0.1% relative standard deviation) for a
31m gate circuit.

LAN
1 Gbps

WAN
100 Mbps

WAN
10 Mbps

Te (seconds) 24.1 103.5 818
Tc (seconds) 13.9 13.9 13.9

r 1.37 4.22 29.9

MajorityCut 12% 26% 106%

Sp
ee

du
p

SingleCut 0% 13% 76%

BatchedCut 0% 14% 41%

5 Conclusion

The state-of-the-art design of cut-and-choose protocols
considers an overly simplified cost model, and does not
exploit the opportunity of dynamically variating e to
thwart cheating adversaries. We have shown, through
experiments, the dramatic gap in the bandwidth costs be-
tween circuit evaluation and circuit verification. We re-
visit the cut-and-choose protocol design problem in a re-
fined cost model and give three highly efficient solvers,
one for each class of cut-and-choose protocols, that out-
put the best strategy for a particular cost ratio in our
model. Simulation results show that our approach bring
significant savings in bandwidth cost, as well as sub-
stantial speedups (especially when running secure com-
putation protocols outside idealized laboratory environ-
ments). Most importantly, the benefits require very small
changes to existing protocols and come completely from
formal proofs that do not depend on any unprovable as-
sumptions.

6 Acknowledgments

We thank Yuan Zhou (MIT) and Zhilei Xu (MIT) for in-
spiring discussions on cut-and-choose. We also appre-

ciate Xiao Wang (Maryland)’s advice on benchmarking
state-of-the-art garbled circuit implementations. Work
of Ruiyu Zhu and Yan Huang was supported by NSF
award #1464113. Work of Jonathan Katz was supported
in part by NSF award #1111599. Work of shelat was sup-
ported in part by NSF grants TC-0939718, TC-1111781,
and 1618559, a Microsoft Faculty Fellowship, and a
Google Faculty Research Award.

References

[1] A. Afshar, Z. Hu, P. Mohassel, and M. Rosulek.
How to efficiently evaluate RAM programs with
malicious security. EUROCRYPT, 2015.

[2] A. Afshar, P. Mohassel, B. Pinkas, and B. Riva.
Non-interactive secure computation based on cut-
and-choose. EUROCRYPT, 2014.

[3] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Ro-
gaway. Efficient garbling from a fixed-key block-
cipher. IEEE Symposium on Security and Privacy,
2013.

[4] L. T. A. N. Brandão. Secure two-party compu-
tation with reusable bit-commitments, via a cut-
and-choose with forge-and-lose technique. ASI-
ACRYPT, 2013.

[5] N. Buescher and S. Katzenbeisser. Faster secure
computation through automatic parallelization. In
USENIX Security Symposium, Aug. 2015.

[6] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S.
Nordholt, and C. Orlandi. MiniLEGO: Efficient se-
cure two-party computation from general assump-
tions. EUROCRYPT, 2013.

[7] V. Goyal, P. Mohassel, and A. Smith. Efficient two
party and multi party computation against covert
adversaries. Cryptology EUROCRYPT, 2008.

[8] S. Gureron, Y. Lindell, A. Nof, and B. Pinkas. Fast
garbling of circuits under standard assumptions.
Computer and Communications Security, 2015.

[9] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled cir-
cuits. In USENIX Security Symposium, 2011.

[10] Y. Huang, J. Katz, and D. Evans. Efficient se-
cure two-party computation using symmetric cut-
and-choose. CRYPTO, 2013.

[11] Y. Huang, J. Katz, V. Kolesnikov, R. Kumaresan,
and A. J. Malozemoff. Amortizing garbled circuits.
CRYPTO, 2014.

[12] Y. Huang and R. Zhu. Revisiting LEGOs: Op-
timizations, analysis, and their limit. Cryptology
ePrint Archive, Report 2015/1038, 2015. http:

//eprint.iacr.org/2015/1038.

13

1098 25th USENIX Security Symposium USENIX Association

[13] N. Husted, S. Myers, A. Shelat, and P. Grubbs.
Gpu and cpu parallelization of honest-but-curious
secure two-party computation. Annual Computer
Security Applications Conference, 2013.

[14] B. Kreuter, A. Shelat, and C. hao Shen. Billion-gate
secure computation with malicious adversaries. In
USENIX Security Symposium, 2012.

[15] Y. Lindell. Fast cut-and-choose based protocols for
malicious and covert adversaries. CRYPTO, 2013.

[16] Y. Lindell and B. Pinkas. An efficient protocol
for secure two-party computation in the presence
of malicious adversaries. EUROCRYPT, 2007.

[17] Y. Lindell and B. Pinkas. Secure two-party compu-
tation via cut-and-choose oblivious transfer. Jour-
nal of Cryptology, 25(4):680–722, Oct. 2012.

[18] Y. Lindell, B. Pinkas, and N. P. Smart. Implement-
ing two-party computation efficiently with security
against malicious adversaries. Security in Commu-
nication Networks, 2008.

[19] Y. Lindell and B. Riva. Cut-and-choose Yao-based
secure computation in the online/offline and batch
settings. CRYPTO, 2014.

[20] Y. Lindell and B. Riva. Blazing fast 2pc in the of-
fline/online setting with security for malicious ad-
versaries. Computer and Communication Security,
2015.

[21] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and
E. Shi. ObliVM: A programming framework for
secure computation. In IEEE Symposium on Secu-
rity and Privacy, 2015.

[22] P. Mohassel and B. Riva. Garbled circuits check-
ing garbled circuits: More efficient and secure two-
party computation. CRYPTO, 2013.

[23] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg,
N. Taft, and E. Shi. GraphSC: Parallel secure com-
putation made easy. In IEEE Symposium on Secu-
rity and Privacy, 2015.

[24] J. B. Nielsen and C. Orlandi. LEGO for two-party
secure computation. Theory of Cryptography Con-
ference, 2009.

[25] B. Pinkas, T. Schneider, N. P. Smart, and S. C.
Williams. Secure two-party computation is prac-
tical. ASIACRYPT, 2009.

[26] a. shelat and C.-H. Shen. Two-output secure com-
putation with malicious adversaries. EUROCRYPT,
2011.

[27] a. shelat and C.-H. Shen. Fast two-party secure
computation with minimal assumptions. Computer
and Communications Security, 2013.

[28] D. P. Woodruff. Revisiting the efficiency of mali-
cious two-party computation. EUROCRYPT, 2007.

[29] S. Zahur and D. Evans. Obliv-c: A language for
extensible data-oblivious computation.

[30] S. Zahur, M. Rosulek, and D. Evans. Two halves
make a whole - reducing data transfer in garbled
circuits using half gates. EUROCRYPT, 2015.

[31] N. Smart. https://www.cs.bris.ac.uk/

Research/CryptographySecurity/MPC/. Ac-
cessed on Feb 13, 2016.

14

USENIX Association 25th USENIX Security Symposium 1099

A Proofs

Claim 1 Let T,B,N,b, i be defined as above. Then

lim
N→∞

(T−b
T−BN−i

)
(T

T−BN

) =

(
T −BN

T

)i(BN
T − i

)b−i

.

Proof There exists N0 such that if N > N0,
(T−b

T−BN−i

)
(T

T−BN

) =
(T −b)!(T −BN)!(BN)!

T !(T −BN − i)!(BN −b+ i)!

=
((T −BN − i+1) · · ·(T −BN))((BN −b+ i+1) · · ·BN)

(T −b+1) · · ·T

=
(T −BN − i+1) · · ·(T −BN)

(T − i+1) · · ·T
· (BN −b+ i+1) · · ·BN
(T −b+1) · · ·(T − i)

≤
(

T −BN
T

)i(BN
T − i

)b−i

�U.

Similarly, we have, there exists N1 such that if N > N1,
(T−b

T−BN−i

)
(T

T−BN

) ≥
(

T −BN − i+1
T − i+1

)i(BN −b+ i+1
T −b+1

)b−i

� L.

So, we know that, for sufficiently large N,

U

/(T−b
T−BN−i

)
(T

T−BN

) ≤ U
L

=

(
T −BN

T −BN − i+1
· T − i+1

T

)i(BN
BN −b+ i+1

· T −b+1
T − i

)b−i

=

[
(T −BN)T − (i−1)T +(i−1)BN

(T −BN)T − (i−1)T

]i

·
[
(BN −b+ i+1)(T − i)+(b− i−1)(T −BN − i)

(BN −b+ i+1)(T − i)

]b−i

=

[
1+

(i−1)BN
(T −BN)T − (i−1)T)

]i [
1+

(b− i−1)(T −BN − i)
(BN −b+ i+1)(T − i)

]b−i

≤
(

1+
i−1

T −BN − i+1

)i(
1+

b− i−1
BN −b+ i+1

)b−i

(3)

≤
(

1+
i−1

T −BN − i+1

)i(
1+

b−1
BN −b+1

)b

(4)

Note that the inequality (3) holds because T > BN. Thanks to the upper-bound of b (Claim 2) and hence on i (recall
i ≤ b), limN→∞

(
1+ i−1

T−BN−i+1

)i (
1+ b−1

BN−b+1

)b
= 1.

Claim 2 Let Prfail(N,B,T,τ,b) be the probability that the cut-and-choose game fails in a BatchedCut scheme (with

b bad circuits up-front). For every ε, c0 = (T −BN)/T,τ > 0, if N > i0
/(

B
1−c0

− B
1−(1−τ)c0

)
and b > −(�logε�+

1)
/

log
(
(1− τ)c0 +

B
B/(1−c0)−i0/N

)
, then Prfail(N,B,T,τ,b)< ε .

Proof Let 0 < τ ≤ 1 be the probability that P2 detects the abnormality in checking garbled gate g conditioned on g
is indeed bad. We have

Prfail(N,b) =
b

∑
i=0

(1− τ)i

(b
i

)(T−b
T−BN−i

)
(T

T−BN

) Pre(N,b− i)

15

1100 25th USENIX Security Symposium USENIX Association

where (1−τ)i
(b

i

)(T−b
T−BN−i

)/(T
T−BN

)
is the probability that P1 who generates b bad gates survives the gate verification

stage with i bad gates selected for verification (but P2 fails to detect any of them). Because there exists i0 such that
(1− τ)i0 < ε/2,

Prfail(N,b) =
b

∑
i=0

(1− τ)i

(b
i

)(T−b
T−BN−i

)
(T

T−BN

) Pre(N,b− i)

=
i0

∑
i=0

(1− τ)i

(b
i

)(T−b
T−BN−i

)
(T

T−BN

) Pre(N,b− i)+
b

∑
i=i0+1

(1− τ)i

(b
i

)(T−b
T−BN−i

)
(T

T−BN

) Pre(N,b− i)

≤
i0

∑
i=0

(1− τ)i

(b
i

)(T−b
T−BN−i

)
(T

T−BN

) Pre(N,b− i)+(1− τ)i0
b

∑
i=i0+1

(b
i

)(T−b
T−BN−i

)
(T

T−BN

) Pre(N,b− i)

≤
i0

∑
i=0

(1− τ)i

(b
i

)(T−b
T−BN−i

)
(T

T−BN

) Pre(N,b− i)+
ε
2

b

∑
i=i0+1

(b
i

)(T−b
T−BN−i

)
(T

T−BN

)

≤
i0

∑
i=0

(1− τ)i

(b
i

)(T−b
T−BN−i

)
(T

T−BN

) Pre(N,b− i)+
ε
2

b

∑
i=1

(b
i

)(T−b
T−BN−i

)
(T

T−BN

)

≤
i0

∑
i=0

(1− τ)i

(b
i

)(T−b
T−BN−i

)
(T

T−BN

) Pre(N,b− i)+
ε
2
·1

≤
i0

∑
i=0

(1− τ)i
(

b
i

)(
T −BN

T

)i(BN
T − i

)b−i

Pre(N,b− i)+
ε
2

[Claim 3]

≤
i0

∑
i=0

(1− τ)i
(

b
i

)(
T −BN

T

)i(BN
T − i

)b−i

Pre(N,b)+
ε
2

≤
i0

∑
i=0

(1− τ)i
(

b
i

)(
T −BN

T

)i(BN
T − i0

)b−i

Pre(N,b)+
ε
2

≤
b

∑
i=0

(1− τ)i
(

b
i

)(
T −BN

T

)i(BN
T − i0

)b−i

Pre(N,b)+
ε
2

=

(
(1− τ)

T −BN
T

+
BN

T − i0

)b

Pre(N,b)+
ε
2

≤
(
(1− τ)

T −BN
T

+
BN

T − i0

)b

+
ε
2
.

Thus, N > i0
/(

B
1−c0

− B
1−(1−τ)c0

)
ensures (1 − τ)T−BN

T + BN
T−i0

< 1, while b > −(s +

1)
/

log
(
(1− τ)c0 +

B
B/(1−c0)−i0/N

)
ensures

(
(1− τ)T−BN

T + BN
T−i0

)b
+ ε

2 ≤ 2−s. Hence, we conclude that
Prfail(N,B,T,τ,b)< ε .

Claim 3 If T,N,b, i are non-negative integers such that T > BN, T ≥ b, and i ≤ b, then
(T−b

T−BN−i

)
(T

T−BN

) ≤
(

T −BN
T

)i(BN
T − i

)b−i

.

Proof (T−b
T−BN−i

)
(T

T−BN

) =
(T −b)!(T −BN)!(BN)!

T !(T −BN − i)!(BN −b+ i)!
=

[
(T −BN − i+1) · · ·(T −BN)

][
(BN −b+ i+1) · · ·BN)

]
(T −b+1)(T −b+2) · · ·T

=
(T −BN − i+1) · · ·(T −BN)

(T − i+1) · · ·T
· (BN −b+ i+1) · · ·BN
(T −b+1) · · ·(T − i)

≤
(

T −BN
T

)i(BN
T − i

)b−i

16

USENIX Association 25th USENIX Security Symposium 1101

On Demystifying the Android Application Framework:
Re-Visiting Android Permission Specification Analysis

Michael Backes
CISPA, Saarland University & MPI-SWS

Saarland Informatics Campus

Sven Bugiel
CISPA, Saarland University

Saarland Informatics Campus

Erik Derr
CISPA, Saarland University

Saarland Informatics Campus

Patrick McDaniel
Pennsylvania State University

Damien Octeau
Pennsylvania State University &

University of Wisconsin

Sebastian Weisgerber
CISPA, Saarland University

Saarland Informatics Campus

Abstract
In contrast to the Android application layer, An-
droid’s application framework’s internals and their
influence on the platform security and user privacy
are still largely a black box for us. In this paper, we
establish a static runtime model of the application
framework in order to study its internals and provide
the first high-level classification of the framework’s
protected resources. We thereby uncover design pat-
terns that differ highly from the runtime model at
the application layer. We demonstrate the bene-
fits of our insights for security-focused analysis of
the framework by re-visiting the important use-case
of mapping Android permissions to framework/SDK
API methods. We, in particular, present a novel map-
ping based on our findings that significantly improves
on prior results in this area that were established
based on insufficient knowledge about the frame-
work’s internals. Moreover, we introduce the concept
of permission locality to show that although frame-
work services follow the principle of separation of
duty, the accompanying permission checks to guard
sensitive operations violate it.

1 Introduction

Android’s application framework—i.e., the middle-
ware code that implements the bulk of the Android
SDK on top of which Android apps are developed—
is responsible for the enforcement of Android’s
permission-based privilege model and as such is also
a popular subject of recent research on security exten-
sions to the Android OS. These extensions provide
various security enhancements to Android’s security,
ranging from improving protection of the user’s pri-
vacy [26, 46], to establishing domain isolation [29, 12],
to enabling extensible access control [21, 8].

Android’s permission model and its security exten-

sions are currently designed and implemented as best-
effort approaches. As such they have raised questions
about the efficacy, consistency, or completeness [3] of
the policy enforcement. Past research has shown that
even the best-efforts of experienced researchers and
developers working in this environment introduce
potentially exploitable errors [15, 44, 35, 33]. In light
of the framework size (i.e., millions of lines of code)
and based on past experience [15, 44, 16, 33, 36],
static analysis promises to be a suitable and effective
approach to (help to) answer those questions and
hence to demystify the application framework from a
security perspective. Unfortunately, on Android, the
technical peculiarities of the framework impinging
on the analysis of the same have not been inves-
tigated enough. As a consequence, past attempts
on analyzing the framework had to resort to simple
static analysis techniques [7]—which we will show in
this paper as being insufficient for precise results—or
resort to heuristics [33].

In order to improve on this situation and to raise
efficiency of static analysis of the Android application
framework, one is confronted with open questions
on how to enable more precise static analysis of the
framework’s codebase: where to start the analysis
(i.e., what is the publicly exposed functionality)?
Where to end the analysis (i.e., what are the data
and control flow sinks)? Are there particular design
patterns of the framework runtime model that impede
or prevent a static analysis? For the Android applica-
tion layer, those questions have been addressed in a
large body of literature. Thanks to those works, the
community has a solid understanding of the sinks and
sources of security- and privacy-critical flows within
apps (e.g., well-known Android SDK methods) and a
dedicated line of work further addressed various chal-
lenges that the Android application runtime model
poses for precise analysis (e.g., inter-component com-
munication [28, 40, 24, 27] or modelling the Android

1102 25th USENIX Security Symposium USENIX Association

app life-cycle[25, 6]). Together those results form a
strong foundation on which effective security- and
privacy-oriented analysis is built upon. In contrast
to the app layer, for the application framework we
have an intuitive understanding of what constitutes
its entry points, but no in-depth technical knowledge
has been established on the runtime model, and al-
most no insights exist on what forms the security
and privacy relevant targets of those flows (i.e., what
technically forms the sinks or “protected resources”).

Our Contributions. This paper contributes to
the demystification of the application framework from
a security perspective by addressing technical ques-
tions of the underlying problem on how to statically
analyze the framework’s code base. Similar to the de-
velopment of application layer analyses, we envision
that our results contribute some of the first results to
a growing knowledge base that helps future analyses
to gain a deeper understanding of the application
framework and its security challenges.

How to statically analyze the application framework.
We present a systematic top-down approach, start-
ing at the framework’s entry points, that establishes
knowledge and solutions about analyzing the control
and data flows within the framework and that makes
a first technical classification of the security and pri-
vacy relevant targets (or resources) of those flows.
The task of establishing a precise static runtime
model of the framework was impeded by the absence
of any prior knowledge about framework internals
beyond black-box observations at the framework’s
documented API and manual analysis of code frag-
ments. Hence we generate this model from scratch
by leveraging existing results on statically analyzing
Android’s application layer at the framework layer.
The major conceptual problem was that the design
patterns of the framework strongly differ from the
patterns that had been previously encountered and
studied at the application layer. Consequently we
devised a static analysis approach that systematically
encompasses all framework peculiarities while main-
taining a reasonable runtime. As result of this overall
process, we have established a dedicated knowledge
base that subsequent analyses involving the applica-
tion framework can be soundly based upon.

Axplorer tool and evaluation. Unifying the lessons
learned above, we have built an Android application
framework analysis tool, called Axplorer. We eval-
uate Axplorer on four different Android versions—
v4.1.1 (API level 16), v4.2.2 (17), v4.4.4 (19), and
v5.1 (22)—validate our new insights and demonstrate
how specialized framework analyses, such as message-

based IPC analysis and framework component inter-
connection analysis, can be used to speed up sub-
sequent analysis runs (e.g. security analyses) by
75% without having to sacrifice precision. As addi-
tional benefit the resulting output can be used by
independent work as is to create a precise static run-
time model of the framework without the need to
re-implement the complex IPC analysis.

Android permission analysis. Finally, to demonstrate
the benefits of our insights for security analysis of
the framework, we conduct an Android permission
analysis. In particular, we re-visit the challenge of
creating a permission map for the framework/SDK
API. In the past, this problem has been tackled [32, 7]
without our new insights in the peculiarities of the
framework runtime model, and our re-evaluation of
the framework permission map reveals discrepancies
that call the validity of prior results into question.
Using Axplorer, we create a new permission map
that improves upon related work in terms of precision.
Moreover, we introduce a new aspect of permission
analysis, permission locality, by investigating which
framework components enforce a particular permis-
sion. We found permissions that are checked in up to
10 distinct and not necessarily closely related com-
ponents. This indicates a violation of the separation
of duty principle and can impede a comprehensive
understanding of the permission enforcement.

2 Background

We first provide necessary technical background in-
formation on the Android software stack and the
abstract control and data flows in the system. An-
droid OS is an open source software stack on top
of the Linux OS. Between the apps at the top of
the stack and the Linux kernel at the bottom is the
Android middleware. This middleware consists of
the application runtime environment, default native
libraries (like SSL), and the Java-based application
framework (see Figure 1).

2.1 Android Application Framework
The application framework consists of the various
services that implement the Android app API (e.g.,
retrieving location data or telephony functionality).
Every framework service is responsible for provid-
ing access to one specific system resource, such as
geolocation, radio interface, etc.

Bound services. These services are implemented
as bound services [4] as part of the SystemServer.

2

USENIX Association 25th USENIX Security Symposium 1103

WiFi Manager Location Manager

WiFi Service
(Bound Service)

Location Service
(Bound Service)

SDK

App Framework

Linux OS + Hardware

App App
System Apps

(Contacts, SMS, Dialer,...)

Inter-Process Communication

...

Native Lib Native Lib

...

Native Libraries

Figure 1: Android Software Stack with abstract control
and data flows.

Bound service is the fundamental pattern to realize
Android services that are remotely callable via a well-
defined interface. Such interfaces are described in the
Android Interface Definition Language (AIDL) and
an AIDL compiler allows automated generation of
Stub and Proxy classes that implement the interface-
specific Binder-based RPC protocol to call the service.
Here, Stubs are an abstract class that implements
the Binder interface and needs to be extended by
the actual service implementation. Proxies are used
by clients to call the service. On top of Stubs and
Proxies, the Android SDK provides Managers as ab-
straction from the low-level RPC protocol. Manager
classes encapsulate pre-compiled Proxies and allow
developers to work with Manager objects that trans-
late local method calls into remote-procedure calls to
their associated service and hence enable app devel-
opers to easily engage into RPC with the framework’s
services. However, Proxies and Managers are just
abstractions for the sake of app developer’s conve-
nience and nothing prevents an app developer from
bypassing the Managers or re-implementing the de-
fault RPC protocol to directly communicate with the
services.

A small number of framework services does not
use AIDL to auto-generate their Stub/Proxy, but
instead provides a custom class that implements the
Binder interface. The most prominent exception
is the ActivityManagerService (AMS), which pro-
vides essential services such as application life-cycle
management or Intent distribution. Since its in-
terface is also called from native code, for which
the AIDL compiler does not auto-generate native
Proxies/Stubs and hence requires manual imple-
mentation of those, the RPC protocol for the AMS is
hardcoded to avoid misalignment between manually
written and auto-generated code.

The services are an essential part of the middle-
ware front-end to the application layer and calling
their interfaces triggers control and data flows within
the application framework. Naturally, the flows of
some services lead to interaction with the underlying
platform through the native libs. For instance, the
WifiService is interacting with the WiFi daemon.
Other services, such as Clipboard, do not rely on
any hardware features. However, the exact control
and data flows have not yet been studied or charted
(see blank boxes in Figure 1) and facilitating this
mapping by enabling analysis of the framework is
part of the contributions of this work.

System apps. System apps, such as Contacts, Di-
aler, or SMS complement the application framework
with commonly requested functionality. However, in
contrast to the application framework services that
are fixed parts of any Android deployment, system
apps are exchangeable or omittable (as can be ob-
served in the various vendor customized firmwares)
and, more importantly, are simply apps that are pro-
grammed against the same application framework
API as third-party applications.

2.2 Permissions
One cornerstone of the Android security design are
permissions, which an app must hold to successfully
access the security and privacy critical methods of
the application framework. Every application on
Android executes under a distinct Linux UID and
permissions are simply Strings1 that are associated
with the application’s UID. There is no centralized
policy for checking permissions on calls to the
framework API. Instead, framework services that
provide security or privacy critical methods to
applications (must) enforce the corresponding,
hard-coded permission that is associated with the
system resources that the services expose. To
enforce permissions, the services programmatically
query the system whether their currently calling
app—identified by its UID—holds the required
permission, and if not take appropriate actions
(such as throwing an exception). For instance, the
LocationManagerService would query the system
whether a calling UID is associated with the String
android.permission.ACCESS_FINE_LOCATION,
which represents the permission to retrieve the GPS
location data from the LocationManagerService.

In this model, system apps differ from third-party
apps in that they can successfully request security

1Permissions that map to Linux GIDs do not involve the
framework and are not further considered here.

3

1104 25th USENIX Security Symposium USENIX Association

and privacy critical system permissions from the
framework, which are not available to non-system
apps. Moreover, like framework services (and any
non-system application), they are responsible for en-
forcing permissions for resources they manage and
expose on their RPC interfaces (e.g., contacts infor-
mation or initiating phone calls). The difference to
non-system applications is, that they usually enforce
well-known permissions defined in the Android SDK,
although the Android design does—in contrast to
the framework services—not hardcode where those
permissions are enforced, thus allowing system apps
to be exchanged.

3 Related work

Static (app) analysis. Different related works
have analyzed Android apps for vulnerabilities and
privacy violations. Enabling precise static app analy-
sis required solving essential questions like what are
the entry points of the app, what are the security
relevant sinks and how can we achieve a static run-
time model that takes the application peculiarities
into account? Among the static analysis approaches,
CHEX [25] was the first tool to accommodate for
Android’s event-driven app lifecycle with an arbi-
trary number of entry points. FlowDroid [6] further
improved the runtime model by automatically gen-
erating per-component lifecycle models that take
into account the partial entry point ordering. While
FlowDroid still analyzed components in isolation, a
number of related works specifically addressed the
problem of inter-component communication (ICC).
The initial work Epicc [28] devised a new analysis
technique to create specifications for each ICC sink
and source. Amandroid [40] combined a lifecycle-
aware program dependence graph with ICC analysis
to generate an inter-component model of the ap-
plication to improve precision for various security
applications. Similarly, IccTA [24] extended Flow-
Droid with a precise inter-component model. Finally,
IC3 [27] uses composite constant propagation to im-
prove retargeting of ICC-related parameters enabling
a more precise ICC resolution. Moving from best
effort approaches, SuSi [5] took a machine-learning
approach for classifying and categorizing sources and
sinks in the framework code that are relevant for ap-
plication analysis. All of those solutions contribute to
analyzing Android apps more efficiently. The focus
of this work is on establishing similar knowledge on
Android’s application framework and on making a
first essential but non-trivial step towards enabling a
holistic analysis of Android that includes the frame-
work code with its security architecture.

Application Framework Abstractions. The
application framework is generally regarded as too
complex to be considered in an app analysis (cf.,
CHEX [25]) and very recent works dealt specifi-
cally with this problem of abstracting the application
framework [13, 18] or making it amenable for app
analysis [11]. EdgeMiner [13] links callback meth-
ods to their registration methods and generates API
summaries that describe implicit control flow transi-
tions through the framework. DroidSafe [18] distills
a compact, data-dependency-aware model of the An-
droid app API and runtime from the original frame-
work code. Droidel [11] differs in its approach by
explicating the reflective bridge between the appli-
cation framework and applications, while trying to
model the framework as less as possible. It generates
app-specific versions of the application framework
and replaces reflective calls with app-specific stubs.
All of these approaches try to pre-compute data-
dependencies through the framework API that can
be used by app analyses in favor of using the com-
plex and huge framework code base. In contrast, our
work makes a first step towards enabling in-depth
analyses of the application framework beyond just
data dependencies in order to enable future reasoning
about framework security architectures or extensions
(such as guiding and verifying hook placement or
separation of duties).

Permission Mapping and Inconsistencies.
Both Stowaway [32] and PScout [7] built permis-
sion maps for the framework API. Stowaway used
unit testing and feedback directed API fuzzing of the
framework API to observe the required permission(s)
for each API call. PScout, in contrast, used static
reachability analysis between permission checks and
API calls to create a permission mapping of different
Android framework versions that improves on the re-
sults of Stowaway. Permission maps have since been a
valuable input to different Android security research,
such as permission analysis [20] and compartmen-
talization [31, 34] of third-party code, studying app
developer behavior [32, 38], detecting component hi-
jacking [25], IRM [23, 10] and app virtualization [9],
or risk assessment [30, 19, 45, 42]. In this work, we
re-visit the challenge of creating a permission map for
Android. In contrast to the prior work, we build on
top of our new insights on how to statically analyze
the application framework (see Sections 4 and 5),
which allow us to achieve a map that is more precise
for the application framework API and that calls the
validity of some prior results [7] into question. We
discuss how recent work [33] that focused on incon-
sistent security enforcement within the framework

4

USENIX Association 25th USENIX Security Symposium 1105

could benefit from a deeper understanding of the
framework’s peculiarities separately in Section 8.

Android Security Frameworks. Various secu-
rity extensions have been proposed, such as [26, 46,
29, 12, 21, 8] to name a few, which integrate autho-
rization hooks into Android’s application framework
to enforce a broad range of security policies. At the
moment, those extensions are designed and imple-
mented as best-effort approaches that raise questions
about the completeness and consistency of the en-
forcement and indeed past research has shown that
even the best-efforts of highly experienced researchers
and developers working in this environment intro-
duce potentially exploitable errors [15, 44, 35, 33].
This unsatisfying situation has strong parallels to
earlier work on integrating authorization hooks into
the Linux and BSD kernels [41, 39], where a dedi-
cated line of work [15, 44, 16] has established tools
and techniques to reason about the security proper-
ties of proposed extensions or to automate the hook
placement. Prerequisite for those solutions was a
clear understanding of what constitutes a resource
that is (or should be) protected by an authorization
hook. To allow development of similar tools for the
Android application framework, we hence have to
also answer the question about Android’s protected
resources first. In this work we want to make a first
essential step in this direction by enabling a deeper
analysis of the framework and by providing a first
high-level taxonomy of protected resources in the
application framework.

4 Enabling In-Depth Application
Framework Analysis

In contrast to the various related works on static
analysis at the application level, there is no exist-
ing prior work on in-depth analysis of the applica-
tion framework. Moreover, as the architecture of
the framework fundamentally differs from the archi-
tecture of applications, open questions have to be
answered first to be able to conduct in-depth static
analysis of the framework. For instance, “what are
the entry points to the application framework?” or
“how to establish a static runtime model of the frame-
work’s control flows?” In the following we identify
challenges that arise for static analyses at framework
level and present a systematic, top-down approach to
cope with these problems (an implementation of our
approach is presented in Section 5). Solving the dis-
cussed challenges lays the foundation on which a wide
range of security analyses of the application frame-

work can be constructed, from which we (re-)visit
the use-case of permission analysis in Section 7.

4.1 Defining Framework Entry Points
The first question to be answered is how to iden-
tify and select the starting points for the framework
analysis? At application level this has already been
studied in depth [25, 6, 14, 17, 43]. From a high-level
view, most approaches parse the declared compo-
nents from the application manifest and determine
the components as well as dynamically registered
callbacks as entry points; or they build componen-
t/application life-cycle models with a single main
entry method.

Challenge: The framework model is conceptually
different from the application layer and existing
approaches for application layer analysis do not
apply in a framework analysis. Instead one has
to identify the framework API methods that are
exposed to app developers as analysis entry points.

To identify the entry point methods, we have to
locate the relevant framework entry point classes.
Starting with the official API of the Android SDK
(e.g., Managers in Figure 1) is not reliable as there are
no means to prevent an app developer from bypassing
the SDK by immediately communicating with the
framework services or by using reflection to access
hidden API methods of the SDK. Consequently, we
do not consider the API calls within the SDK as
entry points but instead the framework classes that
are entry points for accessing framework functionality
(i.e., framework classes that are being called by the
SDK, see Figure 1). We exclude entry points that
are not accessible by app developers, such as Zygote,
service manager, or the property service, which are
under special protection (e.g., SELinux [37]) and will
not accept commands by third-party apps that have
tangible side-effects on the system or other apps. This
restriction is in accordance with the design of existing
Android security extensions, which exclusively focus
on the exported functionality of the app framework
(e.g., framework’s bound services).

Inter-component communication in Android is by
design based on Binder IPC and, thus, framework
classes have to expose functionality via Binder inter-
faces to the application layer. To this end, interfaces
must be derived from IInterface, the base class
for Binder interfaces. Binder interfaces might be
automatically generated by AIDL, in this case the
entry point classes extend the auto-generated Stub
class, or in case of Binder interfaces that are not gen-
erated by AIDL, a custom Binder implementation

5

1106 25th USENIX Security Symposium USENIX Association

like ActivityManagerNative2 has to be provided,
which in turn is extended by the entry point classes.
These class relationships can be resolved via a class
hierarchy analysis (CHA) to determine the set of
all entry classes. Besides bound services this also
includes callback and event listener classes that ex-
pose an implementable interface to app developers.
Hence, we define entry points (EP) as the public
methods of framework classes that are exposed via a
Binder interface. In addition, permission-protected
entry points (PPEP) are defined as entry points from
which a permission check is control-flow reachable.

4.2 Building a Static Runtime Model

Challenge: Generating a static model that ap-
proximates the runtime behaviour of the application
framework again strongly differs from the problems
that arise at application level where the component
life-cycles are mimicked to approximate runtime be-
havior. The bound services—as entry points to the
framework—might be queried simultaneously from
multiple clients (apps) via IPC and hence have to
handle multi-threading to ensure responsiveness of
the framework. In contrast to the application space
at which utility classes like AsyncTask are used for
threading, we discovered that the framework ser-
vices make intensive use of more generic but also
more complex threading mechanisms like Handler,
AsyncChannel, and StateMachines. Disregarding
these concurrency patterns results in imprecise data
models that cause a high number of false positives
during framework analysis.

In the following, we provide technical background for
those asynchronicity patterns and explain how they
can modeled correctly for static analyses.

Handler. The class android.os.Handler pro-
vides a mechanism for reacting to messages or sub-
mitting Java Runnable objects for execution on a
(potentially remote) thread. Handlers either sched-
ule the processing of a message or the execution of
a Runnable at some point in the future or process a
message/Runnable on a separate thread.

To illustrate the Handler mechanism, consider
the example shown in Listing 1. It includes
the relevant sections of the framework class
com.android.server.BluetoothManagerService.
When the service is constructed, it instantiates
a HandlerThread object (line 6), a traditional
Thread object associated with a Looper. The

2By convention non-generated class names end with Native.

1 class BluetoothManagerService {
2 private HandlerThread mThread ;
3 private BluetoothHandler mHandler ;
4
5 public BluetoothManagerService () {
6 mThread = new

HandlerThread (" BluetoothManager ");
7 mThread . start ();
8 mHandler = new

BluetoothHandler (mThread . getLooper ());
9 }

10 public void enable () {
11 Message msg =

mHandler . obtainMessage (MESSAGE_ENABLE);
12 mHandler . sendMessage (msg);
13 }
14 public void disable () {
15 Message msg =

mHandler . obtainMessage (MESSAGE_DISABLE);
16 mHandler . sendMessage (msg);
17 }
18
19 class BluetoothHandler extends Handler {
20 public void handleMessage (Message msg) {
21 switch (msg.what) {
22 case MESSAGE_ENABLE :
23 // process enable message
24 break ;
25 case MESSAGE_DISABLE :
26 // process disable message
27 break ;
28 // Other cases .
29 }}}
30 }

Listing 1: Bluetooth Handler in the Bluetooth
manager service. Code was simplified for readabililty.

purpose of the Looper class is to sequentially process
the messages in a message queue. At line 8, the
class-specific BluetoothHandler object is created
and associated with the newly created Looper
from the HandlerThread. This allows messages
sent to the BluetoothHandler to be pushed to the
message queue for this Looper. Methods enable
and disable can be called by applications via
RPC on IBluetoothManager to turn the bluetooth
functionality on or off. Method enable sends
a message with code MESSAGE_ENABLE to the
BluetoothHandler (line 12). When the associated
Looper instance processes the message, it calls
method handleMessage in the BluetoothHandler
(line 20), which then processes the request.

Statically resolving message-based IPC, requires
to overcome several challenges. First, the target
Handler type has to be inferred, to determine the con-
crete handleMessage method of the receiving class
that processes the message. Second, to add precision
to the analysis, it is best to make it locally path-
sensitive by inferring the possible message codes of
the arguments to sendMessage methods. For the ex-
ample presented in Listing 1, this enables the analysis
to be limited to the feasible paths for a given message
in the switch at line 21. While it is possible to per-

6

USENIX Association 25th USENIX Security Symposium 1107

form the analysis without this information, doing so
results in a significant loss of precision and, thus, an
increase in the number of false positives, which may
distort the results of security analyses built on top.
In light of the prevalence of the Handler pattern,
this loss of precision is not an acceptable solution.
Finally, since messages can also be associated with
runnable tasks instead of message codes, the con-
crete Runnable types associated with each message
have to be inferred to determine the runnable code
executed when such a message is processed.

AsyncChannel. Closely related to Handlers,
com.android.internal.util.AsyncChannel im-
plements a bi-directional channel between two
Handler objects. It provides its own sendMessage
and replyToMessage methods, both of which dele-
gate to the sendMessage methods in its associated
Handler. In order to precisely model AsyncChannel
objects, it is necessary to infer the types of the
sender/receiver Handler objects. Similarly to
Handlers, path-sensitivity should be added to the
analysis by inferring the message codes that are sent
through the channel.

StateMachine. Building on the Handler concept,
the com.android.internal.util.StateMachine
class models complex subsystems such as the DHCP
client or the WiFi connectivity manager. This
class allows processing of messages depending
on the current state of the modeled system. It
effectively constitutes a hierarchical state machine
in which messages cause state transitions. States
are organized in a hierarchical manner, such that
parent states may process messages that are not
handled by child states. In order to precisely model
state machines, several challenges must be addressed.
First, the subtype of the state machine itself must be
inferred, with all the states and possible transitions.
Second, the hierarchy of the states must be inferred,
in order to know which enter and exit state
methods are called upon state transitions. Moreover,
this is necessary to know which state may handle a
given message. Third, for eliminating further false
positives one needs to infer the possible states for
any given program location at which interaction
with the state machine occurs.

4.3 Identifying Protected Resources
While the previous sections show how static analy-
sis of the android application framework code base
can be enabled, we now classify the resources in-
side the application framework that actually have

to be protected. Unfortunately, there is a lack of
consensus in the community on what constitutes
a security-sensitive resource/operation [5, 16] and
no one-size-fits-all definition exists as the concrete
definition depends on various aspects like operating
system, programming language, or even the domain.
To avoid ambiguities on what we denote as protected
resource in the remainder of this paper, we note that
protected resources for us are security sensitive oper-
ations that have a tangible side effect on the system
state or use of privacy.

Challenge: Defining the security-relevant re-
sources is, in contrast to entry points, more chal-
lenging. For privacy leak analysis at application-
level, there is a well-defined list of API methods
that can be classified as sinks. Since the analysis
now shifts into the API methods of the framework,
it is unclear what kind of resources are protected
by Android’s permissions and can, thus, be used as
sinks for security analysis within the framework.

To create a first high-level taxonomy of protected
resources that can help to automatically discover
such resources, we first have to create a ground truth
about what technically forms a protected resource.
To this end, we manually investigated control flows
of a number of identified PPEP in the framework’s
source code. Here, we make the assumption that
every existing permission check within the applica-
tion framework indeed controls access to at least one
security- or privacy-critical system resource. Checks
are usually located at the very beginning of PPEP, so
that any subsequent operation is indeed authorized.
Using expert knowledge in combination with descrip-
tions of expected side effects from the Android docu-
mentation we identify and annotate relevant state-
ments that modify the service and/or system state.
To avoid a potential bias in the types of protected
resources, we chose entry points from eight different
entry classes. To cover a variety of disjunct cases, we
based our selection on the available information such
as return value, number/type of EP input arguments,
or number/type of permission checks collected during
the entry point discovery. After manually investigat-
ing flows from 35 entry points, distinct repetitive
patterns for protected resources appeared across the
different control flows, which we summarized in a
taxonomy of the high-level protected resource types.

Taxonomy of protected resources. Figure 2
presents our high-level taxonomy of the protected re-
source types. In contrast to work at application-level
that disregards field instructions [5], we found that
field update instructions are highly relevant in the

7

1108 25th USENIX Security Symposium USENIX Association

context of the framework and in fact are the most
prevalent type of protected resources that we discov-
ered. Relevant method invocations can be further sub-
classified into native method calls (e.g. for file system
access or modification of device audio settings) and
broadcast sender. We consider native method calls
generally as protected resources, since distinguishing
non-/security-relevant native calls would require a
dedicated analysis for the native code, which is cur-
rently a general, open problem for the community
and out of scope for this work. Broadcast senders are
protected resources as they can potentially cause in
the receivers side-effects on the system or apps. How-
ever, this is statically unresolvable, as the concrete
side-effects strongly depend on the current system
configuration, e.g. on the installed apps and the set
of active broadcast listener. We consider non-void
return values of security-sensitive entry methods as
protected resource. Returned objects of such meth-
ods constitute sensitive data, e.g., a list of WiFi
connections. Return values of primitive types int or
boolean may constitute sensitive values like for the
method isMultiCastEnabled of the WifiService
or some status/error code in method enableNetwork
of the same service. We also found cases in which
a throw RuntimeException (RTE) has to be consid-
ered as a protected resource. For instance, in the
crash method of the PowerManagerService, which
requires from the caller the permission to reboot the
device, an RTE causes the runtime to crash and the
device to reboot in consequence.

Coverage of the taxonomy. An inherent limita-
tion of our taxonomy based on small-scaling manual
analysis is, that there are no guarantees that corner
cases are included in the current classification. To
cover all corner cases in our taxonomy, a compre-
hensive manual analysis of the framework would be
required, which would defeat the purpose of enabling
a static analysis in the first place. This constitutes
a high-level taxonomy of protected resource (types)
in the framework. Distilling a more refined set for
security analyses is discussed separately in Section 8.

5 Implementation

We combined all aforementioned steps from Section 4
for analysis of an arbitrary framework version into
a tool called Axplorer. We leverage the static
analysis framework WALA [2], although our approach
is equally applicable to other analysis frameworks
such as Soot [1]. Additional code for realizing our
approach comprises ≈15 kLOC of Java.

Protected Resource

Field updates

Method invocations

Return values

Throw instructions Throw Run-
timeException

Native method
invocations

Broadcast sender

Figure 2: High-level taxonomy of protected resource
operation types.

Call-graph generation. For each identified en-
try class, we generate an inter-procedural call-graph
(CG). As opposed to related approaches [7] that use
class hierarchy analysis to generate low-precision call-
graphs due to the overall framework complexity—
Android version 4.2.2 already includes over 35,000
classes—we generate high-precision call-graphs with
object-sensitive pointer resolution. For each virtual
or interface invocation we infer the runtime type(s)
and hence precisely connect the invocation to its
target(s). Although the costs for the points-to com-
putation are computational very expensive, the in-
creased precision lowers the complexity of the overall
call-graph, since we do not introduce imprecision by
considering all subclasses of a virtual method call as
potential receivers. Avoiding this imprecision in the
call-graph also lowers the number of false positives.
The complexity is further reduced by the design de-
cision to not follow RPC calls to other entry classes.
We complement the call-graph with message-based
IPC edges during the control-flow slicing (see below).

Slicing & on-demand msg-based IPC resolu-
tion. We conduct a forward control-flow slice for
each identified entry point method. The slicer stops
at native methods, RPC invocations to classes other
than the current one, and when the entry point
method returns. During slicing, we perform an on-
demand message/handler resolution to add message-
based IPC edges to the call-graph, thus avoiding a
huge computational overhead of computing all edges
in advance when only a subset of them are required
for analysis (e.g. if PPEP are analyzed only).

When the slicer reaches a sendMessage call, we in-
fer the concrete handler type and add a call edge from
the sendMessage call to the handleMessage method
of the receiving handler. We augment this process
with inter-procedural backwards slicing for two rea-
sons: First, since existing type inference algorithms
(like the ones implemented in WALA) work intra-
procedurally, type inference fails if Handler objects
are stored in fields whose declared field type is the

8

USENIX Association 25th USENIX Security Symposium 1109

Handler base class and not the concrete subtype. Us-
ing inter-procedural backwards slicing starting at the
message-sending instruction, we obtain a more pre-
cise set of possible handler types in Axplorer. Sec-
ond, Messages are usually not constructed explicitly
but indirectly obtained via calls to Message.obtain
or Handler.obtainMessage and contain a public in-
teger field that carries a sender-defined message code
that allows the recipient to identify the message type.
To statically identify the message code we compute
a backwards slice starting from the message-sending
instruction and check the resulting set of instructions
for calls that construct/obtain a message. We then
repeat this approach starting from the message ob-
tain call to infer the concrete message code used to
initialize the Message.

Handlers use switch statements to match the pro-
vided message code and to transfer control-flow to
a specific basic block of the method’s control-flow
graph (cf. line 25 et seqq. in Listing 1). To avoid
infeasible paths, we have to recreate path-sensitivity
intra-procedurally and map the message code(s) to
the individual execution path(s). The control-flow
slicer then continues at this specific execution path to
avoiding a huge number of false positives. Runnable
types on a post call of the Handler are resolved
in the same way and a call edge to the Runnable’s
run method is added. The approach slightly differs
in case of StateMachines. Here, there is no single
handleMessage function. Instead, each State im-
plements its own processMessage function. In this
case, we recreate path-sensitivity for each of these
functions and delegate the control-flow to any match-
ing switch statement.

6 Framework Complexity Analysis

We apply our gained insights from Section 4 to col-
lect complexity information about the application
framework. By doing this, we demonstrate how the
analysis complexity can be held manageable to allow
such in-depth analysis within a reasonable amount of
time. Finally, we collect the framework’s protected
resources as denoted in our taxonomy and validate
the results (a detailed discussion on how security
analyses can benefit from this is given in Section 8).
Using Axplorer we analyze four different Android
versions: 4.1.1 (API level 16), 4.2.2 (17), 4.4.4 (19),
and the latest Lollipop release 5.1 (22).

6.1 Handling Framework Complexity
Table 1 summarizes different complexity statistics
generated for the four analyzed versions. Unsur-

prisingly, the complexity in terms of code increases
with each version, whereas the gap to the most re-
cent major version is significantly larger as between
the minor version changes due to new features like
Android TV. The entry class discovery algorithm
identified between 242–383 entry classes of which
≈25% include at least one PPEP. The evaluation was
conducted on a server with four Intel Xeon E5-4650L
2.60 GHz processors with 8 cores each and 768 GB
RAM. Initial processing of the frameworks finished
in reasonable time, ranging from 14–126 hours. Note
that this computation has to be done only once per
Android version and that there are no real-time con-
straints as, e.g., in application vetting. The most
time-consuming task (about 85% of the overall time)
was generation of the high-precision call-graphs. In
the following, we describe the use of entry-class inter-
connection and IPC analysis to speed up processing
time without loosing the precision of our data model.

Entry class interconnection. IPC-interfaces of
framework entry classes are not only used by the
application layer, but also by other framework ser-
vices. Analyzing the communication behavior of
entry classes does not only provide a deeper under-
standing of how the framework services are inter-
connected but also facilitates analyses that rely on
permission checks as security indicator (e.g., see Sec-
tion 7). Exploiting the knowledge about which ser-
vice EP triggers which RPCs along its control flow
enables pre-computation of execution path conditions
and restricting the scope of a service analysis to only
subsets of dependent services rather than the entire
framework (i.e, it allows to efficiently divide and con-
quer the framework analysis). In a post-processing
step the analysis results for distinct services can be
stitched together at RPC boundaries. Appendix A
illustrates the RPC interconnections for Android 5.1.

Message-based IPC Analysis. A precise model
of the message sender to handler relations is crucial
for the generation of a static runtime model of the
framework with a low number of false connections.
The last row in Table 1 shows the prevalence of the
message sending pattern. Between 38–52% of PPEP
include at least one message sending call. Across API
levels we found 300 (API 16) to over 500 (API 22)
distinct message sender calls used within PPEP. The
evaluation of our IPC analysis showed that in 7% of
all cases the message was sent to a StateMachine,
and in 27% of all cases to a Handler. In the remain-
ing 66% a Runnable was posted. This ratio remains
approximately the same in all versions. Overall, our
IPC analysis was able to fully resolve about 76%

9

1110 25th USENIX Security Symposium USENIX Association

Android version 4.1.1 (16) 4.2.2 (17) 4.4.4 (19) 5.1 (22)

of classes 27,749 29,804 31,023 46,192
- inner classes 14,784 15,936 17,525 28,933

of entry point classes 242 256 284 383
- with at least one PPEP 64 (26.4%) 73 (28.5%) 75 (26.4%) 81 (21.2%)

entry methods (EP) 2,583 2,734 2,861 3,225
- with perm check (PPEP) 863 (33.4%) 1,018 (37.2%) 1,227 (42.9%) 1,250 (38.8%)

- incl. message sending 328 (38.0%) 532 (52.2%) 518 (42.2%) 597 (47.8%)

Table 1: Comparing complexity measures for different Android versions (percentages relate to preceding line).

of all message sending instances, yielding already
a very valuable data set of the message sender to
handler relationships. Reasons for failed resolution
are that either the Handler (81%) or Runnable (5%)
could not correctly be inferred while in the remaining
13% of cases the message code could not be inferred.
The root cause of most of these failures is the miss-
ing/incomplete support of AsyncChannels and the
Message.sendToTarget() API call. At the time of
writing this support is work-in-progress.

During our initial analysis run Axplorer records
both an RPC-map per entry class as well as a list of
resolved sender-to-handler relationships. This data
is then re-applied as expert knowledge in subsequent
analysis re-runs to significantly reduce the analysis
runtime, e.g., for API level 17, the processing time
drops by ~75% to about 7 hours. By publishing
this data we hope that independent analyses can
equally benefit from this by removing the burden to
re-implement a comparable IPC resolution algorithm.

Reflection We analyzed reflection usage within
framework code by counting the number of calls
to methods within the java.lang.reflect package.
The absolute numbers range from 89 (API 16) to
118 (API 22). Across API levels less than 50% tar-
geted the Method class while the remaining calls were
distributed among other reflection classes. In many
cases reflection is used in utility or debug classes
and we found only one entry class that makes use of
reflection (ConnectivityService), but the respec-
tive method was removed in API level 20. In SDK
code the total numbers are slightly higher across
API levels (115–288). However, the additional usage
of reflection is mainly due to View/Widget classes.
Overall, reflection is only rarely used in framework
code and not used at all by main service components.

6.2 Android’s Protected Resources
To validate our established taxonomy, we collect the
protected resources for each Android version and
classify them with respect to the taxonomy. Across

versions the total number ranges from 6,5k (API 16)
to 10k (API 22). Although these numbers seem quite
high at first glance, they are reasonable in relation
to the overall size and complexity of the framework.
Axplorer recorded the context depth (in terms of
method invocations) at which the protected resources
were found. While for simple methods that include
few (or only even one) resource the call depth is
lower than two, the median call depth ranges from
8–11 across Android versions. This emphasizes that
approaches that do not perform in-depth analysis are
not suitable to detect resources located deeper in the
control-flow. The relative distribution of resources
per type is stable across all versions. We validated
our statement of Section 4.3 that field update instruc-
tions are the most prevalent resource type (with a
share of about 75%). They are followed by native
method calls (about 21–23%), which are most fre-
quently used as a gateway to the device hardware (e.g.
file system, audio, nfc). There is a surprisingly low
number of PPEP that return a protected value, the
absolute number ranges from 51–69 entries. Another
unexpected result is that runtime exceptions occur
with a frequency that is about as high as protected
broadcast senders. Besides the already mentioned ex-
ample within the PowerManagerService, we found
occurrences in UI widget classes and even in the
default XML parsing library on Android.

Appendix B gives more detailed statistics on pro-
tected resources, as well as a manual validation and
assessment of the use of RTE in the framework.

7 Permission Analysis

Building on top of our new insights we re-visit an im-
portant aspect of Android’s permission specification,
that is permission mapping between permission check
and SDK method, and further introduce permission
locality to study which framework components per-
form which permission checks. To this end we extend
Axplorer as follows:

1) A PPEP only indicates the presence of a
permission check in the control-flow from this

10

USENIX Association 25th USENIX Security Symposium 1111

entry-point, but there is no information yet about
the number of checks or the concrete permission
strings. We extend our slicing-based approach to also
resolve the permission strings in common permission
check API invocations (e.g., as defined in the
Context class). Non-constant strings are resolved in
a similar way like message codes in Section 5. From
520 distinct permission checks found in API level 16,
we were able to resolve 99% of the permission strings.
Among the failing cases, one case was located in the
ActivityManagerService$PermissionController
class where the permission string is an argument of
the entry point method, which is only called from
native code and hence was not statically resolved.

2) Entry class interconnection, i.e., RPC tran-
sitions to other PPEP (see Section 6.1), usually
accumulates all permissions required by the ad-
ditionally called entry classes for the UID that
called the first entry class in the control-flow.
However, those transitions are irrelevant for per-
mission analysis when the RPC is located be-
tween calls to Binder.clearCallingIdentity and
Binder.restoreCallingIdentity. Clearing the
calling UID in the framework’s bound services re-
sets it from the calling app’s UID to the privileged
system server UID. Thus, outgoing IPC edges after
clearing and before restoring the UID should be ig-
nored in permission analysis, since the additional
PPEP are called with a UID that is different from
the calling app’s UID.

3) We add a light-weight SDK analysis to reason
about required permissions of documented APIs. To
this end, we conduct a reachability analysis from pub-
lic SDK methods to framework EPs (SDK to frame-
work layer in Figure 1). Combining this mapping
with the mapping from framework EPs to permis-
sions creates a permission map for the documented
API.

7.1 Re-Visiting Permission Mapping
The Stowaway project [32] were the first to generate
a comprehensive permission map for Android 2.2.
Their dynamic analysis approach (feedback directed
API fuzzing) generates precise but incomplete results.
Moreover, the involved manual effort makes it diffi-
cult to re-use it for newer API versions. PScout [7]
improved on this situation by statically analyzing
the framework code, thus increasing the code cover-
age. In direct comparison PScout’s results contain
notably more permission mappings. To handle the
complexity induced by the framework size, PScout
resorts to low-precision data models based on class
hierarchy information. In the following, we demon-

strate that this has negative implications for their
resulting permission map. Using our insights we pro-
vide permission mappings that call the validity of
prior mappings into question.

We compare our results with PScout using their
latest available results (for Android 4.1.1) 3. Since we
exclude Intent and ContentProvider permissions,
which both require supplemental analysis effort such
as manifest or URI object parsing, we restrict the
comparison to un-/documented APIs. For the eval-
uation we include the standard system apps and
make identical assumptions as PScout, i.e., we as-
sume that any permission found for a particular API
is indeed required (a more precise analysis would
require path-sensitivity). Moreover, like PScout, we
did not conduct a native code analysis.

7.1.1 Documented API map

Figure 3 shows for our documented API map (SDK
EP to permissions) how often a certain permission
is required. For some permissions PScout reports
higher numbers while for others Axplorer reports
higher numbers. Since the results are fairly devi-
ating, we manually inspected various cases, includ-
ing a full analysis of NFC and bluetooth, to ver-
ify correctness of our generated numbers. PScout’s
higher method count, particularly for the two cases of
NFC and bluetooth, originates from adding package-
protected methods that are not exposed to app de-
velopers and from improper handling of the @hide
javadoc4 attribute, resulting in an overcounting of the
documented API methods. Our higher numbers of
BROADCAST_STICKY and SET_WALLPAPER mainly re-
fer to abstract methods from the Context class that
are implemented in its subclass ContextWrapper and
then inherited by 18 non-abstract subclasses (for API
16). Instead, PScout only lists those methods for the
Context/-Wrapper class, thus missing to count the
non-abstract subclasses.

Figure 4 provides a different view of the map-
ping by showing the distribution of required permis-
sions per API. The main difference is the smaller
number of outliers in our data set: four mappings
with three or more required permissions, compared
to 58 such outliers in the PScout data set. While
the different results in Figure 3 mainly originate
from technical shortcomings in the SDK analysis,
Figure 4 hints at the different quality of the un-
documented API map as result of a more precise

3We use PScout’s results as published on their website at
http://pscout.csl.toronto.edu. Last visited 01/25/2016.

4EP methods annotated with the @hide attribute are not
included in the SDK.

11

1112 25th USENIX Security Symposium USENIX Association

1
1

1
1

1
1

1
11

2
3

2
3

2
2

2
16

2
2

3
3

3
24

3
8

4
4

5
8

6
18

6
6

7
7

8
8

8
9

9
11

12
22

12
17

13
13

18
20

21
21

30
45

45
62

48
9

58
10

61
83

ACCESS_LOCATION_EXTRA_COMMANDS

SET_TIME_ZONE

SET_WALLPAPER_HINTS

USE_CREDENTIALS

CHANGE_WIFI_MULTICAST_STATE

GET_TASKS

KILL_BACKGROUND_PROCESSES

MANAGE_ACCOUNTS

REORDER_TASKS

DISABLE_KEYGUARD

GET_ACCOUNTS

VIBRATE

CHANGE_NETWORK_STATE

ACCESS_NETWORK_STATE

MODIFY_AUDIO_SETTINGS

SEND_SMS

AUTHENTICATE_ACCOUNTS

ACCESS_MOCK_LOCATION

READ_PHONE_STATE

ACCESS_WIFI_STATE

BLUETOOTH_ADMIN

CHANGE_WIFI_STATE

USE_SIP

ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

WAKE_LOCK

BLUETOOTH

BROADCAST_STICKY

SET_WALLPAPER

NFC

0 25 50 75
Number of documented API mappings

Axplorer
PScout

Figure 3: Number of documented APIs per permission.

framework analysis (see next Section 7.1.2). PScout’s
more light-weight framework analysis results in an
over-approximation of permission usage of EPs. For
their outliers with more than five permissions in
the ConnectivityManager class they either over-
approxmiate the receivers of a sendMessage call
and/or did not resolve the message code and the
correct path in the handleMessage method. In such
cases the over-approximation in the framework analy-
sis negatively influences the quality of the SDK map
when IPC calls from the SDK to the application
framework are connected. We manually validated all
outliers and found that no method actually requires
more than three permissions, thus contradicting the
PScout results. The four outliers in our dataset
check at most two permissions, independent of the
EP call arguments. Additional permission checks
might be required for specific arguments/parameters.
For instance the setNetworkPreference(int) func-
tion of the ConnectivityService will tear down a
specific type of network trackers depending on a pref-
erence integer argument. Some subtypes such as
the BluetoothTetheringDataTracker require both
bluetooth permissions to execute this functionality
while other subtypes require no additional permis-

314
365

34 46
4

33
0 4 0 19 0 1 0 1

0

100

200

300

400

1 2 3 4 5 6 7
Number of required permissions

D
oc

um
en

te
d

AP
I c

ou
nt Axplorer (Total: 352)

PScout (Total: 469)

Figure 4: Number of permissions required by a docu-
mented API.

sion. Adding parameter-sensitivity to the analysis is
required to resolve such cases automatically and to
annotate permission checks with conditions.

7.1.2 Undocumented API map

A fair, direct comparison of permission maps for
undocumented APIs is unfortunately very difficult
due to shortcomings in the original paper. Although
PScout did not explicitly define the term undocu-
mented API, we assume after manual inspection of
their results that it refers to the publicly exposed
framework interfaces and covers any functionality
that can be called from application level (indepen-
dent of whether it is provided by SDK or system
apps). Hence we refer to undocumented API as the
entire set of framework entry points (cf. Section 4.1).

In contrast to PScout’s documented API map, we
discovered different inconsistencies in their undoc-
umented mappings. Besides valid mappings from
PPEP to permissions, they also include mappings for
unrelated methods. First, public methods of AIDL-
based entry classes (which we define as Entry Points)
are counted up to five times: once in the SDK man-
ager class, in the framework service class, in the AIDL
interface class, and in the auto-generated Stub and
Proxy classes. Second, their mapping contains meth-
ods of StateMachine State classes. StateMachines
are used framework-internally and their functionality
is not exposed to apps. Third, synthetic accessor
methods as well as methods of anonymous inner
classes are reported. We assume that this problem is
related to the lack of a concise entry point definition
that induces difficulties with the abort criteria during
their backwards analysis starting from permission
checks. In contrast, our forward analysis seems more
suitable in this context, as permission checks are
usually closely located to framework EPs.

Table 1 reports on the numbers of entry points per
API level. For Android 4.1.1, Axplorer found 863
PPEP (33.4% of entry points) that require at least
one permission. These numbers include signature/-

12

USENIX Association 25th USENIX Security Symposium 1113

OrSystem permissions since this information, al-
though not interesting for app developers, is of inter-
est for understanding the Android permission model
in its entirety. On average we found 1.17 permissions
per PPEP, which leads to a total of 1,012 permission
mappings that cover 129 distinct permissions. This
is a magnitude less than the 32,304 permission map-
pings reported by PScout for normal and dangerous
permissions only. However, due to our more concise
definition of what constitutes public framework func-
tionality and the inclusion of all permission levels,
we argue that our number is more substantiated.

7.2 Permission Locality
The application framework implements a separation
of duty: every bound service is responsible for man-
aging a certain system resource and enforcing per-
missions on access by apps to them. For instance,
the LocationService manages and protects location
related information or the PhoneInterfaceManager
facilitates and guards access to the radio interfaces.
Permission strings already convey a meaning of the
kind of system resource they protect and app develop-
ers might have an intuition where those permissions
are required. We study whether permission checking
also follows the principle of separation of duty and
permissions are checked by only one particular service.
We call this aspect permission locality. A low per-
mission locality indicates that a certain permission
is enforced at different (possibly unrelated) services.
This potentially contributes to the app developer’s
permission incomprehension that can lead to over-
privileged apps [32]. Moreover, a strict separation of
duty, i.e., high permission locality, significantly eases
the task of implementing (and verifying) authoriza-
tion hooks for resources, for instance in the design
of recent security APIs [21, 8]. Consequently, the
permission that protects a set of sensitive operations
is ideally checked only in one associated entry class.

To study the permission locality, we analyze the
checked permission strings and map them to the
enclosing class of the permission check call. In An-
droid v4.1.1 (API level 16) we found that out of
110 analyzed permissions 22 (20%) are checked in
more than one class. Among these permissions, 13
are checked in two classes, 5 in three classes and
4 in four classes. An example for seemingly un-
related classes are LocationManagerService and
PhoneInterfaceManager that both check the dan-
gerous permission ACCESS_FINE_LOCATION. While
the permission is intuitively related to the first ser-
vice, the connection to the latter one becomes only
obvious by looking at the enclosing method that

includes the check (e.g. getCellLocation). Inter-
estingly, PhoneInterfaceManager is not a frame-
work service but included in the telephony system
app. Mixing framework services and system apps for
enforcing identical permissions complicates permis-
sion validation and policy enforcement, since system
apps might be vendor-specific. Grouping permis-
sions by protection level results in 22.2% (12/54) of
normal/dangerous permissions and 17.9% (10/56) of
signature/-OrSystem permissions being checked in
distinct classes. This implies that low permission
locality equally affects all protection levels. Ap-
plying this analysis on API 22 results in a even
lower overall permission locality. Focusing on the
four outliers in API 16, changes in API 22 include
three class renamings, two removals and nine ad-
ditions (cf. Figure 6 in Appendix C). The permis-
sion CONNECTIVITY_INTERNAL more than doubled
the number of classes (10) in which it is enforced.
This evolution of permission checks indicates a dis-
concerting trend to lower permission locality.

Instead, the permission locality should be increased
by, ideally, associating each permission with a single
service. Once a designated owner service has been
identified for each permission, a dedicated permis-
sion check function could be publicly exposed via
its Binder interface, e.g., a method to check the
ACESSS_FINE_LOCATION permission could be added
to the ILocationManager interface. The addition
and removal of callers to such methods then no longer
affects the number of decision points and preserves
the separation of duty for permission checks.

8 Discussion of Other Use-Cases

We briefly discuss further use-cases that can benefit
from our work, particularly from our taxonomy of
protected resources and the insights from our per-
mission locality analysis.

Permission check inconsistencies. Prior work
Kratos has shown that the default permission check
is inconsistent and can lead to attacks [33]. However,
this approach explicitly did not make the attempt to
identify protected resources in Android’s application
framework but instead relied on arbitrary shared code
as heuristic to identify security relevant hotspots in
the framework’s code base. While this approach has
successfully demonstrated the need for such analy-
sis, we argue that using our definition of protected
resources as refinement of shared code can further
improve the precision of their analysis, since, by defi-
nition, protected resources describe sensitive opera-
tions. False positives originating from shared logging

13

1114 25th USENIX Security Symposium USENIX Association

or library code are automatically eliminated then.
Distilling a more concise definition of field-update
and native method call resources from our high-level
taxonomy is a promising future work. An example
for such refinement is the removal of non-relevant
field updates of a this reference within constructors.
As there is no prior state for this object, such updates
must not be flagged as protected resource.

Authorization hook placement. Different An-
droid framework extensions [26, 46, 29, 12, 21, 8]
augment the application framework with authoriza-
tion hooks in a best effort approach. On commodity
systems, a comparable situation for the Linux and
BSD kernels has been improved through a long pro-
cess that established a deeper understanding of the
internal control and data flows of those kernels and
that allowed development of tools to verify or auto-
mate placement of authorization hooks. A similar
evolution for Android’s application framework has
yet been precluded due to open technical challenges:
first, one must be able to analyze control and data
flows in the framework across process and service
boundaries; second one must be able to track the
execution state of the framework service along its
internal control and data flows (e.g., tracking the
availability of the subject identity); third, one has to
establish a clear and very specific understanding of
the protected resources of each service. This work
at hand addresses the first of these challenges and
provides necessary permission locality information
to implement comprehensive, coarse-grained enforce-
ment models. Additionally, with our high-level tax-
onomy of protected resources we made a first step
towards solving the third challenge.

9 Conclusion

In this paper, we studied the internals of the An-
droid application framework, in particular challenges
and solutions for static analysis of the framework,
and provided a first high-level classification of its
protected resources. We applied our gained insights
to improve on prior results of Android permission
mappings, which are a valuable input to different
Android security research branches, and to introduce
permission locality as a new aspect of the permis-
sion specification. Our results showed that Android
permission checks violate the principle of separation
of duty, which might motivate a more consolidated
design for permission checking in the future. To allow
app developers and independent research to bene-
fit from our results, we published our data sets as

well as lint rules for our permission mappings for the
Android Studio IDE at http://www.axplorer.org .

Acknowledgments

This work was supported by the German Fed-
eral Ministry for Education and Research (BMBF)
under project VFIT (16KIS0345) and SmartPriv
(16KIS0377K) through funding for the Center for IT-
Security, Privacy and Accountability (CISPA) and
the initiative for excellence of the German federal
government.

References
[1] Soot - Java Analysis Framework. http://sable.github.

io/soot/, 1999.
[2] T.J. Watson Libraries for Analysis (WALA). http://

wala.sf.net, 2006.
[3] Anderson, J. P. Computer security technology planning

study, volume ii. Tech. Rep. ESD-TR-73-51, Deputy for
Command and Management Systems, HQ Electronics
Systems Division (AFSC), L. G. Hanscom Field, Oct.
1972.

[4] Android Developer Documentation. Bound services.
http://developer.android.com/guide/components/
bound-services.html. Last visited: 05/08/2015.

[5] Arzt, S., Bodden, E., and Rasthofer, S. A machine-
learning approach for classifying and categorizing An-
droid sources and sinks. In Proc. 21th Annual Network
and Distributed System Security Symposium (NDSS ’14)
(2014), The Internet Society.

[6] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bar-
tel, A., Klein, J., le Traon, Y., Octeau, D., and
McDaniel, P. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for An-
droid apps. In Proc. ACM SIGPLAN 2014 Conference
on Programming Language Design and Implementation
(PLDI 2014) (2014).

[7] Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie, D.
Pscout: Analyzing the android permission specification.
In Proc. 19th ACM Conference on Computer and Com-
munication Security (CCS ’12) (2012), ACM.

[8] Backes, M., Bugiel, S., Gerling, S., and von Styp-
Rekowsky, P. Android Security Framework: Extensible
multi-layered access control on Android. In Proc. 30th
Annual Computer Security Applications Conference (AC-
SAC ’14) (2014), ACM.

[9] Backes, M., Bugiel, S., Hammer, C., Schranz, O.,
and von Styp-Rekowsky, P. Boxify: Full-fledged App
Sandboxing for Stock Android. In Proc. 24th USENIX
Security Symposium (SEC ’15) (2015), USENIX.

[10] Backes, M., Gerling, S., Hammer, C., Maffei, M.,
and von Styp-Rekowsky, P. Appguard - enforcing user
requirements on Android apps. In Proc. 19th Interna-
tional Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS ’13) (2013).

[11] Blackshear, S., Gendreau, A., and Chang, B.-Y. E.
Droidel: A general approach to android framework mod-
eling. In Proc. ACM SIGPLAN Workshop on State of
the Art in Program Analysis (SOAP’15) (2015), ACM.

14

USENIX Association 25th USENIX Security Symposium 1115

[12] Bugiel, S., Heuser, S., and Sadeghi, A.-R. Flexible
and fine-grained mandatory access control on Android
for diverse security and privacy policies. In Proc. 22nd
USENIX Security Symposium (SEC ’13) (2013), USENIX
Association.

[13] Cao, Y., Fratantonio, Y., Bianchi, A., Egele, M.,
Kruegel, C., Vigna, G., and Chen, Y. EdgeMiner: Au-
tomatically Detecting Implicit Control Flow Transitions
through the Android Framework. In Proc. 22nd Annual
Network and Distributed System Security Symposium
(NDSS ’15) (2015), ISOC.

[14] Chaudhuri, A., Fuchs, A., and Foster, J. SCanDroid:
Automated security certification of Android applications.
Tech. Rep. CS-TR-4991, University of Maryland, 2009.

[15] Edwards, A., Jaeger, T., and Zhang, X. Runtime ver-
ification of authorization hook placement for the Linux
security modules framework. In Proc. 9th ACM Confer-
ence on Computer and Communication Security (CCS
’02) (2002), ACM.

[16] Ganapathy, V., Jaeger, T., and Jha, S. Automatic
placement of authorization hooks in the Linux Security
Modules framework. In Proc. 12th ACM Conference
on Computer and Communication Security (CCS ’05)
(2005), ACM.

[17] Gibler, C., Crussell, J., Erickson, J., and Chen, H.
Androidleaks: automatically detecting potential privacy
leaks in android applications on a large scale. In Proc.
5th international conference on Trust and Trustworthy
Computing (TRUST ’12) (2012), Springer-Verlag.

[18] Gordon, M. I., Kim, D., Perkins, J. H., Gilham, L.,
Nguyen, N., and Rinard, M. C. Information flow anal-
ysis of android applications in DroidSafe. In Proc. 22nd
Annual Network and Distributed System Security Sym-
posium (NDSS ’15) (2015), ISOC.

[19] Gorla, A., Tavecchia, I., Gross, F., and Zeller, A.
Checking app behavior against app descriptions. In Proc.
36th International Conference on Software Engineering
(ICSE ’14) (2014), pp. 1025–1035.

[20] Grace, M., Zhou, W., Jiang, X., and Sadeghi, A.-R.
Unsafe exposure analysis of mobile in-app advertisements.
In Proc. 5th ACM conference on Security and Privacy
in Wireless and Mobile Networks (WISEC ’12) (2012),
ACM.

[21] Heuser, S., Nadkarni, A., Enck, W., and Sadeghi, A.-
R. Asm: A programmable interface for extending android
security. In Proc. 23rd USENIX Security Symposium
(SEC ’14) (2014), USENIX.

[22] Huang, H., Zhu, S., Chen, K., and Liu, P. From system
services freezing to system server shutdown in android:
All you need is a loop in an app. In Proc. 22nd ACM
Conference on Computer and Communication Security
(CCS’15) (2015), ACM.

[23] Jeon, J., Micinski, K. K., Vaughan, J. A., Fogel,
A., Reddy, N., Foster, J. S., and Millstein, T. Dr.
Android and Mr. Hide: Fine-grained security policies on
unmodified Android. In Proc. 2nd ACM workshop on
Security and privacy in smartphones and mobile devices
(SPSM ’12) (2012), ACM.

[24] Li, L., Bartel, A., Bissyandé, T. F., Klein, J.,
Le Traon, Y., Arzt, S., Rasthofer, S., Bodden, E.,
Octeau, D., and Mcdaniel, P. IccTA: Detecting Inter-
Component Privacy Leaks in Android Apps. In Proc.
37th International Conference on Software Engineering
(ICSE ’15) (2015).

[25] Lu, L., Li, Z., Wu, Z., Lee, W., and Jiang, G. CHEX:
Statically Vetting Android Apps for Component Hijacking
Vulnerabilities. In Proc. 19th ACM Conference on Com-
puter and Communication Security (CCS ’12) (2012),
ACM.

[26] Nauman, M., Khan, S., and Zhang, X. Apex: Ex-
tending Android permission model and enforcement with
user-defined runtime constraints. In Proc. 5th ACM Sym-
posium on Information, Computer and Communication
Security (ASIACCS ’10) (2010), ACM.

[27] Octeau, D., Luchaup, D., Dering, M., Jha, S., and
McDaniel, P. Composite Constant Propagation: Ap-
plication to Android Inter-Component Communication
Analysis. In Proc. 37th International Conference on
Software Engineering (ICSE ’15) (2015).

[28] Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bod-
den, E., Klein, J., and Le Traon, Y. Effective inter-
component communication mapping in Android with
Epicc: An essential step towards holistic security anal-
ysis. In Proc. 22Nd USENIX Conference on Security
(SEC ’13) (2013), USENIX Association.

[29] Ongtang, M., McLaughlin, S. E., Enck, W., and Mc-
Daniel, P. Semantically rich application-centric security
in Android. In Proc. 25th Annual Computer Security
Applications Conference (ACSAC ’09) (2009), ACM.

[30] Pandita, R., Xiao, X., Yang, W., Enck, W., and Xie,
T. Whyper: Towards automating risk assessment of
mobile applications. In Proc. 22nd USENIX Security
Symposium (SEC ’13) (2013), USENIX.

[31] Pearce, P., Porter Felt, A., Nunez, G., and Wagner,
D. AdDroid: Privilege separation for applications and
advertisers in Android. In Proc. 7th ACM Symposium on
Information, Computer and Communications Security
(ASIACCS ’12) (2012), ACM.

[32] Porter Felt, A., Chin, E., Hanna, S., Song, D., and
Wagner, D. Android permissions demystified. In Proc.
18th ACM Conference on Computer and Communication
Security (CCS ’11) (2011), ACM.

[33] Shao, Y., Ott, J., Chen, Q. A., Qian, Z., and Mao,
Z. M. Kratos: Discovering inconsistent security policy
enforcement in the android framework. In Proc. 23rd
Annual Network and Distributed System Security Sym-
posium (NDSS ’16) (2016), ISOC.

[34] Shekhar, S., Dietz, M., and Wallach, D. S. Ad-
split: Separating smartphone advertising from applica-
tions. In Proc. 21st USENIX Security Symposium (SEC
’12) (2012), USENIX Association.

[35] Song, D., Zhao, J., Burke, M. G., Sbirlea, D.,
Wallach, D., and Sarkar, V. Finding tizen secu-
rity bugs through whole-system static analysis. CoRR
abs/1504.05967 (2015).

[36] Tan, L., Zhang, X., Ma, X., Xiong, W., and Zhou, Y.
Autoises: Automatically inferring security specifications
and detecting violations. In Proc. 17th USENIX Security
Symposium (SEC ’08) (2008), USENIX.

[37] The Android Open-Source Project. Security-
Enhanced Linux in Android. http://source.android.
com/devices/tech/security/selinux/index.html. Last
visited: 07/27/2015.

[38] Vidas, T., Christin, N., and Cranor, L. F. Curbing
android permission creep. In Proc. Workshop on Web
2.0 Security and Privacy 2011 (W2SP 2011) (2011).

15

1116 25th USENIX Security Symposium USENIX Association

[39] Watson, R., Morrison, W., Vance, C., and Feld-
man, B. The TrustedBSD MAC Framework: Exten-
sible kernel access control for FreeBSD 5.0. In Proc.
FREENIX Track: 2003 USENIX Annual Technical Con-
ference (2003), USENIX Association.

[40] Wei, F., Roy, S., Ou, X., and Robby. Amandroid: A
Precise and General Inter-component Data Flow Analysis
Framework for Security Vetting of Android Apps. In Proc.
21th ACM Conference on Computer and Communication
Security (CCS ’14) (2014), ACM.

[41] Wright, C., Cowan, C., Smalley, S., Morris, J., and
Kroah-Hartman, G. Linux Security Modules: General
security support for the Linux kernel. In Proc. 11th
USENIX Security Symposium (SEC ’02) (2002), USENIX
Association.

[42] Wu, L., Grace, M., Zhou, Y., Wu, C., and Jiang,
X. The impact of vendor customizations on android
security. In Proc. 20th ACM Conference on Computer
and Communication Security (CCS ’13) (2013), ACM.

[43] Yang, Z., and Yang, M. Leakminer: Detect information
leakage on Android with static taint analysis. In Proc.
2012 Third World Congress on Software Engineering
(WCSE ’12) (2012), IEEE Computer Society.

[44] Zhang, X., Edwards, A., and Jaeger, T. Using
cqual for static analysis of authorization hook placement.
In Proc. 11th USENIX Security Symposium (SEC’ 02)
(2002), USENIX.

[45] Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning,
P., Wang, X. S., and Zang, B. Vetting undesirable
behaviors in android apps with permission use analy-
sis. In Proc. 20th ACM Conference on Computer and
Communication Security (CCS ’13) (2013), ACM.

[46] Zhou, Y., Zhang, X., Jiang, X., and Freeh, V. Tam-
ing information-stealing smartphone applications (on
Android). In Proc. 4th International Conference on
Trust and Trustworthy Computing (TRUST ’11) (2011),
Springer-Verlag.

16

USENIX Association 25th USENIX Security Symposium 1117

Appendix

A Entry Class Interconnection

A standard call graph gives information about the
enclosing method/class of function calls. However,
this information is insufficient to provide information
about the interconnection of framework entry
classes. Instead, the interesting information is
the originating entry class that leads to an RPC
rather than the actual class that encloses the
RPC. To provide better information on the RPC
dependencies of entry classes, Axplorer creates an
RPC map by recording RPCs to other entry classes
and mapping them to the original entries during
control-flow slicing. Figure 5 shows a subgraph of
the overall RPC interconnections between flows
from different entry classes on Android 5.1 that
Axplorer generated. Nodes correspond to entry
classes and are weighted by in-/out-degree, thus
highlighting highly-dependent classes such as
ActivityManagerService. The source of a directed
edge is the originating entry class: the control-flow
starts at an entry method of this class and at some
point along the flow, not necessarily in the same
class, an RPC to the class of the edge target node is
invoked.

Across all four investigated Android versions
there is a median number of three distinct RPC
receivers per entry class in our map. The
ActivityManagerService is an exceptional case
where flows from its entry methods reach 36 dif-
ferent entry classes. These numbers emphasize that
large parts of the framework are strongly connected
and that detailed knowledge about the communica-
tion behavior greatly simplifies further framework
analyses as explained above.

B Evaluation of protected resources

B.1 Statistics on protected resources
Table 2 provides absolute numbers of protected re-
sources by API version and the distribution by re-
source types.

B.2 Manual investigation of RTE
Due to the surprisingly high number of runtime
exceptions and the fact that uncaught RTE
might potentially crash the system, we manually
investigated the corresponding code locations to
better understand their security implications. The

AccountManagerService

UserManagerService

PackageManagerService
ContentServiceSipService

WifiServiceImpl

UsbService

UiAutomationConnection
ContactsProvider2

CountryDetectorService
ProfileProvider

ClipboardService

Trampoline

PendingIntentRecord

WifiScanningServiceImpl

BatteryStatsService
WifiNetworkScoreCache

PackageInstallerService PackageInstallerSession

NetworkPolicyManagerService

ConnectivityService

NetworkStatsService

NetworkScoreService
AppOpsService

NetworkManagementService

MountService

LocationManagerService

EthernetServiceImpl

ActivityManagerService

CommandQueue

WindowManagerService

DropBoxManagerService

MonkeyNetworkMonitor

ProcessStatsService

StatusBarManagerService

BluetoothManagerService

AccessibilityManagerService

LockSettingsService

AudioService

Nat464Xlat

Tethering

DevicePolicyManagerService

AppWidgetServiceImpl

Session
BaseIWindow

What this graph shows
Originating Entry Point (EP)

abstraction
(in graph)

control-flow
(not in graph)

RPC Target EP

Enclosing
class

Figure 5: Subgraph of overall entry class interconnec-
tion via RPCs in Android 5.1. Directed edges show an
RPC to an exposed IInterface method of target node.

source code analysis revealed that these instructions
reside both in Android’s code base and in external
library code. Android, similar to other operating
systems, relies on external libraries for specific
tasks, such as XMLPullParser, Bouncy Castle, and
J-SIP. Integrating library code into such a complex
system usually raises the question on how to handle
unchecked exceptions that are thrown by library
functions. Either the library code is patched, which
might be a tedious maintenance task, or exceptions
are caught at caller site. Although the latter case is
considered bad practice in case of runtime exceptions,
using generic catch handler around library call sites
is the easiest and most reliable approach in this
situation.

Runtime exceptions in the Android code are
thrown to indicate precondition violations, like cru-
cial class fields being null, unrecoverable IO errors, or
security violations. The implications of a runtime ex-
ception differ with respect to code location in which
they are thrown. Exceptions in the application layer,
i.e. in system applications, cause the respective app
to crash. Similarly as for normal apps, they can be
restarted by the user. Sticky system app services are
restarted automatically by the system. Exceptions
thrown in bound services of the SystemServer are
handled in a special way: A system watchdog thread
com.android.server.Watchdog constantly moni-
tors the core services like PowerManagerService and
ActivityManagerService. In case of a crash or
deadlock, it reboots the entire system. Uncaught
runtime exceptions in unmonitored system services
cause the Android Runtime, including Zygote and

17

1118 25th USENIX Security Symposium USENIX Association

Android version 4.1.1 (16) 4.2.2 (17) 4.4.4 (19) 5.1 (22)

of protected resources 6,490 6,969 7,488 10,044
- field updates 4,891 (75.36%) 5,268 (75.59%) 5,675 (75.79%) 7,520 (74.87%)
- native method calls 1,433 (22.08%) 1,499 (21.51%) 1,643 (21.94%) 2,305 (22.95%)
- return value 51 (0.79%) 60 (0.86%) 54 (0.72%) 69 (0.69%)
- broadcast sender 65 (1.00%) 72 (1.03%) 53 (0.71%) 78 (0.78%)
- throw runtime exception 50 (0.77%) 70 (1.01%) 63 (0.84%) 72 (0.71%)

Median context depth 8 9 11 9

Table 2: Numbers on protected resources by type and Android version.

the SystemServer to be restarted (hot reboot) while
the kernel keeps running—effects also described in
recent research [22].

C Statistics on permission locality

Table 3 shows a detailed statistic about the number of
permissions in API 16 that are checked in more than
one class, grouped by their protection level. These
numbers imply that there is no apparent correlation
about the relative frequency and the protection level,
in particular between the permissions available to
third-party apps (normal+dangerous) and the ones
reserved for the system. Hence, low permission lo-
cality cases occur across all permission protection
levels.

Protection level # permissions

normal 2/16 (12.5%)
dangerous 10/38 (26.3%)
signature 2/25 (8%)
signatureOrSystem 8/31 (25.8%)

Table 3: Number of permissions in API 16 that are
checked in more than one class grouped by permission
protection level.

Figure 6 lists all four permissions that are checked
in four distinct entry classes in API level 16
(colors denote changes in API 22). In case of
READ_PHONE_STATE, those four classes even reside
in four distinct packages of which one is part of
the telephony system app. Although it may not al-
ways be easy to identify one dedicated service as the
permission owner, an effort might be desirable to
centralize permission checks into as few services as
possible (in best case into a single service). Besides
renamed classes (blue color) as result of a code refac-
toring process, the number of additions and removal
for this small number of examples clearly confirms
that permission checks are violating the separation of
duty and underline the need for central enforcement
points.

Permission : ACCESS_NETWORK_STATE
Level : normal
Checked in :

- com.android.server.ConnectivityService
- com.android.server.ethernet.EthernetServiceImpl
- com.android.server.ThrottleService
- com.android.server.net.NetworkPolicyManagerService
- com.android.server.net.NetworkStatsService

Permission : READ_PHONE_STATE
Level : dangerous
Checked in :

- com.android.internal.telephony.PhoneSubInfoProxy
- com.android.phone.PhoneInterfaceManager
- com.android.internal.telephony.SubscriptionController
- com.android.server.TelephonyRegistry
- com.android.server.net.NetworkPolicyManagerService

Permission : CONNECTIVITY_INTERNAL
Level : signatureOrSystem
Checked in :

- com.android.server.ConnectivityService
- com.android.server.NetworkManagementService
- com.android.server.NsdService
- com.android.server.net.NetworkPolicyManagerService
- com.android.server.net.NetworkStatsService
- com.android.server.ethernet.EthernetServiceImpl
- com.android.server.connectivity.Tethering
- com.android.bluetooth.pan.PanService$BluetoothPanBinder
- com.android.server.wifi.WifiServiceImpl
- com.android.server.wifi.p2p.WifiP2pServiceImpl

Permission : UPDATE_DEVICE_STATS
Level : signatureOrSystem
Checked in :

- com.android.server.power.PowerManagerService$BinderService
- com.android.server.LocationManagerService
- com.android.server.am.BatteryStatsService
- com.android.server.wifi.WifiServiceImpl
- com.android.server.am.UsageStatsService

Figure 6: Permissions checked in four distinct classes
in API 16. Colors denote changes in API 22: renamed
classes (blue), additions (green) and removals (red).

18

USENIX Association 25th USENIX Security Symposium 1119

Practical DIFC Enforcement on Android

Adwait Nadkarni, Benjamin Andow, William Enck
{anadkarni,beandow,whenck}@ncsu.edu

North Carolina State University

Somesh Jha
jha@cs.wisc.edu

University of Wisconsin-Madison

Abstract
Smartphone users often use private and enterprise data
with untrusted third party applications. The fundamen-
tal lack of secrecy guarantees in smartphone OSes, such
as Android, exposes this data to the risk of unauthorized
exfiltration. A natural solution is the integration of se-
crecy guarantees into the OS. In this paper, we describe
the challenges for decentralized information flow control
(DIFC) enforcement on Android. We propose context-
sensitive DIFC enforcement via lazy polyinstantiation
and practical and secure network export through domain
declassification. Our DIFC system, Weir, is backwards
compatible by design, and incurs less than 4 ms over-
head for component startup. With Weir, we demonstrate
practical and secure DIFC enforcement on Android.

1 Introduction

Application-based modern operating systems, such as
Android, thrive on their rich application ecosystems. Ap-
plications integrate with each other to perform complex
user tasks, providing a seamless user experience. To
work together, applications share user data with one an-
other. Such sharing exposes the user’s private and en-
terprise information to the risk of exfiltration from the
device. For example, an email attachment opened in a
third party document editor (e.g., WPS Office) could be
exported if the editor was malicious or compromised.

Android’s permission framework is used to protect ap-
plication data. However, permissions are only enforced
at the first point of access. Data once copied into the
memory of an untrusted application can be exported.
This problem is generic in OSes that provide only data
protection, but not data secrecy, and can be solved by
integrating information flow secrecy guarantees.

Classic information flow control (IFC) [8] only cap-
tures well-known data objects through a centralized pol-
icy. On Android, data is often application-specific (e.g.,

email attachments, notes). Therefore, Android requires
decentralized IFC (DIFC) [21, 26, 44, 49], which allows
data owners (i.e., applications) to specify the policy for
their own data objects.

Although DIFC systems have been proposed for An-
droid [19,28,46], existing enforcement semantics cannot
achieve both security and practicality. For instance, an
Android application’s components are instantiated in the
same process by default, even when executing separate
user tasks. Since the various secrecy contexts from the
tasks share state in process memory, DIFC enforcement
on the process is hard, as the combined restrictions from
all secrecy contexts would make individual components
unusable. Prior approaches solve this problem by elim-
inating Android’s default behavior of application multi-
tasking, and in ways detrimental to backwards compati-
bility, i.e., 1) killing processes per new call, which could
result in dangling state, or 2) blocking until the applica-
tion voluntarily exits, which could lead to deadlocks.

Similarly, different secrecy contexts may share state
on storage through common application files (e.g., appli-
cation settings). Proposals to separate this shared state
on storage (e.g., Maxoid [46]) either deny access to ap-
plication resources or require applications to be modi-
fied. To summarize, prior DIFC proposals for Android
cannot separate shared state in memory and on storage
while maintaining security and backwards compatibility.

In this paper, we present Weir,1 a practical DIFC sys-
tem for Android. Weir allows data owner applications to
set secrecy policies and control the export of their data
to the network. Apart from the data owners, and applica-
tions that want to explicitly use Weir to change their la-
bels, all other applications can execute unmodified. Weir
solves the problem of shared state by separating mem-
ory and storage for different secrecy contexts through
polyinstantiation. That is, Weir creates and manages in-
stances of the application, its components, and its stor-

1Weir: A small dam that alters the flow of a river.

1120 25th USENIX Security Symposium USENIX Association

age for each secrecy context that the application is called
from, providing availability along with context-sensitive
separation. Our model is transparent to applications; i.e.,
applications that do not use Weir may execute oblivious
to Weir’s enforcement of secrecy contexts.

We term our approach as “lazy” polyinstantiation, as
Weir creates a new instance of a resource only if needed,
i.e., if there is no existing instance whose secrecy con-
text matches the caller’s. Additionally, Weir provides the
novel primitive of domain declassification for practical
and secure declassification in Android’s network-driven
environment. Our approach allows data owners to artic-
ulate trust in the receiver of data (i.e., trusted network
domain). This paper makes the following contributions:

• We identify the challenges of integrating DIFC into
Android. Using these challenges, we then derive the
goals for designing DIFC enforcement for Android.

• We introduce the mechanism of “lazy” polyinstanti-
ation for context-sensitive separation of the shared
state. Further, we provide the primitive of Domain
Declassification for practical declassification in An-
droid’s network-driven environment.

• We design and implement Weir on Android. Weir
incurs less than 4ms overhead for starting compo-
nents. Weir’s design ensures backwards compatibil-
ity. We demonstrate Weir’s utility with a case study
using the K-9 Mail application.

While Weir presents a mechanism that is independent
of the actual policy syntax, our implementation uses the
policy syntax of the Flume DIFC model [21]. Weir ex-
tends Flume by allowing implicit label propagation, i.e.,
floating labels, for backwards compatibility with unmod-
ified applications. Since floating labels are by themselves
susceptible to high bandwidth information leaks [8], we
show how Weir’s use of floating labels is inherently re-
sistant to such leaks. Note that while language-level IFC
models [40–42] often incorporate checks that prevent im-
plicit flows due to floating labels, our solution addresses
the challenges faced by OS-level floating label DIFC sys-
tems [19, 44]. Finally, we note that Weir provides prac-
tical DIFC enforcement semantics for Android, and the
usability aspect of DIFC policy and enforcement will be
explored in future work.

In the remainder of this paper, we motivate the prob-
lem (Section 2), and describe the challenges in integrat-
ing DIFC on Android (Section 3). We then describe the
design (Section 4), implementation (Section 5) and secu-
rity (Section 6) of Weir, followed by the evaluation (Sec-
tion 7), and a case study (Section 8). We then discuss
the limitations (Section 9), related work (Section 10) and
conclude (Section 11).

2 Motivation and Background

We now motivate the need for data secrecy on Android.
This is followed by background on DIFC and Android.

2.1 Motivating Example and Threat Model
Consider Alice, an enterprise user in a BYOD (bring
your own device) context. Alice receives an email in
the enterprise OfficeEmail application with an attached
report. She edits the report in a document editor, WPS
Office, and saves a copy on the SD card, accessible to all
applications that have the READ EXTERNAL STORAGE
permission. Later, Alice uses the ES File Explorer to
browse for the report, edits it in WPS Office, and then
shares it with OfficeEmail to reply to the initial email.

To perform their functions, untrusted third party data
managers such as ES File Explorer require broad stor-
age access. Even without direct access, user-initiated
data sharing grants data editors like WPS Office access
to confidential data. If ES File Explorer or WPS Office
were malicious or compromised, they could export Al-
ice’s confidential data to an adversary’s remote server.
Threat Model and Assumptions: We seek to enable le-
gitimate use of third party applications to process secret
user data, while preventing accidental and malicious data
disclosure to the network. For this purpose, our solution,
Weir, must mediate network access, and track flows of
secret data 1) among applications and 2) to/from storage.

Weir’s trusted computing base (TCB) consists of the
Android OS (i.e., kernel and system services), and core
network services (e.g., DNS). Weir assumes a non-rooted
device, as an adversary with superuser privileges may
compromise OS integrity. Further, we assume cor-
rect policy specification by the data owner applications,
specifically regarding declassification. To prevent timing
and covert channels based on shared hardware resources
(e.g., a hardware cache), the only alternative is denying
data access to secret data or the shared resource. Weir
does not defend against such channels, which are notori-
ously hard to prevent in DIFC OSes in general.

2.2 Why Information Flow Control (IFC)?
Android uses its permission framework to protect user
data. While permissions provide protection at the first
point of access, the user or the data owner application
(e.g., OfficeEmail) have no control over the flow of data
once it is shared with another application (e.g., WPS Of-
fice). Unauthorized disclosure is an information flow
problem that permissions are not designed to solve.

Information flow control (IFC) [8] can provide data
secrecy and prevent unauthorized disclosure, through the
definition and enforcement of the allowable data flows in
the system. In an IFC system, subjects (e.g., processes)

USENIX Association 25th USENIX Security Symposium 1121

and objects (e.g., files) are labeled with predefined se-
curity classes (e.g., top-secret, secret, confidential). The
secrecy policy determines the data flow (i.e., ordering)
between any two classes based on a partially ordered fi-
nite lattice. Labels may also be joined to form a higher
label in the lattice. For secrecy, data can only flow up,
i.e., to a higher security class [6], and violating flows re-
quire declassification by the policy administrator.

2.3 What is DIFC?

A centralized IFC policy can only describe the secrecy
constraints for well-known data objects (e.g., location,
IMEI). Decentralized IFC (DIFC) [26] extends the IFC
lattice to include unknown subjects and objects, and is
appropriate for protecting application-specific data, such
as Alice’s secret report received by OfficeEmail. We now
describe some fundamental aspects of DIFC.

Label Definition: In a DIFC system, security principals
create labels (i.e., security classes) for their own secret
data. On Android, decentralized label definition would
allow apps to control the flow of their data by creating
and managing labels for their data. Note that while DIFC
also provides integrity, our description is for data secrecy
as it is the most relevant to the problem in Section 2.1.

Label Changes and Floating Labels: The finality of
subject and object label assignment is called tranquil-
ity [6], a property of mandatory protection systems.
Tranquility constraints have to be relaxed for DIFC pol-
icy. Subjects may then change (raise or lower) their la-
bels “safely”, i.e., with authorization from the data own-
ers whose security classes are involved in the change.

Explicit label changes offer flexibility over immutable
labels, but are not practical in environments where com-
munication is user-directed and unpredictable a priori.
Floating labels (e.g., in Asbestos [44]) make DIFC com-
patible with unmodified apps in such cases, by allowing
seamless data flows through implicit label propagation.
That is, the caller’s and the callee’s labels are joined, and
the resultant label is set as the callee’s label.

Declassification: The network is considered to be pub-
lic, and any network export requires declassification by
the data owner. Data owners may choose to explicitly
declassify every request to export their data, or allow
trusted third parties to declassify on their behalf. While
the former is impractical when frequent declassification
is required, the latter bloats the data owner’s TCB.

System Integration: One of the first steps while inte-
grating data secrecy into an existing OS is the selec-
tion of the subject for data flow tracking. Fine-grained
dynamic taint tracking (e.g.,TaintDroid [13]) labels pro-
gramming language objects to provide precision, but
does not protect against implicit flows. OS-based DIFC

approaches [21, 49] adopt the better mediated OS pro-
cess granularity, but incur high false positives; i.e., func-
tions sharing the process with unrelated functions that
read secret data may be over-restricted. While secure
process-level labeling is desired, practical DIFC enforce-
ment must minimize its impact on functionality.

2.4 Android Background
The Android application model consists of four com-
ponents, namely activities for the user interface (UI),
services for background processing, content providers
to provide a uniform interface to application data, and
broadcast receivers to handle broadcast events.
Component Instantiation: Services and content
providers run in the background, and have one active in-
stance. Activities can have multiple instances, and the
default “standard” launch behavior for activities is to
start a new instance per call. Developers use Android’s
“android:launchMode” manifest attribute to manage ac-
tivity instances as follows: SingleTop activities are re-
sumed for new calls if they already exist at the top of
the activity stack. SingleTask and SingleInstance activi-
ties are similar in that they are allocated an instance in a
separate user task and every call to such an activity re-
sumes the same instance; the only difference being that
the latter can be the only activity in its task.
Inter-Component Communication: Inter-component
communication on Android can be 1) indirect or 2) di-
rect. Indirect communication is an asynchronous call
from one component to another, through the Activity
Manager service (e.g., startActivity, bindService). Di-
rect communication involves a synchronous Binder re-
mote procedure call (RPC) to the callee using the callee’s
“Binder object”. While direct communication bypasses
the Activity Manager, its setup involves one mediated in-
direct call to retrieve the callee’s Binder object. For ex-
ample, the first operation executed on a content provider
(e.g., query, update) by a caller is routed through the
Activity Manager, which retrieves the content provider’s
Binder object and loads it into the caller’s memory. Fu-
ture calls are routed directly to the content provider.

3 DIFC Challenges on Android

In this section, we discuss the four aspects of Android
that make DIFC enforcement challenging. Further, we
describe how previous Android DIFC systems fare with
respect to the challenges, and state the design goals for
practical DIFC enforcement on Android.
1. Multitasking on Android: Android’s UI is organized
into user tasks representing the user’s high-level objec-
tives. An application can be involved in multiple tasks

1122 25th USENIX Security Symposium USENIX Association

PDF Activity Create Notesecret.pdf
Task 1

Process Boundaries

secret.pdf

PDF Activity Print Activity
public.pdf public.pdf

Task 2WPS Office WPS Office

WPS Office Evernote

Figure 1: Shared state in memory: Instances of WPS Of-
fice performing different tasks in the same process.

by default. Further, a default activity can be instantiated
multiple times in one or more concurrent tasks [3].

Figure 1 shows two tasks. In Task 1, the user opens
a secret PDF (e.g., a contract) with WPS Office, which
loads it in its PDF Activity, and shares it with the Ever-
note app. In Task 2, the user opens a non-confidential
PDF (e.g., a published paper) in another instance of
WPS Office’s PDF Activity. Further, in Task 2, the user
chooses to print the PDF, which is then sent to WPS Of-
fice’s internal Print Activity. As seen in Figure 1, multi-
ple activities of the WPS Office app as well as multiple in-
stances of the PDF Activity run in the same process, and
may share data in memory (e.g., via global variables).

As the two instances of the PDF Activity are instan-
tiated with data of different secrecy requirements (i.e.,
secret.pdf and public.pdf), they run in different secrecy
contexts. Enforcing the DIFC policy on the process due
to the sensitive nature of Task 1 would also unjustifi-
ably restrict the non-sensitive Task 2. A naive solution
of forcing every component to start in a separate process
may break components; e.g., Print Activity may try to
access a global variable initialized by the PDF Activity,
and may crash if the PDF Activity is not in the same pro-
cess. To summarize, component instances in various se-
crecy contexts often share state in process memory, mak-
ing process-level enforcement challenging.
2. Background components: As described in Sec-
tion 2.4, service and content provider components have
only one active instance, which is shared among all of an
application’s instances, and may also communicate with
other applications. As a result, various secrecy contexts
may mix in a single background component instance.

If floating labels (described in Section 2.3) are applied,
then the background component may accumulate the la-
bels of all the secrecy contexts it communicates with,
and then propagate its new label back to the components
connected to it. This results in a label explosion, where
the entire system acquires a large, restrictive label that
cannot be declassified by any single security principal.
Note that background components may run in the shared
application process by default. Therefore, restarting a
background component’s process for each new call is in-
feasible, as it would crash the other components (e.g., a

foreground activity) running in that process.

3. Internal and External Application storage: An-
droid provides each application with its own internal
(i.e., private) storage shared amongst all of its runtime
instances, irrespective of the secrecy context. For ex-
ample, both the sensitive and non-sensitive instances of
WPS Office may access the same user settings in the
application’s private directory. For availability from all
secrecy contexts, storage access enforcement uses float-
ing labels. The propagation of sensitive secrecy labels
through shared application files (i.e., shared state on stor-
age) may cause label explosion. The risk and impact of
label explosion is higher on the external storage (i.e., the
SD card) shared by all applications.

4. Internet-driven environment: Android applications
are often connected to the Internet. In such an environ-
ment with frequent network export, explicit declassifi-
cation by the data owner is inefficient. Delegation of
the declassification privilege to allow export without the
owner’s intervention would bloat the application’s TCB.
Additionally, existing declassification mechanisms de-
scribed in Section 2.3 make the policy decision based
on the identity of the security principal performing the
export. On Android, such mechanisms would limit the
user to using a small subset of applications for data ex-
port (i.e., out of the 2 million applications on Google
Play [39]), which would be detrimental to adoption of
DIFC on Android.

3.1 Prior DIFC Proposals for Android

We discuss three prior DIFC proposals for Android,
namely Aquifer [28], Jia et al. [19] and Maxoid [46], all
of which are OS-level DIFC systems. Our objective is
to understand the design choices made by these systems,
with respect to the challenges described previously.

1. Aquifer: Our prior work, Aquifer [28], provides pro-
tection against accidental data disclosure, by tracking the
flow of data through applications, and enforcing the de-
classification policy for network export.

For seamless data sharing between applications,
Aquifer uses the floating labels described in Section 2.3.
To limit label explosion, Aquifer does not label back-
ground components, and hence can only prevent acci-
dental data disclosure. On the other hand, Aquifer la-
bels storage, but does not claim to mitigate label explo-
sion on storage. Further, to prevent different secrecy re-
quirements for data in the memory of a single process,
Aquifer disables Android’s multi-tasking and restarts the
process of the existing instance when the application is
called from another secrecy context. Finally, Aquifer’s
declassification policy allows the data owner to explic-
itly specify the security principal that may export data,

USENIX Association 25th USENIX Security Symposium 1123

or a condition on the call chain for implicit export.

2. Jia et al.: The DIFC system by Jia et al. [19] also
uses floating labels to support general-purpose applica-
tions, but supports strict secrecy policies (i.e., relative to
Aquifer) that may restrict data sharing among applica-
tions if needed.

Contrary to Aquifer, the system propagates labels to
background components, providing stronger protection
against malicious data exfiltration. At the same time, the
system makes no claims of controlling label explosion
via background components or storage. The system uses
Flume’s capabilities [21] for declassification. This work
also acknowledges the challenge of multi-tasking along
with DIFC enforcement, and disallows multi-tasking by
blocking new calls to an application until all of its com-
ponents voluntarily exit. Since Android components do
not exit by themselves like conventional OS programs,
such blocking could potentially lead to deadlocks.

3. Maxoid: Xu and Witchel [46] provide an alternate ap-
proach to file system labeling to prevent label explosion
in Maxoid, by using file system polyinstantiation [22] to
separate differently labeled data on disk.

Maxiod addresses new calls to existing labeled in-
stances in a manner similar to Aquifer’s; i.e., by restart-
ing the instance. Additionally, Maxoid prevents access to
background components from labeled instances, thereby
preventing label explosion, although at the cost of back-
wards compatibility. On the other hand, Maxoid consid-
ers overt data flows through Binder IPC as declassifica-
tion, unlike the system by Jia et al. that mediates such
communication. Finally, Maxoid modifies system con-
tent providers (e.g., Contacts) to use a SQL proxy, in
order to extend its label separation into system content
providers. As a result, Maxoid’s storage separation is
unavailable for use by content providers in unmodified
third party applications.

Takeaways: Prior approaches demonstrate the possibil-
ity of DIFC on Android, and make convincing arguments
in favor of using floating labels, mainly for backwards
compatibility with Android’s unpredictable data flows.
At the same time, we observe that in prior systems it
becomes necessary to relax either security or backwards
compatibility in order to use floating labels on Android
(e.g., with background components). Additionally, prior
approaches recognize the need to separate different se-
crecy contexts in process memory, but the proposed so-
lutions disable Android’s default multi-tasking.2 Finally,
in systems that aim to address label explosion on storage,
only separating the shared state on storage without ad-
dressing the shared state in memory may be insufficient
to support unmodified applications.

2Killing existing processes or blocking can result in the killing of
unrelated components sharing the process, or deadlocks, respectively.

3.2 Design Goals
Our objective is to design DIFC enforcement that pro-
vides security, and is backwards compatible with unmod-
ified applications. Our design goals are as follows:

G1 Separation of shared state in memory. DIFC en-
forcement must ensure that data from different
secrecy contexts is always separated in memory,
preferably in the memory of different processes.
Process-level enforcement can then be used to me-
diate flows between differently labeled data.

G2 Separation of shared state on storage. DIFC en-
forcement must ensure that data from different se-
crecy contexts is separate on persistent storage. For
mediation by the OS, the separation must be at the
level of OS objects (e.g., files, blocks).

G3 Transparency. A naive implementation of goals G1
and G2 would affect the availability of components
and storage. Our system must be transparent, i.e.,
applications that do not use the DIFC system must
be able to operate oblivious to the enforcement.

G4 Secure and practical declassification for network
export. A DIFC system on Android should provide
a declassification primitive that is both feasible (i.e.,
does not hinder the use of applications) and secure.

4 Weir

In this paper, we propose Weir, a practical and secure
DIFC system for Android. Weir’s design is guided by the
security and backwards compatibility goals described in
Section 3.2. We now briefly describe the specific proper-
ties expected from our design, followed by an overview
of Weir and design details.
Design Properties: Taking a lesson from prior work in
Section 3.1, our system must allow seamless data shar-
ing between applications for backwards compatibility
with Android’s application model. Data flows must be
tracked using implicit label propagation (i.e., floating la-
bels), while mitigating the risk of label explosion. More
specifically, our system must not deny data access, unless
an application explicitly changes its label and fails a la-
bel check. Since our goal is to prevent unauthorized data
export, network access may be denied if an application
tries to export sensitive data to the network in violation
of the declassification requirements of the data owner.
Finally, our system must mediate all overt data flows, but
covert channels existing in Android are not the targets of
our system (discussed further in Section 9).

4.1 Overview
In Weir, applications define the policy for their data by
creating their own security classes. Weir labels files (as

1124 25th USENIX Security Symposium USENIX Association

P Q

{LP} {LQ}
X

World A
Explicit labels

P Q

{LP} {LQ} --> {LPLQ}
World B

Floating labels

P Q

{LP} {LQ}
Q1

{} --> {LP}

World C
Floating labels with

Polyinstantiation

Figure 2: Overview of floating labels w/ polyinstantia-
tion relative to explicit and floating labels.

objects) and processes (as subjects), granting the ker-
nel complete mediation over all data flows among sub-
jects and objects. As Weir’s contributions are in its
policy-agnostic mechanism, we use the generic terminol-
ogy from Section 2.3 in policy-related discussions. Sec-
tion 5.1 describes our implementation’s policy model.

Weir uses floating labels (described in Section 2.3),
as explicit labels are hard to assign a priori in An-
droid, where data flows are often user-directed and un-
predictable. However, naive (i.e., context-insensitive)
floating label propagation can cause certain components
to acquire more labels due to involvement in multiple
secrecy contexts, and eventually become unusable. We
propose polyinstantiation to make floating labels con-
text sensitive, and hence separate the shared state from
different secrecy contexts in memory (G1) and on stor-
age (G2). Our approach is in principal similar to context
sensitive inter-procedural analysis that adds precision by
considering the calling context when analyzing the tar-
get of a function call (e.g., summary functions and call
strings [36], k-CFA [37], and CFL-reachability [31]). To
our knowledge, context sensitivity has not been explored
in the scenario investigated in this paper. Further, the ap-
proach of secure multi-execution [11] also uses multiple
executions of the program, but is fundamentally different
in many aspects, as we describe in Section 10.

We describe polyinstantiation relative to explicit and
floating labels with the example scenario in Figure 2,
where an instance of component P with label {LP} tries
to send a message to an instance of component Q with a
label {LQ}, and where {LP} 6= {LQ}. In World A where
only explicit labels are allowed, the message would be
denied as Q would not be able to explicitly change its la-
bel to {LP} without a priori knowledge of P0s intention
to send a message. In World B with floating labels, the
flow would be automatically allowed, with Q0s new label
implicitly set to a join of the two labels. While World B
allows seamless communication, it does not prevent the
two secrecy contexts (i.e., {LP} and {LQ}) from mixing,
leading to the challenges we explored in Section 3. In
World C, we use polyinstantiation along with floating la-
bels, and a new instance of Q denoted as Q1 is created

in the caller’s context (i.e. with the caller’s label {LP}),
separate from the original instance of Q with label {LQ}.
Thus, our approach allows the call to take place, without
the mixing of secrecy contexts. The “lazy” aspect of our
approach (not represented in the figure) is that we would
reuse a previously created instance of Q, denoted Qpast ,
if its label matched the caller’s label (i.e., {LP}). Addi-
tionally, while the new instance has an empty label (i.e.,
{}) as the base (compile-time) label in our prototype, our
model can be adapted to support a different base label.

Weir uses lazy polyinstantiation for all indirect inter-
component calls (e.g., starting an activity, querying
a content provider) (described in Section 2.4). Weir
polyinstantiates processes, Android components and the
file system, creating new instances of each for different
secrecy contexts. Floating labels allow legacy apps to
integrate into Weir without modification for making or
receiving calls, while polyinstantiation adds context sen-
sitivity. Weir’s use of floating labels supports process-
level labeling along with application multi-tasking (G3),
a more practical solution than the alternatives of killing
existing instances [28, 46] or indefinite blocking [19].

We now describe Weir’s polyinstantiation of memory,
followed by storage. We then discuss how Weir supports
explicit label changes. Finally, we describe how Weir’s
domain declassification satisfies goal G4.

4.2 Polyinstantiation of Memory
To satisfy goal G1, Weir must ensure that no two com-
ponent instances with mismatching labels execute in the
same process. At the same time, Weir must make com-
ponents available if the underlying Android enforcement
(i.e., permission framework) allows. Therefore, our ap-
proach polyinstantiates both components and processes
to make them available in multiple secrecy contexts.

For backwards compatibility, our approach refrains
from affecting developer configurations (e.g., by forc-
ing the “multi-process” manifest attribute). Instead,
Weir polyinstantiates components within the applica-
tion’s own context. Specifically, Weir upholds the pro-
cess assignments made for components by the developer,
through the “android:process” manifest attribute (i.e., the
component’s processName). That is, Weir ensures that
components that were meant to run together (i.e., as-
signed the same processName), still run together . We
now describe our approach, followed by an example.
Our approach: On every call, Weir retrieves the label of
the caller (i.e., the callerLabel). Weir then checks if an
instance of the desired component is running in a process
whose label matches callerLabel. If one is found, the call
is delivered to the matching instance. If not, Weir creates
a new instance of the called component.

When the target component instance is assigned, Weir

USENIX Association 25th USENIX Security Symposium 1125

startActivity
label={}

startActivity
label={}

startService
label={}

"procActivity" ;
label = {}

"procService";
label = {}

A B C

(a) Step 1: A is called from an empty label.

startActivity
label={L1}

startActivity
label={L1}

startService
label={L1}

"procActivity_0" ;
label = {L1}

"procService_0";
label = {L1}

A B C

startActivity
label={}

startActivity
label={}

startService
label={}

"procActivity" ;
label = {}

"procService";
label = {}

A B C

(b) Step 2: A is called from a label = {L1}.

bindService
label={L2}

"procService_1";
label = {L2}

C

startActivity
label={L1}

startActivity
label={L1}

startService
label={L1}

"procActivity_0" ;
label = {L1}

"procService_0";
label = {L1}

A B C

startActivity
label={}

startActivity
label={}

startService
label={}

"procActivity" ;
label = {}

"procService";
label = {}

A B C

(c) Step 3: C is called from a label = {L2}.

Figure 3: Weir’s lazy polyinstantiation of three app com-
ponents; activities A and B, and a service C.

must find a process to execute it. If the process associ-
ated with this component (i.e., processName) has a dif-
ferent label, Weir cannot execute the new instance in it,
and has two options: a) assign a polyinstantiated process
that is associated with processName and has the label
callerLabel or 2) create a new process associated with
the processName with label callerLabel. As it is evident
based on the first option, Weir keeps track of a process-
Name and all its instances created for various secrecy la-
bels. Weir can then reuse a previously instantiated pro-
cess that is associated with the original processName and
already has the required label (i.e., lazy polyinstantia-
tion). Additionally, Weir can ensure adherence to the
developer’s process assignment; i.e., that component in-
stances only execute in the process associated with their
processName. If a matching process is not available,
Weir creates a new process for callerLabel, and internally
maintains its association with the original processName.

Example: Consider an app with three components, ac-
tivities A and B, and a service C. The developer sets the
processName for A and B to be “procActivity”, whereas
the processName for C is set to “procService”. This
means that A and B are expected to run in the same pro-
cess, while C runs in a separate process. The app is pro-
grammed such that when A is started, it starts B, follow-
ing which B starts C. Using Figure 3, we describe Weir’s
instantiation of A, B, and C and their processes.

In Step 1 (Figure 3a), A is first called by an unlabeled
caller; i.e., the callerLabel is empty. A new instance of A

is created, and a new process by the name “procActivity”
is started for it. Then, A calls B. The label of A0s process
is empty, so B is also instantiated with an empty label, in
the matching process, i.e., “procActivity”. B then calls C,
which is instantiated in the new process “procService”.

In the Step 2 (Figure 3b), A is called from a caller with
callerLabel = {L1}. Weir cannot deliver the call to the
existing instance of A, as its process has a mismatching
label (i.e., callerLabel = {L1} 6= {}). Thus, Weir creates
a new instance of A for this call. As there are no pro-
cesses associated with “procActivity” and with the label
{L1}, Weir also allocates a new process “procActivity 0”
to host this instance. Thus, for this call, a new instance
of A is started in a new process “procActivity 0”, whose
label is set to {L1}. When this instance of A calls B, the
call is treated as a call to B with callerLabel = {L1}, the
caller being A0s new instance with label {L1}. As Weir
keeps records of all the processes created for polyinstan-
tiation, it starts a new instance of B in the process that
is associated with B’s original process “procActivity”,
and has a matching label {L1}, i.e., “procActivity 0”.
Reusing an existing process instance is an example of
“lazy” polyinstantiation. When this instance of B starts
C, Weir creates a new instance of C due to mismatching
labels, in a new process “procService 0” with label {L1}.

In Step 3 (Figure 3c), bindService is called on C with
the label callerLabel = {L2}. Since the caller’s label
{L2} mismatches with the two existing instances of C
that are running with labels {} and {L1}, a new instance
of C is created. As there are no processes associated with
“procService” that have a label matching {L2}, a new
process “procService 1” is created to host the new in-
stance. Note that all of these instances and processes
exist simultaneously, as shown in the figures. If C is
called again with the label callerLabel = {L2}, Weir will
not have to create a new instance, and the call will be
delivered to the existing instance of C running in pro-
cess “procService 1” with the matching label {L2} (i.e.,
“lazy” polyinstantiation).

Weir’s approach maintains context-based separation in
memory (G1), and also ensures that components config-
ured to run in the same process still run together; i.e.,
our approach is transparent to the application, satisfying
goal G3. For example, instances of A and B exist to-
gether, both in the labeled as well as the unlabeled con-
texts. Weir supports all Android components declared
in the application manifest, i.e., activities, services, con-
tent providers and broadcast receivers. An exception is
broadcast receivers registered at runtime, which are in-
stantiated at registration in the secrecy context of the reg-
istering process, and hence not subject to further instanti-
ation. Any future broadcasts to such receivers are treated
as direct calls subject to strict DIFC label checks.

1126 25th USENIX Security Symposium USENIX Association

4.3 Polyinstantiation of Storage

To prevent restrictive labeling of shared storage by
processes running in sensitive contexts, Weir extends
context-based separation to the storage as well (G2).
Weir achieves this separation without denying access to
instances in sensitive secrecy contexts (G3).

Our approach: Weir separates shared state in the inter-
nal and external storage using file-system polyinstanti-
ation via a layered file system approach [29]. Our ap-
proach is similar to Solaris Containers [22], and more re-
cently, Docker [24]. Context-sensitive storage separation
has also been used previously in DIFC, for known persis-
tent data objects. For example, in their DIFC system for
the Chromium Web browser, Bauer et al. create context-
specific copies of bookmarks to prevent a restrictive label
from making bookmarks unusable [5].

In Weir, every secrecy context receives its own copy-
on-write file system layer. Processes running in a par-
ticular secrecy context have the same view of the file
system, which may be different from those running in
other contexts. All file operations are performed on the
context-specific layer attached to a process, which relays
them to the underlying file system (i.e., the default layer).
Unlabeled processes are assigned the default layer.

For simplicity, new layers are always created from
the default layer, and never from existing labeled layers.
That is, for any layer with label L, the copy-on-write al-
ways occurs from the default layer (with label {}), and
not another lower layer (say label L1), even if L1 is lower
than L (i.e., L1 ✓ L). An alternate design choice of using
a non-default lower layer for copy-on-write could lead
to conflicts due to incompatible copies of data at differ-
ent, but similarly labeled lower layers. For example, two
labels L2 and L3 might be at the same level below L in
the DIFC lattice, but may have different copies of the
same file. For resolving such conflicts, the system may
have to either involve the user or the application. The
backwards compatibility and usability effects of choos-
ing a lower layer need further exploration, although it
may be a more flexible option. Hence, our design sim-
plifies the potential choice between contending layers by
always choosing to copy from the default layer.

For efficiency, a layer only stores the changes made
to the default layer by processes in the layer’s secrecy
context (i.e., copy-on-write). When a file present in the
default layer is first written by a process attached to a
non-default layer, the file is first copied to the non-default
layer and then modified. Future accesses for the file from
that context are directed to its own copy. When a process
attached to a non-default layer tries to read a file that
has never been modified in the calling process’s layer, it
reads the original file on the default layer. Weir’s storage
approach is an extension of its lazy polyinstantiation, i.e.,

"procService_0";
label = {L1}

C

"procService";
label = {}

C

Layer (L1)

Shared
Prefs

read/write read

(a) Labeled instance reads.

"procService_0";
label = {L1}

C

"procService";
label = {}

C

Layer (L1)

Shared
Prefs

read/write write

Shared
Prefscopy

(b) Labeled instance writes.
Figure 4: Weir’s storage polyinstantiation using layers.

new layers are created only when a process with a pre-
viously unknown secrecy context is initialized. Applica-
tions transparently access storage using any file system
API, and Weir directs the accesses to the correct files.

Weir stores the files copied to layers in layer-specific
copy-on-write directories. While creating such directo-
ries, Weir accounts for the security and availability re-
quirements of applications and users. For application-
specific internal storage, copy-on-write directories are
created in an area that is accessible only to instances of
the particular application. For public external storage,
Weir creates common label-specific copy-on-write direc-
tories in an area accessible to all apps. This approach
ensures that when an application is uninstalled, its data
on external storage is still available to the user.
Example: Figure 4 shows two instances of the compo-
nent C, one of which is running in the unlabeled secrecy
context (i.e., label {}), while the other has a label {L1}.
Weir sets up a file system layer, i.e., Layer (L1), to medi-
ate all file accesses by the labeled instance. Layer (L1) is
only attached to processes with label {L1}.

As seen in Figure 4a, initially, both the unlabeled and
labeled instances of C read from the shared preferences
file (i.e., SharedPrefs). That is, Layer (L1) relays all the
read requests by the labeled instance of C for unmodified
SharedPrefs file to the default storage. Once the labeled
instance of C attempts to write to the SharedPrefs file,
Weir copies it to Layer (L1). This copy is used for all
future read or write accesses by instances with label (L1).
Security of copy-on-write directories: Weir ensures the
security of the layered directories through a combination
of file labeling and Linux permissions. File labels are ini-
tialized when first written, to the writing process’s label.
Weir uses strict DIFC label checks for all successive file
accesses. Further, Weir prevents the implicit flows due
to the presence or number (i.e., count) of such copy-on-
write directories. To address flows through the presence
of specific copy-on-write directories, Weir uses random
directory names known only to the system. To prevent
flows that make use of the number of such directories,
Weir creates the copy-on-write directories inside a parent
directory owned by Weir. The Linux permissions of this
parent directory are set to deny the read operation on it,
and hence cannot be used to list or count subdirectories.

USENIX Association 25th USENIX Security Symposium 1127

Together with the polyinstantiation in memory, Weir’s
approach enables transparent separation of different se-
crecy contexts without modifying legacy apps.

4.4 Label Changes and Binder checks
A component instance’s label is implicitly set when it is
instantiated. Similarly, a file’s label is initialized when it
is first written to. For all successive accesses (i.e., direct
Binder IPC and file reads/writes respectively), Weir does
not apply floating labels, but performs a strict DIFC label
check (i.e., data may not flow to a “lower” label). Hence,
any label changes after initialization can only be explicit.

An application aware of Weir may change the label of
its instances by raising it (to read secret data), or low-
ering it (to declassify data), provided the change is le-
gal with respect to the policy for the security classes in-
volved in the change, as described in Section 2.3. For
example, to read secret data labeled with label {L1}, a
component instance may raise its label to {L1}, if it has
authorization (e.g., a capability) from the owner of {L1}
(see Section 5.1 for the policy syntax). We now describe
the problem caused by explicit label changes.

Problem of explicit label change: A component in-
stance may establish Binder connections with other in-
stances through the Activity Manager, and then use direct
Binder RPC. When an instance changes its label, its ex-
isting Binder RPC connections (established via indirect
communication, see Section 2.4) may be affected. That
is, its new label may be higher or lower relative to the
instances it is connected to. Hence, it may not be able to
send or receive data on existing connections due to the
strict DIFC check on Binder transactions. An explicit
label change may also make the component instance’s
context inconsistent with its attached storage layer. At
the same time, explicit label changes are unavoidable in
applications that use Weir.

Our solution: Weir provides applications with the in-
tent labeling mechanism, i.e., components can label calls
(i.e., intent messages), before they are sent to the Activ-
ity Manager service, ensuring that the target component
is instantiated with the label set on the intent. In fact, a
component may instantiate itself with the desired secrecy
label by specifying itself as the intent’s target. Intent la-
beling eliminates the need for explicit label changes.

Security of Intent Labeling: Weir does not blindly trust
the label set on the intent, as applications may otherwise
abuse the mechanism for unauthorized declassification.
For example, a malicious component with the label {L1}
may add secret data to an intent, and set an empty la-
bel (i.e., {}) on the intent before calling itself with it.
To account for such malicious use cases, Weir checks if
the calling application would be authorized to explicitly
change its current label to the label on the intent, as per

the policy (see Section 5.1). A call with a labeled intent
may proceed only if the caller passes the check.

While we have not encountered use cases that can-
not be expressed using intent labeling, our implemen-
tation allows explicit label changes, mainly for expert
developers who may want to make temporary changes
to their instance labels. Explicit label changes must be
used with caution, as our design does not account for
the problems due to label change after instantiation (e.g.,
dropped Binder calls), since labels do not float to existing
Binder connections and files to prevent label explosion
(explained in Section 3).

4.5 Domain Declassification
Problems with traditional network declassification are
rooted in the decision to declare trust in the exporting
subject, as discussed in Section 3. More precisely, in an
internet-driven environment, it may be more practical for
the data secrecy enforcement to reason about where the
data is being delivered, rather than who is performing the
export. Weir introduces the alternative of domain declas-
sification to allow data owners to articulate trust in terms
of the receiver, i.e., the target Web domain. Weir allows
the data owner to associate a set of network domains (tD)
with its security class (t). When the data in context {t}
is to be exported to the network, Weir’s enforcement im-
plicitly declassifies t, if the destination domain is in tD.
The data owner is neither required to explicitly declassify
nor trust the exporting application.

In Section 8, we discuss an example where the en-
terprise only wants data to be exported to a set of en-
terprise domains, irrespective of the application export-
ing it. Such a policy allows the user to use the same
email application for both the personal and work ac-
count, but prevents accidental export of work data to the
personal SMTP server. Domain declassification not only
addresses the goal of practical declassification in a net-
work driven environment (G4), but also prevents the user
from accidentally exporting data from a trusted applica-
tion, but to an untrusted server.

Weir is not the first IFC system to use domains
for declassification, although most prior systems to
do so consider domains as security principals (e.g.,
COWL [41], Bauer et al. [5]). For instance, COWL con-
fines JavaScript using a declassification policy analogous
to the well-known same origin policy (SOP), i.e., code
executes in the context of its origin, and hence possesses
the declassification privilege for export to the origin’s
Web domain. In this case, the origin Web domain is a
first class security principal, as it has physical presence
on the device in the form of the code running in its con-
text. Thus, in COWL, the declassification privilege is
still expressed in terms of the security principal that is
sending the data (i.e., the origin). On Android, there is

1128 25th USENIX Security Symposium USENIX Association

no direct correlation between Web domains and appli-
cations; i.e., Web domains do not have code executing
in their context on the device, and hence are not secu-
rity principals. Thus, Weir’s approach of expressing trust
in the receiver of the data (i.e., the Web domain) rather
than the sender is indeed unique among OS-level DIFC
systems where Web domains may not be security prin-
cipals [1, 21, 28, 49]. Hails [15], an IFC web framework
for user privacy, may be closer to Weir’s approach, as it
allows users to declassify their data for specific domains.
Hails users are prompted to explicitly declassify when
network requests to disallowed domains are first made,
which may not be feasible on Android (see Section 3).

Weir’s enforcement is limited to the device, and may
not defeat an adversary controlling the network. While
we leave this aspect relaxed for our threat model, we note
that DNSSEC or IPsec could be used in such scenarios.

5 Implementation
We implemented Weir on Android v5.0.1, and the An-
droid Kernel v3.4. This section describes the essential
aspects of our implementation. The source code can be
found at http://wspr.csc.ncsu.edu/weir/.

5.1 Weir’s DIFC Policy
Weir derives its policy structure from the Flume DIFC
model [21], which consists of tags and labels. A data
owner (O) application defines a security class for its sen-
sitive data in the form of a secrecy tag (t). A set of tags
forms a secrecy label (S). Weir enforces the IFC secrecy
guarantee, i.e., “no read up, no write down” [6]. Informa-
tion can flow from one label to another only if the latter
dominates, i.e., is a superset of the former. For instance,
data can flow from a process P to a process Q if and only
if SP ✓ SQ. Weir applies this strict DIFC check to direct
Binder communication and file accesses.

Each tag t has associated capabilities, namely t+ (for
reading) and t− (for declassification), which data owners
delegate to specific apps, or all other apps (i.e., the global
capability set G). At any point of time, a process P has
an effective capability set composed of the capabilities
delegated to its application (CP), and the capabilities in
G. P can change its label SP to SP

+ by adding a tag t if
and only if t+ 2CP[G. Similarly, P can change its label
SP to SP

− by removing a tag t if and only if t− 2CP [G.
As the network interface is untrusted, it has an empty

label, i.e. SN = {}. Thus, a process P must have an
empty label (i.e., SP = {}), or the ability to change its
label to SP = {} to create a network connection, i.e.,
8t 2 SP, t− 2CPtG. Additionally, Weir extends Flume’s
syntax with the domain declassification capability tD,
which is a set of trusted Web domains for tag t speci-
fied by the owner O. For a network export to a domain
d 2 tD, t is implicitly declassified.

5.2 Component Polyinstantiation
When a component calls (i.e., sends an intent message
or queries a content provider), the Activity Manager
resolves the target component to be called using the
static information present in the application manifest.
Weir does not interfere with this intent resolution pro-
cess. Then, the Activity Manager chooses the actual
runtime instance of the resolved component, which is
where Weir’s polyinstantiation takes effect. That is, Weir
controls component instantiation, without modifying the
components themselves. Hence, Weir is compatible with
all developer manifest options, except ones that control
instantiation. Section 7.2 provides a compatibility eval-
uation for such options. For a detailed explanation on
Android’s component startup workflow and Weir’s com-
ponent instantiation logic, see Appendix A.

5.3 File-system Layering
We chose OverlayFS [29] over alternatives (e.g., aufs),
as it is in the Linux kernel (since v3.18). As the cur-
rent OverlayFS patch is incompatible with SELinux, we
set SELinux to monitoring mode. This is a tempo-
rary limitation, as OverlayFS developers are working to-
wards full integration [45], which is on SELinux’s Ker-
nel ToDo list as well [10]. Additionally, we could use a
fine-grained block-level copy-on-write file system (e.g.,
BTRFS [32]). There are advantages to using such file
systems, as we describe in the trade-offs (Section 9).
Note that while we could get the Android Linux ker-
nel to compile with BTRFS, the build system support
tools that are required to build Android’s sparse-images
for BTRFS (e.g., ext4 utils for ext4) are missing.
Therefore, our prototype opts for OverlayFS, as it does
not require user-space support.

5.4 Process Initialization
On Android, the zygote process forks and prepares new
processes for applications. When a new process is
forked, Weir sets its secrecy label in the kernel, and uses
zygote to mount the appropriate storage layer to the pro-
cess’s mount namespace based on its label. If the pro-
cess has a non-empty label, Weir separates the process’s
mount namespace from the global mount namespace us-
ing the unshare system call, and mounts the appropriate
OverlayFS copy-on-write layer based on the label on top
of the unlabeled file system. New layers are allocated
when new labels are first encountered. Weir maintains
the mapping between a label, its assigned layer and the
specific copy-on-write directories used for it.

5.5 Kernel Enforcement
Weir uses a Linux security module (LSM) to track the
security contexts of processes and files in the kernel. We

USENIX Association 25th USENIX Security Symposium 1129

P Q

Q1

Q2

01
{L1}

{}

{}

{}

(a) Initial State.

P Q

Q1

Q2

01
{L1}

{L1}

{}

{}

0

(b) P calls Q1

P Q

Q2

01
{L1} {}

{}

1

Q1

{L1}

01

(c) Q2 calls Q

Figure 5: Floating label DIFC system: Q receives 1 and
guesses 0 for every reply not received.

integrated the multi-LSM patch [35] to enable concur-
rent SELinux and Weir enforcement. The security con-
text of a process contains its secrecy label and capabil-
ities, while that of a file only contains a secrecy label.
We now describe the enforcement for file access, Binder
communication and network access, as follows:
1. Files: Weir uses the file permission LSM hook to me-
diate each file read and write access. The secrecy label
of a file (stored in the xattrs) is initialized from the label
of the process that first writes it.
2. Binder: Weir mediates Binder transactions in the ker-
nel using the Binder LSM hooks. For compatibility, Weir
whitelists Binder communication with Android system
services in the kernel. To prevent apps from misusing
whitelisted services as implicit data channels, we manu-
ally analyzed all system service API, and modified API
that may be misused, e.g., the Clipboard Manager service
provides label-specific clipboards in Weir.
3. Network: Weir mediates the socket connect and bind
operations in the kernel. The tags in the calling process’s
label that cannot be declassified using its capability set
are sent to Weir’s system service in the userspace via
a synchronous upcall, along with the IP address of the
destination server. Weir’s system service then resolves
the domain name from the IP address, which is challeng-
ing, as a reverse DNS lookup may not always resolve to
the same domain used in the initial request. Fortunately,
Android proxies all DNS lookups from applications to
a separate system daemon. We modify the daemon to
notify Weir when a process performs a DNS lookup, in-
cluding the domain name and the IP address returned.
During the domain declassification upcall, this mapping
is referenced to identify the destination domain. Weir al-
lows the connection only if all the tags in the upcall can
be declassified for that domain.

6 Security of Polyinstantiation

Floating labels were first predicted to be prone to infor-
mation leaks by Denning [8]. While language-level float-
ing label IFC models (e.g., COWL [41] and LIO [40,42])
can mitigate such leaks, securely using floating labels is

P Q

Q1

Q2

01
{L1}

{}

{}

{}

Q1

{L1}0

(a) Q1 is polyinstanti-
ated

P Q

Q1

Q2

01
{L1}

{}

{}

{}

Q1

{L1}

1

1

11

(b) Unlabeled Q1 and
Q2 send 1 to Q.

Figure 6: Weir: Q always receives data “11”

still a challenge for OS-level DIFC systems (e.g., IX [23]
and Asbestos [44]). We discuss an attack on an OS-
level floating label DIFC system, described in Krohn and
Tromer’s paper on the non-interference of Flume [20],
and show how Weir is resistant to such data leaks. We
use Android’s terminology to describe the attack.

We describe the attack twice; once in a floating label
system without polyinstantiation (Figure 5) and once in
Weir (Figure 6). Figure 5a shows the malicious compo-
nents (e.g., services) P, Q, Q1 and Q2. P has obtained the
data “01”, and the accompanying label {L1}. P wants to
transfer the data to Q, without Q obtaining the label {L1}.
Note that Q, Q1 and Q2 initially have the empty label {}.
Additionally, P and Q have a prior understanding that P
will call the ith service of Q to indicate “0” at the ith bit.
Q0s components are programmed to send a message to Q
after a predetermined time if they do not receive a mes-
sage from P (i.e., indicating a “1”). Since the first data
bit is “0”, P sends “0” to Q1, whose label floats to {L1}
(Figure 5b). After a predefined time, the component
that did not receive a message from P, i.e., Q2, sends a
“1” to Q (Figure 5c). The data leak is successful, as Q
knows that the second bit is “1”, and assumes the first to
be “0”, all without acquiring the label {L1}. As Android
does not place any limits on the number of components,
a wider n bit channel is possible with n components.

Weir’s polyinstantiation defeats this attack by creating
a new instance of Q1 in a separate process to deliver a call
from a label that mismatches its own (Figure 6a). Next,
the unlabeled instance of Q1 and Q2 both call Q with data
“1”, as shown in Figure 6a. In fact, for n components of
Q, Q will always get n calls with data “1”, as Weir will
polyinstantiate all the components that have been called
by P with the label {L1}. Weir’s use of floating labels
is resistant to implicit flows inherent to regular floating
labels, as labels do not float to the original instance, but
to a new instance created in the caller’s context.

Jia et al [19] attempt to solve a similar problem,3 by
making the raised label the component’s base (i.e., static)
label. This defense allows the existing leak, but makes
the components that received the message (e.g., Q1) un-

3Refer to page 8 of the paper by Jia et al. [19] for details.

1130 25th USENIX Security Symposium USENIX Association

usable for future attacks. Attackers can be expected to
beat this defense by coordinating the components used
for every attack, and transfering significant data before
all the components have restrictive static labels.

Finally, while polyinstantiation is resistant to data
leaks in floating labels, we leave the complete formal-
ization of this idea as future work. The intuition be-
hind the formalization is described as follows: Let L be
the type system corresponding to the labels (e.g., type-
system for floating labels) and S be the type system cor-
responding to information about stacks (e.g., for k-CFA
analyis strings of size k that capture information about
last k calls). Assume that we have inferencing/propoga-
tion rules for both type systems and they are sound. We
have an intuition that the combined system (denoted by
L ⇥S) is sound (the inferencing/propogation rules are
basically a combination of both rules).

7 Evaluation

Our evaluation answers the following questions about
Weir’s performance and compatibility:
Q1 Is Weir compatible with developer preferences that

manipulate component instantiation?
Q2 What is Weir’s performance overhead?
Q3 Is Weir scalable for starting components?
We now provide an overview of the experiments and
highlight the results. The rest of this section describes
each experiment in detail.

7.1 Experiment Overview and Highlights
Weir does not modify components, but only modifies
their instantiation. Thus, we evaluate compatibility
with options that control component instantiation (Q1),
i.e., the singleTop, singleTask and singleInstance activ-
ity launch modes described in Section 2.4. We trigger
the launch modes in popular Android apps from Google
Play, and record application behavior in unlabeled and la-
beled contexts. We did not observe any crashes or unex-
pected behavior. Every launch mode worked as expected,
while the underlying polyinstantiation ensured delivery
of calls to instances in the caller’s context.

We measure the performance overhead of Weir over
an unmodified Android (AOSP) build (Q2) with mi-
crobenchmarks for common operations (e.g., starting
components). Our comparison between the unmodified
build, Weir (unlabeled instance), and Weir (labeled in-
stance) in Table 1 shows negligible overhead. Even in
cases where the overhead percentage is large, the ab-
solute overhead value is negligible (<4ms). Further,
the negligible difference in the values of Weir’s labeled
and unlabeled instances (i.e., relative to the error) would
make a noisy covert channel at best.

As described in Section 5, for every call, Android’s in-
tent resolution gets the target component. The OS then
chooses a runtime instance from available instances of
the target. Hence, the total number of a component’s run-
time instances only affects its own start time. We eval-
uate the scalability of a component’s start time, when a
certain number of its instances already exist (Q3). Our
results in Figure 7 show a linear increase in the start time
with increase in the number of concurrent instances, and
low absolute values (e.g., about 56 ms for 100 instances).

7.2 Compatibility with Launch Modes

We randomly pick 30 of the top applications on Google
Play (i.e., 10 per launch mode, complete list available
at http://wspr.csc.ncsu.edu/weir/).
Methodology: For each launch mode, we first launch
each application from two separate unlabeled compo-
nents, and navigate to the specific activity we want to
test. With this step, we confirm that the application and
specifically the singleTask/Top/Instance activity works
as expected. Without closing existing instances, we start
the same application from a labeled context and repeat
the prior steps. We record any unexpected behavior.
Observations: We did not observe any unexpected be-
havior, and activities started in their assigned tasks. In
the case of singleTask and singleInstance activities, two
instances of the same activity ran in the designated task
instead of one; i.e., one labeled and the other unlabeled.
Intent messages were delivered to the activity instance
with the caller’s label. This behavior is compatible with
singleTask and singleInstance activities, and also main-
tains label-based separation in memory.

7.3 Microbenchmarks

We evaluate the performance of the operations affected
by Weir (i.e., file/network access, component/process
start) , on a Nexus 5 device. We perform 50 runs of each
experiment, waiting 200 ms between runs. Table 1 shows
the mean with 95% confidence intervals. Cases with neg-
ative overhead can be attributed to the high error in some
operations. Specific experimental details are as follows:
Component and Process start: We measure the com-
ponent start time as the time from the placement of the
call (e.g., startActivity) till its delivery. The component is
stopped between runs. To measure the process start time,
we kill the process between subsequent runs. While the
overhead percentages may be high (e.g., for providers),
the absolute values are low, and would not be noticeable
by a user. Further, the process start time that includes
file-system layering in zygote shows minimal overhead.
File access: We perform file read and write operations on

USENIX Association 25th USENIX Security Symposium 1131

Table 1: Performance - Unmodified Android (AOSP), Weir in unlabeled context, Weir in labeled context.
Weir (ms) Overhead (ms)

Operation AOSP (ms) Weir w/o label Weir w/ label Weir w/o label Weir w/ label
Activity start 20.06±4.47 22.22±4.69 20.82±4.87 2.16 (10.77%) 0.76 (3.79%)
Service start 13.94±2.87 14.96±2.85 17.36±4.78 1.02 (7.32%) 3.42 (24.53%)

Broadcast Receiver start 12.92±3.96 11.42±4.44 11.86±3.34 -1.5 (-11.6%) -1.06 (-8.2%)
Content Provider start 4.54±2.28 7.26±5.32 7.9±4.73 2.72 (59.91%) 3.36 (74.01%)

Process start 127.18±5.62 130.28±5.63 132.98±6.66 3.1 (2.44%) 5.8 (4.56%)
File Read (1MB) 42.38±6.05 43.46±5.44 41.32±5.39 1.08 (2.55%) -1.06 (-2.5%)
File Write (1MB) 46.8±5.79 47.84±5.42 47.16±5.85 1.04 (2.22%) 0.36 (0.77%)

Network 66.98±3.62 65.68±2.78 69.00±7.04 -1.3 (-1.94%) 2.02 (3.02%)

0 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

14.96

22.8 20.86

32.74

41.84

37.6
40.9

49.9649.24

43.56

56.34

Number of component instances already started

T
im

e
ta
k
en

to
st
a
rt

a
co
m
p
o
n
en
t
(m

s)

1

Figure 7: Linear increase in component start time when
0 ! 100 instances (in steps of 10) already exist.

a 1MB file using a 8KB buffer. Since the entire check is
performed using the process and file labels in the kernel,
the overhead value is negligible (e.g., about 0.77% for a
labeled file write). We also measure the cost of copying
the 1MB file to the labeled layer, i.e., repeating the file
write experiment on Weir but deleting the file between
runs. The extra time taken to copy relative to AOSP is
5.98 ms (about 13% overhead). RedHat’s evaluation of
OverlayFS further demonstrates its scalability [18].
Network access: We measure the time to establish a net-
work connection using the HTTPSUrlConnection API,
using domain declassification for the labeled instance.
The labeled instance’s overhead includes the kernel up-
calls and the DNS proxy lookup. The overhead for the
labeled instance (2.02 ms or 3.02%) includes the time
taken by the DNS proxy to inform Weir of the lookup, as
well as the synchronous kernel upcalls.

7.4 Scalability of Component Instantiation
We create up to 100 simultaneous instances (in steps of
10) of a service component, each with a different label.
At each step, we then invoke the last instance, i.e., from
a caller with the last instance’s label, and measure the
component start time. Note that this experiment presents
the worst case scenario; i.e., our prototype does not im-
plement any particular strategy (e.g., least recently used
(LRU)) for matching a call with a list of available in-

1 // Creating the tag ‘‘t’’
2 domains={‘‘www.bcloud.com’’,‘‘smtp.bcloud.com’’,...};
3 createTag(‘‘t’’, domains);

Listing 1: BCloud’s policy configuration

1 addTag{‘‘t’’};//raise own label to {t}
2 //perform sharing action ...
3 removeTag{‘‘t’’}//lower own label

Listing 2: BCloud raises its label

stances, and a request with the last instance’s label will
always result in a label comparison with all available in-
stances. Figure 7 shows linear scalability, with the high-
est absolute value being less than 57 ms.

8 Case Study

We investigated the use of labeled enterprise data with an
unmodified third party email (K-9 Mail) application [9].
With this case study, we demonstrate Weir’s utility, and
motivate the trade-off discussion in Section 9.
Application Setup: We created an enterprise cloud ap-
plication, BCloud that allows the user to sync her work
data (e.g., contacts, documents) to the device. Further,
we used the popular email application K-9 Mail with
both user and enterprise data. The setup is as follows:
1. BCloud. We assume that the enterprise policy is to
enable the use of third party applications with work data,
but to allow export to only enterprise domains. For ex-
ample, work data must only be emailed using the work
SMTP server smtp.bcloud.com.4 Thus, BCloud
creates a tag t as shown in Listing 1. To set the policy be-
fore sharing its data or saving it to storage, BCloud may
temporarily raise its label to {t} (Listing 2), or start itself
or other applications with {t} using intent labeling (List-
ing 3). For instance, BCloud raises its label before copy-
ing the work contacts to Android’s Contacts Provider.
2. K-9 Mail. We configured K-9 Mail for both per-
sonal and work email accounts. Like most modern email
clients, K-9 Mail allows the user to send an email us-
ing the work or the personal account, using the send
as email field. Internally, K-9 Mail uses the SMTP
server smtp.gmail.com for the personal account, and

4We used mail.yahoo.com, smtp.mail.yahoo.com
and imap.mail.yahoo.com as BCloud’s trusted domains.

1132 25th USENIX Security Symposium USENIX Association

smtp.bcloud.com for the work account. To assist
the user in composing an email, K-9 Mail retrieves con-
tacts from the Contacts Provider app, and makes sugges-
tions as the user types into the “to” (i.e., sender) field.
Experiment: We opened a document from BCloud in
the WPS Office application. Then, from the WPS Office
app, we shared the document with K-9 Mail. K-9 Mail’s
“compose” window was displayed. We then chose to
send as the work account, and picked a contact to add
to the “to” field. We tried to attach another file, and the
“attach” action opened Android’s system file browser.
We selected a file and returned to K-9 Mail’s compose
screen. We then switched to the home screen without
sending the work email. We repeated the entire experi-
ment in the default (i.e., unlabeled) context, with the send
as field set to the personal account. We then sent both
emails. Throughout the experiment, we watched the sys-
tem log for important events (e.g., network denial).
Observations: We made the following observations, and
verified them using the system log:
1. Context-specific instances. As we shared work data (in
the context {t}) with WPS Office and subsequently K-9
Email, instances of these applications (i.e., processes and
components) were started in the work context {t}, and
attached to the internal and external (SD card) storage
layer Layer(t). The unlabeled context resulted in sepa-
rate instances with the empty label ({}), attached to the
default storage layer. Instances in both contexts existed
concurrently, without any crashes or abnormal behavior.
2. Context-specific data separation. While attaching an-
other document in the work ({t}) instance of K-9 Mail,
we could see all the documents on the default stor-
age layer (i.e., unlabeled files), and documents in work
Layer(t) (i.e., added from BCloud). On the contrary, in
the default context, we could only see the files on the
default layer. Further, in the default context, K-9 Mail
suggested from all of the user’s unlabeled contacts, but
none of the work contacts. In the work context, K-9 Mail
suggested from all the work contacts, and the unlabeled
contacts that existed before BCloud synced its labeled
contacts. That is, K-9 Mail could not see new records
created in the default layer’s contacts database after it
was copied over to Layer(t).
3. Domain Declassification. In the work context, K-9
Email was unable to connect to the SMTP and IMAP
sub-domains of gmail.com, but could only connect
with the domains declassified by tag t. Unmodified K-9
Email silently handled these network access exceptions,
without crashing or displaying errors messages.

9 Trade-offs and Limitations
This section describes the trade-offs of our approach,
motivated in part by the observations in the case study.

1 Intent intent = new Intent();
2 // Add ‘‘t’’ to the intent’s label.
3 intent.addToLabel(‘‘t’’);
4 // Add data to the intent ...
5 startActivity(intent);//Call self

Listing 3: BCloud starts itself with new label

1. Centralized perspective: The user cannot view both
labeled and unlabeled data together, unless an applica-
tion is started in the labeled context (e.g., K-9 Mail in
context {t}). We envision modified application launch-
ers and phone settings that allow the user to start applica-
tions (e.g., File Browsers) with a certain label by default,
for making labeled and default data available together.
Our test apps use similar techniques; hence such launch-
ers should not be hard to create. On the other hand,
a centralized perspective on more than one non-default
context (e.g., {t1, t2, t3, ..}) may require a trusted OS ap-
plication exempt from polyinstantiation (but subject to
only floating labels), as floating labels by themselves are
vulnerable to information leaks (Section 6).
2. Updates to default layer: While context-specific ver-
sions of files may be generally acceptable, in case of
database files (e.g., contacts read by K-9 Mail in the work
context) the user may expect new records in the unla-
beled context to be propagated to the copy in the labeled
context. The lack of updates is mainly a trade-off of
our file-level copy-on-write implementation (i.e., Over-
layFS). As mentioned in Section 5, a block-level copy-
on-write file system (e.g., BTRFS [32]) may mitigate this
trade-off, as it would only copy the blocks modified by
the labeled context, and newly allocated blocks in the de-
fault context would be accessible to the labeled context,
although this aspect needs further exploration.
3. Access control denials: Floating labels ensure that
inter-component communication is never denied, and
that resources (e.g., files, other components) are available
in all secrecy contexts. Although apps may be denied
network access, research has addressed this challenge in
the past (e.g., AppFence [17]). Further, most IDEs (e.g.,
Eclipse) enforce compile-time checks for proper excep-
tion handling, and it is uncommon for apps to crash due
to network denial, as observed in the case study as well.
4. Instance Explosion: Weir creates separate context-
specific K-9 Mail instances, only for the contexts in use.
The theoretical worst-case count of component instances
is equivalent to the number of components multiplied
by the number of all existing contexts (not just those
in use). Our event-based and “lazy” instantiation makes
this worst case practically improbable, unlike approaches
that execute all existing contexts (see Section 10). On the
other hand, a denial of service attack on a particular ap-
plication component may be feasible, by starting a very
large number of its instances in a short amount of time
for noticeable impact on the lookup time of that compo-

USENIX Association 25th USENIX Security Symposium 1133

nent. Our implementation can be modified to detect and
prevent unusual rates of component instantiation. Note
that polyinstantiation of a component only affects its own
lookup time (as discussed in Section 7.1), and cannot be
used for an attack with a device-wide impact.

5. Resource Overhead: Polyinstantiation may cause
resource overhead in terms of the memory, battery and
storage. The memory overhead is manageable as An-
droid’s out of memory manager automatically reclaims
memory from low priority components. Further, any
measurement of the battery or storage use is bound to
be subjective with respect to the number of labels, num-
ber of apps/components, type of apps (e.g., game vs. text
editor), aspects of the user scenario (e.g., user-initiated
flows, scenario-specific storage access). An objective
large-scale study will be explored in the future.

6. Consistency Issues: To a remote server, the instances
of an application in Weir are analogous to instances run-
ning on different devices (e.g., a user logged in from two
devices). Hence, any data consistency issues in such sce-
narios are not a result of polyinstantiation.

7. Covert Channels: Weir mediates overt communi-
cation between subjects and objects, but does not ad-
dress covert channels existing in Android. A clearance
label [6, 40, 44] can be used to defend against adver-
saries using covert channels by preventing access to cer-
tain tainted data in the first place. While a clearance
label can be easily incorporated into Weir, setting the
clearance policy for third party applications with un-
predictable use cases is hard, and needs further explo-
ration from a policy specification standpoint. Finally,
unlike IFC systems that focus on preventing untrusted
code within a program from exfiltrating data (e.g., Secure
multi-execution [11]), Weir’s focus is inter-application
data sharing. Hence, compartmentalizing an application
using clearance is outside the scope of this paper.

8. Explicit labeling of messages and files: On Android,
an indirect message through the OS (e.g., intent message)
is required before a bi-directional Binder connection can
be established between two instances. Weir allows float-
ing labels on such indirect communication (but not on
direct Binder calls), and polyinstantiation ensures that
the two instances at the end of a bidirectional Binder
connection have the same label, which is sufficient for
synchronous Binder messages. Hence, labeling of indi-
vidual Binder messages does not provide additional flex-
ibility, unlike in explicit labeling DIFC systems (e.g.,
COWL [41], Flume [21]). Note that Weir allows explicit
labeling of indirect messages (i.e., intent labeling). Fur-
ther, explicit labeling of a file with a label that is different
from its creating process instance would place it on an
incorrect layer. Such incorrectly stored files will not be
visible to future instances started with matching labels,

and may cause unpredictable application behavior. Thus,
our design trades the flexibility in explicitly labeling files
for stable context-sensitive storage.

10 Related Work

In Section 3.1 we described prior DIFC proposals for An-
droid (i.e., Aquifer [28], Jia et al. [19] and Maxoid [46]).
We now describe other relevant prior research.

DIFC: Myers and Liskov presented the Decentralized
Labeling Model (DLM) [26] that allowed security prin-
cipals to define their own labels. Since then, numerous
DIFC systems have been proposed that provide valuable
policy and enforcement models [20,21,25–27,33,44,49,
50]. Language-based DIFC approaches (e.g., JFlow [25]
and Jif [27]) provide precision within the program, but
rely on the OS for DIFC enforcement on OS objects
(e.g., processes, files, sockets). On the contrary, coarse-
grained OS-level approaches (e.g., HiStar [49] and As-
bestos [44]) provide security for flows between OS ob-
jects, but cannot reason about flows at the granularity of
a programming language variable. While Weir is also an
OS-level DIFC approach, which means it cannot achieve
precision at the program variable level, context sensitive
enforcement ensures that Weir always has higher preci-
sion than traditional OS-level DIFC. Further, while Lam-
inar [30, 33] provides both language-level as well as the
OS-level enforcement, it requires applications to be mod-
ified to use the precise language-level enforcement. This
is not an option for backwards compatible DIFC on An-
droid. Finally, Weir does not require general-purpose ap-
plications to explicitly define flows as in Laminar, HiStar
and Flume [20, 21], as inter-application communication
in Android tends to be unpredictable.

Secure multi-execution: Secure multi-execution [11]
was proposed to determine and enforce that a program’s
execution is noninterferent, i.e., to eliminate unlawful
data flows by untrusted code within a program. The
approach achieves noninterference using multiple con-
current executions at all points in the lattice, removing
statements that do not match the labels of specific exe-
cutions. On the contrary, lazy polyinstantiation creates
only one instance in the security context of the caller.
Unlike secure multi-execution where the multiple execu-
tions are treated as a part of the same program instance,
polyinstantiation treats multiple executions as unrelated
context-specific instances separated in memory and stor-
age. Our approach is more suitable for Android’s inter-
application data sharing abstractions, while secure multi-
execution may be useful to prove non-interference for a
general program. Further, secure multi-execution only
assumes a finite, predefined label set. This assumption
is violated in DIFC systems, where the label set is often

1134 25th USENIX Security Symposium USENIX Association

large and not known a priori, and executing all labels at
once is impractical.
Faceted Execution: Jeeves [48] and Jaqueline [47] en-
sure that security principals see different views of data
based on their secrecy contexts, using a technique de-
fined as faceted execution. The result of Weir’s approach
is similar; i.e., each security principal can only see data
at its own secrecy context. For faceted execution, the
copies of data have to be specified by the programmer
a priori, which is acceptable if the security of different
users using a single program (e.g., a conference submis-
sion site) is to be defined. On the contrary, on Android,
Weir’s approach of allowing applications to operate un-
modified, and creating context-specific copies on the go,
is more practical. To elaborate, data in terms of Weir is
not the value(s) of a programming language variable, but
the instances of components in memory and file system
layers per label. Finally, just like secure multi-execution,
faceted execution is more suitable when the IFC lattice is
small (e.g., two labels) or finite, and may not be feasible
for DIFC, where tags can be created at runtime.
Coarse-grained Containers: Approaches such as Sam-
sung Knox [34] and Android for Work [2] protect en-
terprise data by isolating groups of applications into dif-
ferent containers. Containers cannot compensate for the
lack of data secrecy guarantees, as they do not address
threats within the container, i.e., the accidental export of
secret data by a trusted application or the potential com-
promise of a trusted application. Virtual phones (e.g.,
Cells [4]) are similarly inadequate for data secrecy.
Transitive Enforcement on Android: Android permis-
sions lack transitive enforcement, and are susceptible to
privilege escalation attacks [7, 16]. IPC Inspection [14]
enforces transitivity by reducing the caller’s effective
permissions to those of the least privileged component in
the call chain. Quire [12] provides the call chain infor-
mation to applications being called, to prevent confused
deputy attacks. Like floating labels, privilege reduction
is additive, and may severely restrict shared components.
Fine-grained Taint Tracking on Android: Taint-
Droid [13] detects private data leaks via fine-grained taint
tracking on Android, but is vulnerable to implicit flows.
CleanOS [43] and Pebbles [38] use fine-grained taint
tracking on memory and storage to evict and manage pri-
vate data respectively. For tracking data in databases,
both approaches rely on modification to the database li-
brary, which may not be secure as the library executes in
the memory of the enforcement subject.

11 Conclusion

Android’s component and storage abstractions make se-
cure and practical DIFC enforcement challenging. To ad-

dress these challenges, we present lazy polyinstantiation
and domain declassification. We design and implement a
DIFC system, Weir, and show a negligible performance
impact as well as compatibility with legacy applications.
In doing so, we show how secure and backwards com-
patible DIFC enforcement can be achieved on Android.

Acknowledgements

This work was supported in part by the NSA Sci-
ence of Security Lablet at North Carolina State Uni-
versity, NSF CAREER grant CNS-1253346, NSF-SaTC
grants CNS-1228782 and CNS-1228620, and the United
State Air force and Defense Advanced Research Agency
(DARPA) under Contract No. FA8650-15-C-7562. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the funding agencies.

References
[1] ALJURAIDAN, J., FRAGKAKI, E., BAUER, L., JIA, L.,

FUKUSHIMA, K., KIYOMOTO, S., AND MIYAKE, Y. Run-Time
Enforcement of Information Flow Properties on Android. Tech.
Rep. CMY-CyLab-12-015, CyLab, Carnegie Mellon University,
2012.

[2] ANDROID. Android for Work. https://www.android.
com/work/.

[3] ANDROID DEVELOPERS . Tasks and Back Stack.
https://developer.android.com/guide/
components/tasks-and-back-stack.html.

[4] ANDRUS, J., DALL, C., HOF, A. V., LAADAN, O., AND NIEH,
J. Cells: a virtual mobile smartphone architecture. In Proceed-
ings of the Twenty-Third ACM Symposium on Operating Systems
Principles (2011), ACM, pp. 173–187.

[5] BAUER, L., CAI, S., JIA, L., PASSARO, T., STROUCKEN, M.,
AND TIAN, Y. Run-time Monitoring and Formal Analysis of In-
formation Flows in Chromium. In Proceedings of the ISOC Net-
work and Distributed Systems Security Symposium (NDSS) (Feb
2015).

[6] BELL, D. E., AND LAPADULA, L. J. Secure Computer Sys-
tems: Mathematical Foundations. Tech. Rep. MTR-2547, Vol. 1,
MITRE Corp., 1973.

[7] DAVI, L., DMITRIENKO, A., SADEGHI, A.-R., AND
WINANDY, M. Privilege Escalation Attacks on Android. In
Proceedings of the 13th Information Security Conference (ISC)
(2010).

[8] DENNING, D. E. A Lattice Model of Secure Information Flow.
Communications of the ACM (1976).

[9] DEVELOPERS, K.-. M. K-9 Mail. https://github.com/
k9mail, 2015.

[10] DEVELOPERS, S. SELinux Kernel ToDo. https:
//github.com/SELinuxProject/selinux/wiki/
Kernel-Todo, 2015.

[11] DEVRIESE, D., AND PIESSENS, F. Noninterference through se-
cure multi-execution. In 31st IEEE Symposium on Security and
Privacy (May 2010).

USENIX Association 25th USENIX Security Symposium 1135

[12] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU, A., AND WAL-
LACH, D. S. Quire: Lightweight Provenance for Smart Phone
Operating Systems. In Proceedings of the USENIX Security Sym-
posium (2011).

[13] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Mon-
itoring on Smartphones. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI) (2010).

[14] FELT, A. P., WANG, H. J., MOSHCHUK, A., HANNA, S., AND
CHIN, E. Permission Re-Delegation: Attacks and Defenses. In
Proceedings of the USENIX Security Symposium (2011).

[15] GIFFIN, D. B., LEVY, A., STEFAN, D., TEREI, D., MAZIÈRES,
D., MITCHELL, J. C., AND RUSSO, A. Hails: Protecting Data
Privacy in Untrusted Web Applications. In Presented as part of
the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12) (2012).

[16] GRACE, M., ZHOU, Y., WANG, Z., AND JIANG, X. Systematic
Detection of Capability Leaks in Stock Android Smartphones. In
Proceedings of the ISCO Network and Distributed System Secu-
rity Symposium (2012).

[17] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND
WETHERALL, D. These Aren’t the Droids You’re Looking For:
Retrofitting Android to Protect Data from Imperious Applica-
tions. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS) (2011).

[18] JEREMY EDER. Comprehensive Overview of
Storage Scalability in Docker. https://
developerblog.redhat.com/2014/09/30/
overview-storage-scalability-docker/.

[19] JIA, L., ALJURAIDAN, J., FRAGKAKI, E., BAUER, L.,
STROUCKEN, M., FUKUSHIMA, K., KIYOMOTO, S., AND
MIYAKE, Y. Run-Time Enforcement of Information-Flow Prop-
erties on Android (Extended Abstract). In Proceedings of the
European Symposium on Research in Computer Security (ES-
ORICS) (2013).

[20] KROHN, M., AND TROMER, E. Noninterference for a Practi-
cal DIFC-Based Operating System. In Proceedings of the IEEE
Symposium on Security and Privacy (2009).

[21] KROHN, M., YIP, A., BRODSKY, M., CLIFFER, N.,
KAASHOEK, M. F., KOHLER, E., AND MORRIS, R. Informa-
tion Flow Control for Standard OS Abstractions. In Proceedings
of ACM Symposium on Operating Systems Principles (SOSP)
(2007).

[22] LAGEMAN, M., AND SOLUTIONS, S. C. Solaris Containers-
What They Are and How to Use Them.

[23] MCILROY, M. D., AND REEDS, J. A. Multilevel security in the
UNIX tradition. Software: Practice and Experience (1992).

[24] MERKEL, D. Docker: lightweight linux containers for consistent
development and deployment. Linux Journal (2014).

[25] MYERS, A. C. JFlow: Practical Mostly-Static Information Flow
Control. In Proceedings of the ACM Symposium on Principles of
Programming Languages (POPL) (1999).

[26] MYERS, A. C., AND LISKOV, B. A Decentralized Model for In-
formation Flow Control. In Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP) (1997).

[27] MYERS, A. C., AND LISKOV, B. Protecting Privacy Using the
Decentralized Label Model. ACM Transactions on Software En-
gineering and Methodology (2000).

[28] NADKARNI, A., AND ENCK, W. Preventing Accidental Data
Disclosure in Modern Operating Systems. In Proceedings of
the ACM Conference on Computer and Communications Secu-
rity (CCS) (2013).

[29] NEIL BROWN. Overlay Filesystem. https://www.
kernel.org/doc/Documentation/filesystems/
overlayfs.txt.

[30] PORTER, D. E., BOND, M. D., ROY, I., MCKINLEY, K. S.,
AND WITCHEL, E. Practical Fine-Grained Information Flow
Control Using Laminar. ACM Trans. Program. Lang. Syst. (Nov.
2014).

[31] REPS, T. W. Program Analysis via Graph Reachability. Infor-
mation & Software Technology 40, 11-12 (1998).

[32] RODEH, O., BACIK, J., AND MASON, C. BTRFS: The Linux
B-Tree Filesystem. ACM Transactions on Storage (TOS) (Aug.
2013).

[33] ROY, I., PORTER, D. E., BOND, M. D., MCKINLEY, K. S.,
AND WITCHEL, E. Laminar: Practical Fine-Grained Decentral-
ized Information Flow Control. In Proceedings of the Conference
on Programming Language Design and Implementation (PLDI)
(2009).

[34] SAMSUNG ELECTRONICS. An Overview of Samsung Knox.
http://www.samsung.com/global/business/
business-images/resource/white-paper/2014/
02/Samsung_KNOX_whitepaper_June-0-0.pdf,
2013.

[35] SCHAUFLER, C. LSM: Multiple concurrent LSMs. https:
//lkml.org/lkml/2013/7/25/482, 2013.

[36] SHARIR, M., AND PNUELI, A. Two Approaches to Interproce-
dural Data Flow Analysis. In Program Flow Analysis: Theory
and Applications. 1981.

[37] SHIVERS, O. Control-Flow Analysis of Higher-Order Lan-
guages. PhD thesis, Carnegie Mellon University Pittsburgh, PA,
1991.

[38] SPAHN, R., BELL, J., LEE, M., BHAMIDIPATI, S., GEAM-
BASU, R., AND KAISER, G. Pebbles: Fine-Grained Data Man-
agement Abstractions for Modern Operating Systems. In Pro-
ceedings of the USENIX Operating Systems Design and Imple-
mentation (OSDI) (2014).

[39] STATISTA. Number of available applications in the
Google Play Store from December 2009 to February 2016.
http://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/.

[40] STEFAN, D., RUSSO, A., MITCHELL, J. C., AND MAZIÈRES,
D. Flexible Dynamic Information Flow Control in Haskell.
In Proceedings of the 4th ACM Symposium on Haskell (2011),
Haskell ’11.

[41] STEFAN, D., YANG, E. Z., MARCHENKO, P., RUSSO, A., HER-
MAN, D., KARP, B., AND MAZIÈRES, D. Protecting Users
by Confining JavaScript with COWL. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
14) (Oct. 2014).

[42] STEFAN, H., STEFAN, D., YANG, E. Z., RUSSO, A., AND
MITCHELL, J. C. IFC Inside: Retrofitting Languages with Dy-
namic Information Flow Control. In Proceedings of the 4th Con-
ference on Principles of Security and Trust (POST 2015) (2015).

[43] TANG, Y., AMES, P., BHAMIDIPATI, S., BIJLANI, A., GEAM-
BASU, R., AND SARDA, N. CleanOS: Limiting Mobile Data Ex-
posiure with Idle Eviction. In Proceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI)
(2012).

1136 25th USENIX Security Symposium USENIX Association

Call
(Component C)

Resolve Target
component
name (C)

Is C
running?

Create a new
instance of C

Resolve target
process P for

C.processName

Is P
running?

Start new
process P for

C

Yes

No

No

 label (C's
process) ==
callerLabel ?

No

Yes

Set callerLabel
as label (P)

P =
match_Weir
_Proc(P,

callerLabel)

Yes

callerLabel
== label (P)?

match_Weir_Proc
(Process P, Label

callerLabel)

Return
P

Yes

pList =
weirProcessList

(P.processName)

callerLabel
== label

(P)?

No

P =
pList.next()!=

null?

Yes

Allocate new
Process P'

P = P'
pList.add (P')

No

No

Yes

Deliver the call
to C

Yes

callerLabel =
label(caller's process)

Figure 8: Flow of the Activity Manager starting a com-
ponent. The areas modified or added by Weir are shaded.

[44] VANDEBOGART, S., EFSTATHOPOULOS, P., KOHLER, E.,
KROHN, M., FREY, C., ZIEGLER, D., KAASHOEK, F., MOR-
RIS, R., AND MAZIÈRES, D. Labels and Event Processes in
the Asbestos Operating System. ACM Transactions on Computer
Systems (TOCS) (2007).

[45] WALSH, D. SELinux/OverlayFS integration.
https://twitter.com/rhatdan/status/
588338475084029953, 2015.

[46] XU, Y., AND WITCHEL, E. Maxoid: transparently confining
mobile applications with custom views of state. In Proceedings
of the Tenth European Conference on Computer Systems (2015),
ACM.

[47] YANG, J., HANCE, T., AUSTIN, T. H., SOLAR-LEZAMA,
A., FLANAGAN, C., AND CHONG, S. End-To-End Policy-
Agnostic Security for Database-Backed Applications. arXiv
preprint arXiv:1507.03513 (2015).

[48] YANG, J., YESSENOV, K., AND SOLAR-LEZAMA, A. A Lan-
guage for Automatically Enforcing Privacy Policies. In Proceed-
ings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (2012).

[49] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIÈRES, D. Making Information Flow Explicit in HiStar. In
Proceedings of the 7th symposium on Operating Systems Design
and Implementation (2006).

[50] ZELDOVICH, N., BOYD-WICKIZER, S., AND MAZIERES, D.
Securing Distributed Systems with Information Flow Control. In
Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (2008).

A Component Polyinstantiation Logic

In this section, we describe Weir’s changes to the Ac-
tivity Manager service’s component and process assign-
ment logic. Figure 8 shows the workflow inside the
Activity Manager when a component C is called. The

shaded blocks form Weir’s label checks and polyinstan-
tiation logic. Note that the figure portrays the high level
steps followed by the Activity Manager, common to all
components. When a call arrives, Weir first gets the la-
bel for the caller’s process from the kernel and stores it
in callerLabel. The Activity Manager then resolves the
target component C using the information in the call. At
this point the Activity Manager only knows the name and
type of the target component (e.g., the content provider
C). The Activity Manager then checks if there is a run-
time instance of C in its records. If a runtime instance
exists and is executing in a process with a matching la-
bel, the call is delivered to the running instance. Other-
wise, Weir forces the Activity Manager to create another
runtime instance, for this new callerLabel.

Without Weir, the Activity Manager would always de-
liver the call to the existing instance.5 Weir modifies the
Activity Manager’s internal bookkeeping structures to be
consistent with its polyinstantiation; i.e., it enables the
Activity Manager to manage multiple runtime records
for the same component. For example, the ActivityMan-
ager uses a direct mapping between a service’s name and
its runtime instance, to store records of running services.
Weir modifies this mapping to one between the name and
a set of services.

At this stage, the system has a new component in-
stance that needs to be executed in a process. The Ac-
tivity Manager selects the process based on the pro-
cessName extracted from the “android:process” mani-
fest attribute. A runtime record of the resolved pro-
cess P is then sent to Weir for process matching (i.e.,
the Match Weir Proc (P, callerLabel) subroutine). Weir
first checks the label of the existing process P, and if it
matches, returns P itself. If not, Weir retrieves its internal
list of processes associated with P. This list constitutes
the processes that were created in the past to be assigned
instead of P for specific caller labels. Weir checks if the
list contains a process with a label matching the current
callerLabel; this step ensures that components with the
same processName as well as callerLabel are executed in
the same process. If Weir fails to find a matching process
in the list, it allocates a new process for the callerLabel,
and adds it to the list of existing processes mapped to the
specific processName. This process is then returned as
P to the Activity Manager. The Activity Manager then
starts P, if it is not already started, and Weir sets its label
in the kernel. Note that if the process is already started
(i.e., the original P was matching, or a matching process
was found in Weir’s pList (P.processName), the Activity
Manager does not restart it. Finally, the component in-
stance is executed in the assigned process, and the call is
delivered to it.

5Except in the case of standard and multi-process activities.

USENIX Association 25th USENIX Security Symposium 1137

Screen After Previous Screens: Spatial-Temporal Recreation of Android

App Displays from Memory Images

Brendan Saltaformaggio1, Rohit Bhatia1, Xiangyu Zhang1, Dongyan Xu1, Golden G. Richard III2

1Department of Computer Science and CERIAS, Purdue University

{bsaltafo, bhatia13, xyzhang, dxu}@cs.purdue.edu

2Department of Computer Science, University of New Orleans

golden@cs.uno.edu

Abstract

Smartphones are increasingly involved in cyber and real

world crime investigations. In this paper, we demon-

strate a powerful smartphone memory forensics tech-

nique, called RetroScope, which recovers multiple previ-

ous screens of an Android app — in the order they were

displayed — from the phone’s memory image. Differ-

ent from traditional memory forensics, RetroScope en-

ables spatial-temporal forensics, revealing the progres-

sion of the phone user’s interactions with the app (e.g.,

a banking transaction, online chat, or document editing

session). RetroScope achieves near perfect accuracy in

both the recreation and ordering of reconstructed screens.

Further, RetroScope is app-agnostic, requiring no knowl-

edge about an app’s internal data definitions or rendering

logic. RetroScope is inspired by the observations that (1)

app-internal data on previous screens exists much longer

in memory than the GUI data structures that “package”

them and (2) each app is able to perform context-free re-

drawing of its screens upon command from the Android

framework. Based on these, RetroScope employs a novel

interleaved re-execution engine to selectively reanimate

an app’s screen redrawing functionality from within a

memory image. Our evaluation shows that RetroScope

is able to recover full temporally-ordered sets of screens

(each with 3 to 11 screens) for a variety of popular apps

on a number of different Android devices.

1 Introduction

As smartphones become more pervasive in society, they

are also increasingly involved in cyber and real world

crimes. Among the many types of evidence held by a

phone, an app’s prior screen displays may be the most

intuitive and valuable to an investigation — revealing

the intent, targets, actions, and other contextual evidence

of a crime. In this paper, we demonstrate a powerful

forensics capability for Android phones: recovering mul-

tiple previous screens displayed by each app from the

phone’s memory image. Different from traditional mem-

ory forensics, this capability enables spatial-temporal

forensics by revealing what the app displayed over a time

interval, instead of a single time instance. For example,

investigators will be able to recover the multiple screens

of a banking transaction, deleted messages from an on-

line chat, and even a suspect’s actions before logging out

of an app.

Our previous effort in memory forensics, GUI-

TAR [35], provides a related (but less powerful) capa-

bility: recovering the most recent GUI display of an

Android app from a memory image. We call this GUI

display Screen 0. Unfortunately, GUITAR is not able

to reconstruct the app’s previous screens, which we call

Screens -1, -2, -3... to reflect their reverse temporal or-

der. For example, if the user has logged out of an app

before the phone’s memory image is captured, GUITAR

will only be able to recover the “log out” screen, which

is far less informative than the previous screens showing

the actual app activities and their progression.

To address this limitation, we present a novel spatial-

temporal solution, called RetroScope, to reconstruct an

Android app’s previous GUI screens (i.e., Screens 0, -1,

-2... -N, N > 0). RetroScope is app-agnostic and does

not require any app-specific knowledge (i.e., data struc-

ture definitions and rendering logic). More importantly,

RetroScope achieves near perfect accuracy in terms of

(1) reconstructed screen display and (2) temporal order

of the reconstructed screens. To achieve these proper-

ties, RetroScope overcomes significant challenges. As

indicated in [35], GUI data structures created for previ-

ous screens get overwritten almost completely, as soon as

a new screen is rendered. This is exactly why GUITAR

is unable to reconstruct Screen -i (i > 0), as it cannot find

GUI data structures belonging to the previous screens. In

other words, GUITAR is capable of “spatial” — but not

“spatial-temporal” — GUI reconstruction. This limita-

tion motivated us to seek a fundamentally different ap-

1138 25th USENIX Security Symposium USENIX Association

proach for RetroScope.

During our research, we noticed that although the

GUI data structures for app screens dissolve quickly,

the actual app-internal data displayed on those screens

(e.g., chat texts, account balances, photos) have a much

longer lifespan. Section 2 presents our profiling results

to demonstrate this observation. However, if we follow

the traditional memory forensics methodology of search-

ing for [16,25,26,41] and rendering [35–37] instances of

those app data, our solution would require app-specific

data structure definitions and rendering logic, breaking

the highly desirable app-agnostic property.

We then turned our attention to the (app-agnostic) dis-

play mechanism supplied by the Android framework,

which revealed the most critical (and interesting) idea

behind RetroScope. A smartphone displays the screen of

one app at a time; hence the apps’ screens are frequently

switched in and out of the device’s display, following the

user’s actions. Further, when the app is brought back to

the foreground, its entire screen must be redrawn from

scratch: by first “repackaging” the app’s internal data

to be displayed into GUI data structures, and then ren-

dering the GUI data structures according to their layout

on the screen. Now, recall that the “old” app-internal

data (displayed on previous screens) are still in mem-

ory. Therefore, we propose redirecting Android’s “draw-

from-scratch” mechanism to those old app data. Intu-

itively, this would cause the previous screens to be re-

built and rendered. This turns out to be both feasible and

highly effective, thus enabling the development of Ret-

roScope.

Based on the observations above, RetroScope is de-

signed to trigger the re-execution of an app’s screen-

drawing code in-place within a memory image — a pro-

cess we call selective reanimation. During selective re-

animation, the app’s data and drawing code from the

memory image are logically interleaved with a live sym-

biont app, using our interleaved re-execution engine and

state interleaving finite automata (Section 3.2). This al-

lows RetroScope (within a live Android environment)

to issue standard GUI redrawing commands to the in-

terleaved execution of the target app, until the app has

redrawn all different (previous) screens that its internal

data can support. In this way, RetroScope acts as a “pup-

peteer,” steering the app’s code and data (the “puppet”)

to reproduce its previous screens.

We have performed extensive evaluation of Retro-

Scope, using memory snapshots from 15 widely used

Android apps on three commercially available phones.

For each of these apps, RetroScope accurately recov-

ered multiple (ranging from 3 to 11) previous screens.

Our results show that RetroScope-recovered app screens

provide clear spatial-temporal evidence of a phone’s ac-

tivities with high accuracy (only missing 2 of 256 re-

coverable screens) and efficiency (10 minutes on aver-

age to recover all screens for an app). We have open-

sourced RetroScope1 to encourage reproduction of our

results and further research into this new memory foren-

sics paradigm.

2 Problem and Opportunity

Different from typical desktop applications, frequent

user interactions with Android apps require their screen

display to be highly dynamic. For example, nearly all

user interactions (e.g., clicking the “Compose Email”

button on the Inbox screen) and asynchronous notifica-

tions (e.g., a pop-up for a newly received text message)

lead to drawing an entirely new screen. Despite such

frequent screen changes, an earlier study [35] shows that

every newly rendered app screen destroys and overwrites

the GUI data structures of the previous screen.

This observation however, seems counter-intuitive as

Android apps are able to very quickly render a screen

that is similar or identical to a previous screen. For ex-

ample, consider how seamlessly a messenger app returns

to the “Recent Conversations” screen after sending a new

message. Given that the previous screen’s data structures

have been destroyed, the app must be able to recreate

GUI data structures for the new screen. More impor-

tantly, we conjecture that the raw, app-internal data (e.g.,

chat texts, dates/times, and photos) displayed on previ-

ous screens must exist in memory long after their corre-

sponding GUI data structures are lost.

To confirm our conjecture about the life spans of (1)

GUI data structures (short) and (2) app-internal data

(long), we performed a profiling study on a variety of

popular Android apps (those in Section 4). Via instru-

mentation, we tracked the allocation and destruction (i.e.,

overwriting) of the two types of data following multiple

screen changes of each app. Figure 1 presents our find-

ings for TextSecure (also known as Signal Messenger). It

is evident that the creation of every new screen causes the

destruction of the previous screen’s GUI data, whereas

the app-internal data not only persists but accumulates

with every new screen. We observed this trend across all

evaluated apps.

Considering that a memory image reflects the mem-

ory’s content at one time instance, Figure 1 illustrates

a limitation of existing memory forensics techniques

(background on memory image acquisition can be found

in Appendix A). Specifically, given the memory image

taken after Screen 0 is rendered (as marked in Figure 1),

our GUITAR technique [35] will only have access to the

GUI data for Screen 0. Meanwhile, the app’s internal

1RetroScope is available online, along with a demo video, at:

https://github.com/ProjectRetroScope/RetroScope.

USENIX Association 25th USENIX Security Symposium 1139

0

20

40

60

80

100

120

D
at

a
S

tr
u

ct
u
re

 C
o

u
n
t

(T
h
o

u
sa

n
d

s)

Time (Relative to Screen Changes From Screen -5 to Screen 0 Above)

Internal Data Screen -5 Screen -4 Screen -3
Screen -2 Screen -1 Screen 0

(a) Screen -5 (b) Screen -4 (c) Screen -3 (d) Screen -2 (e) Screen -1

RetroScope

Recovery

Memory Image Taken

(e) Screen 0

Figure 1: Life Cycles of GUI Data Structures Versus App-Internal Data Across Multiple Screen Changes.

ContactList.java

Model View

Conversation.java

MessageItem.java

 class MessageItem {

 …

 String mTimestamp;

 String mAddress;

 String mBody;

 String mContact;

 String mSubject;

 …

 }

SlideView.java

ImageAttachmentView.java

MessageListView.java

 class MessageListView {

 void draw (Canvas canvas){

 …

 String str;

 str = MessageItem.format();

 canvas.drawText(str);

 …

 }

 }

Figure 2: The Typical Model/View Implementation Split

of Android Apps.

data are maintained by the app itself for as long as the

app’s implementation allows (e.g., we never observed

TextSecure deallocating its messages because they may

be needed again). However, without app-specific data

definitions or rendering logic, it is impossible for exist-

ing app-agnostic techniques [6, 36, 41] to meaningfully

recover and redisplay the app’s internal data on Screens

-1 to -5 in Figure 1.

It turns out that the Android framework instills the

“short-lived GUI structures and long-lived app-internal

data” properties in all Android apps. Specifically, An-

droid apps must follow a “Model/View” design pat-

tern which intentionally separates the app’s logic into

Model and View components. As shown in Figure 2, an

app’s Model stores its internal runtime data; whereas its

View is responsible for building and rendering the GUI

screens that present the data. For example, the Mes-

sageItem, Conversation, and ContactList (Model) classes

in Figure 2 store raw, app-internal data, which are then

formatted into GUI data structures, and drawn on screen

by the MessageListView class. This design allows the

app’s View screens to respond quickly to the highly dy-

namic user-phone interactions, while delegating slower

operations (e.g., fetching data updates from a remote

server) to the background Model threads.

Further, the Android framework provides a Java class

(aptly named View) which apps must extend in order

to implement their own GUI screens. As illustrated

by Figure 2’s MessageListView class, each of the app’s

screens correspond to an app-customized View object

and possibly many sub-Views drawn within the top-level

View. Most importantly, each View object defines a draw

function. draw functions are prohibited from performing

blocking operations and may be invoked by the Android

framework whenever that specific screen needs to be re-

drawn. This makes any screen’s GUI data (e.g., format-

ted text, graphics buffers, and drawing operations which

build the screen) easily disposable, because the Android

framework can quickly recreate them by issuing a redraw

command to an app at any time. This design pattern pro-

vides an interesting opportunity for RetroScope, which

will intercept and reuse the context of a live redraw com-

mand to support the reanimation of draw functions in a

memory image.

3 Design of RetroScope

RetroScope’s operation is fully automated and only re-

quires a memory image from the Android app being in-

vestigated (referred to as the target app) as input. From

this memory image, RetroScope will recreate as many

1140 25th USENIX Security Symposium USENIX Association

previous screens as the app’s internal data (in the mem-

ory image) can support. However, without app-specific

data definitions, RetroScope is unable to locate or un-

derstand such internal data. But recall from Section 2

that the Android framework can cause the app to draw its

screen by issuing a redraw command, without handling

the app-internal data directly. This is possible because

the app’s draw functions are invoked in a context-free

manner: The Android framework only supplies a buffer

(called a Canvas) to draw the screen into, and the draw

function obtains the app’s internal data via previously

stored, global, or static variables — analogous to starting

a car with a key (the redraw command) versus manually

cranking the engine (app internals). Thus, RetroScope is

able to leverage such commands, avoiding the low-level

“dirty work” as in previous forensics/reverse engineering

approaches [36, 37].

RetroScope mimics this process within the target app’s

memory image by selectively reanimating the app’s

screen drawing functions via an interleaved re-execution

engine (IRE). RetroScope can then inject redraw com-

mands to goad the target app into recreating its previ-

ous screens. An app’s draw functions are ideal for re-

animation because they are (1) functionally closed, (2)

defined by the Android framework (thus we know their

interface definition), and (3) prevented from perform-

ing I/O or other blocking operations which would oth-

erwise require patching system dependencies. Finally,

RetroScope saves the redrawn screens in the temporal or-

der that they were previously displayed, unless the draw

function crashes — indicating the app-internal data could

not support that screen.

To support selective reanimation, RetroScope lever-

ages the open-source Android emulator to start, control,

and modify the execution of a symbiont app, a minimal

implementation of an Android app which will serve as a

“shell” for selective reanimation.

3.1 Selective Reanimation

Before selective reanimation can begin, RetroScope must

first set up enough of the target app’s runtime environ-

ment for re-executing the app’s draw functions. There-

fore RetroScope first starts a new process in the An-

droid emulator, which will later become the symbiont

app and the IRE (Section 3.2). RetroScope then syn-

thetically recreates a subset of the target app’s memory

space from the subject memory image. Specifically, Ret-

roScope loads the target app’s data segments (native and

Java) and code segments (native C/C++ and Java code

segments) back to their original addresses (Lines 1-4 of

Algorithm 1) — this would allow pointers within those

segments to remain valid in the symbiont app’s memory

space. RetroScope then starts the symbiont app which

will initialize its native execution environment and Java

runtime. Note that the IRE will not be activated until

later when state interleaving (Section 3.2) is needed.

Isolating Different Runtime States. The majority of

an Android app’s runtime state is maintained by its Java

runtime environment2. For RetroScope, it is not suffi-

cient to simply reload the target app’s memory segments.

Instead the symbiont app’s Java runtime must also be

made aware of the added (target app’s) runtime data prior

to selective reanimation. Later, the IRE will need to dy-

namically switch between the target app’s runtime state

and that of the symbiont app to present each piece of

interleaved execution with the proper runtime environ-

ment.

RetroScope traverses a number of global Java run-

time data structures from the subject memory image with

information such as known/loaded Java classes, app-

specific class definitions, and garbage collection trackers

(Lines 5–9 of Algorithm 1). Such data are then copied

and isolated into the symbiont app’s Java runtime by in-

serting them (via the built in Android class-loading logic)

into duplicates of the Java runtime structures in the sym-

biont app. Note that, at this point, the duplicate runtime

data structures will not affect the execution of the sym-

biont app, but they must be set up during the symbiont

app’s initialization so that any app-specific classes and

object allocations from the memory image can be han-

dled later by the IRE.

At this point, the symbiont app’s memory space con-

tains (nearly) two full applications (shown in Figure 4).

The symbiont app has been initialized naturally by the

Android system with its own execution environment. In

addition, RetroScope has reserved and loaded a subset

of the target app’s memory segments (those required

for selective reanimation) and isolated the necessary old

(target app’s) Java runtime data into the new (symbiont

app’s) Java runtime. The remainder of RetroScope’s op-

eration is to (1) mark the target app’s View draw func-

tions so that they can receive redraw commands and (2)

reanimate those drawing functions inside the symbiont

app via the IRE.

Marking Top-Level Draw Functions. RetroScope tra-

verses the target app’s loaded classes to find top-level

Views (Lines 10–17 in Algorithm 1). Top-level Views

are identified as those which inherit from Android’s par-

ent View class ViewParent and are not drawn inside

any other Views. As described in Section 2, top-level

Views are default Android classes which contain app-

customized sub-Views. Further, we know that all Views

must implement a draw function (which invokes the sub-

Views’ draw functions). Thus RetroScope marks each

top-level draw function as a reanimation starting point.

2Please see Section 5 regarding Dalvik JVM versus ART runtimes.

USENIX Association 25th USENIX Security Symposium 1141

Algorithm 1 RetroScope Selective Reanimation.

Input: Target App Memory Image M

Output: GUI Screen Ordered Set S

⊲ Rebuild the Target App runtime environment.

1: for Segment S ∈ M do ⊲ Remap memory segments.

2: if isNeededForReanimation(S) then

3: Map(S.startAddress, S.length, S.content)

4: SymbiontApp.initialize() ⊲ Set up Symbiont App.

5: JavaGlobalStructs G ←∅ ⊲ Isolate the Target App runtime state.

6: for Segment S ∈ M do ⊲ Find Java control data.

7: if containsJavaGlobals(S) then

8: G ← getJavaGlobals(S)

9: break

⊲ Register reanimation points with the IRE.

10: InterleavedReexecutionEngine IRE

11: View Set V ←∅ ⊲ Top-level Views.

12: for Class C ∈ G �Classes do ⊲ Find top-level Views.

13: if C <: ViewParent then ⊲ ‘<:’ denotes subtype.

14: if not isSubView(C) then

15: IRE.beginOn(C.draw) ⊲ Register drawing function.

16: View Set views ←C.instances

17: V ←V ∪ views

18: View T ← SymbiontApp.getTopLevelView()

19: T .invalidate() ⊲ Cause screen redraw command to be issued.

20: procedure CATCHREDRAWCOMMAND

⊲ Invoked when redraw command is issued.

21: for View view ∈V do

22: T ← view ⊲ Override the Symbiont App’s top-level View.

⊲ Record largest subView ID.

23: largestID ← max
v∈view.subViews

v.getField(ID)

24: deliverRedrawCommand()

⊲ IRE handles re-execution of redrawing code.

25: Screen s ← T .copyGUIBuffer()

26: S.insert(largestID, s)

27: end procedure

Selective Reanimation. Once all top-level draw func-

tions are identified, RetroScope can begin selective rean-

imation of each. First, RetroScope invalidates the sym-

biont app’s current View (Line 19 of Algorithm 1). This

will cause Android to set up and issue a redraw com-

mand to the symbiont app along with a buffer to draw

into. However, RetroScope first intercepts this command

and replaces the symbiont app’s top-level View with one

of the target app’s top-level Views identified previously

(Lines 20–27 in Algorithm 1). Note that RetroScope

does not distinguish between different instances of top-

level Views, it simply reissues redraw commands for ev-

ery previously identified top-level View instance, even if

duplicates exist.

Since the top-level Views of the symbiont app and the

target app are both default instances of (or inherit from)

the same Android View class, they are interchangeable

as far as the Android framework is concerned (both with

the same functionality). Now RetroScope can inject the

redraw command into the symbiont app which, upon re-

ceiving this command, will naturally invoke the target

app’s top-level draw function (previously marked for re-

animation).

This will trigger the IRE to begin logically interleav-

ing the draw function execution with the symbiont app’s

GUI drawing environment. Most importantly, this will

direct input code/data accesses (i.e., queries to the target

app’s Model) to the appropriate target app functions and

output code/data accesses (i.e., drawing of screens) to

the symbiont app’s running GUI framework. Upon suc-

cessful completion of each draw function reanimation,

RetroScope retrieves and stores the symbiont app’s (now

filled) screen buffer, switches the top-level View to an-

other marked target app View, and re-injects the redraw

command — reloading the memory image in between to

avoid side effects.

Finally, RetroScope reorders the redrawn screens to

match the temporal order in which they were displayed.

This is done via comparison of View ID fields in the tar-

get app’s Views (recovered from the memory image). A

View’s ID is an integer that identifies a View. The ID

may not be unique, as some Views may alias others, but

it is always set from a monotonically increasing counter.

This yields the property that app screens can be ordered

temporally by comparing the largest ID among their sub-

Views. Intuitively, the most recently modified portion of

the screen (sub-View) will yield an increasingly large ID.

3.2 Interleaved Re-Execution Engine

o'.m() | o'. (m)()

o.m() | o. (m)()

α

β

δ

γ

o.* | Pass o'.* | Pass

o.f | Passo'.f | Pass

o'.f
| o'.

(f)o.
f

| o
.

(f
)

o .m() | Pass o'.m() | Pass

o'
.f

| o
'.

(f
) o.f

| o.
(f)

C
ode C

ontext B
arrier

Figure 3: State Interleaving Finite Automata.

The key enabling technique behind RetroScope is its

IRE which logically interleaves the state of the target

app into the symbiont app just before it is needed by

the execution. To monitor and interleave the execu-

tion contexts, the IRE intercepts the execution of Java

byte-code instructions corresponding to function invoca-

tions, returns, and data accesses (i.e., instance/static field

reads/writes). The IRE’s operation is similar to parsing

a lexical context-free grammar: The current byte-code

instruction (i.e., token) and the context of its operands

(e.g., new/old data) are matched to a state interleaving

1142 25th USENIX Security Symposium USENIX Association

finite automata (Figure 3), where each state transition de-

fines which runtime environment the IRE should present

to that instruction.

In RetroScope, state interleaving begins at the invoca-

tion of one of the marked top-level draw functions within

the target app. As a running example, Figure 4 shows

a snippet of a draw function’s code along with the live

memory space (containing both the symbiont app and the

target app’s execution environment).

IRE State Tracking. For each byte code instruction,
the IRE tracks two pieces of information: (1) if the code
being executed is from the memory image (old code) or
from the symbiont app (new code) and (2) if the current
runtime information (i.e., loaded classes, object layouts,
etc.) originates from the memory image (old runtime) or
the symbiont app (new runtime). Based on that, the exe-
cution context may be in any of four possible states:

(new code,new runtime) = α

(new code,old runtime) = β

(old code,new runtime) = γ

(old code,old runtime) = δ

(1)

In Figure 4, we have denoted which state the IRE is in

before and after executing each line of code. For ease

of explanation, Figure 4 presents source code, but Retro-

Scope operates on byte-code instructions only. For ex-

ample, before executing Line 1, the IRE is in α because

no old code or data has been introduced yet. Likewise,

after Line 1, the IRE is in δ as the IRE is then execut-

ing the target app’s draw function (old code) within the

target app’s top-level View object (old runtime). How-

ever, note that the context of runtime data may not (and

often does not) match the context of the code: For exam-

ple, in Line 4, fetching the mDensity field from the new

Canvas requires using the new runtime data but is being

performed by old code (resulting in state γ).

Modeling State-Transitions. In Figure 3, we gener-

alize the state-transition rule matching to two primitive

operations: Given an object o, state transitions may oc-

cur when accessing a field f within o (o. f) or when in-

voking a method m defined by o (o.m()). Further, o may

be an object loaded from the target app’s memory im-

age or allocated by the target app’s code (i.e., interacting

with this object requires the old runtime data), thus we

denote such old objects as o′ in Figure 3. Note that our

discussion will follow Java’s object-oriented design, but

the transitions in Figure 3 are equally applicable to static

(i.e., o == NULL) execution.
The state transitions in Figure 3 are modeled as

a Mealy machine [29] with the input of each state-
transition being a matched operation and the output being
the corresponding state correction performed by the IRE.
These state corrections (i.e., transition outputs) fall into

three categories: (1) a transition from the new runtime
data to the old runtime data (the function θ), (2) a tran-
sition from old to new runtime data (the function λ), and
(3) no change in runtime data (“Pass”). For example, the

transition from α to δ is represented as:

α → δ : o′.m() | o′.θ(m)() (2)

where the input to this transition is a match on o′.m()
(invoking an old object’s method) and the output state
correction is to switch to the old runtime prior to invok-
ing the method (o′.θ(m)()). This is exactly the IRE’s
transition before executing Line 1 in Figure 4 as the IRE
must switch to the old runtime prior to invoking the old
View object’s draw function to look up the method’s im-
plementation. Conversely, the transition from γ to α

is represented as:

γ → α : o.m() | Pass (3)

because this transition occurs when a new object’s

method is invoked (o.m) but the IRE is already using

the new runtime data, thus no runtime data correction is

needed (i.e., “Pass”). This case is observed in Line 11 of

Figure 4. At the beginning of Line 11, the IRE is in state

γ due to the lookup of the new Canvas’s mDensity

field on Line 4. Thus, the invocation of getClipBounds

on Line 11 does not require the runtime to change (a

“Pass” transition), but does change from old code to new.

Another important corrective action in Figure 3 is

whether or not a transition crosses the code context bar-

rier (i.e., a horizontal transition). Crossing the code con-

text barrier signifies a switch between fetching new code

(from the symbiont app) to old code (from the memory

image) or vice versa. Although crossing the context bar-

rier alone does not require active correction by the IRE

(e.g., the old runtime’s method definitions will naturally

direct the execution to the old code), the IRE must note

that the change occurred.

Monitoring which context the code is fetched from

is essential for a number of runtime checks and correc-

tions that the IRE must perform. Firstly, objects allo-

cated while executing old code should use the class def-

initions from the target app (as the Android framework

classes may be vendor-customized or the class may be

defined by the target app itself). Secondly, type compar-

isons (e.g., the Java instanceof operator) executed by

old code must consider both new and old classes but pre-

fer old classes. This is because new objects (which are

instances of classes loaded by the symbiont app’s run-

time) will be passed into old code functions — which

use the target app’s loaded classes that contain “old du-

plicates” of classes common to both executions (e.g., sys-

tem classes). The reverse is true for new code type com-

parisons. Lastly, exceptions thrown during interleaved

execution should be catchable by both old and new code.

USENIX Association 25th USENIX Security Symposium 1143

1. public void draw(Canvas canvas)
2. {

…
4. int density = canvas.mDensity;

8. if (density != Bitmap.DENSITY_NONE)
9. {
10. Rect bounds;

11. canvas.getClipBounds(bounds);

12. Bounds.right = this.mSlideable.getRight();

13. canvas.clipRect(bounds);
…

1. public boolean getClipBounds(Rect bounds)
2. {
3. …
4. }

Target App State
Target App CodeSymbiont App Code

α
IRE State

α

δ

γ
δ
α

Popped From IRE State Stack

Code Context Barrier Crosses

γ
View this:

mSliderColor 255
mSlideable
mCanSlide 1

mSlideable:
mTag 0x0
mViewFlags 64
mParent

Symbiont App State

canvas:
mDensity 0
mWidth 1080
mHeight 1920
mBitmap

o.f data access

Figure 4: Example of Interleaved Re-Execution.

Interestingly, we find a number of test cases in Section 4

purposely throw exceptions inside their inner drawing

functions, and allowing new code to catch old code ex-

ceptions (or vice versa) requires patching type lookups

(as before) and stack walking.

Return Transitions. Although Figure 3 does not il-

lustrate state transitions for return instructions, the IRE

does perform state correction for them. Unlike the tran-

sitions in Figure 3 (which rely on the current IRE state

to determine a new state), method returns simply re-

store the IRE state from before the matching invocation.

This is tracked by a stack implemented in the IRE which

pushes the current IRE state before invoking a method

and pops/restores that IRE state upon the method’s re-

turn. This behavior is seen in Line 12 in Figure 4. Before

the invocation of getClipBounds (Line 11), the IRE is

in state γ . Function getClipBounds executes in state

α , and upon its return the IRE pops state γ from the

stack and restores that state prior to executing Line 12.

Another notable simplification of the IRE’s design is

that it is sufficient to only perform state correction at

function invocations, returns, and field accesses. Intu-

itively, this is because other “self-contained” instructions

(e.g., mathematical operations) do not require support

from the runtime. But another advantage is that state-

interleaving tends to occur after bunches of instructions.

Our evaluation shows that on average 10.24 instructions

in a row will cause loop-back transitions before a state

correction is needed. Further, many functions execute

entirely in state α or δ because no data from the other

environment enter those functions.

Native Execution. The IRE operates on the Java byte-

code instructions of the functions marked for selective

reanimation. However, it is possible that app develop-

ers utilize the Java Native Interface (JNI) to implement

some of their app’s functionality in native C/C++ code.

Further, the Android framework heavily uses JNI func-

tions. When the IRE observes an invocation of a C/C++

function, it follows the same state transitions defined in

Figure 3 (i.e., new code only invokes new C/C++ func-

tions and vice versa).

Luckily, due to the tightly controlled interaction be-

tween C/C++ functions and the Java runtime data, the

IRE’s state correction can be further simplified. To

access data or invoke methods from the Java runtime,

C/C++ functions must use a set of helper functions de-

fined by the Java runtime. The IRE hooks these func-

tions and checks if the data or method being requested

is in the old or new context. The IRE can then prop-

erly patch the helper function’s return value and allow

the C/C++ function to execute as intended. Note that, be-

cause all the target app’s native code and data segments

have been mapped back to their original addresses, all

pointers (code and data) in those segments remain valid.

Lastly, although the IRE executes app-specific code,

it does so on a syntactic basis without understanding the

code’s semantics, hence maintaining RetroScope’s app-

agnostic property.

3.3 Escaping Execution and Data Accesses

To monitor and interleave the target app’s reanimation,

the IRE must accurately track the current state of the ex-

ecution environment. However, due to the relative com-

plexity of Android apps, it is possible that the target app’s

control flow causes the IRE to miss a state transition, po-

tentially failing to correct the execution environment de-

spite the actual execution being in a different state. We

call such missed state transitions escaping execution or

escaping data accesses.

Escaping Execution. This occurs when the target app’s

reanimation invokes a function but the IRE is unable to

determine which context to transition to. This is primar-

ily due to the invocation of a static method which exists

in both the old and new environments — leading to an

ambiguous state-transition, where the IRE does not have

1144 25th USENIX Security Symposium USENIX Association

sufficient information at the function invocation site to

determine which state (α or δ) to transition to. Sim-

ply put, the IRE must discover if the execution intended

to invoke the old or new method. To decide that, the IRE

performs a simple data flow analysis on each version. If

the method writes data to a static variable, then the IRE

always invokes the method in state α , otherwise the IRE

keeps the same state that the method was invoked by (to

avoid an unnecessary transition). This ensures that any

accesses to static values which exist in both old and new

environments are always directed to the new one. Note

that app-defined static variables will only exist in the old

environment, and thus their accesses do not lead to am-

biguous transitions.

Escaping Data Accesses. This occurs when an app im-

plements a non-standard means of accessing an object’s

fields. For example, the two most common causes of es-

caping data accesses we observed are: (1) C/C++ code

using a hard-coded Java object layout to access an ob-

ject’s fields and (2) old Java code which has cached an

old version of an object which RetroScope is trying to re-

place with a new version (e.g., some Views will save and

reuse a reference to the previously drawn on Canvas).

Although escaping data accesses are caused by app im-

plementation differences, they can be handled uniformly

by the IRE.

Escaping data accesses caused by Java code can be

identified automatically when the fields of the object are

accessed incorrectly. For example, there should not exist

any old Canvas objects during selective reanimation and

thus the IRE will identify its field accesses and replace

the object with the new instance. Escaping data accesses

caused by C/C++ code are handled by preventing C/C++

code from directly accessing Java objects. Instead, the

IRE requires all pointers to Java objects to be encoded

before they are given to C/C++ code. These pointers can

be decoded when they are used in the standard JNI field

access helper functions, but will cause a segmentation

fault when dereferenced erroneously. This segmentation

fault can then be handled by RetroScope to patch the field

access with the appropriate JNI helper function. In fact,

support for encoded/decoded JNI pointers already exists

but may be avoided in Android, so the IRE only needs

to require that all JNI pointers are encoded/decoded and

handle the segmentation fault for those that previously

avoided this functionality.

4 Evaluation

Evaluation Setup. Our evaluation of RetroScope in-

volved three Android phones (a Samsung Galaxy S4,

HTC One, and LG G3)3 as evidentiary devices. On each

phone, we installed and interacted with 15 different apps

to cause the generation, modification, and deletion of as

many screens as possible. The interactions took an av-

erage of 16 minutes per app, and we installed and in-

teracted with the apps on each phone at random times

over a 4-day period. Then, for each phone, we waited

60 minutes for any background activity of the 15 apps to

complete, after which we took a memory image from the

phone (as described in Appendix A).

The set of 15 apps was chosen to represent both typ-

ical app categories (to highlight RetroScope’s generic

applicability) and diverse app implementation (to eval-

uate the robustness of RetroScope’s selective reanima-

tion). Based on the importance of personal commu-

nication in criminal investigations, we included Gmail,

Skype, WeChat, WhatsApp, TextSecure (also known as

Signal, notable for its privacy-oriented design which lim-

its evidence recovery [4]), Telegram (whose encrypted

broadcast channels are popular with terrorist organiza-

tions [3]), and each device’s default MMS app (imple-

mented by the device vendor). We also included the two

most popular social networking apps: Facebook (known

for its highly complex/obfuscated implementation) and

Instagram. Finally we consider several apps which, by

nature, display sensitive personal information: Chase

Banking, IRS2Go (the official IRS mobile app), My-

Chart (the most popular medical record portfolio app),

Microsoft Word for Android, and the vendor-specific

Calendar and Contacts/Recent Calls apps.

We then used RetroScope to recreate as many pre-

vious app screens as still exist in the memory images

of the 45 (15 × 3) apps. The recovery results are re-

ported in Table 1. Table 1 presents the device and app

name in Columns 1 and 2, respectively. Column 3

shows the ground-truth number of screens that Retro-

Scope should recover, and Column 4 reports the number

of screens recovered. Columns 5 through 9 present sev-

eral metrics recorded over the selective reanimation of

all screen redrawing functions for each app: Column 5

shows the number of reanimated Java byte-code instruc-

tions, Column 6 reports the number of JNI invocations

(i.e., C/C++ functions invoked from Java code) observed,

and Columns 7 and 8 report the total number of newly al-

located Java objects and C/C++ structures that made up

the new screens. Column 9 shows RetroScope’s runtime

for each case.

Selective Reanimation Metrics. Table 1 provides in-

teresting insights into the complexity and scale of screen

redrawing via selective reanimation. From Table 1, we

learn that an average of 231,867 byte-code instructions

3These devices all run vendor-customized versions of Android

Kitkat (the most widely used Android version [17]).

USENIX Association 25th USENIX Security Symposium 1145

Device App
Expected #

of Screens

RetroScope

Recovery

Metrics for Evaluating Selective Reanimation

Byte-Code JNI Allocated New C/C++ Runtime

Instructions Invocations Java Objects Structures (seconds)

Samsung S4

Calendar 8 8 259196 4699 930 79119 502

Chase Banking 9 9 424336 9318 1905 106168 1610

Contacts 5 5 199755 4606 928 49322 369

Facebook 6 6 338195 7928 1432 45420 1059

Gmail 5 5 188463 4185 826 80808 487

Instagram 7 7 240139 5191 482 86319 672

IRS2Go 5 5 195413 4450 790 21027 674

MMS 3 3 96856 2004 333 25311 276

Microsoft Word 3 3 211762 4273 460 58291 637

MyChart 4 4 74213 1632 367 18902 259

Skype 6 6 236213 5256 1072 30753 486

Telegram 6 7 177973 3488 314 41815 664

TextSecure 4 4 145436 3461 763 27450 450

WeChat 3 3 121630 2823 638 24730 831

WhatsApp 7 8 402536 8186 1373 65818 1390

LG G3

Calendar 7 7 199290 4193 665 72944 478

Chase Banking 8 8 360607 8436 1843 127337 1731

Contacts 5 5 313068 6289 1184 105004 430

Facebook 7 7 448535 10038 1892 88949 1413

Gmail 6 6 263850 6148 1353 239711 1248

Instagram 5 5 245094 5097 489 104391 446

IRS2Go 6 6 335323 7599 1458 82077 709

MMS 6 6 147428 3077 422 61210 303

Microsoft Word 4 4 175394 4189 652 51769 375

MyChart 3 3 59284 1291 202 24995 335

Skype 6 5 238227 4914 914 63007 382

Telegram 6 6 125085 2452 183 48496 297

TextSecure 6 6 206146 4388 860 80672 381

WeChat 4 5 225245 5296 1293 72310 632

WhatsApp 7 8 205661 4548 884 67789 466

HTC One

Calendar 6 6 197316 3675 732 102642 749

Chase Banking 11 11 584587 12591 2091 266965 850

Contacts 3 3 190847 4023 723 71578 380

Facebook 6 5 382522 8629 1451 95516 1128

Gmail 6 6 235973 5366 929 129804 1128

Instagram 3 3 86829 2078 433 42037 399

IRS2Go 5 5 200196 4510 832 52097 547

MMS 4 4 93971 1950 287 45085 493

Microsoft Word 3 3 137978 3249 562 43209 456

MyChart 6 6 131876 2599 353 65377 403

Skype 9 9 468258 9817 1232 149372 890

Telegram 4 4 98662 1989 185 49902 291

TextSecure 7 8 231891 5268 924 98571 488

WeChat 5 5 211518 4836 901 69587 723

WhatsApp 6 6 321229 7075 1571 104216 573

Table 1: Overall Results of RetroScope Evaluation.

and 5,047 JNI function invocations are required to re-

draw all of the screens for a single app. This yields an

average of 41,078 byte-code instructions and 894 JNI

function invocations per screen. Higher than our ini-

tial expectations, these numbers attest to the complexity

of the screen drawing implementation and robustness of

RetroScope’s IRE.

Another metric above our expectation was the number

of data structures that had to be newly allocated to re-

draw each screen. While redrawing all previous screens

of each app, the reanimated code allocated an average of

891 Java objects and 76,397 C/C++ structures per app,

and an average of 158 Java objects and 13,535 C/C++

structures per screen. These numbers confirm the claim

in GUITAR [35] that each screen is made of “thousands

of GUI data structures.” Most importantly, as also shown

in [35], only the structures for Screen 0 may still exist in

a memory image, whereas RetroScope actively triggers

the rebuilding of the lost data for Screens 0, -1, -2, ... -N.

4.1 Spatial-Temporal Evidence Recovery

Ground Truth. We now evaluate how accurately Ret-

roScope recreates the screens displayed during our last

1146 25th USENIX Security Symposium USENIX Association

(a) Screen -6. (b) Screen -5. (c) Screen -4. (d) Screen -3. (e) Screen -2. (f) Screen -1. (g) Screen 0.

Figure 5: LG G3 Facebook Recovery.

interaction session with each app. However, obtain-

ing the ground truth (how many previous screens Retro-

Scope should recover) is not straightforward because the

screens’ recoverability is decided by the availability of

the app’s internal data in the memory image. Therefore,

to identify the recoverable previous screens, we instru-

mented each app to log any non-GUI-related data allo-

cations and accesses performed by each screen-drawing

function. We then compared this log to the content of

the final memory image to identify which screens’ en-

tire app-internal data still existed4. This gives us a strict

lower bound on the number of screens that RetroScope

should recover (i.e., all the internal data for those screens

exist in the memory image). Without app-specific reverse

engineering efforts, it is impossible to know the upper

bound that the app’s internal data could support. But as

we discuss later, screen redrawing is often “all or noth-

ing” and adheres closely to this lower bound.

Highlights of Results. RetroScope recovered a total of

254 screens for the 45 apps, from a low of 3 to a high of

11 screens — ironically for the privacy sensitive Chase

Banking app on the HTC One phone (Figure 6). Overall,

Table 1 shows that RetroScope recovers an average of

5.64 screens per app, with the majority of the test cases

(33 out of 45) having 5 or more screens.

Table 1 highlights the depth of temporal evidence that

RetroScope makes available to forensic investigators, but

even more intriguing is the clear progression of user-app

interaction portrayed by the recovered screens. Figure 5

shows the 7 screens recovered for the Facebook app on

the LG G3 phone. From these screens we can infer the

“suspect’s” progression: from his own profile (Screen

-6), to search results for “hitman” (Screen -5), to the

Facebook profile (Screen -4), Photos screen (Screen -3),

a photo album (Screen -2) of the Hitman movie, to a

single photo (Screen -1), and lastly to that photo’s com-

ments (Screen 0). Such powerful spatial-temporal recov-

4Note that RetroScope did not have access to nor could benefit from

this ground truth information. Further, we utilized in-place binary in-

strumentation (which does not interact nor interfere with the app’s ex-

ecution or memory management) to ensure the accuracy of our experi-

ments.

ery — from a single memory image — is not possible via

any existing memory forensics technique.

Another interesting observation from Table 1 is that,

although RetroScope’s recovery is app-agnostic, the

apps’ diverse implementations lead to very different re-

drawing procedures. For example, for both Skype and

Facebook apps on the Samsung S4, RetroScope repro-

duced all 6 screens from each app. However, Facebook’s

redrawing implementation appears much more complex,

requiring 338,195 byte-code instructions and 7,928 JNI

invocations, compared to Skype’s 236,213 byte-code in-

structions and 5,256 JNI invocations. This also leads to

varied RetroScope run times: from the shortest, Samsung

S4’s MyChart, at 259 seconds to the longest, LG G3’s

Chase Banking, at 1731 seconds. The average runtime

across all apps is 655 seconds (10 minutes, 55 seconds).

Lastly, Table 1 shows that in two cases (Rows 26 and

34), RetroScope missed a single screen. Manual investi-

gation of these cases revealed that the app-specific draw-

ing functions for the missed screens had thrown unhan-

dled Java exceptions. For the HTC One device’s Face-

book case, we found that the app had stored a pointer

to the Thread object which handled its user interface

and during redrawing the app failed on a check that the

current Thread (handled by RetroScope during reanima-

tion) is the same as the previously stored Thread (from

the memory image). For the LG G3 Skype case, when

drawing the “video call” screen, a saved timer value

(in the memory image) was compared against the sys-

tem’s current time, which also failed during reanimation.

These were addressed by reverse engineering to deter-

mine which field/condition in the app caused the fault,

and RetroScope can be instructed to set/avoid them dur-

ing interleaved execution. Also of note, several cases re-

quired recovering on-screen elements (e.g., user avatars)

which were cached on persistent storage until they are

loaded on the screen. Currently, RetroScope attempts to

detect (e.g., via the unhandled exception) but can not au-

tomatically correct such implementation-specific seman-

tic constraints. We leave this as future work.

USENIX Association 25th USENIX Security Symposium 1147

(a) Screen -10. (b) Screen -9. (c) Screen -8. (d) Screen -7. (e) Screen -6. (f) Screen -5. (g) Screen -4.

(h) Screen -3. (i) Screen -2. (j) Screen -1. (k) Screen 0.

Figure 6: HTC One Chase Banking Recovery.

4.2 Case Study I: Behind the Logout

We now elaborate on the Chase Banking app case and

highlight RetroScope’s ability to recreate an app’s previ-

ous screens even after the user has logged out. Table 1

Row 32 shows that RetroScope recovered 11 out of 11

screens (the highest of all cases). Not surprisingly, the

recovery required the most reanimated byte-code instruc-

tions (584,587) and JNI function invocations (12,591),

as well as the most re-allocated Java objects (2,091) and

C/C++ structures (266,965).

The recovered screens are shown in Figure 6. Start-

ing from the Account screen (Screen -10), the “suspect”

looks up a nearby ATM (Screen -9). He then reviews

his recent money transfers (Screen -8) and begins a new

transfer to a friend via the app’s options menu (Screen

-7). Screens -6 to -4 fill in the transfer’s recipient and

amount. Screen -3 asks the user to confirm the trans-

fer. Screen -2 shows the app’s “Log Out” menu, Screen

-1 presents a loading screen while the app logs out, and

Screen 0 is (as expected) the app’s log in screen.

This case yields some interesting observations: First,

it highlights the robustness of RetroScope to recover a

large number of screens when an app’s internal data

continues to accumulate. More importantly, the case

shows that, after logging out, the Chase app (as well as

many others we have tested) does not clear its internal

data. This is not surprising because programmers usually

consider their app’s memory to be private (compared to

network communications or files on persistent storage).

This is further evidenced by the TextSecure app, which

also allows for a significant post-logout recovery (of pre-

logout screens), despite the app’s message database be-

ing locked in the device’s storage.

4.3 Case Study II: Background Updates

Another interesting case is WhatsApp Messenger on the

Samsung S4. Table 1 Row 15 shows that RetroScope re-

animated 402,536 byte-code instructions and 8,186 JNI

functions in 23 minutes, 10 seconds, yielding an aver-

age of 50,317 instructions and 1,023 JNI functions per

screen. What was unexpected however is that Retro-

Scope recovered an extra screen (8 out of the 7 expected

screens) from the memory image.

Our investigation into this extra screen found that it

was not a screen we had previously seen during our

phone usage. Instead, after we had finished interacting

with WhatsApp, the app received a new chat message

while it was in the background and, to our surprise, this

prompted the app to prepare a new chat screen that ap-

pended the newly received message to the chat. Figure 7

presents the screens recovered by RetroScope, and again

we see a clear temporal progression through the app by

the “suspect.” First, Screen -6 shows the call log screen.

The app’s Settings screen is seen in Screen -5 followed

by a screen that is only accessible through the Settings:

the device owner’s profile (our fictitious device owner is

Dr. King Schultz) in Screen -4. Screen -3 shows the

recent chats; Screen -2 shows the “suspect’s” chat with

a friend; then Dr. Schultz places a call to that friend

1148 25th USENIX Security Symposium USENIX Association

(a) Screen -6. (b) Screen -5. (c) Screen -4. (d) Screen -3.

(e) Screen -2. (f) Screen -1. (g) Screen 0. (h) Screen +1.

Figure 7: Samsung S4 WhatsApp Recovery.

(a) Screen -4. (b) Screen -3. (c) Screen -2.

(d) Screen -1. (e) Screen 0.

Figure 8: LG G3 WeChat Recovery.

in Screen -1. Lastly, Screen 0 shows the friend’s pro-

file. Then, the extra Screen +1 shows the chat screen as

prepared by the app while in the background. Indeed it

shows the newly received message, even time-stamped

(“TODAY” and “4:51 AM” in Figure 7(h)) after the pre-

vious chat had taken place.

To ensure that this result was not an accident, we re-

peated the experiment (receiving chat messages while the

app was in the background) six more times (twice per de-

vice). In every test, we found that RetroScope recovered

the additional pre-built chat screen containing the new

message. Strangely, after testing the other apps which

can receive background updates, we found that What-

sApp is the only app, among our 15 apps, that exhib-

ited this behavior. We suspect that this is a WhatsApp-

specific implementation feature to speed up displaying

the chat screen (Screen +1) when the device user clicks

the “New Message” pop-up notification.

4.4 Case Study III: Deleted Messages

In addition to the WhatsApp case above, RetroScope re-

covered extra screens for four other cases in Table 1:

Telegram (Row 12), WeChat (Row 29), WhatsApp (Row

30), and TextSecure (Row 43). However, the extra

screens here are for a different reason: RetroScope can

recover explicitly deleted chat messages. In these tests,

we began a chat in each app and then explicitly deleted

one of the messages (as a suspect would do in an at-

tempt to hide evidence), and then used RetroScope to

recover the deleted message. Additionally, RetroScope

also recovered proof of the suspect’s intent to delete the

message: For WeChat and WhatsApp, RetroScope re-

covered the app’s pop-up menu (just prior to the deleted

message) which displays the “Delete Message” option.

For TextSecure, RetroScope recovered both the pop-up

menu and a loading screen showing the text “Deleting

Messages.”

Figure 8 shows one example: RetroScope’s recovery

for the WeChat app on the LG G3. Screen -4 shows

the “suspect’s” recent chats followed by a chat conver-

sation with a friend in Screen -3. Screen -2 is the pop-

up menu displaying the “Delete” option. The deleted

message (now disconnected from the previous chat win-

dow) is displayed in Screen -1, and the friend’s profile

page (which the “suspect” navigated to last) is shown in

Screen 0.

This result, in particular, highlights one of the most

powerful features of RetroScope, given that it works for

many apps and even provides proof of the suspect’s in-

tent. Further, all four apps tout their encrypted communi-

cation and some (e.g., TextSecure) even encrypt the mes-

sage database in the device. In light of this, law enforce-

ment has routinely had trouble convincing developers of

such apps to backdoor their encryption in support of in-

vestigations [4, 5]. Despite the few hardening measures

discussed in Section 5, RetroScope can provide such al-

ternative evidence which would otherwise be unavailable

to investigators.

USENIX Association 25th USENIX Security Symposium 1149

5 Privacy Implications and Discussion

RetroScope provides a powerful new capability to foren-

sic investigators. But despite being developed to aid

criminal investigations, RetroScope also raises privacy

concerns. In digital forensics practice, the privacy of de-

vice users is protected by strict legal protocols and regu-

lations [9,21], the most important of which is the require-

ment to obtain a search warrant prior to performing “in-

vasive” digital forensics such as memory image analysis.

Outside the forensics context, even some of the authors

were surprised by the temporal depth of screens that Ret-

roScope recovered for many privacy-sensitive apps (e.g.,

banking, tax, and healthcare). In light of this, we discuss

possible mitigation techniques which, despite their sig-

nificant drawbacks, might be considered worthwhile by

privacy-conscientious users/developers.

RetroScope’s recovery is based on two fundamental

features of Android app design: (1) All apps which

present a GUI must draw that GUI through the provided

View class’s draw function and (2) The Android frame-

work calls drawing functions on-demand and prevents

those drawing functions from performing blocking oper-

ations (file/network reads/writes, etc.). As such, an app

that aims to disrupt RetroScope’s recovery would need to

hinder its own ability to draw screens.

Previous anti-memory-forensics schemes focused on

encrypting in-memory data after its immediate use. This

ensures that traditional memory scanning or data struc-

ture carving approaches (e.g., [25, 26, 37, 41]) would not

find any useful evidence beyond the few pieces of de-

crypted in-use data. However, these solutions cannot

hinder RetroScope’s recovery because RetroScope re-

covers evidence via the app’s existing draw functions,

which would have to include decryption routines as part

of building the app screen. App developers may add

state-dependent conditions to their draw functions which

would crash when executed by RetroScope, but as seen

in Section 4 these can still be handled via additional de-

bugging/reverse engineering efforts to skip/fix the condi-

tions.

One approach that may disable RetroScope’s recov-

ery is to overwrite (i.e., zero) all app-internal data im-

mediately after they are drawn on screen. By doing

so, RetroScope would find that the app’s internal state

could not support the execution of any of its draw

functions. Unfortunately, this approach would signif-

icantly degrade usability and increase implementation

complexity: First, frequently overwriting app-internal

data would incur execution overhead (especially during

screen changes which are expected to be fast and dy-

namic). More importantly, this would require the app

to download its internal data from a remote server ev-

ery time the app needs to draw a screen. An app may

attempt to amortize these overheads (e.g., only zeroing

a prior session’s memory upon logout) but this would

require: (1) tracking used/freed memory throughout the

session (to be zeroed later) and (2) users to regularly log

out, which is uncommon and inconvenient for frequently

used apps such as email, messengers, etc.

Current vs. Future Android Runtimes. It is worth

noting that Google has begun shifting the Android frame-

work’s runtime from the Dalvik JVM to a Java-to-native

compilation and native execution environment (named

ART). Our implementation of RetroScope was based on

the original (and still the most widely used by far [17])

Dalvik JVM runtime. However, during our development

of RetroScope, specific care was taken to design Retro-

Scope to utilize only features present in both runtimes.

Specifically, ART still provides the same Java runtime

tracking and support as Dalvik does (implemented now

via C/C++ libraries) and all apps’ implementations (e.g.,

their Views and draw functions) remain unchanged. Our

study of ART revealed that the only engineering effort

required to port RetroScope is the interception of state-

changing instructions in the compiled byte-code, rather

than the literal byte-code as it exists in Dalvik. We leave

this as future work.

6 Related Work

RetroScope is most related to GUITAR [35] which,

by recovering the remaining “puzzle pieces” (GUI data

structures) from a memory image, is able to piece to-

gether an app’s Screen 0. Motivated by GUITAR’s

“Screen 0-only” limitation (i.e., spatial recovery), Ret-

roScope enables the fundamentally more powerful capa-

bility of recovering Screens 0, -1, -2, ... -N (i.e., spatial-

temporal recovery). Technically, GUITAR is based on

geometric matching of GUI pieces; whereas RetroScope

is based on selective reanimation of GUI code and data.

A number of other (spatial) memory forensics tools

have also been developed recently for Android. Many of

these approaches recover raw instances of app-specific

data structures to reveal evidence: App-specific login

credentials were recovered by Apostolopoulos et al. [8].

Macht [28] followed by Dalvik Inspector [6] involved

techniques to recover Dalvik-JVM control structures and

raw Java object content. Earlier, Thing et al. [42] found

that text-based message contents could be recovered

from memory images. Most recently, our VCR [36] tech-

nique made it possible to recover images/video/preview

frames from a phone’s camera memory.

In a mobile device-agnostic effort, DEC0DE [44] in-

volved an effective technique to carve plain-text call logs

and address book entries from phone storage using prob-

abilistic finite state machines.

1150 25th USENIX Security Symposium USENIX Association

RetroScope shares the philosophy of leveraging exist-

ing code for memory content rendering with our prior

memory forensics technique DSCRETE [37]. However,

DSCRETE renders a single application data structure,

whereas RetroScope renders full app display screens in

temporal order. More importantly, DSCRETE requires

application-specific (actually, data structure-specific)

identification and extraction of data rendering code,

while RetroScope is totally app-agnostic, requiring no

analysis of app-internal data or rendering logic. Fi-

nally, DSCRETE works on Linux/x86 whereas Retro-

Scope works on the Android/ARM platform.

Many prior memory forensics techniques leverage

memory image scanning and data structure signature

generation approaches [11,12,16,26,32,34,38,41]. Data

structure signatures can be content-based [16] or “points-

to” structure-based [13, 15, 25, 26, 30]. For binary pro-

grams without source code, a number of reverse en-

gineering techniques have been proposed to infer data

structure definitions [24, 27, 39]. As a fundamentally

new memory forensics technique, RetroScope requires

neither data structure signature generation nor memory

scanning.

7 Conclusion

We have presented RetroScope, a spatial-temporal mem-

ory forensics technique (and new paradigm) that recov-

ers multiple previous screens of an app from an Android

phone’s memory image. RetroScope is based on a novel

interleaved re-execution engine which selectively rean-

imates an app’s screen redrawing functionality without

requiring any app-specific knowledge. Our evaluation

results show that RetroScope can recover visually accu-

rate, temporally ordered screens (ranging from 3 to 11

screens) for a variety of apps on three different Android

phones.

Acknowledgments

We thank the anonymous reviewers for their insightful

comments and suggestions. This work was supported in

part by NSF under Award 1409668.

References

[1] Advanced jtag mobile device forensics training. http:

//www.teeltech.com/mobile-device-forensics-

training/jtag-forensics/, 2015.

[2] Forensics wiki - memory imaging tools. http:

//forensicswiki.org/wiki/Tools:Memory_Imaging,

2015.

[3] ISIS still using Telegram channels - Business Insider.

http://www.businessinsider.com/isis-telegram-

channels-2015-11, 2015.

[4] Signal, the Snowden-Approved Crypto App, Comes to Android.

http://www.wired.com/2015/11/signals-snowden-

approved-phone-crypto-app-comes-to-android/,

2015.

[5] Apple vs. the FBI: Google, WhatsApp, John McAfee and

more are taking sides - LA Times. http://www.latimes.

com/business/technology/la-fi-tn-tech-response-

apple-20160218-snap-htmlstory.html, 2016.

[6] 504ENSICS LABS. Dalvik Inspector. http://www.

504ensics.com/automated-volatility-plugin-

generation-with-dalvik-inspector/, 2013.

[7] 504ENSICS LABS. LiME Linux Memory Extractor. https:

//github.com/504ensicsLabs/LiME, 2013.

[8] APOSTOLOPOULOS, D., MARINAKIS, G., NTANTOGIAN, C.,

AND XENAKIS, C. Discovering authentication credentials in

volatile memory of android mobile devices. In Collaborative,

Trusted and Privacy-Aware e/m-Services. 2013.

[9] ASHCROFT, J., DANIELS, D. J., AND HART, S. V. Forensic

examination of digital evidence: A guide for law enforcement.

U.S. National Institute of Justice, Office of Justice Programs, NIJ

Special Report NCJ 199408 (2004).

[10] BECHER, M., DORNSEIF, M., AND KLEIN, C. Firewire: all

your memory are belong to us. CanSecWest (2005).

[11] BETZ, C. Memparser forensics tool. http://www.dfrws.org/

2005/challenge/memparser.shtml, 2005.

[12] BUGCHECK, C. Grepexec: Grepping executive objects from pool

memory. In Proc. Digital Forensic Research Workshop (2006).

[13] CARBONE, M., CUI, W., LU, L., LEE, W., PEINADO, M., AND

JIANG, X. Mapping kernel objects to enable systematic integrity

checking. In Proc. CCS (2009).

[14] CARRIER, B. D., AND GRAND, J. A hardware-based memory

acquisition procedure for digital investigations. Digital Investi-

gation 1 (2004).

[15] CASE, A., CRISTINA, A., MARZIALE, L., RICHARD, G. G.,

AND ROUSSEV, V. FACE: Automated digital evidence discovery

and correlation. Digital Investigation 5 (2008).

[16] DOLAN-GAVITT, B., SRIVASTAVA, A., TRAYNOR, P., AND

GIFFIN, J. Robust signatures for kernel data structures. In Proc.

CCS (2009).

[17] GOOGLE, INC. Android dashboards - platform versions.

https://developer.android.com/about/dashboards/

index.html, 2015.

[18] GRUHN, M. Windows nt pagefile. sys virtual memory analysis.

In Proc. IT Security Incident Management & IT Forensics (IMF)

(2015).

[19] HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N., CLARK-

SON, W., PAUL, W., CALANDRINO, J. A., FELDMAN, A. J.,

APPELBAUM, J., AND FELTEN, E. W. Lest we remember:

cold-boot attacks on encryption keys. In Proc. USENIX Security

(2008).

[20] HILGERS, C., MACHT, H., MULLER, T., AND SPREITZEN-

BARTH, M. Post-mortem memory analysis of cold-booted an-

droid devices. In Proc. IT Security Incident Management & IT

Forensics (IMF) (2014).

[21] JARRETT, H. M., BAILIE, M. W., HAGEN, E., AND JUDISH,

N. Searching and seizing computers and obtaining electronic ev-

idence in criminal investigations. U.S. Department of Justice,

Computer Crime and Intellectual Property Section Criminal Di-

vision (2009).

[22] KOLLÁR, I. Forensic ram dump image analyser. Master’s Thesis,

Charles University in Prague (2010).

USENIX Association 25th USENIX Security Symposium 1151

[23] KORNBLUM, J. D. Using every part of the buffalo in windows

memory analysis. Digital Investigation 4 (2007).

[24] LEE, J., AVGERINOS, T., AND BRUMLEY, D. TIE: Principled

reverse engineering of types in binary programs. In Proc. NDSS

(2011).

[25] LIN, Z., RHEE, J., WU, C., ZHANG, X., AND XU, D. DIM-

SUM: Discovering semantic data of interest from un-mappable

memory with confidence. In Proc. NDSS (2012).

[26] LIN, Z., RHEE, J., ZHANG, X., XU, D., AND JIANG, X. Sig-

Graph: Brute force scanning of kernel data structure instances

using graph-based signatures. In Proc. NDSS (2011).

[27] LIN, Z., ZHANG, X., AND XU, D. Automatic reverse engi-

neering of data structures from binary execution. In Proc. NDSS

(2010).

[28] MACHT, H. Live memory forensics on android with volatility.

Friedrich-Alexander University Erlangen-Nuremberg (2013).

[29] MEALY, G. H. A Method for Synthesizing Sequential Circuits.

Bell System Technical Journal 34, 5 (1955), 1045–1079.

[30] MOVALL, P., NELSON, W., AND WETZSTEIN, S. Linux phys-

ical memory analysis. In Proc. USENIX Annual Technical Con-

ference, FREENIX Track (2005).

[31] PETRONI, N., FRASER, T., MOLINA, J., AND ARBAUGH, W.

Copilot - a coprocessor-based kernel runtime integrity monitor.

In Proc. USENIX Security (2004).

[32] PETRONI JR, N. L., WALTERS, A., FRASER, T., AND AR-

BAUGH, W. A. FATKit: A framework for the extraction and anal-

ysis of digital forensic data from volatile system memory. Digital

Investigation 3 (2006).

[33] RICHARD, G. G., AND CASE, A. In lieu of swap: Analyzing

compressed ram in mac os x and linux. Digital Investigation 11

(2014).

[34] SALTAFORMAGGIO, B. Forensic carving of wireless network

information from the android linux kernel. University of New

Orleans (2012).

[35] SALTAFORMAGGIO, B., BHATIA, R., GU, Z., ZHANG, X.,

AND XU, D. GUITAR: Piecing together android app GUIs from

memory images. In Proc. CCS (2015).

[36] SALTAFORMAGGIO, B., BHATIA, R., GU, Z., ZHANG, X.,

AND XU, D. VCR: App-agnostic recovery of photographic evi-

dence from android device memory images. In Proc. CCS (2015).

[37] SALTAFORMAGGIO, B., GU, Z., ZHANG, X., AND XU, D.

DSCRETE: Automatic rendering of forensic information from

memory images via application logic reuse. In Proc. USENIX

Security (2014).

[38] SCHUSTER, A. Searching for processes and threads in microsoft

windows memory dumps. Digital Investigation 3 (2006).

[39] SLOWINSKA, A., STANCESCU, T., AND BOS, H. Howard: A

dynamic excavator for reverse engineering data structures. In

Proc. NDSS (2011).

[40] SUN, H., SUN, K., WANG, Y., JING, J., AND JAJODIA, S.

Trustdump: Reliable memory acquisition on smartphones. In

Proc. European Symposium on Research in Computer Security.

2014.

[41] THE VOLATILITY FRAMEWORK. https://www.

volatilesystems.com/default/volatility.

[42] THING, V. L., NG, K.-Y., AND CHANG, E.-C. Live memory

forensics of mobile phones. Digital Investigation 7 (2010).

[43] VIDAS, T. Volatile memory acquisition via warm boot memory

survivability. In Proc. Hawaii International Conference on Sys-

tem Sciences (2010).

[44] WALLS, R., LEVINE, B. N., AND LEARNED-MILLER, E. G.

Forensic triage for mobile phones with DEC0DE. In Proc.

USENIX Security (2011).

[45] YANG, S. J., CHOI, J. H., KIM, K. B., AND CHANG, T. New

acquisition method based on firmware update protocols for an-

droid smartphones. Digital Investigation 14 (2015).

Appendix

A. Memory Image Acquisition

A prerequisite of memory forensics is the timely acquisi-

tion of a memory image from the subject device. Mem-

ory images typically contain a byte-for-byte copy of the

entire physical RAM of a device or the virtual memory

of an operating system or specific process(es). Tradi-

tionally, acquisition is performed by investigators, be-

fore the subject device is powered down, using mini-

mally invasive software (e.g., fmem [22], LiME [7]) or

hardware (e.g., Tibble [14], CoPilot [31]) tools. Other

notable techniques have used the DMA-capable Firewire

port [10] to acquire memory images, existing hibernation

or swap files [18, 23, 32, 33], or cold/warm booted de-

vices [19,20,43], but such approaches are only employed

for highly specialized investigations. A more compre-

hensive list of memory image acquisition tools can be

found in [2].

Android memory forensics was initially proposed dur-

ing the development of memory acquisition tools for the

devices. Most known among these are the software-

based LiME [7] and TrustDump [40] techniques. In an

alternative approach, Hilgers et al. [20] proposed cold-

booting Android phones to perform memory forensics.

Our evaluation of RetroScope used both LiME and a

ptrace-based tool we developed (also available with the

open source RetroScope code). Meanwhile, hardware-

based memory acquisition from a mobile device is often

performed via the ARM processor’s JTAG port [1, 45].

USENIX Association 25th USENIX Security Symposium 1153

Harvesting Inconsistent Security Configurations in Custom Android ROMs
via Differential Analysis

Yousra Aafer, Xiao Zhang, and Wenliang Du
Syracuse University

{yaafer, xzhang35, wedu}@syr.edu

Abstract

Android customization offers substantially different ex-
periences and rich functionalities to users. Every party
in the customization chain, such as vendors and carri-
ers, modify the OS and the pre-installed apps to tailor
their devices for a variety of models, regions, and custom
services. However, these modifications do not come at
no cost. Several existing studies demonstrate that mod-
ifying security configurations during the customization
brings in critical security vulnerabilities. Albeit these
serious consequences, little has been done to systemat-
ically study how Android customization can lead to se-
curity problems, and how severe the situation is. In this
work, we systematically identified security features that,
if altered during the customization, can introduce poten-
tial risks. We conducted a large scale differential analy-
sis on 591 custom images to detect inconsistent security
features. Our results show that these discrepancies are
indeed prevalent among our collected images. We have
further identified several risky patterns that warrant fur-
ther investigation. We have designed attacks on real de-
vices and confirmed that these inconsistencies can indeed
lead to actual security breaches.

1 Introduction

When vendors, such as Samsung, LG and HTC, put An-
droid AOSP OS on their devices, they usually conduct
extensive customization on the system. The reasons for
customization can be many, including adding new func-
tionalities, adding new system apps, tailoring the device
for different models (e.g., phone or tablet), or carriers
(e.g., T-mobile and AT&T), etc. Further complicating
the process is Android updates pushed to the devices: the
updates might target a new Android or app version.

This fragmented eco-system brings in several secu-
rity risks when vendors change the functionalities and
configurations without a comprehensive understanding

of their implications. Previous work has demonstrated
some aspects of these changes and the resulting risks.
Wu et al. [25] analyze several stock Android images from
different vendors, and assess security issues that may be
introduced by vendor customization. Their results show
that customization is responsible for a number of secu-
rity problems ranging from over-privileged to buggy sys-
tem apps that can be exploited to mount permission re-
delegation or content leaks attacks. Harehunter [5] re-
veals a new category of Android vulnerabilities, called
Hares, caused by the customization process. Hares oc-
cur when an attribute is used on a device but the party
defining it has been removed during the customization.
A malicious app can “impersonate” the missing attribute
to launch privilege escalation, information leakage and
phishing attacks. ADDICTED [29] finds that many cus-
tom Android devices do not properly protect Linux de-
vice drivers, exposing them to illegitimate parties.

All the problems reported so far on Android cus-
tomization are mainly caused by vendors’ altering of crit-
ical configurations. They change security configurations
of system apps and Linux device drivers; they also re-
move, add, and alter system apps. Although the exist-
ing work has studied several aspects of security problems
in the changes of system/app configurations, there is no
work that systematically finds all security configuration
changes caused by vendor customization, how likely it
can lead to security problems, what risky configuration
changes are often made by vendors, etc.

In this work, we make the first attempt to systemat-
ically detect security configuration changes introduced
by parties in the customization chain. Our key intu-
ition is that through comparing a custom device to simi-
lar devices from other vendors, carriers, and regions, or
through comparing different OS versions, we might be
able to find security configuration changes created unin-
tentionally during the customization. More importantly,
through a systematic study, we may be able to find valu-
able insights in vendor customization that can help ven-

1154 25th USENIX Security Symposium USENIX Association

dors improve the security of their future customizations.
We propose DroidDiff, a tool that detects inconsistent
security configurations in a large scale, and that can be
employed by vendors to locate risky configurations.

The first challenge that we face in our systematic study
is to identify what configurations are security relevant
and are likely to be customized. We start from the An-
droid layered architecture and list access control checks
employed at each layer. Then, for each check, we rely on
Android documentation and our domain knowledge to
define corresponding security features. We further ana-
lyze how different configurations of these features across
custom images can lead to inconsistencies and thus af-
fect the access control check semantics. As a result, we
have identified five categories of features. DroidDiff then
extracts these features from 591 custom Android ROMs
that we collected from multiple sources. This step pro-
duces the raw data that will be used for our analysis.

The next challenge is how to compare these images
to find out whether they have inconsistent values for the
features that we extracted. Given a set of images, con-
ducting the comparison itself is not difficult; the diffi-
culty is to decide the set of images for comparison. If
we simply compare all the 591 images, it will not pro-
vide much insight, because it will be hard to interpret
the implications of detected inconsistencies. To gain
useful insights, we need to select a meaningful set of
images for each comparison. Based on our hypothesis
that inconsistencies can be introduced by vendors, device
models, regions, carriers, and OS versions, we devel-
oped five differential analysis algorithms: Cross-Vendor,
Cross-Model, Cross-Region, Cross-Carrier, and Cross-
Version analyses, each targeting to uncover inconsisten-
cies caused by customization of different purposes. For
example, in the Cross-Vendor analysis, we aim to know
how many inconsistencies are there among different ven-
dors; in the Cross-Model analysis, we attempt to identify
whether vendors may further introduce inconsistencies
when they customize Android for different models (e.g.
Samsung S4, S5, S6 Edge).

DroidDiff results reveal that indeed the customization
process leads to many inconsistencies among security
features, ranging from altering the protection levels of
permissions, removing protected broadcasts definitions,
changing the requirement for obtaining critical GIDs,
and altering the protection configuration of app compo-
nents. We present our discoveries in the paper to show
the inconsistency situations among each category of fea-
tures and how versions, vendors, models, region, and car-
riers customizations impact the whole situation.

Not all inconsistencies are dangerous, but some
changes patterns are definitely risky and warrant further
investigation. We have identified such risky patterns,
and presented results to show how prevalent they are in

the customization process. The inconsistencies expose
systems to potential attacks, but if the vendors under-
stand fully the implication of such customization, they
will more likely remedy the introduced risks by putting
proper protection at some other places. Unfortunately,
most of the inconsistencies seem to be introduced by de-
velopers who do not fully understand the security im-
plications. Therefore, our DroidDiff can help vendors
to identify the inconsistencies introduced during their
customization, so they can question themselves whether
they have implemented mechanisms to remedy the risks.

To demonstrate that the identified inconsistencies, if
introduced by mistakes, can indeed lead to attacks, we
picked few cases detected through our differential anal-
ysis, and designed proof-of-concept attacks on physical
devices1. We have identified several real attacks. To il-
lustrate, we found that a detected inconsistency on Nexus
6 can be exploited to trigger emergency broadcasts with-
out the required system permission and another similar
one on Samsung S6 Edge allows a non-privileged app to
perform a factory reset without a permission or user con-
firmation. Through exploiting another inconsistency on
Samsung Note 2, an attacker can forge SMS messages
without the SEND_SMS permission. Moreover, an in-
consistency related to permission to Linux GID mapping
allows apps to access the camera device driver with a nor-
mal protection level permission. We have filed security
reports about the confirmed vulnerabilities to the corre-
sponding vendors. We strongly believe that vendors, who
have source code and know more about their systems,
can find more attacks from our detected risky inconsis-
tencies. We also envision that in the future, vendors can
use our proposed tool and database to improve their cus-
tomization process.

Contributions. The scientific contributions of this pa-
per are summarized as the followings:
• We have systematically identified possible security

features that may hold different configurations be-
cause of the Android customization process.

• We have developed five differential analysis algo-
rithms and conducted a large-scale analysis on 591
Android OS images. Our results produce significant
insights on the dangers of vendor customization.

• We have identified risky configuration inconsisten-
cies that may have been introduced unintentionally
during customization. Our results can help vendors’
security analysts to conduct further investigation to
confirm whether the risks of the inconsistencies are
offset in the system or not. We have confirmed via
our own attacks that some inconsistencies can in-
deed lead to actual security breaches.

1Due to resource limitation, we could not design the attacks for all
the cases identified in our analysis.

USENIX Association 25th USENIX Security Symposium 1155

Data Generation

Methodology:
Differential Analysis

Feature Selection F t S l tiS

G

odo

Result Analysis t A

Figure 1: Investigation Flow

2 Investigation & Methodology

In this research work, we investigate Android’s secu-
rity features which are configurable during customiza-
tion at the level of the framework and preloaded apps.
Figure 1 depicts our investigation flow. As our work is
data driven, the first and second phase are mainly con-
cerned with locating and extracting meaningful security
features from our collected Android custom ROMs. The
two phases generate a large data set of configurations of
the selected security features per image. The third phase
performs differential analysis on the generated data ac-
cording to our proposed algorithms to find any config-
uration discrepancies. It should be noted that it is out
of our scope to find any security feature that is wrongly
configured on all images, as obviously, it would not be
detected through our differential analysis.

In the last phase, we analyze the detected discrepan-
cies to pinpoint risky patterns. We have confirmed that
they are indeed dangerous through high impact attacks.
We discuss in the next sections each phase in details.

3 Feature Extraction

In this phase, we aim to extract security features that can
cause potential vulnerabilities if altered incautiously dur-
ing the customization process. To systematically locate
these security features, we start from the Android lay-
ered architecture (Figure 2) and study the security en-
forcement employed at each layer.

As Figure 2 illustrates, Android is a layered operating
system, where each layer has its own tasks and responsi-
bilities. On the top layer are preloaded apps provided by
the device vendors and other third parties such as carri-
ers. To allow app developers to access various resources
and functionalities, Android Framework layer provides

Component Visibility

Permission Check

Protected Broadcast

UID Check

Figure 2: Android Security Model

many high-level services such as Package Manager, Ac-
tivity Manager, Notification Manager and many others.
These services mediate access to system resources and
enforce proper access control based on the app’s user
id and its acquired Android permissions. Additionally,
certain services might enforce access control based on
the caller’s package name or certificate. Right below
the framework layer lies the Libraries layer, which is a
set of Android specific libraries and other necessary li-
braries such as libc, SQLite database, media libraries,
etc. Just like the framework services, certain Android
specific libraries perform various access control checks
based on the caller’s user id and its permissions as well.
At the bottom of the layers is Linux kernel which pro-
vides a level of abstraction between the device hardware
and contains all essential hardware drivers like display,
camera, etc. The Linux kernel layer mediates access to
hardware drivers and raw resources based on the standard
Discretionary Access Control (DAC).

To encourage collaboration and functionality re-use
between apps, Android apps are connected together by
Inter-Component Communication (ICC). An app can in-
voke other apps’ components (e.g. activities and ser-
vices) through the intent mechanism. It can further con-
figure several security parameters to protect its resources
and functionalities. As summarized in Figure 2, it can
make its components private, require the caller to have
certain permissions or to belong to a certain process.

Based on Figure 2, we summarize the Access Con-
trol (AC) checks employed by Android in Table 1. We
specify the ones whose security features might be altered
statically during device customization. By static modi-
fication, we refer to any modification that can be per-
formed through changing framework resources files (in-
cluding framework-res*.xml which contains most con-
figurations of built-in security features), preloaded apps’
manifest files and other system-wide configuration files

1156 25th USENIX Security Symposium USENIX Association

(platform.xml and *.xml under /etc/permissions/).
In the following section, we describe in details each

configurable AC check and define its security features
based on Android documentation and our domain knowl-
edge. We further justify how inconsistent configurations
of these features across custom images can bring in po-
tential security risks. Please note that we do not discuss
AC checks based on Package Names as previous work
[5] has covered the effects of customizing them.

Before we proceed, we present some notations that we
will be referring to in our analysis. IMG denotes a set
of our collected images. EP, EGID, EPB and EC represent
a set of all defined permissions, GIDs, protected broad-
casts and components on IMG, respectively.

3.1 Permissions
Default and custom Android Permissions are used
to protect inner components, data and function-
alities. The protection level of a permission can
be either Normal, Dangerous, Signature,
or SystemOrSignature. These protection
levels should be picked carefully depending on
the resource to be protected. Signature and
SystemOrSignature level permissions are used
to protect the most privileged resources and will be
granted only to apps signed with the same certificate
as the defining app. Dangerous permissions protect
private data and resources or operations affecting the
user’s stored data or other apps such as reading contacts
or sending SMS messages. Requesting permissions of
Dangerous levels requires explicit user’s confirmation
before granting them. Normal level on the other hand,
is assigned to permissions protecting least privileged
resources and do not require user’s approval. The
following is an example of a permission declaration:

<permission android:name="READ_SMS"
android:protectionLevel="Dangerous">

We aim to find if a permission has different protection
levels across various images. For example, on vendor
A, a permission READ_A is declared with Normal pro-
tection level, while on vendor B, the same permission is
declared with a Signature one. This would expose
the underlying components that are supposed to be pro-
tected with more privileged permissions. It would also
create a big confusion for developers, as the same per-
mission holds different semantics across images.

Formally, for each defined permission e ∈ EP, we de-
fine the security feature f ne as the following:

f ne = ProtectionLevel(e)

The potential values of f ne is in the set {Normal,
Dangerous, Signature, Unspecified, 0}. We map

Table 1: Security Checks

AC Checks Layer Configurable

UID Kernel, Framework
Library, App No

GID Kernel Yes
Package Name Framework, App Yes

Package Signature Framework, App No

Permission Framework, Library
App Yes

Protected Broadcast App Layer Yes
Component Visibility App Layer Yes
Component Protection App Layer Yes

SignatureOrSystem level to Signature, as both
of them cannot be acquired by third party apps without
a signature check. An unspecified value refers to
a permission that has been defined without a protection
level, while 0 refers to a permission that is not defined
on an image.

3.2 GIDs
Certain lower-level Linux group IDs (GIDs) are mapped
to Android permissions. Once an app process acquires
these permissions, it will be assigned the mapped GID,
which will be used for access control at the kernel. Per-
missions to GID mappings for built-in and custom per-
missions are defined mostly in platform.xml and other
xml files under /etc/permissions/. The following is an
example of a permission to GID mapping:

<permission android:name =
"android.permission.NET_TUNNELING">

<group gid="vpn" />
</permission>

In the above example, any process that has been
granted NET_TUNNELING permission (defined with a
Signature level) will be assigned the vpn GID, and
consequently perform any filesystem (read, write, exe-
cute) allowed for this GID.

Android states that any change made incautiously to
platform.xml would open serious vulnerabilities. In
this analysis, we aim to find if the customization par-
ties introduce any modifications to these critical map-
pings and if so, what damages this might create. More
specifically, we want to reveal if vendors map per-
missions of lower protection levels to existing privi-
leged GIDs, which can result in downgrading their priv-
ileges. Following the same example above, assume
that on a custom image, the vendor maps a permission
vendor.permission (defined with Normal protec-
tion) to the existing vpn GID. This new mapping would
downgrade the privilege of vpn GID on the custom im-
age as it can be acquired with a Normal permission in-
stead of a Signature one. Thus, any third party app
granted vendor.permissionwill run with vpnGID

USENIX Association 25th USENIX Security Symposium 1157

attached to its process, which basically allows it to per-
form any filesystem permissible for vpn GID, usually
allowed to only system processes.

To allow discovering vulnerable GID to permission
mappings, we extract the minimum permission require-
ment needed for acquiring a certain GID on a given im-
age; i.e. the minimum protection level for all permissions
mapping to it. If the same GID has different minimum re-
quirements on 2 images, then it is potentially vulnerable.
For the previous example, we should be able to reveal
that vpn GID is problematic as it can be acquired with a
Normal permission level on the custom image and with
a Signature one on other images.

For each defined GID e ∈ EGID, let Pe denote the per-
mission set mapping to e, we define the feature f ne:

f ne = GIDProtectionLevel(e), where :

GIDProtectionLevel(e) = min
∀p∈Pe

ProtectionLevel(p)

3.3 Protected Broadcasts
Protected broadcasts are broadcasts that can be sent only
by system-level processes. Apps use protected broad-
casts to make sure that no process, but system-level pro-
cesses can trigger specific broadcast receivers. System
apps can define protected broadcasts as follows:

<protected-broadcast android:name="broadcast.name"/>

Another app can use the above defined protected-
broadcast through the following:

<receiver android:name="ReceiverA">
<intent-filter>

<action = "broadcast.name"/>
<intent-filter/>

<receiver/>

The above ReceiverA can be triggered only by
system processes broadcasting broadcast.name pro-
tected broadcast. The app can alternatively use protected
broadcast through dynamically registered broadcast re-
ceivers. As it is known, during the customization pro-
cess, certain packages are removed and altered. We hy-
pothesize that because of this, certain protected broad-
casts’ definitions will be removed as well. We aim to un-
cover if these inconsistently non-protected broadcasts are
still being used though, as action filters within receivers.
This might open serious vulnerabilities, as the receivers
that developers assumed to be only invocable by system
processes will now be invocable by any third-party app
and consequently expose their functionalities.

Formally, for each Protected Broadcast e ∈ EPB, we
define the following:

f ne = De f ineUse(e),

Where DefineUse(e) is defined as the following:

De f ineUse(e) =

⎧
⎨
⎩

1 if e is used on an image but not defined

0 for other cases

3.4 Component Visibility
Android allows developers to specify whether their de-
clared components (activities, services, receivers and
content providers) can be invoked externally from other
apps. The visibility can be set through the exported
flag in the component declaration within the app’s mani-
fest file. If this flag is not specified, the visibility will be
implicitly set based on whether the component defines
intent filters. If existing, the component is exported; oth-
erwise, it is not as illustrated in the following snippet.

// Service1 is private to the app
<service android:name="Service1"/>
// Service2 is not private to the app
<service android:name="Service2">

<intent-filter> ... <intent-filter/>
</service>

We would like to uncover any component that has been
exposed on one image, but not on another. We assume
that if the same component name appears on similar im-
ages (e.g. same models, same OS version), then most
likely, the component is providing the same functional-
ity or protecting the same data (for content providers).
Thus, its visibility should be the same across all images.
To account for the cases where a component has been
exported but with an added signature permission re-
quirement, we consider them as implicitly unexposed.

Formally, for each defined component e ∈ EC, we ex-
tract the following feature:

f ne = Exported(e)

The potential values of f ne is either {true, false, 0}. 0
refers to a non-existing component on a studied image.

3.5 Component Protection
Apps can use permissions to restrict the invocation of
their components (services, activities, receivers). In
the next code snippet, ServiceA can be invoked if
the caller acquires vendor.permissionA. More-
over, an app can use permissions to restrict reading and
writing to its content provider, as well as to specific
paths within it. android:readPermission and
android:writePermission take precedence over
android:permission if specified, as shown in the
code snippet. Components inherit their parents’ permis-
sion if they do not specify one.

<service android:name="ServiceA"
android:permission="vendor.permissionA"/>

1158 25th USENIX Security Symposium USENIX Association

<provider android:authorities="providerId"
android:name="providerB"
android:Permission="vendor.permissionB"
android:readPermission="vendor.read"
android:writePermission="vendor.write">

We aim to find if the same component has different
protection requirements on similar images. Protection
mismatch might not necessarily indicate a flaw if the
component is not exposed. That’s why, we only consider
protection mismatches in case of exported components.

We list three cases where a component can be unin-
tentionally exposed on one image, but protected on other
images. First is the permission requirement is removed
from the component’s declaration. Second is the permis-
sion protecting it is of lower privilege compared to other
images. Third, the permission used is not defined within
the image, which makes it possible for any third-party
app to define it and consequently invoke the underly-
ing component. To discover components with conflict-
ing protections, we map used permissions to their dec-
larations within the same image. Any mismatch would
indicate a possible security flaw for this component.

Formally, let Pe represents the permission protecting a
component e ∈ Ec. We define the following feature:

f ne = Protection(e);

Where Protection(e) is defined as:

Protection(e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if e is not defined

1 if Pe is None; i.e. e is not protected

ProtectionLevel(Pe) otherwise

In the case where e is a content provider, we define Pread
and Pwrite representing its read and write permissions and
extract f ne for both cases.

4 Data Generation

To reveal whether customization parties change the con-
figurations of the mentioned security features, we con-
duct a large scale differential analysis. We collected
591 Android ROMs from Samsung Updates [4], other
sources [3, 1, 2], and physical devices. These images
are customized by 11 vendors, for around 135 models,
45 regions and 8 carriers. They operate Android ver-
sions from 4.1.1 to 5.1.1. Details about the collected im-
ages are in Table 2. In total, these images include on av-
erage 157 apps per image and 93169 all together apps.
To extract the values of the selected security features
on each image, we developed a tool called DroidDiff.
For each image, DroidDiff first collects its framework
resources Apks and preloaded Apks then runs Apktool
to extract the corresponding manifest files. Second, it
collects configuration files under /etc/permission/. Then,

Table 2: Collected Android Images

Version # of Distinct Vendors # of images
Jelly Bean 9 102

KitKat 9 177
Lollipop 8 312

Total 11 591

Table 3: Security Configurations Map

Image e ∈ EP
MIPUSH_RECEIVE

e ∈ EGID
camera GID

e ∈ EC
sms

I1: Xiaomi RedMi 1
Version: 4.4.2 Signature Normal True

I2: Xiaomi Mi 2A
Version: 4.1.1 Unspecified Dangerous False

DroidDiff searches the extracted manifests and configu-
ration files for the definitions of the targeted entities (EP,
EPB, EGID and EC). Finally, DroidDiff runs the generated
values through our differential analysis methodologies,
discussed in the next section.

5 Differential Analysis

In our analysis, we aim to detect any feature f ne hav-
ing inconsistent values throughout a candidate set of im-
ages. Any inconsistency detected indicates a potential
unintentional configuration change introduced by a cus-
tomization party and requires further security analysis to
assess possible consequent damages.

Let f v(f ne, img) represent the value of the feature f ne
on a given image img. To illustrate f ne to f v(f ne, img)
mappings, consider this real world example depicted
in Table 3. As shown, we extract 3 security features
and their corresponding values from 2 Xiaomi images.
For the custom permission e = MIPUSH_RECEIVE,
our feature extraction step generates the following val-
ues f v(f ne, I1) = Signature, and f v(f ne, I2) =
Unspecified.

Let IMG denote a set of candidate images to be com-
pared, we define a feature f ne as inconsistent if:

C(f ne) = ∃ x ∃ y [x ∈ IMG∧ y ∈ IMG

∧ x �= y∧ f v (f ne ,x) �= f v (f ne ,y)]

The above statement means that we consider the feature
f ne inconsistent across the set IMG if there exists at least
two different images where the value of f ne is not equal.
It should be noted that we do not consider any cases
where f v(f ne, img) = 0 for e ∈ {EP, EGID and EC}.

Sample Selection. To discover meaningful inconsis-
tencies through differential analysis, our collected im-
ages should be clustered based on common criteria. A
meaningful inconsistency would give us insights about
the responsible party that introduced it. For example,

USENIX Association 25th USENIX Security Symposium 1159

to reveal if inconsistencies are introduced by an OS up-
grade, it would not make sense to select images from all
vendors, as the inconsistency could be due to customiz-
ing the device for a specific vendor, rather than because
of the OS upgrade. Similarly, to uncover if a specific
vendor causes inconsistencies in a new model, it is not
logical to compare it with models from other vendors.
Rather, we should compare it with devices from the same
vendor. Besides, to avoid detecting a change caused by
OS version mismatches, the new model should be com-
pared to a model running the same OS version.

We designed five different algorithms that target to un-
cover meaningful inconsistencies. Specifically, by care-
fully going through each party within the customization
chain, we designed algorithms that would reveal incon-
sistencies (if any) caused by each party. Further, for each
algorithm, we select our candidate images based on spe-
cific criteria that serve the purpose of the algorithm,

We describe each algorithm as well as the sample se-
lection criteria in the next sections.

A1: Cross-Version Analysis. This analysis aims to
uncover any inconsistent security features caused by OS
version upgrades. We select candidate image sets run-
ning similar device models to make sure that the incon-
sistency is purely due to OS upgrade. For instance,we
would pick 2 Samsung S4 devices running 4.4.4 and
5.0.1 as a candidate image set, and would reveal if up-
grading this model from 4.4.4 to 5.0.1 causes any secu-
rity configuration changes. Formally, let IMGMODEL de-
note the candidate image set as the following:

IMGMODEL ={img1, img2, ..., imgn}

such that imgi ∈ IMGMODEL if model(imgi) = MODEL

Based on our collected images, this algorithm generated
135 candidate image sets (count of distinct model).

Let f v(f ne, img) denote a value for a feature f ne in img ∈
IMGMODEL. We define the inconsistency condition under
Cross-Version analysis algorithm as follows,

CVersion(f ne) = ∃ x ∃ y [x ∈ IMGMODEL ∧ y ∈ IMGMODEL

∧ x �= y∧ f v (f ne ,x) �= f v (f ne ,y)

∧ version(x) �= version(y)]

The above condition implies that f ne is inconsistent if
there exist two same model images running different ver-
sions, and where the values of f ne is not the same. Droid-
Diff runs the analysis for each of the 135 candidate sets
and generate the number of inconsistencies detected.

A2: Cross-Vendor Analysis. This analysis aims to re-
veal any feature f ne that is inconsistent across vendors.
To make sure that we are comparing images of similar
criteria across different vendors, we pick candidate im-
age sets running the same OS version (e.g. HTC M8 and

Nexus 6 both running 5.0.1). Our intuition here is that
if an inconsistency is detected, then the vendor is the re-
sponsible party. We formally define the candidate image
set as the following:

IMGVERSION ={img1, img2, ..., imgn}

such that imgi ∈ IMGV ERSION if version(imgi) =V ERSION

This algorithm generated 12 candidate image sets (count
of distinct OS versions that we collected).

Let f v(f ne, img) denote a value for a feature f ne in img
∈ IMGV ERSION . We redefine the inconsistency condition
under Cross-Vendor analysis as follows:

CVendor(f ne) = ∃ x ∃ y [x ∈ IMGV ERSION ∧ y ∈ IMGV ERSION

∧ x �= y∧ f v (f ne ,x) �= f v (f ne ,y)

∧ vendor(x) �= vendor(y)]

The last condition implies that f ne is inconsistent if there
exists two images from different vendors, but running the
same OS version, where its value is not equal.

A3: Cross-Model Analysis. In this analysis, we want
to uncover any feature f ne that is inconsistent through
different models. For example, we want to compare the
configurations on Samsung S5 and Samsung S4 mod-
els, running the same OS versions. To ascertain that any
inconsistency is purely due to model change within the
same vendor, we pick our candidate image sets running
the same OS version, defined as IMGVERSION in the previ-
ous example. We further make sure that we are compar-
ing models from the same vendor by adding a new check
in the next condition.

Let f v(f ne, img) denote a value for f ne in img ∈
IMGV ERSION . We redefine the inconsistency condition un-
der Cross-Model analysis as follows:

CModel(f ne) = ∃ x ∃ y [x ∈ IMGV ERSION ∧ y ∈ IMGV ERSION

∧ x �= y∧ f v (f ne ,x) �= f v (f ne ,y)

∧ vendor(x) = vendor(y) ∧model(y) �= model(x)]

The last condition implies that f ne is inconsistent if there
exists two images from the same vendor, running the
same OS version, but customized for different models,
where its value is not equal.

A4: Cross-Carrier Analysis. We aim to uncover any
inconsistent security features f ne through different car-
riers (e.g., a MotoX from T-Mobile, versus another one
from Sprint). To make sure that we are comparing im-
ages running the same OS version, we pick our candi-
date image sets from IMGVERSION. We further make sure
that we are comparing images running the same model

1160 25th USENIX Security Symposium USENIX Association

as shown in the following inconsistency condition:

CCarrier(f ne) = ∃ x ∃ y [x ∈ IMGV ERSION ∧ y ∈ IMGV ERSION

∧ x �= y∧ f v (f ne ,x) �= f v (f ne ,y)

∧ carrier(x) �= carrier(y) ∧model(y) = model(x)]

The last conditions in the above definition of CCarrier

implies that f ne is inconsistent if there exists two images
running the same model and OS versions, but from dif-
ferent carriers where its value is not the same.

A5: Cross-Region Analysis. This analysis intends to
find any inconsistencies in the configuration of security
features f ne through different regions (e.g. LG G4, Ko-
rean edition versus US edition). Any inconsistencies de-
tected will be attributed to customizing a device for a
specific region. We pick our candidate image sets from
IMGVERSION to make sure that we are comparing images
running the same OS version. We define the inconsis-
tency count under Cross-Carrier analysis as follows:

CRegion(f ne) = ∃ x ∃ y [x ∈ IMGV ERSION ∧ y ∈ IMGV ERSION

∧ x �= y∧ f v (f ne ,x) �= f v (f ne ,y)

∧ region(x) �= region(y) ∧model(y) = model(x)]

The last conditions in the above definition of CRegion

implies that f ne is inconsistent if there exists two images
running the same model and OS versions, but from dif-
ferent regions where its value is not the same.

6 Results and Findings

We conduct a large-scale differential analysis on our col-
lected images using the aforementioned methodologies
with the help of DroidDiff. The analysis discovered a
large number of discrepancies with regards to our se-
lected features. In this section, we present the results
and findings.

6.1 Overall Results
Figure 3 shows the overall changes detected from our
analysis. We plot the average percentage of inconsisten-
cies detected for each feature category using the five dif-
ferential analysis algorithms. To provide an estimate of
the inconsistencies count, each box plot shows an aver-
age number of total common entities (appearing on at
least 2 images) in the image sets studied; we depict this
number as # total in the graph. Let us use the first box
plot as an example to illustrate what the data means: un-
der the Cross-Version analysis (A1), DroidDiff generated
on average 673 common permissions per each studied
candidate sets. 50% of the candidate image sets contain
at least 4.8% of total permissions (around 32 out of 673)

having inconsistent protection levels; those in the top 25
percentile (shown in the top whisker) have at least 6%
(40) inconsistent permissions. Figure 3 also depicts the
image sets that are outliers, i.e., they have particularly
higher number of inconsistencies compared to the other
image sets in the same group. For instance, the candi-
date image set IMGVersion=4.4.2 in the Cross-Vendor analy-
sis (A2) contains around 10% of GIDs whose protections
are inconsistent.

As depicted in Figure 3, the Cross-Version analysis
(A1) detects the highest percentage of inconsistencies in
all 5 categories, which means that upgrading the same
device model to a different OS version introduces the
highest security configuration changes. An intuitive rea-
son behind this is that through a new OS release, Android
might enforce higher protections on the corresponding
entities to fix some discovered bugs (e.g. adding a per-
mission requirement to a privileged service). However,
we found out that through newer OS releases, certain se-
curity features are actually downgraded, leading to po-
tential risks if done unintentionally. We discuss this find-
ing in more details in Section 6.6.

Through the Cross-Vendor analysis (A2), DroidDiff
detects that several security features are inconsistent
among vendors, even though they are of the same OS ver-
sion. We have further analyzed the vendors that cause the
highest number of inconsistencies. An interesting obser-
vation is that smaller vendors, such as BLU, Xiaomi and
Digiland caused several risky inconsistencies. In fact,
all inconsistent GIDs are caused by these 3 companies.
Probably, small vendors may not have enough expertises
to fully evaluate the security implications of their actions.

The Cross-Model analysis (A3) also detects a num-
ber of inconsistencies, which means that different de-
vice models from the same vendor and OS version, might
have different security configurations.

Although the Cross-Carrier (A4) and Cross-Region
(A5) analyses detect a smaller percentage of inconsis-
tencies, it is still significant to know that the same device
model running the same OS version might have some
different configurations if it is customized for different
carriers or regions. Our results shows that the inconsis-
tencies are less common in North America region, and
more prevalent in Chinese editions.

6.2 Permissions Changes Pattern
Protection level mismatch. DroidDiff results confirm
that Android permissions may hold different protection
levels across similar images. As Figure 3 illustrates,
more than 50% of the candidate image sets contain at
least 32 (out of 673), 9 (out of 817) permissions having
inconsistent protection levels in the Cross-Version (A1)
and Cross-Model (A3) analyses, respectively. To reveal

USENIX Association 25th USENIX Security Symposium 1161

Figure 3: Overall Inconsistencies Detected
A1: Cross-Version, A2: Cross-Vendor, A3: Cross-Model, A4: Cross-Carrier, A5: Cross-Region

more insights, we checked which combination of protec-
tion level changes are the most common. That is, which
combination out of the following 3 possible combina-
tions is the most common (Normal, Dangerous), (Normal,
Signature) or (Dangerous, Signature). We have calcu-
lated the occurrence of each pattern, and present the re-
sults in Figure 4. As shown, (Normal, Signature) combi-
nation is the most common pattern. This is quite serious
as several permissions that hold a Signature protection
level on some images are defined with a Normal protec-
tion level on others. We present here two permissions
holding inconsistent protection levels:

• com.orange.permission.SIMCARD_AUTHENTICATION

holds Signature and Normal protection on Sam-
sung S4(4.2.2) and Sony Experia C2105 (4.2.2),
respectively.

• com.sec.android.app.sysscope.permission.RUN_

SYSSCOPE holds Dangerous and Signature protec-
tion on Samsung Note4 (5.0.1) and S4(5.0.1).

Usage of unspecified protection level. Android allows
developers to define a permission without specifying a
protection level, in which case, the default protection
level is Normal. In our investigation, we found that it
is not clear whether developers really intended to use
Normal as the protection level. We found that a large
percentage of these permissions (with unspecified pro-
tection level) hold conflicting protections on other im-
ages. Overall, 2% of the permissions studied were de-
fined without a specified protection level in at least one
image. To check if developers intended to use Normal

as the protection level, for each permission that has been
defined without a protection level, we check its corre-
sponding definitions on other images to see if it has a
protection level specified. We then compare the other
specification to see it it is Normal or not. As Figure 5(a)
illustrates, on average, 91% of these permissions holding

Region

Version

Carrier

Model Vendor

Figure 4: Protection Level Changes Patterns

unspecified protection level hold a Signature protection
on at least 1 other image, which indicates that developers
probably intended to use the Signature protection level.
We illustrate this finding with 2 permissions:

• com.sec.android.phone.permission.UPDATE_

MUTE_STATUS holds Unspecified and Signature

protections on Samsung E7 (5.1.1) and S6
Edge(5.1.1), respectively.

• com.android.chrome.PRERENDER_URL holds
Unspecified and Signature protections on LG
Vista (4.4.2) and Nexus7 (4.4.2), respectively.

6.3 Permission-GID Mapping
By analyzing the differential analysis results of the map-
pings between GIDs and permissions, we have con-
firmed that customization introduces problematic GID-
to-permission mappings that can lead to serious vul-
nerabilities in the victim images. Through the Cross-
Vendor analysis (A2), DroidDiff detects 3 inconsis-
tent cases (out of 25 common GIDs), in which ven-
dors mapped less privileged permissions to privileged
GIDs. This dangerous pattern leads to downgrad-

1162 25th USENIX Security Symposium USENIX Association

(a) Unspecified Protection Level Change
Patterns

(b) Protected Broadcast Inconsisten-
cies

(c) Causes of Components Protection Mis-
match

Figure 5: Inconsistency Breakdown

ing the protection level of these GIDs. We illustrate
this finding with one detected example. On AOSP
images and several customized images (running 4.4.4
and below), camera GID is mapped to a Dangerous

level permission (android.permission.CAMERA). How-
ever, on Neo 4.5 (BLU), we found out that the
same GID is mapped to a Normal level permission:
android.permission.ACCESS_MTK_MMHW. This case indi-
cates that BLU has downgraded the requirement for apps
to obtain the camera GID. Our analysis reveals that the
requirements for two more GIDs, system GID and media

GID, have been downgraded. These two GIDs, protected
by a Signature permission on most devices, can be ac-
quired with a Normal permission on the victim devices.

6.4 Protected Broadcasts Changes Pattern

DroidDiff further reveals that protected broadcasts’ def-
initions might be removed from some images during the
customization process. As illustrated in Figure 5(b),
through the Cross-Version analysis (A1), we detected
that 70% of protected broadcast are not defined on at
least one vendor. This might not necessarily be prob-
lematic if the broadcast is not used. However, our in-
vestigation shows that around 9% of these inconsistently
unprotected broadcasts (28 on average per image set) are
used as intent-filters actions for broadcast receivers. This
inconsistency across versions is quite alarming as a priv-
ileged receiver that was supposed to be invoked by sys-
tem processes can be invoked by any unprivileged app on
certain versions. As Figure 3 further illustrates, Cross-
Vendor (A2) and Cross-Model (A3) analyses reveal that
more than 25% of candidate image sets contain at least
2% broadcasts which are inconsistently protected, but
still being used as intent-filter actions.

6.5 Component Security Changes Pattern
Visibility mismatch. DroidDiff results confirm that
app components may have a conflicting visibility. That
is, the component is exposed on one image but not on an-
other. As Figure 3 illustrates, 50% of the candidate im-
age sets contain at least 3.9% components (around 222)

and 2% (133) holding inconsistent visibility through var-
ious versions (A1) and models (A3), respectively. To
provide insights about which components hold more
visibility inconsistencies, we break down our findings
to activities, services, receivers, and content providers.
We plot the results in Figure 6. As depicted, content
providers and activities have the highest visibility mis-
match. In fact, 25% of the candidate image sets contain
at least 20% (53) and 14% (21) content providers hold-
ing a different visibility in different versions (A1) and
vendors (A2), respectively. Similarly, 4% (139) and 3%
(45) of activities hold a conflicting visibility in 50% of
the studied sets based on A1 and A2, respectively.

Permission mismatch. DroidDiff further reveals that
components may hold inconsistent protections across im-
ages. We break down our findings in Figure 8 (see ap-
pendix). Our results show that content providers ex-
hibit the highest number of protection inconsistencies. In
fact, more than 25% of the candidate images sets include
at least 19% (51) and 10% (33) content providers hav-
ing different protections in the Cross-Version (A1) and
Cross-Model (A3) analyses, respectively. We have fur-
ther analyzed these inconsistent components and catego-
rized the reason behind the discrepancies. As Figure 5(c)
illustrates, in the majority of the cases (60%), the dis-
crepancy is caused by the same component being pro-
tected with a permission on one image, but not protected
at all on others. The second common reason (30%) is that
the same component is protected with permissions hold-
ing different protection levels across the studied images.
Using non-defined permissions to protect a component is
third common reason (10%).

Duplicate components declaration. Based on our
analysis of the inconsistent broadcast receivers (partic-
ularly high on Lollipop images), we found out that most
of them are caused by a non-safe practice that developers
follow. Developers declare duplicate broadcast receivers
names in the same app, but assign them different pro-
tections. After further investigation, we found out that
it is not a safe practice to do as it will be possible to
bypass any restrictions put on the first defined receiver.
To illustrate, consider the following receivers, defined in
Samsung’s preloaded PhoneErrorService app:

USENIX Association 25th USENIX Security Symposium 1163

Figure 6: Breaking Down Components: Visibility Mismatch

<receiver android:name="PhoneErrorReceiver"
android:permission="android.permission.REBOOT">

<intent-filter>
<action android:name="REFRESH_RESET_FAIL"/>
...

</intent-filter>
</receiver>
<receiver android:name="PhoneErrorReceiver">

<intent-filter>
<action

android:name="DATA_ROUTER_DISPLAY"/>
</intent-filter>

</receiver>

In the above code, the developer decided to pro-
tect the functionality triggered when receiving the ac-
tion REFRESH_RESET_FAIL with the permission REBOOT

(Signature level). In the other case, she decided not
to require any permissions when invoking the function-
ality triggered by the action DATA_ROUTER_DISPLAY. At
first glance, the above duplicate components declaration
might look fine. However, we found out that the Pack-
ageManagerService does not carefully handle the regis-
tration of duplicate receivers. On one hand, it correctly
handles mapping each filter to the required permission,
used for implicit intents routing (e.i., sending the action
REFRESH_RESET_FAIL requires REBOOT permission, while
sending DATA_ROUTER_DISPLAY does not require any per-
mission). On the other hand, however, it does not cor-
rectly map each component name to the required per-
mission, used for explicit intents routing (e.i., the first
PhoneErrorReceiver should require REBOOT while the
second one should not). In fact, it turns out that the sec-
ond declaration of the component name replaces the first
one. Thus, any protection requirement on the second re-
ceiver would replace the first receiver’s permission re-
quirement in case of explicit invocation. Consequently, in
the above example, invoking PhoneErrorReceiver ex-
plicitly does not require any permission. The explicit in-

Figure 7: Percentage of Security Features Downgrades

tent can further set the action REFRESH_RESET_FAIL and
thus trigger the privileged functionality (rebooting the
phone) without the required REBOOT permission. We have
confirmed this dangerous pattern in several preloaded
apps and were able to achieve various damages. We filed
a bug report about this discovered vulnerability to An-
droid Security team and informed other vendors about it.

6.6 Downgrades Through Version Analysis

A dangerous pattern that we are interested in is whether
there are any security downgrades through versions. For
example, unlike a security configuration upgrade, possi-
bly attributed to fixing discovered bugs in earlier images,
downgrading a security configuration is quite dangerous
as it will lead to a potential exposure of privileged re-
sources that were already secured on previous versions.
For each security configuration, we report in Figure 7,
the percentage of security configuration downgrades out
of all detected cases. As Figure 7 illustrates, a large num-
ber of configurations are indeed downgraded. For exam-
ple, 52% of inconsistent component protection mismatch
are actually caused by downgrading the protection.

1164 25th USENIX Security Symposium USENIX Association

7 Attacks

We would like to find out whether the risky patterns dis-
covered can actually lead to actual vulnerabilities. To do
that, we have selected some high impact cases, and tried
to design attacks to verify whether these cases can be-
come vulnerabilities. Due to resources limitations, our
verification is driven by the test devices that we have,
including Samsung Edge 6 Plus (5.1.1), Edge 6 (5.0.1),
Nexus 6 (5.1.1), Note2 (4.4.2), Samsung S4 (5.0.1), Mo-
toX (5.0.1), BLU Neo4 (4.2.2), and Digiland DL700D
(4.4.0). We have found 10 actual attacks, some of which
were confirmed on several devices. We have filed secu-
rity reports for the confirmed vulnerabilities to the corre-
sponding vendors. We discuss here 6 attacks. At the end
of this section, we discuss possible impacts of 40 ran-
domly selected cases in other devices to demonstrate the
significance of inconsistent security configurations.

Stealing emails. SecEmailSync.apk is a preloaded app
on most Samsung devices. It includes a content provider,
called "com.samsung.android.email.otherprovider",
which maintains a copy of user’s emails received
through the default Samsung email app. Our Cross-
Model and Cross-Region analyses reveal inconsistent
permission protections on this provider among several
Samsung images. The Read and Write accesses to this
provider are protected with a Signature permission
"com.samsung.android.email.permission.ACCESS_

PROVIDER" on Samsung Grand On(5.1.1, India), S6
Edge (5.1.1, UAE), and other devices. However, this
provider is not protected with any permission on several
other devices such as our test device S6 Edge (5.1.1,
Global edition). We wrote an attack app that queries
this content provider. It was able to access user’s private
emails on the victim device without any permission.

Forging premium SMS messages. The TeleService
package (com.android.phone) is preloaded on many
Samsung devices, and provides several services for
phone and calls management. A notable service is
.TPhoneService, which performs some major phone
functionalities such as accepting voice and video calls,
dialing new phone numbers, sending messages (e.g.
to inform why a call cannot be received), as well as
recording voice and video calls. Our Cross-Model and
Cross-Version analyses reveal a permission mismatch
on this critical service. On several devices, such as
Samsung S5 LTE-A (4.4.2, Korea), the access to this
service is protected with the Signature permission
com.skt.prod.permission.OEM_PHONE_SERVICE,
which makes the service unaccessible to third-
party apps. However, on several other devices
such Samsung Note 2 (4.4.2, Global edition),
this service is protected with another permission

com.skt.prod.permission.PHONE_SERVICE for which
our analysis reveals a missing definition. We built an
attack app that defines the missing permission with
a Normal protection level. Our app was able to suc-
cessfully bind to com.android.phone.TPhoneService

and invoke the send-message API on Samsung Note 2,
allowing to forge SMS messages without the usually
required SEND_SMS.

Unauthorized factory reset. The preloaded
Samsung app ServiceModeApp_FB.apk per-
forms various functionalities related to sensitive
phone settings. It includes a broadcast receiver
ServiceModeAppBroadcastReceiver that listens
to several intent filters including the action filter
com.samsung.intent.action.SEC_FACTORY_RESET_

WITHOUT_FACTORY_UI that allows to factory reset the
phone and delete all data without user confirma-
tion. Our Cross-Version analysis reveals a protection
mismatch for this critical broadcast receiver. In
most devices running Kitkat and below, this re-
ceiver is protected with the Signature permission
com.sec.android.app.servicemodeapp.permission.

KEYSTRING. However, on several Lollipop images, it is
not correctly protected. Further investigation reveals that
this is caused by the duplicate receiver pattern discussed
in Section 6.5. The declaration of the receiver has
been duplicated on the victim images such that the first
one requires a Signature permission while the second
one does not. As discussed in Section 6.5, using this
risky pattern allows a caller app to bypass any restric-
tions on the first declared broadcast receivers through
explicit invocation. We wrote an attacking app that
invokes the broadcast receiver explicitly with the action
com.samsung.intent.action.SEC_FACTORY_RESET_

WITHOUT_FACTORY_UI and were able to factory reset
several victim devices including the latest S6 Edge Plus
5.1.1, S6 Edge 5.0.1, and S4 5.0.1.

Accessing critical drivers with a normal per-
mission. Our Cross-Vendor analysis reveals a
critical protection downgrade of the system GID.
On some images, such as Samsung S5 (4.4.2),
this GID is mapped to the Signature permission
com.qualcomm.permission.IZAT. Nevertheless, on
other images (e.g., Redmi Note 4.4.2 and Digiland
DL700D 4.4.0), this GID is mapped to a Normal level
permission android.permission.ACCESS_MTK_MMHW,
indicating that any third-party app can easily get the
system GID. Table 4 lists the device drivers that are
accessible via the system GID on the Digiland DL700D
Tablet. These are privileged drivers, but they can now be
accessible to normal apps.

Triggering emergency broadcasts without permis-
sion. CellBroadcastReceiver is a preloaded Google

USENIX Association 25th USENIX Security Symposium 1165

Table 4: Drivers accessible to System GID

Driver ACL

bootimg; devmap; mtk_disp; pro_info; preloader; recovery r –
pro_info; devmap; dkb; gps; gsensor; hdmitx; hwmsensor;
kb; logo; misc; misc-sd; nvram; rtc0; sec; seccfg ; stpwmt

touch; ttyMT2 ; wmtWifi; wmtdetect
rw-

cpuctl r-x

app that performs critical functionalities based on
received cell broadcasts. It registers the broadcast
receiver PrivilegedCellBroadcastReceiver that
allows receiving emergency broadcasts from the cell
providers (e.g., evacuation alerts, presidential alerts,
amber alerts, etc.) and displaying corresponding alerts.
This critical functionality can be triggered if the ac-
tion android.provider.Telephony.SMS_EMERGENCY_

CB_RECEIVED is received. Our Cross-Vendor and
Cross-Version analyses discovered a protection
mismatch on this receiver among several de-
vices. For instance, on Nexus S 4G 4.1.1, this
receiver is protected with the Signature permission
android.permission.BROADCAST_SMS. However, on
other devices (e.g., Nexus6 5.1.1 and MotoX XT1095
5.0.1), it is protected with the Dangerous permis-
sion android.permission.READ_PHONE_STATE. Our
investigation reveals that this is also due to the du-
plicate receivers risky pattern (Section 6.5). On the
victim devices, PrivilegedCellBroadcastReceiver

has been declared twice such that its first declaration
requires a Signature permission and handles the action
android.provider.Telephony.SMS_EMERGENCY_CB

_RECEIVED, while the second declaration handles less
privileged actions and requires a Dangerous permission.
As discussed, any third-party app can bypass the permis-
sion requirement on the first receiver through explicit
invocation. We wrote an attack app that was able to
trigger this receiver and show various emergency alerts.

Tampering with system wide settings. SystemUI is a
preloaded app that controls system windows. It handles
and draws a lot of system UIs such as top status bar,
system notification and dialogs. To manage the top status
bar, the custom Samsung SystemUI includes a service
com.android.systemui.PhoneSettingService, which
handles incoming requests to turn on/off a variety of sys-
tem wide settings appearing on the top status bar. These
settings include turning on/off wifi, bluetooth, location,
mobile data, nfc, driving mode, etc; that are usually done
with user consent. Our analysis shows a protection mis-
match for this service. On S5(4.4.2) and Note8(4.4.2),
this service is protected with a signature permission
com.sec.phonesettingservice.permission.PHONE_

SETTING, while on Note 2, 4.4.2, the service is not
protected with any permission. We wrote an attack app

that successfully asks the privileged service to turn on
all the settings mentioned above without any permission.

Other Randomly Selected Cases. The impact of in-
consistent security configurations are significant. In ad-
dition to end-to-end attacks we built, we also randomly
sampled 40 inconsistencies and manually analyzed what
could happen once they were exploited. Note that due to
the lack of physical devices, all we could do is just static
analysis to infer possible consequences once an exploit
succeeds. Such an analysis may not be accurate, but it is
still important for understanding the impacts of inconsis-
tent security configurations. The outcomes of our analy-
sis are shown in Table 5. Please note that we could not
assess the impact in 5 cases (heavily obfuscated code),
while we confirmed that 2 cases have been hardened via
runtime checks.

8 Limitations

In this section, we discuss some limitations of our pro-
posed approach.

Components implementation changes. A static
change of a component’s security configurations (vis-
ibility or permission protection) might not necessarily
indicate a security risk all the time. In fact, a developer
might intentionally decide to export a component or down-
grade its permission protection in the following cases:
the component’s operations or supplied data are not priv-
ileged anymore or the component’s implementation is
hardened via runtime checks of the caller’s identity (e.g.,
binder.getCallingUid() or Context.checkPermission()
APIs). Our solution pinpoints these possibly unintentional

risky configurations changes and demands further
investigation to confirm whether the change was indeed
intentional or not.

Components renaming. Our approach would miss de-
tecting inconsistent configurations of components which
have been renamed during the customization. In fact,
as Android relies heavily on implicit intents for inter-app
communication, vendors might rename their components
to reflect their organization identity.

9 Related Work
Security risks in Android customization. The exten-
sive Android vendor customization have been proven to
be problematic in prior studies. At the Kernel level, AD-
DICTED [29] finds under-protected Linux device drivers
on customized ROMs by comparing them with their
counterparts on AOSP images. Our finding on inconsis-
tent GID to permission mappings demonstrates another

1166 25th USENIX Security Symposium USENIX Association

Table 5: Impact of Inconsistent Security Configurations

Inconsistent Configuration Category Impact Specific Examples
Permission Protection Change Change System / App Wide Settings Xiaomi Cloud Settings, Activate SIM

Removed Protected Broadcasts Trigger Dangerous Operations and events Trigger data sync, SMS received
Airplane mode active, SIM is full

Non-Protected Content Providers Data Pollution Write to system logs, Add contacts
Change instant messaging configurations

Non-Protected Content Providers Data Leaks Read emails, Read contacts
Read blocked contact lists

Non-Protected Services Trigger Dangerous Operations Access Location, Bind to printing services
Kill specific apps, Trigger backup

Non-Protected Activities Change System wide Settings Change Telephony settings, Access hidden activities

Non-Protected Receivers Trigger Dangerous Operations Send SMS messages, Trigger fake alerts
Alter telephony settings , Issue SIM commands

way that can expose critical device drivers. At the frame-
work/ app level, Harehunter [5] reveals the Hanging At-
tributes References (Hares) vulnerability caused by the
under-regulated Android customization. The Hare vul-
nerability happens when an attribute is used on a device
but the party defining it has been removed. A malicious
app can then fill the gap to acquire critical capabilities,
by simply disguising as the owner of the attribute. Previ-
ous works [13, 14, 25] have also highlighted security is-
sues in the permission and components AC in preloaded
apps. Gallo et al [13] analyzed five different devices
and concluded that serious security issues such as poorer
permission control grow sharply with the level of cus-
tomization. Other prominent work [25] analyzes the
pre-installed apps on 10 factory images and reports the
presence of known problems such as over-privilege [11],
permission re-delegation [12], etc. Our study is fun-
damentally different from the above work [25] which
finds specific known vulnerabilities on a customized im-
age through conducting a reachability analysis from an
open entry point to privileged sinks. Instead, we lever-
age a differential analysis to point out inconsistencies in
components’ protection, and consequently detect unin-
tentionally exposed ones. Our analysis further gives in-
sights about possible reasons behind the exposure.

Demystification of Android security configurations.
The high flexibility of Android’s security architecture de-
mands a complete understanding of configurable security
parameters. Stowaway [11] and PScout [7] lead the way
by mapping individual APIs to the required permission.
Understanding these parameters provides the necessary
domain knowledge in our feature selection. This under-
standing has inspired other researchers to detect vulner-
abilities in apps. The prevalence of misconfigured con-
tent providers, activities and services is studied in [30, 8],
respectively. These vulnerabilities are due to develop-
ers’ exposing critical components or misinterpreting An-
droid’s security protection. Instead of focusing on ana-
lyzing an individual app to find if it is vulnerable, our
approach learns from the configurations of the same app
on other ROMs to deduct if it should be protected or not.

Android vulnerability analysis. Prior research has
also uncovered security issues rooted in non-customized
AOSP images. PileUp [26] brings to attention the prob-
lematic Android upgrading process. Two recent stud-
ies examine the crypto misuse in Android apps [9, 16].
Other works evaluate the security risks resulting from
design flaws in the push-cloud messaging [18], in the
multi-user architecture [24], in Android app uninstalla-
tion process [28] and in Android’s Clipboard and shar-
ing mechanism [10]. Other researchers [20, 15] fo-
cused on uncovering vulnerabilities within specific An-
droid apps in the web landscape. These vulnerabili-
ties are complementary to the security issues detected
in vendor customization, and jointly present a more
complete picture of Android ecosystem’s security land-
scape. To analyze Android vulnerabilities, static and
dynamic analysis techniques have been proposed to ad-
dress the special characteristics of Android platform.
CHEX [19], Epicc [21], and FlowDroid [6] apply static
analysis to perform vulnerability analysis. Other works
[23, 22, 17, 27] employ dynamic analysis to accurately
understand app’s behaviors. Both techniques are bene-
ficial to our research. Dynamic analysis can help us ex-
ploit the likely risky inconsistencies, while static analysis
can bring the control/data flow of framework/ app code
as another security feature into our differential analysis.
We will explore these ideas in future work.

10 Conclusion

In this paper, we make the first attempt to systematically
detect security configuration changes introduced by An-
droid customization. We list the security features applied
at various Android layers and leverage differential analy-
sis among a large set of custom ROMs to find out if they
are consistent across all of them. By comparing security
configurations of similar images (from the same vendor,
running the same OS version, etc.), we can find critical
security changes that might have been unintentionally in-
troduced during the customization. Our analysis shows
that indeed, customization parties change several config-

USENIX Association 25th USENIX Security Symposium 1167

urations that can lead to severe vulnerabilities such as
private data exposure and privilege escalation.

11 Acknowledgement

We would like to thank our anonymous reviewers for
their insightful comments. This project was supported
in part by the NSF grant 1318814.

References
[1] Android Revolution. http://goo.gl/MVigfq.

[2] Factory Images for Nexus Devices. https://goo.gl/

i0RJnN.

[3] Huawei ROMs. http://goo.gl/dYPTE5.

[4] Samsung Updates. http://goo.gl/RVU84V.

[5] AAFER, Y., ZHANG, N., ZHANG, Z., ZHANG, X., CHEN, K.,
WANG, X., ZHOU, X., DU, W., AND GRACE, M. Hare hunting
in the wild android: A study on the threat of hanging attribute
references. In Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security (2015), CCS ’15.

[6] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL,
A., KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL,
P. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. PLDI ’14.

[7] AU, K. W. Y., ZHOU, Y. F., HUANG, Z., AND LIE, D. Pscout:
Analyzing the android permission specification. In Proceedings
of the 2012 ACM Conference on Computer and Communications
Security (New York, NY, USA, 2012), CCS ’12, ACM.

[8] CHIN, E., FELT, A. P., GREENWOOD, K., AND WAGNER, D.
Analyzing inter-application communication in android. In Pro-
ceedings of the 9th International Conference on Mobile Systems,
Applications, and Services (2011), MobiSys ’11, ACM.

[9] EGELE, M., BRUMLEY, D., FRATANTONIO, Y., AND
KRUEGEL, C. An empirical study of cryptographic misuse in an-
droid applications. In Proceedings of the 2013 ACM SIGSAC con-
ference on Computer & communications security (2013), ACM.

[10] FAHL, S., HARBACH, M., OLTROGGE, M., MUDERS, T., AND
SMITH, M. Hey, you, get off of my clipboard. In In proceeding
of 17th International Conference on Financial Cryptography and
Data Security (2013).

[11] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAG-
NER, D. Android permissions demystified. In Proceedings of the
18th ACM conference on Computer and communications security
(New York, NY, USA, 2011), CCS ’11, ACM.

[12] FELT, A. P., WANG, H. J., MOSHCHUK, A., HANNA, S., AND
CHIN, E. Permission re-delegation: Attacks and defenses. In
Proceedings of the 20th USENIX Security Symposium (2011).

[13] GALLO, R., HONGO, P., DAHAB, R., NAVARRO, L. C.,
KAWAKAMI, H., GALVÃO, K., JUNQUEIRA, G., AND RIBEIRO,
L. Security and system architecture: Comparison of android cus-
tomizations. In Proceedings of the 8th ACM Conference on Se-
curity & Privacy in Wireless and Mobile Networks (2015).

[14] GRACE, M., ZHOU, Y., WANG, Z., AND JIANG, X. Systematic
detection of capability leaks in stock Android smartphones. In
Proceedings of the 19th Network and Distributed System Security
Symposium (NDSS) (Feb. 2012).

[15] JIN, X., HU, X., YING, K., DU, W., YIN, H., AND PERI, G. N.
Code injection attacks on html5-based mobile apps: Characteri-
zation, detection and mitigation. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security
(New York, NY, USA), CCS ’14, ACM.

[16] KIM, S. H., HAN, D., AND LEE, D. H. Predictability of android
openssl’s pseudo random number generator. In Proceedings of
the 2013 ACM SIGSAC Conference on Computer and Communi-
cations Security (New York, NY, USA, 2013), CCS ’13, ACM.

[17] KLIEBER, W., FLYNN, L., BHOSALE, A., JIA, L., AND
BAUER, L. Android taint flow analysis for app sets. In Pro-
ceedings of the 3rd ACM SIGPLAN International Workshop on
the State of the Art in Java Program Analysis (2014), SOAP ’14.

[18] LI, T., ZHOU, X., XING, L., LEE, Y., NAVEED, M., WANG,
X., AND HAN, X. Mayhem in the push clouds: Understanding
and mitigating security hazards in mobile push-messaging ser-
vices. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (2014), CCS ’14, ACM.

[19] LU, L., LI, Z., WU, Z., LEE, W., AND JIANG, G. Chex: stat-
ically vetting android apps for component hijacking vulnerabili-
ties. In Proceedings of the 2012 ACM conference on Computer
and communications security (2012), CCS ’12.

[20] LUO, T., HAO, H., DU, W., WANG, Y., AND YIN, H. Attacks
on webview in the android system. ACSAC ’11.

[21] OCTEAU, D., MCDANIEL, P., JHA, S., BARTEL, A., BODDEN,
E., KLEIN, J., AND LE TRAON, Y. Effective inter-component
communication mapping in android with epicc: An essential step
towards holistic security analysis. In Proceedings of the 22Nd
USENIX Conference on Security (2013), SEC’13.

[22] POEPLAU, S., FRATANTONIO, Y., BIANCHI, A., KRUEGEL, C.,
AND VIGNA, G. Execute This! Analyzing Unsafe and Malicious
Dynamic Code Loading in Android Applications. NDSS 14’.

[23] RASTOGI, V., CHEN, Y., AND ENCK, W. Appsplayground: Au-
tomatic security analysis of smartphone applications. In Proceed-
ings of the Third ACM Conference on Data and Application Se-
curity and Privacy (New York, NY, USA, 2013), CODASPY ’13.

[24] RATAZZI, P., AAFER, Y., AHLAWAT, A., HAO, H., WANG,
Y., AND DU, W. A systematic security evaluation of Android’s
multi-user framework. In Mobile Security Technologies (MoST)
2014 (San Jose, CA, USA, 2014), MoST’14.

[25] WU, L., GRACE, M., ZHOU, Y., WU, C., AND JIANG, X. The
impact of vendor customizations on android security. In Proceed-
ings of the 2013 ACM SIGSAC conference on Computer commu-
nications security (New York, NY, USA, 2013), CCS ’13, ACM.

[26] XING, L., PAN, X., WANG, R., YUAN, K., AND WANG, X.
Upgrading your android, elevating my malware: Privilege esca-
lation through mobile os updating. In Proceedings of the 2014
IEEE Symposium on Security and Privacy (2014), SP ’14.

[27] YAN, L. K., AND YIN, H. Droidscope: seamlessly reconstruct-
ing the os and dalvik semantic views for dynamic android mal-
ware analysis. In Proceedings of the 21st USENIX conference on
Security symposium (2012), Security’12.

[28] ZHANG, X., YING, K., AAFER, Y., QIU, Z., AND DU, W. Life
after app uninstallation: Are the data still alive? data residue
attacks on android. In NDSS (2016).

[29] ZHOU, X., LEE, Y., ZHANG, N., NAVEED, M., AND WANG, X.
The peril of fragmentation: Security hazards in android device
driver customizations. In 2014 IEEE Symposium on Security and
Privacy, SP 2014, Berkeley, CA, USA.

[30] ZHOU, Y., AND JIANG, X. Detecting passive content leaks and
pollution in android applications. In NDSS (2013).

1168 25th USENIX Security Symposium USENIX Association

12 Appendix

Figure 8: Components Protection Mismatch Breakdown

USENIX Association 25th USENIX Security Symposium 1169

Identifying and characterizing Sybils in the Tor network

Philipp Winter∗† Roya Ensafi∗ Karsten Loesing‡ Nick Feamster∗

∗Princeton University †Karlstad University ‡The Tor Project

Abstract

Being a volunteer-run, distributed anonymity network,
Tor is vulnerable to Sybil attacks. Little is known about
real-world Sybils in the Tor network, and we lack practi-
cal tools and methods to expose Sybil attacks. In this
work, we develop sybilhunter, a system for detecting
Sybil relays based on their appearance, such as config-
uration; and behavior, such as uptime sequences. We
used sybilhunter’s diverse analysis techniques to analyze
nine years of archived Tor network data, providing us
with new insights into the operation of real-world attack-
ers. Our findings include diverse Sybils, ranging from
botnets, to academic research, and relays that hijacked
Bitcoin transactions. Our work shows that existing Sybil
defenses do not apply to Tor, it delivers insights into real-
world attacks, and provides practical tools to uncover
and characterize Sybils, making the network safer for its
users.

1 Introduction

In a Sybil attack, an attacker controls many virtual iden-
tities to obtain disproportionately large influence in a net-
work. These attacks take many shapes, such as sockpup-
pets hijacking online discourse [34]; the manipulation of
BitTorrent’s distributed hash table [35]; and, most rele-
vant to our work, relays in the Tor network that seek to
deanonymize users [8]. In addition to coining the term
“Sybil,”1 Douceur showed that practical Sybil defenses
are challenging, arguing that Sybil attacks are always
possible without a central authority [11]. In this work,
we focus on Sybils in Tor—relays that are controlled by
a single operator. But what harm can Sybils do?

The effectiveness of many attacks on Tor depends on
how large a fraction of the network’s traffic—called the

1The term is a reference to a book in which the female protagonist,
Sybil, suffers from dissociative identity disorder [29].

consensus weight—an attacker can observe. As the at-
tacker’s consensus weight grows, the following attacks
become easier.

Exit traffic tampering: When leaving the Tor network,
a Tor user’s traffic traverses exit relays, the last hop
in a Tor circuit. Controlling exit relays, an attacker
can eavesdrop on traffic to collect unencrypted cre-
dentials, break into TLS-protected connections, or
inject malicious content [37, § 5.2].

Website fingerprinting: Tor’s encryption prevents
guard relays (the first hop in a Tor circuit) from
learning their user’s online activity. Ignoring the
encrypted payload, an attacker can still take ad-
vantage of flow information such as packet lengths
and timings to infer what websites Tor users are
visiting [16].

Bridge address harvesting: Users behind censorship
systems use private Tor relays—typically called
bridges—as hidden stepping stones into the Tor net-
work. It is important that censors cannot obtain all
bridge addresses, which is why The Tor Project rate-
limits bridge distribution. However, an attacker can
harvest bridge addresses by running a middle relay
and looking for incoming connections that do not
originate from any of the publicly known guard re-
lays [22, § 3.4].

End-to-end correlation: By running both entry guards
and exit relays, an attacker can use timing analysis
to link a Tor user’s identity to her activity, e.g., learn
that Alice is visiting Facebook. For this attack to
work, an attacker must run at least two Tor relays, or
be able to eavesdrop on at least two networks [14].

Configuring a relay to forward more traffic allows an
attacker to increase her consensus weight. However, the
capacity of a single relay is limited by its link band-
width and, because of the computational cost of cryptog-
raphy, by CPU. Ultimately, increasing consensus weight

1170 25th USENIX Security Symposium USENIX Association

requires an adversary to add relays to the network; we
call these additional relays Sybils.

In addition to the above attacks, an adversary needs
Sybil relays to manipulate onion services, which are TCP
servers whose IP address is hidden by Tor. In the current
onion service protocol, six Sybil relays are sufficient to
take offline an onion service because of a weakness in
the design of the distributed hash table (DHT) that pow-
ers onion services [4, § V]. Finally, instead of being a
direct means to an end, Sybil relays can be a side effect
of another issue. In Section 5.1, we provide evidence for
what appears to be botnets whose zombies are running
Tor relays, perhaps because of a misguided attempt to
help the Tor network grow.

Motivated by the lack of practical Sybil detection
tools, we design and implement heuristics, leverag-
ing our observations that Sybils (i) frequently go on-
line and offline simultaneously, (ii) share similarities in
their configuration, and (iii) may change their identity
fingerprint—a relay’s fingerprint is the hash over its pub-
lic key—frequently, to manipulate Tor’s DHT. Three of
our four heuristics are automated and designed to run
autonomously while one assists in manual analysis by
ranking what relays in the network are the most similar
to a given reference relay. Our evaluation suggests that
our heuristics differ in their effectiveness; one method
detected only a small number of incidents, but some of
them no other method could detect. Other heuristics pro-
duced a large number of results, and seem well-suited
to spot the “low hanging fruit.” We implemented these
heuristics in a tool, sybilhunter, which we subsequently
used to analyze 100 GiB worth of archived network data,
consisting of millions of files, and dating back to 2007.
Finally, we characterize the Sybil groups we discovered.
To sum up, we make the following key contributions:

• We design and implement sybilhunter, a tool to an-
alyze past and future Tor network data. While we
designed it specifically for the use in Tor, our tech-
niques are general in nature and can easily be ap-
plied to other distributed systems such as I2P [31].

• We characterize Sybil groups and publish our find-
ings as datasets to stimulate future research.2 We
find that Sybils run MitM attacks, DoS attacks, and
are used for research projects.

The rest of this paper is structured as follows. We
begin by discussing related work in Section 2 and give
some background on Tor in Section 3. Section 4 presents
the design of our analysis tools, which is then followed
by experimental results in Section 5. We discuss our re-
sults in Section 6 and conclude the paper in Section 7.

2The datasets are available online at
https://nymity.ch/sybilhunting/.

2 Related work

In his seminal 2002 paper, Douceur showed that only a
central authority that verifies new nodes as they join the
distributed system is guaranteed to prevent Sybils [11].
This approach conflicts with Tor’s design philosophy that
seeks to distribute trust and eliminate central points of
control. In addition, a major factor contributing to Tor’s
network growth is the low barrier of entry, allowing op-
erators to set up relays both quickly and anonymously.
An identity-verifying authority would raise that barrier,
alienate privacy-conscious relay operators, and impede
Tor’s growth. Barring a central authority, researchers
have proposed techniques that leverage a resource that is
difficult for an attacker to scale. Two categories of Sybil-
resistant schemes turned out to be particularly popular,
schemes that build on social constraints and schemes
that build on computational constraints. For a broad
overview of alternative Sybil defenses, refer to Levine
et al. [19].

Social constraints rely on the assumption that it is diffi-
cult for an attacker to form trust relationships with honest
users, e.g., befriend many strangers on online social net-
works. Past work leveraged this assumption in systems
such as SybilGuard [39], SybilLimit [38], and Sybil-
Infer [6]. Unfortunately, social graph-based defenses
do not work in our setting because there is no existing
trust relationship between relay operators.3 Note that we
could create such a relationship by, e.g., linking relays to
their operator’s social networking account, or by creat-
ing a “relay operator web of trust,” but again, we believe
that such an effort would alienate relay operators and see
limited adoption.

Orthogonal to social constraints, computational re-
source constraints guarantee that an attacker seeking to
operate 100 Sybils needs 100 times the computational re-
sources she would have needed for a single virtual iden-
tity. Both Borisov [5] and Li et al. [21] used compu-
tational puzzles for that purpose. Computational con-
straints work well in distributed systems where the cost
of joining the network is low. For example, a lightweight
client is sufficient to use BitTorrent, allowing even low-
end consumer devices to participate. However, this is not
the case in Tor because relay operations require constant
use of bandwidth and CPU. Unlike in many other dis-
tributed systems, it is impossible to run 100 Tor relays
while not spending the resources for 100 relays. Compu-
tational constraints are inherently tied to running a relay.

In summary, we believe that existing Sybil defenses
are ill-suited for application in the Tor network; its dis-
tinctive features call for customized solutions that con-

3Relay operators can express in their configuration that their relays
are run by the same operator, but this denotes an intra-person and not
an inter-person trust relationship.

2

USENIX Association 25th USENIX Security Symposium 1171

sider the nature of Tor relays. There has already been
some progress towards that direction; namely, The Tor
Project has incorporated a number of both implicit and
explicit Sybil defenses that are in place as of June 2016.
First, directory authorities—the “gatekeepers” of the Tor
network—accept at most two relays per IP address to
prevent low-resource Sybil attacks [3, 2]. Similarly,
Tor’s path selection algorithm ensures that Tor clients
never select two relays in the same /16 network [9]. Sec-
ond, directory authorities automatically assign flags to
relays, indicating their status and quality of service. The
Tor Project has recently increased the minimal time until
relays obtain the Stable flag (seven days) and the HSDir

flag (96 hours). This change increases the cost of Sybil
attacks and gives Tor developers more time to discover
and block suspicious relays before they get in a posi-
tion to run an attack. Finally, the operation of a Tor re-
lay causes recurring costs—most notably bandwidth and
electricity—which can further restrain an adversary.

3 Background

We now provide necessary background on the Tor net-
work [10]. Tor consists of several thousand volunteer-run
relays that are summarized in the network consensus that
is voted on and published each hour by nine distributed
directory authorities. The authorities assign a variety of
flags to relays:

Valid: The relay is valid, i.e., not known to be broken.
HSDir: The relay is an onion service directory, i.e., it

participates in the DHT that powers Tor onion ser-
vices.

Exit: The relay is an exit relay.
BadExit: The relay is an exit relay, but is either mis-

configured or malicious, and should therefore not
be used by Tor clients.

Stable: Relays are stable if their mean time between
failure is at least the median of all relays, or at least
seven days.

Guard: Guard relays are the rarely-changing first hop
for Tor clients.

Running: A relay is running if the directory authorities
could connect to it in the last 45 minutes.

Tor relays are uniquely identified by their fingerprint,
a Base32-encoded and truncated SHA-1 hash over their
public key. Operators can further assign a nickname to
their Tor relays, which is a string that identifies a relay
(albeit not uniquely) and is easier to remember than its
pseudo-random fingerprint. Exit relays have an exit pol-
icy—a list of IP addresses and ports that the relay allows
connections to. Finally, operators that run more than one
relay are encouraged to configure their relays to be part

Nearest
neighbors

Potential
Sybils

sybilhunter

Tor network

Bad exit
relay

Consensuses
and descriptors

All
relays

Malicious
relays

Exit
relay

exitmap

sybilhunter

Decoy
website

Figure 1: Sybilhunter’s architecture. Two datasets serve
as input to sybilhunter; consensuses and server descrip-
tors, and malicious relays gathered with exitmap [37,
§ 3.1].

of a relay family. Families are used to express that a set
of relays is controlled by a single operator. Tor clients
never use more than one family member in their path
to prevent correlation attacks. In February 2016, there
were approximately 400 relay families among all 7,000
relays.

4 Data and design

We define Sybils in the Tor network as two or more re-
lays that are controlled by a single person or group of
people. Sybils per se do not have to be malicious; a relay
operator could simply have forgotten to configure her re-
lays as a relay family. Such Sybils are no threat to the Tor
network, which is why we refer to them as benign Sybils.
What we are interested in is malicious Sybils whose pur-
pose is to deanonymize or otherwise harm Tor users.

To uncover malicious Sybils, we draw on two
datasets—one publicly available and one created by us.
Our detection methods are implemented in a tool, sybil-
hunter, which takes as input our two datasets and then at-
tempts to expose Sybil groups, as illustrated in Figure 1.
Sybilhunter is implemented in Go and consists of 2,300
lines of code.

4.1 Datasets

Figure 1 shows how we use our two datasets. Archived
consensuses and router descriptors (in short: descriptors)
allow us to (i) restore past states of the Tor network,
which sybilhunter mines for Sybil groups, and to (ii) find
“partners in crime” of malicious exit relays that we dis-
covered by running exitmap, a scanner for Tor exit relays
that we discuss below.

3

1172 25th USENIX Security Symposium USENIX Association

∙ Descriptor pointer
∙ Nickname
∙ Fingerprint
∙ Publication
∙ Address and ports
∙ Flags
∙ Version
∙ Bandwidth
∙ Exit policy

Router statuses

Consensus

∙ Address and ports
∙ Platform
∙ Protocols
∙ Published
∙ Fingerprint
∙ Uptime
∙ Bandwidth
∙ Signature

Router descriptor

Figure 2: Our primary dataset contains nine years worth
of consensuses and router descriptors.

4.1.1 Consensuses and router descriptors

The consensus and descriptor dataset is publicly avail-
able on CollecTor [32], an archiving service that is run
by The Tor Project. Some of the archived data dates back
to 2004, allowing us to restore arbitrary Tor network con-
figurations from the last decade. Not all of CollecTor’s
archived data is relevant to our hunt for Sybils, though,
which is why we only analyze the following two:

Descriptors Tor relays and bridges periodically upload
router descriptors, which capture their configuration, to
directory authorities. Figure 2 shows an example in the
box to the right. Relays upload their descriptors no later
than every 18 hours, or sooner, depending on certain con-
ditions. Note that some information in router descriptors
is not verified by directory authorities. Therefore, relays
can spoof information such as their operating system, Tor
version, and uptime.

Consensuses Each hour, the nine directory authorities
vote on their view of all Tor relays that are currently on-
line. The vote produces the consensus, an authoritative
list that comprises all running Tor relays, represented as
a set of router statuses. Each router status in the consen-
sus contains basic information about Tor relays such as
their bandwidth, flags, and exit policy. It also contains a
pointer to the relay’s descriptor, as shown in Figure 2. As
of June 2016, consensuses contain approximately 7,000
router statuses, i.e., each hour, 7,000 router statuses are
published, and archived, by CollecTor.

Table 1 gives an overview of the size of our consen-
sus and descriptor archives. We found it challenging to
repeatedly process these millions of files, amounting to
more than 100 GiB of uncompressed data, so we imple-
mented a custom parser in Go [36].

Dataset # of files Size Time span

Consensuses 72,061 51 GiB 10/2007–01/2016
Descriptors 34,789,777 52 GiB 12/2005–01/2016

Table 1: An overview of our primary dataset; consen-
suses and server descriptors since 2007 and 2005, respec-
tively.

4.1.2 Malicious exit relays

In addition to our publicly available and primary dataset,
we collected malicious exit relays over 18 months. We
call exit relays malicious if they modify forwarded traffic
in bad faith, e.g., to run man-in-the-middle attacks. We
add these relays to our dataset because they frequently
surface in groups, as malicious Sybils, because an at-
tacker runs the same attack on several, physically dis-
tinct exit relays. Winter et al.’s work [37, § 5.2] further
showed that attackers make an effort to stay under the
radar, which is why we cannot only rely on active prob-
ing to find such relays. We also seek to find potential
“partners in crime” of each newly discovered malicious
relay, which we discuss in Section 4.3.4.

We exposed malicious exit relays using Winter et al.’s
exitmap tool [37, § 3.1]. Exitmap is a Python-based
scanning framework for Tor exit relays. Exitmap mod-
ules perform a network task that can then be run over all
exit relays. One use case is HTTPS man-in-the-middle
detection: A module can fetch the certificate of a web
server over all exit relays and then compare its finger-
print with the expected, valid fingerprint. Exposed at-
tacks are sometimes difficult to attribute because an at-
tack can take place upstream of the exit relay, e.g., at a
malicious autonomous system. However, attribution is
only a secondary concern. Our primary concern is pro-
tecting Tor users from harm, and we do not need to iden-
tify the culprit to do so.

In addition to using the original exitmap modules [37,
§ 3.1], we implemented modules that detect HTML and
HTTP tampering by connecting to a decoy server under
our control, and flagging an exit relay as malicious if the
returned HTML or HTTP was modified, e.g., to inject
data or redirect a user over a transparent HTTP proxy.
Since we controlled the decoy server, we knew what our
Tor client should get in response. Our modules ran pe-
riodically from August 2014 to January 2016, and dis-
covered 251 malicious exit relays whose attacks are dis-
cussed in Appendix A. We reported all relays to The Tor
Project, which subsequently blocked these relays.

4

USENIX Association 25th USENIX Security Symposium 1173

CSV file

Image
Consensuses

and descriptors

sybilhunter

Filter Fingerprints
Churn

Uptime

Suspicious
relays

Figure 3: Sybilhunter’s internal architecture. After an
optional filtering step, data is then passed on to one of
three analysis modules that produce as output either CSV
files or an image.

4.2 Threat model
Most of this paper is about applying sybilhunter to
archived network data, but we can also apply it to newly
incoming data. This puts us in an adversarial setting
as attackers can tune their Sybils to evade our system.
This is reflected in our adversarial assumptions. We as-
sume that an adversary does run more than one Tor re-
lay and exhibits redundancy in their relay configuration,
or uptime sequence. An adversary further can know
how sybilhunter’s modules work, run active or passive
attacks, and make a limited effort to stay under the radar,
by diversifying parts of their configuration. To detect
Sybils, however, our heuristics require some redundancy.

4.3 Analysis techniques
Having discussed our datasets and threat model, we now
turn to presenting techniques that can expose Sybils. Our
techniques are based on the insight that Sybil relays fre-
quently behave or appear similarly. Shared configu-
ration parameters such as port numbers and nicknames
cause similar appearance whereas Sybils behave simi-
larly when they reboot simultaneously, or exhibit iden-
tical quirks when relaying traffic.

Sybilhunter can analyze (i) historical network data,
dating back to 2007; (ii) online data, to detect new Sybils
as they join the network; and (iii) find relays that might
be associated with previously discovered, malicious re-
lays. Figure 3 shows sybilhunter’s internal architecture.
Tor network data first passes a filtering component that
can be used to inspect a subset of the data, e.g., only
relays with a given IP address or nickname. The data
is then forwarded to one or more modules that imple-
ment an analysis technique. These modules work inde-
pendently, but share a data structure to find suspicious re-
lays that show up in more than one module. Depending
on the analysis technique, sybilhunter’s output is either
CSV files or images.

While developing sybilhunter, we had to make many
design decisions that we tackled by drawing on the expe-
rience we gained by manually analyzing numerous Sybil

groups. We iteratively improved our code and augmented
it with new features when we experienced operational
shortcomings.

4.3.1 Network churn

The churn rate of a distributed system captures the rate
of joining and leaving network participants. In the Tor
network, these participants are relays. An unexpect-
edly high churn rate between two subsequent consen-
suses means that many relays joined or left, which can re-
veal Sybils and other network issues because many Sybil
operators start and stop their Sybils at the same time, to
ease administration—they behave similarly.

The Tor Project is maintaining a Python script [15]
that determines the number of previously unobserved re-
lay fingerprints in new consensuses. If that number is
greater than or equal to the static threshold 50, the script
sends an e-mail alert. We reimplemented the script in
sybilhunter and ran it over all archived consensus docu-
ments, dating back to 2007. The script raised 47 alerts
in nine years, all of which seemed to be true positives,
i.e., they should be of interest to The Tor Project. The
script did not raise false positives, presumably because
the median number of previously unseen fingerprints in
a consensus is only six—significantly below the conser-
vative threshold of 50. Yet, the threshold likely causes
false negatives, but we cannot determine the false nega-
tive rate because we lack ground truth. In addition, The
Tor Project’s script does not consider relays that left the
network, does not distinguish between relays with differ-
ent flags, and does not adapt its threshold as the network
grows. We now present an alternative approach that is
more flexible and robust.

We found that churn anomalies worthy of our attention
range from flat hills (Figure 4) to sudden spikes (Fig-
ure 5). Flat hills can be a sign of an event that affected a
large number of relays, over many hours or days. Such
an event happened shortly after the Heartbleed bug, when
The Tor Project asked relay operators to generate new
keys. Relay operators acted gradually, most within two
days. Sudden spikes can happen if an attacker adds many
relays, all at once. These are mere examples, however;
the shape of a time series cannot tell us anything about
the nature of the underlying incident.

To quantify the churn rate α between two subsequent
consensus documents, we adapt Godfrey et al.’s formula,
which yields a churn value that captures both systems
that joined and systems that left the network [13, § 2.1].
However, an unusually low number of systems that left
could cancel out an unusually high number of new sys-
tems and vice versa—an undesired property for a tech-
nique that should spot abnormal changes. To address
this issue, we split the formula in two parts, creating a

5

1174 25th USENIX Security Symposium USENIX Association

5
1

0
1

5

Time

N
e
w

 r
e

la
y
s
 p

e
r

h
o

u
r

Jun 05 Jun 15 Jun 25 Jul 05 Jul 15

Figure 4: A flat hill of new relays in 2009. The time
series was smoothed using a moving average with a win-
dow size of 12 hours.

5
1

0
2

0

Time

N
e
w

 r
e

la
y
s
 p

e
r

h
o

u
r

Sep 03 Sep 08 Sep 13 Sep 18 Sep 23 Sep 28

Figure 5: A sudden spike of new relays in 2010. The
time series was smoothed using a moving average with a
window size of 12 hours.

time series for new relays (αn) and for relays that left
(αl). Ct is the network consensus at time t, and \ denotes
the complement between two consensuses, i.e., the relays
that are in the left operand, but not the right operand. We
define αn and αl as

αn =
|Ct \Ct−1|

|Ct |
and αl =

|Ct−1 \Ct |
|Ct−1|

. (1)

Both αn and αl are bounded to the interval [0,1]. A
churn value of 0 indicates no change between two subse-
quent consensuses whereas a churn value of 1 indicates
a complete turnover. Determining αn,l for the sequence
Ct ,Ct−1, . . . , Ct−n, yields a time series of churn values
that can readily be inspected for abnormal spikes. Fig-
ure 6 illustrates the maximum number of Sybils an at-
tacker can add to the network given a threshold for α .
The figure shows both the theoretical maximum and a
more realistic estimate that accounts for noise, i.e., the
median number of new relays in each consensus, which
is 73.4 We found that many churn anomalies are caused
by relays that share a flag, or a flag combination, e.g.,
HSDir (onion service directories) and Exit (exit relays).
Therefore, sybilhunter can also generate per-flag churn
time series that can uncover patterns that would be lost
in a flag-agnostic time series.

4Note that this analysis is “memoryless” and includes relays that
have been online before; unlike the analysis above that considered only
previously unobserved relays, for which the median number was six.

0.02 0.04 0.06 0.08

0
20

0
40

0
60

0

Threshold for churn value α

M
ax

. u
nd

et
ec

te
d

Sy
bi

ls

Maximum
Realistic

Figure 6: The number of new Sybils (y axis) that can
remain undetected given a threshold for the churn value
α (x axis). The diagram shows both the maximum and a
more realistic estimate that accounts for the median num-
ber of new relays in consensuses.

Finally, to detect changes in the underlying time se-
ries trend—flat hills—we can smooth αn,l using a simple
moving average λ defined as

λ =
1
w
·

w

∑
i=0

αi. (2)

As we increase the window size w, we can detect more
subtle changes in the underlying churn trend. If λ or αn,l
exceed a manually defined threshold, an alert is raised.
Section 5.3 elaborates on how we can select a threshold
in practice.

4.3.2 Uptime matrix

For convenience, Sybil operators are likely to administer
their relays simultaneously, i.e., update, configure, and
reboot them all at the same time. This is reflected in their
relays’ uptime. An operating system upgrade that re-
quires a reboot of Sybil relays will induce a set of relays
to go offline and return online in a synchronized manner.
To isolate such events, we are visualizing the uptime pat-
terns of Tor relays by grouping together relays whose up-
time is highly correlated. The churn technique presented
above is similar but it only provides an aggregate, high-
level view on how Tor relays join and leave the network.
Since the technique is aggregate, it is poorly suited for
visualizing the uptime of specific relays; an abnormally
high churn value attracts our attention but does not tell
us what caused the anomaly. To fill this gap, we comple-
ment the churn analysis with an uptime matrix that we
will now present.

This uptime matrix consists of the uptime patterns of
all Tor relays, which we represent as binary sequences.
Each hour, when a new consensus is published, we add
a new data point—“online” or “offline”—to each Tor re-
lay’s sequence. We visualize all sequences in a bitmap
whose rows represent consensuses and whose columns

6

USENIX Association 25th USENIX Security Symposium 1175

Figure 7: The uptime matrix for 3,000 Tor relays for
all of November 2012. Rows represent consensuses and
columns represent relays. Black pixels mean that a relay
was online, and white means offline. Red blocks denote
relays with identical uptime.

represent relays. Each pixel denotes the uptime status
of a particular relay at a particular hour. Black pixels
mean that the relay was online and white pixels mean
that the relay was offline. This type of visualization was
first proposed by Ensafi and subsequently implemented
by Fifield [12].

Of particular importance is how the uptime sequences
are sorted. If highly correlated sequences are not adja-
cent in the visualization, we might miss them. We sort
sequences using single-linkage clustering, a type of hier-
archical clustering algorithm that forms groups bottom-
up, based on the minimum distance between group mem-
bers. For our distance function, similar to Andersen et
al. [1, § II.B], we use Pearson’s correlation coefficient
because it tells us if two uptime sequences change to-
gether. The sample correlation coefficient r yields a
value in the interval [−1,1]. A coefficient of −1 denotes
perfect anti-correlation (relay R1 is only online when re-
lay R2 is offline) and 1 denotes perfect correlation (relay
R1 is only online when relay R2 is online). We define our
distance function as d(r) = 1− r, so two perfectly cor-
related sequences have a distance of zero while two per-
fectly anti-correlated sequences have a distance of two.
Once all sequences are sorted, we color five or more ad-
jacent sequences in red if their uptime sequence is iden-
tical. Figure 7 shows an example of our visualization al-
gorithm, the uptime matrix for a subset of all Tor relays
in November 2012.

4.3.3 Fingerprint analysis

The information a Tor client needs to connect to an onion
service is stored in a DHT that consists of a subset of all
Tor relays, the onion service directories (HSDirs). As
of June 2016, 47% of all Tor relays serve as HSDirs. A
daily-changing set of six HSDirs hosts the contact infor-
mation of any given onion service. Tor clients contact
one of these six HSDirs to request information about the
onion service they intend to connect to. A HSDir be-
comes responsible for an onion service if the difference
between its relay fingerprint and the service’s descriptor
ID is smaller than that of any other relay. The descrip-

tor ID is derived from the onion service’s public key, a
time stamp, and additional information. All HSDirs are
public, making it possible to determine at which posi-
tion in the DHT an onion service will end up at any point
in the future. Attackers can exploit the ability to pre-
dict the DHT position by repeatedly generating identity
keys until their fingerprint is sufficiently close to the tar-
geted onion service’s index, thus becoming its HSDir [4,
§ V.A].

We detect relays that change their fingerprint fre-
quently by maintaining a lookup table that maps a relay’s
IP address to a list of all fingerprints we have seen it use.
We sort the lookup table by the relays that changed their
fingerprints the most, and output the results. Note that
reboots or newly assigned IP addresses are not an issue
for this technique—as long as relays do not lose their
long-term keys that are stored on their hard drive, their
fingerprint stays the same.

4.3.4 Nearest-neighbor ranking

We frequently found ourselves in a situation where ex-
itmap discovered a malicious exit relay and we were left
wondering if there were similar, potentially associated
relays. Looking for such relays involved tedious manual
work, which we soon started to automate. We needed
an algorithm for nearest-neighbor ranking that takes as
input a “seed” relay and creates as output a list of all re-
lays, ranked by their similarity to the seed relay. We de-
fine similarity as shared configuration parameters such as
port numbers, IP addresses, exit policies, or bandwidth
values. Our algorithm ranks relays by comparing these
configuration parameters.

To quantify the similarity between two relays, we
use the Levenshtein distance [18], a distance metric that
takes as input two strings and determines the minimum
number of modifications—insert, delete, and modify—
that are necessary to turn string s2 into s1. Our algorithm
turns the router statuses and descriptors of two relays into
strings and determines their Levenshtein distance. As an
example, consider a simple representation consisting of
the concatenation of nickname, IP address, and port. To
turn string s2 into s1, six operations are necessary; four
modifications (green) and two deletions (red):

s1: Foo10.0.0.19001
s2: Bar10.0.0.2549001
Our algorithm determines the Levenshtein distance

between a “seed” relay and all other relays in a consen-
sus. It then ranks the calculated distances in ascending
order. For a consensus consisting of 6,525 relays, our al-
gorithm takes approximately 1.5 seconds to finish.5 Note

5We measured on an Intel Core i7-3520M CPU at 2.9 GHz, a
consumer-grade CPU.

7

1176 25th USENIX Security Symposium USENIX Association

that we designed our ranking algorithm to assist in man-
ual analysis. Unlike the other analysis techniques, it does
not require a threshold.

5 Evaluation and results

Equipped with sybilhunter, we applied our techniques to
nine years of archived Tor network data. We did not set
any thresholds, to capture every single churn value, fin-
gerprint, and uptime sequence, resulting in an unfiltered
dataset of several megabytes of CSV files and uptime
images. We then sorted this dataset in descending or-
der by severity, and began manually analyzing the most
significant incidents, e.g., the largest churn values. In
Section 5.1, we begin by characterizing Sybil groups we
discovered that way. Instead of providing an exhaustive
list of all potential Sybils, we focus on our most salient
findings—relay groups that were either clearly malicious
or distinguished themselves otherwise.6 Afterwards, we
explore the impact of sybilhunter’s thresholds in Sec-
tions 5.2 to 5.6.

Once we discovered a seemingly harmful Sybil group,
we reported it to The Tor Project. To defend against
Sybil attacks, directory authorities can either remove a
relay from the consensus, or take away its Valid flag,
which means that the relay is still in the consensus, but
Tor clients will not consider it for their first or last hop in
a circuit. The majority of directory authorities, i.e., five
out of nine, must agree on either strategy. This mecha-
nism is meant to distribute the power of removing relays
into the hands of a diverse set of people in different ju-
risdictions.

5.1 Sybil characterization
Table 2 shows the most interesting Sybil groups we iden-
tified. The columns show (i) what we believe to be the
purpose of the Sybils, (ii) when the Sybil group was at
its peak size, (iii) the ID we gave the Sybils, (iv) the
number of Sybil fingerprints at its peak, (v) the analysis
techniques that could discover the Sybils, and (vi) a short
description. The analysis techniques are abbreviated as
“N” (Neighbor ranking), “F” (Fingerprint), “C” (Churn),
“U” (Uptime), and “E” (exitmap). We now discuss the
most insightful incidents in greater detail.

The “rewrite” Sybils These recurring Sybils hijacked
Bitcoin transactions by rewriting Bitcoin addresses in re-
layed HTML. All relays had the Exit flag and replaced
onion domains found in a web server’s HTTP response

6Our datasets and visualizations are available online, and can be
inspected for an exhaustive set of potential Sybils. The URL is
https://nymity.ch/sybilhunting/.

with an impersonation domain, presumably hosted by
the attacker. Interestingly, the impersonation domains
shared a prefix with the original. For example, the do-
main sigaintevyh2rzvw.onion was replaced with the im-
personation domain sigaintz7qjj3val.onion whose first
seven digits are identical to the original. The attacker
could create shared prefixes by repeatedly generating key
pairs until the hash over the public key resembled the de-
sired prefix. Onion domains are generated by determin-
ing the SHA-1 hash over the public key, truncating it to
its 80 most significant bits, and encoding it in Base32.
Each Base32 digit of the 16-digit-domain represents five
bits. Therefore, to get an n-digit prefix in the onion do-
main, 25n−1 operations are required on average. For the
seven-digit prefix above, this results in 25·7−1 = 234 op-
erations. The author of scallion [30], a tool for gener-
ating vanity onion domains, determined that an nVidia
Quadro K2000M, a mid-range laptop GPU, is able to
generate 90 million hashes per second. On this GPU,
a partial collision for a seven-digit prefix can be found
in 234 · 1

90,000,000 � 190 seconds, i.e., just over three min-
utes.

We inspected some of the phishing domains and found
that the attackers further replaced the original Bitcoin ad-
dresses with addresses that are presumably controlled by
the attackers, enabling them to hijack Bitcoin transac-
tions. As a result, we believe that the attack was finan-
cially motivated.

The “redirect” Sybils These relays all had the Exit

flag and tampered with HTTP redirects of exit traffic.
To protect their users’ login credentials, some Bitcoin
sites would redirect users from their HTTP site to the
encrypted HTTPS version. This Sybil group tampered
with the redirect and directed users to an impersonation
site, resembling the original Bitcoin site, probably to
steal credentials. We only observed this attack for Bit-
coin sites, but cannot rule out that other sites were not
attacked.

Interestingly, the Sybils’ descriptors and consensus
entries had less in common than other Sybil groups.
They used a small set of different ports, Tor versions,
bandwidth values, and their nicknames did not exhibit
an easily-recognizable pattern. In fact, the only reason
why we know that these Sybils belong together is be-
cause their attack was identical.

We discovered three Sybil groups that implemented
the redirect attack, each of them beginning to surface
when the previous one got blocked. The initial group
first showed up in May 2014, with only two relays, but
slowly grew over time, until it was finally discovered in
January 2015. We believe that these Sybils were run by
the same attacker because their attack was identical.

It is possible that this Sybil group was run by the same

8

USENIX Association 25th USENIX Security Symposium 1177

Purpose Peak activity Group ID Number Neig
hbor

Fingerp
rin

t

Churn
Uptim

e

Exitm
ap

Description

MitM Jan 2016 rewrite∗ 42 E Replaced onion domains with impersonation site.
Nov 2015 rewrite∗ 8 E Replaced onion domains with impersonation site.
Jun 2015 rewrite∗ 55 E Replaced onion domains with impersonation site.
Apr 2015 rewrite∗ 71 U,E Replaced onion domains with impersonation site.
Mar 2015 redirect† 24 E Redirected users to impersonated site.
Feb 2015 redirect† 17 E Redirected users to impersonated site.
Jan 2015 redirect† 26 E Redirected users to impersonated site.

Botnet Mar 2014 default — N Likely a Windows-powered botnet. The group fea-
tures wide geographical distribution, which is uncom-
mon for typical Tor relays.

Oct 2010 trotsky 649 N The relays were likely part of a botnet. They appeared
gradually, and were all running Windows.

Unknown Jan 2016 cloudvps 61 C,U Hosted by Dutch hoster XL Internet Services.
Nov 2015 11BX1371 150 C,U All relays were in two /24 networks and a single relay

had the Exit flag.
Jul 2015 DenkoNet 58 U Hosted on Amazon AWS and only present in a single

consensus. No relay had the Exit flag.
Jul 2015 cloudvps 55 C,U All relays only had the Running and Valid flag. As

their name suggests, the relays were hosted by the
Dutch hoster “CloudVPS.”

Dec 2014 Anonpoke 284 C,U The relays did not have the Exit flag and were re-
moved from the network before they could get the
HSDir flag.

Dec 2014 FuslVZTOR 246 C,U The relays showed up only hours after the LizardNSA
incident.

DoS Dec 2014 LizardNSA 4,615 C,U A group publicly claimed to be responsible for the at-
tack [24]. All relays were hosted in the Google cloud
and The Tor Project removed them within hours.

Research May 2015 fingerprints 168 F All twelve IP addresses, located in the same /24,
changed their fingerprint regularly, presumably in an
attempt to manipulate the distributed hash table.

Mar 2014 FDCservers 264 C,U Relays that were involved in an experimental onion
service deanonymization attack [8].

Feb 2013 AmazonEC2 1,424 F,C,U We observed 1,424 relay fingerprints on 88 IP ad-
dresses. These Sybils were likely part of a research
project [4, § V].

Jun 2010 planetlab 595 C,U According to a report from The Tor Project [20], a re-
searcher started these relays to learn more about scal-
ability effects.

Table 2: The most salient Sybil groups that sybilhunter and our exitmap modules discovered. We believe that groups
marked with the symbols ∗ and † were run by the same operator, respectively. Note that sybilhunter was unable to
detect six Sybil groups in the category “MitM.”

attackers that controlled the “rewrite” group but we have
no evidence to support that hypothesis. Interestingly,
only our exitmap module was able to spot these Sybils.
The relays joined the network gradually over time and
had little in common in their configuration, which is why
our heuristics failed. In fact, we cannot rule out that the

adversary was upstream of the exit relay, or gained con-
trol over these relays.

The “FDCservers” Sybils Attackers used these Sybils
to deanonymize onion service users, as discussed by
The Tor Project in a July 2014 blog post [8]. Sup-

9

1178 25th USENIX Security Symposium USENIX Association

0
10

0
20

0
30

0

Time

N
um

be
r o

f S
yb

il
re

la
ys

Jan 2008 Jan 2010 Jan 2012 Jan 2014 Jan 2016

default
trotsky

Figure 8: The number of “default” and “trotsky” Sybil
members over time.

posedly, CMU/SEI-affiliated researchers were executing
a traffic confirmation attack by sending sequences of
RELAY_EARLY and RELAY cells as a signal down the cir-
cuit to the client, which the reference implementation
never does [8, 7]. The attacking relays were both onion
service directories and guards, allowing them to control
both ends of the circuit for some Tor clients that were
fetching onion service descriptors. Therefore, the re-
lays could tell for a fraction of Tor users what onion
service they were intending to visit. Most relays were
running FreeBSD, used Tor in version 0.2.4.18-rc, had
identical flags, mostly identical bandwidth values, and
were located in 50.7.0.0/16 and 204.45.0.0/16. All of
these shared configuration options made the relays easy
to identify.

The relays were added to the network in batches, pre-
sumably starting in October 2013. On January 30, 2014,
the attackers added 58 relays to the 63 existing ones, giv-
ing them control over 121 relays. On July 8, 2014, The
Tor Project blocked all 123 IP addresses that were run-
ning at the time.

The “default” Sybils This group, named after the
Sybils’ shared nickname “default,” has been around since
September 2011 and consists of Windows-powered re-
lays only. We extracted relays by filtering consensuses
for the nickname “default,” onion routing port 443, and
directory port 9030. The group features high IP address
churn. For October 2015, we found “default” relays in
73 countries, with the top three countries being Ger-
many (50%), Russia (8%), and Austria (7%). The ma-
jority of these relays had little uptime and exhibited a
diurnal pattern, suggesting that they were powered off
regularly—as it often is the case for desktop computers
and laptops.

To get a better understanding of the number of “de-
fault” relays over time, we analyzed all consensuses, ex-
tracting the number of relays whose nickname was “de-
fault,” whose onion routing port was 443, and whose di-
rectory port was 9030. We did this for the first consensus

every day and plot the result in Figure 8. Note that we
might overestimate the numbers as our filter could cap-
ture unrelated relays.

The above suggests that some of the “default” relays
are running without the owner’s knowledge. While the
relays do not fit the pattern of Sefnit (a.k.a. Mevade) [26]
and Skynet [27]—two pieces of malware that use an
onion service as command and control server—we be-
lieve that the “default” relays constitute a botnet.

The “trotsky” Sybils Similar to the “default” group,
the “trotsky” relays appear to be part of a botnet. Most
of the relays’ IP addresses were located in Eastern Eu-
rope, in particular in Slovenia, Croatia, and Bosnia and
Herzegovina. The relays were all running on Windows,
in version 0.2.1.26, and listening on port 443. Most of
the relays were configured as exits, and The Tor Project
assigned some of them the BadExit flag.

The first “trotsky” members appeared in September
2010. Over time, there were two relay peaks, reaching
139 (September 23) and 219 (October 3) relays, as illus-
trated in Figure 8. After that, only 1–3 relays remained
in the consensus.

The “Amazon EC2” Sybils The relays all used
randomly-generated nicknames, consisting of sixteen or
seventeen letters and numbers; Tor in version 0.2.2.37;
GNU/Linux; and IP addresses in Amazon’s EC2 net-
block. Each of the 88 IP addresses changed its finger-
print 24 times, but not randomly: the fingerprints were
chosen systematically, in a small range. For example, re-
lay 54.242.248.129 had fingerprints with the prefixes 8D,
8E, 8F, and 90. The relays were online for 48 hours. Af-
ter 24 hours, most of the relays obtained the HSDir flag.
This behavior appears to be a clear attempt to manipulate
Tor’s DHT.

We believe that this Sybil group was run by Biryukov,
Pustogarov, and Weinmann as part of their Security
and Privacy 2013 paper “Trawling for Tor Hidden Ser-
vices” [4]—one of the few Sybil groups that were likely
run by academic researchers.

The “Anonpoke” Sybils All relays shared the nick-
name “Anonpoke” and were online for four hours un-
til they were rejected. All relays were hosted by a VPS
provider in the U.S., Rackspace, with the curious excep-
tion of a single relay that was hosted in the UK, and run-
ning a different Tor version. The relays advertized the
default bandwidth of 1 GiB/s on port 9001 and 9030. All
relays were middle relays and running as directory mir-
ror. All Sybils were configured to be an onion service
directory, but did not manage to get the flag in time.

10

USENIX Association 25th USENIX Security Symposium 1179

The “PlanetLab” Sybils A set of relays that used a
variation of the strings “planet”, “plab”, “pl”, and “plan-
etlab” as their nickname. The relays’ exit policy allowed
ports 6660–6667, but they did not get the Exit flag. The
Sybils were online for three days and then removed by
The Tor Project, as mentioned in a blog post [20]. The
blog post further says that the relays were run by a re-
searcher to learn more about “cloud computing and scal-
ing effects.”

The “LizardNSA” Sybils All relays were hosted in
the Google Cloud and only online for ten hours, until the
directory authorities started to reject them. The majority
of machines were middle relays (96%), but the attack-
ers also started some exit relays (4%). The Sybils were
set up to be onion service directories, but the relays were
taken offline before they could earn the HSDir flag. If all
relays would have obtained the HSDir flag, they would
have constituted almost 50% of all onion service directo-
ries; the median number of onion service directories on
December 26 was 3,551.

Shortly after the attack began, somebody claimed re-
sponsibility on the tor-talk mailing list [24]. Judging by
the supposed attacker’s demeanor, the attack was mere
mischief.

The “FuslVZTOR” Sybils All machines were mid-
dle relays and hosted in the netblock 212.38.181.0/24,
owned by a UK VPS provider. The directory authorities
started rejecting the relays five hours after they joined the
network. The relays advertized the default bandwidth of
1 GiB/s and used randomly determined ports. The Sybils
were active in parallel to the “LizardNSA” attack, but
there is no reason to believe that both incidents were re-
lated.

5.2 Alerts per method
Having investigated the different types of alerts our
methods raised, we now provide intuition on how many
of these alerts we would face in practice. To this end,
we first determined conservative thresholds, chosen to
yield a manageable number of alerts per week. For net-
work churn, we set the threshold for αn for relays with
the Valid flag to 0.017. For the fingerprint method, we
raised an alert if a relay changed its fingerprint at least ten
times per month, and for uptime visualizations we raised
an alert if at least five relays exhibited an identical up-
time sequence. We used a variety of analysis windows to
achieve representative results. For example, the Tor net-
work’s churn rate slowly reduced over the years, which
is why we only analyzed 2015 and 2016. Table 3 shows
the results. For comparison, the table also shows our ex-
itmap modules, which did not require any thresholds.

Exit V2Dir Fast Valid Guard HSDir Stable

0.
00

0.
10

0.
20

Relay flags

C
hu

rn
 ra

te

Figure 9: The churn distribution for seven relay flags.
We removed values greater than the plot whiskers.

5.3 Churn rate analysis

We determined the churn rate between two subsequent
consensuses for all 72,061 consensuses that were pub-
lished between October 2007 and January 2016. Consid-
ering that (i) there are 162 gaps in the archived data, that
(ii) we created time series for joining and leaving relays,
and that (iii) we determined churn values for all twelve
relay flags, we ended up with (72,061− 162) · 2 · 12 =
1,725,576 churn values. Figure 9 shows a box plot for
the churn distribution (joining and leaving churn values
concatenated) for the seven most relevant relay flags. We
removed values greater than the plot whiskers (which
extend to values 1.5 times the interquartile range from
the box) to better visualize the width of the distribu-
tions. Unsurprisingly, relays with the Guard, HSDir, and
Stable flag experience the least churn, probably because
relays are only awarded these flags if they are particu-
larly stable. Exit relays have the most churn, which is
surprising given that exit relays are particularly sensitive
to operate. Interestingly, the median churn rate of the
network has steadily decreased over the years, from 0.04
in 2008 to 0.02 in 2015.

Figure 10 illustrates churn rates for five days in Au-
gust 2008, featuring the most significant anomaly in our
data. On August 19, 822 relays left the network, result-
ing in a sudden spike, and a baseline shift. The spike
was caused by the Tor network’s switch from consensus
format version three to four. The changelog says that in
version four, routers that do not have the Running flag
are no longer listed in the consensus.

To alleviate the choice of a detection threshold, we
plot the number of alerts (in log scale) in 2015 as the
threshold increases. We calculate these numbers for
three simple moving average window sizes. The result
is shown in Figure 11. Depending on the window size,
thresholds greater than 0.012 seem practical considering
that 181 alerts per year average to approximately one
alert in two days—a tolerable number of incidents to in-
vestigate. Unfortunately, we are unable to determine the
false positive rate because we do not have ground truth.

11

1180 25th USENIX Security Symposium USENIX Association

Method Analysis window Threshold Total alerts Alerts per week

Fingerprint 10/2007–01/2016 10 551 1.3
Churn 01/2015–01/2016 0.017 110 1.9
Uptimes 01/2009–01/2016 5 3,052 8.3

Exitmap 08/2014–01/2016 — 251 3.2

Table 3: The number of alerts our methods raised. We used different analysis windows for representative results, and
chose conservative thresholds to keep the number of alerts per week manageable.

-0
.4

0.
0

0.
4

Time

C
hu

rn
 ra

te

Aug 16 Aug 17 Aug 18 Aug 19 Aug 20 Aug 21

Figure 10: In August 2008, an upgrade in Tor’s consen-
sus format caused the biggest anomaly in our dataset.
The positive time series represents relays that joined and
the negative one represents relays that left.

0.010 0.014 0.018 0.022

20
10

0
10

00

Threshold

Al
er

ts
 (l

og
)

1 hour
12 hours
24 hours

Figure 11: The number of alerts (in log scale) in 2015
as the detection threshold increases, for three smoothing
window sizes.

5.4 Uptime analysis

We generated relay uptime visualizations for each month
since 2007, resulting in 100 images. We now discuss
a subset of these images, those containing particularly
interesting patterns.

Figure 12 shows June 2010, featuring a clear “Sybil
block” in the center. The Sybils belonged to a researcher
who, as documented by The Tor Project [20], started
several hundred Tor relays on PlanetLab for research
on scalability (the “PlanetLab” Sybils discussed above).
Our manual analysis could verify this. The relays were
easy to identify because their nicknames suggested that
they were hosted on PlanetLab, containing strings such
as “planetlab,” “planet,” and “plab.” Note the small

Figure 12: In June 2010, a researcher started several hun-
dred Tor relays on PlanetLab [20]. The image shows the
uptime of 2,000 relays for all of June.

Figure 13: August 2012 featured a curious “step pattern,”
caused by approximately 100 Sybils. The image shows
the uptime of 2,000 relays for all of August.

height of the Sybil block, indicating that the relays were
only online for a short time.

Figure 13 features a curious “step pattern” for approx-
imately 100 relays, all of which were located in Russia
and Germany. The relays appeared in December 2011,
and started exhibiting the diurnal step pattern (nine hours
uptime followed by fifteen hours downtime) in March
2012. All relays had similar nicknames, consisting of
eight seemingly randomly-generated characters. In April
2013, the relays finally disappeared.

Figure 14 illustrates the largest Sybil group to date,
comprising 4,615 Tor relays (the “LizardNSA” Sybils
discussed above). An attacker set up these relays in the
Google cloud in December 2014. Because of its magni-
tude, the attack was spotted almost instantly, and The Tor
Project removed the offending relays only ten hours after
they appeared.

12

USENIX Association 25th USENIX Security Symposium 1181

Figure 14: In December 2014, an attacker started sev-
eral thousand Tor relays in the Google cloud. The image
shows the uptime of 4,000 relays for all of December.

0 200 400 600 800

IP addresses (0.03 percentile)

O
bs

er
ve

d
fin

ge
rp

rin
ts

10
50

20
0

1,
00

0

Figure 15: The number of observed fingerprints for the
1,000 relays that changed their fingerprints the most.

5.5 Fingerprint anomalies

We determined how often all Tor relays changed their
fingerprint from 2007 to 2015. Figure 15 illustrates the
number of fingerprints (y axis) we have observed for the
1,000 Tor relays (x axis) that changed their fingerprint the
most. All these relays changed their fingerprint at least
ten times. Twenty-one relays changed their fingerprint
more than 100 times, and the relay at the very right end
of the distribution changed its fingerprint 936 times. This
relay’s nickname was “openwrt,” suggesting that it was
a home router that was rebooted regularly, presumably
losing its long-term keys in the process. The relay was
running from August 2010 to December 2010.

Figure 15 further contains a peculiar plateau, shown
in the shaded area between index 707 and 803. This
plateau was caused by a group of Sybils, hosted in Ama-
zon EC2, that changed their fingerprint exactly 24 times
(the “Amazon EC2” Sybils discussed above). Upon in-
spection, we noticed that this was likely an experiment
for a Security and Privacy 2013 paper on deanonymizing
Tor onion services [4, § V].

We also found that many IP addresses in the netblock
199.254.238.0/24 frequently changed their fingerprint.
We contacted the owner of the address block and were
told that the block used to host VPN services. Appar-
ently, several people started Tor relays and since the VPN
service would not assign permanent IP addresses, the Tor
relays would periodically change their address, causing
the churn we observe.

5.6 Accuracy of nearest-neighbor ranking

Given a Sybil relay, how good is our nearest-neighbor
ranking at finding the remaining Sybils? To answer
this question, we now evaluate our algorithm’s accuracy,
which we define as the fraction of neighbors it correctly
labels as Sybils. For example, if eight out of ten Sybils
are correctly labeled as neighbors, the accuracy is 0.8.

A sound evaluation requires ground truth, i.e., relays
that are known to be Sybils. All we have, however, are re-
lays that we believe to be Sybils. In addition, the number
of Sybils we found is only a lower bound—we are un-
likely to have detected all Sybil groups. Therefore, our
evaluation is doomed to overestimate our algorithm’s ac-
curacy because we are unable to test it on the Sybils we
did not discover.

We evaluate our ranking algorithm on two datasets; the
“bad exit” Sybil groups from Table 5, and relay families.
We chose the bad exit Sybils because we observed them
running identical, active attacks, which makes us confi-
dent that they are in fact Sybils. Recall that a relay family
is a set of Tor relays that is controlled by a single opera-
tor, but configured to express this mutual relationship in
the family members’ configuration file. Therefore, relay
families are benign Sybils. As of January 2016, approx-
imately 400 families populate the Tor network, ranging
in size from only two to 25 relays.

We evaluate our algorithm by finding the nearest
neighbors of a family member. Ideally, all neighbors
are family members, but the use of relay families as
ground truth is very likely to overestimate results because
family operators frequently configure their relays iden-
tically on purpose. At the time of this writing, a pop-
ular relay family has the nicknames “AccessNow000”
to “AccessNow009,” adjacent IP addresses, and identi-
cal contact information—perfect prerequisites for our al-
gorithm. We expect the operators of malicious Sybils,
however, to go out of their way to obscure the relation-
ship between their relays.

To determine our algorithm’s accuracy, we used all re-
lay families that were present in the first consensus that
was published in October 2015. For each relay that had
at least one mutual family relationship, we determined its
n−1 nearest neighbors where n is the family size. Basi-
cally, we evaluated how good our algorithm is at find-
ing the relatives of a family member. We determined
the accuracy—a value in [0,1]—for each family mem-
ber. The result is shown in Figure 16(b), a distribution of
accuracy values.

Next, we repeated the evaluation with the bad exit
Sybil groups from Table 5. Again, we determined the
n−1 nearest neighbors of all bad exit relays, where n is
the size of the Sybil group. The accuracy is the fraction
of relays that our algorithm correctly classified as neigh-

13

1182 25th USENIX Security Symposium USENIX Association

0.0 0.4 0.8

0.
0

0.
4

0.
8

Accuracy

C
D

F
of

 S
yb

il
gr

ou
ps

(a) Bad exit relay Sybils

0.0 0.4 0.8

0.
0

0.
4

0.
8

Accuracy

C
D

F
of

 S
yb

il
gr

ou
ps

(b) Benign family Sybils

Figure 16: ECDF for our two evaluations, the bad exit
Sybils in Fig. 16(a) and the benign family Sybils in
Fig. 16(b).

Method Analysis window Run time

Churn Two consensuses ∼0.2s
Neighbor ranking One consensus ∼1.6s
Fingerprint One month ∼58.0s
Uptimes One month ∼145.0s

Table 4: The computational cost of our analysis tech-
niques.

bor. The result is illustrated in Figure 16(a).
As expected, our algorithm is significantly more ac-

curate for the family dataset—66% of rankings had per-
fect accuracy. The bad exit dataset, however, did worse.
Not a single ranking had perfect accuracy and 59% of all
rankings had an accuracy in the interval [0.3,0.6]. Nev-
ertheless, we find that our algorithm facilitates manual
analysis given how quickly it can provide us with a list
of the most similar relays. Besides, inaccurate results
(i.e., similar neighbors that are not Sybils) are cheap as
sybilhunter users would not spend much time on neigh-
bors that bear little resemblance to the “seed” relay.

5.7 Computational cost
Fast techniques lend themselves to being run hourly, for
every new consensus, while slower ones must be run less
frequent. Table 4 gives an overview of the runtime of our
methods.7 We stored our datasets on a solid state drive
to eliminate I/O as performance bottleneck.

The table columns contain, from left to right, our anal-
ysis technique, the technique’s analysis window, and how
long it takes to compute its output. Network churn cal-
culation is very fast; it takes as input only two consensus
files and can easily be run for every new network con-
sensus. Nearest-neighbor ranking takes approximately
1.6 seconds for a single consensus counting 6,942 relays.
Fingerprint and uptime analysis for one month worth of

7We determined all performance numbers on an Intel Core i7-
3520M CPU at 2.9 GHz, a consumer-grade CPU.

consensuses takes approximately one and two minutes,
respectively—easy to invoke daily, or even several times
a day.

6 Discussion

Having used sybilhunter in practice for several months,
we now elaborate on both our operational experience and
the shortcomings we encountered.

6.1 Operational experience
Our practical work with sybilhunter taught us that an-
alyzing Sybils frequently requires manual verification,
e.g., (i) comparing an emerging Sybil group with a pre-
viously disclosed one, (ii) using exitmap to send decoy
traffic over Sybils, or (iii) sorting and comparing infor-
mation in relay descriptors. We found that the amount of
manual work greatly depends on the Sybils under inves-
tigation. The MitM groups in Table 2 were straightfor-
ward to spot—in a matter of minutes—while the botnets
required a few hours of effort. It is difficult to predict
all analysis scenarios that might arise in the future, so
we designed sybilhunter to be interoperable with Unix
command line tools [28]. Sybilhunter’s CSV-formatted
output can easily be piped into tools such as sed, awk,
and grep. We found that compact text output was signif-
icantly easier to process, both for plotting and for man-
ual analysis. Aside from Sybil detection, sybilhunter can
serve as valuable tool to better understand the Tor net-
work and monitor its reliability. Our techniques have
disclosed network consensus issues and can illustrate the
diversity of Tor relays, providing empirical data that can
support future network design decisions.

A key issue in the arms race of eliminating harmful re-
lays lies in information asymmetry. Our detection tech-
niques and code are freely available while our adver-
saries operate behind closed doors, creating an uphill bat-
tle that is difficult to sustain given our limited resources.
In practice, we can reduce this asymmetry and limit our
adversaries’ knowledge by keeping secret sybilhunter’s
thresholds and exitmap’s detection modules, so our ad-
versary is left guessing what our tools seek to detect.
This differentiation between an open analysis framework
such as the one we discuss in this paper, and secret con-
figuration parameters seems to be a sustainable trade-off.
Note that we are not arguing in favor of the flawed prac-
tice of security by obscurity. Instead, we are proposing to
add a layer of obscurity on top of existing defense layers.

We are working with The Tor Project on incorporating
our techniques in Tor Metrics [33], a website containing
network visualizations that are frequented by numerous
volunteers. Many of these volunteers discover anomalies
and report them to The Tor Project. By incorporating

14

USENIX Association 25th USENIX Security Symposium 1183

our techniques, we hope to benefit from “crowd-sourced”
Sybil detection.

6.2 Limitations
In Section 4.2, we argued that we are unable to expose
all Sybil attacks, so our results represent a lower bound.
An adversary unconstrained by time and money can add
an unlimited number of Sybils to the network. Indeed,
Table 2 contains six Sybil groups that sybilhunter was
unable to detect. Fortunately, exitmap was able to ex-
pose these Sybils, which emphasizes the importance of
diverse and complementary analysis techniques. Need-
less to say, sybilhunter works best when analyzing at-
tacks that took place before we built sybilhunter. Adver-
saries that know of our methods can evade them at the
cost of having to spend time and resources. To evade
our churn and uptime heuristics, Sybils must be added
and modified independently over time. Evasion of our
fingerprint heuristic, e.g., to manipulate Tor’s DHT, re-
quires more physical machines. Finally, manipulation of
our neighbor ranking requires changes in configuration.
This arms race is unlikely to end, barring fundamental
changes in how Tor relays are operated.

Sybilhunter is unable to ascertain the purpose of a
Sybil attack. While the purpose is frequently obvious,
Table 2 contains several Sybil groups that we could not
classify. In such cases, it is difficult for The Tor Project to
make a call and decide if Sybils should be removed from
the network. Keeping them runs the risk of exposing
users to an unknown attack, but removing them deprives
the network of bandwidth. Often, additional context is
helpful in making a call. For example, Sybils that are (i)
operated in “bulletproof” autonomous systems [17, § 2],
(ii) show signs of not running the Tor reference imple-
mentation, or (iii) spoof information in their router de-
scriptor all suggest malicious intent. In the end, Sybil
groups have to be evaluated case by case, and the ad-
vantages and disadvantages of blocking them have to be
considered.

Finally, there is significant room for improving our
nearest neighbor ranking. For simplicity, our algorithm
represents relays as strings, ignoring a wealth of nuances
such as topological proximity of IP addresses, or pre-
dictable patterns in port numbers.

7 Conclusion

We presented sybilhunter, a novel system that uses di-
verse analysis techniques to expose Sybils in the Tor
network. Equipped with this tool, we set out to ana-
lyze nine years of The Tor Project’s archived network
data. We discovered numerous Sybil groups, twenty of
which we present in this work. By analyzing the Sybil

groups sybilhunter discovered, we found that (i) Sybil
relays are frequently configured very similarly, and join
and leave the network simultaneously; (ii) attackers dif-
fer greatly in their technical sophistication; and (iii) our
techniques are not only useful for spotting Sybils, but
turn out to be a handy analytics tool to monitor and bet-
ter understand the Tor network. Given the lack of a cen-
tral identity-verifying authority, it is always possible for
well-executed Sybil attacks to stay under our radar, but
we found that a complementary set of techniques can go
a long way towards finding malicious Sybils, making the
Tor network more secure and trustworthy for its users.

All our code, data, visualizations, and an open ac-
cess bibliography of our references are available online
at https://nymity.ch/sybilhunting/.

Acknowledgments

We want to thank our shepherd, Tudor Dumitraş, for
his guidance on improving our work. We also want to
thank Georg Koppen, Prateek Mittal, Stefan Lindskog,
the Tor developers, and the wider Tor community for
helpful feedback. This research was supported in part by
the Center for Information Technology Policy at Prince-
ton University and by the National Science Foundation
Awards CNS-1540055 and CNS-1602399.

References

[1] David G. Andersen et al. “Topology Inference from BGP Rout-
ing Dynamics”. In: Internet Measurement Workshop. ACM,
2002. URL: https : / / nymity . ch / sybilhunting / pdf /
Andersen2002a.pdf (cit. on p. 7).

[2] Kevin Bauer and Damon McCoy. No more than one server per
IP address. Mar. 2007. URL: https : / / gitweb . torproject . org /
torspec.git/tree/proposals/109-no-sharing-ips.txt (cit. on p. 3).

[3] Kevin Bauer et al. “Low-Resource Routing Attacks Against
Tor”. In: WPES. ACM, 2007. URL: https : / / nymity . ch /
sybilhunting/pdf/Bauer2007a.pdf (cit. on p. 3).

[4] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann.
“Trawling for Tor Hidden Services: Detection, Measurement,
Deanonymization”. In: Security & Privacy. IEEE, 2013. URL:
https://nymity.ch/sybilhunting/pdf/Biryukov2013a.pdf (cit. on
pp. 2, 7, 9, 10, 13).

[5] Nikita Borisov. “Computational Puzzles as Sybil Defenses”. In:
Peer-to-Peer Computing. IEEE, 2005. URL: https://nymity.ch/
sybilhunting/pdf/Borisov2006a.pdf (cit. on p. 2).

[6] George Danezis and Prateek Mittal. “SybilInfer: Detecting
Sybil Nodes using Social Networks”. In: NDSS. The Internet
Society, 2009. URL: https : / / nymity . ch / sybilhunting / pdf /
Danezis2009a.pdf (cit. on p. 2).

[7] Roger Dingledine. Did the FBI Pay a University to Attack Tor
Users? Nov. 2015. URL: https://blog.torproject.org/blog/did-
fbi-pay-university-attack-tor-users (cit. on p. 10).

[8] Roger Dingledine. Tor security advisory: “relay early” traffic
confirmation attack. July 2014. URL: https://blog.torproject .
org / blog / tor - security - advisory - relay - early - traffic -
confirmation-attack (cit. on pp. 1, 9, 10).

15

1184 25th USENIX Security Symposium USENIX Association

[9] Roger Dingledine and Nick Mathewson. Tor Path Specification.
URL: https : / / gitweb . torproject . org / torspec . git / tree /path -
spec.txt (cit. on p. 3).

[10] Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor:
The Second-Generation Onion Router”. In: USENIX Security.
USENIX, 2004. URL: https : / / nymity . ch / sybilhunting / pdf /
Dingledine2004a.pdf (cit. on p. 3).

[11] John R. Douceur. “The Sybil Attack”. In: Peer-to-Peer Systems.
2002. URL: https://nymity.ch/sybilhunting/pdf/Douceur2002a.
pdf (cit. on pp. 1, 2).

[12] David Fifield. #12813—Look at a bitmap visualization of relay
consensus. 2014. URL: https://bugs.torproject.org/12813 (cit.
on p. 7).

[13] P. Brighten Godfrey, Scott Shenker, and Ion Stoica. “Minimiz-
ing Churn in Distributed Systems”. In: SIGCOMM. ACM, 2006.
URL: https : / /nymity .ch/sybilhunting/pdf/Godfrey2006a.pdf
(cit. on p. 5).

[14] Aaron Johnson et al. “Users Get Routed: Traffic Correlation
on Tor by Realistic Adversaries”. In: CCS. ACM, 2013. URL:
https://nymity.ch/sybilhunting/pdf/Johnson2013a.pdf (cit. on
p. 1).

[15] Damian Johnson. doctor – service that periodically checks the
Tor network for consensus conflicts and other hiccups. URL:
https://gitweb.torproject.org/doctor.git/tree/ (cit. on p. 5).

[16] Marc Juarez et al. “A Critical Evaluation of Website Finger-
printing Attacks”. In: CCS. ACM, 2014. URL: https://nymity.
ch/sybilhunting/pdf/Juarez2014a.pdf (cit. on p. 1).

[17] Maria Konte, Roberto Perdisci, and Nick Feamster. “ASwatch:
An AS Reputation System to Expose Bulletproof Hosting
ASes”. In: SIGCOMM. ACM, 2015. URL: https://nymity.ch/
sybilhunting/pdf/Konte2015a.pdf (cit. on p. 15).

[18] Vladimir Iosifovich Levenshtein. “Binary Codes Capable of
Correcting Deletions, Insertions, and Reversals”. In: Soviet
Physics-Doklady 10.8 (1966). URL: https : / / nymity . ch /
sybilhunting/pdf/Levenshtein1966a.pdf (cit. on p. 7).

[19] Brian Neil Levine, Clay Shields, and N. Boris Margolin. A
Survey of Solutions to the Sybil Attack. Tech. rep. University
of Massachusetts Amherst, 2006. URL: https : / / nymity . ch /
sybilhunting/pdf/Levine2006a.pdf (cit. on p. 2).

[20] Andrew Lewman. June 2010 Progress Report. June 2010. URL:
https://blog.torproject.org/blog/june- 2010- progress- report
(cit. on pp. 9, 11, 12).

[21] Frank Li et al. “SybilControl: Practical Sybil Defense with
Computational Puzzles”. In: Scalable Trusted Computing.
ACM, 2012. URL: https://nymity.ch/sybilhunting/pdf/Li2012a.
pdf (cit. on p. 2).

[22] Zhen Ling et al. “Tor Bridge Discovery: Extensive Analysis and
Large-scale Empirical Evaluation”. In: IEEE Transactions on
Parallel and Distributed Systems 26.7 (2015). URL: https : / /
nymity.ch/sybilhunting/pdf/Ling2015b.pdf (cit. on p. 1).

[23] Zhen Ling et al. “TorWard: Discovery, Blocking, and Trace-
back of Malicious Traffic Over Tor”. In: IEEE Transactions on
Information Forensics and Security 10.12 (2015). URL: https:
//nymity.ch/sybilhunting/pdf/Ling2015a.pdf (cit. on p. 17).

[24] Lizards. Dec. 2014. URL: https://lists.torproject.org/pipermail/
tor-talk/2014-December/036197.html (cit. on pp. 9, 11).

[25] Moxie Marlinspike. sslstrip. URL: https://moxie.org/software/
sslstrip/ (cit. on p. 17).

[26] msft-mmpc. Tackling the Sefnit botnet Tor hazard. Jan. 2014.
URL: https://blogs.technet.microsoft.com/mmpc/2014/01/09/
tackling-the-sefnit-botnet-tor-hazard/ (cit. on p. 10).

[27] nex. Skynet, a Tor-powered botnet straight from Reddit. Dec.
2012. URL: https : / / community . rapid7 . com / community /
infosec / blog / 2012 / 12 / 06 / skynet - a - tor - powered - botnet -
straight-from-reddit (cit. on p. 10).

[28] Rob Pike and Brian W. Kernighan. “Program Design in the
UNIX System Environment”. In: Bell Labs Technical Jour-
nal 63.8 (1983). URL: https : / / nymity . ch / sybilhunting / pdf /
Pike1983a.pdf (cit. on p. 14).

[29] Flora Rheta Schreiber. Sybil: The true story of a woman pos-
sessed by 16 separate personalities. Henry Regnery, 1973 (cit.
on p. 1).

[30] Eric Swanson. GPU-based Onion Hash generator. URL: https:
//github.com/lachesis/scallion (cit. on p. 8).

[31] The Invisible Internet Project. URL: https://geti2p.net (cit. on
p. 2).

[32] The Tor Project. CollecTor – Your friendly data-collecting ser-
vice in the Tor network. URL: https://collector.torproject.org/
(cit. on p. 4).

[33] The Tor Project. Tor Metrics. URL: https://metrics.torproject.
org (cit. on p. 14).

[34] Kurt Thomas, Chris Grier, and Vern Paxson. “Adapting So-
cial Spam Infrastructure for Political Censorship”. In: LEET.
USENIX, 2012. URL: https : / / nymity . ch / sybilhunting / pdf /
Thomas2012a.pdf (cit. on p. 1).

[35] Liang Wang and Jussi Kangasharju. “Real-World Sybil Attacks
in BitTorrent Mainline DHT”. In: Globecom. IEEE, 2012. URL:
https : / /nymity .ch/sybilhunting/pdf/Wang2012a.pdf (cit. on
p. 1).

[36] Philipp Winter. zoossh – Parsing library for Tor-specific data
formats. URL: https://gitweb.torproject.org/user/phw/zoossh.
git/ (cit. on p. 4).

[37] Philipp Winter et al. “Spoiled Onions: Exposing Malicious Tor
Exit Relays”. In: PETS. Springer, 2014. URL: https://nymity.
ch/sybilhunting/pdf/Winter2014a.pdf (cit. on pp. 1, 3, 4).

[38] Haifeng Yu, Phillip B. Gibbons Michael Kaminsky, and Feng
Xiao. “SybilLimit: A Near-Optimal Social Network Defense
against Sybil Attacks”. In: Security & Privacy. IEEE, 2008.
URL: https : / /nymity . ch / sybilhunting /pdf /Yu2008a .pdf (cit.
on p. 2).

[39] Haifeng Yu et al. “SybilGuard: Defending Against Sybil Attack
via Social Networks”. In: SIGCOMM. ACM, 2006. URL: https:
//nymity.ch/sybilhunting/pdf/Yu2006a.pdf (cit. on p. 2).

A Exposed malicious exit relays

Table 5 provides an overview of our second dataset, 251
bad exit relays that we discovered between August 2014
and January 2016. We believe that all single relays in
the dataset were isolated incidents while sets of relays
constituted Sybil groups. Sybil groups marked with the
symbols ∗, †, and ‡ were run by the same attacker, re-
spectively.

16

USENIX Association 25th USENIX Security Symposium 1185

Discovery # of relays Attack description

Aug 2014 1 The relay injected JavaScript into returned HTML. The script embedded another script from the
domain fluxx.crazytall.com—not clearly malicious, but suspicious.

1 The relay injected JavaScript into returned HTML. The script embedded two other scripts, jquery.js
from the official jQuery domain, and clr.js from adobe.flashdst.com. Again, this was not necessarily
malicious, but suspicious.

Sep 2014 1 The exit relay routed traffic back into the Tor network, i.e., we observed traffic that was supposed
to exit from relay A, but came from relay B. The system presented by Ling et al. behaves the
same [23]; the authors proposed to run intrusion detection systems on Tor traffic by setting up an
exit relay that runs an NIDS system, and routes the traffic back into the Tor network after having
inspected the traffic.

Oct 2014 1 The relay injected JavaScript into returned HTML.
1 The relay ran the MitM tool sslstrip [25], rewriting HTTPS links to unencrypted HTTP links in

returned HTML.
1 Same as above.

Jan 2015 23∗ Blockchain.info’s web server redirects its users from HTTP to HTTPS. These relays tampered with
blockchain.info’s redirect and returned unprotected HTTP instead—presumably to sniff login cre-
dentials.

1 The relay used OpenDNS as DNS resolver and had the website category “proxy/anonymizer”
blocked, resulting in several inaccessible websites, including torproject.org.

Feb 2015 1 The relay injected a script that attempted to load a resource from the now inaccessible torclick.net.
Curiously, torclick.net’s front page said “We place your advertising materials on all websites online.
Your ads will be seen only for anonymous network TOR [sic] users. Now it is about 3 million users.
The number of users is always growing.”

17∗ Again, these relays tampered with HTTP redirects of Bitcoin websites. Interestingly, the attack be-
came more sophisticated; these relays would begin to target only connections whose HTTP headers
resembled Tor Browser.

Mar 2015 18∗ Same as above.
1 The relay injected JavaScript and an iframe into the returned HTML. The injected content was not

clearly malicious, but suspicious.

Apr 2015 70† These exit relays transparently rewrote onion domains in returned HTML to an impersonation do-
main. The impersonation domain looked identical to the original, but had different Bitcoin ad-
dresses. We believe that this was attempt to trick Tor users into sending Bitcoin transactions to
phishing addresses.

Jun 2015 55† Same as above.

Aug 2015 4† Same as above.

Sep 2015 1 The relay injected an iframe into returned HTML that would load content that made the user’s
browser participate in some kind of mining activity.

Nov 2015 1 The relay ran the MitM tool sslstrip.
8† Same as the relays marked with a †.

Dec 2015 1‡ The relay ran the MitM tool sslstrip.
1‡ Same as above.

Jan 2016 43† Same as the relays marked with a †.

Table 5: An overview of our second dataset, 251 malicious exit relays that we discovered using exitmap. We believe
that Sybil groups marked with an ∗, †, and ‡ were run by the same adversary.

17

USENIX Association 25th USENIX Security Symposium 1187

k-fingerprinting: a Robust Scalable Website Fingerprinting Technique

Jamie Hayes
University College London

j.hayes@cs.ucl.ac.uk

George Danezis
University College London
g.danezis@ucl.ac.uk

Abstract
Website fingerprinting enables an attacker to infer which
web page a client is browsing through encrypted or
anonymized network connections. We present a new
website fingerprinting technique based on random deci-
sion forests and evaluate performance over standard web
pages as well as Tor hidden services, on a larger scale
than previous works. Our technique, k-fingerprinting,
performs better than current state-of-the-art attacks even
against website fingerprinting defenses, and we show
that it is possible to launch a website fingerprinting at-
tack in the face of a large amount of noisy data. We
can correctly determine which of 30 monitored hidden
services a client is visiting with 85% true positive rate
(TPR), a false positive rate (FPR) as low as 0.02%, from
a world size of 100,000 unmonitored web pages. We fur-
ther show that error rates vary widely between web re-
sources, and thus some patterns of use will be predictably
more vulnerable to attack than others.

1 Introduction
Traditional encryption obscures only the content of com-
munications and does not hide metadata such as the size
and direction of traffic over time. Anonymous communi-
cation systems obscure both content and metadata, pre-
venting a passive attacker from observing the source or
destination of communication.

Anonymous communications tools, such as Tor [11],
route traffic through relays to hide its ultimate desti-
nation. Tor is designed to be a low-latency system to
support interactive activities such as instant messaging
and web browsing, and does not significantly alter the
shape of network traffic. This allows an attacker to ex-
ploit information leaked via the order, timing and vol-
ume of resources requested from a website. As a re-
sult, many works have shown that website fingerprint-
ing attacks are possible even when a client is browsing
with encryption or using an anonymity tool such as Tor
[7, 16, 17, 21, 23, 27, 32, 36, 38, 39].

Website fingerprinting is commonly formulated as a
classification problem. An attacker wishes to know
whether a client browses one of n web pages. The at-
tacker first collects many examples of traffic traces from
each of the n web pages by performing web-requests
through the protection mechanism under attack; features
are extracted and a machine learning algorithm is trained
to classify the website using those features. When a
client browses a web page, the attacker passively collects
the traffic, passes it in to their classifier and checks if the
client visited one of the n web pages. In the literature
this is referred to as the closed-world setting – a client
is restricted to browse a limited number of web pages,
monitored by the attacker. However, the closed-world
model has been criticized for being unrealistic [17, 29]
since a client is unlikely to only browse a limited set of
web pages. The open-world setting attempts to model a
more realistic setting where the attacker monitors a small
number of web pages, but allows a client to additionally
browse to a large world size of unmonitored web pages.

Our attack is based on random decision forests [6], an
ensemble method using multiple decision trees. We ex-
tend the random forest technique to allow us to extract
fingerprints to perform identification in an open-world.

The key contributions of this work are as follows:
• A new attack, k-fingerprinting, based on extracting a

fingerprint for a web page via a novel variant of ran-
dom forests. We show k-fingerprinting is more accu-
rate and faster than other state-of-the-art website fin-
gerprinting attacks [7, 28, 39] even under proposed
website fingerprinting defenses.

• An analysis of the features used in this and prior work
to determine which yield the most information about
an encrypted or anonymized web page. We show that
simple features such as counting the number of packets
in a sequence leaks more information about the iden-
tity of a web page than complex features such as packet
ordering or packet inter-arrival time features.

• An open-world setting that is an order of magnitude

1

1188 25th USENIX Security Symposium USENIX Association

larger than the previous open-world website finger-
printing work of 5,000 unmonitored web pages [39]1,
and nearly twice as large in terms of unique numbers
websites than [28], reflecting a more realistic website
fingerprinting attack over multiple browsing sessions.
In total we tested k-fingerprinting on 101,130 unique
websites2.

• We show that a highly accurate attack can be launched
by training a small fraction of the total data, greatly
reducing the start-up cost an attacker would need to
perform the attack.

• We observe that the error rate is uneven and so it may
be advantageous to throw away some training infor-
mation that could confuse a classifier. An attacker can
learn the error rate of their attack from the training set,
and use this information to select which web pages
they wish to monitor in order to minimize their error
rates.

• We confirm that browsing over Tor does not provide
any additional protection against fingerprinting attacks
over browsing using a standard web browser. Further-
more we show that k-fingerprinting is highly accurate
on Tor hidden services, and that they can be distin-
guished from standard web pages.

2 Related Work
Website Fingerprinting. Website fingerprinting has
been studied extensively. Early work by Wagner and
Schneier [34], Cheng and Avnur [10] exposed the pos-
sibility that encrypted HTTP GET requests may leak in-
formation about the URL, conducting preliminary ex-
periments on a small number of websites. They asked
clients in a lab setting to browse a website for 5-10 min-
utes, pausing two seconds between page loading. With
caching disabled they were able to correctly identify 88
pages out of 92 using simple packet features. Early
website fingerprinting defenses were usually designed
to safeguard against highly specific attacks. In 2009,
Wright et al. [40] designed ‘traffic morphing’ that al-
lowed a client to shape their traffic to look as if it was
generated from a different website. They were able to
show that this defense does well at defeating early web-
site fingerprinting attacks that heavily relied on exploit-
ing unique packet length features [21, 32].

1[17] considers an open world size of ∼35K but only tried to sep-
arate monitored pages from unmonitored pages instead of further clas-
sifying the monitored pages to the correct website. The authors as-
sume the adversary monitors four pages: google.com, facebook.com,
wikipedia.org and twitter.com. They trained a classifier using 36 traces
for each of the Alexa Top 100 web pages, including the web pages of
the monitored pages. The four traces for each of the monitored sites
plus one trace for each of the unmonitored sites up to ∼35K are used
for testing.

2All code will be made available through code repositories under
a liberal open source license and data will be deposited in open data
repositories.

In a similar fashion, Tor pads all packets to a fixed-
size cells of 512 bytes. Tor also implemented random-
ized ordering of HTTP pipelines [30] in response to the
attack by Panchenko et al. [27] who used packet order-
ing features to train an SVM classifier. This attack on Tor
achieved an accuracy of 55%, compared to a previous at-
tack that did not use such fine grained features achieving
3% accuracy on the same data set using a Naive-Bayes
classifier [16]. Other defenses such as the decoy defense
[27] loads a camouflage website in parallel to a legiti-
mate website, adding a layer of background noise. They
were able to show using this defense attack accuracy of
the SVM again dropped down to 3%.

Luo et al. [24] designed the HTTPOS fingerprint-
ing defense at the application layer. HTTPOS acts as
a proxy accepting HTTP requests and obfuscating them
before allowing them to be sent. It modifies network fea-
tures on the TCP and HTTP layer such as packet size,
packet time and payload size, along with using HTTP
pipelining to obfuscate the number of outgoing packets.
They showed that HTTPOS was successful in defending
against a number of classifiers [5, 9, 21, 32].

More recently Dyer et al. [12] created a defense,
BuFLO, that combines many previous countermeasures,
such as fixed packet sizes and constant rate traffic. Dyer
et al. showed this defense improved upon other defenses
at the expense of a high bandwidth overhead. Cai et al.
[8] made modifications to the BuFLO defense based on
rate adaptation again at the expense of a high bandwidth
overhead. Following this Nithyanand et al. [25] pro-
posed Glove, that groups website traffic into clusters that
cannot be distinguished from any other website in the
set. This provides information theoretic privacy guaran-
tees and reduces the bandwidth overhead by intelligently
grouping web traffic in to similar sets.

Cai et al. [7] modified the kernel in Panchenko et al.’s
SVM to improve an attack on Tor, and was further im-
proved in an open-world setting by Wang and Goldberg
in 2013 [38], achieving a true positive rate (TPR) of over
0.95 and a false positive rate (FPR) of 0.002 when moni-
toring one web page. Wang et al. [39] conducted attacks
on Tor using large open-world sets. Using a k-nearest
neighbor classifier they achieved a TPR of 0.85 and FPR
of 0.006 when monitoring 100 web pages out of 5100
web pages. More recently Wang and Goldberg [37] sug-
gested a defense using a browser in half-duplex mode –
meaning a client cannot send multiple requests to servers
in parallel. In addition to this simple modification they
add random padding and show they can even foil an at-
tacker with perfect classification accuracy with a com-
paratively (to other defenses) small bandwidth overhead.
Wang and Goldberg [36] then investigated the practical
deployment of website fingerprinting attacks on Tor. By
maintaining an up-to-date training set and splitting a full

2

USENIX Association 25th USENIX Security Symposium 1189

packet sequence in to components comprising of differ-
ent web page load traces they show that practical web-
site fingerprinting attacks are possible. By considering a
time gap of 1.5 seconds between web page loads, their
splitting algorithm can successfully parse a single packet
sequence in to multiple packet sequences with no loss in
website fingerprinting accuracy. Gu et al. [15] studied
website fingerprinting in multi-tab browsing setting. Us-
ing a Naive Bayes classifier on the 50 top ranked web-
sites in Alexa, they show when tabs are opened with a
delay of 2 seconds, they can classify the first tab with
75.9% accuracy, and the background tab with 40.5%.
More recently, Kwon et al. [19] showed that website fin-
gerprinting attacks can be applied to Tor hidden services,
and due to the long lived structure of hidden services, at-
tacks can be even more accurate than when compared to
non-hidden pages. They correctly deanonymize 50 mon-
itored hidden service servers with TPR of 88% and FPR
of 7.8% in an open world setting. We further improve on
this in our work, resulting in a more accurate attack on
the same data set.

In concurrent work, Panchenko et al. [28] have ex-
perimented with large datasets. Using a mix of differ-
ent sources they produced two datasets, one of 34,580
unique websites (118,884 unique web pages) and another
of 65,409 unique websites (211,148 unique web pages).
Using a variation of a sequence of cumulative summa-
tions of packet sizes in a traffic trace they show their at-
tack, CUMUL, was of similar accuracy to k-NN [39] un-
der normal browsing conditions. However, we show that
due to their feature set dependency on order and packet
counting, their attack suffers substantially under simple
website fingerprinting defenses and is outperformed by
our technique, k-fingerprinting.
Random Forests. Random forests are a classification
technique consisting of an ensemble of decision trees,
taking a consensus vote of how to classify a new ob-
ject. They have been shown to perform well in classi-
fication, regression [6, 20] and anomaly detection [22].
Each tree in the forest is trained using labeled objects
represented as feature vectors of a fixed size. Training
includes some randomness to prevent over-fitting: the
training set for each tree is sampled from the available
training set with replacement. Due to the bootstrap sam-
pling process there is no need for k-fold cross validation
to measure k-fingerprinting performance, it is estimated
via the unused training samples on each tree [6]. This is
referred to as the out-of-bag score.

3 Attack Design
We consider an attacker that can passively collect a
client’s encrypted or anonymized web traffic, and aims
to infer which web resource is being requested. Dealing
with an open-world, makes approaches based purely on

classifying previously seen websites inapplicable. Our
technique, k-fingerprinting, aims to define a distance-
based classifier. It automatically manages unbalanced
sized classes and assigns meaningful distances between
packet sequences, where close-by ‘fingerprints’ denote
requests likely to be for the same resources.

3.1 k-fingerprints from random forests
In this work we use random forests to extract a finger-
print for each traffic instance3, instead of using directly
the classification output of the forest. We define a dis-
tance metric between two traces based on the output of
the forest: given a feature vector each tree in the for-
est associates a leaf identifier with it, forming a vector
of leaf identifiers for the item, which we refer to as the
fingerprint.

Once fingerprint vectors are extracted for two traces,
we use the Hamming4 distance to calculate the distance
between these fingerprints5. We classify a test instance
as the label of the closest k training instances via the
Hamming distance of fingerprints – assuming all labels
agree. We evaluate the effect of varying k, the number of
fingerprints used for comparison, in Sections 7, 8 and 9.

This leafs vector output represents a robust fingerprint:
we expect similar traffic sequences are more likely to
fall on the same leaves than dissimilar traffic sequences.
Since the forest has been trained on a classification task,
traces from the same websites are preferentially aggre-
gated in the same leaf nodes, and those from different
websites kept apart.

We can vary the number of training instances k a fin-
gerprint should match, to allow an attacker to trade the
true positive rate (TPR) for false positive rate (FPR). This
is not possible using the direct classification of the ran-
dom forest. By using a k closest fingerprint technique
for classification, the attacker can choose how they wish
to decide upon final classification6. For the closed-world
setting we do not need the additional fingerprint layer for
classification, we can simply use the classification output
of the random forest since all classes are balanced and
our attack does not have to differentiate between False
Positives and False Negatives. For the closed-world set-
ting we measure the mean accuracy of the random forest.

3We define a traffic instance as the network traffic generated via a
web page load.

4We experimented with using the Hamming, Euclidean, Maha-
lanobis and Manhattan distance functions and found Hamming to pro-
vide the best results.

5For example, given the Hamming distance function d : V ×V →R,
where V is the space of leaf symbols, we expect given two packet se-
quences generated from loading google.com, with fingerprints vectors
f1, f2 and a packet sequence generated from loading facebook.com
with fingerprint f3, that d(f1, f2)< d(f1, f3) and d(f1, f2)< d(f2, f3).

6We chose to classify a traffic instance as a monitored page if all k
fingerprints agree on the label, but an attacker could choose some other
metric such as majority label out of the k fingerprints.

3

1190 25th USENIX Security Symposium USENIX Association

3.2 The k-fingerprinting attack
Our k-fingerprinting attack proceeds in two phases: The
attacker chooses which web pages they wish to moni-
tor and captures network traffic generated via loading the
monitored web pages and a large number of unmonitored
web pages. These target traces for monitored websites,
along with some traces for unmonitored websites, are
used to train a random forest for classification. Given
a packet sequence representing each training instance of
a monitored web page, it is converted to a fixed length
fingerprint as described in Section 3.1 and stored.

The attacker then passively collects instances of web
page loads from a client’s browsing session. A finger-
print is extracted from the newly collected packet se-
quence. The attacker then computes the Hamming dis-
tance of this new fingerprint against the corpus of fin-
gerprints collected during training and is classified as a
monitored page if and only if all k fingerprints agree on
classification, as described in Section 3.1, otherwise it is
classified as an unmonitored page.

We define the following performance measures for the
attack:
• True Positive Rate (TPR). The probability that a

monitored page is classified as the correct monitored
page.

• False Positive Rate (FPR). The probability that an un-
monitored page is incorrectly classified as a monitored
page.

• Bayesian Detection Rate (BDR). The probability that
a page corresponds to the correct monitored page given
that the classifier recognized it as that monitored page.
Assuming a uniform distribution of pages BDR can be
found from TPR and FPR using the formula

T PR.Pr(M)

(T PR.Pr(M)+FPR.Pr(U))

where

Pr(M) =
|Monitored|
|Total Pages|

, Pr(U) = 1−P(M).

Ultimately BDR indicates the practical feasibility of the
attack as it measures the main concern of the attacker, the
probability that the classifier made a correct prediction.

4 Data gathering
We collect two data sets: one via Tor7 DSTor, and an-
other via a standard web browser, DSNorm. DSNorm
consists of 30 instances from each of 55 monitored
web pages, along with 7,000 unmonitored web pages
chosen from Alexa’s top 20,000 web sites [1]. We
collected DSNorm using a number of Amazon EC2

7The most recent version at the time of collection was used, Tor
Browser 5.0.6.

instances8, Selenium9 and the headless browser
PhantomJS10. We used tcpdump11 to collect network
traces for 20 seconds with 2 seconds between each web
page load. Monitored pages were collected in batches
of 30 and unmonitored web pages were collected suc-
cessively. Page loading was performed with no caches
and time gaps between multiple loads of the same web
page, as recommended by Wang and Goldberg [38]. We
chose to monitor web pages from Alexa’s top 100 web
sites [1] to provide a comparison with the real world cen-
sored web pages used in the Wang et al. [39] data set12.
DSTor was collected in a similar manner to DSNorm but
was collected via the Tor browser. DSTor consists of two
subsets of monitored web pages: (i) 100 instances from
each of the 55 top Alexa monitored web pages and (ii)
80 instances from each of 30 popular Tor hidden ser-
vices. A Tor hidden service is a website that is hosted
behind a Tor client’s Onion Proxy, which serves as the
interface between application and network. Tor hidden
services allow both a client accessing the website and the
server hosting the website to remain anonymous to one
another and any external observers. We chose hidden ser-
vices to fingerprint based on popularity as listed by the
.onion search engine Ahmia13. The unmonitored set
is comprised of the top 100,000 Alexa web pages, ex-
cluding the top 55. We chose to fingerprint web pages
as listed by Alexa as these constitute the most popular
web pages in the world over extended periods of time,
and hence provide a more realistic dataset than choosing
pages at random and/or using transiently popular website
links as included in Panchenko et al.’s recent work [28].
By including website visits to trending topics we argue
that this diminishes the ability to properly measure how
effective a website fingerprinting attack will perform in
general.

For comparison to previous work, we evaluated our at-
tack on one of the previous largest website fingerprinting
data sets [39], which collected 90 instances from each of
100 monitored sites, along with 5000 unmonitored web
pages. The Wang et al. monitored web pages are various
real-world censored websites from UK, Saudi Arabia and
China providing a realistic set of web pages an attacker
may wish to monitor. The unmonitored web pages are
chosen at random from Alexa’s top 10,000 websites –
with no intersection between monitored and unmonitored
web pages.

8https://aws.amazon.com/ec2/
9http://www.seleniumhq.org/

10http://phantomjs.org/
11http://www.tcpdump.org/
12We used TCP/IP packets for final classification over abstracting

to the Tor cell layer [38], preliminary experiments showed no consis-
tent improvements from using one data layer for classification over the
other.

13http://www.ahmia.fi/

4

USENIX Association 25th USENIX Security Symposium 1191

This allows us to validate k-fingerprinting on two
different data sets while allowing for direct compari-
son against the state-of-the-art k-Nearest Neighbor at-
tack [39]. We can also infer how well the attack works
on censored web pages which may not have small land-
ing pages or be set up for caching like websites in the top
Alexa list. Testing k-fingerprinting on both real-world
censored websites and top alexa websites indicates how
the attack performs across a wide range of websites.

For the sake of comparison, according to a study by
research firm Nielsen [3] the number of unique websites
visited per month by an average client in 2010 was 89.
Another study [17, 26] collected web site statistics from
80 volunteers in a virtual office environment. Traffic was
collected from each volunteer for a total of 40 hours. The
mean unique number of websites visited per volunteer
was 484, this is substantially smaller than the world sizes
we consider in our experiments.

5 Feature selection
Our first contribution is a systematic analysis of fea-
ture importance. Despite some preliminary work by
Panchenko et al. [27], there is a notable absence of fea-
ture analysis in the website fingerprinting literature. In-
stead features are picked based on heuristic arguments.
All feature importance experiments were performed with
the Wang et al. data set [39] so as to allow direct com-
parison with their attack results.

We train a random forest classifier in the closed-world
setting using a feature vector comprised of features in
the literature, and labels corresponding to the moni-
tored sites. We use the gini coefficient as the purity
criterion for splitting branches and estimate feature im-
portance using the standard methodology described by
Breiman [2, 6, 13]. Each time a decision tree branches
on a feature the weighted sum of the gini impurity index
for the two descendant nodes is higher than the purity of
the parent node. We add up the gini decrease for each in-
dividual feature over the entire forest to get a consistent
measure of feature importance.

Figure 1 illustrates the effect of using a subset of fea-
tures for random forest classification. We first train a
random forest classifier to establish feature importance;
and then train new random forests with only subsets of
the most informative features in batches of five. As we
increase the number of features we observe a monotonic
increase in accuracy; however there are diminishing re-
turns as we can achieve nearly the same accuracy after
using the 30 most important features. We chose to use
150 features in all following experiments since the dif-
ference in training time when using fewer features was
negligible.

Figure 2 identifies the top-20 ranked features and illus-
trates their variability across 100 repeated experiments.

Figure 1: Accuracy of k-fingerprinting in a closed-world
setting as the number of features is varied.

As seen in Figure 1 there is a reduction in gradient when
combining the top 15 features compared to using the top
10 features. Figure 2 shows that the top 13 features are
comparatively much more important than the rest of the
top 20 features, hence there is only a slight increase in
accuracy when using the top 15 features compared to us-
ing the top 10. After the drop between the rank 13 and
rank 14 features, feature importance falls steadily until
feature rank 40, after which the reduction in feature im-
portance is less prominent14. Note that there is some
interchangeability in rank between features, we assign
ranks based on the average rank of a feature over the 100
experiments.

Feature Importance
From each packet sequence we extract the following fea-
tures:
• Number of packets statistics. The total number of

packets, along with the number of incoming and out-
going packets [12, 27, 39]. The number of incoming
packets during transmission is the most important fea-
ture, and together with the number of outgoing packets
during transmission are always two of the five most im-
portant features. The total number of packets in trans-
mission has rank 10.

• Incoming & outgoing packets as fraction of total
packets. The number of incoming and outgoing pack-
ets as a fraction of the total number of packets [27].
Always two of the five most important features.

• Packet ordering statistics. For each successive in-
coming and outgoing packet, the total number of pack-
ets seen before it in the sequence [7, 27, 39]. The stan-
dard deviation of the outgoing packet ordering list has
rank 4, the average of the outgoing packet ordering list
has rank 7. The standard deviation of the incoming
packet ordering list has rank 12 and the average of the

14The total feature importance table is shown in Appendix A.

5

1192 25th USENIX Security Symposium USENIX Association

Feature Description

1. Number of incoming packets.
2. Number of outgoing packets as a fraction of the total number

of packets.
3. Number of incoming packets as a fraction of the total number

of packets.
4. Standard deviation of the outgoing packet ordering list.
5. Number of outgoing packets.
6. Sum of all items in the alternative concentration feature list.
7. Average of the outgoing packet ordering list.
8. Sum of incoming, outgoing and total number of packets.
9. Sum of alternative number packets per second.

10. Total number of packets.
11-18. Packet concentration and ordering features list.

19. The total number of incoming packets stats in first 30 packets.
20. The total number of outgoing packets stats in first 30 packets.

Figure 2: The 20 most important features.

incoming packet ordering list has rank 13.
• Concentration of outgoing packets. The packet se-

quence split into non-overlapping chunks of 20 pack-
ets. Count the number of outgoing packets in each of
the chunks. Along with the entire chunk sequence, we
extract the standard deviation (rank 16), mean (rank
11), median (rank 64) and max (rank 65) of the se-
quence of chunks. This provides a snapshot of where
outgoing packets are concentrated [39]. The features
that make up the concentration list are between the 15th

and 30th most important features, but also make up the
bulk of the 75 least important features.

• Concentration of incoming & outgoing packets in
first & last 30 packets. The number of incoming and
outgoing packets in the first and last 30 packets [39].
The number of incoming and outgoing packets in the
first thirty packets has rank 19 and 20, respectively.
The number of incoming and outgoing packets in the
last thirty packets has rank 50 and 55, respectively.

• Number of packets per second. The number of pack-
ets per second, along with the mean (rank 44), standard
deviation (rank 38), min (rank 117), max (42), median
(rank 50).

• Alternative concentration features. This subset of
features is based on the concentration of outgoing

packets feature list. The outgoing packets feature list
split into 20 evenly sized subsets and sum each sub-
set. This creates a new list of features. Similarly to the
concentration feature list, the alternative concentration
feature list are regularly in the top 20 most important
features and bottom 50 features. Note though concen-
tration features are never seen in the top 15 most im-
portant features whereas alternative concentration fea-
tures are, – at rank 14 and 15, – so information is
gained by summing the concentration subsets.

• Packet inter-arrival time statistics. For the total, in-
coming and outgoing packet streams extract the lists
of inter-arrival times between packets. For each list
extract the max, mean, standard deviation, and third
quartile [5]. These features have rank between 40 and
70.

• Transmission time statistics. For the total, incom-
ing and outgoing packet sequences we extract the first,
second, third quartile and total transmission time [39].
These features have rank between 30 and 50. The total
transmission time for incoming and outgoing packet
streams are the most important out of this subset of
features.

• Alternative number of packets per second features.
For the number of packets per second feature list we
create 20 even sized subsets and sum each subset. The
sum of all subsets is the 9th most important feature.
The features produced by each subset are in the bottom
50 features - with rank 101 and below. The important
features in this subset are the first few features with
rank between 66 and 78, that are calculated from the
first few seconds of a packet sequence.
We conclude that the total number of incoming pack-

ets is the most informative feature. This is expected as
different web pages have different resource sizes, that
are poorly hidden by encryption or anonymization. The
number of incoming and outgoing packets as a fraction
of the total number of packets are also informative for
the same reason.

The least important features are from the padded con-
centration of outgoing packets list, since the original con-
centration of outgoing packets lists were of non-uniform
size and so have been padded with zeros to give uni-
form length. Clearly, if most packet sequences have been
padded with the same value this will provide a poor cri-
terion for splitting, hence being a feature of low impor-
tance. Packet concentration statistics, while making up
the bulk of “useless features” also regularly make up a
few of the top 30 most important features, they are the
first few items that are unlikely to be zero. In other
words, the first few values in the packet concentration
list do split the data well.

Packet ordering features have rank 4, 7, 12 and 13,
indicating these features are a good criterion for classifi-

6

USENIX Association 25th USENIX Security Symposium 1193

cation. Packet ordering features exploit the information
leaked via the way in which browsers request resources
and the end server orders the resources to be sent. This
supports conclusions in [7, 39] about the importance of
packet ordering features.

We also found that the number of incoming and out-
going packets in the first thirty packets, with rank 19 and
20, were more important than the number of incoming
and outgoing packets in the last thirty packets, with rank
50 and 55. In the alternative number packets per sec-
ond feature list the earlier features were a better criterion
for splitting than the later features in the list. This sup-
ports claims by Wang et al. [39] that the beginning of
a packet sequence leaks more information than the end
of a packet sequence. In contrast to Bissias et al. [5]
we found packet inter-arrival time statistics, with rank
between 40 and 70, only slightly increase the attack ac-
curacy, despite being a key feature in their work.

6 Attack on hardened defenses

For direct comparison we tested our random forest classi-
fier in a closed-world setting on various defenses against
the k-NN attack and the more recent CUMUL [28] at-
tack using the Wang et al. data set [39]. Note that most
of these defenses require large bandwidth overheads that
may render them unusable for the average client. We test
against the following defenses:

• BuFLO [12]. This defense sends packets at a constant
size during fixed time intervals. This potentially ex-
tends the length of transmission and requires dummy
packets to fill in gaps.

• Decoy pages [27]. This defense loads a decoy page
whenever another page is loaded. This provides back-
ground noise that degrades the accuracy of an attack.
This is essentially a defense that employs multi-tab
browsing.

• Traffic morphing [40]. Traffic morphing shapes a
client’s traffic to look like another set of web pages.
A client chooses the source web pages that they would
like to defend, as well as a set of target web pages that
they would like to make the source processes look like.

• Tamaraw [35]. Tamaraw operates similarly to Bu-
FLO but fixes packet sizes depending on their direc-
tion. Outgoing traffic is fixed at a higher packet in-
terval, this reduces overhead as outgoing traffic is less
frequent.

• Adaptive Padding (AP) [18, 31]. AP protects
anonymity by introducing traffic in to statistically un-
likely delays between packets in a flow. This limits the
amount of extra bandwidth required and does not in-
cur any latency costs. AP uses previously computed
histograms of inter-arrival packet times from website
loads to determine when a dummy packet should be in-

Table 1: Attack comparison under various website fin-
gerprinting defenses.

Defenses This work k-NN [39] CUMUL [28] Bandwidth overhead (%)

No defense 0.91±0.01 0.91±0.03 0.91±0.04 0
Morphing [40] 0.90 ±0.03 0.82±0.06 0.75±0.07 50±10

Decoy pages [27] 0.37 ±0.01 0.30±0.06 0.21±0.02 130±20
Adaptive Padding [31] 0.30 ±0.04 0.19±0.03 0.16±0.03 54

BuFLO [12] 0.21 ±0.02 0.10±0.03 0.08±0.03 190±20
Tamaraw [35] 0.10 ±0.01 0.09±0.02 0.08±0.03 96±9

jected15. This is currently the favored option if padding
were to be implemented in Tor [4].
Table 1 shows the performance of k-fingerprinting

against k-NN and CUMUL under various website finger-
printing defenses in a closed-world setting. Under ev-
ery defense k-fingerprinting is comparable or achieves
better results than the k-NN attack and performs signif-
icantly better than CUMUL. Note that k-fingerprinting
does equally well when traffic morphing is applied com-
pared to no defense. As Lu et al. [23] note, traffic morph-
ing is only effective when the attacker restricts attention
to the same features targeted by the morphing process.
Our results confirm that attacks can succeed even when
traffic morphing is employed. k-fingerprinting also per-
forms nearly 10% better than k-NN when decoy pages
are used, which is in effect a marker for how well the
attack performs on multi-tab browsing. Due to the de-
pendency of packet length and sequence length features,
CUMUL performs substantially worse than the other two
attacks under website fingerprinting defenses. Though
CUMUL uses a similar number of features and is of sim-
ilar computational efficiency to k-fingerprinting, simple
defenses remove the feature vector patterns between sim-
ilar web pages used in CUMUL, rendering the attack
ineffectual. More generally, any attack that uses a re-
stricted set of features will suffer greatly from a defense
that targets those features. k-fingerprinting performs well
under defenses due to its feature set that captures traffic
information not used in CUMUL such as packet timings
and burst patterns. The k-NN attack performs slightly
better than CUMUL but requires an order of magnitude
more features than both CUMUL and k-fingerprinting.
Our attack is both more efficient and more accurate than
CUMUL and k-NN under defenses.

7 k-fingerprinting the Wang et al. data set
We first evaluate k-fingerprinting on the Wang et al. data
set [39]. This data set was collected over Tor, and thus
implements padding of packets to fixed-size cells (512-
bytes) and randomization of request orders [30]. Thus

15As Juarez et al. [18] note, the distribution of histogram bins is
dependent on the individual client bandwidth capacity. Optimizing his-
tograms for a large number of clients is an open problem. Here we
implement a naive version of AP with one master histogram for all
clients.

7

1194 25th USENIX Security Symposium USENIX Association

Figure 3: Attack results for 1500 unmonitored training
pages while varying the number of fingerprints used for
comparison, k, over 10 experiments.

Table 2: k-fingerprinting results for k=3 while varying
the number of unmonitored training pages.

Training pages TPR FPR BDR

0 0.90±0.02 0.750±0.010 0.419
1500 0.88±0.02 0.013±0.007 0.983
2500 0.88±0.01 0.007±0.001 0.993
3500 0.88±0.01 0.005±0.001 0.997
4500 0.87±0.02 0.009±0.001 0.998

the only available information to k-fingerprinting are tim-
ing and volume features. We train on 60 out of the 90
instances for each of the 100 monitored web pages; we
vary the number of pages on which we train from the
5000 unmonitored web pages. For the attack evaluation
we use fingerprints of length 200 and 150 features. Final
classification is as described in Section 3.2, if all k finger-
prints agree on classification a test instance is classified
as a monitored web page, otherwise it is classified as an
unmonitored web page.

The scenario for the attack is as follows: an attacker
monitors 100 web pages; they wish to know whether a
client is visiting one of those pages, and establish which
one. The client can browse to any of these web pages
or to 5000 unmonitored web pages, which the attacker
classifies in bulk as an unmonitored page.

Using the k-fingerprinting method for classifying a
web page we measure a TPR of 0.88 ± 0.01 and a FPR of
0.005 ± 0.001 when training on 3500 unmonitored web
pages and k, the number of training instances used for
classification, set at k=3. k-fingerprinting achieves better
accuracy than the state-of-the-art k-NN attack that has a
TPR of 0.85 ± 0.04 and a FPR of 0.006 ± 0.004. Given
a monitored web page k-fingerprinting will misclassify
this page 12% of the time, while k-NN will misclassify
with 15% probability.

Figure 4: Accuracy of k-fingerprinting as we vary the
number of trees in the forest.

Best results are achieved when training on 3500 un-
monitored web pages. Table 2 reports TPR and FPR
when using different numbers of unmonitored web pages
for training with k=3. As we train more unmonitored web
pages we decrease our FPR with almost no reduction in
TPR. After training 3500 unmonitored pages there is no
decrease in FPR and so no benefit in training more un-
monitored web pages. This is confirmed by the marginal
increase in BDR after training on at least some of the
unmonitored set. Furthermore without training on any
of the unmonitored web pages, despite the high FPR the
classifier has more than 40% probability of being correct
when classifying a web page as monitored.

Figure 3 illustrates how classification accuracy
changes as, k, the number of fingerprints used for clas-
sification changes. For a low k the attack achieves a FPR
of around 1%, as we increase the value of k we reduce the
number of misclassifications since it is less likely that all
k fingerprints will belong to the same label, but we also
reduce the TPR. Altering the number of fingerprints used
for classification allows an attacker to tune the classifier
to either a low FPR or high TPR depending on the de-
sired application of the attack.

We find that altering the number of fingerprints used
for classification, k, affects the TPR and FPR more than
the number of unmonitored training pages. This suggests
that while it is advantageous to have a large world size
of unmonitored pages, increasing the number of unmon-
itored training pages does not increase accuracy of the
classifier dramatically. This supports Wang et al.’s [39]
claims to the same effect. In practice an attacker will
need to train on at least some unmonitored pages to in-
crease the BDR, though this does not need to be a sub-
stantial amount; training 1500 unmonitored web pages
leads to a 98.3% chance the classifier is correct when
claiming to have recognized a monitored web page.
Fingerprint length. Changing the length of the finger-
print vector will affect k-fingerprinting accuracy. For a

8

USENIX Association 25th USENIX Security Symposium 1195

Table 3: Attack results on top Alexa sites for k=2 while
varying the number of unmonitored training pages.

Training pages TPR FPR BDR

2000 0.93±0.03 0.032±0.010 0.33
4000 0.93±0.01 0.018±0.007 0.47
8000 0.92±0.01 0.008±0.002 0.67

16000 0.91±0.02 0.003±0.001 0.86

small fingerprint length there may not be enough diver-
sity to provide an accurate measure of distance over all
packet sequences. Figure 4 shows the resulting TPR and
FPR as we change the length of fingerprints in the Wang
et al. [39] data set. We set k=1 and train on 4000 unmon-
itored web pages. Using only a fingerprint of length one
results in a TPR of 0.51 and FPR of 0.904. Clearly us-
ing a fingerprint of length one results in a high FPR since
there is a small universe of leaf symbols from which to
create the fingerprint. A fingerprint of length 20 results
in a TPR of 0.87 and FPR of 0.013. After this there are
diminishing returns for increasing the length of the fin-
gerprint vector.

8 Attack evaluation on DSTor

We now evaluate k-fingerprinting on DSTor. First we
evaluate the attack given a monitored set of the top 55
Alexa web pages, with 100 instances for each web page.
Then we evaluate the attack given a monitored set of 30
Tor hidden services, with 80 instances for each hidden
service. The unmonitored set remains the same for both
evaluations, the top 100,000 Alexa web pages with one
instance for each web page.

8.1 Alexa web pages monitored set
Table 3 shows the accuracy of k-fingerprinting as the
number of unmonitored training pages is varied. For the
monitored web pages, 70 instances per web page were
trained upon and testing was done on the remaining 30
instances of each web page. As expected, the FPR de-
creases as the number of unmonitored training samples
grows. Similar to Section 7 there is only a marginal de-
crease in TPR while we see a large reduction in the FPR
as the number of training samples grows. Meaning an at-
tacker will not have to compromise on TPR to decrease
the FPR; when scaling the number of unmonitored train-
ing samples from 2% to 16% of the entire set the TPR de-
creases from 93% to 91% while the FPR decreases from
3.2% to 0.3%. There is a more pronounced shift in BDR
with the increase of unmonitored training pages, however
an attacker needs to train on less than 10% of the entire
dataset to have nearly 70% confidence that classifier was
correct when it claims to have detected a monitored page.

Clearly the attack will improve as the number of train-

Table 4: Attack results on Tor hidden services for k=2
while varying the number of unmonitored training pages.

Training pages TPR FPR BDR

2000 0.82±0.03 0.0020±0.0015 0.72
4000 0.82±0.04 0.0007±0.0006 0.88
8000 0.82±0.02 0.0002±0.0001 0.96

16000 0.81±0.02 0.0002±0.0002 0.97

ing samples grows, but in reality an attacker may have
limited resources and training on a significant fraction of
100,000 web pages may be unfeasible. Figure 5 shows
the TPR and FPR of k-fingerprinting as the number of
unmonitored web pages used for testing grows while the
number of unmonitored web pages used for training is
kept at 2000, for different values of k. We may think of
this as the evaluation of success of k-fingerprinting as a
client browses to more and more web pages over multiple
browsing sessions. Clearly for a small k, both TPR and
FPR will be comparatively high. Given that, with k=5
only 2.5% of unmonitored web pages are falsely identi-
fied as monitored web pages, out of 98,000 unmonitored
web pages.

8.2 Hidden services monitored set
Table 4 shows the accuracy of k-fingerprinting as the
number of unmonitored training pages is varied. For
the monitored set, 60 instances per hidden service were
trained upon and testing was done on the remaining 20
instances of each hidden service. Again we observe a
marginal loss of TPR and a large reduction in FPR as
the number of training samples grows. When scaling
the number of unmonitored training samples from 2%
to 16% of the entire set the TPR decreases from 82% to
81% while the FPR decreases by an order of magnitude
from 0.2% to 0.02%. As a result, when training on 16%
of the unmonitored set only 16 unmonitored web pages
out of 84,000 were misclassified as a Tor hidden service.
In comparison to the Alexa web pages monitored set the
TPR is around 10% lower, while the FPR is also greatly
reduced. This is evidence that Tor hidden services are
easy to distinguish from standard web pages loaded over
Tor. There is also a higher but more gradual increase in
BDR compared to standard web pages. An attacker need
only train on as little as 2% of unmonitored pages to have
over 70% confidence that classification of a monitored
page was correct, with this rising to 97% when training
on 16% of the unmonitored dataset.

Similarly to Figure 5, Figure 6 shows the TPR and
FPR of k-fingerprinting as the number of unmonitored
web pages used for testing grows while the number of
unmonitored web pages used for training is kept at 2000,
for different values of k. Both the TPR and FPR is lower

9

1196 25th USENIX Security Symposium USENIX Association

than in Figure 5. For example using k=5, the FPR is 0.2%
which equates to only 196 out of 98,000 unmonitored
pages being falsely classified as monitored pages.

From Figure 7 we observe that the BDR of both stan-
dard web pages and hidden services monitored sets de-
pends heavily on not only the world size but the number
of fingerprints used for classification. With k=10, when
a web page is classified as a monitored hidden service
page, there is over an 80% chance that the classifier was
correct, despite the unmonitored world size (98,000) be-
ing over 160 times larger than the monitored world size
(600). The high BDR regardless of the disparity in world
sizes makes it clear that our attack is highly effective un-
der realistic large world size conditions.

It is clear that an attacker need only train on a small
fraction of data to launch a powerful fingerprinting at-
tack. It is also clear that Tor hidden services are easily
distinguished from standard web pages, rendering them
vulnerable to website fingerprinting attacks. We attribute
the lower FPR of Tor hidden services when compared to
a monitored training set of standard web page traffic to
this distinguishability. A standard web page over Tor is
more likely to be confused with another standard web
page than a Tor hidden service.
Comparison with Kwon et al. [19] hidden services re-
sults. For comparison we ran k-fingerprinting on the data
set used in the Kwon et al. study on fingerprinting hid-
den services. This data set simulated a client connecting
to a hidden service. The data set consists of 50 instances
for each of 50 monitored hidden services and an unmon-
itored set of 950 hidden services. When training on 100
of the unmonitored pages they report attack accuracy of
0.9 TPR and 0.4 FPR. k-fingerprinting achieved a simi-
lar true positive rate but the FPR is reduced to 0.22. This
FPR reduction in comparison with Kwon et al. continued
regardless of the amount of data used for training.

9 Attack evaluation on DSNorm

Besides testing on DSTor, Wang et al. [39] data set and
the Kwon et al. [19] data set we tested the efficacy of
k-fingerprinting on DSNorm. This allows us to estab-
lish how accurate k-fingerprinting is over a standard en-
crypted web browsing session or through a VPN.

9.1 Attack on encrypted browsing sessions
An encrypted browsing session does not pad packets to a
fixed size so the attacker may extract the following fea-
tures in addition to time features:
• Size transmitted. For each packet sequence we ex-

tract the total size of packets transmitted, in addition,
we extract the total size of incoming packets and the
total size of outgoing packets.

• Size transmitted statistics. For each packet sequence
we extract the average, variance, standard deviation

Figure 5: Attack accuracy on DSTor with Alexa moni-
tored set.

Figure 6: Attack accuracy on DSTor with Tor hidden ser-
vices monitored set.

and maximum packet size of the total sequence, the
incoming sequence and the outgoing sequence.
Apart from this modification in available features, the

attack setting is similar: An attacker monitors a client
browsing online and attempts to infer which web pages
they are visiting. The only difference is that browsing
with the Transport Layer Security (TLS) protocol, or Se-
cure Sockets Layer (SSL) protocol, versions 2.0 and 3.0,
exposes the destination IP address and port. The attack is
now trying to infer which web page the client is visiting
from the known website16.

The attacker monitors 55 web pages; they wish to
know if the client has visited one of these pages. The
client can browse to any of these web pages or to 7000
other web pages, which the attacker does not care to clas-
sify other than as unmonitored. We train on 20 out of the
30 instances for each monitored page and vary the num-
ber of unmonitored pages on which we train.

Despite more packet sequence information to exploit,
the larger cardinality of world size gives rise to more

16Note that the data sets are composed of traffic instances from some
websites without SSL and TLS, as well as websites using the protocols.
We expect our experiment conditions are much larger than the number
possible web pages an attacker may wish to fingerprinting from a stan-
dard website.

10

USENIX Association 25th USENIX Security Symposium 1197

Figure 7: BDR for hidden services monitored set (above)
and Alexa monitored set (below).

Figure 8: Attack results for 2000 unmonitored training
pages while varying the number of fingerprints used for
comparison, k, over 10 experiments.

opportunities for incorrect classifications. The attack
achieves a TPR of 0.87 and a FPR of 0.004. We achieved
best results when training on 4000 unmonitored web
pages. Table 5 reports results for training on different
numbers of unmonitored web pages, with k = 2. Fig-
ure 8 shows our results when modifying the number of
fingerprints used (k) and training on 2000 unmonitored
pages. We find that altering the number of unmonitored
training pages decreases the FPR while only slightly de-
creasing the TPR. This mirrors our experimental findings
from DSTor and the Wang et al. data set.

9.2 Attack without packet size features
DSNorm was not collected via Tor and so also contains
packet size information. We remove this to allow for
comparison with DSTor and the Wang et al. data set
which was collected over Tor. This also gives us a
baseline for how much more powerful k-fingerprinting is
when we have additional packet size features available.
We achieved a TPR of 0.81 and FPR of 0.005 when train-
ing on 5000 unmonitored web pages. Table 6 shows
our results at other sizes of training samples, with k=2.

Table 5: Attack results with packet size features for a
varying number of unmonitored training pages.

Training pages TPR FPR BDR

0 0.95±0.01 0.850±0.010 0.081
2000 0.90±0.01 0.010±0.004 0.908
4000 0.87±0.02 0.004±0.001 0.976
6000 0.86±0.01 0.005±0.002 0.990

Table 6: Attack results without packet size features for a
varying number of unmonitored training pages.

Training pages TPR FPR BDR

0 0.90±0.01 0.790±0.020 0.082
2000 0.83±0.01 0.009±0.001 0.910
4000 0.81±0.02 0.006±0.001 0.961
6000 0.80±0.02 0.005±0.001 0.989

Removing packet size features reduces the TPR by over
0.05 and increases the FPR by 0.001. Clearly packet size
features improve our classifier in terms of correct identi-
fications but do not decrease the number of unmonitored
test instances that were incorrectly classified as a moni-
tored page. Despite the difference in FPR when includ-
ing packet size information, the BDR is similar, suggest-
ing that BDR is dominated by the amount of information
that can be trained upon.
Closed-World. In the closed-world setting in which
the client can only browse within the 55 monitored web
pages k-fingerprinting is 0.91, compared to 0.96 when
packet size features are available. In the closed-world
setting attack accuracy improves by 5% when we include
packet size features.

10 Fine grained open-world false positives
on Alexa monitored set of DSTor

We observe that the classification error is not uniform
across all web pages17. Some pages are misclassified
many times, and confused with many others, while others
are never misclassified. An attacker can leverage this in-
formation to estimate the misclassification rate of each of
the web page classes instead of using the global average
misclassification rate. A naive approach to this problem
would be to first find which fingerprints contribute to the
many misclassifications and remove them. Our analysis
shows that the naive approach of removing “bad” finger-
prints that contribute to many misclassifications will ul-
timately lead to a higher misclassification rate. Figure 9
shows the 50 fingerprints that cause the most misclassi-
fications, and also shows for those same fingerprints the
number of correct classifications they contribute towards.

17See additional evidence in Appendix B.

11

1198 25th USENIX Security Symposium USENIX Association

Figure 9: The fingerprints that lead to the most misclas-
sifications and the correct classifications they contribute
towards. Training on 2% of unmonitored pages with k=3.

As we can see nearly all “bad” fingerprints actually con-
tribute to many correct classifications. One may think it
may still be beneficial to remove these fingerprints as the
cumulative sum of misclassifications outweigh the num-
ber of correct classifications. This removal will then pro-
mote fingerprints that are further away in terms of Ham-
ming distance from the fingerprinting that is being tested,
which will lead to a greater number of misclassifications.

Instead an attacker can use their training set of web
pages to estimate the TPR and FPR of each web page
class, by splitting the training set in to a smaller train-
ing set and validation set. Since both sets are from the
original training set the attacker has access to the true la-
bels. The attacker then computes the TPR and FPR rates
of each monitored class, this is used as an estimation for
TPR and FPR when training on the entire training set
and testing on new traffic instances. More specifically
we split, for the monitored training set of 70 instance for
each of the Alexa top 55 web pages, into smaller training
sets of 40 instances and validation sets of 30 instances.
This is used as a misclassification estimator for the full
monitored training set against the monitored test set of
30 instances per class. Similarly we split the unmoni-
tored training in half, one set as a smaller training set
and the other as a validation set.

Figure 10 shows the TPR and FPR estimation accu-
racy for 2000 unmonitored training pages. Monitored
classes are first ordered from best to worst in terms of
their classification accuracy. Even with a small unmoni-
tored training set of 2000 web pages, which is then split
in to a training set of 1000 web pages and a validation set
of 1000 web pages, an attacker can accurately estimate
the FPR of the attack if some of the monitored classes
were removed. For example, using only the best 20 mon-
itored classes (in terms of TPR), an attacker would esti-
mate that using those 20 classes as a monitored set, the

Figure 10: Rates for training on 1000 unmonitored
pages, testing on 1000, and comparison when training
on the full 2000 unmonitored pages and testing on the
remaining 98000 unmonitored pages in DSTor, k=3.

Figure 11: Rates for training on 8000 unmonitored
pages, testing on 8000, and comparison when training
on the full 16000 unmonitored pages and testing on the
remaining 84000 unmonitored pages in DSTor, k=3.

FPR would be 0.012. Using the entire data set we see that
the true FPR of these 20 classes is 0.010; the attacker has
nearly precisely estimated the utility of removing a large
fraction of the original monitored set.

There is a small difference between estimated and the
actual FPR in both Figures 10 and 11. There is little
benefit in training more unmonitored data if the attacker
wants to accurately estimate the FPR; Figure 10 has a
similar gap between the estimated FPR and true FPR
when compared to Figure 11. It is evident even with
a small training set, an attacker can identify web pages
that are likely to be misclassified and then accurately
calculate the utility of removing these web pages from
their monitored set. Due to the overwhelmingly large
world size of unmonitored web pages the BDR of Fig-
ure 10 does not grow dramatically with the removal of
web pages that are likely to be misclassified; using the
entire monitored set the BDR is 0.33, removing half of
the monitored web pages the BDR is 0.35.

12

USENIX Association 25th USENIX Security Symposium 1199

11 Attack Summary & Discussion
Attack Summary. Best attack results on data sets were
achieved when training on approximately two thirds of
the unmonitored web pages. Despite this, results from
DSTor show that an attacker can achieve a very small
false positive rate while only training on 2% of the un-
monitored data. Training on 2% of 100,000 unmoni-
tored web pages greatly reduces the attack set up costs
while only marginally reducing the accuracy compared
to training on more data, providing a realistic setting un-
der which an attack could be launched. Results on all
data sets also suggest that altering k, the number of fin-
gerprints used for classification, has a greater influence
on accuracy than the number of training samples18.

k-fingerprinting is robust; our technique achieves the
same accuracy regardless of the type of monitored set
or the manner in which it was collected (through Tor or
standard web browsers). The monitored set in the Wang
et al. [39] data set consists of real world censored web-
sites, the Kwon et al. [19] monitored set consist of Tor
hidden services and the DSTor/Norm monitored sets were
taken from Tor hidden services and top Alexa websites.
We do see a reduction in FPR when the target monitored
set are Tor hidden services due to the distinguishability
between the hidden services and unmonitored standard
web pages.

We also highlight the non-uniformity of classification
performance: when a monitored web page is misclas-
sified, it is usually misclassified on multiple tests. We
show that an attacker can use their training set to esti-
mate the error rate of k-fingerprinting per web page, and
select targets with low misclassification rates.
Computational Efficiency. k-fingerprinting is more ac-
curate and uses fewer features than state-of-the-art at-
tacks. Furthermore k-fingerprinting is faster than cur-
rent state-of-the-art website fingerprinting attacks. On
the Wang et al. data set training time for 6,000 monitored
and 2,500 unmonitored training pages is 30.738 CPU
seconds on an 1.4 GHz Intel Core i5z. The k-NN attack
[39] has training time per round of 0.064 CPU seconds
for 2500 unmonitored training pages. For 6,000 rounds
training time is 384.0 CPU seconds on an AMD Opteron
2.2 GHz cores. This can be compared to around 500 CPU
hours using the attack described by Cai et al. [7]. Testing
time per instance for k-fingerprinting is around 0.1 CPU
seconds, compared to 0.1 CPU seconds to classify one
instance for k-NN and 450 CPU seconds for the attack
described by Cai et al. [7].
Discussion. Website fingerprinting research has been
criticized for not being applicable to real-world scenarios

18Figure 17 illustrates that compared to training on a small number
of monitored instances increasing the size of the monitored training set
only incrementally increases accuracy.

[17, 29]. We have shown that a website fingerprinting at-
tack can scale to the number of traffic instance an attacker
may sample over long period of time with a high BDR
and low FPR. However, we did not consider the cases
where background traffic may be present, for example
from multitab browsing, or the effect that short-lived
websites will have on our attack. Gu et al. [15] show
in their work that a simple Naive-Bayes attack achieves
highly accurate results even when a client browses in
multiple tabs. Wang and Goldberg [36] also show that
website fingerprinting is effective in practical scenarios.
With no prior attack set-up to tailor to a multi-tab brows-
ing session our attack was able to classify nearly 40% of
monitored pages correctly when the decoy defense was
employed.

Website content rapidly changes which will negatively
affect the accuracy of a website fingerprinting attack
[17]. As the content of a website changes so will the
generated packet sequences, if an attacker cannot train
on this new data then an attack will suffer. However
we note that an attack will suffer from the ephemeral
nature of websites at different rates depending on the
type of website being monitored. For example, an at-
tack monitoring a news or social media site can expect
a faster degradation in performance compared to an at-
tack monitoring a landing page of a top 10 Alexa site
[1]. Also note Tor does not cache by default, so if in the
realistic scenario where an attacker wanted to monitor
www.socialmediawebsite.com a client would be forced to
navigate to the social media website landing page, which
is likely to host content that is long lived and not sub-
ject to change. The problem of content change is weak-
ened when fingerprinting Tor hidden services. As show
by Kwon et al. [19] hidden pages show minimal changes
in comparison to non-hidden pages, resulting in devastat-
ingly accurate attacks on hidden services that can persist.

12 Conclusion
We establish that website fingerprinting attacks are a se-
rious threat to online privacy. Clients of both Tor and
standard web browsers are at risk from website finger-
printing attacks regardless of whether they browse to hid-
den services or standard websites. k-fingerprinting im-
proves on state-of-the-art attacks in terms of both speed
and accuracy: current website fingerprinting defenses ei-
ther do not defend against k-fingerprinting or incur very
high bandwidth overheads. Our world size is an order
of magnitude larger than previous website fingerprinting
studies, and twice as large in terms of unique website
than Panchenko et al.’s recent work [28]. We have val-
idated our attack on four separate datasets showing that
it is robust and not prone to overfit one dataset, and so is
applicable to real world browsing environments at scale.
k-fingerprinting is highly accurate even when an attacker

13

1200 25th USENIX Security Symposium USENIX Association

trains on a small fraction of the total data. Untrustworthy
data within that small fraction can then be filtered and
removed before the attack is launched to later yield bet-
ter results, showing that long term website fingerprinting
attacks on a targeted client is a realistic threat.

References
[1] Alexa The Web Information Company, [Accessed

August 2015]. URL http://alexa.com.
[2] Leo Breiman. Random Forests, [Ac-

cessed July 2015]. URL https:
//www.stat.berkeley.edu/˜breiman/
RandomForests/.

[3] The Nielsen Company, [Accessed July 2015].
URL http://www.nielsen.com/us/
en/insights/news/2010/led-by-
facebook-twitter-global-time-
spent-on-social-media-sites-up-
82-year-over-year.html.

[4] Tor Proposal 254, [Accessed November 2015].
URL https://gitweb.torproject.org/
torspec.git/tree/proposals/254-
padding-negotiation.txt.

[5] George Dean Bissias, Marc Liberatore, David
Jensen, and Brian Neil Levine. ”Privacy Vulner-
abilities in Encrypted HTTP Streams”. In Proceed-
ings of the 5th International Conference on Privacy
Enhancing Technologies, pages 1–11, 2006.

[6] Leo Breiman. ”Random Forests”. Mach. Learn.,
45(1):5–32, 2001.

[7] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and
Rob Johnson. ”Touching from a distance: web-
site fingerprinting attacks and defenses”. In ACM
Conference on Computer and Communications Se-
curity, pages 605–616, 2012.

[8] Xiang Cai, Rishab Nithyanand, and Rob Johnson.
”CS-BuFLO: A Congestion Sensitive Website Fin-
gerprinting Defense”. In Proceedings of the 13th
Workshop on Privacy in the Electronic Society,
pages 121–130, 2014.

[9] Shuo Chen, Rui Wang, XiaoFeng Wang, and Ke-
huan Zhang. ”Side-Channel Leaks in Web Appli-
cations: A Reality Today, a Challenge Tomorrow”.
In Proceedings of the 2010 IEEE Symposium on Se-
curity and Privacy, pages 191–206, 2010.

[10] Heyning Cheng, , Heyning Cheng, and Ron Avnur.
”Traffic Analysis of SSL Encrypted Web Brows-
ing”, 1998.

[11] Roger Dingledine, Nick Mathewson, and Paul F.
Syverson. ”Tor: The Second-Generation Onion
Router”. In Proceedings of the 13th USENIX Se-
curity Symposium, pages 303–320, 2004.

[12] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart,
and Thomas Shrimpton. ”Peek-a-Boo, I Still See

You: Why Efficient Traffic Analysis Countermea-
sures Fail”. In Proceedings of the 2012 IEEE Sym-
posium on Security and Privacy, pages 332–346,
2012.

[13] Jerome H. Friedman. ”Greedy Function Approxi-
mation: A Gradient Boosting Machine”. Annals of
Statistics, 29:1189–1232, 2000.

[14] Pall Oskar Gislason, Jon Atli Benediktsson, and Jo-
hannes R. Sveinsson. ”Random Forests for Land
Cover Classification”. Pattern Recogn. Lett., 27(4):
294–300, March 2006.

[15] Xiaodan Gu, Ming Yang, and Junzhou Luo. ”A
novel Website Fingerprinting attack against multi-
tab browsing behavior”. In 19th IEEE International
Conference on Computer Supported Cooperative
Work in Design, CSCWD, pages 234–239, 2015.

[16] Dominik Herrmann, Rolf Wendolsky, and Hannes
Federrath. ”Website Fingerprinting: Attacking
Popular Privacy Enhancing Technologies with the
Multinomial Naive-bayes Classifier”. In Proceed-
ings of the 2009 ACM Workshop on Cloud Comput-
ing Security, pages 31–42, 2009.

[17] Marc Juárez, Sadia Afroz, Gunes Acar, Claudia
Dı́az, and Rachel Greenstadt. ”A Critical Evalu-
ation of Website Fingerprinting Attacks”. In Pro-
ceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages
263–274, 2014.

[18] Marc Juárez, Mohsen Imani, Mike Perry, Clau-
dia Dı́az, and Matthew Wright. ”WTF-PAD: to-
ward an efficient website fingerprinting defense for
tor”. CoRR, abs/1512.00524, 2015. URL http:
//arxiv.org/abs/1512.00524.

[19] Albert Kwon, Mashael AlSabah, David Lazar,
Marc Dacier, and Srinivas Devadas. ”Circuit Fin-
gerprinting Attacks: Passive Deanonymization of
Tor Hidden Services”. In 24th USENIX Security
Symposium, pages 287–302, 2015.

[20] A. Liaw and M. Wiener. ”Classification and Re-
gression by randomForest”. R News: The Newslet-
ter of the R Project, 2(3):18–22, 2002.

[21] Marc Liberatore and Brian Neil Levine. ”Inferring
the source of encrypted HTTP connections”. In
Proceedings of the 13th ACM Conference on Com-
puter and Communications Security, pages 255–
263, 2006.

[22] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua
Zhou. ”Isolation-Based Anomaly Detection”. ACM
Trans. Knowl. Discov. Data, 6(1):3:1–3:39, March
2012.

[23] Liming Lu, Ee-Chien Chang, and Mun Choon
Chan. ”Website Fingerprinting and Identification
Using Ordered Feature Sequences”. In Proceed-
ings of the 15th European Conference on Research

14

USENIX Association 25th USENIX Security Symposium 1201

in Computer Security, pages 199–214, 2010.
[24] Xiapu Luo, Peng Zhou, Edmond W. W. Chan,

Wenke Lee, Rocky K. C. Chang, and Roberto
Perdisci. ”HTTPOS: Sealing information leaks
with browser-side obfuscation of encrypted flows”.
In In Proc. Network and Distributed Systems Sym-
posium (NDSS), 2011.

[25] Rishab Nithyanand, Xiang Cai, and Rob Johnson.
”Glove: A Bespoke Website Fingerprinting De-
fense”. In Proceedings of the 13th Workshop on
Privacy in the Electronic Society, pages 131–134,
2014.

[26] A. Stolerman M. V. Ryan P. Brennan P. Juola, J.
I. Noecker Jr and R. Greenstadt. ”A Dataset for
Active Linguistic Authentication”. In IFIP WG
11.9 International Conference on Digital Foren-
sics, 2013.

[27] Andriy Panchenko, Lukas Niessen, Andreas Zin-
nen, and Thomas Engel. ”Website fingerprinting
in onion routing based anonymization networks”.
In Proceedings of the 10th annual ACM workshop
on Privacy in the electronic society, WPES, pages
103–114, 2011.

[28] Andriy Panchenko, Fabian Lanze, Andreas Zinnen,
Martin Henze, Jan Pennekamp, Klaus Wehrle, , and
Thomas Engel. ”Website Fingerprinting at Internet
Scale”. In Network and Distributed System Security
Symposium, 2016.

[29] Mike Perry. ”A Critique of Website Traffic
Fingerprinting Attacks”. https://blog.
torproject.org/blog/critique-
website-traffic-fingerprinting-
attacks, Accessed June 2015.

[30] Mike Perry. ”Experimental defense web-
site traffic fingerprinting”. https:
//blog.torproject.org/blog/
experimental-defense-website-
traffic-fingerprinting, Accessed June
2015.

[31] Vitaly Shmatikov and Ming-Hsiu Wang. ”Timing
Analysis in Low-Latency Mix Networks: Attacks
and Defenses”. In ESORICS, 2006.

[32] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf
Russell, Venkata N. Padmanabhan, and Lili Qiu.
”statistical identification of encrypted web brows-
ing traffic”. In Proceedings of the 2002 IEEE Sym-
posium on Security and Privacy, pages 19–, 2002.

[33] Vladimir Svetnik, Andy Liaw, Christopher Tong,
J. Christopher Culberson, Robert P. Sheridan, and
Bradley P. Feuston. ”Random Forest: A Classifica-
tion and Regression Tool for Compound Classifica-
tion and QSAR Modeling”. Journal of Chemical
Information and Computer Sciences, 43(6):1947–
1958, 2003.

[34] David Wagner and Bruce Schneier. ”Analysis of
the SSL 3.0 Protocol”. In Proceedings of the 2nd
Conference on Proceedings of the Second USENIX
Workshop on Electronic Commerce - Volume 2,
pages 4–4, 1996.

[35] T. Wang and I. Goldberg. ”Comparing website fin-
gerprinting attacks and defenses”. Technical Re-
port, 2013.

[36] T. Wang and I. Goldberg. ”On Realistically Attack-
ing Tor with Website Fingerprinting”. Technical
Report, 2015.

[37] T. Wang and I. Goldberg. ”Walkie-Talkie: An Ef-
fective and Efficient Defense against Website Fin-
gerprinting”. Technical Report, 2015.

[38] Tao Wang and Ian Goldberg. ”Improved Website
Fingerprinting on Tor”. In Proceedings of the 12th
ACM Workshop on Workshop on Privacy in the
Electronic Society, pages 201–212, 2013.

[39] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob
Johnson, and Ian Goldberg. ”Effective Attacks and
Provable Defenses for Website Fingerprinting”. In
Proceedings of the 23rd USENIX Security Sympo-
sium, pages 143–157, 2014.

[40] Charles V. Wright, Scott E. Coull, and Fabian Mon-
rose. ”Traffic Morphing: An Efficient Defense
Against Statistical Traffic Analysis”. In In Proceed-
ings of the 16th Network and Distributed Security
Symposium, pages 237–250, 2009.

15

1202 25th USENIX Security Symposium USENIX Association

A Total feature importance.

Feature Description

131 - 150 . Packet concentration list features.

Figure 12: Feature importance score for all 150 features
in order. The table gives the description for the 20 least
important features.

B Closed World Error Rates
Figure 13 shows the confusion matrix in our closed-
world setting, that is, it shows the 49 misclassifications
(out of 550). We see that some persistent misclassifica-
tion patterns of web pages appear, for example web page
54 is classified correctly four times but is misclassified as
web page 0 six times. The misclassification rate in Fig-
ure 13 is 0.09 but this is the average error rate across all
web pages.

Figure 13 shows that the classification error is not uni-
form across all web pages. Some pages are misclassified
many times, and confused with many others, while oth-
ers are never misclassified. An attacker can leverage this
information to estimate the misclassification rate of each
web page instead of using the global average misclassifi-
cation rate.

As in Section 10, an attacker can use their training
set of web pages to estimate the misclassification rate of
each web page, by splitting the training set in to a smaller
training set and validation set. Since both sets are from
the original training set the attacker has access to the true
labels. The attacker then computes the misclassification
rate of each web page, which they can use as an estima-
tion for the misclassification rate when training on the
entire training set and testing on new traffic instances.

Figures 14 and 15 show the global misclassification
rate for a varying number of monitored pages. Moni-
tored pages are first ordered in terms of the misclassifi-
cation rate they have, ordered from smallest to largest.
From Figure 14, using the Wang et al. data set, we see
that if the attacker considers only the top 50% on web
pages in terms of per page misclassification rate, the true

Figure 13: Confusion matrix for closed-world attack on
Tor using DSNorm. F1 score = 0.913, Accuracy: 0.915,
550 items.

Figure 14: The global misclassification rate when con-
sidering different numbers of monitored pages from the
Wang et al. data set. The monitored pages are ordered in
terms of smallest misclassification rate to largest.

global misclassification rate and global misclassification
rate estimated by the attacker drop by over 70%. Simi-
larly from Figure 15, using DSNorm, if the attacker con-
siders only the top 50% on web pages in terms of per
page misclassification rate, the true global misclassifica-
tion rate and global misclassification rate estimated by
the attacker drop by over 80%. This allows an attacker
to train on monitored pages and then cull the pages that
have too high an error rate, allowing for more confidence
in the classification of the rest of the monitored pages.

The gap between the attacker’s estimate and the mis-
classification rate of the test set is largely due to the size
of the data set. Figure 14 has a smaller error of estimate
than Figure 15 because the Wang et al. data set has 60
instances per monitored page, in comparison DSNorm has
20 instances per monitored page. In practice, an attacker

16

USENIX Association 25th USENIX Security Symposium 1203

Figure 15: The global misclassification rate when con-
sidering different numbers of monitored pages from
DSNorm. The monitored pages are ordered in terms of
smallest misclassification rate to largest.

Figure 16: Attack accuracy for 17,000 unmonitored web
pages. Each line represents a different number of un-
monitored web pages that were trained, while varying k,
the number of fingerprints used for classification.

cannot expect perfect alignment; they are generated from
two different sets of data, the training and training +
test set. Nevertheless the attacker can expect this dif-
ference to decrease with the collection of more training
instances.

C Attack on larger world size of DSNorm

We run k-fingerprinting on DSNorm with the same number
of monitored sites but increase the numbered of unmon-
itored sites to 17,000. We evaluate when we have both
time and size features available.

Figure 16 shows the results of k-fingerprinting while
varying the number of fingerprints (k) used for classifi-
cation, from between 1 and 10, for various experiments
trained with different numbers of unmonitored pages.
We see that the attack results are comparable to the attack
on 7000 unmonitored pages, meaning there is no degra-
dation in attack accuracy when we increase the world

Figure 17: Attack out-of-bag score while varying the
number of monitored training pages.

size by 10,000 web pages. Training on approximately
30% of the 7000 unmonitored web pages k-fingerprinting
gives a TPR of over 0.90 and a FPR of 0.01 for k=1.
Training on approximately 30% of the 17,000 unmoni-
tored web pages k-fingerprinting gives a TPR of 0.90 and
a FPR of 0.006 for k=1.

The fraction of unmonitored pages that were incor-
rectly classified as a monitored page decreased as we in-
creased our world size. In other words, out of 12,000 un-
monitored pages only 72 were classified as a monitored
page, with this Figure dropping to 24 if we use k=10 for
classification. This provides a strong indication that k-
fingerprinting can scale to a real-world attack in which
a client is free to browse the entire internet, with no de-
crease in attack accuracy.
Number of monitored training pages in closed-world.
Figure 17 shows the out-of-bag score as we change the
number of monitored pages we train. We found that
training on any more than a third of the data gives
roughly the same accuracy.

17

USENIX Association 25th USENIX Security Symposium 1205

Protecting Privacy of BLE Device Users

Kassem Fawaz∗ Kyu-Han Kim† Kang G. Shin∗
∗The University of Michigan †Hewlett Packard Labs

Abstract

Bluetooth Low Energy (BLE) has emerged as an attrac-
tive technology to enable Internet of Things (IoTs) to
interact with others in their vicinity. Our study of the
behavior of more than 200 types of BLE-equipped de-
vices has led to a surprising discovery: the BLE proto-
col, despite its privacy provisions, fails to address the
most basic threat of all—hiding the device’s presence
from curious adversaries. Revealing the device’s exis-
tence is the stepping stone toward more serious threats
that include user profiling/fingerprinting, behavior track-
ing, inference of sensitive information, and exploitation
of known vulnerabilities on the device. With thousands
of manufacturers and developers around the world, it is
very challenging, if not impossible, to envision the vi-
ability of any privacy or security solution that requires
changes to the devices or the BLE protocol.

In this paper, we propose a new device-agnostic sys-
tem, called BLE-Guardian, that protects the privacy of
the users/environments equipped with BLE devices/IoTs.
It enables the users and administrators to control those
who discover, scan and connect to their devices. We have
implemented BLE-Guardian using Ubertooth One, an
off-the-shelf open Bluetooth development platform, fa-
cilitating its broad deployment. Our evaluation with real
devices shows that BLE-Guardian effectively protects
the users’ privacy while incurring little overhead on the
communicating BLE-devices.

1 Introduction

Bluetooth Low Energy (BLE) [4] has emerged as the
de facto communication protocol in the new computing
paradigm of the Internet of Things (IoTs) [8, 9, 15, 23,
24, 39]. In 2013, over 1.2 billion BLE products were
shipped [9], with this number expected to hit 2.7 bil-
lion in 2020 [3]. BLE-equipped products are embedded
and used in every aspect of our lives; they sense nearby

objects, track our fitness, control smart appliances and
toys provide physical security, etc. The BLE protocol
owes this proliferation to its low energy and small pro-
cessing footprint as well as its support by most end-user
devices [20], such as PCs, gateways, smartphones, and
tablets.

A BLE-equipped device advertises its presence to let
interested nearby devices initiate connections and glean
relevant information. These advertisements, however,
are a double-edged sword. An unauthorized, potentially
malicious, party can use these advertisements to learn
more about the BLE-equipped devices of a certain user
or in a specific environment [22], generally referred to in
literature as the inventory attack [42]. Revealing the de-
vice’s presence is the stepping stone toward more serious
privacy and security attacks with grave consequences in
the case of medical devices for example, especially for
high-value targets [31].

The BLE specification contains some privacy pro-
visions to minimize the effects of inventory attacks
and ensuing threats, namely address randomization and
whitelisting. A BLE device is supposed to randomize
its address to prevent others from tracking it over time.
Moreover, only devices with a pre-existing trust rela-
tionship (whitelisted devices) are supposed to access the
BLE-equipped device.

In this paper, we first analyze how existing BLE’s
privacy measures fare in the real-world deployments
through our own data-collection campaign. To the best
of our knowledge, this is the first study that systemat-
ically analyzes threats to the BLE-equipped devices in
the wild. We recruited participants from our institution
and the PhoneLab testbed [27] to collect the BLE adver-
tisements in their vicinity. We have collected and an-
alyzed the advertisements from 214 different types of
BLE-equipped devices. Analyzing our dataset has led to
a surprising discovery: BLE advertisements, due to poor
design and/or implementation, leak an alarming amount
of information that allows the tracking, profiling, and

1

1206 25th USENIX Security Symposium USENIX Association

fingerprinting of the users. Furthermore, some devices
allow external connections without an existing trust re-
lationship. Unauthorized entities can access unsecured
data on the BLE-equipped devices that might leak sensi-
tive information and potentially inflict physical harm to
the bearer.

Almost all of the existing approaches addressing some
of the above threats rely on mechanisms that necessar-
ily include changes to the protocol itself or to the way
the BLE-equipped devices function [21, 40]. Changing
the operation of such devices, post-production, requires
their patching by securely pushing a firmware update.
With thousands of manufacturers and developers around
the world, it is very challenging, sometimes impossi-
ble, to guarantee firmware patches to the millions of al-
ready deployed devices [11]. Even a security-aware user
might lack the ability to update the firmware of a BLE-
equipped device. Patch management is, therefore, the
leading security challenge in the emerging IoTs [10, 19]
(including BLE-equipped devices) for many reasons:

• Manufacturers might lack the ability to apply OTA
updates [1] for some deployed BLE-equipped de-
vices because they (such as a BLE-equipped preg-
nancy test) are neither programmable nor equipped
with an Internet connection.

• Customers might neither receive news about the up-
date nor be able to apply an update even if available.
For example, a month after the 2013 “Foscam” we-
bcams hacking incident, 40,000 of 46,000 vulnera-
ble cameras were not updated although a firmware
update was available [17].

• Companies do not have enough financial incentives
or resources to maintain the devices post deploy-
ment [34]. For example, Samsung discontinued two
lines of smart refrigerators after 2012 so that cus-
tomers can’t receive updates for their purchased re-
frigerators [6].

There is, therefore, a need for a new class of practical ap-
proaches to mitigate the privacy threats to BLE-equipped
devices. In this paper, we seek to answer the following
related question: can we effectively fend off the threats
to BLE-equipped devices: (1) in a device-agnostic man-
ner, (2) using COTS (Commercial-Off-The-Shelf) hard-
ware only, and (3) with as little user intervention as pos-
sible?

We present BLE-Guardian as an answer to the
above question. It is a practical system that protects
the user’s BLE-equipped devices so that only user-
authorized entities can discover, scan, or connect to
them. BLE-Guardian relies on an external and off-the-
shelf Bluetooth radio as well as an accompanying appli-
cation. Therefore, a user can easily install (and control)
BLE-Guardian to any BLE gateway, be it a smartphone,

tablet, PC, Raspberry PI, Artik-10, etc. The external ra-
dio achieves the physical protection, while the applica-
tion, running on the gateway, enables the user to interact
with BLE-Guardian.
BLE-Guardian provides privacy and security protec-

tion by targeting the root of the threats, namely the ad-
vertisements. In particular, BLE-Guardian opportunis-
tically invokes reactive jamming to determine the enti-
ties that can observe the device existence through the
advertisements (device hiding module), and those that
can issue connection requests in response to advertise-
ments (access control module). In a typical BLE envi-
ronment, however, achieving BLE-Guardian’s objective
is rather challenging. Many BLE-equipped devices, in-
cluding the ones to be protected, advertise on the same
channel; while at the same time other devices, in re-
sponse to advertisements, issue scan and connection re-
quests. The timing is of an essence for BLE-Guardian;
it invokes jamming at the right time for the right dura-
tion. Therefore, BLE-Guardian does not inadvertently
harm other devices, preserves the ability of authorized
entities to connect the BLE-equipped device, and always
hides the BLE-equipped device when needed.

More than one device might be authorized to con-
nect to the BLE-equipped device. BLE-Guardian dif-
ferentiates the scan and connection requests originating
from authorized devices versus those that are fraudulent.
This is particularly challenging as the BLE advertise-
ment channel lacks any authentication mechanism for the
advertisements and connections. BLE-Guardian utilizes
Bluetooth classic as an out-of-band (OOB) channel to
authorize a device after obtaining the user’s permission.
It uses the OOB channel to instruct the connecting de-
vice to issue ordinary connection requests with (varying)
special parameters that other unauthorized devices can’t
predict. It also alerts the user when unauthorized parties
attempt connection to the user’s BLE devices.
BLE-Guardian achieves its objectives with mini-

mum requirements from the external radio. Effectively,
BLE-Guardian operates with a radio that offers only the
basic capabilities of reception and transmission on the
BLE channels. As a result, BLE-Guardian avoids em-
ploying sophisticated and customized (thus impractical)
radios and signal processing approaches.

We implement BLE-Guardian using the commer-
cially available Ubertooth One1 USB dongle so that
BLE-Guardian can be easily installed on any BLE gate-
way. We also implement accompanying apps for differ-
ent BLE gateways, such as Android and Raspberry PI.
We evaluate BLE-Guardian using several BLE devices
for different real-world scenarios, where we assess its
effectiveness in combating privacy threats, its low over-

1https://greatscottgadgets.com/ubertoothone/

2

USENIX Association 25th USENIX Security Symposium 1207

head on the channel and devices, and little disruption to
the operation of legitimate BLE devices. In particular,
BLE-Guardian is able to protect up to 10 class-2 target
BLE-equipped devices within a 5m range with less than
16% energy overhead on the gateway.

The rest paper is organized as follows. Section 2 dis-
cusses the related work. Section 3 provides the nec-
essary BLE background. Section 4 states the privacy
threats arising from BLE advertisements through our
data-collection campaign. Section 5 details the design
of BLE-Guardian. Section 6 presents the implemen-
tation of BLE-Guardian and evaluates its effectiveness.
Finally, the paper concludes with Section 7.

2 Related Work

There have been limited efforts related to BLE devices
that target the security and privacy threats resulting from
the devices revealing their presence. The only excep-
tion is the work by Wang [40], where a privacy enhance-
ment is proposed for BLE advertisements to ensure con-
fidentiality and prevent replay attacks as well as tracking.
This enhancement is based on providing an additional 3-
way handshake between the peripheral and the gateway.
Unarguably, this enhancement changes both the protocol
and the peripheral which is highly impractical as we ar-
gued before.

Another related field of research includes wearable
and body-area networks. The work by Leonard [21] uses
a honeypot to lure in adversaries that attempt to attack
the user’s wearable devices. The honeypot uses a set of
helper nodes to expose fake services with known weak-
nesses so that the attacker connects to them. This work,
however, doesn’t handle the privacy threat arising from
BLE advertisements. A determined attacker will be able
to distinguish fake traffic from legitimate one based on
RF signatures from the devices and issue connections to
the user’s real devices.

Other relevant work includes approaches to protecting
medical devices. Mare et al. [25] propose a mechanism
that protects health sensors when communicating with a
gateway. The proposed system, albeit relevant, doesn’t
apply for the BLE ecosystem. It also mandates chang-
ing the medical devices. Gollakota et al. [12] propose an
external device, called Shield, that the user wears to con-
trol access to his/her embedded medical device. Shield
implements friendly jamming so that only an authorized
programmer can communicate with the medical device.
BLE-Guardian takes an entirely different approach

by targeting the control plane of the BLE protocol in-
stead of the data plane. BLE-Guardian does not need
to continually protect an ongoing authorized connection
and more importantly need not invoke jamming signal
cancellation that requires accurate estimation of chan-

nel condition in a dynamic mobile indoor environment
as well as a full duplex radio. BLE-Guardian consti-
tutes a reference design that can function with any radio
that has reception and transmission capabilities on the
2.4 GHz band. BLE-Guardian, also, considers far less
restrictive scenarios than Shield. It does not have to be
within centimeters of the device-to-be-protected as the
case with Shield. Moreover, BLE-Guardian’s practical
design allows scaling up protection for multiple devices
(multiple connectors and protected devices) simultane-
ously, which is not the case for Shield that considers a
two-device scenario only [36].

Finally, researchers have explored ways to reduce in-
formation leaks from sensors in a smart home environ-
ment [30,37]. Srinivasan et al. [37], Park et al. [30], and
Schurgot et al. [35] propose a set of privacy enhance-
ments that include perturbing the timing of broadcasted
sensory data along with padding the real sensory data
with fake data to confuse the adversary. These protocols
fail to address the threats resulting from BLE advertise-
ments and have the shortcoming of requiring changes to
the sensors as well.

3 BLE Primer

The BLE (Bluetooth 4.0 and newer) protocol has been
developed by the Bluetooth SIG to support low power
devices such as sensors, fitness trackers, health monitors,
etc. Currently, more than 75,000 devices in the market
support this protocol along with most of more capable
devices such as smartphones, tablet, PCs, and recently
access points [2].

3.1 BLE States

A BLE device assumes either a central or peripheral role.
A peripheral device is typically the one with lower capa-
bilities and with the information to advertise. The central
device, typically an AP, PC, or smartphone, scans for ad-
vertisements and initiates connections.

The BLE specification places a higher burden on the
central device. It is responsible for initiating the con-
nection and thus has to keep scanning until it receives
an advertisement. Conversely, the peripheral (prior to its
connection) sleeps for most of the time and only wakes
up to advertise, which helps save its limited energy.

3.2 Advertisements

BLE advertisements are instrumental to the operation of
the protocol, and constitute the only means by which a
device can be discovered. The specification defines 4 ad-
vertisement message types as shown in Table 1, and 3

3

1208 25th USENIX Security Symposium USENIX Association

Table 1: The four types of BLE advertisements.
Type Advertising Interval

ADV IND 20ms − 10.24s
ADV DIRECT IND 3.75ms
ADV NONCONN IND 100ms − 10.24s
ADV SCAN IND 100ms − 10.24s

ch.1 ch. 2 ch. 3

Advertising session

tw tw tw

Advertising interval Random delay

Figure 1: The advertisement pattern in BLE.

advertisement channels: 37 (2402MHz), 38 (2426MHz),
and 39 (2480MHz).

ADV DIRECT IND (introduced in Bluetooth 4.2) is
a special advertisement; it enables fast reconnection be-
tween the central and the peripheral devices. The periph-
eral, when turned on, will broadcast advertisements at a
fast rate (once every 3.75ms, for 1.28 seconds) that are
directed to the client (with a pre-existing trust relation-
ship) before assuming the central role. The advertise-
ment message only contains the message type, source,
and destination addresses.

The other three advertisements are similar to each
other in that they are periodic. The advertisement in-
terval determines the frequency with which each device
advertises. This interval has to be chosen, at configu-
ration time, between 20ms and 10.24 seconds (at incre-
ments of 0.625ms) for the ADV IND advertisement and
between 300ms and 10.24 seconds for the other two ad-
vertisements. To prevent advertisements of different de-
vices from colliding with each other, each device waits
for a random amount of time between 0 and 10ms (in ad-
dition to the advertisement interval) before it advertises
(Fig. 1).

The advertisement session constitutes the period when
the device is actually advertising. During each adver-
tisement session, the device advertises on the three ad-
vertisement channels given a pre-configured channel se-
quence. Before switching to the next channel, the device
has to wait for a preset period of time (less than 10ms)
for scan and connection requests (tw in Fig. 1). We will
henceforth refer to the advertisement interval, the chan-
nel sequence, and the waiting time as the advertisement
pattern.

Each advertisement message contains the message

type, source address, along with some of the services
offered by the device and their respective values. The
specification defines a set of services that have unique
UUIDs, such as device name. The message is limited in
length, and hence, to get more information about the de-
vice, an interested device can either issue a scan request
to which the advertising device responds with a scan re-
sponse or connect to the advertising device.

3.3 Connections
Not all BLE devices accept connections; devices that use
ADV NONCONN IND advertisement messages run in
transmit mode only and they don’t accept any scan or
connection requests such as iBeacons.

Also, devices advertising with ADV SCAN IND mes-
sages don’t accept connections but accept scan requests.
Particularly, when the device broadcasts an advertise-
ment message on some channel, it listens on the same
channel for some time (less than 10ms) before switching
to the next channel. It waits for scan requests from clients
wanting to learn more information to which it responds
with a scan response.

Devices that advertise using ADV IND messages are
scannable and connectable; they respond to scan mes-
sages and connection requests. After sending an adver-
tisement message, the device listens for connection re-
quests. The connection request contains the source and
destination addresses along with other connection pa-
rameters. These parameters contain the connection in-
terval, the timeout, and the slave interval. When con-
nected, the device starts frequency hopping according to
a schedule negotiated with the central. If the device (now
peripheral) doesn’t receive any communication from the
central over the period defined by the “timeout interval”,
it drops the connection.

While connected, the device must not broadcast con-
nectable advertisement messages (the first two types of
Table 1). It can, however, still broadcast non-connectable
advertising messages to share information (the last two
types of Table 1) with other clients in its transmission
range which still leaks information about the device’s
name, type, and address.

3.4 Privacy and Security Provisions
The BLE specification borrows some security provisions
from classical Bluetooth to establish trust relationships
between devices, a process known as pairing. When
the device boots for the first time, it will advertise using
ADV IND with its public Bluetooth address. The user
can then pair a smartphone (or other BLE-equipped de-
vice) so that the two devices exchange a secret key that
will enable future secure communication.

4

USENIX Association 25th USENIX Security Symposium 1209

Once a BLE-equipped device is paired with another
device, it can invoke more privacy and security provi-
sions. The first provision is whitelisting, and the device
will only accept connections from devices it has been
paired with before, i.e., those that are whitelisted. Also,
the device might accept connections from any client but
might require higher security levels for some of the ser-
vices it exposes so that only authorized users access sen-
sitive content.

Finally, the BLE specification defines a privacy pro-
vision based on address randomization to prevent device
tracking. When two devices are paired, they exchange an
additional key called the Identity Resolution Key (IRK).
The device uses this key to generate a random address ac-
cording to a timer value set by the manufacturer, which
it will use to advertise. This random address will be re-
solved by the paired device using the same key. As this
random address is supposed to change regularly, curious
parties shouldn’t be able to track a BLE-equipped device.
Devices that don’t utilize address randomization can re-
sort to direct advertising (ADV DIRECT IND) to enable
fast and private reconnections.

These privacy provisions are akin to those proposed
earlier in the context of WiFi networks. Researchers have
long identified privacy leaks from the consistent identi-
fiers broadcasted by wireless devices. They proposed pri-
vacy enhancements that include randomizing or frequent
disposing of MAC addresses [14, 18] and hiding them
through encrypting the entire WiFi packets [13]. These
enhancements require introducing changes for the client
devices.

4 Threats from BLE Devices

While, in theory, BLE’s privacy provisions might be ef-
fective to thwart threats to the user’s privacy, whether or
not various manufacturers and developers properly im-
plement them is an entirely different story. In what fol-
lows, we investigate how the BLE privacy provisions fare
in the wild using a dataset collected in our institution and
using the PhoneLab testbed [27] of SUNY Buffalo.

We developed an Android app that collects the content
of the advertisement messages. We recruited users from
our institution and from the PhoneLab testbed. We didn’t
collect any personal information about the users and thus
obtained non-regulated status from the IRB of our insti-
tution. One could view this study as crowdsourcing the
analysis of BLE devices; instead of purchasing a limited
set of devices and analyzing them, we monitored the be-
havior of a broad range of devices in the wild. Analyzing
the advertisements we collected from 214 different types
of devices (sample of these devices shown in Tables 2
and 3), we observed:

Table 2: A sample of devices with revealing names.
Name Type

LG LAS751M(27:5D) music streaming
JS00002074 digital pen
ihere key finder
spacestation battery/storage extension
Jabra PULSE Smart smartbulb
DEXCOMRX Glucose monitor
Clover Printer 0467 printer
Frances’s Band ea:9d LE smartband
Gear Fit (60ED) activity tracker
Lyve Home-00228 photo storage
Matthias-FUSE headset
Richelle’s Band b2:6a LE smartband
vivosmart #3891203273 activity tracker
KFDNX key fob
OTbeat heart rate monitor
Thermos-4653 Smart Thermos
POWERDRIVER-L10C3 smart power inverter

Table 3: A sample of devices with consistent addresses
for more than a day.

Name Type Days observed

One activity tracker 37
Flex activity tracker 37
Zip activity tracker 37
Surge activity tracker 36
Charge activity tracker 36
Forerunner 920 smartwatch 36
Basis Peak sleep tracker 25
MB Chronowing smartwatch 15
dotti pixel light 7
UP MOVE fitness tracker 2
GKChain laptop security 2
Gear S2 (0412) smartwatch 2
Crazyflie quadropter 1
Dropcam camera 1

1. Two advertisement types (ADV NONCONN IND
and ADV SCAN IND) require a fixed address
which would enable tracking of a mobile target.

2. Devices that are bonded to the users advertise us-
ing ADV IND messages instead of the more private
ADV DIRECT IND.

3. Some devices, albeit not expected to do so, use their
public Bluetooth addresses in advertisements. This
also enables tracking as well as identifying of the
device manufacturer.

4. Other devices implement poor address randomiza-
tion by flipping some bits of the address render-
ing them ineffective against tracking. This has also
been identified in other studies of BLE devices [22].

5. A large number of devices advertise their names
(Table 2), revealing sensitive information about
them, the user, and the environment. Also, some
of the device names contain personal information

5

1210 25th USENIX Security Symposium USENIX Association

or unique identifiers that may enable user tracking.

6. Some devices use a consistent Bluetooth address
for long periods of time which renders address ran-
domization ineffective (Table 3). Examples include
various types of wristbands (Fitbit Flex, Forerunner
920, etc.), headsets, smartwatches (Apple Watch or
Samsung Gear), etc. This has also been identified
by Das et al. [7], where they analyzed the adver-
tisements of BLE-equipped fitness trackers. Das et
al. found the fitness trackers constantly advertising
with consistent (non-private) BLE addresses. In our
experiments, we observed that Flex and One kept
the same address for 37 days, so did One and Charge
for 30 days.

7. Some devices accept connections from non-bonded
devices. This allows access to the services on the
device including the unique manufacturer ID, for in-
stance, which allows for user tracking regardless of
the device’s address. For example, we were able
to connect to various devices and access data from
them without any existing trust relationship, such
as various Fitbit devices (One, Zip Flex, Charge),
Garmin Vivosmart, digital pens, etc. It is worth not-
ing that we connected to these devices under con-
trolled experimental settings, not in the wild. As a
result, an external access control mechanism is nec-
essary to protect such devices.

The above observations indicate that the address ran-
domization, part of the BLE specifications, fails to pro-
vide the promised privacy protection. Various develop-
ers and manufacturers do not implement it properly; they
rely on public Bluetooth addresses, apply weak random-
ization, or keep a consistent address for a long time. On
the other hand, even if address randomization is properly
implemented, other information in the advertisement or
in the device might contain unique information (device
name or id) that allows for its tracking.

Moreover, data accessed from an advertisement or the
device (once connected) might reveal sensitive informa-
tion about the user or the environment. Through our data
collection campaign, we were able to detect different
types of glucose monitors, wristbands, smart watches,
fitness trackers, sleep monitors, laptops, smartphones,
laptop security locks, security cameras, key trackers,
headsets, etc. Knowing which type of glucose moni-
tor the user is carrying or the type of physical security
system s/he has installed could lead to serious harm to
the user. Finally, an adversary might use such advertise-
ment data as side information to infer more about the
user’s behavior. For example, a temperature sensor con-
stantly reading 60◦F in winter would indicate a vacant
property [41] which may invite in a thief.

attacker
BLE device

Authorized client

BLE-Guardian

(a) Mobile

attacker

BLE device

Authorized client
BLE-Guardian

(b) Vehicle

Figure 2: Example deployments of BLE-Guardian.

5 BLE-Guardian

BLE-Guardian addresses the aforementioned privacy
threats by allowing only authorized clients to dis-
cover, scan, and connect to the user’s BLE-equipped
device. Before delving into the inner workings of
BLE-Guardian, we first describe the system and threat
models.

5.1 System and Threat Models
5.1.1 System Model

A typical BLE scenario involves two interacting entities:
the client and the BLE-equipped device. The BLE device
broadcasts advertisements to make other nearby clients
aware of its presence along with the services/information
it is offering. A client can then connect to the device
to access more services/information and control some of
its attributes, in which case it will be the BLE-device’s
gateway to the outside world.

The user’s mobile device (e.g., smartphone or tablet)
acts a gateway where BLE devices are wearable (e.g.,
fitness trackers), or mHealth devices (e.g., Glucose mon-
itor) (Fig. 2a). In a home environment, the user’s ac-
cess point, PC, or even mobile device, serves as a gate-
way for BLE devices that include smart appliances, we-
bcams, physical security systems, etc. Last but not least,
a smart vehicle or the driver’s mobile device operate as
gateways (Fig. 2b) for the different BLE-equipped sen-
sors in the vehicle, such as tire pressure.2 An interested
reader could consult the work of Rouf et al. [32] for a
discussion on the security and privacy risks of a wireless
tire pressure sensor.
BLE-Guardian leverages the existence of gateways

near the BLE-equipped devices to fend off unauthorized
clients scanning and connecting to them. It comprises
both hardware and software components. The hardware

2https://my-fobo.com/Product/FOBOTIRE

6

USENIX Association 25th USENIX Security Symposium 1211

component is an external Bluetooth radio that connects
physically to the gateway, while the software component
is an accompanying application that runs on the gate-
way. BLE-Guardian requires another software compo-
nent to run on the clients willing to discover and con-
nect to the user’s BLE devices. The user, be it an owner
of the BLE-equipped device or a client, interacts with
BLE-Guardian through its software components.

5.1.2 Threat Model

BLE-Guardian only trusts the gateway on which
it is running. Otherwise, the entire operation of
BLE-Guardian will be compromised and will fail to pro-
vide the promised privacy provisions. BLE-Guardian

achieves privacy protection at the device level, so that if it
authorizes a client to access the BLE device, all applica-
tions running on that device will have same access priv-
ileges. This security/privacy dimension is orthogonal to
BLE-Guardian and has been addressed elsewhere [28].
It also requires the user’s BLE device — the one to be
protected — to comply with the BLE specifications.
BLE-Guardian protects a target BLE-equipped de-

vice against an adversary or an unauthorized/unwanted
device that sniffs the device’s advertisements, issues scan
requests and attempts to connect to the device. The ad-
versary aims to achieve three objectives based on the
BLE devices that the user is deploying:

1. Profiling: The adversary aims to obtain an inven-
tory of the user’s devices. Based on this inventory,
the adversary might learn the user’s health condi-
tion, preferences, habits, etc.

2. Tracking: The adversary aims to monitor the user’s
devices to track him/her over time, especially by
exploiting the consistent identifiers that the devices
leak as we observed in Section 4.

3. Harming: The adversary aims to access the user’s
BLE device to learn more sensitive information or
even to control it. Both will have severe conse-
quences for the user, especially if a certain device
is known to have some vulnerabilities that allow re-
mote unauthorized access [26].

This adversary can have varying passive and active ca-
pabilities, from curious individuals scanning nearby de-
vices (e.g., using a mobile app), to those with moder-
ate technical knowledge employing commercial sniffers,
all the way to sophisticated adversaries with software-
defined radios.

A passive attacker is capable of sniffing all the com-
munications over advertisement channels including those
that fail the CRC check. This includes all commercial
Bluetooth devices and existing Bluetooth sniffers in the

market, such as the Texas Instruments CC2540 chip. The
adversary might possess further capabilities by employ-
ing MIMO receiver that could recover the original signal
from the jammed signal [38], especially in stationary sce-
narios. We refer to this adversary as the strong passive
attacker.

Furthermore, the adversary is capable of injecting traf-
fic into any Bluetooth channel at any given point of time,
but will “play” within the bounds of the BLE specifi-
cations when attempting communication with the BLE
device. This is a reasonable assumption, as the device
won’t otherwise respond to any communication. We
refer to such an adversary as the active attacker. On
the other hand, the attacker might be able to transmit
with higher power than allowed by regulatory bodies, in
which case we refer to as the strong active attacker.

Thus, we have four classes of attackers referring to the
combinations of their passive and active capabilities as
shown in the first column of Table 4.

Attacks, including jamming the channel completely,
masquerading as fake devices to trick the users to con-
nect to them, or attacking the bonding process are orthog-
onal to our work. Such attacks have been addressed by
O’Connor and Reeves [29] and Ryan [33]. Finally, once
BLE-Guardian enables the authorized client to connect
to the BLE device, it won’t have any control over what
follows later.

5.2 High-Level Overview
BLE-Guardian is a system the user can use out of the
box; it only requires installing a hardware component
(an external Bluetooth radio) to the gateway and running
an app on the gateway to control and interface with the
Bluetooth radio. Conceptually, BLE-Guardian consists
of device hiding and access control modules. The device
hiding module ensures that the BLE device is invisible to
scanners in the area, while the access control module en-
sures that only authorized clients are allowed to discover,
scan, and connect to the BLE device.

Fig. 3 shows the high-level operation of
BLE-Guardian from the moment a user designates
a BLE device to be protected all the way to enabling
authorized client connection to the protected device.
The high-level operation of BLE-Guardian takes the
following sequence:

1. The user installs the hardware component along
with the accompanying app on the gateway.

2. The user runs the app, which scans for BLE devices
nearby. The user can then choose a device to hide.

3. The device hiding module of BLE-Guardian starts
by learning the advertisement pattern of the target
BLE device along with that of the other devices in

7

1212 25th USENIX Security Symposium USENIX Association

Owner chooses
BLE device
to be hidden

Device
Hiding
Module

Client
Authentication

New client
appears

Whitelist
Client

Access
granted

Access
denied

Connection
Enabling

Authenticated
client appears

Attacker
 detected

User Alert
BLE-Guardian

running

Access Control Module

Figure 3: The modules of BLE-Guardian and their un-
derlying interactions.

the area. The device hiding module then applies re-
active jamming to hide the device.

4. When a new client enters the area and wants to dis-
cover the user’s devices, it communicates with the
access control module so that the user can either
grant or reject authorization.

5. If the user authorizes the client, the access control
module advertises privately on behalf of the BLE
device to let the authorized client scan and connect
to it.

6. BLE-Guardian monitors if other unauthorized en-
tities are attempting to connect to the BLE device;
in such a case, it blocks the connection and alerts
the user.

5.3 Device Hiding
The hiding module is responsible for rendering the
BLE device invisible to other scanning devices. The
hiding module jams the device’s advertisement ses-
sion to achieve this invisibility. In particular, it
targets three types of advertisements, ADV IND,
ADV NONCONN IND, and ADV SCAN IND of Ta-
ble 1, which are periodic and leak more information
about the user as we indicated earlier.

Hiding the BLE device is, however, challenging for
two reasons. The hiding module must jam the BLE de-
vice precisely at the moment it is advertising. Also, it
must not disrupt the operation of other devices advertis-
ing in the same area.

5.3.1 Learning

The hiding module first learns the target BLE device’s
advertising pattern before jamming to hide its presence.
The device’s advertisement pattern comprises the adver-
tising interval, advertising channel sequence, and the
time to listen on the individual channels. Fortunately, the

37 long

38 short

39 short
37,38,39

39 long
37 short

39,37,38

37,39,38
37,38

38 long

39 short

37 short
38,39,37

38,37,39

39 long
39,38,37

38,37

39 long
37 short

39,37

39,37
37

38 long
39 short

38,39

39 long
39,38

3839

Eliminate all
sequences
with 37

Eliminate all
sequences with 38

Keep all
sequences
with 37

Keep all
sequences with 37
followed by 38

Figure 4: The learning algorithm followed by
BLE-Guardian. The blue boxes refer to monitoring each
channel either for a short period of time (less than 10ms)
or for a longer period of 10.24 seconds. Depending
on whether an advertisement is detected on the channel
some sequences are eliminated till a sequence is decided
on (gray boxes).

latter two parameters are deterministic and can be ob-
served directly, which is not the case for the advertising
interval. The BLE specification leaves it to the device
to determine the advertising pattern, so that there are 15
possible permutations of the channel sequence.

As shown in Fig. 4, BLE-Guardian follows a pro-
cess of elimination to identify the advertising sequence
of the BLE device using a single antenna. In the worst
case, it will take three advertising intervals to learn the
entire advertising sequence of a BLE-equipped device.
This corresponds to the longest path of Fig. 4, where
BLE-Guardian monitors each channel for the maximum
advertising interval of 10.24 seconds. At the same time,
it would have identified the time the BLE device spends
listening on each channel before switching to the next
channel.

While observing the advertising sequence of the BLE
device, the hiding module keeps track of the interval
separating the consecutive advertisements sessions. The
hiding module observes a set of inter-advertisement in-
tervals, ti = adv + p, where adv is the actual adver-
tisement interval as set by the device and p is a ran-
dom variable representing the random delay such that
p ∈ uni f (0,10ms). Also, BLE-Guardian will perform
the same process for all advertising devices in the same
area at the same time to learn their advertising parame-
ters as well. Learning other devices’ advertising at the
same time will be useful as evident below.

8

USENIX Association 25th USENIX Security Symposium 1213

5.3.2 Actuation

After identifying the advertising pattern, the hiding mod-
ule needs to just detect the start of the advertisement ses-
sion. Then, it jams the advertising channels according to
their advertisement sequence. There is a caveat, though;
the hiding module needs to detect the advertisement be-
fore it can be decoded. Otherwise, the rest of the jam-
ming will not be effective.

From monitoring earlier advertisements, the hiding
module obtains a set of ti’s of different devices’ adver-
tisements, including the BLE device to be hidden. The
advertisement interval will be adv = ti − p for each ob-
served inter-advertisement interval. Each observed ad-
vertisement will be used to improve the estimation of
the advertisement interval. For N observed intervals, we
have:

adv =
1
N

N

∑
i=1

(ti − p) =
1
N

N

∑
i=1

ti −
1
N

N

∑
i=1

p. (1)

Let P= 1
N ∑N

i=1 p, the random variable P is drawn from
the distribution 1

N p ∗ 1
N p ∗ 1

N p . . . 1
N p. Since the single

random delays p are i.i.d., the mean of P will be equal
to 5 (mean of the original distribution of p) and the stan-

dard deviation of
√

∑N
i=1 σp = 5

N
√

(3)
. The hiding module

estimates adv as:

adv′ = E(adv) =
1
N

N

∑
i=1

ti −5. (2)

The standard deviation of P will get lower as N in-
creases; it defines the error in the estimate of adv as
defined by Eq. (1). Given previous N observed adver-
tisements from the BLE device, the hiding module can
predict the next advertisement to happen at advnext ∈
[advlow, advhigh] such that:

advlow = TN +adv′ − e (3)

advhigh = TN +adv′+ e+10, (4)

where TN is the time of the last advertisement and e
is the 90th percentile value of P (symmetric around
the mean) which approaches 0 as N increases (so that
advhigh −advlow approaches 10ms).

Starting from the last observed TN of the target
BLE device, the advertisement hiding module computes
advlow and advhigh. Also, it enumerates the list of
other devices expected to advertise within the interval
[advlow, advhigh].

The device hiding module always listens on the first
channel of the advertising sequence of the BLE device
to be hidden. During the interval [advlow, advhigh],

0 5 10

Time (sec)

-100

-80

-60

-40

-20

0

R
S

S
I

(d
B

m
)

Device Advertisement

(a) Over 10 seconds.

1.16 1.18 1.2

Time (sec)

-100

-80

-60

-40

-20

0

20

R
S

S
I
(d

B
m

)

Device Advertisement

Monitoring Interval

(b) Single adv. interval.

Figure 5: RSSI at channel 37 when a device is advertis-
ing at a distance of 1m at the interval of 960ms.

the device hiding module will sample the RSSI of the
channel very frequently (every 25µs). When the re-
ceived RSSI is −90dBm or higher (the peaks of Fig. 5a),
BLE-Guardian determines that there is a transmission
currently starting to take place. The device hiding mod-
ule moves immediately to jam the channel on which it is
listening. Since the transmission of a typical advertise-
ment message takes 380µs to finish [16], jamming the
channel will prevent the message from being decoded by
other receivers.

At this point, two situations might arise; (1) the target
BLE device is the only device expected to be advertising
at this time instant, or (2) some other device is expected
to be advertising in the same interval. In the first situ-
ation, the target BLE device is most probably responsi-
ble for this transmission as part of its advertisement ses-
sion. The device hiding module repeats the same process
(sample RSSI and jam) over the rest of the channels to
confirm that transmissions follow the device’s advertis-
ing pattern. Fig. 5b shows an example interval where
there is only one device advertising.

In the second situation, the device hiding module can’t
readily ascertain whether the transmission belongs to the
target BLE device or not. This will take place when the
observed transmission sequence matches the advertising
sequence of the target BLE device and some other de-
vice that is expected to advertise at the same interval. To
resolve this uncertainty, immediately after jamming the
advertising message (400µs after commencing jamming
on the channel), the device hiding module lifts jamming
and sends scan requests for devices other than the tar-
get device. The device hiding module then listens on the
channel to observe if a scan response is received. De-
spite its advertisement being jammed, any device will
still be listening on and will respond to scan requests.
Depending on whether a scan response is received or not,
BLE-Guardian can associate the transmission with the
correct device, be it the target BLE device or some other

9

1214 25th USENIX Security Symposium USENIX Association

device.
The device hiding module then adjusts the next mon-

itoring interval according to the observed transmissions
in the current intervals as follows:

advlow = min(TN)+adv′ − e (5)

advhigh = max(tN)+adv′+ e+10, (6)

where TN represents the instants of the transmissions
possibly matching the advertisement of the target BLE
device in the current monitoring interval.

Note that we don’t utilize the power level per se, or any
physical-layer indicator, to indicate whether the same de-
vice is transmitting or not, as it is sensitive to the envi-
ronment and the distance between BLE-Guardian and
the target BLE device. To actually perform the jamming,
the device hiding module continuously transmits at the
maximum power for the specified interval.
BLE-Guardian may jam the advertisements of non-

target devices which might disrupt their operation, which
we referred to as the second situation above. Neverthe-
less, because of the random delay introduced by the de-
vice before each advertisement, the aforementioned “col-
lision” events become unlikely. In Appendix A, we use
renewal theory to show that the expected number of an-
other device’s advertisements within the expected adver-
tising interval of the target BLE-equipped device will al-
ways be less than 1. This applies when BLE-Guardian

protects a single BLE-equipped device. Our evaluation
in Section 6 confirms this observation.

5.4 Access control
So far, BLE-Guardian has hidden the target BLE device,
so neither authorized nor unauthorized entities have ac-
cess to the device. It is the access control module that
authorizes client devices and enables their access to the
target BLE device.

5.4.1 Device Authorization

BLE-Guardian utilizes Bluetooth classic (BR/EDR) as
an out-of-band (OOB) channel to authorize end-user de-
vices intending to scan and access the target BLE de-
vice. BLE-Guardian runs in server mode on the gate-
way waiting for incoming connections, while the “au-
thenticating” device will have BLE-Guardian running in
client mode to initiate connections and ask for authoriza-
tion. The choice of Bluetooth Classic as an OOB channel
is natural; most end-user devices (such as smartphones)
are dual-mode, supporting both BLE and Bluetooth clas-
sic. Moreover, Bluetooth classic already contains pairing
and authentication procedures, eliminating the need for a
dedicated authentication protocol. Last but not least, a

BLE-
GuardianClient Target BLE

Device Attacker

bt_addr, UUID

attempt connection

send pairing request
Client authorized by user

users complete pairing

connection parameters

reduced-info Ad
connection request

Legitimate connection established
data

data

connection request

Connection dropped

connection request

Unauthorized
connection establishedmissed advertisements --> alert user

Au
th

or
iza

tio
n

Co
nn

ec
tio

n
En

ab
lin

g
At

ta
ck

De

te
ct

io
n

Figure 6: The sequence diagram of the access con-
trol module. Thin green lines from the target device
designate the advertisements. Thick green lines from
BLE-Guardian designate the jamming signal.

Bluetooth-equipped end-user device will be able to com-
municate simultaneously over Bluetooth classic and BLE
so that it can communicate with both BLE-Guardian and
the target BLE device.

Fig. 6 depicts the interactions between BLE-Guardian
and a client device when they connect for the first time.
BLE-Guardian will be listening on the gateway over
a secure RFCOMM channel with a specified UUID.
The gateway, however, won’t be running in discoverable
mode so as to prevent others from tracking the user. It is
up to the party interested in authenticating itself to obtain
the Bluetooth address of the user’s gateway as well as the
UUID of the authentication service.

Once the client end-user device obtains the Blue-
tooth address and UUID, it can initiate a secure con-
nection to the gateway. This will trigger a pairing pro-
cess to take place if both devices are not already paired.
BLE-Guardian relies on Bluetooth pairing process to se-
cure the connections between the gateway and the client
device. For future sessions, an already paired client de-
vice can connect to BLE-Guardian without the need for
any user involvement. The owner can also revoke the
privileges of any client device by simply un-pairing it.

5.4.2 Connection Enabling

The device hiding module of BLE-Guardian jams the
entire advertising sequence of the target BLE device, in-
cluding the period it listens for incoming scan or connec-
tion requests so that it cannot decode them. Therefore,
both unauthorized and authorized clients cannot access
the target BLE device (the case of an adversary using

10

USENIX Association 25th USENIX Security Symposium 1215

high transmission power will be discussed later). Fig. 6
shows the procedure that BLE-Guardian follows to en-
able only the authorized clients access to the target BLE
device.

Immediately after the last advertisement of a single ad-
vertisement session, when the target device is the only
one expected to be advertising, the access control mod-
ule lifts the jamming. This ensures that the BLE device
will not be advertising until the next adverting session,
and it is currently listening for scan and connection re-
quests. Then, BLE-Guardian advertises on behalf of the
target BLE device on the same channel. The advertise-
ment message contains only the headers and the address
of the previously hidden device. It is stripped of explicit
identifiers, hence leaking only limited information about
the BLE device for a brief period.

At the same time, BLE-Guardian will communicate
to the authenticated client app the address of the BLE
device and a secret set of connection parameters over
the OOB channel. BLE-Guardian’s app running on the
client device will use the address and the parameters to
initiate a connection to the BLE device. The connection
initiation procedure is handled by the Bluetooth radio of
the client device, which scans for the advertisement with
the provided address. After receiving such an advertise-
ment, it sends a connection request after which both de-
vices will be connected.

The above procedure will not break the way BLE
scans and connections take place. It doesn’t matter from
which radio the actual advertisement was coming. From
the perspective of the BLE device, it will receive a scan
or connection request while waiting for one. On the
other hand, the client device will receive an advertise-
ment message while also expecting one.

5.5 Security and Privacy Features

BLE-Guardian addresses the tracking and profiling
threats discussed in Section 5.1.2. It hides the adver-
tisements, which are used as the main means to track
users. It only exposes the advertisement for a very short
period when enabling others to connect. Furthermore,
BLE-Guardian greatly reduces the profiling threat by
hiding the contents of the advertisement which leak the
device name, type, and other attributes.

A strong passive attacker [38] can still detect the “hid-
den” peripheral by recovering the real advertisement, so
that it can connect to the BLE-equipped device. Dis-
tinguishing legitimate connection requests based on the
Bluetooth address of the initiator is not effective; an at-
tacker could easily spoof its Bluetooth address to imper-
sonate the authorized client. Therefore, BLE-Guardian
uses the connection parameters of the connection request
to distinguish fraudulent connection requests from legit-

Table 4: The protections offered by BLE-Guardian.

Adversary Profiling
Protect.

Tracking
Protect.

Access
Control

User
Alert

Passive & Active � � � �
Strong Passive &
Active – � � �

Passive & Strong
Active � � – �

Strong Passive &
Strong Active – � – �

imate ones. Legitimate connection requests contain the
set of “secret” connection parameters communicated ear-
lier to the client.

The probability of the attacker matching a particular
set of connection parameters is very low. According to
the specification, there are more than 3 million possi-
ble combinations of values for the connection, slave, and
timeout intervals. If the connection is established based
on a fraudulent connection request, then BLE-Guardian

prevents the connection from taking place. The connec-
tion request already contains the hopping sequence ini-
tiation. BLE-Guardian hops to the next channel and
jams it so as to prevent the BLE device from receiving
any message from the connected unauthorized device.
The BLE device drops the connection since it receives
no message on the channel.

An attacker might abuse this connection process by
constantly attempting to connect to the BLE device, thus
depriving the authorized client of access. This will al-
ways be possible, even when BLE-Guardian is not de-
ployed. BLE-Guardian observes such a situation from
a high frequency of fraudulent connection requests and
alerts the user of this threat. As it will be evident
in Section 6, an active attacker injecting messages to
the advertising channel can’t affect the operations of
BLE-Guardian.

A strong active adversary, however, can override
BLE-Guardian’s jamming and issue connection requests
that the BLE-equipped device will decode. While jam-
ming, BLE-Guardian runs in transmit mode and can
not monitor the channel for incoming requests. Nev-
ertheless, it detects that the BLE device is missing its
advertising intervals, signifying that it was connected
without BLE-Guardian’s approval. In such a case,
BLE-Guardian alerts the user of the existence of a
strong adversary nearby.

Finally, Table 4 summarizes BLE-Guardian’s capa-
bilities when faced with the various adversaries de-
scribed in Section 5.1.2.

11

1216 25th USENIX Security Symposium USENIX Association

Figure 7: The deployment scenario for BLE-Guardian
for a mobile user (left) and the main UI (right).

6 Implementation and Evaluation

We now present a prototype of BLE-Guardian along
with its evaluation.

6.1 Implementation

We implement BLE-Guardian using Ubertooth One ra-
dio which is an open platform for Bluetooth research
and development. It can connect to any host that sup-
ports USB such as Raspberry Pi, Samsung’s Artik-10,
PC, smartphone (Fig. 7 (left)), etc. Since communica-
tion over USB incurs latency in the order of a few mil-
liseconds, we implement most of BLE-Guardian’s func-
tionalities inside Ubertooth One’s firmware to maintain
real-time operation.

We also implement the software component of
BLE-Guardian on Linux and Android. Fig. 7 (right)
shows a screenshot of the BLE-Guardian app while run-
ning on Android in server mode where the user can
choose the device to protect and control its authorized
client list. The app communicates the Bluetooth address
of the chosen device to the Ubertooth One radio.
BLE-Guardian requires running in privileged mode

on the client device in order to be able to connect with
modified connection parameters. This is easily achiev-
able on Linux-based clients, but might not be the case for
mobile devices. In other words, BLE-Guardian, while
running in client mode on Android, requires root access
to be able to issue connection requests with a set of spec-
ified connection requests. Also, BLE-Guardian (if run-
ning in privileged mode on the client device) can mod-
ify content of the advertisement message from the BLE
scanner to the user-level application to reconstruct the
original hidden advertisement. As such, user-level ap-
plications (on the trusted client) will receive the original
advertisement, which does not break their functionality.

0 0.5 1 1.5 2 2.5 3

Distance (m)

0

0.5

1

1.5

2

c
u
to

ff
 (

m
)

 TI CC2540

clear

covered

0 0.5 1 1.5 2 2.5 3

Distance (m)

0

0.5

1

1.5

2
Galaxy S5

clear

covered

Figure 8: The cutoff distance as a function of the distance
between BLE-Guardian and the target device.

Maintaining BLE-Guardian is easy; it only requires
updating the application running on the gateway which
usually takes place without the user’s intervention (e.g.,
mobile app updates). This application interacts with the
hardware component and applies updates, if necessary,
through pushing firmware updates, a process which is
also transparent to the users.

6.2 Evaluation
To evaluate BLE-Guardian, we utilize Broadcom
BCM20702A0 and Nordic nRF51822 chips as the tar-
get BLE devices (both transmitting at 4dBm) and the TI
CC2540 dongle as the sniffer node. CC2540 is able to
decode the messages on the three advertisement chan-
nels, even on those that fail the CRC check. We evalu-
ate using Nordic and Broadcom chips instead of actual
BLE products, because these products (such as Fitbits)
are mostly powered by the same (Nordic and Broadcom)
BLE chips.

6.2.1 Impact of Distance

Due to transmission power limitations (battery or regula-
tory bodies’ constraints), there would always be a small
area around the target BLE device where BLE-Guardian
won’t be able to enact the privacy protection. The trans-
mission from the target BLE device covers the jamming
signal of BLE-Guardian. Nevertheless, as the sniffer
moves farther away from the target BLE device (in any
direction), the jamming signal will cover the advertise-
ments, provided that the BLE device and BLE-Guardian
are not very far apart. So, there is a cutoff distance be-
yond which the adversary can’t scan, and connect to the
target BLE device.

We study the cutoff distance of a target BLE device
(advertising at 20ms) at different distances separating it
from BLE-Guardian (between 0 and 3m). At each po-
sition, we move the sniffer node (either a CC2540 don-
gle or Samsung Galaxy S5) around the BLE device, and

12

USENIX Association 25th USENIX Security Symposium 1217

record the farthest distance at which it received any ad-
vertisement from the BLE device as to study the hidden
terminal effect. Furthermore, we repeat each experiment
twice, the first with BLE-Guardian clear of any obsta-
cles and the second with it inside a backpack.

It is evident from Fig. 8 that the cutoff distance in-
creases as BLE-Guardian and the BLE device become
farther apart. In all of the cases, however, the cutoff dis-
tance is less than 1m, even when BLE-Guardian and
the BLE device are 3m apart. This also applies when
BLE-Guardian is inside the backpack which should re-
duce the effectiveness of its jamming. Sniffing with
a smartphone has a shorter cutoff distance because the
smartphone’s BLE chip filters out advertisements failing
the CRC check so that they are not reported to the OS.

The cutoff distance is enough to thwart tracking and
profiling in several scenarios, especially when the user
is moving (walking, jogging, biking or driving). In these
scenarios, BLE-Guardian is not farther than 1m from the
target BLE device. An adversary has to get very close to
the user, even if BLE-Guardian is covered in a coat or
bag, to be able to scan or connect to the BLE device.

In other cases, the user has to keep his BLE devices
(to be protected) close to BLE-Guardian in order to
get the best privacy protection possible. Our experi-
ments showed that BLE-Guardian and the target BLE
device must be separated by a maximum distance of 5m
so that an attacker beyond the cutoff distance won’t be
able to decode the advertisements. If BLE-Guardian

and target BLE device are farther apart than this, then
BLE-Guardian’s jamming won’t be able to cover the en-
tire transmission area of the BLE device. In all circum-
stances, however, BLE-Guardian detects unauthorized
connections and alerts the user accordingly.

6.2.2 Evaluation Setup

Beyond the cutoff distance, BLE-Guardian is capable of
hiding the advertisements and controlling access to any
target BLE device regardless of its advertising frequency.
This protection, however, comes at a cost. In what fol-
lows, we evaluate BLE-Guardian’s impact on other in-
nocuous devices, the advertising channel, and the gate-
way. In the evaluation scenarios, we deploy the target
BLE devices at distance of 1.5m from BLE-Guardian,
and the sniffer between BLE-Guardian and the BLE de-
vices (at a distance of 0.5m from BLE-Guardian). We
evaluate BLE-Guardian when protecting up to 10 target
devices with the following advertising intervals: 10.24
sec (highest possible), 5 sec, 2.5 sec, 1.25 sec, 960ms,
625ms, 312.5ms, 100ms, 40ms, and 20ms (lowest possi-
ble). Note that evaluating with 10 target devices con-
stitutes an extreme scenario; according to our dataset,
the average user is bonded to less than 4 devices, which

1 2 3 4 5 6 7 8 910

Advertisers

0

0.5

1

J
a

m
m

e
d

 A
d

s Adv=20ms

1 2 3 4 5 6 7 8 910

Advertisers

0

0.5

1
Adv=960ms

1 2 3 4 5 6 7 8 910

Advertisers

0

0.5

1

J
a

m
m

e
d

 A
d

s Adv=5000ms

1 2 3 4 5 6 7 8 910

Advertisers

0

0.5

1
Adv=10240ms

Figure 9: Portion of jammed advertisements of an in-
nocuous BLE device when BLE-Guardian is running
and protecting up to 10 advertisers.

would indicate the number of target devices (i.e. those to
be protected).

6.2.3 Advertisement Hiding

Impact on Other Devices: We first evaluate the num-
ber of advertisements, not belonging to the target BLE
device(s), BLE-Guardian will jam (Fig. 9). While ac-
cidentally jamming other devices doesn’t affect the pri-
vacy properties of BLE-Guardian, it hinders the services
they offer to other users. In particular, we study four
scenarios with an innocuous (not the target) BLE device
advertising at 20ms, 960ms, 5s, and 10.24s, and a vary-
ing number (between 1 and 10) of target devices, which
BLE-Guardian protects. Each subset of target devices
of size N (≤ 10) contains the top N advertising intervals
from the list of Section 6.2.2.

There are two takeaways from Fig. 9. First,
BLE-Guardian has little effect on other devices when it
protects a relatively low number of devices, or when the
advertising interval of the target BLE device(s) is larger
than 500ms; in these cases, BLE-Guardian will be less
active (bars corresponding to less than 6 target devices
in the four plots of Fig. 9). Second, BLE-Guardian has
a higher effect on the innocuous device with higher ad-
vertising frequencies as observed from top-left plot of
Fig. 9, especially when protecting a large number of de-
vices (including those with 20 ms advertising interval).

In the latter case, BLE-Guardian is active for at least
half of the time, representing the worst-case scenario of
BLE-Guardian’s overhead where up to 50% of other de-
vices’ advertisements are jammed. However, since the
advertisement frequency is high, even with a relatively
high rate of jammed advertisements, the user’s experi-
ence won’t be drastically affected. On the other hand,

13

1218 25th USENIX Security Symposium USENIX Association

1 2 3 4 5 6 7 8 910

advertisers

0

100

200

d
e

la
y
 (

m
s
)

Adv=20ms

1 2 3 4 5 6 7 8 9 10

advertisers

0

10

20

30

d
e

la
y
 (

s
e

c
)

Adv=960ms

1 2 3 4 5 6 7 8 910

advertisers

0

50

100

150

d
e

la
y
 (

s
e

c
)

Adv=5000ms

1 2 3 4 5 6 7 8 910

advertisers

0

100

200

d
e

la
y
 (

s
e

c
)

Adv=10240ms

Figure 10: The delay of an authorized client in
successfully connecting to the target device when
BLE-Guardian is running.

when the target BLE device advertises at lower frequen-
cies, the effect on the advertising channels and conse-
quently other devices will be limited as evident from the
rest of the plots of Fig. 9.

Impact on Authorized Access: To enable autho-
rized connections, BLE-Guardian advertises on the be-
half of the target BLE device only when it is confi-
dent that the target device is listening for connections.
BLE-Guardian skips some advertising sessions which
will introduce delays to authorized clients attempting
connections as reported in Fig. 10. In this scenario, an
authorized client is attempting connection to a target de-
vice advertising at 20ms, 960 ms, 5s, and 10.24 s, with an
additional number of protected devices varying from 1 to
10. In the majority of the cases, the client has to wait for
less than a second before successfully receiving an adver-
tisement and issuing a connection. The only exception is
the worst case consisting of BLE-Guardian protecting
all of the 10 target devices (including devices advertis-
ing at intervals less than 100ms). The client might have
to wait for up to multiple advertisement intervals before
being able to connect. This is evident from the rightmost
bar in each of the four plots of Fig. 10.

Impact on Advertising Channels Last but not least,
we evaluate BLE-Guardian’s impact on the advertising
channel, which, if high, might leak information about
the existence of sensitive device(s). In this experiment,
BLE-Guardian protects a single target device advertis-
ing at 20ms (the lowest possible), 960ms, and 10240ms
(the highest possible). At the same time, two innocuous
devices advertise at 20ms, in addition to other 15 devices
not under our control advertising at different frequen-
cies (minimum advertisement interval 30ms). In this sce-

37 38 39

Channel

0

5

10

#
 u

n
n
e
c
c
e
s
s
a
ry

 j
a
m

s

Adv=20ms

37 38 39

Channel

0

5

10
Adv=960ms

37 38 39

Channel

0

5

10
Adv=10240ms

Figure 11: Unnecessary jamming instances with two ad-
vertisers at 20ms.

nario, BLE-Guardian will be active all the time since the
two innocuous advertisers will force it to enlarge its mon-
itoring interval between 20–30ms (while the advertising
interval of the target device is only 20ms).

Fig. 11 shows the distribution of the number of unnec-
essary jammed instances in each interval when the target
BLE device is expected to advertise. It is evident that
in more than 50% of the intervals when BLE-Guardian

is active, the number of unnecessary jamming instances
events is 0, indicating a low overhead on the channel.
When the target BLE device advertises at a lower fre-
quency, BLE-Guardian is less active (middle and left
plots of Fig. 11). These plots match the real-world
scenarios observed from our data-collection campaign.
Most commercial BLE devices advertise at relatively low
frequencies (at intervals between 1 and 10s).

Finally, we evaluate the accuracy of predicting the next
advertisement event of the target BLE devices. In all the
experiments (including all scenarios), BLE-Guardian

can predict the device’s advertisements, i.e., the target
BLE device advertised in the interval it is expected to.
BLE-Guardian is also able to jam all the advertisements
of the BLE device over the three advertising channels.
This indicates that an attacker can’t modify the behavior
of BLE-Guardian by injecting traffic into the advertising
channels.

6.2.4 Energy Overhead

BLE-Guardian incurs no energy overhead for both the
target BLE devices and the authorized clients. Neverthe-
less, energy overhead is a concern when BLE-Guardian

is attached to a smartphone. We measured the en-
ergy overhead of BLE-Guardian using a Monsoon
power monitor while running on a Samsung Galaxy S4
with Android 4.4.2. In the idle case, BLE-Guardian
consumes 1370mW on average. The average power
consumption rises to 1860mW while transmitting and
1654mW while receiving as shown in Fig. 12a. Fortu-
nately, BLE-Guardian doesn’t sense the channel or per-

14

USENIX Association 25th USENIX Security Symposium 1219

0 2 4

Time (sec)

1

1.5

2

2.5
P

o
w

e
r

(W
)

Start Tx

1 2 3 4 5

Time (sec)

1

1.5

2

2.5

P
o
w

e
r

(W
)

Start Rx

(a) Overhead of basic opera-
tions.

1 2 3 4 5 6 7 8 910

Advertisers

0

2

4

6

8

E
n
e
rg

y
 O

v
e
rh

e
a
d

(b) Average overhead in differ-
ent scenarios.

Figure 12: The energy overhead of BLE-Guardian run-
ning on Samsung Galaxy S4.

form jamming frequently. Fig. 12b shows the average
energy overhead when BLE-Guardian is protecting the
set of ten devices (we described earlier) at different ad-
vertising intervals. In the worst case of 10 target BLE
devices, including a couple advertising at the highest fre-
quency possible, the energy overhead is limited to 16%
regardless of whether there are other advertisers in the
area. In other cases, when there are less target devices
and/or target devices are advertising at a lower frequency,
the energy overhead is negligible.

7 Conclusion

BLE is emerging as the most prominent and promis-
ing communication protocol between different IoT de-
vices. It, however, accompanies a set of privacy risks.
An adversary can track, profile, and even harm the user
through BLE-equipped devices that constantly adver-
tise their presence. Existing solutions are impractical
as they require modifications to the BLE-equipped de-
vices, thereby making their deployment difficult. In
this paper, we presented a device-agnostic system, called
BLE-Guardian, which addresses the users’ privacy risks
brought by BLE-equipped devices. BLE-Guardian

doesn’t require any modification to the protocol and can
be implemented with off-the-shelf Bluetooth hardware.
We implemented BLE-Guardian using Ubertooth One
radio and Android, and evaluated its effectiveness in pro-
tecting the users’ privacy. In future, we plan to explore
the data plane by analyzing and reducing the data leaks
from BLE devices to unauthorized clients.

8 Acknowledgments

We would like to thank the anonymous reviewers for
constructive comments. We would also like to thank Kr-

ishna C. Garikipati for useful discussions on this paper.
The work reported in this paper was supported in part by
the NSF under grants CNS-1114837 and CNS-1505785,
and the ARO under grant W911NF-15-1-0511.

References
[1] ARTICLE 29 DATA PROTECTION WORKING PARTY.

Opinion 8/2014 on the on recent developments on
the internet of things. http://ec.europa.eu/justice/data-
protection/article-29/documentation/opinion-
recommendation/files/2014/wp223 en.pdf, Sep. 2014. Accessed:
18-01-2016.

[2] ARUBA NETWORKS. Data Sheet: Aruba 320 series access points.
http://www.arubanetworks.com/assets/ds/DS AP320Series.pdf.

[3] BLUETOOTH SIG. Bluetooth SIG Analyst Digest 2H 2014.
https://www.bluetooth.org/en-us/Documents/Analyst2014. Ac-
cessed: 10-02-2016.

[4] BLUETOOTH SIG. Specification of the Bluetooth Sys-
tem. Version 4.2, Dec. 2014. https://www.bluetooth.org/en-
us/specification/adopted-specifications.

[5] COX, D. Renewal theory. Methuen’s monographs on applied
probability and statistics. Methuen, 1962.

[6] CRIST, R. Samsung swings for the fences with a new smart
fridge at ces. http://www.cnet.com/products/samsung-family-
hub-refrigerator, Jan. 2016. Accessed: 18-01-2016.

[7] DAS, A. K., PATHAK, P. H., CHUAH, C.-N., AND MOHAP-
ATRA, P. Uncovering privacy leakage in ble network traffic of
wearable fitness trackers. In Proceedings of the 17th Interna-
tional Workshop on Mobile Computing Systems and Applications
(New York, NY, USA, 2016), HotMobile ’16, ACM, pp. 99–104.

[8] DEGELER, A. Bluetooth low energy: Security issues and
how to overcome them. https://stanfy.com/blog/bluetooth-low-
energy-security-issues-and-how-to-overcome-them/, Jun. 2015.
Accessed: 02-02-2016.

[9] DIGI-KEY TECHNICAL CONTENT. Cy-
press PSoC 4 BLE (Bluetooth Low Energy).
http://www.digikey.com/en/articles/techzone/2015/dec/cypress-
psoc-4-ble-bluetooth-low-energy, Dec. 2015. Accessed:
12-01-2016.

[10] FEDERAL BUREAU OF INVESTIGATION. Inter-
net of Things Poses Oppotunities for Cyber Crime.
https://www.ic3.gov/media/2015/150910.aspx, Sep. 2015.
Accessed: 18-01-2016.

[11] FEDERAL TRADE COMMISSION. Internet of
Things, Privacy & Security in a Connected World.
https://www.ftc.gov/system/files/documents/reports/federal-
trade-commission-staff-report-november-2013-workshop-
entitled-internet-things-privacy/150127iotrpt.pdf, Jan. 2015.

[12] GOLLAKOTA, S., HASSANIEH, H., RANSFORD, B., KATABI,
D., AND FU, K. They can hear your heartbeats: Non-invasive
security for implantable medical devices. In Proceedings of the
ACM SIGCOMM 2011 Conference (New York, NY, USA, 2011),
SIGCOMM ’11, ACM, pp. 2–13.

[13] GREENSTEIN, B., MCCOY, D., PANG, J., KOHNO, T., SE-
SHAN, S., AND WETHERALL, D. Improving wireless privacy
with an identifier-free link layer protocol. In Proceedings of the
6th International Conference on Mobile Systems, Applications,
and Services (New York, NY, USA, 2008), MobiSys ’08, ACM,
pp. 40–53.

15

1220 25th USENIX Security Symposium USENIX Association

[14] GRUTESER, M., AND GRUNWALD, D. Enhancing location pri-
vacy in wireless lan through disposable interface identifiers: A
quantitative analysis. Mobile Networks and Applications 10, 3
(2005), 315–325.

[15] HART, L. Telit Acquires Wireless Communications Assets to
Boost Capabilities in Low-Power Internet of Things Market).
http://www.businesswire.com/news/home/20160113005310/en/,
Jan. 2016. Accessed: 01-02-2016.

[16] HEYDON, R. Bluetooth low energy: the developer’s handbook.
Prentice Hall, 2012.

[17] HILL, K. ’Baby Monitor Hack’ Could
Happen To 40,000 Other Foscam Users.
http://www.forbes.com/sites/kashmirhill/2013/08/27/baby-
monitor-hack-could-happen-to-40000-other-foscam-users, Aug.
2013. Accessed: 18-01-2016.

[18] JIANG, T., WANG, H. J., AND HU, Y.-C. Preserving location
privacy in wireless lans. In Proceedings of the 5th International
Conference on Mobile Systems, Applications and Services (New
York, NY, USA, 2007), MobiSys ’07, ACM, pp. 246–257.

[19] JOHN PESCATORE. A SANS Analyst Survey: Securing the
“Internet of Things” Survey. https://www.sans.org/reading-
room/whitepapers/analyst/securing-internet-things-survey-
34785, Jan. 2014. Accessed: 18-01-2016.

[20] KUCHINSKAS, S. Bluetooth’s smart future in telemat-
ics. http://analysis.tu-auto.com/infotainment/bluetooths-smart-
future-telematics, March 2013.

[21] LEONARD, A. Wearable Honeypot. PhD thesis, Worcester Poly-
technic Institute, 2015.

[22] LESTER, S. The Emergence of Bluetooth Low Energy.
http://www.contextis.com/resources/blog/emergence-bluetooth-
low-energy/, May 2015.

[23] LUTHRA, G. Embedded controllers for the Internet of Things.
http://www.edn.com/design/sensors/4440576/Embedded-
controllers-for-the-Internet-of-Things/, Oct 2015.

[24] MADAAN, P. IoT for the smarter home.
http://www.ecnmag.com/article/2015/05/iot-smarter-home,
May. 2015. Accessed: 11-01-2016.

[25] MARE, S., SORBER, J., SHIN, M., CORNELIUS, C., AND
KOTZ, D. Hide-n-sense: Preserving privacy efficiently in wire-
less mhealth. Mobile Networks and Applications 19, 3 (2014),
331–344.

[26] MARGARITELLI, S. Nike+ FuelBand SE BLE Protocol Re-
versed. http://www.evilsocket.net/2015/01/29/nike-fuelband-se-
ble-protocol-reversed/, Jan 2015.

[27] NANDUGUDI, A., MAITI, A., KI, T., BULUT, F., DEMIR-
BAS, M., KOSAR, T., QIAO, C., KO, S. Y., AND CHALLEN,
G. PhoneLab: A large programmable smartphone testbed. In
Proceedings of SENSEMINE ’13 (New York, NY, USA, 2013),
ACM, pp. 4:1–4:6.

[28] NAVEED, M., ZHOU, X., DEMETRIOU, S., WANG, X., AND
GUNTER, C. A. Inside job: Understanding and mitigating the
threat of external device mis-bonding on android. In Proceed-
ings of the 21st Annual Network and Distributed System Security
Symposium (NDSS) (2014), pp. 23–26.

[29] OCONNOR, T., AND REEVES, D. Bluetooth network-based mis-
use detection. In Computer Security Applications Conference,
2008. ACSAC 2008. Annual (Dec 2008), pp. 377–391.

[30] PARK, H., BASARAN, C., PARK, T., AND SON, S. H. Energy-
efficient privacy protection for smart home environments using
behavioral semantics. Sensors 14, 9 (2014), 16235.

[31] PETERSON, A. Yes, terrorists could have hacked Dick
Cheneys heart. https://www.washingtonpost.com/news/the-
switch/wp/2013/10/21/yes-terrorists-could-have-hacked-dick-
cheneys-heart/, Oct. 2013.

[32] ROUF, I., MILLER, R., MUSTAFA, H., TAYLOR, T., OH, S.,
XU, W., GRUTESER, M., TRAPPE, W., AND SESKAR, I. Se-
curity and privacy vulnerabilities of in-car wireless networks: A
tire pressure monitoring system case study. In Proceedings of
the 19th USENIX Conference on Security (Berkeley, CA, USA,
2010), USENIX Security’10, USENIX Association, pp. 21–21.

[33] RYAN, M. Bluetooth: With low energy comes low security. In
Proceedings of the 7th USENIX Conference on Offensive Tech-
nologies (Berkeley, CA, USA, 2013), WOOT’13, USENIX As-
sociation, pp. 4–4.

[34] SCHNEIER, B. The internet of things is wildly insecure –
and often unpatchable. http://www.wired.com/2014/01/theres-
no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-
problem, Jan. 2014. Accessed: 18-01-2016.

[35] SCHURGOT, M., SHINBERG, D., AND GREENWALD, L. Ex-
periments with security and privacy in IoT networks. In World
of Wireless, Mobile and Multimedia Networks (WoWMoM), 2015
IEEE 16th International Symposium on a (June 2015), pp. 1–6.

[36] SHEN, W., NING, P., HE, X., AND DAI, H. Ally friendly jam-
ming: How to jam your enemy and maintain your own wireless
connectivity at the same time. In Security and Privacy (SP), 2013
IEEE Symposium on (May 2013), pp. 174–188.

[37] SRINIVASAN, V., STANKOVIC, J., AND WHITEHOUSE, K. Pro-
tecting your daily in-home activity information from a wireless
snooping attack. In Proceedings of the 10th International Con-
ference on Ubiquitous Computing (New York, NY, USA, 2008),
UbiComp ’08, ACM, pp. 202–211.

[38] TIPPENHAUER, N., MALISA, L., RANGANATHAN, A., AND
CAPKUN, S. On limitations of friendly jamming for confiden-
tiality. In Security and Privacy (SP), 2013 IEEE Symposium on
(May 2013), pp. 160–173.

[39] TURK, V. The internet of things has a language prob-
lem. http://motherboard.vice.com/read/the-internet-of-things-
has-a-language-problem, Jul. 2014. Accessed: 03-02-2016.

[40] WANG, P. Bluetooth low energy-privacy enhancement for adver-
tisement.

[41] WANT, R., SCHILIT, B., AND JENSON, S. Enabling the internet
of things. Computer 48, 1 (Jan 2015), 28–35.

[42] ZIEGELDORF, J. H., MORCHON, O. G., AND WEHRLE, K. Pri-
vacy in the internet of things: threats andchallenges. Security and
Communication Networks 7, 12 (2014), 2728–2742.

A Analysis of Device Hiding

BLE-Guardian may jam the advertisements of non-
target devices which might disrupt their operation, which
we refer to as the second situation in Section 5.3.2. Nev-
ertheless, because of the random delay introduced by the
device before each advertisement, the aforementioned
“collision” events become unlikely. In what follows, we
show that the expected number of another device’s ad-
vertisements within the expected advertising interval of
the target BLE-equipped device will always be less than
1, when BLE-Guardian protects a single BLE-equipped
device.

16

USENIX Association 25th USENIX Security Symposium 1221

One could view the advertising process of a sin-
gle BLE-equipped device as a renewal process [5],
where each event corresponds to an advertising session.
The inter-arrival times, Xi, are nothing but the inter-
advertising intervals defined as i.i.d. random variables
such that Xi ∼ uni f (adv,adv+ 10). The nth advertise-
ment time Tn = ∑n

i=1 Xi has the distribution defined by
the n-fold convolution of distribution of Xi. As n in-
creases, the probability distribution of the n-th adver-
tisement spreads over a larger time interval defined as
A = [n.adv, n.(adv+10)].

The device hiding module attempts jamming at an in-
terval of width 10ms, as specified before. If this jam-
ming interval falls within the expected advertising in-
terval of some other device, A, then the second situa-
tion of Section 5.3.2 might occur. Nevertheless, as n in-
creases the length of interval A increases and thus the
expected number of advertisements, from a single de-
vice within 10ms should be less than 1. We show be-
low how the expected number of advertisements in a
10ms interval drops between n = 1 and n = 2. We con-
sider m(t), the expected number of events up to time
t, defined as FX (t) +

∫ t
0 m(t − x) fX (x)dx, where fS(s)

is the probability distribution of Xi which is equal to
uni f (adv,adv+ 10) and FX (t) is the cumulative distri-
bution function given as:

FX (t) =

0 t < adv
t−adv

10 adv ≤ t ≤ adv+10

1 t > adv.

(7)

During the first advertising interval, t ∈ [adv,adv +
10], the expected number of advertisements is t−adv

10 +

∫ t
adv m(t − x)dx after substituting FX (t) and fX (x) with

their corresponding expressions. After performing a sub-
stitution of variable of y = t − x, and since m(t) = 0 for
t < adv, then m(t) = t−adv

10 . So, if the expected advertis-
ing interval of the device hiding module overlaps with the
first advertising interval of another advertising device,
the expected number of events, m(adv+ 10)−m(adv),
will be 1, which is intuitive.

The second advertisement will take place at the in-
terval B = [2.adv, 2.(adv + 10)], and we use a simi-
lar procedure to derive the expressions for m(t) for t ∈
[2.adv, 2.adv+10] and t ∈ [2.adv, 2.(adv+10)]. If the
expected advertising interval of the device hiding mod-
ule overlaps with interval, B, then the expected number
of advertisements m(t + 10)−m(t) will drop to 1

2 . The
same trend will follow for the subsequent advertising in-
tervals; the expected number of another device’s adver-
tisements within the expected advertising of the target
BLE device will always be less than 1. Our evaluation in
Section 6. confirms this observation.

Finally, even if another device, with the same adver-
tising parameters, starts advertising with the target BLE
device at the same time, their advertising events will
eventually diverge. After N advertisements from both
devices, the distribution of TaN+1 − T bN+1, the differ-
ence in time between the N + 1 advertising instants of
both devices will be a random variable with mean 0 but
with σ = 2.N. 5√

3
. As N increases, the standard devi-

ation increases, which in turn decreases the probability
of both advertising events taking place within 10ms. The
10ms-advertising interval is the length of interval that the
device hiding module expects the target BLE device to
advertise.

17

USENIX Association 25th USENIX Security Symposium 1223

Privacy in Epigenetics:
Temporal Linkability of MicroRNA Expression Profiles

Michael Backes
backes@cispa.saarland

CISPA, Saarland University & MPI-SWS
Saarland Informatics Campus

Pascal Berrang
pascal.berrang@cispa.saarland

CISPA, Saarland University
Saarland Informatics Campus

Anne Hecksteden
a.hecksteden@mx.uni-saarland.de

Institute of Sports and Preventive Medicine
Saarland University

Mathias Humbert
mathias.humbert@cispa.saarland

CISPA, Saarland University
Saarland Informatics Campus

Andreas Keller
andreas.keller@ccb.uni-saarland.de

Clinical Bioinformatics, Saarland University
Saarland Informatics Campus

Tim Meyer
tim.meyer@mx.uni-saarland.de

Institute of Sports and Preventive Medicine
Saarland University

Abstract

The decreasing cost of molecular profiling tests, such as
DNA sequencing, and the consequent increasing avail-
ability of biological data are revolutionizing medicine,
but at the same time create novel privacy risks. The
research community has already proposed a plethora
of methods for protecting genomic data against these
risks. However, the privacy risks stemming from epi-
genetics, which bridges the gap between the genome and
our health characteristics, have been largely overlooked
so far, even though epigenetic data such as microRNAs
(miRNAs) are no less privacy sensitive. This lack of in-
vestigation is attributed to the common belief that the in-
herent temporal variability of miRNAs shields them from
being tracked and linked over time.

In this paper, we show that, contrary to this belief,
miRNA expression profiles can be successfully tracked
over time, despite their variability. Specifically, we show
that two blood-based miRNA expression profiles taken
with a time difference of one week from the same person
can be matched with a success rate of 90%. We further-
more observe that this success rate stays almost constant
when the time difference is increased from one week to
one year. In order to mitigate the linkability threat, we
propose and thoroughly evaluate two countermeasures:
(i) hiding a subset of disease-irrelevant miRNA expres-
sions, and (ii) probabilistically sanitizing the miRNA ex-
pression profiles. Our experiments show that the second
mechanism provides a better trade-off between privacy
and disease-prediction accuracy.

1 Introduction

Since the first sequencing of the human genome in 2001,
tens of thousands of genomes and over a million geno-
types have been sequenced. The knowledge of our ge-
netic background enables to better predict, and thus an-
ticipate, the risk of developing several diseases, includ-

ing cancers, cardiovascular and neurodegenerative dis-
eases. Moreover, the genomic research progress enables
the development of personalized treatment through phar-
macogenomics, studying the effect of the genome on
drug response. One of the most important negative coun-
terparts of this genomic revolution is the threat towards
genomic privacy [11, 39]. Genomic data contains very
sensitive information about individuals’ predisposition to
certain severe diseases, about kinship, and about ethnic-
ity, all of which can lead to various sorts of discrimina-
tion. Furthermore, genomic data is very stable over time
and correlated between family members [28]. Therefore,
a lot of research has already been carried out to improve
the genomic-privacy situation (most of the related litera-
ture is surveyed in [20, 42]).

However, our genome is not the only element influ-
encing our health. Environmental factors (e.g., pollution,
diet, lifestyle, . . .) often play a crucial role in the de-
velopment of most common diseases. Epigenetics (or
epigenomics), transcriptomics, and proteomics aim to
bridge the gap between the genome and our health status.
Multi-omics research is a logical complementary step to
genome sequencing: the DNA sequence tells us what the
cell could possibly do, while the epigenome and tran-
scriptome tell what it is actually doing at a given point
in time. Using a computer analogy, if the genome is the
hardware, then the epigenome is the software [16].

Despite the growing importance of epigenetics in the
biomedical community, privacy concerns stemming from
epigenetic data have received little to no attention so
far. With the increasing understanding of epigenetics,
it becomes clear that epigenetic data contains a vast
amount of additional sensitive information, and can thus
raise potential privacy risks. For example, a large num-
ber of severe diseases (such as cancers, diabetes, or
Alzheimer’s [21, 33, 46, 53]) are already identified to be
affected by epigenetic changes and a recent study found
that epigenetic alterations could even affect sexual orien-
tation [43]. Furthermore, epigenetic data can potentially

1224 25th USENIX Security Symposium USENIX Association

tell us more about whether someone is carrying a disease
at a given point in time, compared to the genome that
only informs about the risk of getting certain diseases.1

Moreover, it is still unclear whether the current genetic
nondiscrimination laws would apply to epigenetic data.
For instance, the US Genetic Information Nondiscrim-
ination Act (GINA) is limited to genetic characteristics
and epigenetic data might not be considered genetic in-
formation [18, 47].

In this work, we focus on microRNAs (abbreviated
miRNAs), an important element of the epigenome dis-
covered in the early 1990s. MiRNAs are small RNA
molecules that regulate the majority of human genes.
Studies of miRNA expression profiles have shown that
dysregulation of miRNA is linked to neurodegenerative
diseases, heart diseases, diabetes and the majority of can-
cers [21, 33, 40, 46, 53].2 Therefore, miRNA expression
profiling is a very promising technique that could enable
more accurate, earlier and minimally invasive diagnosis
of major severe diseases. As a consequence, it will cer-
tainly be increasingly used in medical practice.

In contrast to the DNA sequence, which mostly stays
constant over time, it is believed in the biomedical com-
munity that the miRNA expression levels are varying suf-
ficiently to invalidate any linkability attempts over time,
thus naturally protecting personal privacy. This work,
however, shows the contrary: despite their temporal vari-
ability, microRNA expression profiles are still identifi-
able and linkable after time periods of several months.

Contributions. In this paper, we study the temporal link-
ability of personal miRNA expression profiles, by pre-
senting and thoroughly evaluating different attacks, and
proposing defense mechanisms to enhance unlinkability.

Specifically, we first study an identification attack,
which pinpoints a specific miRNA expression profile in
a database of multiple expression profiles by knowing
the targeted profile at another point in time. Second, we
study a matching attack, which tracks a set of miRNA
expression profiles over time. We rely on principal com-
ponent analysis to pre-process the miRNA expression
levels, and on a minimum weight assignment algorithm
for the matching attack. We thoroughly evaluate these
linkability attacks by using three different longitudinal
datasets: (i) the blood-based miRNA expression levels of
athletes at two time points separated by one week, (ii) the
plasma-based miRNA expression levels of the same ath-
letes at two time points separated by one week, and (iii)
the plasma-based miRNA expression levels of patients
with lung cancer over more than 18 months and eight
time points. Our experimental results show that blood

1The only exception to this rule are Mendelian disorders, such as
cystic fibrosis, which are largely determined by our genes.

2Known relations between miRNA and human pathologies can be
found at http://www.cuilab.cn/hmdd.

miRNA expression profiles are about twice as easy to
track over time compared to plasma miRNA profiles, and
that the matching attack is more successful than the iden-
tification attack: We reach a success rate of 90% with
blood and a success rate of 48% with plasma miRNAs in
the matching attack whereas, in the identification attack,
we reach a success rate of 76% with blood and 28% with
plasma miRNAs. Moreover, we demonstrate that 10%
of the miRNAs are already sufficient to achieve similar
success rates as with all miRNAs. With the third dataset,
we also observe that the attack achieves a similar success
up to 12-month time periods.

We present two countermeasures to improve the un-
linkability of miRNA expression profiles: (i) hiding a
subset of the miRNA expressions, e.g., those that are not
relevant for medical practice, and (ii) disclosing noisy
miRNA expression profiles by adding noise in a dif-
ferentially private and distributed manner. While the
first countermeasure is useful especially in a clinical set-
ting, in which the disease-relevant miRNAs are already
known, the second countermeasure is intended to be bet-
ter suited for the biomedical research community. In this
context, as one of the objective is to discover associations
between miRNAs and diseases, it is impossible to restrict
the released data to only a few miRNAs.

We evaluate our protection mechanisms with the first
aforementioned blood-based miRNA profiles of athletes
and a fourth, also blood-based, miRNA dataset of more
than 1,000 participants that includes information about
19 diseases (at a single point in time). The former is
used to measure how temporal linkability is reduced with
our countermeasures, whereas the latter helps us evalu-
ate the evolution of accuracy (i.e., utility) in predicting
patients’ diseases from their miRNA expressions. The
experiments show that it is possible to decrease link-
ability by at least 50% for almost no loss of accuracy
(< 1%) for the majority of diseases with the noise mech-
anism. Moreover, our results demonstrate that the noise
mechanism provides better privacy-utility trade-offs than
the hiding method in 17 out of 19 of diseases, while al-
lowing more flexibility in the data usage for biomedical
researchers. This finding is reinforced by the fact that
an adversary could use correlations between miRNA ex-
pressions to infer more miRNA expressions than those
actually shared by our first countermeasure.

Organization. In Section 2, we present the biomedical
background relevant to understand our work. In Sec-
tion 3, we introduce the adversarial model. We then de-
scribe in detail our four datasets in Section 4. In Sec-
tion 5, we present the analytical tools used to carry out
our linkability attacks and our experimental results. In
Section 6, we propose and evaluate countermeasures and
compare their performance. We present the related liter-
ature in Section 7 before concluding in Section 8.

2

USENIX Association 25th USENIX Security Symposium 1225

2 Background

We briefly review the genetic concepts useful for under-
standing our paper. Epigenetics etymologically come
from the combination of epi, which means “above”,
“over” in Ancient Greek, and genetics, which means
“origin”. This term broadly refers to the study of cellu-
lar and phenotypic trait variations stemming from other
causes than changes in the genotype. These external fac-
tors are for example the in-utero or childhood develop-
ment, environmental chemicals, aging or diet. Epige-
netics can also refer to the changes themselves, such as
DNA methylation and histone modification, which alter
how genes are expressed without modifying the genome.

MicroRNAs (miRNAs) are epigenetically regulated
mechanisms discovered in the early 1990s. MiRNAs are
small non-coding RNA molecules that regulate gene ex-
pression in plants and animals. It has been shown that
60% of genes coding human proteins are regulated by
miRNAs [25]. Whereas a miRNA is a RNA molecule
containing around 22 nucleotides, miRNA expression is a
real-valued number quantified in a two-step polymerase
chain reaction (PCR) process. Different sets of miRNAs
are expressed in different cell types and tissues.

Biomedical research is notably interested in dis-
covering how miRNA expression affects physiologi-
cal and pathological processes.3 Studies of miRNA
expression profiling have demonstrated that dysregula-
tion of miRNA is linked to neurodegenerative diseases
(Alzheimer’s and Parkinson’s), heart diseases, diabetes,
and the majority of cancers [21, 33, 40, 46, 53]. MiRNA
expression profiling is hence a very promising technique
that could enable more accurate, earlier and minimally
invasive diagnosis of severe diseases. To mention one
current, concrete application, miRNA expressions taken
from blood samples suffice to detect several diseases,
such as cancer or Alzheimer’s [34, 37]. In the following,
we study the temporal linkability of miRNA expression
profiles coming from blood and plasma (serum) sam-
ples.

3 Adversarial Model

We assume the adversary gets access to miRNA expres-
sion profiles of individuals at different points in time.
Such epigenetic data is increasingly available in public
research databases, such as the Gene Expression Om-
nibus (GEO) [4] or ArrayExpress [1] databases. More-
over, such data could be leaked through a major secu-
rity breach, e.g., of a hospital server. Health data is

3Strictly speaking, miRNA is part of the epigenome while miRNA
expression is generally considered more as part of the transcriptome.
In this paper, we use the term epigenetics in its broad acceptation.

also increasingly available on the black market. For in-
stance, cyber attacks against healthcare companies have
increased by 72% from 2013 to 2014 [3]. Moreover, 91%
of healthcare companies have experienced a violation of
their databases over the last two years, and only 32%
feel they have adequate resources to defeat these inci-
dents [6]. Real-world cyber attacks show us that health
data can be hacked en masse [5, 8] or that attacks can be
more targeted towards high-profile victims [9]. Very sen-
sitive medical data of thousands of patients can also end
up online due to a human mistake [2].

In a typical scenario, the adversary would get access
to miRNA expression levels of one or multiple individu-
als from a (private) health insurance or hospital database,
and wants to match them with a (public) research dataset
of miRNA expression levels at another point in time. A
particularly sensitive scenario would be the matching of
non-anonymized healthy miRNA samples with miRNA
profiles that are known to be associated with diseases.
Also note that researchers have demonstrated that RNA
expression profiles could be matched to genotypes by re-
lying on expression quantitative trait loci (eQTLs) [48].
Therefore, if the adversary can also access the genotypes
of the victims, these genotypes provide him with fur-
ther means for de-anonymizing the corresponding (mi-
cro)RNA expression profiles [26, 30]).

4 Dataset Description

Unlike in other fields of privacy research, where large
amounts of data can be collected in a small amount of
time and at low cost, in the health-privacy field we face
the exact opposite: measuring the miRNA expression
levels of one single sample already costs several hundred
dollars. Longitudinal epigenetic data are particularly
valuable, since patients have to regularly provide their
biological samples over a long period of time. There-
fore, the four datasets used throughout the paper, and de-
scribed hereunder, represent very rich data.

We start by describing our three longitudinal datasets.
The first dataset contains the blood-based miRNA ex-
pression levels of 29 well-trained male athletes (15 en-
durance athletes and 14 strength athletes) at two points
in time, while the second dataset contains the plasma-
based miRNA expression levels of those athletes at the
same points in time.4 None of the athletes is known to
be affected by a disease. The samples were taken prior
and post exercising (time period of one week), similar to
the data previously presented in [12]. The athletes fol-
lowed a 6-day training with two training sessions a day,
except at day 4 when only one session was scheduled.

4We selected blood and plasma since these two body fluids are
likely candidates as source for biomarkers in future applications.

3

1226 25th USENIX Security Symposium USENIX Association

The tests were conducted at Saarland Unversity (Ger-
many) for the endurance athletes, and at Ruhr University
Bochum (Germany) for the strength athletes.

In order to confirm our results, we make use of a third,
independent dataset. This dataset contains the miRNA
expression data of plasma of 26 lung-cancer patients (9
females and 17 males) over a period of more than 18
months [38], at eight time points: before surgery (tumor
resection), two weeks after surgery (abbreviated A.S. in
the graphs), and 3, 6, 9, 12, 15, and 18 months after
surgery.5 The patients’ ages range from 47 to 79. All
three longitudinal datasets include the expression levels
of 1,189 miRNAs for each individual at every time point.

Our last dataset contains the expression levels for 848
miRNAs collected from blood samples for each of 1,049
individuals [35] at only one time point. 94 of these in-
dividuals are considered to be healthy and are used as
a control group in Section 6. Most of the rest repre-
sent cases, i.e., individuals carrying one out of the fol-
lowing 19 different diseases: 124 have Wilms tumor, 73
lung cancer, 65 prostate cancer, 62 myocardial infarc-
tion, 47 chronic obstructive pulmonary disease (COPD),
45 sarcoidosis, 45 ductal adenocarcinoma, 43 psoria-
sis, 37 pancreatitis, 35 benign prostate hyperplasia, 35
melanoma, 33 non-ischaemic systolic heart failure, 29
colon cancer, 24 ovarian cancer, 23 multiple sclerosis, 20
glioma, 20 renal cancer, 18 periodontitis, and 13 stomach
tumor.

Note that a miRNA expression generally takes values
between 0 (meaning the miRNA is not expressed at all)
and tens of thousands. As we will mention later, we typi-
cally filter out miRNA whose median expressions among
all individuals are smaller than 50, since these are non-
expressed or not expressed enough to be significant.

While the last two datasets are both freely available in
the GEO database (see accession number GSE68951 and
GSE61741), the datasets consisting of athletes’ miRNA
expressions are not yet publicly available, but will be
made available soon.6 We also discuss ethical con-
siderations and how we handled these datasets in Ap-
pendix A.1.

5 Linkability Attacks

We study the extent of the linkability threat (as described
in Section 3) by means of two attacks. First, we describe
the mathematical principles behind our attacks, and then
evaluate their success on our three longitudinal datasets.

5Note that for the last two points in time, we have the miRNA pro-
files of 25 and 22 patients, respectively.

6Please contact Andreas Keller for more information about the ac-
cess to these datasets.

5.1 The Attacks
The first attack, called identification attack, refers to a
scenario in which the adversary knows the miRNA ex-
pression profile of a targeted individual and aims at find-
ing the corresponding miRNA expression profile in a
database of n miRNA expression profiles, e.g., later in
time. The second attack, called matching attack, refers to
the case where the attacker has access to two databases
of miRNA profiles collected at different points in time
and wants to match their elements together.

For both our attacks, as there are more than 1000
known miRNAs with real-valued expression levels, we
apply a pre-processing step using principal component
analysis (PCA) with whitening. In particular, we apply
the probabilistic PCA model proposed by Tipping and
Bishop [49], which relies on singular value decompo-
sition. This PCA step projects the high-dimensionality
miRNA expression vectors to smaller-dimensionality un-
correlated components. The whitening step divides the
resulting PCA components by the number of samples
multiplied by the singular values in order to provide un-
correlated expression vectors of unit variance. We then
make use of the Euclidean distance between the miRNA
expression vectors projected on the first c principal com-
ponents.

In the identification attack, we assume the adversary
has had access to the miRNA profile rt1

k , vector contain-
ing the miRNA expressions of an individual k at time t1,
and he wants to identify this individual in a database of
n miRNA expression profiles {rt2

i }n
i=1 collected at time

t2 �= t1. After having extracted the c principal compo-
nents from the whole dataset by using PCA, the adver-
sary ranks the n profiles (projected on the c components)
{r̄t2

i }n
i=1 by decreasing distance to the targeted miRNA

profile (also projected on the c components) r̄t1
k and picks

the profile with minimum distance to the targeted profile.
Formally, the adversary will select the profile r̄t2

i∗ where

i∗ = argmin
i

∥∥r̄t2
i − r̄t1

k

∥∥
2 .

In the matching attack, the adversary has access to two
databases of miRNA expression profiles at two different
time points t1 and t2. We assume that the databases are
of sizes n1 and n2, both strictly greater than 1. First, if
n1 = n2 = n, the adversary will assign one miRNA profile
at time t1 to exactly one profile at time t2. In this case,
the best assignment σ∗ is the one that minimizes the sum
of the distances between every matched pair:

σ∗ = argmin
σ

n

∑
i=1

∥∥∥r̄t2
σ(i)− r̄t1

i

∥∥∥
2
.

This problem boils down to finding a perfect matching
on a weighted bipartite graph, with n vertices on both

4

USENIX Association 25th USENIX Security Symposium 1227

(a) (b) (c)

Figure 1: Success rate of the identification attack for the athletes dataset. (a) Proportion of successfully identified pairs
plotted against the number of PCA dimensions (in {1, ...,58}). (b) Probability density function (PDF) and cumulative
distribution function (CDF) of obtained ranks. (c) Proportion of successfully identified pairs plotted against the number
of miRNA expression profiles.

sides representing the miRNA profiles, and a weight on
each edge representing the Euclidean distance between
any pair of miRNA profiles (vertices), projected on the
first c principal components. We want to find the match-
ing among n! possible assignments that minimizes the
sum of the weights between vertices. Fortunately, there
exist several algorithms in the literature that find the min-
imum weight assignment in polynomial time. We use the
blossom algorithm [19], because it only has a complexity
of O(n3) and it can also be applied to general graphs.

If n1 �= n2, we fill the smallest side of the bipartite
graph with dummy vertices. Then we assign infinite
weight to all edges from actual vertices to these dummy
vertices in order to ensure that the dummy vertices will
be the least likely assigned to the vertices in the largest
side that are also present in the smallest side.

5.2 Experimental Results
We evaluate how successful both aforementioned attacks
are in breaking the privacy of our three longitudinal
datasets. We implement the attacks in Python, and make
use of the libraries Scikit-learn [13, 44] (for PCA) and
NetworkX7 (for the graph matching).

5.2.1 Identification Attack

In this subsection, we evaluate the success of an adver-
sary, who aims at identifying the miRNA profile of a tar-
geted individual in a longitudinal dataset. As mentioned
in Section 4, the first two longitudinal datasets contain
miRNA expression levels of 29 individuals collected at a
time interval of one week.

First, we compare the success rate for correctly identi-
fying samples for all possible PCA dimensions. Fig. 1(a)

7https://networkx.github.io

indicates that the blood’s miRNA expression levels are
easier to identify over time than the plasma’s miRNA ex-
pression levels. When identifying samples by their blood
miRNA expression levels, we can reach a maximum suc-
cess rate of 76% for the blood with 22 or 23 PCA dimen-
sions. The maximum success rate for the plasma is 28%
with 17, 18, 19 or 31 PCA dimensions. Note that both
achieve their highest success with a number of PCA di-
mensions around 20.

Next, we rank the miRNA profiles at time t2 in order
of increasing distance to the targeted profile rt1

k . Fig. 1(b)
shows the rank of the correct sample rt2

k by using 22 PCA
dimensions for the blood and 18 PCA dimensions for the
plasma. The correct profile is ranked within the top 2
profiles in more than 40% of the cases for the plasma,
whereas the correct sample is ranked withing the top 2
samples in 80% of the cases for the blood.

In order to get an impression on the attack’s perfor-
mance on larger datasets, we also analyze the success
of the identification attack with respect to the number of
participants in the dataset, i.e., we vary the number of
profiles among which the attacker has to identify the tar-
geted miRNA profile, again using 22 PCA dimensions
for the blood and 18 PCA dimensions for the plasma. In-
tuitively, when the number of miRNA samples increases,
the success rate of the attacker should decrease. In this
experiment, we adjust the number n of miRNA profiles
between 2 and 29 and evaluate the attacker’s success on
a subset of our datasets. In particular, for each number
of profiles n, we randomly choose 1000 different com-
binations (or fewer if necessary) of n out of 29 miRNA
profiles and run the identification attack on every sample
within this subset. Fig. 1(c) depicts the average success
rates for each number of profiles n. As expected, the
success rate monotonically decreases with the number of
participants for blood and plasma samples. For plasma,

5

1228 25th USENIX Security Symposium USENIX Association

(a) (b) (c)

Figure 2: Success rate of the identification attack for the lung cancer dataset. (a) Success rate aggregated over all
identifications between any t1 and t2 plotted against the number of PCA dimensions. (b) Success rate of identifying
the miRNA profiles between time pairs t1 and t2. (c) Success rate plotted against the time period between t1 and t2.

(a) (b) (c)

Figure 3: Success rate of the matching attack for the athletes dataset. (a) Proportion of successfully matched pairs
plotted against the number of PCA dimensions. (b) Proportion of successfully matched pairs plotted against the
number of miRNA profiles. (c) Proportion of successfully matched pairs plotted against the number of revealed
miRNAs.

however, this decrease is much sharper, confirming that
the blood’s miRNA expression levels provide means for
easier identification. From the curves’ slopes, we can
predict that, for larger datasets, blood based samples will
still be subject to a relatively high identification success.

In order to validate our findings, we also evaluate
our experiments on our other longitudinal, independent
dataset containing plasma miRNA profiles from 26 indi-
viduals with lung cancer collected over up to eight dif-
ferent points in time.

First, we evaluate the attacker’s success with respect
to a varying number of PCA dimensions. Fig. 2(a) de-
picts the minimum, average and maximum success rate
of an attacker when identifying the samples between dif-
ferent points in time, irrespective of the time period be-
tween them. The maximum success rate for the identifi-
cation attack is 42% and is achieved for 25 and 39 PCA
dimensions. The usage of 22 PCA dimensions yields the
highest average success rate, of 22%. The highest min-
imal success rate in the dataset is achieved for 17 PCA
dimensions (12%).

These results are similar to what we obtained in our
experiments for the athletes dataset: The best results are
achieved for a number of PCA dimensions around 20 in
both datasets. The highest average success rate lies 6
points below the best success rate for the athletes dataset.
This could be explained by longer time periods in this
dataset. However, for some time periods, we can achieve
one and a half the success rate of the first dataset. When
comparing the top 10 miRNAs contributing to the first
PCA dimension in this dataset and in the athletes’ plasma
dataset, we also find an overlap of 80% between these
miRNAs. This indicates that approximately the same set
of miRNAs can be used to differentiate plasma expres-
sion profiles between individuals in both datasets. Thus,
we can conclude that, while miRNA expression levels are
directly linked to health status, the health status only af-
fects a subset of the miRNAs, which has only little effect
on the temporal linking.

To further investigate the effect of different time peri-
ods on the attacker’s success, we plot the maximum suc-
cess rates between all possible, ascending combinations

6

USENIX Association 25th USENIX Security Symposium 1229

(a) (b) (c)

Figure 4: Success rate of the matching attack for the lung cancer dataset. (a) Success rate aggregated over all matchings
between any t1 and t2 plotted against the number of PCA dimensions (in {1, ...,60}). (b) Success rate of matching the
miRNA profiles between time pairs t1 (various curves), t2 (x-axis value). (c) Success rate plotted against the distance
between t1 and t2.

of points in time in Fig. 2(b). With only a few excep-
tions, the best success rates are most often achieved for
consecutive time points. The only two exceptions are
found for t1=before the surgery and t1=the sixth month
after the surgery. In general, however, we notice a ten-
dency of slight decrease in success over an increasing
time period.

In order to verify this finding, we group the results
by the period between t1 and t2 (Fig. 2(c)). Note that,
since we do not know the time period between before
the surgery and after it, we leave out all results that
use samples collected before the surgery. Clearly, the
best achievable success rate drops for increasing time
periods.This decrease over larger periods of time can
partially explain the lower average success rate in this
dataset compared to the athletes’ dataset (considering a
much smaller time period).

Next, we computed the guessing entropy [14, 41] for
the identification attack. The guessing entropy E[G(X)]
is the expected number of guesses an adversary would
need to identify the correct sample at a different point
in time. For the identification attack it is given by
E[G(X)] = ∑n

i=1 i ·Pr[X = i], where X denotes a the rank
of the correct sample at time t2 and Pr[X = i] denotes the
empirical probability that the correct sample is ranked at
the ith position.

For blood-based samples of our athletes dataset, the at-
tack can achieve a guessing entropy just below 4, clearly
outperforming random guesses, which would yield an
entropy of 15 guesses on average. For plasma-based
samples of the same dataset, the attack yields an entropy
of approximately 9 guesses. This result is consistent with
the results on the lung cancer dataset, where, on average,
an adversary would need just fewer than 9 guesses (com-
pared to a guessing entropy of 13.5 for random guesses).
Moreover, for some t1 and t2, the attack is even able to
achieve a guessing entropy smaller than 6.

5.2.2 Matching Attack

We evaluate here the success of the adversary, who tries
to link all participants over time, again for the three
aforementioned longitudinal datasets. Starting with the
athletes’ datasets, we compare the success rate of match-
ing the blood and the plasma over all possible PCA di-
mensions for 29 participants. In Fig. 3(a), we notice the
same behavior as in the identification attack: the blood
based miRNA expression levels are much easier to link
over time than the plasma based levels. We even reach a
higher maximum absolute success rate than in the iden-
tification attack: 90% with 39 or 40 PCA dimensions for
the blood and 48% success with 34 PCA dimensions for
the plasma samples.

The identification attack’s lower success rate is due to
the fact that it is evaluated for each sample individually,
thus allowing multiple samples at t1 to be linked to the
same (potentially wrong) sample at t2. Since our per-
fect matching attack rules out those cases by forcing each
profile at t2 to be matched to exactly one profile from t1, it
also decreases the number of wrongly matched samples.

Next, we also analyze the success of the attack with
respect to the number of participants to be matched to-
gether. Intuitively, the more miRNA profiles there are,
the more challenging it should be for the adversary to
match them at different time points. Again, we make
the number of participants n vary between 2 and 29 at
both time points, again randomly sampling 1000 combi-
nations (or fewer, if there are fewer than 1000 combina-
tions) and averaging the result. Fig. 3(b) shows the ex-
pected trend of decreasing success for the blood miRNA
samples. The plasma scenario monotonically decreases
between 2 and 25 participants and then slightly increases
until 29. This artifact could be explained by the smaller
number of random combinations, and thus experiments,
when n > 26. We also find that the blood attack faces

7

1230 25th USENIX Security Symposium USENIX Association

a rather linear decrease in success whereas the plasma
success rate decreases much faster. By extrapolating
this linear trend, we can expect a success rate as high
as 60% with 120 participants in the datasets. Therefore,
we again conclude that the blood has miRNA expression
levels that enable much easier tracking over time than the
plasma, which is consistent with the results of the identi-
fication attack.

Fig. 3(c) investigates how the attack’s success evolves
when revealing only a subset of the miRNA expression
levels. We gradually drop individual miRNAs in ran-
dom order and compute the attack’s success. The fig-
ure shows the success rate (for each possible number
m ∈ {1189,1188, . . . ,2,1} of miRNAs) averaged over
50 randomly chosen orderings of miRNAs. We notice
that the attack’s success is very stable, especially for
the blood samples, from 1189 to 200 miRNAs. For the
blood, the success decreases below 80% the first time
when there are fewer than 100 miRNAs available to the
adversary. We further study the implications of this ro-
bustness in the context of our countermeasures in Sec-
tion 6.

We also made use of our third longitudinal dataset con-
taining plasma miRNA expression profiles of 26 individ-
uals over up to eight different time points (cf. Section
4). In Fig. 4(a), we see that the average success rate
reaches its maximum at a number of PCA dimensions
very close to the number of dimensions for the athletes
dataset, i.e., 34. However, this maximum is approxi-
mately 30%, which is smaller than the 48% reached for
the first dataset. A greater period between time points
could explain this behavior, and we also see that we can
still reach a maximum success rate of 55% between some
time points, with 39 PCA dimensions. We explore the
time effect in deeper details in the following figures.

Fig. 4(b) depicts the maximum success rate between
any pair of time points t1, t2. For instance, the solid red
line shows the success rates between t1=before surgery
and all others. It is difficult to detect any trend with re-
spect to the time period in the different curves, except a
slight decrease when the time period is higher or equal
to 15 months. This is confirmed by Fig. 4(c) that depicts
the maximum, average, and minimum success rate with
respect to the period between t1 and t2. We clearly notice
a decreasing rate between 3 and 9 months, an increase to
12 months, and finally clear decrease towards 15 and 18
months.

6 Countermeasures

In this section, we propose and evaluate two main de-
fense mechanisms for preventing miRNA expression
data from being tracked over time. The proposed tech-
niques are based on well-established privacy-enhancing

methods, previously applied in other privacy contexts,
such as location privacy. The first approach relies on a
quite straightforward technique: release only a subset of
the miRNAs. We can already see from Fig. 3(c) of Sec-
tion 5 that the matching attack is quite robust to a de-
crease in the number of miRNAs. Nevertheless, we show
hereafter how we can keep a high utility in combination
with unlinkability of expression profiles over time by re-
vealing a small subset of miRNAs. The second counter-
measure consists in adding noise to the released miRNA
expression vectors, independently for every individual.
This method shows very promising results, reaching an
even better privacy-utility trade-off than the hiding mech-
anism. Furthermore, we also investigate the effect of cor-
relations between miRNA expression levels and present
the privacy evolution when the adversary can infer miss-
ing miRNAs by using these correlations.

For evaluating the privacy provided by our defense
mechanisms, we focus on the matching attack against
blood-based miRNAs, as this constitutes the worst-case
attack from a privacy perspective, as shown in Section 5.
Moreover, we assume the attacker is able to select the
number of PCA dimensions that maximizes his success.
This provides us with a conservative measure of privacy,
showing the worst-case privacy levels individuals can ex-
pect.

6.1 Baseline Utility

Before presenting the proposed countermeasures and
their efficiencies, we must carefully define the context
in which they should apply. Indeed, we can rarely have
both perfect privacy and maximum utility, so that we of-
ten need a trade-off between these two. Therefore, the ef-
ficiency of the defense mechanism cannot only be judged
based on the privacy metric, but must also relate to the
utility brought in the context in which the data is used.

According to biomedical experts, miRNA expres-
sion profiles have strong potential to help predict var-
ious severe diseases, from cancer to Alzheimer’s dis-
ease. Biomedical researchers typically rely on stan-
dard machine learning algorithms to identify which
miRNAs are playing a significant role in the disease
of interest. They are dealing with binary classifica-
tion, between cases (carrying the disease) and controls
(healthy), and most often rely on support vector ma-
chines (SVMs). In particular, they typically use radial
basis function SVMs and select a subset of features by
subsequently adding miRNAs in order of their signifi-
cance values (e.g., p-values computed by the Wilcoxon-
Mann-Whitney (WMW) test) [37] or equivalently in or-
der of their area under the ROC curve (AUC). Given sam-
ples of cases and controls, the accuracy is then defined as
the number of correctly classified samples divided by the

8

USENIX Association 25th USENIX Security Symposium 1231

Disease Maximum
accuracy with

the best
subset of
expressed

miRNAs (#
miRNAs)

Accu-
racy

with all
ex-

pressed
miRNAs

Periodontitis 0.941 (37) 0.88
Renal cancer 0.988 (32) 0.962
Wilms’ tumor 0.95 (150) 0.937
Benign prostate hy-
perplasia

0.921 (105) 0.883

Chronic obstructive
pulmonary disease

0.932 (70) 0.886

Colon cancer 1.0 (30) 0.997
Ductal carcinoma 0.938 (55) 0.92
Glioma 0.927 (19) 0.83
Lung cancer 0.899 (60) 0.848
Melanoma 0.996 (185) 0.992
Multiple sclerosis 0.992 (40) 0.979
Myocardial infarc-
tion

0.893 (400) 0.884

Nonischaemic sys-
tolic heart failure

0.9 (135) 0.871

Ovarian cancer 0.919 (18) 0.876
Pancreatitis 0.941 (130) 0.899
Prostate cancer 0.923 (90) 0.91
Psoriasis 0.914 (350) 0.902
Sarcoidosis 0.977 (200) 0.97
Tumor of stomach 0.969 (160) 0.89

Table 1: Accuracy of the SVM algorithm in classifying
individuals between cases (carrying the disease) and con-
trols (healthy), for 19 diseases, without countermeasure.

total number of samples. Note that we compute the aver-
age accuracy over a repeated k-fold cross-validation.

In this work, we define the utility as the accuracy of
the SVM classifier, as defined above. We use a 10-fold
cross-validation with 5 repeats (using R and the caret8

library) and determine the miRNAs’ p-values by using
the WMW test and adjusting the significance values for
multiple tests using the Benjamini-Hochberg adjustment.
The WMW test statistic is applied for each miRNA indi-
vidually in order to test whether this miRNA has similar
expressions between cases and controls (null hypothe-
sis). The p-values then provide us with the relevance of
the miRNA to the disease of interest. In contrast to the
t-test, the WMW test can be applied on unknown dis-
tributions. This way, we follow the standard procedure
of biomedical research. Table 1 shows the accuracy of

8caret.r-forge.r-project.org

our SVM algorithm applied on our 1000+ participants
dataset to predict 19 diseases, without any obfuscation.
The maximum accuracy here is what we refer to as the
baseline utility in the subsequent subsections.

Note that, before running the SVM algorithm, we fil-
ter out non-expressed miRNAs, i.e., those with a median
level of expression smaller than 50 over the 1000+ indi-
viduals, which leaves us with 446 expressed miRNAs.

6.2 Hiding MicroRNA Expressions

The first countermeasure that we study is miRNA ex-
pression hiding. This obfuscation technique has the ad-
vantage to be non-pertubative, i.e., to preserve the cor-
rect values of all revealed miRNA expressions. How-
ever, as we have seen in Section 5, the attacks are ex-
tremely robust to removal of miRNAs. In the following,
we want to find an optimal trade-off between the diagno-
sis accuracy, i.e., the utility, and the unlinkability of the
data, i.e., the privacy. To this end, we make use of both
our blood-based datasets, the 1000+ dataset with blood-
based miRNA expressions to run our SVM algorithm and
the athletes’ dataset with blood-based miRNAs to evalu-
ate the level of privacy. Note that we filter both datasets’
miRNAs in order to have the same set of 446 miRNAs
in both cases. While we measure the utility in terms of
accuracy of the SVM, the privacy is measured in terms of
the maximum achievable success rate (over all possible
PCA dimensions) of our matching attack.

Figure 5 shows the evolution of privacy and utility for
a range of 1 to 100 disclosed miRNAs, for 6 different se-
vere diseases.9 We focus on this range of miRNAs as:
(i) for more than 100 miRNAs, the attack’s success rate
is approximately the same as the one without counter-
measure, and (ii) the SVM can already achieve very high
accuracy with up to 100 miRNAs. We gradually reveal
the miRNAs in decreasing order of significance (based
on p-values), as computed in Subsection 6.1.

Figure 5 demonstrates that there exists a trade-off be-
tween the utility of miRNA expressions and the privacy
of the contributors’ data. Note that we also depict the
relative decrease in accuracy compared to the maximum
SVM accuracy computed in Subsection 6.1 and the rela-
tive decrease in the attack’s success (increase in privacy)
compared to the attack’s success with all miRNAs, i.e.,
90%. We see that the relative decrease in accuracy is al-
most always smaller than 10%. The only exceptions to
this are with pancreatitis and melanoma, for fewer than
3 disclosed miRNAs. Moreover, regarding the privacy,
the figures show that we can never reduce the attack’s
success by more than 50% when revealing more than 20

9These are representative of the behavior of all 19 diseases we tested
our privacy-preserving mechanisms on.

9

1232 25th USENIX Security Symposium USENIX Association

(a) (b) (c)

(d) (e) (f)

Figure 5: Evolution of privacy (unlinkability) and utility (classifier accuracy) plotted against the number of released
miRNAs for the following diseases: (a) Pancreatitis, (b) Glioma, (c) Multiple sclerosis, (d) Tumor of stomach, (e)
Melanoma, (f) Renal cancer. The relative decrease success curve refers to the decrease in success of the matching
attack compared to the success without countermeasure. Similarly, the relative decrease accuracy curve refers to the
decrease in accuracy of the SVM classifier with respect to the case without protection mechanism.

miRNAs. Nevertheless, within the range of 3 to 20 dis-
closed miRNAs, we can find, for all diseases, a satisfac-
tory trade-off between utility and privacy.

In particular, for glioma, we can decrease the linka-
bility attack’s success and thus improve the privacy by
80.8% when using 4 miRNAs, while reducing the clas-
sification accuracy by only 1.1%. Similarly for multiple
sclerosis, 7 miRNAs provide an increase in privacy of
53.8%, while the decrease in accuracy only amounts to
0.9%. For renal cancer and 10 miRNAs, we are able to
achieve an improvement in privacy of 69.2% and a de-
crease of accuracy of only 1.7%. There are only two
diseases for which it is very difficult to have both unlink-
ability and very high utility: melanoma and pancreati-
tis. For melanoma, we notice that the matching attack’s
success has a fast increase with very few miRNAs, and
already exceeds 50% starting with only 7 miRNAs. For
pancreatitis, the SVM’s accuracy is relatively low (com-
pared to the maximum) for the first 20 miRNAs. Thus
for both diseases, either privacy or utility would have to
be slightly sacrificed for the other.

MiRNA co-expression. Like between variants in the
genome, there exist correlations between miRNA expres-
sions: around 40% of miRNAs are not independently ex-
pressed [7]. This means that the adversary, by knowing
these correlations, could increase his knowledge about
the non-disclosed miRNA expressions. In order to eval-
uate the importance of such correlations, we first com-
pute the Pearson’s correlation coefficients, and their cor-
responding p-values, in all 99,235 pairs of the 446 ex-
pressed miRNAs in our fourth dataset. Filtering out all
correlations with p-values greater than 0.001 (after Bon-
ferroni correction for multiple correlations’ testing) or
correlation coefficient smaller than 0.5 leaves us with
47% of miRNAs not independently expressed. Figure 6
shows the updates of the linkability attack’s success by
taking into account all significant correlations as defined
above. In our experiments, we take a quite conservative
approach: We assume that the adversary can perfectly in-
fer the miRNAs correlated with those that are gradually
disclosed. The dotted curve provides an upper bound es-
timate on the success rate. A tighter bound could be de-
rived by knowing more precisely the probabilistic depen-
dencies between miRNAs. This is left for future work.

10

USENIX Association 25th USENIX Security Symposium 1233

(a) (b) (c)

Figure 6: Correlations between miRNAs. Evolution of privacy and utility, when miRNAs correlated with the revealed
miRNAs are taken into account for the attack. This provides an upper bound on the best linkability of miRNA
expression profiles, i.e., worst-case privacy level. (a) Glioma, (b) Multiple sclerosis, (c) Renal cancer.

For Fig. 6, we make use of the three diseases of Fig-
ure 5 that gave best trade-off between privacy and util-
ity, i.e., glioma, multiple sclerosis and renal cancer. We
observe that the success rate knowing miRNAs corre-
lated with disclosed miRNAs is much higher than with-
out them, except for the very first miRNAs in Fig. 6(c).
It shows that the most significant miRNAs for the SVM
classification are co-expressed with others, which penal-
izes privacy significantly. Making use of the best subsets
of miRNAs found above without correlations, contain-
ing 4 miRNAs for glioma, 7 for multiple sclerosis, and
10 for renal cancer, we evaluate the new privacy levels
when miRNA correlations are taken into account. For
glioma, instead of improving unlinkability by 80.8%, the
4 miRNAs and their correlated miRNAs yields an im-
provement in privacy of 34.6%. For renal cancers, the
privacy enhancement drops from 69.2% to 38.5% and,
for multiple sclerosis, knowing 7 miRNAs and their co-
expressed miRNAs yield an attack’s success rate almost
equal to the highest rate with the full set of miRNAs.
However, we can find new, better trade-offs: e.g., dis-
closing 5 miRNAs for multiple sclerosis still provides the
same high SVM accuracy (decrease of 0.9% compared to
the baseline) while reducing the attack’s success by 23%.
Note that we do not make use of the correlated miRNAs
for the SVM algorithm as we are not certain about how
they correlate with the disclosed ones.

6.3 Noise Mechanism

As we have noticed in the first protection mechanism,
it is possible to hide the vast majority of miRNAs
while retaining a fair level of prediction accuracy. This
is typically very useful in the clinical setting where
medical practitioners already know the miRNAs to test
for predicting a specific disease. However, such a
privacy-preserving mechanism could dramatically jeop-

ardize miRNA utility for biomedical research. Indeed, as
we have seen in our previous experiments, the majority
of miRNAs need to be masked in order to gain a signifi-
cant amount of unlinkability, which is not possible if re-
searchers want to test for associations between miRNAs
and diseases. Therefore, we additionally present and
study a countermeasure where contributors of miRNA
expressions directly apply random noise to their vec-
tors of expression levels before providing them to the re-
search community (possibly online), in a fully distributed
manner (i.e., independently of other contributors).

The idea behind adding noise to the raw expression
data is to provide indistinguishability between different
expression vectors and consequently reduce the track-
ing capabilities of the adversary. Following the gener-
alized notion of differential privacy [15] previously ap-
plied to location privacy [10], we state that a mechanism
K achieves epigeno-indistinguishability if and only if, for
all m-miRNA expression vectors r1, r2,

Pr(K(r1) ∈ S)≤ exp(εd2(r1,r2))×Pr(K(r2) ∈ S),

where S is any subset of the set of possible responses
and d2(·, ·) denotes the Euclidean distance. In the follow-
ing, we assume the set of possible responses lies in the
same m-dimensional real-valued space Rm as the set of
original expression vectors. Before defining our mecha-
nism K(·) for achieving epigeno-indistinguishability, let
us first give some intuition about the mechanism. The
noise mechanism is such that the probability of report-
ing a noisy expression vector K(r) differs by at most a
factor exp(εd2(r1,r2)) when the actual, non-obfuscated
miRNA expression vectors are r1 and r2. This can be
achieved by relying on the multivariate Laplacian mech-
anism that adds noise x according to the following prob-
ability density function g(x) = 1

α e−ε‖x‖2 , where α is a
normalization factor ensuring that the integral over all
x ∈ Rm equals one.

11

1234 25th USENIX Security Symposium USENIX Association

Sampling noise from the distribution g(x) can be car-
ried out efficiently by generalizing the method used for
the planar Laplacian mechanism in [10]. First, we sam-
ple the magnitude ‖x‖2 of the noise from a gamma dis-
tribution with shape m and scale 1/ε . Second, we ran-
domly generate the direction x̂ = x/‖x‖2 of the noise by
uniformly sampling points on the surface Sm−1 of a hy-
persphere [36]. To do so, we can generate m indepen-
dent Gaussian random variables y1, y2, ..., ym, and let

ŷi = yi/
√

y2
1 + . . .+ y2

m for i = 1, ...,m. Then the distri-
bution of the vector ŷ = (ŷ1, ..., ŷm) is uniform over the
surface Sm−1, and thus we can set the direction x̂ := ŷ.
Each person i contributing his miRNA expression profile
ri will then share, instead of the actual expression data,
the noisy vector K(ri) = ri+x, where x is independently
generated for all participants i = 1, ...,n.

Following this approach, in our evaluation, we first
add noise to our dataset of 1000+ individuals (consider-
ing only the 446 miRNAs as before). Then, in the second
step, we calculate the p-values on the noised data (since
the researchers would be provided with exactly this data)
and train the SVM the same way as in the previous sub-
sections by subsequently adding miRNAs in the order
of their p-values. Similarly, we evaluate the success of
our attack on the athletes’ dataset, when considering the
same 446 miRNAs, but after adding noise. Moreover,
we repeat both our experiments 50 times and average the
results over all runs.

Figure 7 shows the evolution of the SVM accuracy
and linkability (success of the attack), with respect to the
amount of noise, tuned by ε , that is added to each con-
tributor’s miRNA expression profile. As privacy is mea-
sured on the same dataset for all six figures, its evolves
in a very similar way. Even if the noise is randomly gen-
erated, the differences average out with the Monte Carlo
method we use. We clearly see that with ε = 1, there
is almost no privacy gain compared to the attack with-
out countermeasure, whereas for ε = 0.001, the attack’s
success drops by almost 90%. Of course, as for the first
countermeasure, there is a utility-privacy trade-off to be
found between these two extreme values.

In Figure 7(a), we can observe that, for pancreatitis,
ε = 0.075 is a good trade-off, with an accuracy decrease
of only 0.8% and an unlinkability improvement of 40%.
For glioma (Figure 7(b)), the best trade-off is certainly at
ε = 0.05, with an accuracy decrease of 1.2% and an un-
linkability improvement of 51%. For multiple sclerosis,
we reach the best trade-off at ε = 0.025 with an accuracy
decrease of 0.65% and an unlinkability improvement of
63%. For tumor of stomach, we can reach an accuracy
decrease of only 0.2% and still improve the unlinkability
by as much as 70% with ε = 0.01. For renal cancer, we
have to sacrifice a bit more of utility, 2.3%, for a privacy

increase of 61%, with ε = 0.025. The only disease for
which it is quite difficult to get both satisfactory unlinka-
bility and excellent accuracy is melanoma (Figure 7(e)).
This is consistent with the hiding mechanism presented
in Subsection 6.2, where we observed (in Figure 5(e)) a
fast and sharp increase in the linkability attack’s success.

6.4 Comparison of Protection Mechanisms

In order to compare both approaches, we decide upon a
utility or a privacy requirement, fix it, and then evaluate
the best privacy, respectively utility, achieved with both
countermeasures. We carry out this evaluation on all 19
diseases for different requirements of utility and privacy.

First, we start by fixing the utility, more precisely the
relative accuracy decrease compared to the baseline ac-
curacy. The privacy is measured in terms of the decrease
in the matching attack’s success. For a given maximal
decrease in accuracy Δmax

acc , we select the optimal number
of miRNAs m∗ and the optimal amount of noise ε∗ that
maximize the privacy increase Δm

priv and Δε
priv. In case

of the hiding mechanism, we select m∗ = argmaxm Δm
priv

such that Δm
acc < Δmax

acc . In case of the noise mechanism,
we select ε∗ = argmaxε Δε

priv such that Δε
acc < Δmax

acc , re-
spectively.

Considering Δmax
acc ∈ {0.5%,1%,2%,3%,4%,5%} for

all 19 diseases, we mostly experience that the noise
mechanism provides a better privacy improvement com-
pared to hiding a subset of miRNAs (all results are in
Table 2 in the appendix). In particular, 90 out of 114
cases (combinations of disease and Δmax

acc) yield a bet-
ter privacy with the noise mechanism. When examin-
ing a maximal decrease in accuracy of 2%, the hiding
technique provides a better privacy for only 2 diseases,
namely glioma and renal cancer. Interestingly, these two
diseases stand out also for other values of the maximal
accuracy decrease, providing better privacy with the hid-
ing technique in 10 out of 12 cases. However, for all
other diseases, adding noise in a distributed manner to
individual expression profiles provides better utility for
similar levels of privacy. For example, for lung cancer,
we are able to achieve an increase in privacy of 79.3%
while maintaining a decrease in accuracy of 0.8% us-
ing noise with ε = 0.005. The best we can achieve for
the hiding technique here is either a decrease in accu-
racy of 0.97% and an increase in privacy of only 46.2%
or a larger decrease in accuracy of 1.9% and a privacy
improvement of only 50%.

Next, we discuss the results for a fixed minimal im-
provement of the privacy and compare the correspond-
ing minimal decrease in accuracy in both countermea-
sures. We now fix the minimal increase in privacy (i.e.,
the minimal decrease in the attack’s success) Δmin

priv and
minimize the decrease in accuracy: argminm Δm

acc such

12

USENIX Association 25th USENIX Security Symposium 1235

(a) (b) (c)

(d) (e) (f)

Figure 7: Evolution of privacy and utility (classifier accuracy) plotted against the noise (tuned by ε) added to the
individual miRNA expression profiles, for the following diseases: (a) Pancreatitis, (b) Glioma, (c) Multiple sclerosis,
(d) Tumor of stomach, (e) Melanoma, (f) Renal cancer.

that Δm
priv > Δmin

priv and argminε Δε
acc such that Δε

priv > Δmin
priv,

respectively. We run experiments for values of Δmin
priv from

10% up to 90%, in steps of 10% (all results are provided
in Table 3 in the appendix).

We again observe that, for most of the evaluated cases,
the achieved accuracy is better when adding noise than
when hiding miRNAs. In particular, this holds true for
143 out of 171 cases, clear exceptions being again glioma
and renal cancer. For those two diseases, the hiding tech-
nique provides better accuracy than the noise mechanism
in 87.5% of the cases. When fixing the minimal increase
in privacy to 70%, only these two diseases provide better
results with the hiding technique. For instance, with re-
nal cancer, we achieve 60.8% improvement in privacy
with a decrease in accuracy of 2.3% using noise with
ε = 0.025, whereas we can obtain an increase in privacy
of 69.2% and a decrease in accuracy of only 1.7% when
using the hiding technique. For the majority of diseases,
however, it is clearly the noise mechanism that provides
much higher utility. For example, for lung cancer, an
increase in privacy of at least 70% is achievable with a
decrease in accuracy of only 0.2% with the noise mech-
anism, while the hiding technique yields a decrease in
accuracy of 11.2%.

In summary, we find that the noise mecha-

nism presented in Section 6.3, providing epigeno-
indistinguishability, is able to achieve a better privacy-
utility trade-off than the hiding mechanism for the vast
majority of studied diseases (17 out of 19). We have also
shown in Section 6.2 that the privacy improvement with
the hiding mechanism could actually be too optimistic
due to the correlations existing between miRNAs. This
is another argument to favor the noise mechanism rather
than the hiding technique. Moreover, the p-values used
to rank the miRNAs in the hiding mechanism actually re-
quire that, at some point in time, some entity, gets access
to the full set of miRNAs of a significant number of in-
dividuals in order to measure these p-values. The noise
mechanism is fully distributed and does not need to rely
on a trusted entity at any point in time. Finally, it allows
for more flexibility as it enables, e.g., the biomedical re-
search community to access all miRNA expression levels
of contributors.

7 Related Work

We start with the literature highlighting new privacy is-
sues stemming from various types of biomedical data.
Schadt et al. have shown that RNA expression data could
be used to accurately predict genotypes [48]. The au-

13

1236 25th USENIX Security Symposium USENIX Association

thors present a Bayesian framework that relies on the
association existing between expression levels of thou-
sands of genes and genomic variations called expression
quantitative trait loci (eQTLs). In the same vein, Philib-
ert et al. demonstrate how methylation array data can
be used to construct individually identifying genetic pro-
files, and to infer substance-use histories, such as alcohol
or smoking [45]. Dyke et al. also study privacy risks re-
lated to methylation data, and discuss various methods to
balance data open-access and (epi)genomic privacy [18].
Franzosa et al. evaluate how different samples of hu-
man microbiomes can be linked over time [23]. Their
results show that more than 80% of individuals can still
be uniquely identified one year later. Fierer et al. had al-
ready provided some evidence on the feasibility of link-
ing skin bacterial communities back in 2010, but with
very few individuals [22].

There has been quite a lot of work on determining
membership of individuals in datasets, which is different
from linking them over time among different datasets.
Also, these previous works focus on genomic data only.
Specifically, the attack aims to identify a victim’s par-
ticipation in a genome-wide association study (GWAS)
based on aggregate statistics on the GWAS dataset,
knowing the victim’s genome (or part of it). Homer et al.
are the first to thoroughly assess the feasibility and ro-
bustness of such an attack by relying upon statistics such
as allele frequency or genotype counts [27]. Wang et al.
extend the initial attack by making use of the correlations
among the different positions in the genome [52]. Their
attack proves to be effective with the statistics related to
only a few hundreds genetic variants. Im et al. show that,
if the victim’s phenotype is rather extreme or if multiple
phenotypes are available, regression coefficients can re-
veal the victim’s participation in a genome-wide associ-
ation study as much as allele frequencies [31]. Dwork
et al. have very recently demonstrated the robustness of
such an attack on distorted summary statistics [17].

On the protection side, various papers have studied
how to apply noise to summary statistics to protect the
privacy of GWAS participants. Johnson and Shmatikov
design and implement algorithms for accurate and dif-
ferentially private computation of various statistics of in-
terest, such as the location of the most significant ge-
nomic variants, or the p-values of statistical tests be-
tween a given variant and the associated diseases [32].
Uhler et al. have also proposed to rely upon differential
privacy for sharing GWAS results privately. In [51], they
present methods for privately disclosing allele frequen-
cies, chi-square statistics, and p-values. In [54], Yu et
al. extend these methods by allowing for arbitrary num-
ber of cases and controls, assess their performance and
compare it with the mechanism proposed by Johnson and
Shmatikov. In [55], Yu et al. present a differentially-

private mechanism for logistic regression and show how
it can be applied to the analysis of GWAS data. In
the pharmacogenetic context, Fredrikson et al. show
that differential privacy mechanisms can induce bad war-
farin dosing, thus expose patients to increased risk of
stroke, bleeding events, and mortality [24]. Tramèr et
al. [50] investigate how a relaxation of differential pri-
vacy that considers more reasonable amounts of back-
ground knowledge can help reach a better privacy-utility
trade-off for releasing differentially private chi-square
statistics in GWAS.

Our work differs from these in the sense that one of
our protection mechanisms directly applies noise on the
raw miRNA data to guarantee a certain degree of indis-
tinguishability between them, instead of adding noise to
summary statistics to ensure differential privacy. Our
second defense technique relies on sharing a subset of
miRNA data, which is closer to what Humbert et al. have
developed in the genomic-privacy context. In particular,
they propose an optimization algorithm that enables to
share raw genomic variants (rather than summary statis-
tics), e.g., for research, satisfying the genomic privacy re-
quirements of all individuals in a family [29]. More gen-
erally, our work aims to protect real-valued miRNA ex-
pression vectors, which vary over time much more than
DNA data.

8 Conclusion

To the best of our knowledge, this work is the very first
to demonstrate that personal miRNA expression profiles
can be successfully tracked over time. Our study sheds
light on a widely overlooked problem, namely privacy
risks stemming from epigenetic data, and brings this is-
sue to the attention of both the biomedical and computer
security research communities. In addition to the in-
depth evaluation of the temporal linkability of miRNA
expression profiles, we propose two defense mechanisms
based on well-established privacy-enhancing methods:
(i) hiding a subset of the expression data, and (ii) adding
noise to the released expression profiles. We thoroughly
evaluate the impact of these countermeasures on biomed-
ical utility by studying how much accuracy decrease they
induce in a typical machine-learning algorithm for pre-
dicting diseases. We observe that, for the majority of the
19 diseases studied in our experiments, the noise mech-
anism provides a better privacy-utility trade-off than the
hiding method. Moreover, we highlight that the noise
mechanism can be applied directly by the data contribu-
tors, independently of other contributors, and provides
more flexibility for the biomedical community. Our
work demonstrates that achieving indistinguishability by
adding noise is a promising technique that could be ap-
plied to other types of biomedical data in the future.

14

USENIX Association 25th USENIX Security Symposium 1237

Our results provide enough evidence about the extent
of the threat to remove miRNA expression data from
publicly accessible databases. Due to the limited num-
ber of individuals present in our datasets, we could not
rely on supervised learning algorithms, which would cer-
tainly further improve the tracking capabilities of the ad-
versary. We hope that this work will lead to further re-
search on better understanding and protecting the privacy
of miRNA expression data. Considering larger databases
or uncertain membership of participants in the targeted
databases are other promising directions for follow-up
work.

9 Acknowledgements

This work has been partially funded by the German Re-
search Foundation (DFG) via the collaborative research
center “Methods and Tools for Understanding and Con-
trolling Privacy” (SFB 1223), project A5.

References
[1] Arrayexpress. https://www.ebi.ac.uk/arrayexpress. Ac-

cessed: 2016-02-12.

[2] Bilans de santé en balade sur le net. http://www.lematin.ch/
suisse/bilans-sante-balade-net/story/21621328.
Accessed: 2016-02-03.

[3] The black market for stolen health care data. http:

//www.npr.org/sections/alltechconsidered/2015/
02/13/385901377/the-black-market-for-stolen-

health-care-data. Accessed: 2016-02-03.

[4] Gene expression omnibus. http://www.ncbi.nlm.nih.gov/
geo. Accessed: 2016-02-12.

[5] Health insurer anthem discloses customer and em-
ployee data breach. http://www.computerworld.com/
article/2879649/health-insurer-anthem-discloses-

customer-and-employee-data-breach.html. Accessed:
2016-02-03.

[6] Medical data - a new target for hackers. https:

//www.logpoint.com/se/about-us/blog/249-medical-
data-a-new-target-for-hackers. Accessed: 2016-02-03.

[7] micrornas: Definition and overview. https://

www.thermofisher.com/de/de/home/references/
ambion-tech-support/microrna-studies/tech-notes/

micrornas-definition-and-overview.html. Accessed:
2016-02-12.

[8] Premera, anthem data breaches linked by similar hacking tac-
tics. http://www.computerworld.com/article/2898419/
data-breach/premera-anthem-data-breaches-linked-

by-similar-hacking-tactics.html. Accessed: 2016-02-
03.

[9] Urgent probe as michael schumacher’s medical records stolen
and put on sale for 40k. http://www.express.co.uk/
news/world/484495/Investigation-underway-after-

Michael-Schumacher-s-medical-records-stolen.
Accessed: 2016-02-03.

[10] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and
C. Palamidessi. Geo-indistinguishability: Differential privacy
for location-based systems. In Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security,
pages 901–914. ACM, 2013.

[11] E. Ayday, E. De Cristofaro, J.-P. Hubaux, and G. Tsudik. Whole
genome sequencing: Revolutionary medicine or privacy night-
mare? Computer, pages 58–66, 2015.

[12] C. Backes, P. Leidinger, A. Keller, M. Hart, T. Meyer, E. Meese,
and A. Hecksteden. Blood born mirnas signatures that can serve
as disease specific biomarkers are not significantly affected by
overall fitness and exercise. PloS one, 9(7):e102183, 2014.

[13] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller,
O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler,
R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux.
API design for machine learning software: experiences from the
scikit-learn project. In ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, pages 108–122, 2013.

[14] C. Cachin. Entropy measures and unconditional security in
cryptography. PhD thesis, SWISS FEDERAL INSTITUTE OF
TECHNOLOGY ZURICH, 1997.

[15] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and
C. Palamidessi. Broadening the scope of differential privacy us-
ing metrics. In Privacy Enhancing Technologies, pages 82–102.
Springer, 2013.

[16] J. Cloud. Why your DNA isn’t your destiny. Time, January 2010.

[17] C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan. Ro-
bust traceability from trace amounts. In Foundations of Computer
Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages
650–669. IEEE, 2015.

[18] S. O. Dyke, W. A. Cheung, Y. Joly, O. Ammerpohl, P. Lut-
sik, M. A. Rothstein, M. Caron, S. Busche, G. Bourque,
L. Rönnblom, et al. Epigenome data release: a participant-
centered approach to privacy protection. Genome biology, 16:1–
12, 2015.

[19] J. Edmonds. Paths, trees, and flowers. Canadian Journal of math-
ematics, 17(3):449–467, 1965.

[20] Y. Erlich and A. Narayanan. Routes for breaching and protecting
genetic privacy. Nature Reviews Genetics, 15:409–421, 2014.

[21] A. P. Feinberg and M. D. Fallin. Epigenetics at the crossroads of
genes and the environment. JAMA, 314:1129–1130, 2015.

[22] N. Fierer, C. L. Lauber, N. Zhou, D. McDonald, E. K. Costello,
and R. Knight. Forensic identification using skin bacterial com-
munities. Proceedings of the National Academy of Sciences,
107(14):6477–6481, 2010.

[23] E. A. Franzosa, K. Huang, J. F. Meadow, D. Gevers, K. P. Lemon,
B. J. Bohannan, and C. Huttenhower. Identifying personal micro-
biomes using metagenomic codes. Proceedings of the National
Academy of Sciences, page 201423854, 2015.

[24] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Risten-
part. Privacy in pharmacogenetics: An end-to-end case study of
personalized warfarin dosing. In 23rd USENIX Security Sympo-
sium (USENIX Security 14), pages 17–32, 2014.

[25] R. C. Friedman, K. K.-H. Farh, C. B. Burge, and D. P. Bar-
tel. Most mammalian mrnas are conserved targets of micrornas.
Genome research, 19(1):92–105, 2009.

[26] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Er-
lich. Identifying personal genomes by surname inference. Sci-
ence, 339:321–324, 2013.

[27] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe,
J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W.
Craig. Resolving individuals contributing trace amounts of dna
to highly complex mixtures using high-density snp genotyping
microarrays. PLoS Genet, 4(8):e1000167, 2008.

15

1238 25th USENIX Security Symposium USENIX Association

[28] M. Humbert, E. Ayday, J.-P. Hubaux, and A. Telenti. Addressing
the concerns of the Lacks family: quantification of kin genomic
privacy. In Proceedings of the 2013 ACM SIGSAC CCS, pages
1141–1152, 2013.

[29] M. Humbert, E. Ayday, J.-P. Hubaux, and A. Telenti. Reconciling
utility with privacy in genomics. In Proceedings of the 13th Work-
shop on Privacy in the Electronic Society, pages 11–20. ACM,
2014.

[30] M. Humbert, K. Huguenin, J. Hugonot, E. Ayday, and J.-
P. Hubaux. De-anonymizing genomic databases using phe-
notypic traits. Proceedings on Privacy Enhancing Technolo-
gies(PoPETs), 2015.

[31] H. K. Im, E. R. Gamazon, D. L. Nicolae, and N. J. Cox. On
sharing quantitative trait gwas results in an era of multiple-omics
data and the limits of genomic privacy. The American Journal of
Human Genetics, 90(4):591–598, 2012.

[32] A. Johnson and V. Shmatikov. Privacy-preserving data explo-
ration in genome-wide association studies. In Proceedings of the
19th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 1079–1087. ACM, 2013.

[33] P. A. Jones and S. B. Baylin. The epigenomics of cancer. Cell,
128:683–692, 2007.

[34] A. Keller, P. Leidinger, A. Bauer, A. ElSharawy, J. Haas,
C. Backes, A. Wendschlag, N. Giese, C. Tjaden, K. Ott, et al. To-
ward the blood-borne mirnome of human diseases. Nature meth-
ods, 8:841–843, 2011.

[35] A. Keller, P. Leidinger, B. Vogel, C. Backes, A. ElSharawy,
V. Galata, S. C. Mueller, S. Marquart, M. G. Schrauder, R. Strick,
et al. mirnas can be generally associated with human pathologies
as exemplified for mir-144*. BMC medicine, 12(1):224, 2014.

[36] F. Koufogiannis, S. Han, and G. J. Pappas. Optimality of
the laplace mechanism in differential privacy. arXiv preprint
arXiv:1504.00065, 2015.

[37] P. Leidinger, C. Backes, S. Deutscher, K. Schmitt, S. C. Mueller,
K. Frese, J. Haas, K. Ruprecht, F. Paul, C. Stahler, et al. A blood
based 12-mirna signature of alzheimer disease patients. Genome
Biol, 14:R78, 2013.

[38] P. Leidinger, V. Galata, C. Backes, C. Stähler, S. Rheinheimer,
H. Huwer, E. Meese, and A. Keller. Longitudinal study on circu-
lating mirnas in patients after lung cancer resection. Oncotarget,
6:16674, 2015.

[39] Z. Lin, A. B. Owen, and R. B. Altman. Genomic research
and human subject privacy. SCIENCE-NEW YORK THEN
WASHINGTON-., pages 183–183, 2004.

[40] J. Lu, G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb,
D. Peck, A. Sweet-Cordero, B. L. Ebert, R. H. Mak, A. A. Fer-
rando, et al. Microrna expression profiles classify human cancers.
nature, 435(7043):834–838, 2005.

[41] J. L. Massey. Guessing and entropy. In Information Theory, 1994.
Proceedings., 1994 IEEE International Symposium on, page 204.
IEEE, 1994.

[42] M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A. Gunter, J.-P.
Hubaux, B. A. Malin, and X. Wang. Privacy in the genomic era.
ACM Computing Surveys (CSUR), 48:6, 2015.

[43] T. Ngun et al. Abstract: A novel predictive model of sexual orien-
tation using epigenetic markers. In American Society of Human
Genetics 2015 Annual Meeting, 2015.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[45] R. A. Philibert, N. Terry, C. Erwin, W. J. Philibert, S. R. Beach,
and G. H. Brody. Methylation array data can simultaneously iden-
tify individuals and convey protected health information: an un-
recognized ethical concern. Clinical epigenetics, 6:28, 2014.

[46] I. A. Qureshi and M. F. Mehler. Advances in epigenetics and
epigenomics for neurodegenerative diseases. Current neurology
and neuroscience reports, 11:464–473, 2011.

[47] M. A. Rothstein, Y. Cai, and G. E. Marchant. The ghost in our
genes: legal and ethical implications of epigenetics. Health ma-
trix (Cleveland, Ohio: 1991), 19:1, 2009.

[48] E. E. Schadt, S. Woo, and K. Hao. Bayesian method to predict
individual snp genotypes from gene expression data. Nature ge-
netics, 44:603–608, 2012.

[49] M. E. Tipping and C. M. Bishop. Probabilistic principal compo-
nent analysis. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 61(3):611–622, 1999.

[50] F. Tramèr, Z. Huang, J.-P. Hubaux, and E. Ayday. Differential
privacy with bounded priors: reconciling utility and privacy in
genome-wide association studies. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Se-
curity, pages 1286–1297. ACM, 2015.

[51] C. Uhler, A. Slavković, and S. E. Fienberg. Privacy-preserving
data sharing for genome-wide association studies. The Journal of
privacy and confidentiality, 5(1):137, 2013.

[52] R. Wang, Y. F. Li, X. Wang, H. Tang, and X. Zhou. Learn-
ing your identity and disease from research papers: information
leaks in genome wide association study. In Proceedings of the
16th ACM conference on Computer and communications secu-
rity, pages 534–544. ACM, 2009.

[53] L. D. Wood, D. W. Parsons, S. Jones, J. Lin, T. Sjöblom, R. J.
Leary, D. Shen, S. M. Boca, T. Barber, J. Ptak, et al. The ge-
nomic landscapes of human breast and colorectal cancers. Sci-
ence, 318:1108–1113, 2007.

[54] F. Yu, S. E. Fienberg, A. B. Slavković, and C. Uhler. Scalable
privacy-preserving data sharing methodology for genome-wide
association studies. Journal of biomedical informatics, 50:133–
141, 2014.

[55] F. Yu, M. Rybar, C. Uhler, and S. E. Fienberg. Differentially-
private logistic regression for detecting multiple-snp association
in gwas databases. In Privacy in Statistical Databases, pages
170–184. Springer, 2014.

A Appendix

A.1 Human Subjects and Ethical Consid-
erations

The studies have received an approval from our institu-
tional ethics review board. Moreover, not only have all
datasets been stored and analyzed in anonymized form,
but we also handled our results with great care to not
deanonymize any of the patients. This way, we ensured
that all participants were treated equally and with re-
spect.

16

USENIX Association 25th USENIX Security Symposium 1239

Δmax
acc 0.5% 1.0% 2.0% 3.0% 4.0% 5.0%

Disease Δm
priv Δε

priv Δm
priv Δε

priv Δm
priv Δε

priv Δm
priv Δε

priv Δm
priv Δε

priv Δm
priv Δε

priv

Periodontitis 26.9% 74.1% 26.9% 79.2% 50.0% 79.2% 88.5% 83.6% 88.5% 83.6% 88.5% 83.6%
Renal cancer 30.8% - 30.8% 3.6% 69.2% 5.2% 73.1% 60.8% 73.1% 72.7% 80.8% 78.8%
Wilms tumor 3.8% 6.4% 7.7% 9.5% 7.7% 40.1% 7.7% 61.5% 7.7% 70.4% 11.5% 74.3%
Benign
prostate
hyperplasia

−3.8% 10.6% 3.8% 70.5% 11.5% 72.2% 46.2% 79.2% 57.7% 79.2% 65.4% 79.2%

Chronic ob-
structive pul-
monary dis-
ease (COPD)

0.0% 2.7% 0.0% 5.5% 0.0% 12.5% 0.0% 12.5% 15.4% 50.3% 23.1% 69.8%

Colon cancer 19.2% 11.4% 30.8% 30.5% 30.8% 60.2% 57.7% 60.2% 73.1% 70.5% 73.1% 73.8%
Ductal ade-
nocarcinoma

0.0% 50.6% 3.8% 50.6% 7.7% 62.5% 42.3% 62.5% 50.0% 69.5% 50.0% 74.2%

Glioma 65.4% 5.2% 65.4% 5.2% 80.8% 68.5% 80.8% 80.8% 80.8% 87.5% 80.8% 87.5%
Lung cancer 11.5% 74.1% 46.2% 79.3% 50.0% 79.3% 50.0% 79.3% 50.0% 79.3% 50.0% 79.3%
Melanoma 0.0% - 0.0% 3.8% 0.0% 5.9% 3.8% 10.3% 38.5% 40.2% 38.5% 60.7%
Multiple
sclerosis

19.2% 49.5% 53.8% 62.6% 53.8% 62.6% 61.5% 62.6% 61.5% 73.7% 61.5% 73.7%

Myocardial
infarction

3.8% 52.4% 3.8% 52.4% 3.8% 60.5% 38.5% 60.5% 42.3% 74.6% 42.3% 74.6%

Non-
ischaemic
systolic heart
failure

−3.8% 80.0% 0.0% 80.0% 46.2% 80.0% 46.2% 84.7% 46.2% 84.7% 46.2% 84.7%

Ovarian can-
cer

26.9% 78.5% 26.9% 78.5% 42.3% 78.5% 42.3% 84.3% 50.0% 84.3% 50.0% 86.2%

Pancreatitis 19.2% 10.3% 26.9% 39.8% 26.9% 53.5% 26.9% 53.5% 57.7% 62.2% 65.4% 71.2%
Prostate can-
cer

−3.8% - −3.8% - 3.8% 4.0% 42.3% 6.2% 42.3% 10.1% 42.3% 38.5%

Psoriasis 0.0% 6.5% 0.0% 31.4% 3.8% 74.0% 19.2% 80.1% 23.1% 80.1% 61.5% 80.1%
Sarcoidosis 0.0% 69.3% 3.8% 74.0% 50.0% 79.8% 92.3% 79.8% 92.3% 79.8% 92.3% 79.8%
Tumor of
stomach

15.4% 69.8% 34.6% 69.8% 65.4% 79.4% 65.4% 79.4% 65.4% 84.6% 65.4% 84.6%

Table 2: Relative increase in privacy for both defense mechanisms in relation to a fixed maximal decrease in accuracy.
“-” means that the respective maximal decrease in accuracy was not achievable with any ε we tested for. A negative
value means that the attack’s success rate could, in this case, even exceed the success rate with all miRNAs taken into
account.

17

1240 25th USENIX Security Symposium USENIX Association

Δmin
priv 30.0% 40.0% 50.0% 60.0% 70.0% 80.0%

Disease Δm
acc Δε

acc Δm
acc Δε

acc Δm
acc Δε

acc Δm
acc Δε

acc Δm
acc Δε

acc Δm
acc Δε

acc

Periodontitis 1.9% −1.9% 1.9% −1.9% 2.6% −1.9% 2.6% −1.9% 2.6% −0.8% 2.6% 2.9%
Renal cancer 0.0% 2.3% 1.7% 2.3% 1.7% 2.3% 1.7% 2.3% 2.5% 3.1% 4.8% 7.0%
Wilms tumor 5.2% 1.4% 5.2% 1.7% 5.5% 2.2% 5.5% 2.8% 8.1% 3.2% 15.5% 11.3%
Benign
prostate
hyperplasia

2.7% 0.5% 2.7% 0.6% 3.5% 0.6% 5.0% 0.9% 5.6% 0.9% 5.6% 5.5%

Chronic ob-
structive pul-
monary dis-
ease (COPD)

7.9% 3.3% 12.0% 3.3% 12.0% 3.3% 15.4% 4.1% 15.6% 5.3% 15.6% 9.0%

Colon cancer 0.7% 0.8% 2.4% 1.3% 2.4% 1.3% 3.3% 1.9% 3.9% 3.3% 7.7% 9.4%
Ductal ade-
nocarcinoma

2.8% 0.1% 2.8% 0.4% 5.2% 0.4% 5.2% 1.8% 6.4% 4.6% 6.4% 6.4%

Glioma 0.0% 1.2% 0.0% 1.2% 0.4% 1.2% 0.4% 1.4% 1.1% 2.1% 1.1% 2.8%
Lung cancer 0.7% −1.5% 1.0% −1.5% 6.6% −1.5% 8.1% −1.5% 11.2% 0.2% 18.2% 5.5%
Melanoma 3.7% 3.4% 5.0% 3.4% 7.5% 4.1% 7.5% 4.9% 7.5% 6.5% 10.0% 11.2%
Multiple
sclerosis

0.9% −0.0% 0.9% 0.1% 0.9% 0.7% 2.3% 0.7% 8.1% 3.8% 8.1% 6.7%

Myocardial
infarction

2.8% 0.0% 3.6% 0.4% 7.2% 0.4% 7.3% 1.3% 7.3% 3.3% 11.2% 6.7%

Non-
ischaemic
systolic heart
failure

2.0% −2.6% 2.0% −2.6% 8.5% −2.1% 8.5% −2.1% 9.3% −1.5% 9.3% 2.5%

Ovarian can-
cer

1.3% −0.7% 1.3% −0.7% 5.5% −0.7% 6.7% −0.7% 9.0% −0.7% 9.0% 2.5%

Pancreatitis 3.8% 0.8% 3.8% 1.9% 3.8% 1.9% 4.5% 3.1% 7.9% 4.3% 7.9% 7.9%
Prostate can-
cer

2.7% 4.8% 2.7% 5.0% 7.6% 5.0% 7.6% 5.6% 7.6% 5.6% 11.5% 8.9%

Psoriasis 4.3% 1.0% 4.3% 1.3% 4.3% 1.3% 4.3% 1.4% 5.8% 1.4% 10.0% 2.1%
Sarcoidosis 1.4% −0.2% 1.6% −0.2% 2.2% −0.2% 2.2% −0.2% 2.2% 0.6% 2.2% 5.3%
Tumor of
stomach

0.9% −0.0% 1.7% −0.0% 2.0% −0.0% 2.0% −0.0% 5.1% 1.1% 5.1% 3.3%

Table 3: Relative decrease in accuracy for both defense mechanisms in relation to a fixed minimal increase in privacy.
A negative value means that the accuracy could, in this case, even exceed the baseline accuracy (utility).

18

	Conference Organizers
	External Reviewers
	Contents
	Message from the 25th USENIX Security Symposium Co-Chairs
	Flip Feng Shui: Hammering a Needle in the Software Stack
	One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation
	PIkit : A New Kernel-Independent Processor-Interconnect Rootkit
	Verifying Constant-Time Implementations
	Secure, Precise, and Fast Floating-Point Operations on x86 Processors
	ÜBERSPARK: Enforcing Verifiable Object Abstractions for Automated Compositional Security Analysis of a Hypervisor
	Undermining Information Hiding (And What to do About it)
	Poking Holes in Information Hiding
	What Cannot be Read, Cannot be Leveraged? Revisiting Assumptions of JIT-ROP Defenses
	zxcvbn: Low-Budget Password Strength Estimation
	Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks
	An Empirical Study of Textual Key-Fingerprint Representations
	Off-Path TCP Exploits: Global Rate Limit Considered Dangerous
	Website-Targeted False Content Injection by Network Operators
	The Ever-changing Labyrinth: A Large-scale Analysis of Wildcard DNS Powered Blackhat SEO
	A Comprehensive Measurement Study of Domain Generating Malware
	Enhancing Bitcoin Security and Performance with Strong Consistency via Collective S
	Faster Malicious 2-party Secure Computation with Online/Offline Dual Execution
	Egalitarian computing
	Post-quantum key exchange – a new hope
	Automatically Detecting Error Handling Bugs using Error Specifications
	APISAN: Sanitizing API Usages through Semantic Cross-checking
	On omitting commits and committing omissions: Preventing Git metadata tampering that (re)introduces software vulnerabilities
	Defending against malicious peripherals with Cinch
	Making USB Great Again with USBFILTER
	Micro-Virtualization Memory Tracing to Detect and Prevent Spraying Attacks
	Request and Conquer: Exposing Cross-Origin Resource Size
	Trusted browsers for uncertain times
	Tracing Information Flows Between Ad Exchanges Using Retargeted Ads
	Virtual U: Defeating Face Liveness Detection by Building Virtual Models From Your Public Photos
	Hidden Voice Commands
	FlowFence: Practical Data Protection for Emerging IoT Application Frameworks
	ARMageddon: Cache Attacks on Mobile Devices
	DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks
	An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries
	Stealing Machine Learning Models via Prediction APIs
	Oblivious Multi-Party Machine Learning on Trusted Processors
	Thoth: Comprehensive Policy Compliance in Data Retrieval Systems
	Dancing on the Lip of the Volcano: Chosen Ciphertext Attacks on Apple iMessage
	Predicting, Decrypting, and Abusing WPA2/802.11 Group Keys
	DROWN: Breaking TLS using SSLv2
	All Your Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable Encryption
	Investigating Commercial Pay-Per-Install and the Distribution of Unwanted Software
	Measuring PUP Prevalence and PUP Distribution through Pay-Per-Install Services
	UNVEIL: A Large-Scale, Automated Approach to Detecting Ransomware
	Towards Measuring and Mitigating Social Engineering Software Download Attacks
	Specification Mining for Intrusion Detection in Networked Control Systems
	Optimized Invariant Representation of Network Traffic for Detecting Unseen Malware Variants
	Authenticated Network Time Synchronization
	fTPM: A Software-only Implementation of a TPM Chip
	Sanctum: Minimal Hardware Extensions for Strong Software Isolation
	Ariadne: A Minimal Approach to State Continuity
	The Million-Key Question – Investigating the Origins of RSA Public Keys
	Fingerprinting Electronic Control Units for Vehicle Intrusion Detection
	Lock It and Still Lose It – On the (In)Security of Automotive Remote Keyless Entry Systems
	OBLIVP2P: An Oblivious Peer-to-Peer Content Sharing System
	AuthLoop: Practical End-to-End Cryptographic Authentication for Telephony over Voice Channels
	You are Who You Know and How You Behave: Attribute Inference Attacks via Users’ Social Friends and Behaviors
	Internet Jones and the Raiders of the Lost Trackers: An Archaeological Study of Web Tracking from 1996 to 2016
	Hey, You Have a Problem: On the Feasibility of Large-Scale Web Vulnerability Notification
	You’ve Got Vulnerability: Exploring Effective Vulnerability Notifications
	Mirror: Enabling Proofs of Data Replication and Retrievability in the Cloud
	ZKBoo: Faster Zero-Knowledge for Boolean Circuits
	The Cut-and-Choose Game and its Application to Cryptographic Protocols
	On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis
	Practical DIFC Enforcement on Android
	Screen After Previous Screens: Spatial-Temporal Recreation of Android App Displays from Memory Images
	Harvesting Inconsistent Security Configurations in Custom Android ROMs via Differential Analysis
	Identifying and characterizing Sybils in the Tor network
	k-fingerprinting: a Robust Scalable Website Fingerprinting Technique
	Protecting Privacy of BLE Device Users
	Privacy in Epigenetics: Temporal Linkability of MicroRNA Expression Profiles
	Blank Page

